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Abstract

This paper studies a security design problem featuring flexible information acqui-

sition. To raise liquidity, a seller issues a security backed by her asset in place at the

price she proposes to a buyer. Before deciding whether to accept the offer, the buyer

can acquire costly information about the underlying asset. This case differs from the

existing literature on security design, in that the buyer has the full flexibility of choos-

ing not only the amount of resources to spend in information acquisition, but also how

to allocate them, depending on the shape of the security. Debt is shown to be the

unique optimal security for the seller, as its payoff is the least sensitive to the value of

its underlying asset. This minimizes the buyer’s incentive to acquire information and

mitigates the resulting adverse selection. I do not assume monotonicity of the feasi-

ble securities nor impose various distributional assumptions on information structures.

Instead, I identify conditions for general information costs that support the results.
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1 Introduction

Asset-backed securities (ABS) are widespread and played a significant role in the 2007—

08 financial crisis. Potential buyers of these securities in the primary markets are mainly

informationally sophisticated investors, such as hedge funds, collateralized debt obligation

(CDO) managers, and, more broadly, investment banks. These investors actively acquire

information about the underlying assets when deciding whether to purchase the ABS. In

particular, they have the flexibility of choosing not only the amount of resources to spend

in this process but also how to allocate those resources, and their optimal choices depend

on the "shape" of the security, that is, the ex ante defined relation between the payoff of

the security and the value of its underlying assets.

For example, if the ABS is a debt security, a potential buyer’s information acquisition

would focus mainly on the downside. That is, whether the total value of its underlying

assets will fall short of the face value of the debt security and by how much. This is because

the payoff of the security increases one for one with the total value of its underlying assets

in that range. The buyer’s investigation would not focus on the upside (e.g., whether the

total value of the underlying assets will be two or three times of the face value), because

the payoff of the security is invariant with the value of the underlying assets in this range.

Analogously, if the ABS is instead a call option, whose payoff increases with the total value

of its underlying assets only if it is in the money, then opposite to the previous example,

the buyer’s information acquisition would focus more on the upside than the downside.

Given such flexibility in information acquisition, the potential buyer is able to gain an

informational advantage that is endogenous to the design of the security, and can subse-

quently cherry-pick the security at the expense of the seller. The question then becomes,

how can the seller optimally design the security in the first place to mitigate or even deter

such adverse selection? This paper addresses this question with a theoretical framework

novel in the literature that captures the aforementioned flexibility in information acquisi-

tion. The conclusion is that debt is uniquely optimal for this purpose, which is consistent

with the prevalence of debt securities in ABS markets.

To fix idea, consider a risk-neutral seller ("she"),1 who has an asset in place that gener-

ates a random future cash flow. She is impatient and wants to raise liquidity by issuing a

security backed by her asset at a price she proposes to a risk-neutral buyer. The buyer ("he")

can acquire costly information to evaluate this offer before deciding whether to accept it.

The approach that I adopt to model his information acquisition is the key methodological

innovation of this paper. While agents in models of canonical contract theory and corporate

finance theory are endowed with exogenous signals or restricted to choosing information

1 I will use she/her to refer to the seller and he/his to the buyer of the security throughout the paper. I
do not intentionally associate the agents with particular genders.
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structures of a particular functional form,2 the buyer in my model is allowed to choose any

information structure represented by a signal that correlates with the fundamental state in

a particular way.3 To model this flexibility in information acquisition, I introduce a general

cost functional with minimum regularity conditions that assigns non-negative information

costs to different information structures. Subject to the cost functional, the flexibility en-

ables the buyer to fine-tune his information acquisition about different fundamental states

according to their payoff relevance.

The optimality of debt results from the seller’s incentive to discourage the buyer from

acquiring information. Such incentive stems from an important feature of the model: fixed

aggregate cash flow. That is, the aggregate cash flow to be split between the seller and

the buyer is invariant to the success or failure of the transaction, which only reallocates

the cash flow. This engenders conflict of interest between the two parties: the buyer gains

from information acquisition at the expense of the seller through adverse selection. That is,

he takes advantage of the flexibility of information acquisition to differentiate states with

different security payoffs, and subsequently rejects (accepts) the offer at states unfavorable

(favorable) to him but possibly favorable (unfavorable) to the seller. Anticipating this, the

seller wants to design a security with a constant payoff to minimize the buyer’s incentive to

acquire information. This gives rise to the flat tail of the debt security. When the underlying

cash flow becomes too low to support such constant payoff, the limited liability constraint

binds and yields the 45-degree-line portion of the debt security.

I also provide a number of robustness results to explore which model assumptions drive

which aspect of the optimal security. Specifically, I consider two alternative settings. One

involves alternative assumptions about the information cost functional. The other considers

the possibility of issuing a security backed by multiple underlying assets. Fixed aggregate

cash flow remains the key feature in these settings. The intuition of the baseline model

carries over, and debt securities remain optimal.

Although ubiquitous, debt is not always the optimal way to obtain external financing

in practice. Consider the following variation of the model. Instead of being generated from

some asset in place, the random cash flow comes from a project that can be undertaken only

if the security backed by it is accepted by the buyer in exchange for the upfront investment

required. In this case, aggregate cash flow depends on whether the transaction succeeds,

and hence, information acquisition is valuable. The resulting optimal security encourages

information acquisition, and debt is no longer optimal. Another situation in which debt

may not be optimal is that where multiple buyers are acquiring information and bidding

for the security. In that case, endogenous asymmetric information between the buyers

2One prominent example is Gaussian signals, or more generally, signals with additive noise. Information
acquisition is then modeled as reducing the magnitude of noise at some cost.

3 In the security design problem, the fundamental state is the underlying cash flow. I use these two terms
interchangeably throughout the paper.
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emerges, resulting in the winner’s curse and reducing the seller’s revenue. Since the degree

of information asymmetry could be non-monotonic in information acquisition, it is unclear

whether the seller wants a flat security to discourage information acquisition.

The contribution of this paper is twofold. First, since my model allows arbitrary infor-

mation choices under a very general class of information costs, the optimality of debt in the

case of information deterrence established here greatly enhances the robustness of similar

results in existing papers on security design that feature information acquisition and adverse

selection. Second, in terms of the methodological contribution, this paper develops a very

general modeling technique to capture the incentives of relevant parties in the presence of

flexible information acquisition, and demonstrates how this technique can be incorporated

into canonical contract theory and corporate finance theory models, opening a new arena

for the study of strategic interactions in agency problems.

I proceed as follows. Section 2 presents the baseline model and analyzes the special case

of zero information cost. Section 3 introduces flexible information acquisition in a decision

problem, and Subsection 3.1 lays out the foundation for analyzing the players’ behavior

in the subsequent trading game. Section 4 derives the unique optimal security in various

circumstances and discusses the underlying mechanism. Section 5 considers several alterna-

tive settings and variations of the baseline model, showing the robustness and limitations

of the results. Section 6 concludes and discusses some related issues. Appendix A discusses

the assumptions of flexible information acquisition and their implications. All proofs are in

Appendix B.

Related Literature. By considering a more general class of information costs, my

approach of flexible information acquisition extends the rational inattention approach pi-

oneered by Sims (1998). My paper also differs from the rational inattention literature in

that I focus on agents’flexibility in acquiring information instead of their limited capacity

in processing information.

My paper is closely related to the security design literature. I focus this review on the

most closely related papers, based on a taxonomy of models that differ in the source of

information asymmetry and the value of private information (acquisition).

In the first class of models, the seller is endowed with private information. Information is

detrimental, as it creates a downward-sloping demand curve that forces high-quality sellers

to sell less. To mitigate this problem, the seller designs information-insensitive securities. In

DeMarzo and Duffi e (1999), an informed seller sells the security in a Leland and Pyle (1977)

type of signaling game. Debt is optimal within the class of monotone securities when the

seller’s information structure admits a uniformly worst case. My model differs from that of

DeMarzo and Duffi e (1999) in the following aspects. In my setting, bargaining power and

information advantage are separated between the two parties. Illiquidity is not a result of

signaling with exogenous information asymmetry but stems from adverse selection caused by
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information acquisition. Debt is optimal because it discourages information acquisition in

the first place, rather than being insensitive to existing private information. Thus, I identify

conditions on the production, as opposed to the structure, of information such that debt

is uniquely optimal, and not just among the monotone securities. DeMarzo (2005) argues

that pooling destroys the seller’s ability to signal the quality of the assets separately but

reduces the information sensitivity of the senior tranche. When the second effect dominates,

pooling and tranching are optimal. Subsection 5.3 shows that pooling and tranching are

always optimal, since my setting does not involve the signaling effect but has a similar

second effect: pooling and tranching make each individual asset less payoff relevant and

reduce the incentive to acquire information. Biais and Mariotti (2005) and Nachman and

Noe (1994) also belong to this class of models. The former extends the analysis of DeMarzo

and Duffi e (1999) to accommodate buyers’market power, while the latter considers security

design after the arrival of private information. They identify conditions under which debt

is optimal among monotone securities.4

Unlike the literature on security design featuring signaling, Axelson (2007) highlights

private information on the buyer side. An uninformed seller sells a security to exogenously

informed buyers in a uniform price K-unit auction. The security is underpriced when its Kth

and K+1’st highest conditional expectations differ from each other. Hence, the underpricing

stems from the heterogeneity of these two buyers’valuations, which is strong for intermediate

values and weak for low and high values of the fundamental, provided that the monotone

likelihood ratio property holds. Within the class of dual-monotone securities, it is optimal

to make the security slope equal to 1 when underpricing is weak and 0 when it is strong,

resulting in a combination of debt and a call option. This mechanism differs from those in

my model and in the aforementioned signaling literature. Information is not detrimental.

Instead, it helps adjust the scale of investment according to the particular opportunity. It is

the imperfection of information that creates heterogeneous valuations and the underpricing

problem.5 Inderst and Mueller (2006) also consider security design with the buyer’s private

information and find that either debt or a call option is optimal. Their model features

exogenous information and variable aggregate cash flows and thus differs from mine.

The third class of models studies security design in the presence of information acqui-

sition. In a setting similar to my baseline model, Dang, Gorton, and Holmström (2015)

model information acquisition via the costly state verification (CSV) approach inspired by

Townsend (1979) and show that there are an infinite number of optimal securities, called

quasi-debt. Like a standard debt contract, the payoff of a quasi-debt security equals the

value of the underlying asset when it falls below the price of the security. But the pay-

4Faure-Grimaud (2000) also belongs to this class of models. In a different context, debt is shown to be
optimal and renegotiation-proof.

5 In addition, the auction setting allows for a formal analysis of competition, showing that more intensive
competition leads to more equity-like securities, a result not present in my model nor in most signaling
models of security design.
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off of such a security can take arbitrary values above the price whenever feasible. This is

because, as CSV perfectly reveals the state, the buyer’s optimal strategy is to accept the

offer regardless of the "shape" of the security as long as it pays off more than its price. In

contrast, in my framework with flexible information acquisition, standard debt is uniquely

optimal. This is because, it is now optimal for the buyer to acquire information that better

differentiates states with greater differences in the security payoff that justify the cost of

doing so. To discourage such practice and mitigate the resulting adverse selection, the seller

should make the security payoff as flat as possible even if the security pays offmore than its

price, resulting in the flat tail of standard debt. Moreover, this paper and Dang, Gorton,

and Holmström (2015) also differ in their focuses. The latter focuses on the macroeconomic

implications of debt, while the former examines the microfoundation of debt via the ap-

proach of flexible information acquisition. In Boot and Thakor (1993) and Fulghieri and

Lukin (2001), a firm (seller) is endowed with private information about its project. Good

firms want to separate themselves from bad ones by issuing information-sensitive securities

to encourage buyers’information acquisition, which makes the equilibrium price more infor-

mative. Debt becomes optimal when information is expensive. In contrast to Dang, Gorton,

and Holmström (2015) and this paper, the two parties start with asymmetric information,

and information acquisition helps reduce information asymmetry, making information ac-

quisition valuable and non-debt securities optimal. In a simple bargaining setting, Farhi and

Tirole (2015) show that tranching (i.e., issuing risk-free debt), instead of selling the whole

asset, encourages (discourages) information acquisition when it is socially desirable to dis-

courage (encourage) it under certain conditions. In a noisy rational expectation framework,

Hennessy (2013) shows a similar effect through the channel of interaction between tranching

and information aggregation in competitive markets. The analysis in these two papers is

more general than mine, in the sense that they examine various situations: both parties

start with symmetric ignorance, or only one party is informed. It is also more restrictive

because of its binary-state setting and focus on tranching, rather than on general security

design.

Finally, the concept of flexibility in security design as presented in this paper has recently

gained momentum. Instead of focusing on adverse selection caused by flexible information

acquisition, Hébert (2017) studies a flexible moral hazard problem based on Holmstrom

and Milgrom (1987), in which the agent can choose any distribution of cash flows, each

associated with a cost. Debt is optimal when the cost is measured by Kullback-Leibler

divergence. Debt may not be optimal under more general forms of divergence. Although

Hébert (2017) and my model share the same concept of flexibility, they differ in nature, and

the modeling approaches are not directly comparable. Another recent paper in this area is

Antic (2015). In addition to the agent’s flexibility in choosing the distribution of cash flows,

the principal is ambiguity-averse. The optimal security approaches debt when the ambiguity
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aversion vanishes and approaches equity in the presence of large ambiguity aversion.

2 The Model

I present my baseline model of liquidity provision. It does not aim to capture every aspect

of liquidity provision, such as risk sharing, market competition, or reselling, but highlights

the flexibility of information acquisition and its effects on optimal security design.

I consider a two-date game with two players. A seller is endowed with an asset at date

0 that generates a verifiable random cash flow θ ∈ Θ = R+ at date 1, while a potential

buyer owns consumption goods at date 0. Following the convention of the security design

literature, I assume that both players are risk neutral. Specifically, player i’s utility function

is given by

ui = ci0 + δi · ci1 , (1)

where cit denotes player i’s consumption at date t and δi ∈ [0, 1] is the player’s subjective

discount factor, and i ∈ {s, b}({s, b} stands for {seller, buyer}). I assume δb > δs, that is,

the seller is less patient than the buyer. An alternative interpretation is that the seller has

a better investment opportunity or higher cost of carry than the buyer. This assumption

creates gains from trade. Both parties may benefit from transferring some goods to the

seller at date 0 and compensating the buyer with security payoff backed by the random cash

flow θ at date 1.

To focus on the adverse selection resulting from information acquisition, I assume that

both players start with identical information about θ, represented by a full support common

prior P over R+. P is assumed to be absolutely continuous with respect to Lebesgue’s

measure on R+. I also assume that the expectation Eθ exists.
A security backed by the asset is a mapping s : R+ → R+ such that ∀θ ∈ R+, s (θ) ∈

[0, θ]. That is, I require the security to respect both players’limited liability constraints. An

offer (s (·) , q) is a security s (·) associated with a price q > 0. Throughout the baseline model,

I assume that it is the seller who makes an offer, and the buyer acquires information about

θ before deciding whether to accept the offer. I denote the buyer’s decision by a ∈ {0, 1},
with a = 1 referring to "accept" and a = 0 to "reject," respectively.6

The main result of this paper is that the optimal security is always a debt security in the

sense that it possesses the two defining features of debt: i) a 45-degree-line portion and ii)

a flat tail. In particular, the optimal security s∗ takes the form s∗ (θ) = min (θ,D∗), where

D∗ is a positive face value. It has a flat tail in the sense that the security payoff is constant

once the future cash flow θ exceeds face value D∗. When the cash flow falls short of the face
6To focus on security design under flexible information acquisition, the main innovation of this paper,

I simplify the bargaining process by assuming that the seller makes a take-it-or-leave-it offer. I consider a
reduced-form allocation of bargaining power in the online appendix.
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value, all the cash flow goes to the buyer, resulting in the 45-degree-line portion of a debt

security.

2.1 The Special Case of Zero Information Cost

Before exploring the full-fledged model with costly information acquisition, I first develop

some insight by examining the special case of zero information cost. This amounts to letting

the buyer directly observe the future cash flow θ. The buyer’s optimal decision in this case

is straightforward. He accepts any offer (s (·) , q), if and only if his discounted security payoff
δbs (θ) exceeds the price q. It immediately follows that the seller will never set s (θ) > δ−1

b q

for any θ. Otherwise, she can be strictly better off by slightly reducing the security payoff

s (θ) without affecting the chance of acceptance of the offer. The seller thus sets either

s (θ) < δ−1
b q or s (θ) = δ−1

b q. When s (θ) < δ−1
b q, the offer is rejected, and the seller’s payoff

is zero. When s (θ) = δ−1
b q, the offer is accepted, and the seller’s payoff, given θ, is7

q − δss (θ) = q
(
1− δsδ−1

b

)
.

Hence the seller’s expected payoff is

Pr
(
s (θ) = δ−1

b q
)
· q
(
1− δsδ−1

b

)
.

For any price q, this expected payoff is maximized when the probability of acceptance

Pr
(
s (θ) = δ−1

b q
)
is maximized. Thus, for all θ ≥ δ−1

b q the optimal security payoff is δ−1
b q.

It is straightforward to see that any security sq that satisfies sq (θ) = δ−1
b q for θ ≥ δ−1

b q

is optimal and that the debt security min
(
θ, δ−1

b q
)
is one such security. But there also

exist infinitely many other optimal securities. This is because, for any θ < δ−1
b q, sq (θ) can

take arbitrary values in [0, θ] and thus does not have to feature a 45-degree-line portion.

This lack of the first defining feature of debt stems from the buyer’s ability to distinguish

between different states of θ at no cost. In particular, the buyer can perfectly identify those

θ below δ−1
b q and reject the offer. Hence, the value of sq (θ) does not matter to the seller’s

payoff, and non-uniqueness is not essential in this special case. In contrast, all the optimal

securities feature a flat tail: sq (θ) = δ−1
b q for θ ≥ δ−1

b q. This is because, given that the

buyer can perfectly observe θ and thus know s (θ), choosing s (θ) < δ−1
b q causes rejection

and forgoes the seller’s gain from the trade, while choosing s (θ) > δ−1
b q reduces the seller’s

gain by s (θ)− δ−1
b q without improving the chance of a deal. Hence, for any price q > 0, an

7Here, I assume that the buyer accepts the offer when he is indifferent. This tie-breaking rule can be
justified by the following reasoning. If the indifferent buyer accepts the offer with probability strictly less
than one, the seller can be strictly better off by adding an arbitrarily small extra ε > 0 to make the buyer
accept the offer with probability one. The tie-breaking rule results as this extra ε vanishes.

