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In economic and financial markets, rights to control and exploit assets with the 
potential to generate cash flows are often sold through auctions. While in some auc-
tions the winner’s future profits from the asset cannot be used as a basis for payment, 
so only cash bids are possible, in many cases it is possible to observe and verify 
the ex post cash flows. This means that bidders can submit their bids in the form of 
securities, the values of which are contingent on future cash flows from the asset. 
Securities auctions are common in the real world: examples include government 
sales of oil leases, lead-plaintiff, wireless spectrum, and highway building auctions. 
Many other transactions, though not formally auctions, are similar to securities auc-
tions in nature: examples include corporate takeovers, intercorporate asset sales, 
book publishing, advertising, and venture capital markets.1

In this paper we analyze equilibrium auction mechanisms when sellers compete 
for potential bidders by altering security designs of their auctions, rather than reserve 
prices, as in the prior literature. Specifically, we consider an environment in which 

1 Payments are combinations of an upfront cash payment and a royalty payment that is contingent on future cash 
flows in oil lease auctions (Kenneth Hendricks and Robert H. Porter 1988; Kenneth Hendricks, Joris Pinkse, and 
Robert H. Porter 2003) and the book publishing industry (Richard E. Caves 2003). Contingency-fee auctions to 
choose the lead plaintiff in class action suits are discussed by Jill E. Fisch (2001). In wireless spectrum auctions 
bids are commitments, which sometimes lead to defaults (Charles Z. Zheng 2001; Paul Milgrom 2004). Peter M. 
DeMarzo, Ilan Kremer, and Andrzej Skrzypacz (2005) list these and other examples of securities auctions.

Competition among Sellers in Securities Auctions†

By Alexander S. Gorbenko and Andrey Malenko*

We study simultaneous security-bid second-price auctions with com-
petition among sellers for potential bidders. The sellers compete 
by designing ordered sets of securities that the bidders can offer as 
payment for the assets. Upon observing auction designs, potential 
bidders decide which auctions to enter. We characterize all symmet-
ric equilibria and show that there always exist equilibria in which 
auctions are in standard securities or their combinations. In large 
markets the unique equilibrium is auctions in pure cash. We extend 
the model for competition in reserve prices and show that binding 
reserve prices never constitute equilibrium as long as equilibrium 
security designs are not call options. (JEL D44, D82, G10)

*  Gorbenko: London Business School, Regent’s Park, London NW1 4SA, United Kingdom (e-mail:  
agorbenko@london.edu); Malenko: Sloan School of Management, Massachusetts Institute of Technology, 100 
Main Street, Cambridge, MA 02142 (e-mail: amalenko@mit.edu). The paper was written when both authors were 
PhD students at Stanford University. We thank two anonymous referees, Andrea Buffa, Bhagwan Chowdhry, Peter 
DeMarzo, Steven Grenadier, Ilan Kremer, John Lazarev, Nadya Malenko, Michael Ostrovsky, Andrzej Skrzypacz, 
Ilya Strebulaev, Jeffrey Zwiebel, seminar participants at Stanford GSB, participants at the 2008 WFA Annual 
Meeting in Waikoloa, and the 8th Trans-Atlantic Doctoral Conference at LBS for helpful comments. We are respon-
sible for all remaining errors.

† To view additional materials, visit the article page at 
http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.5.1806.



1807Gorbenko and Malenko: sellerS’ Competition in securities auctionsVOL. 101 NO. 5

there are multiple sellers and potential buyers. Initially, each buyer has no informa-
tion about his valuations of the assets except for his prior beliefs, which are identical 
for all assets. The sellers propose designs of their auctions to potential buyers, and 
each buyer decides which auction to enter. For ease of exposition, we start with the 
assumption that security design of the auction is the only choice for the seller, and 
then extend the choice set to include a reserve price or auction format. The problem 
we study is relevant in contexts in which both competition among auctioneers for a 
limited number of potential bidders and bids in the form of securities are important. 
In order to aid in the intuition of the model, consider the following two real-world 
examples of competition among sellers in securities auctions:

Example 1 (Oil Lease Auctions): Rights to develop oil fields are sold in formal 
auctions by the US federal government as well as governments of multiple states 
such as Alaska, Wyoming, and Colorado. A system of selling oil lease rights through 
auctions is also in place in other countries such as Canada and Brazil. Importantly, 
payments are combinations of an upfront cash amount, called a bonus, and a roy-
alty payment based on the percentage of the cash value of oil produced. The bonus 
is determined in a competitive auction, and the royalty payment is set by the state 
(if the lease is sold by the state government) or federal (if the lease is sold by the 
federal government) law. There is a limited set of potential bidders (most impor-
tantly, major oil-producing firms), and due diligence is costly.2 As a result, for each 
seller it is important to provide sufficient surplus so that a major oil-producing firm 
undertakes costly due diligence and participates in the auction, and the size of this 
surplus depends on the auction format used by alternative sellers. If the government 
of a region introduces an abnormally high royalty rate relative to the other regions, 
the auctions of this government will attract fewer bidders.3

Example 2 (Auctions of Companies): Private companies and divisions of public 
companies are often sold through an auction process, where the advisor of the sell-
ing company acts as de facto auctioneer.4 For each target there is a limited set of 
potential buyers, and due diligence is costly in terms of both time and money. As a 
result, each target competes with ex ante similar firms that might be acquired in the 
future for the resources of potential bidders. Payments are often made in the form of 
buyer’s equity and debt. Hence, to the extent that the target’s advisor can commit to 
accept bids only of a certain form (e.g., all cash or all equity), this setting is also an 
example of competition among sellers in securities auctions.

Even though cash and securities auctions might seem similar, they provide dif-
ferent incentives for the bidders. While in cash auctions the value of the bid is 

2 For example, Hendricks, Pinkse, and Porter (2003) state that hiring a geophysical company to “shoot” a seismic 
survey costs approximately $12 million, while getting more detailed information on a smaller area costs an addi-
tional amount between $500,000 and $1 million (all costs are in 1982 dollars). Even though costs are often shared 
between several firms, they still represent significant amounts.

3 Competition effects are known to the sellers. For example, the US Government Accountability Office states: 
“All else equal, more investment dollars will flow to regions in which the government take is relatively low, where 
there are large oil and gas deposits that can be developed at relatively low cost, and where the fiscal system and 
government are deemed to be relatively more stable.” (US Government Accountability Office (GAO), “Oil and gas 
royalties: A comparison of the share of revenue received from oil and gas production by the federal government and 
other resource owners,” GAO-07-676R, May 1, 2007.)

4 See Robert G. Hansen (2001) for the description and model of the typical auction process.
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independent of the bidder’s identity, in securities auctions it is not the case. If two 
bidders offer the same securities, the security submitted by the higher type 5 is worth 
more. As a result, a higher type must pay more than in a cash auction to separate 
himself from lower types. This intuition underlies the result first obtained by Hansen 
(1985) that auctions in equity yield higher expected revenues to the seller than cash 
auctions. This result is generalized by Matthew Rhodes-Kropf and S. Viswanathan 
(2000), who show that securities auctions yield higher expected revenues than cash 
auctions, and DeMarzo, Kremer, and Skrzypacz (2005), who study the general 
class of securities auctions and determine that an auction in steeper securities yields 
higher revenues. Because potential bidders make endogenous participation deci-
sions, the role of the security design of the auction in our framework is twofold. On 
the one hand, the seller wants to design the set of securities in a way that maximizes 
her revenues for a given number of bidders. This effect is achieved by making the 
security design of the auction steeper. On the other hand, she wants to leave the bid-
ders a sufficiently large surplus to deter them from taking the outside option, whose 
value is determined endogenously by the security designs adopted by other sellers. 
This is achieved by making the security design flatter.

We characterize all symmetric Bayes-Nash equilibria of the game, determined 
by both the equilibrium security designs adopted by the sellers and the bidders’ 
selection and bidding strategies. If the desire to attract additional bidders is suf-
ficiently valuable relative to the desire to extract the surplus from a given set of 
bidders, auctions in pure cash constitute an equilibrium design. In this case, bidders 
compete by offering cash bids, and the one who submits the largest amount wins 
the auction. On the contrary, if the desire to extract the surplus from a given set of 
bidders is sufficiently valuable relative to the desire to attract additional bidders, 
auctions in call options constitute an equilibrium security design. Bidders compete 
by offering call options on future cash flows from the asset, and the one who bids 
a security with the lowest strike price wins the auction. When the trade-off is non-
trivial, there exist multiple equilibrium security designs.

Having characterized equilibrium security designs, we study which of them are 
the most intuitive. We prove that for any set of security designs that can be ordered 
in steepness from sufficiently flat to sufficiently steep, there exists an equilibrium 
security design that belongs to this set. This implies that there always exist equi-
librium security designs in mixes of standard securities. For example, if equity is 
too steep to be an equilibrium security design, then there exists an equilibrium in 
which the auctions are in combinations of cash and equity. Payments of this form are 
observed in oil lease auctions, book publishing, and corporate acquisitions.

Our paper not only rationalizes auctions in combinations of simple securities 
but also attempts to shed light on how parameters of the market structure deter-
mine the steepness of the payment mechanisms using numerical examples. First, a 
larger number of potential bidders or a smaller number of sellers typically makes 
the equilibrium security designs steeper, as competition concerns become less 
important. This suggests that relatively low royalty rates6 in oil lease auctions in 

5 Here and hereafter a higher type means a bidder with a higher valuation of the asset being sold.
6 US GAO, “Oil and gas royalties: A comparison of the share of revenue received from oil and gas production by 

the federal government and other resource owners”, GAO-07-676R, May 1, 2007.
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the United States and Canada can be partially explained by competition among 
state and federal governments for limited resources of oil firms. Second, an impor-
tant determinant of the equilibrium security designs is the size of the market. 
Specifically, as the number of sellers and potential bidders goes up in a way that 
their ratio remains constant, the equilibrium security designs appear to become 
flatter. Intuitively, larger size of the market implies that a seller’s deviation to a 
flatter security design becomes more profitable, simply because more bidders are 
likely to switch to a more bidder-friendly auction when there are more alterna-
tive auctions. We prove that in the limit, as the size of the market grows to infin-
ity, the unique equilibrium security design is pure cash. Thus, the model implies 
that auctions in large markets will always be conducted in cash even if bids can 
be contingent on future cash flows from the asset. Third, we show in numerical 
examples that an increase in mean bidder valuation appears to lead to flatter equi-
librium security designs. Because higher mean valuation typically leads to greater 
surpluses of both the seller and the winning bidder, the model suggests that flatter 
securities are, on average, associated with greater synergies from the auction as a 
whole as well as greater surpluses of both the seller and the winning bidder, which 
is broadly consistent with empirical evidence on corporate takeovers.

Because a large body of the existing literature focuses on competition among 
auctioneers in reserve prices, we extend our model by allowing each seller to choose 
a reserve price in addition to the security design of her auction. Even though com-
mitment to a reserve price can improve the revenues of the seller in the monopolistic 
framework, binding reserve prices never constitute an equilibrium outcome as long 
as the equilibrium security design is not call options. The intuition behind this result 
comes from the difference between the effect of security designs and reserve prices 
on efficiency of the auction. While a higher reserve price has a detrimental effect 
on efficiency, a steeper security design does not. This is because in any securities 
auction the asset is always sold to the bidder with the highest valuation, while in an 
auction with a binding reserve price there is a positive probability that the asset is 
not transferred even though the transaction is efficient. As a result, an increase in the 
steepness of securities is always preferred to an increase in the reserve price, so in 
equilibrium reserve prices can be binding only if the auction is in call options, the 
steepest possible securities. This finding is consistent with surprisingly low reserve 
prices in US oil lease auctions (R. Preston McAfee and Daniel Vincent 1992).

Our paper is related to two strands of literature. First, it is a part of the literature 
that studies competition among sellers in auction procedures. Michael Peters and 
Sergei Severinov (1997); Roberto Burguet and JÓzsef Sákovics (1999); and Angel 
Hernando-Veciana (2005) focus on competition among auctioneers in reserve prices. 
Specifically, Peters and Severinov (1997) study the market with infinitely many sell-
ers and potential buyers, Hernando-Veciana (2005) considers large but finite mar-
kets, and Burguet and Sakovics (1999) study the case of two sellers. Among these 
papers, our model is most closely related to the first model in Peters and Severinov 
(1997), as we focus on the case when buyers learn their valuations after making entry 
decisions. Unlike ours, the above papers focus on auctions in cash only. McAfee 
(1993) and Peters (1997, 2001) study competition in mechanisms without restrict-
ing their set to auctions. However, mechanisms in these papers cannot be contingent 
on future cash flows, so transactions in securities are not allowed.
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Second, our paper is related to the literature on securities auctions, originated 
with Hansen (1985) and John G. Riley (1988). Zheng (2001), Rhodes-Kropf and 
Viswanathan (2005), and Simon Board (2007) study auctions in which budget-
constrained bidders use external resources to finance their bids. Even though bids are 
expressed in the form of cash, they are effectively securities, because the winner has an 
option to default. Rhodes-Kropf and Viswanathan (2000) generalize the result of cash 
inferiority to the set of standard securities but show that the existence of pooling equi-
libria may destroy this result. DeMarzo, Kremer, and Skrzypacz (2005) extend early 
results to a general setting which allows for virtually all possible security designs and 
also consider auctions without commitment to a particular security design. Shimon 
Kogan and John Morgan (2010) study auctions in pure debt and pure equity under 
moral hazard. However, in all these papers the number of bidders is exogenous. In our 
model competition among sellers leads to endogenous participation decisions of the 
bidders, which has important consequences for the equilibrium security designs.

