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The development of preventive strategies in early-stage Alzheimer’s disease (AD) requires measures that
can predict future brain atrophy. Gray matter network measures are related to amyloid burden in
cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show
that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy
rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-
Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggre-
gating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in
other distant areas, mostly involving temporal regions, which are associated with AD. When repeating
analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did
not find any associations between network measures and hippocampal atrophy, suggesting that the
associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may
indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy
and cognitive impairment.
� 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that
is the most common cause of dementia (Lobo et al., 2000;
Plassman et al., 2007). Among the earliest pathological changes
in AD is aggregation of amyloid beta into plaques (Bateman et al.,
2012; Jansen et al., 2015), starting in the anterior cingulate cortex
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and the precuneus (Palmqvist et al., 2017; Villain et al., 2012;
Villeneuve et al., 2015). Once amyloid has aggregated, it may
take up to 10 years before atrophy starts (Bateman et al., 2012),
which most prominently affects more distant brain areas in the
medial temporal lobes (Chetelat et al., 2012; Dickerson et al.,
2009; Whitwell et al., 2007) and is more closely related to
cognitive decline (van Rossum et al., 2012). How amyloid aggre-
gation in one brain area eventually leads to neurodegeneration in
more distant brain areas remains largely unclear. For development
of preventive strategies, it is important to predict future brain
atrophy, as this may aid in identifying which individuals with
abnormal amyloid but still normal cognition (i.e. preclinical AD;
Sperling et al., 2011) will show disease progression but before the
onset of irreversible atrophy.

Amyloid aggregation disrupts local synaptic functioning (Koffie
et al., 2009; Shankar et al., 2008; Walsh et al., 2002), potentially
leading to disruptions of large-scale brain connectivity networks
(Buckner et al., 2005; Kuchibhotla et al., 2008; Kurudenkandy et al.,
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2014; Palmqvist et al., 2017; Palop et al., 2007; Sperling et al., 2009).
One approach to measure brain networks is based on intracortical
similarity on structural magnetic resonance imaging (MRI) (i.e. gray
matter connectivity; Mechelli et al., 2005; Tijms et al., 2012).
Intracortical similarity has been associated with coordinated
growth patterns (Alexander-Bloch et al., 2013b), functional coac-
tivation (Alexander-Bloch et al., 2013a) and axonal connectivity
(Gong et al., 2012). We and others have shown that gray matter
networks are disrupted in AD (He et al., 2008; Pereira et al., 2016;
Tijms et al., 2013a,b; Yao et al., 2010), associated with cognitive
impairment (Tijms et al., 2013a, 2014), and related to faster disease
progression and cognitive decline in the predementia stage of AD
(Dicks et al., 2018; Tijms et al., 2018; Verfaillie et al., 2018).
Furthermore, disrupted gray matter network organization has been
associated with aggregating amyloid in cognitively normal in-
dividuals (ten Kate et al., 2018; Tijms et al., 2016) and before overt
atrophy is evident (Voevodskaya et al., 2018). Taken together, these
findings suggest that graymatter networkmeasuresmight have use
to identify those individuals who will progress to AD dementia in
the earliest, preclinical stages of AD and before the onset of irre-
versible atrophy. In a cross-sectional study, Seeley et al. previously
showed that atrophy patterns in patients with AD dementia reflect
brain regions that show both strong functional coactivation as well
as covariation in gray matter volume across a group of cognitively
normal individuals, suggesting that regions that are highly inter-
connected share vulnerability for neurodegeneration (Seeley et al.,
2009). It could be hypothesized that gray matter network disrup-
tions due to amyloid aggregation in one region of the brain may
capture the earliest neurodegenerative changes in preclinical AD
and predict future atrophy in more distant regions. However, as
previous findings were based on cross-sectional studies and/or
used only 1 network per group of individuals, it is still unclear
whether gray matter network disruptions can predict the rate and
location of future atrophy within individuals.