8



optimal security takes the form

sq (θ)

{
= δ−1

b q if θ ≥ δ−1
b q

∈ [0, θ] otherwise
.

A high-level understanding of the flat tail, the common feature of all optimal securities

here, is that it minimizes the buyer’s incentive to use his information about θ. To see this,

consider two states θ1 and θ2 that are greater than δ
−1
b q (so that s (θ1) and s (θ2) could,

but need not, equal δ−1
b q). The buyer uses his information to differentiate these two states

if his probability of acceptance is state-contingent. This happens only when the payoff in

one state s (θ1) or s (θ2) is above δ−1
b q and the other is below it. Suppose s (θ1) > δ−1

b q

and s (θ2) < δ−1
b q. By bringing s (θ1) down to δ−1

b q, the seller reduces the security payoff

without sacrificing the chance of a deal. By bringing s (θ2) up to δ−1
b q, the seller rescues the

trade on state θ2 and the gains from it. Therefore, whenever feasible (i.e., θ ≥ δ−1
b q), the

seller wants to maintain a flat security payoff δ−1
b q to minimize the buyer’s incentive to use

his information, resulting in a non-state-contingent probability of acceptance for θ ≥ δ−1
b q.

Although this intuition for the optimality of the flat tail is developed in the special case

with exogenous information, it carries over to cases with information acquisition. In that

context, since information acquisition is a prerequisite to using information, discouraging

the buyer from using his information also discourages him from acquiring information. The

optimal security again features a flat tail that minimizes the buyer’s incentive to acquire and

use information. In Propositions 4 and 5, we will see that introducing information cost also

determines the shape of the optimal security for θ < δ−1
b q, making debt uniquely optimal.

Finally, note that, for any q > 0, the seller’s expected payoff is

Pr
(
θ ≥ δ−1

b q
)
· q
(
1− δsδ−1

b

)
.

The optimal price q∗ is pinned down by

q∗ ∈ arg max
q≥0

Pr
(
θ ≥ δ−1

b q
)
· q , (2)

and the optimal face value D∗ = δ−1
b q∗ follows immediately.

3 Information Costs and Buyer’s Information Acquisi-

tion

Starting from this section, I study the full-fledged model of costly information acquisition.

As described above, the seller and the buyer play a sequential-move game. The seller moves

first to design the offer (s, q), and the buyer then acquires information about the fundamental
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state according to his (state-contingent) payoff determined by the security. Based on his

acquired information, the buyer decides whether to accept the offer. I solve this game with

backward induction. In this subsection, I study the buyer’s information-acquisition problem

for any given offer. I then analyze the seller’s security design problem in the following

subsections.

The buyer acquires information by arranging to receive a signal, which could be corre-

lated in a fairly arbitrary way to fundamental θ. Specifically, the signal x is drawn from

some set X ⊂ R, according to a conditional probability π (x|θ) (i.e., information structure)
chosen by the buyer, whose acceptance decision a is then a function of the signal x that is

received.8 Choosing information structure π incurs a cost c (π) ≥ 0. To fix idea, I make

several assumptions about the information cost c (·). The seminal work of Blackwell (1953)
introduces a partial ordering to reflect the informativeness of information structures. Struc-

ture A is less informative than structure B if A can be obtained from B by the addition of

garbling noise. We say that an information cost respects Blackwell’s ordering if it assigns a

strictly lower cost to strictly less-informative structures in the sense of Blackwell (1953).

Assumption A1: The information cost c (·) strictly respects Blackwell’s ordering.
This assumption states that acquiring extra information incurs extra cost. As a result,

the buyer will not acquire any useless information. In particular, he always chooses a binary-

signal information structure and never mixes between accepting and rejecting the offer upon

receiving the signal. Otherwise, he could acquire less information without sacrificing the

quality of his acceptance decision. I state this result in the following lemma.

Lemma 1 Let (π,X) be the buyer’s optimal information structure. Then i) upon receiving

any x ∈ X, the buyer strictly prefers either a = 0 or a = 1; ii) X contains at most two

signal realizations (i.e., #X ≤ 2).

The proofs of all lemmas and propositions, including this one, are in Appendix B. Here

I briefly outline the intuition as follows. First, consider the coarsening of an information

structure; that is, combining some signal realizations to form a single realization. This op-

eration adds garbling noise and results in a less costly information structure according to

Assumption 1. If the information structure violates i) or ii) in Lemma 1, I show that the

buyer can always coarsen his information structure to save the information cost without af-

fecting his probability of acceptance given θ. Regarding i), if the buyer is indifferent between

accepting and rejecting the offer after receiving some signal realization, this realization is

useless because it makes the buyer’s decision irrelevant to his expected payoff. The buyer

can then coarsen the information structure without sacrificing his expected payoff by com-

bining all such realizations with any other signal realization that makes him strictly prefer

accepting or rejecting. Regarding ii), if X contains more than two signal realizations, there

8To be rigorous, the conditional probability π (·|·) is a mapping from R+, the space of the fundamental
state, to ∆ (X), the space of probability measures over X.
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must be an action taken after receiving at least two signal realizations. Since these realiza-

tions lead to the same action, the buyer can combine them to form a single realization and

take that action after receiving it. This coarsening operation results in a less-informative

information structure and thus a reduction of information cost without affecting the quality

of his decision.

As intuitively suggested by Lemma 1, since the only use of the signal is to make an

accept/reject decision, a signal that differentiates more finely among the states just conveys

redundant information and thus costs the buyer more resources without improving the

quality of his decision. This gives rise to the optimality of a binary information structure,

which has two signal realizations, denoted by {1, 0}, interpreted as a yes/no signal as to
whether fundamental θ is good enough to accept.9 Consequently, it suffi ces to focus on

informationally effi cient strategies defined by these features, and any such strategy can be

characterized by a function m : R+ → [0, 1], where

m (θ) = Pr (accepting | state is θ) .

Note that the corresponding information structure is given by π (x = 1 |θ ) = m (θ) and

π (x = 0 |θ ) = 1−m (θ), and the associated decision rule is a = x, meaning that accepting

(rejecting) the offer after receiving x = 1 (x = 0). With a slight abuse of notation but

without confusion, I also call m the information structure.

To be rigorous, I require that m belongs to

M = {m Lebesgue measurable : m (θ) ∈ [0, 1] for all θ ∈ R+} ,

which is the set of all binary information structures, and specify the information cost c (·)
over M . In particular, let

c (m) = Eg (m (θ))− g (Em (θ)) , (3)

and µ·c (m) be the information cost for information structurem ∈M .10 Here µ > 0 controls

the diffi culty in acquiring information. Larger values of µ make information acquisition more

costly and hence reduce the severity of the adverse selection problem. As µ goes to infinity,

the adverse selection problem vanishes, so that the seller offers the whole underlying asset

at price q = δb · Eθ, and the buyer accepts the offer without acquiring information. Here
9Literally, I also need to consider the trivial information structure that has only one signal realization.

That is, the buyer does not acquire any information and accepts or rejects the offer unconditionally. This
can be viewed as a special case of the binary information structures, as covered by points a) and b) in ii) of
Proposition 2.
10Here c (·) belongs to the category of posterior separable information costs that are micro-founded by

recent literature on information acquisition in decision theory. These information costs are tractable and
analytically convenient, due to their additive separability across states. The widely used Shannon’s entropy
reduction (mutual information) is a special case in this class.
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E(·) is the expectation operator with respect to θ under prior P , and g : [0, 1] → R is a

function satisfying the following conditions.

Assumption A2: i) g is strictly convex; ii) g (x) = g (1− x); iii) g is third-order dif-

ferentiable with non-decreasing x · g′′ (x); iv) the left limit limx→1− g
′ (x) = ∞; and v) let

f : R→ [0, 1] be the inverse of g′ and define K = limz→∞
f ′(z+1)
f ′(z) , then K < 1.

Condition i) is necessary and suffi cient to guarantee the non-negativeness of information

cost c (·). The suffi ciency follows Jensen’s inequality, and the necessity stems from Black-

well’s ordering. To see the point of condition ii), note that if I switch the recommendations

of the two signal realizations (i.e., "taking action 0" upon observing signal 1 and "taking

action 1" upon observing signal 0), the information content is unchanged and so is the in-

formation cost, which requires c (m) = c (1−m). Condition iii) is a technical condition,

assumed for the sake of tractability. In particular, the nondecreasing x · g′′ (x) guarantees

that the first-order variational approach is suffi cient for the main results. Condition iv)

states that the (pointwise) marginal cost of avoiding type I and type II errors is infinity

whenever there is information acquisition. This point will be further clarified after Propo-

sition 2. For the sake of exposition in Proposition 2, Condition v) defines a constant K

to be used to characterize the criteria that sharply distinguish the case with information

acquisition from that without it. Note that conditions i) and iii) imply g′′ > 0 and thus

f ′ > 0, then K ≥ 0. Condition iv) further implies that f (z) converges to 1 from below as

z goes to infinity. If K > 1, then f ′ (z) is increasing as z goes to infinity and f (z) cannot

converge to 1 from below. Hence, conditions i), iii), and iv) imply K ∈ [0, 1] and condition

v) simply excludes the non-generic case K = 1 in which I do not obtain an analytically

clear criterion for information acquisition.11 For interested readers, I provide more detailed

discussions of these conditions in Appendix A.

Example 1: The rational inattention literature employs entropy reduction as a measure
of information costs. This measure corresponds to g (x) = x lnx + (1− x) ln (1− x) in my

setting. This functional form satisfies all the conditions in Assumption A2. In particular,

K = e−1.

Example 2: Consider a function g (x) = −x (1− x). This function satisfies Conditions

i) — iii). It does not satisfy Condition iv) because g′ (1) = 1 < ∞. Absent Condition
iv), Condition v) is not needed, since the domain of f is bounded and there is no need

to calculate the limit. This functional form gives rise to information costs with bounded

marginal costs of avoiding Type I and Type II errors. I discuss its implications for security

design in Subsection 5.2.

An intuitive way to understand c (m) is that it measures the variability of function m,

the informativeness of the signal with respect to the fundamental state θ. For example, a

constant m (θ) implies c (m) = 0, because the signal is independent of θ and thus conveys no

11Numerical examples suggest that the paper’s main qualitative results hold in this knife-edge case.
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information about θ. This stems from the strict convexity of function g. Hence c (m) is zero

if and only if m (θ) is constant. Therefore, this technology of information acquisition has the

attractive property that information acquisition exists if and only if m (θ) varies over θ, and

if and only if the information cost is positive. Also note that the shape (functional form) of

m determines not only the quantitative but also the qualitative nature of information. For

instance, choosing an m that is constant on some event (i.e., a subset of R+) means that

the buyer does not acquire information to distinguish the states within that event, since his

decision on that event is not state-contingent. In contrast, the buyer can concentrate his

investigation on some event by making m (θ) highly sensitive to θ within the event. In this

sense, the technology of information acquisition is flexible, because the agent can decide

the pointwise quality of his information by choosing any information structure from M . I

further illustrate this point in the graphic examples in next subsection.

I now examine the buyer’s decision problem given any offer (s, q).

3.1 The Buyer’s Decision Problem

Let (s, q) be an arbitrary offer. Then the buyer’s payoff gain from accepting rather than

rejecting this offer is

∆u (θ) = δb · s (θ)− q ,

which determines his incentive in acquiring information. Specifically, the buyer’s payoff

gain, conditional on θ, is

Pr (accepting | state is θ) ·∆u (θ) + Pr (rejecting | state is θ) · 0 = m (θ) ·∆u (θ) .

Hence his decision problem is

max
m∈M

V ∗ (m) = E [m (θ) ·∆u (θ)]− µ · c (m) . (4)

I present the solution to this decision problem in the following proposition.12

Proposition 2 Let Pr (∆u (θ) 6= 0) > 0 to exclude the trivial case that the buyer is always

indifferent between action 1 and 0 (i.e., accepting or rejecting the offer). Let m ∈M be an

optimal strategy and

p1 = Em (θ)

be the corresponding unconditional probability of taking action 1. Then,

i) the optimal strategy is unique;

ii) there are three possibilities for the optimal strategy:

12Lemma 2 of Woodford (2008) solves a special case of this problem in which the information cost takes
the form of entropy reduction.
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a) p1 = 0 (i.e., m (θ) = 0 almost surely) if and only if

EK−µ
−1∆u(θ) ≤ 1 ; (5)

b) p1 = 1 (i.e., m (θ) = 1 almost surely) if and only if

EKµ−1∆u(θ) ≤ 1 ; (6)

c) p1 ∈ (0, 1) if and only if

EKµ−1∆u(θ) > 1 and EK−µ
−1∆u(θ) > 1 ; (7)

and in this case, the optimal strategy m is characterized by

∆u (θ) = µ · [g′ (m (θ))− g′ (p1)] , (8)

where K ∈ [0, 1) is defined in Assumption A2.

Proposition 2 fully characterizes the buyer’s optimal decisions concerning information

acquisition. It provides tight criteria that classify the buyer’s decisions into three cases. In

Case a), the buyer rejects the offer without acquiring information; In Case b), the buyer

accepts the offer without acquiring information; In Case c), the buyer acquires information

and his decision becomes state-contingent. I first discuss the intuition of the results. I then

examine the buyer’s posterior beliefs and illustrate flexible information acquisition through

numerical examples. The complete proof is in Appendix B.

Suppose the buyer wants to acquire information, then his strategy m cannot be con-

stant, and the resulting unconditional probability p1 belongs to (0, 1), which is Case c). In

particular, he should equate ∆u (θ), the pointwise marginal benefit of increasing m (θ), with

µ · [g′ (m (θ))− g′ (p1)], the pointwise marginal information cost of doing so. This results

in Equation (8). Intuitively, as g′ (m) strictly increases in m, Equation (8) implies that

m (θ), the probability of accepting the offer conditional on θ, deviates above (below) p1, the

unconditional probability of acceptance, if ∆u (θ) is positive (negative).

To see the role of Condition iv), note that for states such that ∆u (θ) > 0, the buyer

should have accepted the offer with probability 1 but mistakenly rejects it with proba-

bility 1 − m (θ), because the marginal cost of avoiding this Type I error is limm(θ)→1 µ ·
[g′ (m (θ))− g′ (p1)] =∞, provided that p1 ∈ (0, 1). Similarly, for states such that ∆u (θ) <

0, since g (m) = g (1−m), the marginal cost of avoiding the Type II error is also infinity.

Hence, if the buyer acquires information so that the unconditional probability of acceptance
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p1 ∈ (0, 1), Condition iv) guarantees an interior solution to the information acquisition

problem, that is, m (θ) ∈ (0, 1) for all θ ∈ R+. In contrast, without information acquisition,

the buyer either always accepts or always rejects the offer; that is, either m (θ) = 1 for all

θ ∈ R+ or m (θ) = 0 for all θ ∈ R+. We see that Condition iv) helps dichotomize the cases

with and without information acquisition. When it fails, the distinction between the cases

is blurred. I study this situation in Subsection 5.2.

Moreover, the magnitude of the deviation of m (θ) from p1 is determined by the magni-

tude of∆u (θ). In doing so, the buyer chooses the shape of the optimal information structure

m(θ) according to the shape of the payoff gain ∆u(θ). Consequently, for any states θ1 6= θ2,

m(θ1) − m(θ2) strictly increases in ∆u(θ1) − ∆u(θ2), and m(θ1) = m(θ2) if and only if

∆u(θ1) = ∆u(θ2). This reflects the buyer’s incentive and ability to differentiate states with

different payoffs, which is the essence of flexible information acquisition.

I obtain Inequalities (5), (6), and (7) from comparing the marginal value of information

versus its marginal cost. These inequalities provide criteria to determine whether it is worth

acquiring information. For example, in Case b) the buyer prefers always accepting the offer

to acquiring information if Inequality (6) holds. To appreciate the intuition, consider reduc-

ing the payoffgain ∆u (θ) by ε (θ) > 0. Since K < 1, Inequality (6) is more likely to fail after

the reduction. This is intuitive because reducing the payoff gain makes the offer less attrac-

tive and thus may trigger the buyer to acquire information to screen the offer, rather than

accepting it without information acquisition. In addition, according to Jensen’s inequality,

Inequality (6) is also more likely to fail, if we add some mean preserving spread ε (θ) to the

payoff gain ∆u (θ). Adding this spread may trigger information acquisition because, while

E [∆u (θ) + ε (θ)] = E [∆u (θ)], ∆u (θ)+ε (θ) is more volatile and information becomes more

valuable. The same intuition also applies to Case a). Finally, since Pr (∆u (θ) 6= 0) > 0,

according to Jensen’s inequality, Inequalities (5), (6), and (7) exhaust all possible cases.

These criteria are closely related to Conditions iv) and v), but the derivation is not

easy. To avoid distracting readers from the paper’s main theme, I outline the derivation

of Criteria (5), (6), and (7) from Conditions iv) and v) in Appendix A. I also explore the

implications of Condition g′ (1) <∞, an alternative to Conditions iv) and v), in Subsection
5.2 and show that the paper’s qualitative results are robust to this alternative condition.

As mentioned earlier, the optimal strategy m translates to the information structure

π (x = 1 |θ ) = m (θ) and π (x = 0 |θ ) = 1−m (θ), together with the decision rule a = x (i.e.,

the buyer follows what his signal recommends). To see that the buyer is willing to follow his

signal, note that, in Case a), he always receives signal x = 0, and his posterior is identical

to his prior of θ. According to Jensen’s inequality, Inequality (5) implies E∆u (θ) ≤ 0, and

thus the buyer is willing to choose a = 0 as his signal recommends. Case b) is symmetric to

Case a). Now suppose the buyer is ex ante indifferent between accepting and rejecting the
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offer, so that he definitely wants to acquire information and his posterior densities become

{m(θ)·p(θ)
p1

if x = 1

[1−m(θ)]·p(θ)
1−p1 if x = 0

.