The rest of the paper is organized as follows. We start with Section I that describes 
the setup of the model and solves the benchmark case of a monopolistic seller. In 
Section II, we characterize all symmetric equilibria of the model and study their 
properties. In Section III, we discuss model implications for the relation between 
steepness of securities, market structure, and synergies. In particular, we prove that 
in large markets the unique equilibrium is auctions in pure cash. Section IV extends 
the model by allowing the sellers to compete both in security designs and reserve 
prices. In Section V, we discuss several other extensions of the model. Finally, 
Section VI concludes. All proofs are given in the Appendix.

I.  The Model

A. Setup

The setup of the model is an extension of DeMarzo, Kremer, and Skrzypacz 
(2005) for multiple sellers and endogenous entry.7 There are ​n​b​ ex ante identical 
risk-neutral potential bidders who are interested in acquiring an asset. The asset can 
be rights to manage a particular project, such as a firm, an innovation, or developing 
an oil field. There are ​n​s​ risk-neutral sellers of ex ante identical indivisible assets, 
which have zero intrinsic value for the sellers.8 Each seller sells her asset in an auc-
tion. Each bidder is interested in acquiring only a single asset (either due to limited 
capability of managing simultaneous projects or because two similar projects in the 
bidder’s portfolio would make him overexposed to a particular project-type risk). 
In addition, each bidder cannot enter more than one auction. This assumption can 
be justified by high costs (in terms of both time and money) of undertaking due 
diligence about each asset being sold. The winner of each auction is required to 
make an investment x > 0, which is common knowledge and equal for all bidders 

7 The particular choice to model endogenous entry via competition among sellers for bidders is without loss 
of generality: similar trade-offs between benefits and costs of entering an auction determine equilibrium security 
designs in any other endogenous entry framework. A practical advantage of the model with seller competition, 
however, is that its predictions are related to (and can be checked against) simple and observable characteristics of 
the market structure, such as the number of sellers, bidders, etc.

8 The model can be easily generalized to the case of positive intrinsic values.
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and assets.9 Conditional on investment x made by bidder i, asset j yields a stochastic 
future payoff ​Z​ij​ . For simplicity, in what follows we omit index j unless ambiguity 
arises and think of project payoffs within the bounds of a single auction. The interest 
rate is normalized to zero.

Bidders do not have any information about the project payoff before entering 
an auction, except for its ex ante distribution, which is the same across bidders.10 
After deciding which auction to enter, each bidder i privately learns his valuation ​
V​ i​ of the asset in the auction he entered. We do not directly model costs of due dili-
gence analysis that bidders have to go through in order to obtain their valuations. 
However, because this process is long in practice,11 it is natural to assume that 
after ​V​ i​ has been obtained, the bidder cannot switch to another auction. Following 
DeMarzo, Kremer, and Skrzypacz (2005), we make the following assumptions 
regarding valuations and payoffs:

ASSUMPTION A: For any auction with k bidders, k = 1, … , ​n​b​ , the private valu-
ations V = (​V​ 1​, … , ​V​ k​) and payoffs Z = (​Z​1​, … , ​Z​k​) satisfy the following properties:

	 (i)	​ V​ i​ are i.i.d. with density f (v) > 0 on the support [ ​v​L​ , ​v​H​ ];

	 (ii)	 Conditional on ​V​ i​ , ​Z​i​ is distributed on [ 0, ∞) with density h(z | v) which 
is twice differentiable in z and v, and functions z h(z | v), |z​ h​v​(z | v)|, and  
|z ​h​vv​(z | v)| are integrable;

	 (iii)	 (​Z​i​ , ​V​ i​) satisfy the Strict Monotone Likelihood Ratio Property (SMLRP):  
h(z | v)/h(z | v ′ ) is increasing in z if v > v ′.

Part (i) of Assumption A implies that the focus is on the auctions with indepen-
dent private valuations. This assumption underlies most models of auction theory, 
so it is a natural assumption in modeling auctions with securities as well. While 
common value aspects are likely to be important in many real-world examples of 
securities auctions, in many settings the common component of valuations is com-
mon knowledge among bidders. For example, in a typical process of an auction 
for a company (see Hansen 2001 for a description), all bidders obtain access to the 
same information about the company being sold, which implies that the common 
component of valuations is likely to be learned by all bidders. In this context, one 
can think about a bidder’s valuation ​V​ i​ as a sum of the common component, which is 
common knowledge, and the private component, which is the bidder’s private infor-
mation. In Section V we discuss a possible extension of the model for the case of 
common values that are not common knowledge. Part (ii) of Assumption A assumes 
integrability conditions that allow the interchange of the expectation and derivative 
operators. Finally, part (iii) means that ​Z​i​ and ​V​ i​ are strictly affiliated.12 Intuitively, ​V​ i​ 
is always a good signal about ​Z​i​ .

9 Section V discusses the endogenous choice of x by the bidder.
10 Section V discusses how the results are likely to be affected if this assumption is relaxed.
11 For example, in case of corporate acquisitions due diligence typically takes several months (Peter Howson 2003).
12 See Milgrom and Robert J. Weber (1982) for a discussion of strict affiliation.
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Denote the cumulative distribution functions corresponding to f (v) and h(z | v) by 
F(v) and H(z | v), respectively. Without loss of generality, the private valuations can 
be normalized so that

(1)	 피[​Z​i​ | ​V​ i​]  −  x  = ​ V​ i​ .

This allows us to interpret valuation ​V​ i​ as the NPV of the project, which is assumed 
to be nonnegative.

This paper focuses on auctions in which bids are securities. In other words, par-
ticipants of an auction compete for the object by offering contingent claims on the 
future asset payoff. These contingent claims can be expressed as functions S(z), 
where z is the asset payoff. Following DeMarzo, Kremer, and Skrzypacz (2005), we 
formalize the notion of feasible security bids:

DEFINITION A: A feasible security bid is described by a function S(z) ≥ 0, such 
that S(z) and z − S(z) are weakly increasing.

Definition A puts two restrictions on the set of feasible securities that are stan-
dard in security design literature.13 First, condition S(z) ≥ 0 can be interpreted as 
a liquidity or limited liability constraint for the seller. In particular, it implies that 
the seller cannot commit to invest her own resources into the asset, which rules 
out the solution of Jacques Crémer (1987) in which the seller simply buys out the 
best bidder. Second, a feasible security bid requires both the seller’s and bidder’s 
payments to be weakly increasing in the realized payoff z. This assumption ensures 
that each auction is efficient. It can be justified using the “sabotage” argument: if 
monotonicity is not satisfied, then one of the parties could be better off destroying 
the output.14 Unlike DeMarzo, Kremer, and Skrzypacz (2005) we do not make an 
assumption that S(z) ≤ z. Hence, our definition allows for a slightly wider set of 
possible security bids. Specifically, in addition to all widely used “pure” securities 
like equity, debt, convertible debt, and call options, it allows for pure cash bids, for 
which S(z)is independent of z, as well as partial cash bids.

For any security S, denote its expected value conditional on the bidder’s valuation as

(2)	 ES(v)  ≡​  피​z​[S(​Z​i​) | ​V​ i​  =  v].

Thus, if bidder with valuation v offers security S to the seller, their expected pay-
offs are v − ES(v) and ES(v), respectively. It can be shown that ES(v) is twice 
differentiable, and 0 < ES ′(v) < 1 for any security except S(z) = c and S(z) = c + z 

13 See, e.g., David C. Nachman and Thomas H. Noe (1994); DeMarzo and Darrell Duffie (1999); DeMarzo, 
Kremer, and Skrzypacz (2005).

14 Specifically, suppose that each party can destroy any share of the project return before it gets verifiable. 
Suppose that there exists z ′ > z such that z′ − S(z ′ ) < z − S(z). Then, if z ′ is realized, the winner will find it optimal 
to destroy Δz = z ′ − z of the project return. As a result, ex ante it will be beneficial for the seller to modify the secu-
rity so that z ′ − S(z ′ ) = z − S(z). Then, the winning bidder gets the same payment, so his bidding and participation 
incentives are unaffected. However, the seller is strictly better off. Similarly, the ability of the seller to destroy the 
output justifies monotonicity of S(z). See Oliver Hart and John Moore (1995) for additional details of this argument.
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for c ≥ 0.15 This result illustrates the main difference of a securities auction from the 
cash auction: the value of the bidder’s payment depends on his identity.

For the auction mechanism to be well defined, the seller needs to formulate the 
allocation procedure. In other words, the seller has to come up with a set of securi-
ties that can be used by the bidders and specify the “best” security for any subset of 
this set. This is formalized using the definition of an ordered set of securities:

DEFINITION B (DeMarzo, Kremer, and Skrzypacz 2005): An ordered set of securi-
ties is defined by the function S(s, z) for s ∈ [​s​L​ , ​s​H​], such that:

	 (i)	 for every s, set element S(s, ⋅ ) is a feasible security;

	 (ii)	 E​S​s​(s, v) > 0 for all v, where ES(s, v) ≡ ​피​z​[S(s, z) | ​V​ i​ = v];

	 (iii)	 ES(​s​L​ , ​v​L​) ≤ ​v​L​ and ES(​s​H​,​ v​H​) ≥ ​v​H​ .

For some set to be an ordered set of securities it must satisfy three properties. 
According to property (i), each element of the set has to be a feasible security. 
Property (ii) requires that the value of security be increasing in s for any valuation 
v. That is, for security ​S​1​ to be ranked higher than security ​S​2​ , it must be valued 
higher for any possible NPV of the project. Finally, property (iii) guarantees that an 
ordered set of securities covers a sufficient range of bids.

The assumption that the selling mechanism specifies the ordered set of securi-
ties is important due to two reasons. First, the assumption allows us to retain the 
auction-like characteristic of the selling mechanism. If the set of securities is not 
ordered, comparison of bids is difficult because their ranking depends on the beliefs 
of the seller about the bidders’ types. In contrast, when the securities are ordered, 
one security is always ranked higher than the other, so the auction procedure is well 
defined. Second, as DeMarzo, Kremer, and Skrzypacz (2005) show, even if the set 
of securities is not ordered and off-equilibrium beliefs of the seller are required to 
satisfy the D1 refinement, the equilibrium selling mechanism still retains features 
of an auction with an ordered set of securities. Specifically, they consider the fol-
lowing “informal” auction: bidders submit bids from a nonordered set of securities, 
the seller chooses the most attractive bid ex post, and the winner gets the asset and 
makes the payment. They show that the unique symmetric equilibrium satisfying 
the D1 refinement is equivalent to a first-price auction in which bidders bid with the 
flattest securities possible.

The paper focuses on second-price sealed-bid auctions. Each bidder submits 
a security bid S(s, z) from the ordered set of securities prespecified by the seller. 
Then, the bidder who submitted the highest-ranked security wins the asset and pays 
according to the second highest security. Second-price auctions are strategically 
equivalent to English auctions in our setting.16

15 This result can be shown using the proof of DeMarzo, Kremer, and Skrzypacz (2005) (see their Lemma 1) 
with a slight difference that in our setting S(z) is dominated not by z, but by S(0) + z. This difference is because our 
model allows for a wider set of feasible security bids.

16 We have also solved the model with first-price sealed-bid auctions. All results still hold albeit under additional 
technical assumptions on the joint distribution of valuations and project payoffs.
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Consider an auction with k bidders and an ordered set of securities S(s, z). The 
following lemma shows that bidding behavior in a second-price security-bid auction 
is similar to that in a cash auction: it is optimal to bid the security that corresponds 
to the bidder’s true value.

LEMMA 1: Consider an auction with k ≥ 2 bidders and an ordered set of securities 
S(s, z). The unique equilibrium in weakly undominated strategies is to bid according 
to s(v), such that

(3)	 ES(s(v), v)  =  v.

The equilibrium strategy s(v) is increasing in v.

As DeMarzo, Kremer, and Skrzypacz (2005) show, the seller’s expected revenues 
from the auction are related to the steepness of securities used in bidding. What does 
steepness of a security mean? Comparison of the slopes is inappropriate since slopes 
of two securities can be ranked differently in different intervals of project payoffs. For 
example, the slope of debt is higher than the slope of equity if cash flows are low but 
lower if cash flows are high. What is important for steepness are the slopes of the two 
securities at the point where they cross each other. Intuitively, security ​S​1​ is steeper 
than security ​S​2​ if it is more sensitive to deviations at the crossing point. Formally:

DEFINITION C (DeMarzo, Kremer, and Skrzypacz 2005): Security ​S​1​ strictly 
crosses security ​S​2​ from below if E​S​1​(​v​*​) = E​S​2​(​v​*​) implies E​S​ 1​ ′ ​(​v​*​) > E​S​ 2​ ′ ​(​v​*​). An 
ordered set of securities ​S​1​ is steeper than an ordered set ​S​2​ if for all ​S​1​ ∈ ​S​1​ and ​
S​2​ ∈ ​S​2​, ​S​1​ strictly crosses ​S​2​ from below. 