In this study, we used a subject-specific approach to construct
gray matter networks in individuals with preclinical AD and
investigated whether altered gray matter network measures at
baseline could predict the rate and location of future atrophy. We
first compared the predictive performance for future hippocampal
atrophy between whole-brain gray matter network measures and
other AD markers that have been previously associated with
reduced gray matter volume (i.e. total gray matter volume, cere-
brospinal fluid [CSF] total tau levels, and Mini-Mental State Exam-
ination [MMSE] scores). We then investigated whether gray matter
network measures specifically in regions, where amyloid has pre-
viously been shown to start aggregating (i.e. anterior cingulate and
precuneus; Palmqvist et al., 2017; Villeneuve et al., 2015), could
predict the rate of subsequent atrophy in other brain areas within
single individuals with preclinical AD. We also performed analyses
in cognitively unimpaired, age-matched individuals without evi-
dence of amyloid or tau pathology to study whether results were
specific for preclinical AD, and additionally investigated the effects
of clinical progression, tau pathology, and sex on network disrup-
tions and their associations with future hippocampal atrophy.

2. Methods

2.1. Participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by the principal investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive
impairment and early AD. ADNI was approved by the institutional
review board of all participating institutions, and written informed
consent was obtained from all participants at each site.

We selected all participants with preclinical AD from ADNI as
defined by normal cognition and abnormal amyloid CSF markers at
baseline who had at least 1 year of MRI follow-up with a minimum
of 2 structural MRI scans available. In addition, we included
cognitively unimpaired, age-matched individuals without amyloid
or tau pathology as a control group (control; n ¼ 71), to determine
whether results were specific for individuals with preclinical AD.
Details of clinical diagnostic criteria have been previously described
(Aisen et al., 2015; Petersen et al., 2010). Briefly, cognitively normal
individuals had to have a clinical dementia rating (CDR) score of 0,
an MMSE score between 24 and 30, and no impaired memory as
based on education-adjusted cutoffs on the delayed recall subtest of
the Logical Memory II subscale of the Wechsler Memory
ScaleeRevised (Aisen et al., 2015; Petersen et al., 2010). In total, 110
preclinical AD individuals were included with a median of 5 (min-
max: 2-10) repeated MRI scans over a median follow-up time of 2.2
(min-max: 1-9) years, during which time 25% of individuals pro-
gressed to mild cognitive impairment or dementia because of AD.
Diagnoses of mild cognitive impairment or dementiawere based on
cognitive impairment on the CDR, MMSE, or logical
memoryedelayed recall (for cutoff scores, refer to the studies by
Aisen et al., 2015; Petersen et al., 2010). In addition, patients with
dementia had to have a clinical diagnosis of probable AD as per the
NINCDS-ADRDA criteria (McKhann et al., 1984).

We used CSF measures for amyloid beta 1-42 to determine
amyloid abnormality and additionally CSF total tau to determine
tau abnormality in control individuals. Amyloid beta 1-42 and total
tau were measured with the multiplex xMAP Luminex platform
(Luminex Corp, Austin, TX, USA) and INNO-BIA AlzBio3 (Innoge-
netics, Ghent, Belgium) immunoassay kit-based reagents (Shaw
et al., 2009). Abnormal amyloid was indicated by levels <192 pg/
mL, and abnormal tau was indicated by levels of >95 pg/mL (Shaw
et al., 2009).
2.2. MRI acquisition & preprocessing

Image acquisition details and initial preprocessing have been
previously described (http://adni.loni.usc.edu/methods/mri-
analysis/; Jack et al., 2008). We downloaded all 3-dimensional T1-
weighted structural scans that were preprocessed with gradient
nonlinearity correction, B1 inhomogeneity, and/or N3 correction
and of sufficient quality from the ADNI LONI Image & Data Archive
(date of last access: 29.03.2017; n ¼ 534). Scans that were acquired
using different field strengths within subjects were excluded.