He is willing to follow the signal if E [∆u (θ)|x = 1] ≥ 0 and E [∆u (θ)|x = 0] ≤ 0, that is,

E [m (θ) ∆u (θ)] ≥ 0 and E ([1−m (θ)] ∆u (θ)) ≤ 0. This is true because

E [m (θ) ∆u (θ)]

= E
[
f
(
µ−1∆u (θ) + g′ (p1)

)
∆u (θ)

]
= E

([
f
(
µ−1∆u (θ) + g′ (p1)

)
− p1

]
∆u (θ)

)
≥ 0 ,

where f is the inverse of g′, defined in Assumption A2. The inequality holds because

f (0 + g′ (p1)) = p1 so that
[
f
(
µ−1∆u (θ) + g′ (p1)

)
− p1

]
and ∆u (θ) are always of the

same sign. A similar argument verifies that E ([1−m (θ)] ∆u (θ)) ≤ 0.

Before we examine the security design problem, two numerical examples offer some

insight into how the approach of flexible information acquisition works. In the exam-

ples, the information cost takes the form of entropy reduction; that is, g (x) = x lnx +

(1− x) ln (1− x).
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Figure 3.2.1

Figure 3.2.2

Figure 3.2.3

Figure 3.2.1 shows the security payoff from a debt security with price q. Intuitively,

the buyer’s ideal strategy is to set m (θ) equal to the indicator function 1{δb·s(θ)−q>0}, that

is, accepting (rejecting) the offer if the discounted security payoff exceeds (falls below) the

price. This strategy is not optimal, however. In the gain region {θ : δb · s (θ)− q ≥ 0}, the
buyer benefits from reducing m (θ) = 1 a little bit, since this operation saves his information

cost at a marginal rate of µ · [g′ (1)− g′ (p1)] = ∞ but just gives up the marginal benefit

δb · s (θ) − q < ∞. He will keep reducing m (θ) until the marginal information cost equals

the marginal benefit, as stated in Equation (8). A similar argument shows the inferiority of

m (θ) = 0 in the loss region {θ : δb · s (θ)− q < 0}. The resulting optimal strategy is shown
in Figure 3.2.2. Since the payoff gain δb ·s (θ)−q increases in θ, so does the optimal strategy
m (θ). That is, the buyer arranges to receive a signal that is more likely to suggest accepting

the offer at states with relatively higher payoffs, which is intuitive. In particular, m (θ) is

constant across the states above the face value, meaning that no resources are spent on

differentiating these states. This is intuitive because the buyer receives constant payoffs in
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all the states above the face value so that he has no incentive to differentiate between these

states. More generally, the buyer acquires information to differentiate states in an interval

[θ1, θ2] in the sense that m (θ) varies over [θ1, θ2]. Thus |m(θ2)−m(θ1)|
θ2−θ1 measures the aver-

age intensity of information acquisition over [θ1, θ2], and as the interval [θ1, θ2] shrinks, the

slope
∣∣∣dm(θ)

dθ

∣∣∣ reflects the local intensity around θ. The larger the slope, the more sensitive is
the buyer’s reaction to the change of states around θ, which means that the buyer acquires

more information to discern those states. Figure 3.2.3 plots
∣∣∣dm(θ)

dθ

∣∣∣, showing that the buyer
acquires information intensively for bad states but is inattentive to tail states. This find-

ing is consistent with the well-known fact that debt holders care mainly about default risk.

Figure 3.2.4

Figure 3.2.5

Figure 3.2.6

In contrast, when facing a call option, as shown in Figure 3.2.4, the buyer’s optimal

strategy m (θ) is depicted in Figure 3.2.5, which implies that he focuses his information

acquisition on good states, where his payoff is state-contingent, as shown in Figure 3.2.6.

These examples clearly show how flexible the incentive to acquire information could be

and how it can be captured by the approach of flexible information acquisition.
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4 Security Design under Flexible Information Acquisi-

tion

Proposition 2 characterizes the buyer’s information acquisition against general payoff gains.

This section studies the seller’s security design problem.

For any offer (s, q), let ms,q ∈ M denote the buyer’s optimal strategy specified by

Proposition 2; that is, ms,q(θ) is the probability that the buyer accepts (s, q) at state θ.

Then the seller’s expected payoff from proposing (s, q) is

W (s, q) = E (ms,q (θ) · [q − δs · s (θ)]) . (9)

The seller needs to choose an offer (s, q) to maximize W (s, q). To streamline the analysis,

I formally define the equilibrium of this game as follows.

Definition A sequential equilibrium is a collection of the seller’s optimal offer (s∗, q∗),

and ms,q, the buyer’s optimal information acquisition strategy for any generic offer (s, q),

such that

i) ms,q is determined by Proposition 2, that is,

ms,q = arg max
m∈M

E [(δb · s(θ)− q) ·m (θ)]− µ · c (m) ;

ii)

(s∗, q∗) ∈ arg max
s(θ)∈[0,θ],q≥0

E (ms,q (θ) · [q − δs · s (θ)]) .

According to Proposition 2, three possible cases pertain to the buyer’s behavior given

the seller’s optimal offer. First, the buyer may optimally choose not to acquire any infor-

mation and accept the seller’s offer directly. Second, the buyer may optimally acquire some

information induced by the seller’s optimal offer and then accept the offer with positive

probability (but less than one). Third, the buyer may simply reject the offer without ac-

quiring information. Note that the third case gives the seller an expected payoff of zero and

thus corresponds to the seller’s outside option of proposing nothing and thereby raising no

liquidity. Hence, the seller’s individual rationality condition is always satisfied.

In what follows, I first show that, in equilibrium, this last case does not occur, since

both the seller and the buyer should have benefited from the trade. Then I characterize the

seller’s optimal security for the first two cases.

Let ps,q denote the buyer’s unconditional probability of accepting offer (s, q), that is,

ps,q = Ems,q (θ) .

Proposition 3 ps∗,q∗ > 0; that is, trade happens with positive probability.
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Appendix B contains the complete proof. The example presented here provides some

intuition. In particular, I show that the seller can always offer a debt security for a well-

chosen price, such that the buyer is willing to accept the offer with positive probability

and that the seller enjoys a positive expected gain from trade. Consider a debt security

s (θ) = min (θ,D) with price

q = −κ−1µ lnE exp
(
−κµ−1δb min (θ,D)

)
,

where κ = − lnK > 0. Here, the price q is chosen according to Condition (6), such that the

buyer accepts the offer with probability one, that is, ms,q (θ) = 1 for all θ ∈ R+. Note that

dq

dD
= δb ·

E
[
exp

(
−κµ−1δb min (θ,D)

)
· 1{θ≥D}

]
E exp (−κµ−1δb min (θ,D))

= δb ·
Pr ({θ ≥ D}) · exp

(
−κµ−1δbD

)
E exp (−κµ−1δb min (θ,D))

→ δb as D → 0 ,

where 1{θ≥D} denotes the indicator function for event {θ ≥ D}. In addition, q = 0 when

D = 0. Hence, for face value D close to zero, q ≈ δbD > δsD (since δb > δs). Then the

seller’s expected payoff is

W (s, q) = E (ms,q (θ) · [q − δs ·min (θ,D)])

≥ E (1 · [q − δs ·D])

= q − δs ·D > 0 .

The seller’s optimal security should be no worse than the debt security constructed above,

so that it also necessarily generates a positive expected payoff, which can be achieved only

through a successful transaction. The above example does not involve information acqui-

sition. Alternatively, as shown in the proof in Appendix B, it is also possible to construct

a debt security that triggers information acquisition but still generates a positive expected

payoff to the seller. Both examples suggest that trade happens with positive chance. De-

spite the (threat of) adverse selection caused by (potential) information acquisition, the

seller always prefers to trade, because she can minimize the adverse effect by designing the

right security and thus obtain the gains from trade.

According to Proposition 3, I only need to consider Case i): ps∗,q∗ = 1, in which the

buyer does not acquire information and always accepts the offer, and Case ii): ps∗,q∗ ∈ (0, 1),

in which the buyer does acquire information and accepts the offer probabilistically. In

Subsection 4.1, I show that the optimal security that does not induce information acquisition

(i.e., Case i) is a debt security; in Subsection 4.2, I show that the optimal security that
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induces information acquisition (Case ii) is also a debt security. Therefore, the optimal

security is always a debt security.

4.1 Optimal Security That Deters Information Acquisition

Consider the case in which the seller’s optimal offer is accepted by the buyer without infor-

mation acquisition. Concretely, this means Pr(ms,q(θ) = 1) = 1. I first consider the buyer’s

information acquisition problem, given the seller’s offer. Then I characterize the seller’s

optimal security.

According to Proposition 2 and Condition (6), any offer (s, q) that is accepted by the

buyer without information acquisition satisfies

E exp
(
−κµ−1 [δb · s (θ)− q]

)
≤ 1 .

If this inequality holds strictly, the seller could always raise price q to increase her expected

payoff, leaving the buyer’s response unchanged. Hence, in equilibrium, this inequality must

bind; that is,

q = −κ−1µ lnE exp
(
−κµ−1δb · s (θ)

)
. (10)

I show that for any given price q, if sq is the optimal security that deters information

acquisition, then sq must be a debt security. That is, sq achieves its maximum whenever the

limited liability constraint does not bind. Formally, sq (θ) < θ implies sq (θ) ≥ sq
(
θ′
)
for

all θ′ ∈ R+. Suppose this is not true. Then there exist θ1 and θ2 such that sq (θ2) < θ2 and

sq (θ2) < sq (θ1). I will perturb sq to construct a new security, such that the buyer is still

willing to purchase the new security at the original price q without acquiring information,

and that the expected security payoff from the seller is reduced. In particular, consider

slightly perturbing sq by subtracting an infinitesimal ε1 > 0 from sq (θ1) and adding an

infinitesimal ε2 > 0 to sq (θ2), respectively. This perturbation is feasible since sq (θ2) < θ2

and sq (θ1) > sq (θ2) ≥ 0. According to Equation (10), if ε1 and ε2 are chosen such that

exp
(
−κµ−1δbsq (θ2)

)
p (θ2) ε2 = exp

(
−κµ−1δbsq (θ1)

)
p (θ1) ε1 ,

the marginal change of the price is zero.13 Here, κ = − lnK, and p (θ1) and p (θ2) are

the probability densities of the prior distribution at θ1 and θ2, respectively. The marginal

13The marginal change in price is obtained by taking the first-order derivative of (10) with respect to
s (θ).
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change of the expected security payoff to the buyer becomes

p (θ2) ε2 − p (θ1) ε1

=

[
1−

exp
(
−κµ−1δbsq (θ2)

)
exp (−κµ−1δbsq (θ1))

]
p (θ2) ε2

< 0 ,

where the inequality follows sq (θ2) < sq (θ1). Hence this perturbation benefits the seller,

as it reduces the expected security payoff to the buyer without affecting the price. This

contradicts the optimality of sq and thus my claim is true. Let D (q) denote the maximum

of sq (θ). My claim implies that sq (θ) = D (q) for all θ such that sq (θ) < θ and sq (θ) ≤ D (q)

for all θ such that sq (θ) = θ. It immediately follows that sq (θ) = min (θ,D (q)). That is,

for a given price q, the optimal security that does not induce information acquisition is a

debt security with face value D (q).

I have shown that the optimal security sq given any price q is debt. Now I characterize

the optimal price q∗, or equivalently, the optimal face value D∗. Since the offer is always

accepted in this equilibrium, the seller’s expected payoffW (s, q) becomes

E [q − δs · s (θ)]

= −κ−1µ lnE exp
(
−κµ−1δb ·min (θ,D)

)
− δs · Emin (θ,D) .

Note that the expected payoff becomes zero when D = 0. Proposition 3 then implies the

optimal face value D∗ is strictly positive. Hence the first order condition with respect to D

leads to
δb · exp

(
−κµ−1δbD

∗)
E exp (−κµ−1δb ·min (θ,D∗))

− δs = 0 . (11)

The optimal face value D∗ results from the following trade-off. On one hand, increasing D

increases the price q that the buyer is willing to pay without acquiring information. This

is captured by the first term on the left-hand side of Equation (11). On the other hand,

increasing D mechanically increases the expected security payoff from the seller, as captured

by the second term on the left-hand side of (11). The optimal face value D∗ balances these

two effects as in (11). According to Equation (10), I can express the expectation in Equation

(11) in terms of the optimal price q∗ and simplify (11) to

D∗ = κ−1µδ−1
b · [ln δb − ln δs] + δ−1

b q∗ .

Equation (10) also requires that

q∗ = −κ−1µ lnE exp
(
−κµ−1δb ·min (θ,D∗)

)
.
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The optimal face value D∗ and price q∗ can be pinned down from the above two equations.

I summarize these results in Proposition 4, with the formal proof relegated to Appendix B.

Proposition 4 For any given price q > 0, if sq is the seller’s optimal security that induces

the buyer to accept (sq, q) without acquiring information, then sq must be a debt security.

Moreover, define

D∗ (q) = κ−1µδ−1
b · [ln δb − ln δs] + δ−1

b q ,

and h (q) = −κ−1µ lnE exp
(
−κµ−1δb ·min (θ,D∗ (q))

)
.

If (s∗, q∗) is the optimal offer accepted by the buyer without acquiring information, then

q∗ > 0 and is the unique fixed point of h (·) on R+, and s∗ (θ) = min (θ,D∗ (q∗)).

The main insight is that once the security payoffdiffers across states, say sq (θ1) > sq (θ2),

the seller could benefit from reducing sq (θ1) and increasing sq (θ2) until sq (θ1) = sq (θ2). In

other words, the seller would prefer a flat security whenever it is feasible. Non-flat securities

give the buyer an incentive to acquire information to differentiate states with a different

security payoff. The seller then has to reduce the price to discourage the buyer from doing

so. Flat securities eliminate such an incentive for the buyer and thus allow the seller to

charge more. Because of the limited liability constraint, however, the only security that is

completely flat is s (θ) = 0 for all θ ∈ R+, which forgoes all of the gains from trade. As a

compromise, debt securities with a positive face value capture some gains from trade and

are flat whenever feasible.

The intuition of the optimality of the flat tail developed in the special case of zero

information cost in Subsection 2.1 carries over here. The flat tail renders information that

helps distinguish between states associated with the tail useless to the buyer. The addition

here is endogenous information acquisition. Since such information is now costly to acquire,

the flat tail deters the buyer from acquiring it and thus mitigates the resulting adverse

selection, while in the special case, the buyer already possesses information, and the flat tail

simply discourages its use.

In both cases, the seller wants to maintain a flat security payoffwhenever possible. How-

ever, depending on whether information is costly, the optimal securities behave differently

in states where the cash flow θ falls short of the face value. There, the security payoff must

be state contingent. When it is costless to discern those states, the offer is rejected in all

those states. The difference between the security payoff and the face value does not matter,

and the optimal security does not have to feature a 45-degree-line portion. However, when

information acquisition is costly, then the greater the difference between the security payoff

and the face value, the greater the buyer’s incentive to acquire information. To deter the

buyer from acquiring information, the seller should not only make the security payoff as flat

as possible for states in which θ is above the face value, but also minimize the difference
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between the security payoff and the face value for states in which θ is below the face value.

This results in the binding limited liability constraint, and the optimal security features a

45-degree-line portion.

The price q∗ and face value D∗ are determined so that the buyer breaks even between

acquiring and not acquiring information. In particular, equation (10) implies

q∗ = −κ−1µ lnE exp
(
−κµ−1δb ·min (θ,D∗)

)
< δb · Emin (θ,D∗) ,

where the inequality follows Jensen’s inequality. Since the offer induces no information ac-

quisition, both parties remain symmetrically uninformed, and the seller should have charged

δb · Emin (θ,D∗). However, the seller finds it optimal to charge a lower price q∗ in order to

induce the buyer not to acquire information.

4.2 Optimal Security with Information Acquisition

The previous subsection establishes that, for any given price, debt is the optimal security

that does not induce information acquisition. This subsection shows that, for any given

price, the optimal security that does induce the buyer to acquire information is also debt.

Therefore, I can conclude that, for any given price, the optimal security is debt whether or

not it triggers information acquisition.

Since the buyer acquires information, Proposition 2 and condition (8) prescribe that

ms,q, the buyer’s response to an arbitrary offer (s, q), is given by

δb · s (θ)− q = µ ·
[
g′ (ms,q (θ))− g′

(
ps,q
)]
, (12)

where

ps,q = Ems,q (θ)

is the buyer’s unconditional probability of accepting the offer. Taking into account the

buyer’s response ms,q, the seller’s problem is to choose (s, q) to maximize her expected

payoff,

W (s, q) = E (ms,q (θ) · [q − δs · s (θ)]) , (13)

subject to the limited liability constraint,

s (θ) ∈ [0, θ] . (14)

As indicated in the objective function (13), the seller wants a high probability of acceptance

ms,q (θ) and a large profit q−δs ·s (θ). Equation (12), however, imposes a trade-off between

these two goals in security design – a higherms,q (θ) requires a larger s (θ) and thus reduces
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the seller’s profit at state θ.

I show that, for any given price q, if sq is the optimal security that induces information

acquisition, sq must be a debt security. Analogous to Subsection 4.1, I use a perturbation

argument to show that the optimality of sq requires that it achieves its maximum, whenever

the limited liability constraint is slack. That is, sq (θ) < θ implies sq (θ) ≥ sq
(
θ′
)
for

all θ′ ∈ R+. If this is not true, then there exist θ1 and θ2 such that sq (θ2) < θ2 and

sq (θ2) < sq (θ1). I can perturb sq to construct a new security, such that the buyer still

acquires information and accepts the new security at the original price q probabilistically,

and that the seller enjoys a strictly higher expected payoff. Consider slightly perturbing sq by

subtracting an infinitesimal ε1 > 0 from sq (θ1) and adding an infinitesimal ε2 > 0 to sq (θ2),

respectively. This perturbation is feasible since sq (θ2) < θ2 and sq (θ1) > sq (θ2) ≥ 0.

According to Equation (12), the buyer’s conditional probability of acceptance at θ can be

expressed as

ms,q (θ) = f
(
µ−1 [δbsq (θ)− q] + g′

(
ps,q
))
,

where f is the inverse function of g′defined in Condition v) of Assumption A2. Note that, if

the unconditional probability of acceptance ps,q does not change, adding an infinitesimal ε to

sq (θ) results in a marginal change ofms,q (θ) equal to µ−1δbf
′ (µ−1 [δbsq (θ)− q] + g′

(
ps,q
))
ε.