Finally, we specify the timing of the model. At Stage 1, each of ​n​s​ sellers decides 
on the security design of her auction. In other words, each seller j specifies an 
ordered set of securities ​S​j​(s, z) that can be used by the bidders. At Stage 2, upon 
observing the security designs offered by the sellers, potential bidders make their 
entry decisions.17 At Stage 3, after committing to auctions, bidders in each auction 
j learn their valuations. At Stage 4 they submit their bids, choosing securities from 
the prespecified set ​S​j​(s, z). The bidder who submitted the highest-ranked security 
wins the auction, obtains the asset and makes the investment. Finally, the project 
returns are realized and the winner of each auction pays according to the security 
submitted by the second-ranked bidder.18 The timeline of the model is presented 
in Figure 1.

17 In many real-world settings competition for potential bidders is dynamic rather than static. For example, in the 
market for corporate takeovers a potential acquirer may choose not to bid for a target expecting that a more valuable 
auction will occur in the future. For tractability we assume that all auctions take place simultaneously. However, the 
intuition of our model is also applicable to models with dynamic competition.

18 Note that if there is only one bidder, the selling format is not defined since there is no second highest bidder. 
For completeness, we assume that in this case the bidder pays according to a security submitted by the lowest pos-
sible bidder, ​v​L ​ .
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The paper focuses on symmetric Bayes-Nash equilibria. Specifically, we make 
three assumptions corresponding to each stage of the game.19 First, as discussed 
above, at Stage 4 we focus on symmetric equilibria in each auction. Although sec-
ond-price auctions can have other equilibria, clearly, the symmetric equilibrium 
in weakly dominant strategies is the most natural one. Second, we assume that in 
equilibrium the sellers offer the same security designs. Again, as the sellers are 
ex ante identical, this is a natural assumption. Finally, we focus on equilibria in 
which potential bidders use the same selection rule to choose among auctions. Given 
that the sellers offer the same security designs, this implies that in equilibrium each 
potential bidder randomizes over all auctions with equal probabilities. Note that 
equilibria in which the bidders use the same selection rule are not the only pos-
sible ones. For example, when ​n​b​ is a multiple of ​n​s​ , equilibria in which the bidders 
choose among auctions in pure strategies such that each auction gets exactly ​n​b​/​n​s​ 
bidders are also natural. Because in real life most securities auctions are anonymous 
with respect to bidder identities, so that potential bidders are likely to make partici-
pation decisions noncooperatively, we focus on equilibria in which the bidders use 
the same selection rule.

B. Benchmark Case: Monopolistic Seller

As a benchmark, consider the case in which there is no competition among sell-
ers. Then, all potential bidders enter the unique auction. Suppose that the seller’s 
choice of the ordered set of securities is S. If the bidder with valuation v wins the 
auction, he pays according to the security submitted by the bidder with the sec-
ond-ranked valuation, denoted by y. Hence, the expected value of his payment is  
ES(s( y, S ), v). The seller’s ex ante expected revenues are

(4)	​ U​ s​(S )  = ​ n​b​​∫ 
​v​L​
​ 
​v​H​

​  ​F(​v)​​n​b​−1​​피​y​[ES(s(y, S ), v) | v] dF(v).

where ​피​y​[ES(s(y, S ), v) | v] ≡ ​피​y​[ES(s(y, S ),​V​ (1)​) | ​V​ (1)​ = v] is the interim (after 
learning his valuation but before bidding) expected payment of a bidder with valua-
tion v, conditional on his winning the auction, and ​V​ (1)​ is the first-order statistic of ​n​b​ 
bidder valuations. Similarly, let ​U​ b​(v, S ) and ​U​ b​(S ) denote the bidder’s interim and 
ex ante (before learning his valuation) expected surpluses from the auction.

19 See Peters and Severinov (1997) for similar assumptions in the context of competition among sellers in reserve 
prices.

Figure 1. Timing of the Model

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Sellers choose
security designs
of their auctions

Potential bidders
decide which
auction to enter

Bidders learn
their valuations

Auctions take place,
winners get the
assets and make
investments

Project returns are
realized and
payments are made
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In the monopolistic seller framework, as DeMarzo, Kremer, and Skrzypacz (2005) 
establish, the seller’s revenues are higher when the auction is in steeper securities. 
Intuitively, this result follows from an application of the linkage principle (Milgrom 
and Weber 1982). By definition, steeper securities are more sensitive to changes in the 
valuation at the crossing point. Hence, in an auction with a steeper set of securities it is 
more costly for a bidder to separate himself from a marginally lower type: even if they 
bid the same security, a marginally higher type pays more. This intensifies competition 
among bidders and thereby increases the seller’s revenues. To show this, rewrite the 
value of the winner’s payment given valuation of the second highest bidder as

(5)	 ES(s(y, S ), v)  =  y  +  ES(s(y, S ), v)  −  ES(s(y, S ), y) 

	 =  y  + ​ ∫ 
y
​ 
v

​ E​​S​v​(s(y, S ), ω) dω.

Consider two ordered sets of securities, S and ​   S​, such that S is steeper than ​   S​.  
By definition of steepness, E​S​v​(s, v) > E​​   S​​v​(s, v) whenever ES(s, v) = E​   S​(s, v). 
Therefore, ES(s(y, S ), v) is greater than E​   S​(s(y, ​   S​), v) everywhere except at v = y. 
As a result, the seller always prefers steeper security designs. As call options cross 
any non-call option security from below, auctions in call options, where higher bids 
correspond to lower strike prices, yield the highest revenues:20

PROPOSITION 1: If the market consists of only one seller, the seller strictly prefers 
auctions in steeper securities. Therefore, the equilibrium security design of the auc-
tion is call options, where higher bids correspond to lower strike prices.

If there is competition among sellers, however, this intuition is no longer valid. 
Suppose, for example, that the first of the two sellers conducts the auction in cash, 
while the second one’s security design choice is call options. Clearly, for any given 
number of bidders the seller who offers a securities auction is going to get higher 
expected revenues. Thus, bidders who participate in the securities auction get lower 
expected surplus compared to participants in the cash auction with the same num-
ber of bidders. A bidder who can choose which auction to enter will clearly prefer 
to compete in the cash auction. Therefore, the number of bidders in the securities 
auction will, on average, be lower. The trade-off between the ability to extract more 
profits for any fixed number of bidders and the loss of profits due to a lower expected 
number of bidders is what determines the equilibrium security design in a competi-
tive seller setting.

II.  Solution of the Model

This section provides the solution of the model for the general case of ​n​s​ > 1 sell-
ers when bidders decide endogenously which auction to enter. The model is solved 

20 There is a technical point that sets of call options can be incomparable in steepness with other sets that include 
call options. However, it can still be shown that auctions in call options yield the highest possible revenues. See the 
proof of Corollary to Proposition 1 in DeMarzo, Kremer, and Skrzypacz (2005) for details.
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by backward induction. First, we solve for the optimal entry strategies given that 
all sellers but one choose the same security design. Then, we consider the seller’s 
security design decisions and characterize all symmetric equilibria.

A. Bidding Strategies

Consider an auction with k bidders, who can submit bids from an ordered set of 
securities S(s, z). By Lemma 1, each bidder i’s equilibrium bidding strategy s(​v​i​ , S ) 
is given by (3). Since the within-auction symmetric equilibrium is efficient, a bid-
der with valuation ​v​i​ wins with probability F(​​v​i​)​k−1​. In this case, he pays according 
to the security submitted by the second highest bidder, whose expected value is  
​피​y​[ES(s(y, S ), ​v​i​) | ​v​i​]. The corresponding interim expected bidder’s surplus is equal to

(6)	​ U​ b​(​v​i​ , k, S )  =  F(​​v​i​)​k−1​(​v​i​  − ​ 피​y​[ES(s(y, S ), ​v​i​) | ​v​i​]).

Because distribution of the second-order statistic of k random variables conditional 
on the first-order statistic being ​v​i​ is the same as distribution of the first-order statistic 
of k − 1 random variables whose distribution is truncated at ​v​i​ , we can write (6) as

	​ U​ b​(​v​i​ , k, S )  = ​ ∫ 
​v​L​
​ 
​v​i​

​ (​​v​i​  −  ES(s(y, S ), ​v​i​)) d(F(​y)​k−1​).

To obtain the bidder’s ex ante expected surplus from an auction with k bidders, we 
integrate ​U​ b​(​v​i​ , k, S ) over the distribution of ​v​i​ :

(7)	​ U​ b​(k, S )  = ​ ∫ 
​v​L​
​ 
​v​H​

​  ​​∫ 
​v​L​
​ 
​v​i​

​ (​​v​i​  −  ES(s(y, S ),​ v​i​)) d(F(​y)​k−1​) dF(​v​i​).

In addition, let V(k) denote the interim expected total surplus:

	 k​∫ 
​v​L​
​ 
​v​H​

​ F​(​​v​i​)​k−1​ ​v​i​ dF(​v​i​),	 if k  ≥  1
(8)	 V(k)  ≡  {
	 0,	 if k  =  0.

Because the security design does not affect efficiency of the auction, V(k) is inde-
pendent of S.

Before considering the bidders’ participation decisions, we prove the following 
lemma:

LEMMA 2: The interim expected total surplus V(k) is an increasing and concave 
function of k = 0, 1, 2, … . The bidder’s interim expected surplus ​U​ b​(v, k, S ) is a 
decreasing and convex function of k = 1, 2, … for any valuation v ∈ [​v​L​ , ​v​H​] and any 
ordered set of securities S.

The results established in Lemma 2 are intuitive. First, since the auction is effi-
cient, a higher total number of bidders leads to a higher valuation of the winner. 
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Hence, as k increases, the expected total surplus V(k) goes up. Concavity of V(k)
means that each additional bidder increases the total surplus by a smaller amount 
than the previous additional bidder. This is intuitive, because the valuation of the 
highest bidder is affected less by addition of each subsequent bidder. Second, an 
increase in k intensifies competition among bidders. This is the intuition behind the 
result that ​U​ b​(v, k, S ) is decreasing in k. Convexity of ​U​ b​(v, k, S ) with respect to k 
means that each additional bidder intensifies competition by a smaller amount than 
the previous additional bidder.

B. Entry Decisions

Now consider the potential bidders’ participation decisions. We focus on symmet-
ric equilibria in which all sellers choose the same security design and all bidders use 
the same selection rule to choose among auctions. Given this, it is sufficient to con-
sider deviations from a symmetric equilibrium by a single seller. Specifically, sup-
pose that the ordered set of securities in all but one auctions is ​   S​, while the ordered 
set of securities in the remaining auction is S. Let q(S,  ​   S​) denote the probability with 
which a bidder selects this auction. Because we are looking for symmetric equilib-
ria, the probability with which each bidder picks any auction with security design ​   S​ 
must be the same. As there are ​n​s​ − 1 such auctions, this probability is equal to 
(1 − q(S, ​   S​))/(​n​s​ − 1).

Consider a potential bidder, who believes that all other bidders make entry deci-
sions using the rule described above. If he enters the auction with security design S, 
his expected utility is

(9)	​ ∑ 
k=1

​ 
​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​q(​S, ​   S​)​k−1​(​1  −  q(S, ​   S​))​​n​b​−k​ ​U​ b​(k, S ).

The intuition behind (9) is the following. The bidder faces ​n​b​ − 1 potential competi-
tors, each of whom enters the auction with probability q(S, ​   S​). Hence, the bidder 
faces exactly k − 1 competitors with probability (​ ​  k − 1​ 

​n​b​ − 1​) q(​S,  ​   S​)​k−1​(​1 − q(S,  ​   S​))​​n​b​−k​, 
in which case his ex ante expected surplus from such auction is ​U​ b​(k, S ). Summing 
up over all possible realizations of k yields (9).

Similarly to (9), if the bidder enters an auction with security design ​   S​, his expected 
utility is

(10)	​ ∑ 
k=1

​ 
​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​​​(​ 
1  −  q(S, ​   S​)  _ ​n​s​  −  1

 ​ )​​
k−1

​​​(1  − ​ 
1  −  q(S, ​   S​)  _ ​n​s​  −  1

 ​ )​​
​n​b​−k

​​U​ b​(k, ​   S​).