First, all images were reoriented with FSL (v5.0.6). Next, to
reduce bias in longitudinal registration (Reuter et al., 2012), we
created a subject-specific median template image with FreeSurfer
(v5.3.0) to which all longitudinal scans were co-registered. We then
segmented images into gray matter, white matter, and CSF with the
Markov random fields parameter set to 2 and default settings for all
other parameters. Co-registration and segmentation was per-
formed with SPM12 running under Matlab (v.7.12.0.635). Finally,
using the subject-specific inversed normalization parameters, the
automated anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al.,
2002) was warped from standard space to subject space, and we
calculated regional gray matter volumes for each of the 90 cortical
and subcortical AAL areas. Total intracranial volume was computed
as the sum of gray matter, white matter, and CSF volumes in cm3,
and gray matter volume was normalized to baseline total
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intracranial volume. All gray matter segmentations and subject-
specific atlases were visually checked for quality.
2.3. Single-subject gray matter network measures

Single-subject gray matter networks were reconstructed from
subject space gray matter segmentations of baseline MRI scans
using an automatedmethod (https://github.com/bettytijms/Single_
Subject_Grey_Matter_Networks), which has been described previ-
ously (Tijms et al., 2012). Briefly, nodes were defined as small re-
gions of interest of 3 � 3 � 3 voxel cubes and connected when they
showed similar gray matter structure as defined by a significant
correlation between voxels of 2 nodes. By defining nodes as cubes,
both spatial information (i.e. the folding structure of the cortex) and
local gray matter values were used to assess the correlation be-
tween nodes. Because the cortex is a curved object, regions of in-
terest could be located at an angle to each other, thus possibly
decreasing correlations. Therefore, for each pairwise comparison,
the seed cube was rotated by an angle with multiples of 45� to
identify the maximum correlation coefficient. Next, we binarized
the networks using subject-specific thresholds based on empirical
null model distributions (Noble, 2009) that ensured that all in-
dividuals showed a similar chance of 5% false-positive connections
within the network. A detailed description of the single-subject
network extraction technique can be found in the study Tijms
et al., 2012. For each single-subject gray matter network, we
computed the network size, degree, connectivity density, clustering
coefficient, and path length. The network size is the number of
nodes (i.e. cubes) in the network. The degree corresponds to the
number of connections per node. The connectivity density is the
ratio of present connections divided by the number of possible
connections in the network. The clustering coefficient indicates the
interconnectedness of neighboring nodes and the path length cor-
responds to the average shortest paths between all nodes in the
network (Rubinov and Sporns, 2010). To obtain network measures
for the precuneus and anterior cingulate, we averaged measures
across nodes that were labeled in accordance with the AAL atlas.
Global network measures were obtained by averaging measures
across all nodes of the network. We additionally computed the
global normalized clustering coefficient, normalized path length
(gamma, lambda), and small-world coefficient for the whole brain
to estimate how these network measures deviated from randomly
organized networks as follows: Gamma and lambda were
computed by normalizing clustering coefficient and path length
values with the respective mean values of 5 randomized reference
networks, which kept the degree distribution intact (Maslov and
Sneppen, 2002). The small-world coefficient is defined as the ra-
tio of gamma to lambda (Humphries and Gurney, 2008). All
network measures were calculated using functions from the Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/;
Rubinov and Sporns, 2010) adjusted for large-sized networks.
2.4. Statistical analysis

Cortical atrophy was determined by fitting linear mixed models
for each AAL areawith longitudinal gray matter volume as outcome
and time from baseline as predictor. We fitted random slopes for
time and intercepts for individuals and assumed an unstructured
covariance structure using the R package “lme4” (Bates et al., 2015).
We first assessed whether global network measures could predict
future hippocampal atrophy, as a prominent region for AD-
associated atrophy. Repeated hippocampal volume over time was
used as the outcome (i.e. hippocampal volume at baseline, hippo-
campal volume at visit 1, hippocampal volume at visit 2, and so on)
and baseline network measures (NM), time, and their interaction as
the predictors.