Hence, if ε1 and ε2 are chosen such that

f ′
(
µ−1 [δbsq (θ2)− q] + g′

(
ps,q
))
p (θ2) ε2 = f ′

(
µ−1 [δbsq (θ1)− q] + g′

(
ps,q
))
p (θ1) ε1 ,

(15)

the marginal change in ps,q is zero, which further guarantees that the perturbation does not

change ms,q (θ) for θ 6= θ1 or θ2. To simplify the exposition, in the rest of this section, I use

f ′i to denote f
′ (µ−1 [δbsq (θi)− q] + g′

(
ps,q
))
for i ∈ {1, 2}.

Now I examine the marginal impact of this perturbation on the seller’s expected payoff

(13). This marginal impact equals

δs [ms,q (θ1) · p (θ1) ε1 −ms,q (θ2) · p (θ2) ε2]

+µ−1δb ([q − δssq (θ2)] · f ′2p (θ2) ε2 − [q − δssq (θ1)] · f ′1p (θ1) ε1) . (16)

The first term captures the direct effect of subtracting ε1 from sq (θ1) and adding ε2 to

sq (θ2), disregarding the induced variation of ms,q (θ1) and ms,q (θ2). The second term

measures the indirect effect of subtracting ε1 from sq (θ1) and adding ε2 to sq (θ2) through

decreasing ms,q (θ1) and increasing ms,q (θ2), respectively. I omit some higher order infini-

tesimal that stems from the interaction of the direct and indirect effects.

To see that the seller benefits from the perturbation, I show that the direct and the

indirect effects are jointly positive. Note that the perturbation is constructed according

to Equation (15) such that the (probability weighted) marginal decrease of ms,q (θ1) and
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increase of ms,q (θ2) are equal. Thus the indirect effect is proportional to

[q − δssq (θ2)]− [q − δssq (θ1)]

= δs [sq (θ1)− sq (θ2)]

> 0 ,

so that the indirect effect is strictly positive. Equation (15) also implies that the direct effect

is proportional to

ms,q (θ1)

f ′1
− ms,q (θ2)

f ′2
= ms,q (θ1) · g′′ (ms,q (θ1))−ms,q (θ2) · g′′ (ms,q (θ2)) ,

where the equality follows the fact that g′′ = 1/f ′. According to Equation (12), sq (θ1) >

sq (θ2) implies ms,q (θ1) > ms,q (θ2). It immediately follows that the direct effect is non-

negative, as x · g′′ (x) is non-decreasing.14 The perturbation makes the seller strictly better

off, contradicting the optimality of sq. Hence, sq achieves its maximum whenever sq (θ) < θ.

Let D (q) denote that maximum. I obtain sq (θ) = D (q) for all θ such that sq (θ) < θ,

and sq (θ) ≤ D (q) for all θ such that sq (θ) = θ. It immediately follows that sq (θ) =

min (θ,D (q)) is a debt security. I summarize these results in Proposition 5, with the formal

proof relegated to Appendix B.

Proposition 5 For any price q > 0, if sq is the seller’s optimal security that induces the

buyer to acquire information, then sq must be a debt security.

This proposition states that, even if the optimal security triggers information acquisition,

it must be a debt security. The results follow from a perturbation argument that is in the

same spirit as that for the case without information acquisition but that is more delicately

constructed to cope with the interaction between security design and information acquisition.

In particular, whenever the security payoff differs, say sq (θ1) > sq (θ2), the buyer acquires

information that enables him to differentiate between θ1 and θ2. That is, he will be able

to accept the offer with higher probability at state θ1 than at θ2. This adverse selection

harms the seller, who then wants to make the security payoff flat whenever possible. As in

the special case with zero information cost in Subsection 2.1, the flat security payoff helps

discourage the buyer’s use of information that differentiates states with the same security

payoff and thus also discourage the acquisition of such information. This gives rise to the

flat tail portion of debt.

14This is the only step of the derivation that involves Condition iii) of Assumption A2. Since the indirect
effect is strictly positive, Condition iii) is not necessary and could be relaxed. I stick to this condition for
the sake of transparency, since relaxing it does not deliver new insights but complicates the analysis.
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When the cash flow θ is too low to support the flat security payoff, the limited liability

constraint binds and gives rise to the 45-degree-line portion of the debt security. This is

because, due to the flexible nature of information acquisition, the conditional probability of

acceptance m (θ) at any such state θ is strictly positive and would decrease in response to

any downward deviation of the security payoff from θ (the 45-degree line). This differs from

the special case with zero information cost in Subsection 2.1. There, for any state θ, the

conditional probability of acceptance m (θ) = 0 and thus cannot decrease further to respond

to any downward deviation of the security payoff from the 45-degree line. Thus, the limited

liability constraint does not have to bind.

The flat tail of debt securities reflects the seller’s incentive to minimize the buyer’s

information acquisition. This incentive stems from an important feature of my model: fixed

aggregate cash flow. That is, the aggregate cash flow θ to be split between the seller and the

buyer is invariant to the design of the security and to the success or failure of the transaction.

This generates a conflict of interest between the two parties. That is, the buyer gains at

the expense of the seller through endogenous adverse selection. Specifically, the buyer can

acquire information that enables him to reject an offer when the security payoff is lower

than the price and accept it otherwise. The acquisition of such information does not affect

the aggregate cash flow and thus causes a deadweight loss in the form of information cost.

A debt security not only saves the buyer’s information cost but also mitigates the potential

loss caused by the adverse selection, and thus enhances liquidity provision.

Propositions 4 and 5 jointly establish the optimality of debt securities regardless of

whether the buyer’s information acquisition is triggered. Unfortunately, due to the com-

plexity of functional analysis, there is not an intuitive and closed-form characterization of

the optimal face value D∗ of the optimal debt security and its price q∗. For interested

readers, I characterize them implicitly by a set of equations in the appendix and conduct

numerical comparative static analysis in the next subsection.

4.3 Comparative Statics

So far, I have been focusing on qualitative analysis and have established the optimality of

debt. In fact, my model not only predicts debt as the uniquely optimal security regardless

of parameter values, but also sheds light on the determination of the face value D∗, price

q∗, and interest rate D∗/q∗ − 1 of the optimal debt security. First, I conduct comparative

static analysis on how information cost µ affects these variables. Here I reinterpret µ as the

opaqueness/complexity of the underlying asset to the buyers. The comparative statics then

provide implications of asset opaqueness/complexity for security design, which turn out to

be different in booms and busts. Here booms (busts) are captured by a prior distribution of

θ with high (low) mean and low (high) variance. In particular, I calculate the comparative

statics under prior distributions N(0.8, 0.2) and N (0.6, 0.3), both truncated on the interval
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[0 , mean + 2 standard deviations]. The information cost is assumed to take the form of

entropy reduction, i.e., g = x lnx + (1− x) ln (1− x), which satisfies all the conditions in

Assumption A2. The results are shown in Figures 4.3.1 and 4.3.2, respectively.

Figure 4.3.1 Figure 4.3.2

Featuring high expected cash flows and low uncertainty, Figure 4.3.1 represents booms.

There, the buyer chooses not to acquire information, as depicted by the light blue line.

Given that, as asset opaqueness/complexity increases, the seller can sell a bigger chunk of

the asset (as indicated by the increasing face value shown by the black line) for a higher

price (shown by the blue line). In contrast, featuring low expected cash flows and high

uncertainty, Figure 4.3.2 represents busts. High uncertainty prompts the buyer to acquire

information, and the amount decreases in asset opaqueness/complexity, as depicted by the

light blue line. In busts, the buyer is less willing to buy securities backed by assets with

higher opaqueness/complexity, resulting in a decrease in the optimal face value and price.

It is also intuitive that, for any given level of opaqueness/complexity, the seller can sell a

bigger chunk of the asset (i.e., higher face value) for a higher price in booms than in busts.15

Despite the sharp contrast in the boom and bust behavior of these three variables, an

increase in opaqueness/complexity always leads to an increase in the interest rate of debt,

as shown by the red lines. This is because opaqueness reduces the buyer’s informational

advantage, and a higher interest rate is demanded to compensate.

I next present comparative statics of D∗, q∗ and interest rate D∗/q∗ − 1 with respect

to the seller’s discount factor δs under the same prior distributions and information cost,

15This boom and bust argument is conceptually related to the comparison of a security’s information
sensitivities in different economic situations in Dang, Gorton, and Hölmström (2015).
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as shown in Figures 4.3.3 and 4.3.4, respectively. In both booms and busts, as the seller

becomes more patient, the gains from trade shrink, resulting in less trade as reflected by the

lower face value and price. Intuitively, the interest rate decreases in δs, since a more patient

seller is less willing to make attractive offers. Figure 4.3.3 represents booms, featuring

low uncertainty and high expected cash flows. The buyer thus chooses not to acquire any

information, as depicted by the light blue line. In contrast, in bust times, represented by

Figure 4.3.4, high uncertainty prompts the buyer to acquire information, and the amount

decreases in δs since information becomes less valuable with less gains from trade. It is also

intuitive that for any given level of δs, the seller can sell a bigger chunk of the asset (i.e.,

higher face value) for a higher price in booms than in busts.

Figure 4.3.3 Figure 4.3.4

5 Discussion of Model Variations

In this section several variants of the baseline model are analyzed. The first shows that

debt is no longer optimal if the aggregate cash flow is not exogenously fixed. The next

examines the implications of information costs with bounded marginal cost of avoiding Type

I and Type II errors. I show that the optimal security remains a debt security whenever

trade happens. I then show that my model can be extended to cover the case with multiple

underlying assets, in which pooling the assets and issuing a senior tranche is optimal. Finally,

I discuss the case of Bertrand competition between multiple buyers. I argue that competitive

bidding with information acquisition changes the nature of the problem and that debt may

not be optimal.
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5.1 Variable Aggregate Cash Flow

As discussed in the remarks of Proposition 5, fixed aggregate cash flow is the key feature

of the baseline model that leads to the optimality of debt. To further clarify this point, I

consider a simple model variation with variable aggregate cash flow.

In this variant, the seller has exclusive access to a project that can generate future cash

flow θ distributed according to prior P . To initiate this project, the seller needs to raise

capital k = E (θ) from the buyer. As before, the seller first proposes a security s to the

buyer in exchange for capital k. The buyer then acquires information and decides whether

to accept the offer (s, k). The project gets financed and generates future cash flow θ only if

the buyer accepts the offer. Hence, the aggregate cash flow now depends on the success of

the transaction.

To see the difference between the baseline model and this variant, note that the former

resembles an exchange economy, where social surplus stems from reallocating some cash

flow from the impatient seller to the less impatient buyer. In contrast, this variant features

a production economy, where cash flows can be generated only if the transaction succeeds.

To highlight this production feature, I assume δs = δb = 1 to eliminate the benefit of

reallocation. Moreover, since the project’s ex ante net present value (NPV) is E (θ)−k = 0,

no surplus can be created without information acquisition. Under this setting, I obtain the

following formal result.16

Proposition 6 Let s∗ be the optimal security. Then i) the project is financed with positive
probability; ii) there exists a D∗, such that s∗ (θ) = θ when θ ≤ D∗; and iii) s∗ (θ) strictly

increases in θ and s∗ (θ) < θ when θ > D∗.

Proposition 6 shows that debt is not optimal when the aggregate cash flow is variable.

Specifically, it articulates in what sense the new optimal security differs from a debt security.

When the cash flow is lower than a threshold D∗, the optimal security still follows the

45-degree line, that is, the limited liability constraint. But as the cash flow rises above

threshold D∗, the optimal security is no longer flat but is strictly increasing. Overall, the

optimal security always strictly increases in cash flow and thus induces a strictly increasing

probability of transaction.

The deviation of this new optimal security from a debt security when cash flow θ is higher

than threshold D∗ is intuitive and further clarifies the role of information acquisition in the

model. Since the seller and the buyer are equally patient and the ex ante NPV of the project

is zero, information acquisition becomes the only source of surplus. Thus, information is

potentially valuable, and consequently, the seller designs a security that is no longer flat (as

debt) to encourage information acquisition. In my baseline model, information acquisition

16To make the result as clear as possible, the information cost takes the form of entropy reduction here.
Specifically, g (x) = x lnx+ (1− x) ln (1− x), which satisfies all the conditions in Assumption A2.
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always reduces social surplus because it creates adverse selection and lowers the probability

of transaction, and therefore debt is optimal for discouraging information acquisition.17

Besides the production feature, this model also differs from the baseline model in that

k, the price of the security, is exogenous, while price q in the baseline model is the seller’s

choice variable. Since I have shown in the baseline model that the optimal security for any

given price q is a debt security, this difference is inessential for the purpose of comparing

the shapes of the optimal securities in the two scenarios.

5.2 Bounded Marginal Cost of Information Acquisition

To analyze security design with a bounded marginal cost of avoiding Type I and Type II

errors, I replace Conditions iv) and v) of Assumption A2 with Condition vi): g′ (1) < ∞.
I show that, for any given price q > 0, the optimal security remains a debt security in the

states at which trade happens.

Recall that, when the (pointwise) marginal cost g′ is unbounded, the solution to the

information acquisition problem is either completely interior; that is, m (θ) ∈ (0, 1) for all

θ ∈ R+, or completely on the boundary; that is, m (θ) = 1 for all θ ∈ R+ or m (θ) = 0 for all

θ ∈ R+. The interior solution involves information acquisition, while the boundary solutions

do not. This distinction is blurred under bounded marginal cost g′. As a counterpart of

Proposition 2, the buyer’s decision is now characterized by

∆u (θ) = µ · [g′ (m (θ))− g′ (p1)] + η (θ) ,

where

η (θ)


≥ 0 if m (θ) = 1

= 0 if m (θ) ∈ (0, 1)

≤ 0 if m (θ) = 0

,

and p1 = Em (θ) is the unconditional probability of taking action 1. In particular, when

∆u (θ), the marginal benefit of increasing m (θ), exceeds µ · [g′ (1)− g′ (p1)], the highest

possible marginal cost, m (θ) reaches its upper boundary 1. Similarly, when ∆u (θ) falls

below µ · [g′ (0)− g′ (p1)], m (θ) reaches its lower boundary 0.

As before, let sq denote the optimal security for any given price q > 0. Correspondingly,

the state contingent payoff for the buyer is δb · sq (θ) − q. It is straightforward to see that
the optimality of sq requires η (θ) ≤ 0 to hold almost surely. Otherwise, if there is some θ

such that η (θ) > 0, the seller will be strictly better off by reducing the security payoff sq (θ)

a little without sacrificing msq,q (θ), the probability of trade at θ, which remains one.18

17 In this vein, Yang and Zeng (2018) consider a general production economy and argue that projects of
different natures require different means of financing.
18This perturbation is feasible because δb · sq (θ)− q > µ · [g′ (1)− g′ (p1)] > 0. This argument cannot be
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This observation allows the same perturbation argument used for Proposition 5 to work

here. In particular, I claim that in states at which the trade happens with positive probabil-

ity, sq achieves its maximum whenever the limited liability constraint does not bind. If not,

consider θ1 and θ2 such that sq (θ2) < θ2 and sq (θ2) < sq (θ1). Again, I adopt the pertur-

bation used in the argument for Proposition 5; that is, subtracting an infinitesimal ε1 > 0

from sq (θ1) and adding an infinitesimal ε2 > 0 to sq (θ2), respectively. The argument for

Proposition 5 may not work if the perturbation does not move msq,q (θ2) or msq,q (θ1). But

this possibility is excluded by the previous observation and the condition that trade hap-

pens at θ1 and θ2; i.e., both msq,q (θ1) and msq,q (θ2) are positive. Hence, the perturbation

argument for Proposition 5 works here, and I establish the following proposition.

Proposition 7 For any price q > 0, the seller’s optimal security sq must be a debt security

on all θ such that msq,q (θ) > 0.

This proposition shares the same intuition as its predecessors in Section 4. The difference

is that, depending on the distribution of θ and the value of q, there may exist a non-zero

measure set of θ such that trade does not happen; that is, msq,q (θ) = 0. In this case,

let θ̂q be defined by δb · θ̂q − q = µ ·
[
g′ (0)− g′

(
psq,q

)]
. The proposition states that sq

must be a debt security for θ > θ̂q but leaves sq (θ) ∈ [0, θ] undetermined for θ < θ̂q. This

difference stems from the boundedness of the marginal information cost g′, which allows

msq,q (θ) = 0 for θ < θ̂q so that the security payoff does not matter. In contrast, unbounded

g′ disciplines the security payoff for all states. Intuitively, this setting nests the special

case without information cost, in which the marginal information cost is zero, and thus

leads to the largest region of indeterminacy
{
θ < δ−1

b q
}
. By comparing the special case of

zero information cost and those with bounded or unbounded marginal information costs,

we see that i) the flexibility of choosing information acquisition strategy m state by state

guarantees the flat tail feature of the optimal securities, and ii) the pointwise marginal cost

of information acquisition g′ leads to the 45-degree line portion of optimal securities. These

two features together lead to the optimality of debt.

5.3 Multiple Underlying Assets

My baseline model can be naturally generalized to accommodate multiple underlying assets.

In this case, the fundamental state is a vector
−→
θ ∈ RN+ , with each component of

−→
θ represent-

ing the cash flow of one underlying asset. The security payoff is contingent on
−→
θ , denoted

by s
(−→
θ
)
. Accordingly, the limited liability constraint becomes s

(−→
θ
)
∈
[
0,
∑N
n=1 θn

]
.

The rest of the setup remains the same as in the baseline model. I state the results in the

following proposition.

used to exclude the case η (θ) < 0 because, when θ is small, the limited liability constraint sq (θ) ≤ θ could
be binding.
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Proposition 8 Let (s∗, q∗) denote the seller’s optimal offer and

ps∗,q∗ = Ems∗,q∗

(−→
θ
)

be the corresponding probability of the trade taking place. Then i) trade occurs with positive

probability, that is, ps∗,q∗ > 0; ii) there exists a D∗ > 0 such that the seller’s optimal security

takes the form

s∗
(−→
θ
)

= min

(
N∑
n=1

θn, D
∗

)
,

that is, a debt security backed by the sum of all the underlying cash flows.