To select among auctions using mixed strategies, the bidder’s payoff from choos-
ing any auction must be the same. Hence, q(S, ​   S​) must satisfy the following equation:

(11)	​ ∑ 
k=1

​ 
​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​​q​ k−1​(​1  −  q)​​n​b​−k​ ​U​ b​(k, S )

	 = ​ ∑ 
k=1

​ 
​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​​​(​ 
1  −  q

 _ ​n​s​  −  1
 ​)​​

k−1

​​​(1  − ​ 
1  −  q

 _ ​n​s​  −  1
 ​)​​

​n​b​−k

​​U​ b​(k, ​   S​),
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where for simplicity we omit the arguments of q(S, ​   S​). The following lemma estab-
lishes several intuitive properties of q(S, ​   S​):

LEMMA 3: Suppose that among ​n​s​ auctions, ​   S​ is the ordered set of securities in ​
n​s​ − 1 auctions, and S is the ordered set of securities in the remaining auction. Then, 
the probability with which each potential bidder enters the remaining auction, q(S, ​   S​),  
satisfies the following properties:

	 (a)	 q(S, ​   S​) is uniquely defined by (11);

	 (b)	 q(​S​1​, ​   S​) < q(​S​2​, ​   S​) if ​S​1​ is steeper than ​S​2​ ;

	 (c)	 q(S, ​​   S​​1​) > q(S, ​​   S​​2​) if ​​   S​​1​ is steeper than ​​   S​​2​ ;

	 (d)	 q(S, S ) = 1/​n​s​ .

C. Equilibrium Security Designs

Finally, we consider the choice of security designs by the sellers. Consider a seller 
who chooses the ordered set of securities S when all the other sellers choose the ordered 
set of securities ​   S​. Let ​U​ s​(S, ​   S​) denote the ex ante expected revenue of this seller

(12)	​ U​ s​(S, ​   S​)  = ​ ∑ 
k=0

​ 
​n​s​

 ​ ​( ​n​b​   
k
 )​​​q​ k​​(1  −  q)​​n​b​−k​ ​U​ s​(k, S ),

where ​U​ s​(k, S ) is the seller’s expected revenue from an auction with k bidders. Using (7),

(13)
 

U S (k, S )  =
  	 k​∫ 

​v​L​
​ 
​v​H​

​ ​∫ 
​v​L​
​ 
v

​ ES​​(s(y, S ), v) d(F(​y)​k−1​) dF(v),	 if k  ≥  1	 {
	 0,	 if k  =  0.

The characterization of symmetric equilibria requires finding a solution to the 
fixed point problem in the function space. Fortunately, the problem can be substan-
tially simplified to a problem in which the seller chooses only a single parameter, the 
probability with which a bidder enters her auction. To see this, notice that the total 
surplus of each auction is split between k bidders and the seller and does not depend 
on the security design of the auction

	​ U​ s​(k, S )  +  k​U​ b​(k, S )  =  V(k),

for all k and S. Using this and ​(​  k​ ​n​b​​) = (​n​b​/k)​(​  k − 1​ ​n​b​ − 1​), we can write (12) as:

(14)  	​   U​ s​(S, ​   S​)  = ​ ∑ 
k=0

​ 
​n​b​

 ​ ​( ​n​b​   
k
 )​​​q​ k​​(1  −  q)​​n​b​−k​ V(k) 

	 − ​ n​b​ q​∑ 
k=1

​ 
​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​​q​ k−1​​(1  −  q)​​n​b​−k​​U​ b​(k, S ).
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The structure of (14) is intuitive. The first term represents the expected total surplus 
from the auction, which depends on the security design only through entry prob-
abilities. The second term represents the bidders’ part of the expected total surplus. 
Here, ​n​b​ q is the expected number of the bidders in the auction, and the sum is the 
expected utility of a bidder from participating in the auction with a random number 
k of competitors. By the market equilibrium condition (11), the expected surplus 
of a bidder from participating in the auction must be equal to his outside option of 
entering an auction with security design ​   S​. Therefore, (14) is equal to

(15)	​ ∑ 
k=0

​ 
​n​b​

 ​ ​( ​n​b​   
k
 )​​​q​ k​​(1  −  q)​​n​b​−k​ V(k)  − ​ n​b​ q​∑ 

k=1
​ 

​n​b​

 ​ ​( ​n​b​  −  1   
k  −  1

 )​​

	 × ​​ (​ 
1  −  q

 _ ​n​s​  −  1
 ​)​​

k−1

​​​(1  − ​ 
1  −  q

 _ ​n​s​  −  1
 ​)​​

​n​b​−k

​​U​ b​(k, ​   S​).

From (15) we can see that the seller’s expected surplus depends on the secu-
rity design of her auction only via the participation probability q(S, ​   S​). Thus, we 
can alternatively write ​U​ s​(S, ​   S​) as ​U​ s​(q, ​   S​), so the seller’s optimal security design 
problem can be reformulated in terms of choosing the probability with which each 
bidder decides to participate in the auction. Mathematically, the seller’s optimiza-
tion problem is to maximize ​U​ s​(q, ​   S​) over q ∈ [​q​L​(​   S​), ​q​H​(​   S​)], where ​q​L​(​   S​) and ​q​H​
(​   S​) are the lowest and highest participation probabilities the seller can achieve by 
altering security design of her auction. Since the bidder’s expected surplus is the 
highest when the auction is in cash and lowest when the auction is in call options,  
​q​L​(​   S​) = q(​S​call​ , ​   S​) and ​q​H​(​   S​) = q(​S​cash​ , ​   S​), where ​S​call​ and ​S​cash​ are the ordered sets of 
cash amounts and call options, respectively.

Because q(​S​ *​, ​S​*​) = 1/​n​s​ by Lemma 3, for ​S​ *​ to be the equilibrium security design 
it is necessary and sufficient that

	​  1 _ ​n​s​ ​  =  arg ​  max        
q∈[q(​S​call​,​S​ *​), q(​S​cash​,​S​ *​​)]U​ s​

​(q, ​S​ *​).

The following proposition establishes existence of a symmetric equilibrium and 
characterizes all equilibrium security designs:

PROPOSITION 2: There always exists an equilibrium in which all sellers choose 
the same security design and all potential bidders choose among auctions using 
the same selection rule. Let ϕ(S ) denote the following function of the ordered set of 
securities S:

(16)  ϕ(S )  = ​ ∑ 
k=0

​ 
​n​b​

 ​ ​( ​n​b​   
k
 )​​ ​ 

​(​n​s​  −  1)​​n​b​−k−1​(k​n​s​  − ​ n​b​)   __  
​n​ s​ ​n​b​−1​

 ​  V(k) 

	 − ​ n​b​ ​∑ 
k=1

​ 
​n​b​

 ​  ​​( ​n​b​  −  1   
k  −  1

 )​​ 
(​​n​s​  −  1)​​n​b​−k​

  _ 
​n​ s​ ​n​b​−1​

 ​  ​U​ b​(k, S ) 

	 +   ​n​b​ ​∑ 
k=1

​ 
​n​b​

 ​  ​​( ​n​b​  −  1   
k  −  1

 )​​ 
​(​n​s​  −  1)​​n​b​−k−2​((k  −  1)​n​s​  − ​ n​b​  +  1)    ___  

​n​ s​ ​n​b​−1​
 ​ ​ U​ b​(k, S ).
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	 (i)	 If ϕ(​S​cash​) ≥ 0, then auctions in cash is an equilibrium security design. 
Higher bids correspond to higher cash amounts.

	 (ii)	 If ϕ(​S​call​) ≤ 0, then auctions in call options is an equilibrium security design. 
Each seller gets a call option on the asset. Higher bids correspond to lower 
strike prices.

	 (iii)	 If S ≠ ​S​cash​ and S ≠ ​S​call​ , then security design S is an equilibrium security 
design if and only if ϕ(S ) = 0.

The equilibrium security designs are determined by the seller’s trade-off between 
making the auction more attractive to bidders in order to increase participation and 
extracting higher surplus from a given set of bidders. In equilibrium both incentives 
are captured by function ϕ(S ) = ​U​ q​ s

 ​(1/​n​s​ , S ), which is the marginal value from inviting 
additional bidders by making the auction marginally more attractive to them when the 
security design of all auctions is S. It consists of three terms. The first term corresponds 
to an increase in the total expected surplus from the auction due to marginally higher 
participation. The two other terms represent the change in the bidders’ expected sur-
plus from the auction. The second term is the change in the bidders’ expected surplus 
due to higher participation conditional on the same outside option. The third term is 
the change in the bidders’ expected surplus due to the change in the outside option 
conditional on the same participation in the auction. If ϕ(S ) > 0, then each seller has 
incentives to deviate from security design S by decreasing the steepness of the ordered 
set of securities. Even though decreasing the steepness reduces the surplus that the 
seller extracts from a given set of bidders, expected revenues of the seller will be higher 
because of higher participation. The opposite occurs if ϕ(S ) < 0.

Proposition 2 establishes that the equilibrium security designs can be either inte-
rior or boundary. The first two cases represent boundary equilibria. If ϕ(​S​cash​) ≥ 0, 
participation is so important that a seller wants to increase participation even if all 
auctions are in cash. As a result, auctions in cash is an equilibrium security design. If 
ϕ(​S​call​) ≤ 0, then gains from higher participation are relatively unimportant: A seller 
wants to extract more surplus at the cost of lower participation even if all auctions 
are in call options. As a result, auctions in call options is an equilibrium security 
design. In particular, this is the unique equilibrium in the benchmark case studied 
in Section IB. The last case of Proposition 2 corresponds to interior equilibria. The 
equilibrium sets of securities are such that the seller extracts zero benefits from 
altering the security design in a way that marginally affects participation.

Proposition 2 characterizes equilibria in which all sellers use the same security 
designs. While equilibria in which security designs across auctions are different may 
exist, symmetric equilibria are the most intuitive in the market consisting of ex ante 
identical sellers. More importantly, equilibria in which the security designs of all 
auctions are the same always weakly dominate other equilibria in terms of the total 
market welfare.21 As such, the existence of symmetric equilibria implies the market’s 
ability to operate efficiently in the sense of maximizing total market welfare.

21 To see this, let ​{​q​ j​ *​}​ j=1​ ​n​s​  ​ be the set of equal probabilities of entry when all auctions have the same security 
designs: ​q​ j​ *​ = 1/​n​s​ , j = 1, … , ​n​s​ , and let {​q​j​​}​ j=1​ ​n​s​  ​ be the probabilities of entry consistent with an outcome in which 
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D. Equilibria with Standard Securities

Even though Proposition 2 characterizes all symmetric equilibria in the 
model, it does not always specify what securities they involve. Specifically, 
it does not say anything about how equilibrium security designs look when  
ϕ(​S​cash​) < 0 < ϕ(​S​call​). This section demonstrates that the set of all symmetric equi-
libria always contains equilibria in which auctions are in mixes of standard securi-
ties, such as equity, cash, and call options.

In particular, Proposition 3 establishes a more general result: for any set 핊 of 
security designs that can be ordered in steepness from sufficiently flat to sufficiently 
steep (for example, 핊 can include mixes of cash and equity with various proportions 
of equity in the mix), there always exists an equilibrium security design that belongs 
to set 핊.

Proposition 3: Consider any set of security designs 핊 = {S(λ, s, z), λ ∈ [​λ​L​ , ​λ​H​ ]}  
such that S(λ, ⋅ , ⋅ ) is steeper than S(λ′, ⋅ , ⋅ ) if and only if λ > λ′, and S(λ, s, z) is 
continuous in λ. Let ϕ(λ) ≡ ϕ(S(λ, ⋅ , ⋅ )). If ϕ(​λ​L​) ≤ 0 and ϕ(​λ​H​) ≥ 0, there exists an 
equilibrium security design that belongs to 핊.

To shed light on the intuition behind Proposition 3, consider the set of security 
designs that can be ordered in steepness by parameter λ ∈ [ ​λ​L​, ​λ​H​ ]. Then, S(​λ​L​, s, z) 
and S(​λ​H​, s, z) are the flattest and steepest security designs in the set, respectively. 
If set S(​λ​L​ , s, z) is sufficiently flat (ϕ(​λ​L​) < 0) and set S(​λ​H​ , s, z) is sufficiently steep 
(ϕ(​λ​H​) > 0), then there must be a point between ​λ​L​ and ​λ​H​ at which a seller has no 
incentives to alter the steepness parameter λ of her auction. By Proposition 2, the 
corresponding S(λ, s, z) is an equilibrium security design.

Because cash and call options are the flattest and steepest securities, respec-
tively, Proposition 3 implies that there always exist equilibria in which auctions 
are conducted in combinations of standard securities, such as cash, equity, and 
call options. For example, if equity is a sufficiently steep security design, there 
exists a symmetric equilibrium in which the seller fixes the proportion of equity 
in the bid, and bidders compete by offering more cash and correspondingly more 
equity. Similarly, if equity is sufficiently steep and debt is sufficiently flat, then 
there exists a symmetric equilibrium in which the auction is in combinations of 
debt and equity where, for example, each seller fixes the ratio of expected value of 
debt to expected value of equity in bids. We discuss these two types of equilibria 
in more detail in the next section.