It is optimal for the seller to pool all the assets and then issue a debt security backed

by the pool. The intuition of the optimality of a debt security is analogous to that of

the baseline model. The additional insight here is that the payoff of the optimal security

depends only on the sum of the cash flows of the underlying assets. This is to deter the buyer

from distinguishing between any two states (θ1, θ2, · · ·, θN ) and
(
θ′1, θ

′
2, · · ·, θ′N

)
such that∑N

n=1 θn =
∑N
n=1 θ

′
n. In other words, pooling discourages information acquisition by making

the cash flow from each individual asset irrelevant, given their sum. In contrast, if the seller

pools N debts backed by each asset separately, for example, s
(−→
θ
)

=
∑N
n=1 min (θn, Dn),

the buyer will acquire extra information about each asset. This simply reduces the surplus..

5.4 Bertrand Competition between Buyers

The baseline model focuses on the interaction between one seller and one buyer. A possible

extension of the model is to consider multiple buyers acquiring information and bidding for

the security. For instance, consider introducing two ex ante identical buyers in the baseline

model. The seller first proposes the security to the buyers. Both buyers simultaneously

acquire information flexibly and submit their bids to the seller. The buyer who submits the

higher bid wins the security and pays his bid. This extension thus combines security design

with a first-price common-value auction with flexible information acquisition.

In addition to the interaction between the seller and the buyers, a new strategic interac-

tion between the buyers emerges. To illustrate this, consider two extreme scenarios. First,

information is infinitely costly, that is, µ = ∞. In this scenario, the two buyers cannot
acquire information and bid according to their common prior belief. For any security s, it

is clear that both buyers bid δbEs (θ), and the seller’s optimal security is s (θ) = θ. In the

second extreme scenario, information is costless, that is, µ = 0. In this scenario, the two

buyers acquire complete information about θ and thus arrive at a common posterior belief.

For any security s and state θ, it is clear that both buyers bid δbs (θ) and the seller’s optimal

security is again s (θ) = θ. In both extreme scenarios, the gains from trade are maximized,

and all surplus (δb − δs)Eθ goes to the seller.
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Now consider the intermediate scenario µ ∈ (0,∞) and focus on symmetric equilib-

ria. Since information is costly and the buyers acquire information privately, they will

have imperfect and conditionally independent signals about the fundamental. Because this

is a common-value auction, their signals are affi liated but heterogeneous, resulting in the

winner’s curse, which in turn pushes their bids below the corresponding conditional expec-

tation of s (θ) given their posterior beliefs. The seller’s revenue must therefore be less than

δbEs (θ). In other words, endogenous asymmetric information between the buyers emerges.

Importantly, as seen from the discussion about the two extreme scenarios above, information

asymmetry between the buyers has a non-monotonic relationship with information acqui-

sition. My conjecture is that whether it is optimal for the seller to encourage information

acquisition depends on whether doing so helps reduce information asymmetry between the

buyers. When information is cheap enough, it might be easier to encourage information

acquisition to reduce the information asymmetry, so that a steep security seems optimal. In

contrast, when information is very expensive, it might be easier to discourage information

acquisition to reduce the information asymmetry, so that a flat security seems optimal.

In fact, the conjecture above resembles the well-known “linkage-principle”discussion in

Milgrom and Weber (1982) that when bidders have no private information or know the true

value of the item perfectly, they capture no information rent, and all the surplus goes to the

seller. Thus, when information is infinitely costly or costless, the optimal security is always

s (θ) = θ, and the gains from trade are maximized. However, when µ ∈ (0,∞), the bidders’

private signals become affi liated, and the seller’s surplus is not monotone in µ because

now bidders are worried about the winner’s curse and may shade their bids. According to

Milgrom and Weber (1982), whether more precise information for the bidders would lead to

a higher seller surplus depends on many conditions even under the simplest common-value

auction setting. To consider this specific problem poses an interesting theoretical question

in the auction literature by itself, but to potentially incorporate it into a security design

setting with flexible information acquisition is beyond the scope of this paper.

Additionally, since the strategy space for a buyer’s bids will become continuous in this

extension, a binary signal information structure is no longer optimal. This would require

a complete overhaul of the current baseline model. This is technically challenging since,

in the literature, there is no known solution to general continuous-choice decision problems

with flexible information acquisition.19 A solution to the problem thus leads to an entirely

different theoretical question.

Although this extension is interesting, for the reasons above, it requires a completely

different modeling framework and machinery. Thus I leave this extension for future studies.

19To the best of my knowledge, the only paper exploring this is Jung, Kim, Matejka, and Sims (2019),
which shows that a solution may exist only under rare mathematical conditions such as the objective function
being able to be analytically extended to the complex plane.
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6 Conclusion

This paper studies security design through its interaction with information acquisition. To

raise liquidity an impatient seller designs a security backed by her asset in place, and a

buyer decides whether to purchase the security. The buyer naturally has incentives to

acquire qualitatively different information when facing different securities, which in turn

affects security design. I introduce the framework of flexible information acquisition to

accommodate such interactions, in which issuing debt is shown to be uniquely optimal.

The optimality of debt stems from an important feature of the model: fixed aggregate

cash flow. Information acquisition creates an adverse selection problem that reduces social

surplus. The seller thus designs the security to discourage information acquisition. The ideal

security should have a constant security payoff, which gives the buyer no incentive to acquire

information. When this constant payoff is too high to be supported by the underlying cash

flow, the limited liability constraint binds and gives rise to the 45-degree-line portion of the

debt security.

I also consider several alternative settings. I show that debt remains optimal if there are

multiple underlying assets and if the information cost satisfies alternative assumptions. I

show that debt is no longer optimal if the aggregate cash flow is variable, which indicates

that a fixed aggregate cash flow is crucial to the result of the baseline model. I also consider

Bertrand competitions with multiple buyers flexibly acquiring information and competitively

bidding for the security. I argue that adding the competitive buyers changes the nature of

the strategic interaction and conjecture that debt is not optimal. In the online appendix,

I examine three additional variants of the baseline model: switching the roles of the buyer

and seller, allowing for arbitrary allocation of bargaining power between the two parties,

and letting the seller acquire information about the underlying asset in addition to designing

the security.

Methodologically, this paper provides a new framework for incorporating flexible infor-

mation acquisition into contract theory models. There are two major avenues left for future

research. First, for simplicity, this paper allows only one party to have the flexibility in

information acquisition. Multiple parties are naturally entitled to such flexibility in con-

tract theory models, such as those involving multilateral or hierarchical contracting. For

example, in the context of this paper, in addition to Bertrand competition between mul-

tiple buyers, the seller may take into account the fact that the buyer himself may have to

subsequently finance his purchase from someone else, who is also entitled to the flexibility

in acquiring information about the underlying asset but cannot directly transact with the

seller. Incorporating multiple parties with such flexibility is interesting, but challenging.

Second, in my setting of information cost, no state is characterized by special diffi culty

in information acquisition. This homogeneity in information acquisition provides a fair

benchmark for the analysis but may not necessarily be realistic. For example, some extreme
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states may be much easier to identify than normal states. They may potentially attract more

attention, and the optimal security should be designed accordingly in order to mitigate this

effect. This limits the applicability of my baseline model in practice. It is straightforward

to see that the optimal security can be manipulated by making information acquisition

nonhomogeneous over the states. Hence, it makes sense to consider this variation in a more

practical application where the heterogeneity of the states can be identified case by case.
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A Appendix: Further Discussion of Assumption A2

Conditions i) and ii) are needed to make c (·) a well-defined information cost. In particular,
Condition i) is necessary and suffi cient to guarantee the non-negativeness of information

cost c (·). The suffi ciency follows Jensen’s inequality. To understand the necessity, suppose
that g is not strictly convex. This implies that there exist x1, x2, and λ ∈ (0, 1), such

that g (xλ) ≥ λg (x1) + (1− λ) g (x2), where xλ = λx1 + (1− λ)x2. Since the prior P is

absolutely continuous with respect to Lebesgue’s measure, there exists an event A ⊂ Θ with

probability measure λ under the prior P . Consider two information structures

m (θ) =

{
x1 if θ ∈ A
x2 if θ /∈ A

and

mλ (θ) = xλ for all θ ∈ Θ .

The information structure mλ is a garbling of m in the sense of Blackwell’s ordering and is

completely uninformative. The associated information cost is c (m) = 0. In contrast, the

cost of information structure m is

c (m) = µ · [Eg (m (θ))− g (Em (θ))]

= µ · [λg (x1) + (1− λ) g (x2)− g (xλ)]

≤ 0 ,

which does not make sense since m is strictly more informative than mλ. This suggests that

g should be strictly convex.

To see the point of Condition ii), note that if I switch the recommendations of the

two signal realizations (i.e., "taking action 0" upon observing signal 1 and "taking action

1" upon observing signal 0), the information content remains the same and so does the

information cost, which requires c (m) = c (1−m). In particular, consider two information

structures π1 (x = 1 |θ ) = m (θ) and π2 (x = 1 |θ ) = 1 − m (θ). For a given fundamental

state θ, π1 generates signal 1 with probability m (θ) and signal 0 with probability 1−m (θ).

If the buyer follows the signal recommendation, his conditional probability of accepting the

offer is m (θ). Instead, if the buyer chooses information structure π2 but accepts the offer

while the signal is 0 and rejects the offer while the signal is 1, his conditional probability of

accepting the offer remains m (θ). Hence, the information content of information structures

π1 and π2 is the same and so are the strategies that can be implemented under them. If the

structures incur different information costs, I can simply choose the lower one for the cost

of both. This justifies my assumption that g is symmetric.

Condition iii) is a technical condition assumed for the sake of tractability. It guarantees
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that the direct effect mentioned in the perturbation argument that precedes Proposition 5

is non-negative, so that the first order variational approach is suffi cient for my main results.

This condition is not necessary and could be relaxed. I stick to this condition for the sake of

tractability and transparency, since relaxing it does not deliver new insights but complicates

the analysis.

Conditions i), ii), iii) and iv) guarantee that the limit limz→∞
f ′(z+1)
f ′(z) in Condition v)

is well defined. In addition, K ≥ 0 since f ′ = 1
g′′ > 0. It also follows that K ≤ 1 because

otherwise
∫∞

0
f ′ (z) dz diverges, contradicting the fact that limx→∞ f (x) = 1. Condition v)

excludes the non-generic case K = 1 in which I cannot obtain an analytically clear criterion

for information acquisition. Numerical examples suggest that the paper’s main qualitative

results hold. These numerical examples are available upon request.

I outline the derivation of Proposition 2 to show how Conditions iv) and v) result in

criteria (5), (6) and (7).

Proposition 2 classifies the solution according to whether it involves information acqui-

sition, and Condition iv) of Assumption A2 helps dichotomize the cases with and without

triggering information acquisition. For states such that ∆u (θ) > 0, the buyer should have

accepted the offer but mistakenly rejects it with probability 1−m (θ), because the marginal

cost of avoiding this Type I error is limm(θ)→1 µ · [g′ (m (θ))− g′ (p1)] = ∞, providing that
p1 ∈ (0, 1). Similarly, for states such that ∆u (θ) < 0, since g (m) = g (1−m), the marginal

cost of avoiding the Type II error is also infinity. Hence, if the buyer acquires information

so that the unconditional probability of acceptance is p1 ∈ (0, 1), Condition iv) guarantees

an interior solution to the information acquisition problem, that is, m (θ) ∈ (0, 1) for all

θ ∈ R+. In contrast, without information acquisition, the buyer either always accepts or

always rejects the offer, that is, either m (θ) = 1 for all θ ∈ R+ or m (θ) = 0 for all θ ∈ R+.

Together with Condition iv), Condition v) allows me to obtain analytically clear criteria

with which to determine whether it is worth acquiring information. These criteria—(5), (6)

and (7)—are obtained by comparing the marginal value of information versus its marginal

cost. To appreciate the intuition, I further use Equation (8) to express m as a function of

∆u (θ) parameterized by p ∈ (0, 1),

m (θ, p) = f
(
µ−1∆u (θ) + g′ (p)

)
. (17)

According to c) of Proposition 2, once the buyer decides to acquire information, his optimal

strategy belongs to the parameterized family above. It is straightforward to verify that the

parameterized strategy m (·, p) is state-contingent and thus involves information acquisition
if p ∈ (0, 1). By allowing parameter p to take values 1 and 0, this family also encompasses

strategies involving no information acquisition. To see this, note that when p = 1, the

parameterized strategy becomes m (θ, 1) = f
(
µ−1∆u (θ) +∞

)
= 1, which means accepting
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the offer with (unconditional) probability p = 1. Similarly, when p = 0, the parameterized

strategy becomes m (θ, 0) = f
(
µ−1∆u (θ)−∞

)
= 0. Hence, in searching for the optimal

strategy, it is suffi cient to focus on the (one-dimension) parameterized family (17) with

p ∈ [0, 1].

Let J (p) = Em (θ, p) be the unconditional probability of acceptance associated with the

parameterized strategy m (·, p). By definition, the optimal strategy m (·, p1) should satisfy

J (p1) = p1. Since J (0) = 0 and J (1) = 1, the two non-information-acquisition strategies

m (·, 0) and m (·, 1) are natural candidates for the optimal strategy. To determine whether

information acquisition is optimal, I consider whether the buyer obtains greater net benefit

V ∗ (m (·, p)) (i.e., gains net of information cost) by deviating from the extreme cases of p = 1

and p = 0. In particular, the net benefit of choosing m (·, p) is

V ∗ (m (·, p)) = E [∆u (θ) ·m (θ, p)]− µ · c (m (·, p))

and the marginal net benefit from increasing p is

dV ∗ (m (·, p))
dp

= E
(

[∆u (θ)− µ · g′ (m (θ, p)) + µ · g′ (J (p))] · ∂m (θ, p)

∂p

)
= µ · [g′ (J (p))− g′ (p)] · E∂m (θ, p)

∂p
,

where the second equality follows (17). Since both g′ and f are strictly increasing, E∂m(θ,p)
∂p >

0, and thus
dV ∗ (m (·, p))

dp
> 0 if and only if J (p) > p .

Since J (1) = 1 and J (0) = 0, the buyer benefits from acquiring information rather than

always accepting (rejecting) the offer if and only if J ′ (1) > 1 (J ′ (0) > 1). To characterize

J ′ (1) and J ′ (0), consider a function t : R → R such that t (x) = limz→∞
f ′(x+z)
f ′(z) . Since

t (x+ y) = limz→∞
f ′(x+y+z)
f ′(y+z)

f ′(y+z)
f ′(z) = t (x)·t (y), t (·) is an exponential function t (x) = Kx,

where K = t (1) = limz→∞
f ′(z+1)
f ′(z) . Note that

∂m (θ, p)

∂p
= f ′

(
µ−1∆u (θ) + g′ (p)

)
g′′ (p) =

f ′
(
µ−1∆u (θ) + g′ (p)

)
f ′ (g′ (p))

.

It immediately follows that limp→1
∂m(θ,p)
∂p = Kµ−1∆u(θ) and

J ′ (1) = E

(
∂m (θ, p)

∂p

∣∣∣∣
p=1

)
= EKµ−1∆u(θ) .
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Hence, EKµ−1∆u(θ) > 1 implies dV ∗(m(·,p))
dp < 0 for p close to 1, which means that the mar-

ginal value of information exceeds its marginal cost so that the buyer benefits from acquiring

information rather than always accepting the offer. A symmetric argument applies to the

case EK−µ−1∆u(θ) > 1, in which the buyer prefers acquiring information to always rejecting

the offer. Therefore, once Inequality (7) holds, the optimal strategy involves information

acquisition and is characterized by Equation (8). Similar analysis applies to Cases a) and

b) and the complete proof is in the appendix.

It is worth noting that K = 0 implies

lim
p→1

∂m (θ, p)

∂p
=


0 if ∆u (θ) > 0

1 if ∆u (θ) = 0

∞ if ∆u (θ) < 0

and

lim
p→0

∂m (θ, p)

∂p
=


∞ if ∆u (θ) > 0

1 if ∆u (θ) = 0

0 if ∆u (θ) < 0

,

which greatly simplify Criteria (5), (6) and (7). In particular, the buyer accepts (rejects) the

offer without information acquisition if and only if ∆u (θ) ≥ 0 (∆u (θ) ≤ 0) almost surely for

all states. Once Pr (∆u (θ) > 0) > 0 and Pr (∆u (θ) < 0) > 0, the optimal strategy involves

information acquisition and is characterized by Equation (8).

As shown by the above derivation, Condition iv) allows me to highlight the distinction

between the case involving information acquisition and cases without information acquisi-

tion. In addition, Condition v) allows an analytical expression of the criteria by excluding

the non-generic case K = 1. When K = 1, it is always true that EKµ−1∆u(θ) = 1 and

EK−µ−1∆u(θ) = 1 whatever the payoff gain ∆u (θ) is. Criteria (5), (6) and (7) thus lose

predictive power. Additional conditions involving higher order derivatives of f may help in

the non-generic case K = 1 but are too technical to convey interesting economics. I do not

include the additional conditions in the paper.

Condition iv) assumes that the marginal cost of avoiding Type I and Type II errors

is infinity, and Condition v) helps discipline the limiting behavior of this marginal cost.

Many widely used measures of information cost, such as entropy reduction, possess this

infinite-marginal-cost property, which is maintained throughout my baseline model of secu-

rity design. It helps relate my general information costs to the rational inattention literature

in which information costs take the form of entropy reduction. Alternatively, I analyze the

case with bounded marginal costs in Subsection 5.2 and show that debt remains optimal

whenever trade occurs.
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B Mathematical Appendix

Proof of Lemma 1.
Proof. Let a (x) be the buyer’s optimal decision rule upon observing x ∈ X, then

X1 = {x ∈ X : a (x) = 1} ,

X0 = {x ∈ X : a (x) = 0} ,

and Xindifferent = {x ∈ X : a (x) ∈ (0, 1)}

form a partition of X. Construct a new information structure
(
π̃, X̃

)
with decision rule

ã (x) such that X̃ = {x0, x1},

π̃ (x0| θ) =

∫
X0∪Xindifferent

π (x| θ) dx ,

π̃ (x1| θ) =

∫
X1

π (x| θ) dx ,

and

ã (x0) = 0 ,

ã (x1) = 1 .