III.  Model Implications

In this section we analyze several implications of the model. We study equilibria 
in which auctions are in combinations of standard securities. First, we consider 
equilibria in which bids are combinations of cash and equity. In this case, a seller 

security designs of some of the auctions are different. Applying Jensen’s inequality to V(k), we get:

	​  1 _ ​n​s​ ​ ​∑ 
i=1

​ 
​n​s​

 ​ V(​q​ j​ *​)​  =  V(​ 1 _ ​n​s​ ​ ​∑ 
j=1

​ 
​n​s​

 ​ ​q​ j​ *​​)  =  V(​ 1 _ ​n​s​ ​ ​∑ 
j=1

​ 
​n​s​

 ​  ​q​j​​)  ≥ ​  1 _ ​n​s​ ​ ​∑ 
i=1

​ 
​n​s​

 ​ V(​q​j​)​.
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fixes the proportion of cash in the bid, and bidders compete for the asset by offer-
ing more cash and correspondingly more equity. Second, we consider equilibria 
in which bids are combinations of debt and equity. In this case, a seller fixes the 
proportion of expected revenue from each security in the bid, and bidders com-
pete for the asset by offering more debt and more equity while keeping the ratio 
constant. An implication of the model is that transactions in standard securities 
and their combinations can be rationalized as equilibrium outcomes in the model 
when the set of securities is unrestricted. Sections IIIA and IIIB examine how dif-
ferent parameters of the market structure affect the equilibrium security designs in 
these two examples. In particular, Section IIIA suggests that equilibrium security 
designs are steeper if there are more potential bidders and fewer competing sell-
ers in the market. Section IIIB suggests that equilibrium security designs become 
flatter when the size of the market goes up for any fixed ratio of potential buyers to 
sellers. We prove that in the limit, as the size of the market increases to infinity, the 
unique equilibrium auction formats are simple cash auctions. Finally, Section IIIC 
suggests that implications of our model are consistent with empirical evidence on 
the relation between means of payment and buyers’ and sellers’ announcement 
returns in mergers and acquisitions and intercorporate asset sales.

Consider the following two ordered sets of security designs:

Set of Security Designs 핊1.—Bids are combinations of cash and equity. The seller 
fixes the proportion of cash in the bid:

(17)	​ λ​L​  =  0; ​λ​H​  =  1;

	S (λ, s, z)  =  λsz  +  (1  −  λ)s.

Set of Security Designs 핊2.—Bids are combinations of debt and equity. The seller 
fixes the ratio of expected revenue from debt to that of equity in a way that this ratio 
does not depend on the bid amount s:

(18)	​ λ​L​  =  0; ​ λ​H​  =  1;

	S (λ, s, z)  =  min {z, s}  +  σ(λ, s)z,

	 where σ(λ, s) is such that ​ 
피[min (z, s) | v : s(v; σ(⋅))  =  s]   ___   
피[σ(λ, s)z | v : s(v; σ(⋅))  =  s] ​  = ​  1 − λ _ λ ​  .

Set 핊1 is bounded by the ordered bids in pure cash from below and by the ordered 
bids in pure equity from above. Bids in combinations of cash and equity are observed 
in many markets, such as oil lease auctions, book publishing, intercorporate asset 
sales, and corporate acquisitions. If λ ∈ (0, 1), intermediate security designs are 
parameterized by λ in such a way that the expected proportion of equity to cash 
from bidder with valuation v is λ(x + v)/(1 − λ).
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In set 핊2, each bid is restricted to have a fixed ratio of debt to equity expected value.22 
Bids in debt, equity or their combinations are observed in markets for venture capital, 
where an entrepreneur solicits venture capital financing, or in wireless spectrum auc-
tions.23 If λ = 0, the set of possible bids is debt securities, which are ordered by the 
face value of debt that the bidder promises to repay after project returns are realized. 
If λ = 1, the set of possible bids consists of pure equity securities. Intermediate values 
of λ specify ordered sets of securities that consist of various mixes of debt and equity, 
such that the ratio of debt to equity expected value is fixed. Note that this parametriza-
tion is nonlinear, as it indirectly defines the function σ(λ, s) of debt face value through 
bid s (i.e., the share of equity that the bidder offers to the seller).

We choose the following benchmark values (to be changed one at a time in com-
parative statics): the project investment is x = 100; the valuations ​v​i​ are distributed 
uniformly over [​v​L​, ​v​H​] = [45, 85]; and the project’s cash flows are ​z​i​ = θ(x + ​v​i​),  
where θ is distributed lognormally with mean 1 and volatility of 50 percent. The 
benchmark number of sellers and buyers is 2 and 4, respectively. In all our examples, 
each of sets 핊1 and 핊2 contains at most one equilibrium security design of the model.

A. Security Bids and Number of Potential Bidders per Seller

One of the important observable characteristics of the market structure is the 
number of potential bidders per seller. An increase in the number of potential bid-
ders keeping the number of sellers constant decreases competition among sellers for 
potential bidders. As a result, equilibrium security designs should intuitively become 
steeper as the sellers prefer to shift the focus to extracting surplus from a given set 
of bidders rather than inviting additional bidders into the auction. Similarly, steeper 
equilibrium security designs result from a decrease in the number of sellers keeping 
the number of potential bidders constant.

Figure 2 (panels A and B) shows comparative statics of the equilibrium with 
respect to changes in the total number of bidders ​n​b​ keeping the number of sell-
ers fixed at 2. Panel A of the figure plots the equilibrium expected proportion of 
equity in the cash-equity and debt-equity auctions. If there are few potential bidders 
(​n​b​ ≤ 4), the unique equilibrium is auctions in cash. Intuitively, when the number of 
potential bidders is low, the seller’s marginal value of each additional bidder is high, 
so inviting additional bidders into the auction is the most important concern for the 
sellers. As a result, the sellers offer participants higher surplus by conducting auc-
tions in cash. Auctions in pure debt securities will be the equilibrium outcome only 
if the sellers are not allowed to conduct auctions in flatter securities. As the number 
of potential bidders goes up, the trade-off between participation and surplus extrac-
tion becomes less trivial. As a result, interior equilibria arise. Panel A of Figure 2 

22 Note that this example violates some of our technical assumptions: first, security bids are not feasi-
ble for low realizations of project returns; second, strictly speaking, set S(λ2, s, z) may not be steeper than set 
S(λ1, s, z), λ1 < λ2, because a security from the first set may cross a security from the second set twice. This sim-
plified example, however, provides a tractable numerical solution and general intuition in “debt-equity” security 
mixes. An alternative that corrects for these violations, but is more difficult to solve, is to substitute unlevered equity 
for levered: min (z, s + σ(λ, s)z).

23 In venture capital deals both debt and equity securities are often used (Steven N. Kaplan and Per Stromberg 
2003). In wireless spectrum auctions bids are payment obligations, and the winners sometimes default (Zheng 
2001; Milgrom 2004).
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shows two of these equilibria: the equilibrium in which auctions are in the mixes of 
cash and equity (which exists when ​n​b​ ≥ 5) and the equilibrium in which auctions 
are in the mixes of debt and equity (which exists when ​n​b​ ≥ 6). Finally, as the num-
ber of potential bidders goes up even more, neither 핊1 nor 핊2 contains equilibria of 
the model, because each seller prefers to deviate from auctions in pure equity by 
switching to a steeper security design. However, as a direct corollary to Proposition 
3, pure equity would be the equilibrium security design if the set of security designs 
admissible to the sellers were restricted to either 핊1 or 핊2.

Panel B of Figure 2 plots the ex ante expected surplus of a bidder. As the total num-
ber of bidders goes up, the expected surplus of each bidder goes down. Intuitively, 
the larger is the total number of bidders, the lower is the probability that a particular 
bidder wins. Hence, the expected surplus of a bidder is lower. Not shown on the 
graph, the total expected surplus of all bidders also goes down.

The result that greater competition among sellers leads to flatter equilibrium secu-
rity designs is consistent with empirical evidence on the cross section of royalty 
rates in oil lease sales. Many studies show that US and Canadian federal and state 
governments receive one of the lowest government takes in the world, where gov-
ernment take is defined as the percentage of the cash value from produced oil that 

Figure 2. Comparative Statics of the Optimal Security Design with Respect to Market Characteristics

Notes: The figure shows the equilibrium proportion of ex ante expected revenues paid in the form of equity in the 
total ex ante expected seller’s revenues and the expected surplus per bidder for benchmark parameters of Section III 
as a function of total number of potential bidders keeping number of sellers fixed at 2 (panels A and B) and as a 
function of market size keeping nb/ns = 4 (panels C and D). Solid line corresponds to cash-equity equilibria (핊1), 
and dashed line corresponds to debt-equity equilibria (핊2). Points at which the equilibrium proportion of debt or 
equity are equal to 1 are not equilibria of the model but would be equilibria if the set of security designs admissible 
to the sellers were restricted to either 핊1 or 핊2.
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goes to the government.24 While there can be multiple factors that account for these 
differences, our model points to one of them—competition among US and Canadian 
state and federal governments for a limited amount of resources of oil-producing 
companies. Specifically, if government of a state increases the required government 
take substantially, a potential bidder will have fewer incentives to undertake costly 
due diligence of oil fields sold by this state, as it has an outside option of putting 
more effort in other oil lease auctions. This competition effect is likely to drive the 
equilibrium government take below what is observed in many other countries where 
all oil-producing rights are sold monopolistically by federal governments.25

B. Security Bids and Size of the Market

Another important characteristic of the market structure is the size of the market. 
Figure 2 (panels C and D) shows comparative statics of the equilibrium with respect to 
a change in the total number of bidders ​n​b​ and sellers ​n​s​ keeping their ratio ​n​b​/​n​s​ fixed 
at 4. Panel C of the figure plots the equilibrium proportion of equity in the cash-equity 
(핊1) and debt-equity (핊2) equilibria. As the size of the market goes up, the equilib-
rium proportion of equity in cash-equity and debt-equity auctions declines. Intuitively, 
the greater is the size of the market, the easier it is for a seller to invite an additional 
bidder to her auction by deviating to a flatter design. Hence, larger markets are associ-
ated with flatter security designs. As the size of the market becomes sufficiently large, 
equilibrium security designs become pure cash. Panel D of Figure 2 plots the ex ante 
expected surplus of a bidder as a function of the size of the market. As the size of the 
market increases, the expected surplus of a bidder goes up. This happens for  two rea-
sons. First, the equilibrium security design becomes more bidder friendly. Second, an 
increase in the size of the market leads to greater variation in the number of bidders 
participating in each auction. Because by Lemma 2 the bidder’s surplus is convex in 
the number of bidders in the auction, larger variance and fixed at ​n​b​/​n​s​ average level 
of competition means that the ex ante expected surplus of each bidder increases even 
if the security design of the auction is the same.

Proposition 4 shows that the convergence of the equilibrium security designs to 
pure cash in large markets is a general result that holds in an unrestricted space of 
security designs:

Proposition 4: Suppose that the ratio of the number of potential bidders and 
sellers is ​n​b​/​n​s​ = n, and the market is large (​n​s​ → ∞). Then, the unique symmetric 
equilibrium is auctions in cash.

The result obtained in Proposition 4 and supported by Figure 2 suggests that 
transactions in securities are more likely to be observed in small markets, while 
transactions in large markets are always undertaken in cash. These implications are 

24 This percentage depends on both the royalty rate of the oil lease auction and the fiscal regime and corresponds 
to the slope of the buyer’s payment as a function of the value of the asset. For a review of cross-country studies of 
government takes see US GAO, “Oil and gas royalties: A comparison of the share of revenue received from oil and 
gas production by the federal government and other resource owners,” GAO-07-676R, May 1, 2007.

25 For simplicity, in this argument we ignore competition among federal governments of different countries. 
However, the argument is valid as long as assets in one country are more similar than assets in different countries.
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consistent with empirical observations. Transactions in securities are observed in 
“unique” environments, in which there are few sellers of similar goods, while trans-
actions in large markets are typically in cash. For example, in the motion pictures 
industry profit-sharing compensation schemes are more common for more experi-
enced actors (Darlene C. Chisholm 1997), conditional on the same revenues from 
the movie and a number of other characteristics of the movie and the actor. As the 
market for more experienced actors is arguably smaller both on the demand and on 
the supply side, this observation is consistent with our results.