It is straightforward to see that the buyer enjoys the same expected payoff (excluding the

information cost) under the two information structures. But information structure π̃ is a

strict garbling of π if Xindifferent is non-empty or #X > 2. Then according to Assumption

A1, information structure π̃ is strictly cheaper than π. Therefore, the buyer will be strictly

better off with
(
π̃, X̃

)
and ã if Xindifferent is non-empty or #X > 2. This concludes the

proof.

Proof of Proposition 2.
Proof. Suppose m is an optimal strategy. Let ε be any feasible perturbation function. The

payoff from the perturbed strategy m+ α · ε is

V ∗ (m+ α · ε)

= E [(m (θ) + α · ε (θ)) ·∆u (θ)]

−µ · [Eg (m (θ) + α · ε (θ))− g (E [m (θ) + α · ε (θ)])] ,

where the expectation operator E(·) is with respect to θ under prior P . A perturbation ε
is feasible with respect to m if ∃α > 0, s.t. ∀θ ∈ Θ, m (θ) + α · ε (θ) ∈ [0, 1] . Then the first
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order variation is

dV ∗ (m+ α · ε)
dα

∣∣∣∣
α=0

= E (ε (θ) · [∆u (θ)− µ · (g′ (m (θ))− g′ (p1))]) .

Note that

∆u (θ)− µ · (g′ (m (θ))− g′ (p1))

is the Fréchet derivative of V ∗ (·) atm. Hence the tangent hyperplane atm can be expressed

as

{(m̃, v) ∈M × R : v − V ∗ (m) = E ([∆u (θ)− µg′ (m (θ)) + µg′ (Em (θ))] (m̃ (θ)−m (θ)))} .

Since the information cost c (·) respects Blackwell’s ordering, it is strictly convex and hence
V ∗ (·) is a strictly concave functional on M . This implies i) the optimal strategy exists
and is unique, and ii) V ∗ is upper bounded by the hyperplane tangent at any m ∈M , i.e.,
∀m, m̃ ∈M ,

V ∗ (m̃)− V ∗ (m)

≤ E
([

∆u (θ)− µ · g′ (m (θ)) + µ · g′
(∫

Θ

m (θ) dP (θ)

)]
(m̃ (θ)−m (θ))

)
.

This inequality is strict when

m ∈Mo ,M\ {m ∈M : m (θ) is a constant a.s.} .

This observation is helpful later in my proof.

The optimality of m requires dV ∗(m+α·ε)
dα

∣∣∣
α=0
≤ 0 for all feasible perturbation ε. Hence

it must be true that

∆u (θ)− µ · (g′ (m (θ))− g′ (p1))


≥ 0 if m (θ) = 1

= 0 if m (θ) ∈ (0, 1)

≤ 0 if m (θ) = 0

. (18)

Note that Pr (m (θ) = 1) > 0 implies Pr (m (θ) = 1) = 1. Otherwise,

p1 = Em (θ) < 1

implies

∆u (θ)− µ · (g′ (m (θ))− g′ (p1)) = −∞

for all θ in set

B = {θ ∈ Θ : m (θ) = 1} .
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Thus ε (θ) = −1B is a feasible perturbation and

dV ∗ (m+ α · ε)
dα

∣∣∣∣
α=0

=

∫
B

(−∞) · (−1) dP (θ)

= +∞ ,

which contradicts the optimality ofm. Hence, Pr (m (θ) = 1) > 0 if and only if Pr (m (θ) = 1) =

1. The same argument suggests that Pr (m (θ) = 0) > 0 if and only if Pr (m (θ) = 0) = 1.

Therefore, the optimal strategy m must be one of the three scenarios: a) p1 = 0, i.e.,

m (θ) = 0 a.s.; b) p1 = 1, i.e., m (θ) = 1 a.s.; c) p1 ∈ (0, 1) and m (θ) ∈ (0, 1) a.s..

I first search for the suffi cient condition for scenario c). According to (18), m (θ) ∈ (0, 1)

a.s. implies

∆u (θ)− µ · (g′ (m (θ))− g′ (p1)) = 0 a.s. . (19)

Thus (19) implies

m (θ) = f
(
µ−1∆u (θ) + g′ (p1)

)
,

where f is the inverse of g′. Let

M1 =
{
m (θ, p) = f

(
µ−1∆u (θ) + g′ (p)

)
: p ∈ [0, 1]

}
(20)

and

J (p) = Em (θ, p) ,

then there exists p1 ∈ [0, 1] such that m (·, p1) ∈ M1 is an optimal strategy. Note that

J (p1) = p1 is a necessary condition for the optimality of m (·, p1).

Since m (·, p1) ∈M1 ⊂M , the original problem is reduced to

max
p∈[0,1]

V ∗ (m (·, p)) = E [∆u (θ) ·m (θ, p)]− µ · c (m (·, p)) .

The first order derivative with respect to p is

dV ∗ (m (·, p))
dp

= E
(

[∆u (θ)− µ · g′ (m (θ, p)) + µ · g′ (J (p))] · ∂m (θ, p)

∂p

)
.

By definition,

∆u (θ)− µ · g′ (m (θ, p)) = −µ · g′ (p) ,
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thus
dV ∗ (m (·, p))

dp
= µ · [g′ (J (p))− g′ (p)] · E∂m (θ, p)

∂p
.

Since
∂m (θ, p)

∂p
> 0

for all θ ∈ Θ,
dV ∗ (m (·, p))

dp
≥ 0

if and only if

g′ (J (p))− g′ (p) ≥ 0 .

Since g′ is strictly increasing, I obtain that

dV ∗ (m (·, p))
dp

≥ 0

if and only if

J (p) ≥ p .

In order to be a global maximum, m (·, p1) must first be a local maximum within M1.

This requires

J (p1) = p1 . (21)

But (21) is not suffi cient. The suffi cient condition for m (·, p1) to be a local maximum within

M1 is

∃ neighborhood (p1 − β, p1 + β) ,

s.t. J (p) ≥ p for all p ∈ (p1 − β, p1]

and J (p) ≤ p for all p ∈ [p1, p1 + β) .

To conduct the local maximum analysis, I introduce a function t (x) = limz→∞
f ′(x+z)
f ′(z) .

Since g′ is continuously differentiable, t (x) exists for all x ∈ R . By definition,

t (x+ y) = lim
z→∞

f ′ (x+ y + z)

f ′ (z)
= lim
z→∞

f ′ (x+ y + z)

f ′ (y + z)

f ′ (y + z)

f ′ (z)

= lim
z→∞

f ′ (x+ y + z)

f ′ (y + z)
lim
z→∞

f ′ (y + z)

f ′ (z)
= t (x) · t (y) .

This implies that t (x) is an exponential function taking the form t (x) = Kx, where K =

t (1). It is clear that K ≥ 0 because g′′ > 0. By definition, it must be true that K < 1.

Otherwise f ′ (z) decreases too slow to make
∫∞
−∞ f ′ (z) dz converge, contradicting the fact
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that limx→∞ f (x) = 1. Note that

J (0) = 0 , J (1) = 1 ,

dJ

dp

∣∣∣∣
p=0

= E

(
lim
z→∞

f ′
(
µ−1∆u (θ)− z

)
f ′ (−z)

)
= EK−µ

−1∆u(θ)

and
dJ

dp

∣∣∣∣
p=1

= E

(
lim
z→∞

f ′
(
µ−1∆u (θ) + z

)
f ′ (z)

)
= EKµ−1∆u(θ) .

I proceed by discussing four possible cases.

Case i):
EK−µ

−1∆u(θ) > 1

and

EKµ−1∆u(θ) > 1 .

In this case, J (p) > p for p close enough to 0 and J (p) < p for p close enough to

1. Since J (p) is continuous, the set {p ∈ (0, 1) : J (p) = p} is non-empty. For any p1 ∈
{p ∈ (0, 1) : J (p) = p}, the Fréchet derivative at m (·, p1) is

∆u (θ)− µ · g′ (m (θ, p1)) + µ · g′ (J (p1)) = 0

and thusm (·, p1) is a critical point of functional V ∗ (·). Sincem (·, p1) ∈Mo, the observation

mentioned above implies

V ∗ (m̃)− V ∗ (m (·, p1)) < 0

for all m̃ 6= m. Hence, V ∗ (m (·, p1)) is strictly higher than the values achieved at any other

m̃ ∈M , i.e.,
{p ∈ (0, 1) : J (p) = p} = {p1}

and m (·, p1) is the unique global maximum. This proves (7).

Case ii):
EK−µ

−1∆u(θ) > 1 (22)

and

EKµ−1∆u(θ) ≤ 1 . (23)

In this case, J (p) > p for p close enough to 0 and J (p) ≥ p for p close enough to 1. I show

that J (p) > p for all p ∈ (0, 1). If this is not true, let p1 = sup {p ∈ (0, 1) : J (p) ≤ p} < 1

and thus m (·, p1) ∈ Mo. On the one hand, the continuity of J (p) implies J (p1) = p1.

Hence m (·, p1) is a critical point of functional V ∗ (·). By the same argument as in Case i), I
know that m (·, p1) is the unique global maximum. On the other hand, by the construction
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of p1, J (p) > p for all p ∈ (p1, 1). Then V ∗ (m (·, p)) > V ∗ (m (·, p1)) for all p ∈ (p1, 1) which

contradicts the unique optimality of m (·, p1). Therefore, J (p) > p for all p ∈ (0, 1) and the

optimal strategy cannot be an interior point of M1 (i.e., it cannot be the case p1 ∈ (0, 1).)

Then according to my previous discussion, only scenarios a) that p1 = 0 and scenario b)

that p1 = 1 are possible. Since J (p) > p for all p ∈ (0, 1), I obtain that

V ∗ (m (·, 1)) > V ∗ (m (·, 0)) .

Hence, p1 = 1, i.e., m (θ) = 1 a.s. is the unique optimal strategy. Note that (22) is a direct

implication of (23) according to Jensen’s inequality. Thus this case can be summarized by

(23) alone. This proves (6).

case iii):
EK−µ

−1∆u(θ) ≤ 1 (24)

and

EKµ−1∆u(θ) > 1 . (25)

Note that this case can be summarized by (24) alone, since (25) is a direct implication of

(24) according to Jensen’s inequality. In this case, by the same argument as in case ii),

m (θ) = 0 a.s. is the unique optimal strategy. This proves (5).

case iv):
EK−µ

−1∆u(θ) ≤ 1 (26)

and

EKµ−1∆u(θ) ≤ 1 . (27)

Case iv) cannot exists since Jensen’s inequality implies

EKµ−1∆u(θ) = E
[

1

K−µ−1∆u(θ)

]
≥
[
EK−µ

−1∆u(θ)
]−1

,

which suggests (26) and (27) hold with equality. This is true only if ∆u (θ) = 0 almost

surely, a trivial case excluded by my assumption.

Since cases i), ii) and iii) exhaust all possibilities, for each case, the corresponding con-

ditions are not only suffi cient but also necessary.

Proof of Proposition 3.
Proof. I prove by constructing a debt security that generates positive expected payoff to
the seller. Let β ∈

(
δsδ
−1
b , 1

)
and

y (q) = Emin
(
θ, βδ−1

s q
)
.
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Since P is a continuous distribution and β−1δsδ
−1
b < 1, there exists q0 > 0 s.t.

Pr
(
θ ≥ βδ−1

s q
)
> β−1δsδ

−1
b

for all q ∈ [0, q0]. Hence for any q ∈ (0, q0),

y′ (q) = Pr
(
θ ≥ βδ−1

s q
)
· βδ−1

s

> β−1δsδ
−1
b · βδ

−1
s = δ−1

b .

Note that

y (0) = 0 ,

which implies that

y (q) > δ−1
b q

for all q ∈ (0, q0).

Consider a debt

s (θ) = min (θ,D) (28)

with face value D = βδ−1
s q and price q ∈ (0, q0). The buyer’s payoff gain from accepting

this offer over rejecting it is

∆u (θ) = δb · s (θ)− q. (29)

By Jensen’s inequality, I obtain

EK−µ
−1∆u(θ)

≥ K−µ
−1E∆u(θ)

= K−µ
−1[δb·y(q)−q]

> 1,

which implies ps,q > 0 according to Proposition 2. Then, the seller’s expected payoff from

this offer is

W (s, q) = E (ms,q (θ) · [q − δs · s (θ)])

≥ E
(
ms,q (θ) ·

[
q − δs · βδ−1

s q
])

= (1− β) q · ps,q > 0 . (30)

By proposing the optimal offer (s∗, q∗), the seller’s expected payoff should be no less than

W (s, q) > 0. This directly implies ps∗,q∗ > 0, since ps∗,q∗ = 0 always generates zero

expected payoff to the seller.

Proof of Proposition 4.
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Proof. For any given q > 0, let sq denote the optimal security that does not induce

information acquisition. The seller’s problem is

min
s
δs · Es (θ)

such that

q ≤ −κ−1µ lnE exp
(
−κµ−1δb · s (θ)

)
and

s (θ) ∈ [0, θ] .

I first consider the Lagrangian without the limited liability constraint, which is

J = δs · Es (θ) + λ ·
[
κ−1µ lnE exp

(
−κµ−1δb · s (θ)

)
+ q
]
,

where λ is the Lagrangian multiplier. The first order derivative with respect to s (θ) is

δs − λδb
[
E exp

(
−κµ−1δb · s (θ)

)]−1
exp

(
−κµ−1δb · s (θ)

)
= δs − λδb exp

(
κµ−1 [q − δb · s (θ)]

)
, r (θ| s) . (31)

Let

A0 = {θ ∈ Θ : θ > 0, sq (θ) = 0} ,

A1 = {θ ∈ Θ : θ > 0, sq (θ) ∈ (0, θ)}

and

A2 = {θ ∈ Θ : θ > 0, sq (θ) = θ} .

Then {A0, A1, A2} is a partition of Θ\ {0}. Now consider the limited liability constraint,
which together with the optimality of sq implies

r (θ| sq)


≥ 0 if θ ∈ A0

= 0 if θ ∈ A1

≤ 0 if θ ∈ A2

. (32)

Note that my argument for (10) implies λ > 0. Hence, once there exists a θ′ ∈ A0, I obtain

r
(
θ′
∣∣ sq) ≥ 0 which together with (10) further implies r

(
θ′′
∣∣ sq) > 0 for all θ′′ ∈ A1 ∪ A2,

which is a contradiction. Therefore,

Pr (A0) = 0 . (33)
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For any θ′ ∈ A1, (32) implies r
(
θ′
∣∣ sq) = 0, i.e.,

δs = λδb exp
(
κµ−1

[
q − δb · sq

(
θ′
)])

,

Hence,

sq
(
θ′
)

= κ−1µδ−1
b · [ln (λδb)− ln δs] + δ−1

b q (34)

is a constant for all θ′ ∈ A1. Let D (q) denote this constant.

For any θ′ ∈ A2, (32) implies r
(
θ′
)
≤ 0, so that θ′ = sq

(
θ′
)
≤ D (q). Then, it

immediately follows that

sq (θ) = min (θ,D (q)) .

Finally, I characterize the optimal level of the price and the face value. By replacing q

with −κ−1µ lnE exp
(
−κµ−1δb · s (θ)

)
, I obtain the seller’s objective

min
s
κ−1µ lnE exp

(
−κµ−1δb · s (θ)

)
+ δs · Es (θ)

such that

s (θ) ∈ [0, θ] .

As argued before, the first order derivative with respect to s (θ) equals zero for s (θ) ∈ (0, θ).

This implies

s (θ) = κ−1µδ−1
b · [ln δb − ln δs] + δ−1

b q , D∗ (q)

and s (θ) = min (θ,D∗ (q)). Let

h (q) = −κ−1µ lnE exp
(
−κµ−1δb ·min (θ,D∗ (q))

)
.

I show that the optimal price q∗ > 0 and it is the unique fixed point of h (q).

By (10), I obtain

q∗ = −κ−1µ lnE exp
(
−κµ−1δb ·min

(
θ, κ−1µδ−1

b · [ln δb − ln δs] + δ−1
b q∗

))
= h (q∗) .

Hence q∗ is a fixed point of h (q).

It is obvious that h (0) > 0. Also note that

h′ (q)

=
[
E exp

(
−κµ−1δb ·min

(
θ, κ−1µδ−1

b · [ln δb − ln δs] + δ−1
b q
))]−1

·E
[
exp

(
−κµ−1δb ·min

(
θ, κ−1µδ−1

b · [ln δb − ln δs] + δ−1
b q
))
· 1{θ≥κ−1µδ−1b ·[ln δb−ln δs]+δ−1b q}

]
≤ 1
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and

lim
q→∞

h′ (q)

=
[
E exp

(
−κµ−1δb · θ

)]−1 · E
[
exp

(
−κµ−1δb · θ

)
· lim
q→∞

1{θ≥κ−1µδ−1b ·[ln δb−ln δs]+δ−1b q}

]
= 0 .

Hence, h (q) has a unique fixed point q∗ > 0. It immediately follows that the optimal

security is min (θ,D∗ (q∗)).

Lemma 9 For any given q > 0, let sq be an optimal security that induces information

acquisition and s (θ) = sq (θ) + α · ε (θ) be a perturbation of sq, where ε can be any ar-

bitrary measurable function over R+. Then the seller’s marginal expected payoff from the

perturbation is given by
dW (s, q)

dα

∣∣∣∣
α=0

= E [r (θ) · ε (θ)] , (35)

where

r (θ) = −δsmsq,q (θ) + µ−1δb
[
g′′
(
msq,q (θ)

)]−1
(q − δs · sq (θ) + wq) (36)

is the seller’s marginal benefit from increasing sq in state θ, and wq is a constant determined

in equilibrium.