C. Security Bids and Distribution of Valuations

In this section we look at how the parameters of the distribution of valuations 
affect the equilibrium security designs and expected surpluses of the parties in our 
examples. Figure 3 shows comparative statics of the equilibrium in our numerical 
example with respect to changes in the mean and the standard deviation of the 
valuation, 피[v] and std[v]. Panel A of the figure plots the equilibrium proportion 
of equity in cash-equity and debt-equity auctions for different values of 피[v]. As 

Figure 3. Comparative Statics of the Optimal Security Design  
with Respect to Parameters of Distribution of Bidder Valuations

Notes: The figure shows the equilibrium proportion of ex ante expected revenues paid in the form of equity in the 
total ex ante expected seller’s revenues and the expected surplus per bidder for benchmark parameters of Section III 
as a function of the mean (panels A and B) and variance (panels C and D) of distribution of bidder valuations. Solid 
line corresponds to cash-equity equilibria (핊1), and dashed line corresponds to debt-equity equilibria (핊2). Points at 
which the equilibrium proportion of debt or equity are equal to 1 are not equilibria of the model but would be equi-
libria if the set of security designs admissible to the sellers were restricted to either 핊1 or 핊2.
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피[v] increases, the expected proportion of equity declines, so equilibrium security 
designs become flatter. An increase in mean increases the marginal value from 
inviting an additional bidder to the auction. While it also leads to greater incen-
tives to extract surplus from a given set of bidders, the former effect dominates 
the latter, so the expected proportion of equity in the payment declines. Panel B 
of Figure 3 plots the ex ante expected surplus of a bidder as a function of mean 피
[v]. While it is monotonically increasing, the magnitude is different depending on 
whether the equilibrium security design is boundary or interior. Specifically, an 
increase in 피[v] has a larger effect on the bidder’s expected surplus if the equilib-
rium is interior. This is because in this range greater mean not only leads to greater 
total surplus from the auction but also makes equilibrium security designs more 
bidder friendly. A prediction of Figure 3 is that the use of flatter securities should, 
on average, be associated with higher synergies from the auction as well as higher 
surpluses of both the seller and the winning bidder. This prediction is consistent 
with broad evidence that in corporate takeovers deals in cash are associated with 
significantly higher acquirer’s announcement-induced abnormal returns and take-
over premiums (which correspond to the winning bidder’s and seller’s surpluses, 
respectively) than deals in stock.26 This evidence is usually explained by asym-
metric information about the value of the target27 or tax concerns (e.g., Brown and 
Ryngaert 1991). Here, the negative relation between steepness of securities used 
in transaction and synergies arises because of differences in the sellers’ and buy-
ers’ endogenous bargaining powers. If expected synergies are high (피[v] is high), 
marginal value of inviting an additional bidder to the auction process is high. As a 
result, sellers compete among each other for potential bidders by offering auctions 
in flatter securities, so in equilibrium high expected synergies are associated with 
adoption of flat securities, such as cash.

Panels C and D of Figure 3 plot the equilibrium proportion of equity and the cor-
responding surplus of a bidder as a function of the standard deviation of v. We keep 
the uniform distribution and alter the range of values that valuations can take.28 As 
the distribution of valuations becomes more dispersed, the equilibrium proportion 
of equity increases. This is because the deviation by the seller from cash or debt 
to equity intensifies competition among bidders much less if the variance of valu-
ations and the resulting distance between first- and second-highest valuations is 
large. As a result, for high variance of v, bidders’ participation decisions respond 

26 Evidence that targets receive higher offer premiums in cash offers than in stock offers is provided by, among 
others, Yen-Sheng Huang and Ralph A. Walkling (1987); Carla Hayn (1989); and Henri Servaes (1991) on deals in 
the United States, Julian R. Franks, Robert S. Harris, and Colin Mayer (1988) on deals in the United Kingdom, and 
B. Espen Eckbo and Herwig Langohr (1989) on deals in France. Evidence that acquirer’s announcement-induced 
abnormal returns are lower for stock offers than for cash offers is provided by, among others, Nickolaos G. Travlos 
(1987); James W. Wansley, William R. Lane, and Ho C. Yang (1987); David T. Brown and Michael D. Ryngaert 
(1991); and Servaes (1991).

27 The standard explanation is that of Stewart C. Myers and Nicholas S. Majluf (1984). Other explanations 
based on asymmetric information include Hansen (1987); Michael J. Fishman (1989); Elazar Berkovitch and M. 
P. Narayanan (1990); and B. Espen Eckbo, Ronald M. Giammarino, and Robert L. Heinkel (1990). See Sandra 
Betton, Eckbo, and Karin S. Thorburn (2008) for a review.

28 Figure 3 presents the results for the case when the mean valuation does not change with the change in variance. 
An alternative is to also change the mean valuation in a way that keeps the expected total surplus from an auction 
constant. However, the results are not significantly affected, so we do not report them here.
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less to a deviation by the seller, so sellers have more incentives to increase steep-
ness of the security design in the auction.

IV.  Incorporating Reserve Prices

Most of the literature that studies competition among auctioneers for potential 
bidders focuses on competition in reserve prices, which is either assumed exog-
enously29 or derived endogenously from competition in general mechanisms.30 
However, our model did not allow for the seller to choose a reserve price, i.e., to 
commit not to sell the asset if the security submitted by the winning bidder is not 
high enough. Indeed, we assumed that the lowest security was such that bidders 
of all types earned nonnegative profits: ES(​s​0​ , ​v​L​) ≤ ​v​L​ . In this section we extend 
our model by allowing the sellers to choose reserve prices in addition to security 
designs. We show that the equilibrium is robust to the addition of reserve prices. 
In fact, as long as call options is not an equilibrium security design, all equilibrium 
auction designs in the extended model are characterized by (i) equilibrium security 
designs of the main model and (ii) nonbinding reserve prices.

In the context of securities auctions, a reserve price is defined by a reserve secu-
rity, that is, the minimum security that the bidders are allowed to bid:

DEFINITION D: Consider an auction in which bidders make bids from an ordered 
set of securities S(s, z), s ∈ [​s​L​ , ​s​H​]. A reserve price is a security r ∈ [​s​L​ , ​s​H​] such 
that the bidders are allowed to bid only securities above the reserve price: S(s, ⋅ ), 
s ≥ r.

The definition of the reserve price in the context of securities auctions is intuitive. 
For example, in an auction in pure equity, a reserve price is a minimum fraction of 
the asset that the bidders are allowed to bid. Similarly, in an auction in pure debt, 
a reserve price is a minimum face value of the debt security that the bidders are 
allowed to bid. Notice that the definition of the reserve price in the context of securi-
ties auctions is consistent with the definition of the reserve price in cash auctions. 
Indeed, if an ordered set of securities is simple cash bids, then a reserve price is a 
minimum amount of cash that bidders are allowed to bid.

Consider a seller who sets r ∈ [​s​L​ , ​s​H​] as a reserve price. If no bidder makes a bid 
above r, the seller does not sell the asset. If there is at least one bidder who makes a bid 
above r, the asset is sold and the winning bidder pays according to the security which 
is the highest between r and the bid of the second highest bidder. For any r, no bidder 
with valuation below ​v​ r​ can make a positive profit, where ​v​ r​ is such that:

	 ES(r, ​v​ r​)  = ​ v​ r​ .31

29 Peters and Severinov (1997); Burguet and Sákovics (1999); Hernando-Veciana (2005).
30 For example, McAfee (1993).
31 Note that the cutoff type vr and, equivalently, the payment of the cutoff type ES(r, vr) = vr strictly increases 

with r. Hence, similar to cash auctions, finding the optimal reserve price in a security auction is equivalent to choos-
ing the cutoff type or the value of the lowest acceptable bid. For any such vr , the seller computes the corresponding 
reserve price r by inverting ES(r, vr) = vr .
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Because the asset is transferred only if the valuation of the highest bidder is above ​
v​ r​ , the interim expected total surplus from the auction is equal to

	
V(k, vr)  =  {	 k​∫ 

​v​r​
​ 
​v​H​

​ F​(​​v​i​)​k−1​​v​i​ dF(​v​i​),	 if k  ≥  1

		  0,	 if k  =  0.

By analogy with (7), the interim expected bidder’s surplus from the auction is 
equal to

	​ U​b​(k, S, r)  = ​ ∫ 
​v​r​
​ 
​v​H​

​ ​∫ 
​v​L​
​ 
​v​i​

​ (​v​i​ ​​ −  ES(​   
 
 

 max       ​(r, s(y, S )), ​v​i​)) d(F​(y)​k−1​) dF(​v​i​).

As in the main model, consider a seller who chooses ordered set of securities S 
and reserve price r, when all other sellers choose ordered set of securities ​   S​ and 
reserve price ​   r ​. For a potential bidder to select among auctions using mixed strate-
gies, his payoff from choosing all options must be the same. As a result, the prob-
ability of choosing the deviator q(S, r, ​   S​, ​   r ​) satisfies

(19)	​ ∑ 
k=1

​ 
​n​b​

 ​ (​​​​n​b​  −  1
   

k  −  1
 
​
​) ​q​ k−1​(​1  −  q)​​n​b​−k​ ​U​ b​(k, S, r)

	 = ​ ∑ 
k=1

​ 
​n​b​

 ​ (​​​n​b​  −  1
   

k  −  1
 
​
​​)(​ 1  −  q

 _ ​n​s​  −  1
 ​​)​

k−1

​(1  − ​ 
1  −  q

 _ ​n​s​  −  1
 ​​)​

​n​b​−k

​ ​U​ b​(k, ​   S​, ​   r ​).

Hence, the deviating seller’s ex ante expected revenues are equal to

(20)	​ U​ s​(S, r, ​   S​, ​   r ​)  = ​ ∑ 
k=0

​ 
​n​b​

 ​ ​(​
​
​n​b​   
k
 
​
​)​​​q​ k​(1  −  q​)​​n​b​−k​ V(k, r)  −  ​ n​b​ q​∑ 

k=1
​ 

​n​b​

 ​ (​​​​n​b​  −  1
   

k  −  1
 
​
​)

	 ×  (​ 1  −  q
 _ ​n​s​  −  1 ​​)​

k−1

​ (1  − ​ 
1  −  q

 _ ​n​s​  −  1
 ​​)​

​n​b​−k

​ ​U​ b​(k, ​   S​, ​   r ​).

For (​S​ *​, ​r​*​) to be the equilibrium auction design in this extended version of the model 
it is necessary and sufficient that

	 (​S​ *​, ​r​*​)  ∈ ​  arg max    
S,r ∈[​s​L​, ​s​H​]

​ ​U​ s​(S, r, ​S​ *​, ​r​*​).

The following proposition shows that the equilibrium security designs of the main 
model are robust to the addition of reserve prices:

Proposition 5: Suppose that auctions in call options is not an equilibrium secu-
rity design. Then, the set of equilibrium auction formats is {(S, r) : S ∈ 핊, r : ​v​ r​ ≤ ​v​L​},  
where 핊 is the set of equilibrium security designs in the main model, given in 
Proposition 2.
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According to Proposition 5, if call options is not an equilibrium security design, all 
equilibrium auction designs in the extended model are characterized by equilibrium 
security designs of the main model and nonbinding reserve prices. The key force that 
drives this result is the difference between how security designs and reserve prices 
affect the auction. A binding reserve price has a detrimental effect on efficiency of 
the auction, because there is a positive probability that the asset will not be trans-
ferred to the bidder even though the transfer is efficient. Unlike reserve prices, auc-
tions in securities allow the seller to increase her expected revenue without affecting 
efficiency of the auction. This is because in the absence of a reserve price, in any 
securities auction the asset is always sold to the bidder with the highest valuation. As 
a result, each seller prefers to extract the surplus from the auction by conducting her 
auction in securities rather than committing to a binding reserve price. This result is 
consistent with the evidence of significant royalty rates and surprisingly low reserve 
prices in oil lease auctions in the United States (McAfee and Vincent 1992).

Proposition 5 implies that reserve prices will not be implemented as long as an 
auctioneer can extract additional surplus by increasing steepness of the security 
design. There are three cases when reserve prices will be implemented. First, bind-
ing reserve prices can arise if the auctions are conducted in call options. Because 
call options are the steepest possible securities, a seller cannot extract higher surplus 
by further altering security design of the auction and thus may choose a binding 
reserve price. Second, binding reserve prices can arise if a seller’s outside option is 
above the lowest possible valuation ​v​L​ . In this case, selling the asset is not efficient 
when the valuation of the highest bidder is below the seller’s outside option. As a 
result, in equilibrium the sellers will commit to binding reserve prices that prohibit 
the sale whenever it is not efficient. Finally, binding reserve prices can arise when-
ever future cash flows from the asset are not contractible, and hence only cash bids 
are feasible. In this case, if a seller sets the reserve price above her valuation, she 
increases her surplus while affecting the efficiency of the auction. Internet auctions 
are the case in point. While most of the goods sold in these auctions have large 
market size and thus deals are done in cash, sellers of some of the more unusual 
items could have benefited if they could add security elements to the deal, such as 
percentage of the next sale for goods whose price has a high probability of growing 
in the future. However, the inability to verify and contract on the future cash flows 
of a remote bidder prohibits security design choice in this setting.

V.  Extensions

In this section we discuss five potential extensions of the model.

Choice of Auction Format.—The main setting of the model assumes that the for-
mat of the auction as the second-price auction is fixed and the sellers can choose 
only the security designs of their auctions. Clearly, this is a simplification, as usually 
the sellers also can choose between various formats of the auction. In this section we 
show that the assumption that we make is not restrictive.