Proof. I first characterize how ms,q responds to the perturbation of sq. Taking derivative

with respect to α at α = 0 for both sides of (12) and rearranging the terms lead to

dms,q (θ)

dα

∣∣∣∣
α=0

=
[
g′′
(
msq,q (θ)

)]−1 ·
[
µ−1δb · ε (θ) + g′′

(
psq,q

)
·
dps,q
dα

∣∣∣∣
α=0

]
. (37)

This equation clearly shows two impacts of ε, the perturbation of s, on ms,q (θ). The first

term in the square brackets of the right-hand side characterizes the impact of ε (θ), the local

perturbation in state θ. Intuitively, this impact is of the same sign as ε (θ), since increasing

or decreasing the security payoff in state θ (i.e., ε (θ) > 0 or ε (θ) < 0) directly raises or

reduces the probability of acceptance in this state. In addition, the second term in the

square brackets captures the impact of the perturbation over all states as a whole. This is

because ps,q, the unconditional probability of acceptance, aggregates ms,q (·) over all states
and thus depends on ε globally. In particular, by taking expectation of both sides of (37)

and making use of the fact
dps,q
dα

∣∣∣
α=0

= E dms,q(θ)
dα

∣∣∣
α=0

, I obtain the response of ps,q to ε

dps,q
dα

∣∣∣∣
α=0

=
µ−1δbE

([
g′′
(
msq,q (θ)

)]−1
ε (θ)

)
1− E

[
g′′
(
msq,q (θ)

)]−1 · g′′
(
psq,q

) .
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Plugging the expression of
dps,q
dα

∣∣∣
α=0

into (37) leads to

dms,q (θ)

dα

∣∣∣∣
α=0

=
[
g′′
(
msq,q (θ)

)]−1

µ−1δb · ε (θ) +
µ−1δbE

([
g′′
(
msq,q (θ)

)]−1
ε (θ)

)
[
g′′
(
psq,q

)]−1

− E
[
g′′
(
msq,q (θ)

)]−1

 , (38)

which fully characterizes the response of ms,q to any perturbation ε perturbation of sq.

Now I can calculate the response of the seller’s expected payoff to the perturbation of

sq. Taking the derivative of W (s, q) with respect to α at α = 0 leads to

dW (s, q)

dα

∣∣∣∣
α=0

= −δs · E
[
msq,q (θ) ε (θ)

]
+ E

(
dms,q (θ)

dα

∣∣∣∣
α=0

[q − δs · sq (θ)]

)
. (39)

Here, the first term captures the direct effect of perturbing the security payoff sq disre-

garding the variation of ms,q; the second term is its indirect effect through the variation of

ms,q. Substitute (38) into (39), and I get (35) and (36). In particular, wq, the constant in

equilibrium is given by

wq =
E
(

[q − δs · sq (θ)]
[
g′′
(
msq,q (θ)

)]−1
)

[
g′′
(
psq,q

)]−1

− E
[
g′′
(
msq,q (θ)

)]−1
. (40)

Proof of Proposition 5.
Proof. Let

A0 = {θ ∈ Θ : θ > 0, sq (θ) = 0} ,

A1 = {θ ∈ Θ : θ 6= 0, sq (θ) ∈ (0, θ)}

and

A2 = {θ ∈ Θ : θ > 0, sq (θ) = θ} .

Clearly, {A0, A1, A2} is a partition of Θ\ {0}. Since sq is the optimal security, I obtain

dW (s, q)

dα

∣∣∣∣
α=0

≤ 0
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for any feasible perturbation ε (θ). Hence, condition (35) implies

r (θ)


≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

. (41)

Since g is strictly convex, r (θ) · g′′
(
msq,q (θ)

)
is of the same sign as r (θ). Thus (41) can be

rewritten as

r (θ) · g′′
(
msq,q (θ)

)
= −δsmsq,q (θ) g′′

(
msq,q (θ)

)
+ µ−1δb (q − δs · sq (θ) + wq)

≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

. (42)

Recall condition (12), given the optimal offer (sq, q), the buyer’s best response msq,q (θ) is

characterized by

δb · sq (θ)− q = µ ·
[
g′
(
msq,q (θ)

)
− g′

(
psq,q

)]
, (43)

where

psq,q = Emsq,q (θ)

is the buyer’s unconditional probability of accepting offer (sq, q). Conditions (42)and (43)

as a system of functional equations jointly determine the optimal security sq.20

I solve the system of equations to get the seller’s optimal security sq and the buyer’s

associated optimal decision rule of information acquisition msq,q. To facilitate the analysis

and economize on notations, consider two equivalent equations with respect to variables m

and s, in which m stands for msq,q(θ) and s stands for sq(θ):

−δs ·m · g′′ (m) + µ−1δb (q − δs · s+ wq) = 0 (44)

and

δb · s− q = µ ·
[
g′ (m)− g′

(
psq,q

)]
. (45)

Let m = f1 (s) and m = f2 (s) be the two continuous functions implicitly defined by (44)

and (45), respectively.

First note that f ′1 (s) < 0 and f ′2 (s) > 0. This is because [m · g′′ (m)]
′
> 0 and g′′ (m) >

0. Therefore, the curves m = f1 (s) and m = f2 (s) intersect at most once.

20One may object that Equation (42) is just the first order condition of the seller’s optimization problem.
It only characterizes the critical points. In principle, I should characterize the largest critical point, but the
argument holds for any critical point, so the results are not open to this critique.
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Second, it must be true that f1 (0) > f2 (0). Otherwise, f1 (s) < f2 (s) for all s > 0.

Hence ∀θ > 0,

r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (sq (θ)) g′′ (f2 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f1 (sq (θ)) g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0 ,

where the inequality holds since [m · g′′ (m)]
′
> 0. Then (42) implies sq (θ) = 0 for all θ ∈ Θ.

Therefore, there is no trade, which contradicts Proposition 3.

Third, it must be true that Pr (A0) = 0. This is because, for any θ ∈ A0,

r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (0) g′′ (f2 (0)) + µ−1δb (q − δs · 0 + wq)

> −δs · f1 (0) g′′ (f1 (0)) + µ−1δb (q − δs · 0 + wq)

= 0 ,

where the inequality holds since f1 (0) > f2 (0) and [m · g′′ (m)]
′
> 0. This result contradicts

(42), which states r (θ) · g′′
(
msq,q (θ)

)
≤ 0 for θ ∈ A0.

Now I am ready to show that the optimal security must be debt. If f1 (s) and f2 (s)

never intersect, r (θ) > 0 for all θ ∈ Θ. Then the optimal security

sq (θ) = θ

is a special debt with a very large face value sup Θ, which may be infinity.

Let (s,m) be the unique intersection of f1 (s) and f2 (s). For any θ such that θ < s, the

following inequality holds,

msq,q (θ) = f2 (sq (θ)) < f2 (s) = f1 (s) < f1 (sq (θ)) .

Then

r (θ) · g′′
(
msq,q (θ)

)
> −δs · f1 (sq (θ)) · g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0,

where the inequality holds since [m · g′′ (m)]
′
> 0. Condition (42) then implies

sq (θ) = θ
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for all θ < s.

For any θ > s, if sq (θ) = θ, then (42) implies

0 ≤ r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (sq (θ)) · g′′ (f2 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f2 (s) · g′′ (f2 (s)) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f1 (sq (θ)) · g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0 ,

which is a contradiction. Hence Pr (A0) = 0 implies sq (θ) = s for all θ > s.

Therefore, the optimal security is a debt with face value s, i.e.,

sq (θ) = min (θ, s) .

This concludes the proof.

This proof shows that for any given price q > 0, the optimal security sq is a debt

security. It immediately follows that in the optimal contract (s∗, q∗), s∗ = sq∗ is a debt

security, denoted by s∗ (θ) = min (θ,D∗). Similar variational argument with respect to q

and D leads to the following implicit characterization:

δsms∗,q∗ (D∗) g′′ (ms∗,q∗ (D∗))− δbps∗,q∗g′′
(
ps∗,q∗

)
= µ−1δb (q∗ − δsD∗) ,

δb ·min (θ,D∗)− q∗ = µ ·
[
g′ (ms∗,q∗ (θ))− g′

(
ps∗,q∗

)]
,

ps∗,q∗ = Ems∗,q∗ (θ) ,

and

ps∗,q∗

[
1− g′′

(
ps∗,q∗

)
E
(

1

g′′ (ms∗,q∗ (θ))

)]
= µ−1E

(
q∗ − δs ·min (θ,D∗)

g′′ (ms∗,q∗ (θ))

)
.

Proof of Proposition 6.
Proof. The proof is similar to that for the baseline model. I outline the main steps here.

i) Since E (θ) = k, the seller can choose a security with security payoff s (θ) slightly below

θ such that Condition ii) c) of Proposition 2 holds. Then the buyer acquires information

and accepts the offer with positive probability. Since the seller has nothing to lose but can

earn θ − s (θ) when the buyer accepts, her expected payoff is positive. Hence her optimal

security too necessarily generates a positive expected payoff, which can be achieved only

through a successful transaction.

ii) If s∗ (θ) = θ almost surely, the seller’s expected payoff is zero, which contradicts the
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optimality of s∗ according to the argument of i).

iii) By Proposition 2, ms∗ , the buyer’s response to the optimal security s∗, is character-

ized by

s∗ (θ)− k = µ · [g′ (ms∗ (θ))− g′ (ps∗)] , (46)

where

ps∗ = E [ms∗ (θ)]

is the buyer’s unconditional probability of acceptance.

Consider an arbitrary perturbation to the optimal security,

s (θ) = s∗ (θ) + α · ε (θ) .

The seller’s expected payoff from proposing s is

W (s) = E [ms (θ) · (θ − s (θ))] .

So the seller’s marginal expected payoff from adding perturbation ε to the optimal security

is
dW (s)

dα

∣∣∣∣
α=0

= E [r (θ) · ε (θ)] ,

where

r (θ) = −ms∗ (θ) + µ−1 [g′′ (ms∗ (θ))]
−1

(θ − s∗ (θ) + w∗) (47)

is the seller’s marginal benefit from increasing s∗ in state θ, and

w∗ = E
[
(θ − s∗ (θ))

g′′ (ps∗)

g′′ (ms∗ (θ))

](
1− E

[
g′′ (ps∗)

g′′ (ms∗ (θ))

])−1

(48)

is a constant determined in equilibrium.

Let

A0 = {θ ∈ Θ : θ > 0, s∗ (θ) = 0} ,

A1 = {θ ∈ Θ : θ > 0, s∗ (θ) ∈ (0, θ)}

and

A2 = {θ ∈ Θ : θ > 0, s∗ (θ) = θ} .

The optimality of s∗ requires

r (θ)


≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

.
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Multiply both sides by g′′ (ms∗ (θ)) > 0 and I obtain

r (θ) · g′′ (ms∗ (θ)) = −ms∗ (θ) g′′ (ms∗ (θ)) + µ−1 (θ − s∗ (θ) + w∗) (49)
≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

.

Note that r (θ) · g′′ (ms∗ (θ))−µ−1θ strictly decreases in the value of s∗ (θ). This is because

the second term of the right-hand side of (49) strictly decreases in the value of s∗ (θ), and

so does the first term, which decreases in the value of ms∗ (θ) that is increasing in the value

of s∗ (θ), according to (46). I show three facts that will be used later in the proof.

Fact a) θ ∈ A0 implies (0, θ] ⊂ A0.

Let θ′ ∈ (0, θ), then

r
(
θ′
)
· g′′

(
ms∗

(
θ′
))

< −ms∗
(
θ′
)
g′′
(
ms∗

(
θ′
))

+ µ−1
(
θ − s∗

(
θ′
)

+ w∗
)

≤ −ms∗ (θ) g′′ (ms∗ (θ)) + µ−1 (θ − s∗ (θ) + w∗)

≤ 0,

where the first inequality follows θ′ < θ; the second one follows that r (θ)·g′′ (ms∗ (θ))−µ−1θ

strictly decreases in the value of s∗ (θ) and s∗
(
θ′
)
≥ 0 = s∗ (θ); and the third one follows

θ ∈ A0 and r (θ) ≤ 0. Hence, s∗
(
θ′
)

= 0 and θ′ ∈ A0.

Fact b) θ ∈ A2 implies (0, θ] ⊂ A2.

Let θ′ ∈ (0, θ), then

r
(
θ′
)
· g′′

(
ms∗

(
θ′
))

> −ms∗ (θ) g′′ (ms∗ (θ)) + µ−1
(
θ′ − s∗

(
θ′
)

+ w∗
)

≥ − [1−ms∗ (θ)]
−1

+ µ−1 (θ − s∗ (θ) + w∗)

≥ 0,

where the first inequality follows that − [1−ms∗ (θ)]
−1 strictly decreases in the value of

s∗ (θ) and s∗
(
θ′
)
≤ θ′ < θ = s∗ (θ); the second one follows that θ′− s∗

(
θ′
)
≥ 0 = θ− s∗ (θ);

and the third one follows θ ∈ A2 and r (θ) ≥ 0. Hence, s∗
(
θ′
)

= θ and θ′ ∈ A2.

Facts a) and b) imply that A0 and A2 cannot be non-empty simultaneously. In addition,

if A2 6= φ, there exists some D∗ such that A2 = (0, D∗] and A1 = (D∗,∞). Note that D∗ =

supA2 < ∞. Otherwise, s∗ (θ) = θ almost surely, which contradicts ii). If A0 6= φ, there

exists some D∗ such that A0 = (0, D∗] and A1 = (D∗,∞). Note that D∗ = supA0 < ∞.
Otherwise, s∗ (θ) = 0 almost surely and the buyer simply rejects the offer, which contradicts

i).

Fact c) ds
∗(θ)
dθ ∈ (0, 1) for θ ∈ A1.
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Since θ ∈ A1, r (θ) = 0, i.e.,

ms∗ (θ) = 1− µ

θ − s∗ (θ) + w∗
. (50)

Plug (50) into (46) and I obtain

s∗ (θ)− k = µ ·
[
g′
(

1− µ

(θ − s∗ (θ) + w∗)

)
− g′ (ps∗)

]
.

Taking derivative of both sides of the the above equation and rearranging the terms lead to

ds∗ (θ)

dθ
=

µ

θ − s∗ (θ) + w∗

= 1−ms∗ (θ) ∈ (0, 1) ,

where the second equality follows (50).

Now I show A0 = φ. If this not true, let A0 = (0, D∗] and A1 = (D∗,∞) with D∗ >

0. Note that, s∗ (θ) is strictly increasing when θ ≥ D∗. Also, the fact that information

acquisition occurs implies that there must exist a θ” > D∗ such that s∗ (θ”) > k; otherwise

the optimal security would be rejected without information acquisition. Therefore, there

exists a θ′ > D∗ such that s∗
(
θ′
)

= k. Recall equation (46), I obtain

ms∗
(
θ′
)

= ps∗ .

In addition, since θ′ > D∗, it must be true that

0 = r
(
θ′
)

= −ms∗
(
θ′
)

+ µ−1ms∗
(
θ′
) [

1−ms∗
(
θ′
)] (

θ′ − s∗
(
θ′
)

+ w∗
)

= −ps∗ + µ−1ps∗ [1− ps∗ ]
(
θ′ − k + w∗

)
. (51)

By (48), I obtain

E [r (θ)] = −ps∗ + µ−1ps∗ [1− ps∗ ] · w∗ ,

which, together with (51), implies

E [r (θ)] = −µ−1ps∗ [1− ps∗ ]
(
θ′ − k

)
.

Since ds∗(θ)
dθ ∈ (0, 1), it must be true that θ′ > D∗ + k. Hence

E [r (θ)] < −µ−1ps∗ [1− ps∗ ] ·D∗ . (52)

I can express E [r (θ)] in another way. Since for all θ ≤ D∗, s∗ (θ) = 0 = s∗ (D∗) and
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ms∗ (θ) = ms∗ (D∗), I obtain

r (θ) = −ms∗ (θ) + µ−1ms∗ (θ) [1−ms∗ (θ)] (θ − s∗ (θ) + w∗)

= −ms∗ (D∗) + µ−1ms∗ (D∗) [1−ms∗ (D∗)] (θ −D∗ +D∗ − s∗ (D∗) + w∗)

= µ−1ms∗ (D∗) [1−ms∗ (D∗)] (θ −D∗) ,

where the last equality follows r (D∗) = 0. Also note that r (θ) = 0 over [D∗,∞), hence

E [r (θ)] = −µ−1ms∗ (D∗) [1−ms∗ (D∗)]

∫ D∗

0

(D∗ − θ) dP (θ) . (53)

Combining (52) and (53) leads to

ms∗ (D∗) [1−ms∗ (D∗)]

∫ D∗

0

(D∗ − θ) dP (θ)

> ps∗ [1− ps∗ ] ·D∗

≥
∫ ∞

0

ms∗ (θ) [1−ms∗ (θ)] dP (θ) ·D∗

> ms∗ (D∗) [1−ms∗ (D∗)]

∫ D∗

0

D∗dP (θ) , (54)

where the second inequality follows the concavity of x · (1− x) and Jensen’s inequality, the

third inequality follows the fact that ms∗ (θ) = ms∗ (D∗) for all θ ∈ [0, D∗]. Inequality (54)

immediately implies

−ms∗ (D∗) [1−ms∗ (D∗)]

∫ D∗

0

θdP (θ) > 0 ,

which is a contradiction. Therefore, I showed A0 = φ.

Finally, Facts a), b) and c) imply that there exists a D∗ ≥ 0, such that ds∗(θ)
dθ = 1 on

[0, D∗] and ds∗(θ)
dθ ∈ (0, 1) on [D∗,∞). This concludes the proof.

Proof of Proposition 7.
Proof. Let s (θ) = sq (θ) + α · ε (θ) be a perturbation of sq, where ε can be any arbitrary

measurable function over R+. I first characterize how ms,q responds to the perturbation of

sq. Since I have shown that η (θ) ≤ 0, the buyer’s optimal strategy to (s, q) is characterized

by

µ−1 [δbs (θ)− q] = g′ (ms,q (θ))− g′
(
ps,q
)

+ min
(
µ−1 [δbs (θ)− q]− g′ (0) + g′

(
ps,q
)
, 0
)
.

(55)

Taking derivative with respect to α at α = 0 for both sides of (55) and rearranging the
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terms lead to

dms,q (θ)

dα

∣∣∣∣
α=0

=
[
g′′
(
msq,q (θ)

)]−1 · 1B ·
[
µ−1δb · ε (θ) + g′′

(
psq,q

)
·
dps,q
dα

∣∣∣∣
α=0

]
, (56)

where

B =
{
θ ∈ Θ : µ−1 [δbsq (θ)− q] > g′ (0)− g′

(
psq,q

)}
is the event that transaction happens, i.e., msq,q (θ) > 0, and 1B is the indicator function for

set B. By taking expectation of both sides of (56) and making use of the fact
dps,q
dα

∣∣∣
α=0

=

E dms,q(θ)
dα

∣∣∣
α=0

, I obtain the response of ps,q to ε

dps,q
dα

∣∣∣∣
α=0

=
µ−1δbE

([
1B · g′′

(
msq,q (θ)

)]−1
ε (θ)

)
1− E

[
1B

g′′(msq,q(θ))

]
· g′′

(
psq,q

) .

Plugging the expression of
dps,q
dα

∣∣∣
α=0

into (56) leads to

dms,q (θ)

dα

∣∣∣∣
α=0

= 1B
[
g′′
(
msq,q (θ)

)]−1

µ−1δb · ε (θ) +
µ−1δbE

(
1B
[
g′′
(
msq,q (θ)

)]−1
ε (θ)

)
[
g′′
(
psq,q

)]−1

− E
[

1B
g′′(msq,q(θ))

]
 ,(57)

which fully characterizes the response of ms,q to any perturbation ε perturbation of sq.

Now I can calculate the response of the seller’s expected payoff to the perturbation of

sq. Taking the derivative of W (s, q) with respect to α at α = 0 leads to

dW (s, q)

dα

∣∣∣∣
α=0

= −δs · E
[
msq,q (θ) ε (θ)

]
+ E

(
dms,q (θ)

dα

∣∣∣∣
α=0

[q − δs · sq (θ)]

)
. (58)

Here, the first term captures the direct effect of perturbing the security payoff sq disregarding

the variation of ms,q; the second term is its indirect effect through the variation of ms,q.

Substitute (57) into (58), and I obtain

dW (s, q)

dα

∣∣∣∣
α=0

= E [r (θ) · ε (θ)] , (59)

where

r (θ) = −δsmsq,q (θ) + µ−1δb1B
[
g′′
(
msq,q (θ)

)]−1
(q − δs · sq (θ) + wq) . (60)
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In particular, wq, the constant in equilibrium is given by

wq =
E
(

[q − δs · sq (θ)] 1B
[
g′′
(
msq,q (θ)

)]−1
)

[
g′′
(
psq,q

)]−1

− E
[

1B
g′′(msq,q(θ))

] . (61)

Let

A0 = {θ ∈ B : θ > 0, sq (θ) = 0} ,

A1 = {θ ∈ B : θ 6= 0, sq (θ) ∈ (0, θ)}

and

A2 = {θ ∈ B : θ > 0, sq (θ) = θ} .

Clearly, {A0, A1, A2} is a partition of B\ {0}. Since sq is the optimal security, I obtain

dW (s, q)

dα

∣∣∣∣
α=0

≤ 0

for any feasible perturbation ε (θ). Hence, condition (59) implies

r (θ)


≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

. (62)

Since g is strictly convex, r (θ) · g′′
(
msq,q (θ)

)
is of the same sign as r (θ). Thus (62) can be

rewritten as

r (θ) · g′′
(
msq,q (θ)

)
= −δsmsq,q (θ) g′′

(
msq,q (θ)

)
+ µ−1δb (q − δs · sq (θ) + wq)

≤ 0 if θ ∈ A0

= 0 if θ ∈ A1

≥ 0 if θ ∈ A2

. (63)

Recall Condition (55), given the optimal offer (sq, q), for θ ∈ B the buyer’s best response

msq,q (θ) is characterized by

δb · sq (θ)− q = µ ·
[
g′
(
msq,q (θ)

)
− g′

(
psq,q

)]
, (64)

where

psq,q = Emsq,q (θ)

is the buyer’s unconditional probability of accepting offer (sq, q). Conditions (63)and (64)
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as a system of functional equations jointly determine the optimal security sq.

I solve the system of equations to obtain the seller’s optimal security sq and the buyer’s

associated optimal decision rule of information acquisition msq,q. To facilitate the analysis

and economize on notations, consider two equivalent equations with respect to variables m

and s, in which m stands for msq,q(θ) and s stands for sq(θ):

−δs ·m · g′′ (m) + µ−1δb (q − δs · s+ wq) = 0 (65)

and

δb · s− q = µ ·
[
g′ (m)− g′

(
psq,q

)]
. (66)

Let m = f1 (s) and m = f2 (s) be the two continuous functions implicitly defined by (65)

and (66), respectively.

First note that f ′1 (s) < 0 and f ′2 (s) > 0. This is because [m · g′′ (m)]
′
> 0 and g′′ (m) >

0. Therefore, the curves m = f1 (s) and m = f2 (s) intersect at most once.

Second, it must be true that f1 (0) > f2 (0). Otherwise, f1 (s) < f2 (s) for all s > 0.

Hence ∀θ > 0,

r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (sq (θ)) g′′ (f2 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f1 (sq (θ)) g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0 ,

where the inequality holds since [m · g′′ (m)]
′
> 0. Then (63) implies sq (θ) = 0 for all θ ∈ B.

Therefore, there is no trade, contradicting the assumption of this proposition.

Third, it must be true that Pr (A0) = 0. This is because, for any θ ∈ A0,

r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (0) g′′ (f2 (0)) + µ−1δb (q − δs · 0 + wq)

> −δs · f1 (0) g′′ (f1 (0)) + µ−1δb (q − δs · 0 + wq)

= 0 ,

where the inequality holds since f1 (0) > f2 (0) and [m · g′′ (m)]
′
> 0. This result contradicts

(63), which states r (θ) · g′′
(
msq,q (θ)

)
≤ 0 for θ ∈ A0.

Now I am ready to show that the optimal security must be debt on event B. If f1 (s)

and f2 (s) never intersect, r (θ) > 0 for all θ ∈ B. Then the optimal security

sq (θ) = θ
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is a special debt with a very large face value supB, which may be infinity.

Let (s,m) be the unique intersection of f1 (s) and f2 (s). For any θ such that θ < s, the

following inequality holds,

msq,q (θ) = f2 (sq (θ)) < f2 (s) = f1 (s) < f1 (sq (θ)) .

Then

r (θ) · g′′
(
msq,q (θ)

)
> −δs · f1 (sq (θ)) · g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0,

where the inequality holds since [m · g′′ (m)]
′
> 0. Condition (63) then implies

sq (θ) = θ

for all θ < s.

For any θ > s, if sq (θ) = θ, then (63) implies

0 ≤ r (θ) · g′′
(
msq,q (θ)

)
= −δs · f2 (sq (θ)) · g′′ (f2 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f2 (s) · g′′ (f2 (s)) + µ−1δb (q − δs · sq (θ) + wq)

< −δs · f1 (sq (θ)) · g′′ (f1 (sq (θ))) + µ−1δb (q − δs · sq (θ) + wq)

= 0 ,

which is a contradiction. Hence Pr (A0) = 0 implies sq (θ) = s for all θ > s.

Therefore, the optimal security is a debt with face value s, i.e.,

sq (θ) = min (θ, s) .

This concludes the proof.

Proof of Proposition 8.
Proof. Note that the proof of Proposition 2 applies to any abstract probability space Θ.

Especially, in this proof I apply it to Θ = RN+ .
i) Again, I prove by constructing a debt security that generates positive expected payoff

to the seller. Let β ∈
(
δsδ
−1
b , 1

)
and

f (q) = Emin

(
N∑
n=1

θn, βδ
−1
s q

)
.
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Since P is a continuous distribution and β−1δsδ
−1
b < 1, there exists q0 > 0 s.t.

Pr

(
N∑
n=1

θn ≥ βδ−1
s q

)
> β−1δsδ

−1
b

for all q ∈ [0, q0]. Hence for any q ∈ (0, q0),

f ′ (q) = Pr

(
N∑
n=1

θn ≥ βδ−1
s q

)
· βδ−1

s

> β−1δsδ
−1
b · βδ

−1
s = δ−1

b .

Note that

f (0) = 0 ,

which implies that

f (q) > δ−1
b q

for all q ∈ (0, q0).

Consider a debt

s
(−→
θ
)

= min

(
N∑
n=1

θn, D

)

with face value D = βδ−1
s q and price q ∈ (0, q0). The buyer’s payoff gain from accepting

this offer over rejecting it is

∆u
(−→
θ
)

= δb · s
(−→
θ
)
− q.

By Jensen’s inequality, I obtain

E exp
(
µ−1∆u

(−→
θ
))

≥ exp
(
µ−1E∆u

(−→
θ
))

> 1,

which implies ps,q > 0 according to Proposition 2. Then, the seller’s expected payoff from

this offer is

W (s, q) = E
(
ms,q

(−→
θ
)
·
[
q − δs · s

(−→
θ
)])

≥ E
(
ms,q

(−→
θ
)
·
[
q − δs · βδ−1

s q
])

= (1− β) q · ps,q > 0 .

By proposing the optimal offer (s∗, q∗), the seller’s expected payoff should be no less than

W (s, q) > 0. This directly implies ps∗,q∗ > 0, since ps∗,q∗ = 0 always generates zero
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expected payoff to the seller.

ii) I first discuss the case without information acquisition. Similar to (10), the price of

security s
(−→
θ
)
is given by

q = −µ lnE exp
(
−µ−1δb · s

(−→
θ
))

. (67)

Let s
(−→
θ
)

= s∗
(−→
θ
)

+ α · ε
(−→
θ
)
be an arbitrary perturbation of the optimal security s∗.

Let

J (α) = µ lnE exp
(
−µ−1δb · s

(−→
θ
))

+ δs · Es
(−→
θ
)
.

Taking first order variation leads to

dJ

dα

∣∣∣∣
α=0

= E
[(
δs − δb

[
E exp

(
−µ−1δb · s∗

(−→
θ
))]−1

exp
(
−µ−1δb · s∗

(−→
θ
)))

· ε
(−→
θ
)]

, E
[
r
(−→
θ
)
· ε
(−→
θ
)]

. (68)

Let

A0 =
{−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)

= 0
}
,

A1 =

{
−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)
∈
(

0,

N∑
n=1

θn

)}
and

A2 =

{
−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)

=

N∑
n=1

θn

}
.

Since s∗ is the optimal security,
dJ

dα

∣∣∣∣
α=0

≥ 0

holds for any feasible perturbation ε (·). Hence, I obtain

r
(−→
θ
)

≥ 0 if
−→
θ ∈ A0

= 0 if
−→
θ ∈ A1

≤ 0 if
−→
θ ∈ A2

. (69)

For any
−→
θ ′ ∈ A0, (69) implies r

(−→
θ ′
)
≥ 0, i.e.,

δs ≥ δb
[
E exp

(
−µ−1δb · s∗

(−→
θ
))]−1

.
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Together with (67), this inequality implies

ln δs ≥ ln δb + µ−1q∗ .

Hence,

µ−1q∗ ≤ ln δs − ln δb < 0 ,

which is a contradiction. Therefore,

Pr (A0) = 0 . (70)

For any
−→
θ ′ ∈ A1, (69) implies r

(−→
θ ′
)

= 0, i.e.,

δs = δb

[
E exp

(
−µ−1δb · s∗

(−→
θ
))]−1

exp
(
−µ−1δb · s∗

(−→
θ ′
))

,

i.e.,

ln δs = ln δb + µ−1q∗ − µ−1δb · s∗
(−→
θ ′
)
.

Therefore,

s∗
(−→
θ ′
)

= µδ−1
b · [ln δb − ln δs] + δ−1

b q∗ (71)

is a constant for all
−→
θ ′ ∈ A1.

For any
−→
θ ′ ∈ A2, (69) implies r

(−→
θ ′
)
≤ 0, i.e.,

δs ≤ δb
[
E exp

(
−µ−1δb · s∗

(−→
θ
))]−1

exp

(
−µ−1δb ·

N∑
n=1

θ′n

)
,

i.e.,

ln δs ≤ ln δb + µ−1q∗ − µ−1δb ·
N∑
n=1

θ′n .

Therefore,
N∑
n=1

θ′n ≤ µδ−1
b · [ln δb − ln δs] + δ−1

b q∗. (72)

Let

D∗ = µδ−1
b · [ln δb − ln δs] + δ−1

b q∗.

Then, (70), (71) and (72) imply that

s∗
(−→
θ
)

= min

(
N∑
n=1

θn, D
∗

)
,

66



i.e., the optimal security must be a debt.

Now I discuss the case with information acquisition. The same derivations in the proof

of Lemma 9 lead to
dW (s, q∗)

dα

∣∣∣∣
α=0

= E
[
r
(−→
θ
)
· ε
(−→
θ
)]

, (73)

where

r
(−→
θ
)

= −δsms∗,q∗

(−→
θ
)

+ µ−1δb

[
g′′
(
ms∗,q∗

(−→
θ
))]−1 (

q − δs · s∗
(−→
θ
)

+ w∗
)

(74)

and

w∗ =

E
([
q∗ − δs · s∗

(−→
θ
)] [

g′′
(
ms∗,q∗

(−→
θ
))]−1

)
[
g′′
(
ps∗,q∗

)]−1 − E
[
g′′
(
ms∗,q∗

(−→
θ
))]−1 .

Again, let

A0 =
{−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)

= 0
}
,

A1 =

{
−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)
∈
(

0,

N∑
n=1

θn

)}
and

A2 =

{
−→
θ ∈ Θ :

−→
θ 6= −→0 , s∗

(−→
θ
)

=

N∑
n=1

θn

}
.

Since s∗ is the optimal security, it must be true that

dW (s, q∗)

dα

∣∣∣∣
α=0

≤ 0

for any feasible perturbation ε
(−→
θ
)
. Hence, condition (73) implies

r
(−→
θ
)

≤ 0 if
−→
θ ∈ A0

= 0 if
−→
θ ∈ A1

≥ 0 if
−→
θ ∈ A2

. (75)

Since g is strictly convex, r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))
is of the same sign as r

(−→
θ
)
. Thus (75)
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can be rewritten as

r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))

= −δsms∗,q∗

(−→
θ
)
g′′
(
ms∗,q∗

(−→
θ
))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w∗
)


≤ 0 if

−→
θ ∈ A0

= 0 if
−→
θ ∈ A1

≥ 0 if
−→
θ ∈ A2

. (76)

According to Proposition 2, given the optimal offer (s∗, q∗), the buyer’s best response

ms∗,q∗

(−→
θ
)
is characterized by

δb · s∗
(−→
θ
)
− q∗ = µ ·

[
g′
(
ms∗,q∗

(−→
θ
))
− g′

(
ps∗,q∗

)]
, (77)

where

ps∗,q∗ = Ems∗,q∗

(−→
θ
)
.

Conditions (76)and (77) as a system of functional equations jointly determine the optimal

security s∗. To facilitate the analysis and economize on notations, consider two equivalent

equations with respect to variables m and s, in which m stands for ms∗,q∗(
−→
θ ) and s stands

for s∗(
−→
θ ):

−δs ·m · g′′ (m) + µ−1δb (q∗ − δs · s+ w∗) = 0 (78)

and

δb · s− q∗ = µ ·
[
g′ (m)− g′

(
ps∗,q∗

)]
. (79)

Let m = f1 (s) and m = f2 (s) be the two continuous functions implicitly defined by (78)

and (79), respectively. As before, it is clear that f ′1 (s) < 0 and f ′2 (s) > 0. So the curves

m = f1 (s) and m = f2 (s) intersect at most once.

First note that f1 (0) > f2 (0). Otherwise, f1 (s) < f2 (s) for all s > 0. Hence ∀−→θ 6= −→0 ,

r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))

= −δs · f2

(
s∗
(−→
θ
))

g′′
(
f2

(
s∗
(−→
θ
)))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w∗
)

< −δs · f1

(
s∗
(−→
θ
))

g′′
(
f1

(
s∗
(−→
θ
)))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w∗
)

= 0 ,

where the inequality holds since [m · g′′ (m)]
′
> 0. Then (76) implies s∗

(−→
θ
)

= 0 for all
−→
θ ∈ Θ. Therefore, there is no trade, which contradicts i) of this Proposition.
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Second note that Pr (A0) = 0. This is because, for any
−→
θ ∈ A0,

r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))

= −δs · f2 (0) g′′ (f2 (0)) + µ−1δb (q∗ − δs · 0 + w∗)

> −δs · f1 (0) g′′ (f1 (0)) + µ−1δb (q∗ − δs · 0 + w∗)

= 0 ,

where the inequality holds since f1 (0) > f2 (0) and [m · g′′ (m)]
′
> 0. This result contradicts

(76), which states r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))
≤ 0 for

−→
θ ∈ A0.

Now I am ready to show that the optimal security must be debt. If f1 (s) and f2 (s)

never intersect, r
(−→
θ
)
> 0 for all

−→
θ ∈ Θ. Then the optimal security

s∗
(−→
θ
)

=

N∑
n=1

θn

is a special debt with a very large face value sup
{∑N

n=1 θn :
−→
θ ∈ Θ

}
, which may be infinity.

Let (s,m) be the unique intersection of f1 (s) and f2 (s). For any
−→
θ such that

∑N
n=1 θn <

s, the following inequality holds,

ms∗,q∗

(−→
θ
)

= f2

(
s∗
(−→
θ
))

< f2 (s) = f1 (s) < f1

(
s∗
(−→
θ
))

.

Then

r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))

> −δs · f1

(
s∗
(−→
θ
))
· g′′

(
f1

(
s∗
(−→
θ
)))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w
)

= 0,

where the inequality holds since [m · g′′ (m)]
′
> 0. Condition (76) then implies

s∗
(−→
θ
)

=

N∑
n=1

θn

for all
−→
θ such that

∑N
n=1 θn < s.
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For any
−→
θ such that

∑N
n=1 θn > s, if s∗

(−→
θ
)

=
∑N
n=1 θn, then (76) implies

0 ≤ r
(−→
θ
)
· g′′

(
ms∗,q∗

(−→
θ
))

= −δs · f2

(
s∗
(−→
θ
))
· g′′

(
f2

(
s∗
(−→
θ
)))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w
)

< −δs · f2 (s) · g′′ (f2 (s)) + µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w
)

< −δs · f1

(
s∗
(−→
θ
))
· g′′

(
f1

(
s∗
(−→
θ
)))

+ µ−1δb

(
q∗ − δs · s∗

(−→
θ
)

+ w
)

= 0 ,

which is a contradiction. Hence Pr (A0) = 0 implies s∗
(−→
θ
)

= s for all
−→
θ such that∑N

n=1 θn > s.

For any
−→
θ such that

∑N
n=1 θn = s, s∗

(−→
θ
)

= s is a direct implication of Pr (A0) = 0.

Therefore, the optimal security is a debt with face value s, i.e.,

s∗
(−→
θ
)

= min

(
N∑
n=1

θn, s

)
.
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