Specifically, suppose that each seller s can choose the auction procedure ​
M​s​ ∈ {FP, SP} in addition to the security design of her auction. If the seller chooses ​
M​s​ = SP, then the format of the auction is second price, as in the main setting of the 
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model. In contrast, if the seller chooses ​M​s​ = FP, then the format of the auction is 
first price. In this case, the winning bidder pays according to the security submitted 
by him rather than by the bidder with the second-highest valuation. The following 
proposition shows that as long as the equilibrium security design in the main model 
is not call options, all equilibria of the main model will also be equilibria in the set-
ting in which the sellers can also choose between first- and second-price auctions:

Proposition 6: If ​S​ *​ ≠ ​S​call​ is an equilibrium security design in the main model, 
then a pair (​S​ *​, SP) is also an equilibrium in the extended model, in which the sellers 
can choose the auction format in addition to the security design.

Proposition 6 implies that equilibria found in the main model are robust to the 
assumption that the auction format is fixed. The force that drives this result is that 
conditional on the mechanisms used by all competing sellers, each seller’s mecha-
nism affects her expected surplus only through the probability with which each bid-
der enters her auction. Allowing a seller to choose the auction format in addition to 
its security design expands the interval of entry probabilities from which a seller 
can choose by changing her selling procedure. As a result, if the equilibrium in the 
main model is interior, then it is preserved in the extended version of the model. 
Interestingly, even if the equilibrium in the main model is boundary at cash auctions, 
then it is still preserved in the extended version of the model because of the rev-
enue equivalence of cash auctions. However, if the equilibrium security design is call 
options, it may not be preserved in the extended model. As DeMarzo, Kremer, and 
Skrzypacz (2005) show, the first-price auction in call options generates higher rev-
enues for the seller than the second-price auction in call options. Hence, if the equi-
librium in the main setting is boundary at call options, each seller may find it optimal 
to deviate to the first-price auction in order to extract more surplus from bidders.

Relaxing the Liquidity Constraint.—In our main setting we assume that S(z) ≥ 0, 
meaning that the sellers cannot reimburse the winners. This condition guarantees 
that the call option is the steepest possible security. Indeed, if the liquidity constraint 
is relaxed, then securities that allow for reimbursement (i.e., they have S(0) < 0) 
can be steeper than call options and thus can extract higher surplus from the bidders. 
Relaxing the liquidity constraint does not destroy equilibria as long as the equilib-
rium security design in the main setting is not call options. The intuition is similar 
to that of Proposition 6. Relaxing the liquidity constraint expands the lower bound-
ary of the interval of entry probabilities from which a seller can choose by altering 
her security design. Therefore, as long as the equilibrium of the model is interior or 
boundary at cash, it is preserved in the extended version of the model. Thus, com-
petition among sellers provides one reason why securities with reimbursement are 
almost never observed in practice. Another likely reason is non-contractibility of 
investment. As DeMarzo, Kremer, and Skrzypacz (2005) argue in their Proposition 
6, reimbursement can be ruled out if investment X is not contractible.

Partial Valuation Uncertainty.—The situation in which the bidders are ex ante 
identical might not be a good description of many securities auctions. Indeed, in 
some merger markets, as well as markets in entertainment and the sports industry, 
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bidders have partially revealed information about the value of the asset at the time 
they decide to enter an auction. When the bidders have different beliefs about valu-
ations of assets sold by different sellers, this creates an ex ante clientele for each 
seller by isolating groups of buyers who continue to pursue their preferred assets. 
As a result, competition among sellers is softened, which is likely to induce sellers 
to set steeper security designs in equilibrium.

Common Values.—While the assumption of independent private values is stan-
dard in many models of auctions, it may not be appropriate for some environments 
in which securities auctions are used. For example, it is likely that bidders’ valua-
tions in oil lease auctions have a significant common component: if one bidder has 
information that concentration of oil in a given region is high, it increases not only 
his valuation, but also, if made known to other bidders, valuations of everyone.

The presence of the common value component does not affect the main trade-off in 
the model. An interesting question is whether the common value component makes 
equilibrium security designs more or less steep compared to the private value model. 
In the pure common value setting, regardless of the number of bidders k participating 
in an auction, the interim expected total surplus is constant.32 As a result, informally, 
compared to the main model with the same distribution of valuations, each additional 
bidder brings less revenue to the seller when participation in the auction increases: 
increased competition means that the seller is able to capture a larger share of the 
total surplus, but the expected size of the surplus does not grow with the number of 
bidders. As a result, for the same security design as in the private value framework, 
the incentive to attract more bidders is now dominated by the incentive to increase 
steepness of the security design. Therefore, in equilibrium in the pure common value 
framework the sellers are likely to use steeper security designs.

Moral Hazard.—Separation of ownership and control, which occurs when securi-
ties are used as bids in the auctions and the buyer is responsible for the exploitation 
of the asset, raises an additional problem of value destruction through moral hazard. 
If the winning bid is independent of the realization of future cash flows, then the 
buyer’s and seller’s incentives are aligned. However, if the auction is in securities, 
this is not the case. For example, in an oil lease auction a change in the royalty rate 
is likely to affect not only the number of bidders who choose to participate in the 
auction but also the investment of personal resources by the winner. If the royalty 
rate is high, the winner of the auction has little incentive to invest, as most of the 
upside is captured by the government. Kogan and Morgan (2010) study auctions in 
pure debt and pure equity under moral hazard, and show that the seller has to trade 
off the security design effect against the moral hazard effect.

While many possible specifications of moral hazard could be offered, the message 
is the same in every case. As long as contingent contracts between the winning bidder 

32 V(k) = ​∫​v​1​, … , ​v​k​
​  

  ​ (1/k)​​∑ i=1​ 
k
  ​ ​v​i​​ dF(​v​1​) … dF(​v​k​) = ​∫

​v​(1)​, … , ​v​ (k)​
​  

  ​ (1/k)​​∑ i=1​ 
k
  ​ ​v​(i)​​ dF (​v​(1)​, … , ​v​(k)​), where ​v​(i)​ is i th 

order statistic of k random variables. Switching summation and integration operators back and forth, V(k) = (1/k)​
∑ i=1​ 

k
  ​ ​∫​v​L​

​ ​v​H​​ v​​​f​(i)​(v) dv = (1/k)​∫​v​L​
​ ​v​H​​ v​​∑ i=1​ 

k
  ​ ​f​(i)​​(v) dv = ​∫​v​L​

​ ​v​H​​ v​f (v) dv = ​
_ v​ for every k, as the density of i th order statistic 

is ​f​(i)​(v) = k f (v)​(​ i − 1​ 
k − 1

 ​)F(v​)​(k−1)−(i−1)​(1 − F(v)​)​i−1​, so that ​∑ i=1​ 
k
  ​ ​f​ (i)​​(v) = k f (v) and equal to ​V​PV​ (1).
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and the co-owning seller destroy incentives to invest in the project, the main trade-off 
of the benchmark model is augmented with the seller’s need to provide these incen-
tives. As a result, auctions in cash and securities that do not distort incentives much 
are more likely to be conducted. Unlike the model without moral hazard, symmetric 
equilibria in the model with moral hazard will, in general, be inefficient. Because 
auctions in cash never distort incentives of the buyer, they can be considered as rea-
sonable policy choices to maximize the total welfare of market participants.

VI.  Concluding Remarks

In this paper we study the competitive design of auction formats when payments 
can potentially depend on realizations of future cash flows. This question has not 
been studied in the literature before: research on competitive mechanism design 
has focused on the case of cash payments, and prior research on securities auctions 
has considered only the case of exogenous number of bidders in the auction. Our 
contribution is threefold. First, we characterize all symmetric equilibria that arise 
in the model. If bidders’ participation decisions are endogenous, then the result 
of the prior literature that a seller prefers to run an auction in the steepest possible 
securities can be violated. When there is competition among sellers, equilibrium 
security designs reflect the seller’s trade-off between extracting surplus from a given 
number of bidders and attracting additional bidders by making the auction more 
appealing than her rivals’ auctions. If one of the forces dominates, the equilibrium 
security design is either the flattest possible (pure cash) or the steepest possible (call 
options). If neither of the forces dominates, the equilibrium security designs include 
combinations of standard securities empirically observed in many auctions.

Second, we study how the parameters of market structure affect the steepness of 
equilibrium security designs. There are two important determinants of the equilib-
rium security designs: (i) the ratio of potential bidders to sellers; and (ii) the size of 
the market. We show in a numerical example that the relative abundance of potential 
bidders appears to increase the steepness of equilibrium security designs, while larger 
size of the market appears to decrease their steepness. We prove that in the limit, as 
the size of the market grows to infinity, in the unique equilibrium auctions are con-
ducted in pure cash. In addition, the equilibrium security designs appear to depend 
on expected synergies from the auction in a way consistent with empirical evidence.

Finally, we compare competition in security designs with competition in reserve 
prices, which was the focus of prior research. To do this we extend the model by 
allowing each seller to choose a reserve price in addition to security design. We 
show that as long as call options is not an equilibrium security design in the main 
model, the equilibrium auction formats are characterized by equilibrium security 
designs of the main model and nonbinding reserve prices.

Our analysis makes an assumption that the selling mechanism specifies an ordered 
set of securities that can be submitted by the bidders. This assumption is important 
because it retains the auction-like feature of the selling mechanism. One may ask 
what happens if the sellers can use general mechanisms that can be contingent on 
the realization of the project payoff. More precisely, suppose that each seller can 
commit to any selling mechanism that specifies allocation of the asset and pay-
ments as functions of the bidders’ messages and the realization of the project payoff. 
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Clearly, auctions with securities is one class of mechanisms of this kind, but not the 
only one. While this game is considerably more general than the one we study in 
this paper, the main trade-off remains the same: choosing a more bidder-friendly 
selling mechanism reduces the surplus that the seller obtains from a given number 
of bidders but increases the participation by attracting the bidders from alternative 
sellers. Analysis of this general framework can shed light on a number of important 
questions. For example, under what conditions is the equilibrium in which all sellers 
use securities auctions preserved as an equilibrium in a model where each seller is 
allowed to deviate to any alternative selling mechanism? Are auctions in pure cash 
preserved as an equilibrium selling mechanism in large markets in this generalized 
framework? We leave these interesting questions for future research.

Appendix A.  Proofs

The proofs of all lemmas and Propositions 5 and 6 are available from the AER 
online Appendix. Here, we provide the proofs of Propositions 2–4.

Proof of Proposition 2:
First, we prove that for any security design ​   S​ of other auctions, there exists a unique 

best response ​q​ BR​(​   S​) that maximizes ​U​ s​(q, ​   S​) on [q(​S​call​ , ​   S​), q(​S​cash​ , ​   S​)]. Let P(q, n, k) 
denote ​(​ k​ n

 ​)​q​ k​(1 − q​)​n−k​. Then, we can write the seller’s ex ante expected surplus as:

(A1)  ​  U​s​(q, ​   S​)  = ​ ∑ 
k=0

​ 
​n​b​

 ​ P​(q, ​n​b​ , k)V(k) 

	 − ​ n​b​ q ​∑ 
k=1

​ 
​n​b​

 ​ P​(​ 1  −  q
 _ ​n​s​  −  1
 ​, ​n​b​  −  1, k  −  1)​U​ b​(k, ​   S​).

Then, the first derivative of ​U​ s​(q, ​   S​) with respect to q is equal to

(A2)  ​  U​ q​ s
 ​(q, ​   S​)  = ​ ∑ 

k=0
​ 

​n​b​

 ​ ​P​ q​​(q, ​n​b​ , k)V(k) 

	 − ​ n​b​ ​∑ 
k=1

​ 
​n​b​

 ​ P​(​ 1  −  q
 _ ​n​s​  −  1
 ​, ​n​b​  −  1, k  −  1)​U​ b​(k, ​   S​)

	 +  ​ 
​n​b​ q _ ​n​s​  −  1

 ​  ​∑ 
k=1

​ 
​n​b​

 ​ ​P​ q​​(​ 1  −  q
 _ ​n​s​  −  1
 ​, ​n​b​  −  1, k  −  1)​U​ b​(k,​    S​).

The first-order conditions imply that at the interior solution ​U​ q​ s
 ​(​q​ BR​(​   S​), ​   S​) = 0. The 

second derivative of ​U​ s​(q, ​   S​) with respect to q is equal to

(A3) ​ U​ qq​ s
  ​(q, ​   S​)  = ​ ∑ 

k=0
​ 

​n​b​

 ​ ​P​ qq​​(q, ​n​b​ , k)V(k) 

	 + ​ 
2​n​b​ _ ​n​s​  −  1

 ​  ​∑ 
k=1

​ 
​n​b​

 ​ ​P​ q​​(​ 1  −  q
 _ ​n​s​  −  1
 ​, ​n​b​  −  1, k  −  1​)U​ b​(k, ​   S​)

	 − ​ 
​n​b​ q _ 

(​​n​s​  −  1)​2​
 ​ ​∑ 

k=1
​ 

​n​b​

 ​ ​P​ qq​​(​ 1  −  q
 _ ​n​s​  −  1
 ​, ​n​b​  −  1, k  −  1​)U​ b​(k, ​   S​).
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Consider the second term on the right-hand side of (A3). Since probabilities 
P(q, n − 1, k − 1) sum up to one over k, for any q and n, ​∑ k=1​ 

n
  ​ ​P​ q​​(q, n − 1, k − 1) = 0. 

Moreover, ​P​ q​(q, n − 1, k − 1) < 0 for k < q(n − 1) + 1 and ​P​ q​(q, n − 1, k − 1) > 0, 
otherwise. Consider:

(A4)  ​  ∑ 
k=1

​ 
n

  ​ ​P​ q​​(q, n  −  1, k  −  1)​U​ b​(k, ​   S​) 

	 = ​ ∑ 
k=1

​ 
[q(n−1)]+1

​ ​P​ q​​(q, n  −  1, k  −  1)(​U​ b​(k, ​   S​)  − ​ U​ b​([q(n  −  1)]  +  1, ​   S​))

	 + ​ ∑ 
k=[q(n−1)]+2

​ 
n

  ​ ​P​ q​​(q, n  −  1, k  −  1)(​U​ b​(k, ​   S​)  − ​ U​ b​([q(n  −  1)]  +  1, ​   S​)),

where [⋅] denotes the integer part of the argument. Because ​U​ b​(k, ​   S​) is decreasing 
in k, ​U​ b​(k, ​   S​) − ​U​ b​([q(n − 1)] + 1, ​   S​) is positive for k < q(n − 1) + 1 and negative 
otherwise. The right-hand side of (A4) consists of two terms. The first term sums 
up multiples of nonpositive and nonnegative numbers (​P​ q​(q, n  −  1, k  −  1) and  
​U​ b​(k,  ​   S​) − ​U​ b​([q(n − 1)] + 1, ​   S​ )). The second term sums up multiples of positive 
and negative numbers (​P​ q​(q, n  −  1, k  −  1) and ​U​ b​(k,  ​   S​) − ​U​ b​([q(n − 1)] + 1, ​   S​),  
respectively). Hence,

	​ ∑ 
k=1

​ 
n

  ​ ​P​ q​​(q, n  −  1, k  −  1)​U ​ b​(k, ​   S​)  <  0.

Therefore, the second term on the right-hand side of (A3) is negative.
Consider a series {​P​ qq​(q, n, k), k = 0, … , n}. Since ​∑ k=0​ 

n
  ​ P(q, n, k)​ = 1, ​

∑ k=0​ 
n
  ​ ​P​ qq​(q, n, k)​ = 0. Moreover,

	​P ​ qq​(q, n, k)  =  (​​
n   
k
 
​
​)​q​ k​​(1  −  q)​n−k​ ((​ k _ q ​  − ​  n  −  k _ 

1  −  q
 ​​)​

2

​  − ​  k _ 
​q​ 2​

 ​  − ​   n  −  k _ (​1  −  q)​2​ ​),

which implies that there are numbers ​k​1​ and ​k​2​ > ​k​1​ such that ​P​ qq​(q, n, k) is positive 
for all k < ​k​1​ and k > ​k​2​ , and negative for all k ∈ (​k​1​, ​k​2​). It follows that

	​ ∑ 
k<​k​1​, k>​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k)  =  −​∑ 
​k​1​<k<​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k).

Define probability distributions ​G​1​(k) and ​G​2​(k) by:

	
ℙG1(K  =  k)  =  {	​ 

​P​ qq​(q, n, k)
  __  

​∑ 
k<​k​1​, k>​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k)
 ​ ,	 if k  < ​ k​1​ and k  > ​ k​2​

		  0, 	  otherwise;
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ℙG2(K  =  k)  =  {	  ​ 

− ​P​ qq​(q, n, k)
  __  

​∑ 
k<​k​1​, k>​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k)
 ​ ,	 if k  ∈  (​k​1​, ​k​2​)

		  0,	 otherwise.

Notice that by construction ​G​2​(k) crosses ​G​1​(k) from below. Observe that

  ​  ∑ 
k=0

​ 
n

  ​ P(q, n, k)​k  =  qn  ⇒ ​ ∑ 
k=0

​ 
n

  ​ ​P​ qq​​(q, n, k)k  =  0 

	 ⇒ ​ ∑ 
k<​k​1​, k>​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k)k  =  − ​∑ 
​k​1​<k<​k​2​

​ 
 

  ​ ​P​ qq​​(q, n, k)k,

which implies that ​G​1​(k) and ​G​2​(k) have the same mean. In addition, because ​
G​2​(k) crosses ​G​1​(k) from below, ​∫

0
​ x​ ​G​1​​(t) dt ≥ ​∫

0
​ x​ ​G​2​​(t) dt for all x. Thus, ​G​2​(k) 

second-order stochastically dominates ​G​1​(k) (see, e.g., Proposition 6.D.2 in Andreu 
Mas-Colell, Michael D. Whinston, and Jerry R. Green 1995). Therefore, for any 
concave function ψ(K),

	​ ∑ 
​k​1​<k<​k​2​

​ 
 

  ​  ​​ 
− ​P​ qq​(q, n, k)

  __  
​∑ 

k<​k​1​, k>​k​2​
​ 

 

  ​ ​P​ qq​​(q, n, k)
 ​  ψ(k)  ≥	​ ∑ 

k>​k​1​, k<​k​2​
​ 

 

  ​  ​​ 
​P​ qq​(q, n, k)

  __  
​∑ 

k<​k​1​, k>​k​2​
​ 

 

  ​ ​P​ qq​​(q, n, k)
 ​  ψ(k) 

		  ⇒ ​ ∑ 
k=0

​ 
n

  ​ ​P​ qq​​(q, n, k)ψ(k)  ≤  0.

By Lemma 2, both V(k) and − ​U​ b​(k, S) are concave in k. Thus, the first and the last 
terms of the right-hand side of (A3) are negative. Hence, ​U​ s​(q, ​   S​) is strictly concave in 
q for any ​   S​. Therefore, the maximizer ​q​BR​(​   S​) on [q(​S​call​, ​   S​), q(​S​cash​, ​   S​)] is unique.

Consider the case ϕ(​S​cash​) ≥ 0. Because ​U​ s​(q, ​S​cash​) is concave in q,

	​  1 _ ​n​s​ ​  =  q(​S​cash​ , ​S​cash​)  ∈ ​   arg max         
q∈[q(​S​call​ , ​S​cash​), q(​S​cash​ , ​S​cash​)]

​​U​ s​(q, ​S​cash​).

Hence, cash auctions is an equilibrium outcome. Consider the case ϕ(​S​call​) ≤ 0. 
Again, because ​U​ s​(q, ​S​call​) is concave in q, auctions in call options is an equilibrium 
outcome. Finally, consider the last case. If an ordered set of securities S satisfies  
ϕ(S ) = 0, then ​U​ b​(q, S ) reaches its maximum at q = 1/​n​s​ . Hence, any ordered set 
of securities S that satisfies ϕ(S ) is an equilibrium security design. If ϕ(​S​cash​) < 0 
and ϕ(​S​call​) > 0, then there exists S such that ϕ(S ) = 0 as constructed in the proof 
of Proposition 3.

Proof of Proposition 3:
Continuity of S(λ, s, z) ensures that function ϕ(λ) is a real-valued continuous 

function on the interval [ ​λ​L​, ​λ​H​ ]. In addition, ϕ(​λ​H​) ≥ 0 and ϕ(​λ​L​) ≤ 0. Therefore, 
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by the intermediate value theorem, on the interval [​λ​L​, ​λ​H​] there exists a point ​   λ​ at 
which ϕ(​   λ​) = 0. Hence, there exists an equilibrium security design that belongs to 
set 핊.

Proof of Proposition 4:
Consider ϕ(S )/​n​s​ , where ϕ(S ) is given by (16). As ​n​s​ → ∞, the first term of  

ϕ(S )/​n​s​ converges to

(A5) ​ 
 
 
 

 lim    
​n​s​→∞

​ ​ 1 _ ​n​s​ ​ ​∑ 
k=0

​ 
​n​s​ n

 ​ (​​​​n​s​ n   
k
 
​
​) ​ 

(​n​s​ − 1​)​​n​s​ n−k−1​(k​n​s​ − ​n​s​ n)   __  
​n​ s​ ​n​s​ n−1​

 ​  V(k)  = ​ ∑ 
k=0

​ 
∞

 ​ ​ ​n​k​​e​−n​ _ 
k!   ​​  (k − n)V(k),

by applying the formula for the density function of the Poisson distribution as the 
limit of the number of successful Bernoulli events with the probability of success 
1/​n​s​. Plugging in the expression for V(k), we get:

	​ ∑ 
k=0

​ 
∞

 ​ ​ ​n​k​​e​−n​ _ 
k!   ​​  (k  −  n)​∫ 

​v​L​
​ 
​v​H​

​ k​vF​(v)​k−1​f (v) dv 

	 = ​ ∫ 
​v​L​
​ 
​v​H​

​ ​e​−n​​ v ​ 
f (v) _ 
F(v) ​ ( ​∑ 

k=0
​ 

∞

 ​ ​ 
​(nF(v))​k​

 _ 
k!   ​​  k(k  −  n))dv.

The term in the brackets is equal to

	​ e​ nF(v)​ ​∑ 
k=0

​ 
∞

 ​ ​ 
​(nF(v))​k​​e​−nF(v)​

  __ 
k!   ​​  ​k​ 2​  −  n​e​ nF(v)​​∑ 

k=0
​ 

∞

 ​ ​ 
(​nF(v))​k​​e​−nF(v)​

  __ 
k!   ​​  k 

	 = ​ e​ nF(v)​(nF(v)  + ​ n​2​F​(v)​2​  − ​ n​2​F(v)),

as the linear combination of the first and the second moment of the Poisson distribu-
tion with parameter nF(v). Hence, the first term converges to

(A6)	 n​∫ 
​v​L​
​ 
​v​H​

​ v​​e​−n(1−F(v))​(1  +  nF(v)  −  n) f (v) dv.

The second and the third term of ϕ(S)/​n​s​ converge to, correspondingly:

(A7) ​  lim   
​n​s​→∞​ n​∑ 

k=1
​ 

​n​s​ n

 ​ ​( ​n​s​ n  −  1   
k  −  1

  )​​ ​ 
​(​n​s​  −  1)​​n​s​ n−k​

  _ 
​n​ s​ ​n​s​ n−1​

 ​ ​ U​ b​(k, S)  = ​ ∑ 
k=1

​ 
∞

 ​ ​  ​n​k​​e​−n​ _ (k  −  1)!   ​​ ​U​ b​(k, S);

	​  lim   
​n​s​→∞​n​∑ 

k=1
​ 

​n​s​ n

 ​ ​( ​n​s​ n  −  1   
k  −  1

  )​​ ​ 
(​​n​s​  −  1)​​n​s​ n−k−2​((k  −  1)​n​s​  − ​ n​s​ n  +  1)    ___   

​n​ s​ ​n​s​ n−1​
 ​  ​U​ b​(k, S)

	 = ​ ∑ 
k=1

​ 
∞

 ​ ​  ​n​k​​e​−n​ _ (k  −  1)!   ​​  ​ lim   
​n​s​→∞​ ​ (k  −  1  −  n)​n​s​  +  1

  __  
(​n​s​  −  1​)​2​

 ​   =  0.
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Consider auctions in cash. A well-known result from the theory of cash auctions is

	​ U​ b​(k, ​S​cash​)  = ​ ∫ 
​v​L​
​ 
​v​H​

​ (​1  −  F(v))F​(v)​k−1​ dv.

Then, the limit of the second term of ϕ(​S​cash​)/​n​s​ is equal to

(A8) 	​  ∑ 
k=1

​ 
∞

 ​ ​  ​n​k​​e​−n​ _ (k  −  1)!   ​​ ​∫ 
​v​L​
​ 
​v​H​

​ (​1  −  F(v))F​(v)​k−1​ dv

  = ​ ∫ 
​v​L​
​ 
​v​H​

​  ​e​−n​​ ​ 
(1  −  F(v))  _ 

F(v) ​  (​∑ 
k=0

​ 
∞

 ​ ​ 
(​nF(v))​k​

 _ 
k!   ​​  k) dv  =  n​∫ 

​v​L​
​ 
​v​H​

​ ​e​−n(1−F(v))​​(1  −  F(v)) dv.

Combining (A6) with (A7) and (A8), we conclude that ϕ(​S​cash​)/​n​s​ converges to

	 n​∫ 
​v​L​
​ 
​v​H​

​ ​e​−n(1−F(v))​​(v(1  +  nF(v)  −  n) f (v)  −  1  +  F(v)) dv

	 =  n​∫ 
​v​L​
​ 
​v​H​

​ d​(− ​e​−n(1−F(v))​(1  −  F(v))v)  =  n​e​−n​​v​L​.

Therefore, in large markets ϕ(​S​cash​) > 0, so auctions in cash is an equilibrium in 
large markets. Because for any S, ​U​ b​(k, S) is larger than or equal to ​U​ b​(k, ​S​cash​), in 
large markets, ϕ(S) > 0 for any S. Therefore, there is no symmetric equilibrium in 
which auctions are in noncash securities.
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