Hippocampal volume ¼ bIntercept þ bNMNM þ bTimeTime

þ bNM�TimeNM � Timeþ ð1þ TimejSubjectÞ
We repeated these analyses including clinical progression as a

main term and interaction effect (i.e. network measure � time �
clinical progression) to investigate whether the observed effects
were stronger for those individuals who progressed during follow-
up. Similarly, we also investigated the effects of tau and sex on
baseline network disruptions and associations with future hippo-
campal atrophy by including tau abnormality or sex as additional
interaction term in the analyses. We qualitatively compared the
predictive performance between global network measures and
other markers that are associated with reduced gray matter volume
(i.e. CSF total tau, MMSE scores, and total gray matter volume). For
visualization purposes and to aid in comparison of the predictive
performances, we additionally performed linear regression ana-
lyses with subject-specific hippocampal atrophy slopes as outcome
and baseline whole-brain gray matter network measures or AD
markers as predictor.

D Hippocampal volume ¼ bIntercept þ bNMNM

To investigate whether altered network measures in early am-
yloid accumulating regions (i.e. anterior cingulate and precuneus)
could predict the rate and location of future atrophy, we repeated
analyses as for hippocampal volume but with longitudinal local
gray matter volumes for each AAL region as the outcome and local
network measures of the anterior cingulate or precuneus, time and
their interaction as the predictors. All local gray matter volumes
and network measures were standardized across regions as per the
mean baseline values of individuals who remained cognitively
stable to aid interpretation of the results. We also performed ana-
lyses for hippocampal and whole-brain atrophy in control in-
dividuals, whowere age-matched to the original sample using the R
package “Matching” (Sekhon, 2008) to study specificity of results
for preclinical AD. All analyses were adjusted for age, gender, field
strength, and total gray matter volume. Statistical analyses were
performed in R (version 3.4.4, 2018-03e15) and Surf Ice (version
2017-08-08) was used to visualize regional results.
3. Results

3.1. Characteristics of the study sample

In this study, we selected all individuals from the ADNI cohort
who had normal cognition and abnormal CSF levels of amyloid beta
1-42 at baseline and at least 1 year of MRI follow-up available (n ¼
110). Table 1 shows the baseline characteristics of the included
sample and by clinical progression. Individuals were on average 75
� 6 years of age, and 57 % were women. During follow-up (median
[interquartile range] 2.2 [2e4] years), 28 participants (25%) showed
clinical progression (n ¼ 21 to prodromal AD and n ¼ 7 to AD de-
mentia). Progressing participants were on average older, had more
MRI scans over a longer follow-up period available, and had higher
total intracranial volume (p < 0.05). In addition, progressing par-
ticipants had higher network size and degree (due to higher gray
matter volume; p < 0.065) and lower gamma and small-world
coefficient values at baseline (p < 0.05) and showed a tendency
for lower lambda values than those who remained stable (p <

0.065). Over time, the total sample showed cortical atrophy with
fastest rates observed in the hippocampus (b � SE; left
hippocampus: �0.15 � 0.01, right hippocampus: �0.14 � 0.01; all p
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Table 1
Baseline characteristics of the total sample and by clinical progression

Characteristic Total Stable Progression

N 110 82 (75%) 28 (25%)
Female 63 (57%) 51 (62%) 12 (43%)
Age (y) 74.871 (6.084) 74.05 (6.357) 77.275 (4.487)c

MMSE 29 (29e30) 29 (29e30) 29 (28e30)
Education (y) 16 (14e18) 16 (14e18) 16 (14e18)
CSF Ab 1-42 in pg/mL 149.166 (25.393) 150.138 (25.626) 146.321 (24.934)
CSF total tau in pg/mL 73.845 (38.418) 71.063 (39.216) 81.989 (35.391)
Abnormal total tau >93 pg/mL 30 (27%) 20 (24%) 10 (36%)
Total intracranial volume in cm3 1439.591 (144.808) 1417.037 (145.665) 1505.643 (122.185)d

Gray matter volume in cm3 0.601 (0.067) 0.597 (0.069) 0.614 (0.064)
aNormalized gray matter volume in cm3 0.419 (0.04) 0.423 (0.038) 0.409 (0.043)
Number of repeated MRI 5 (4e6) 5 (4e5.8) 6 (3.8e7.2)c

Follow-up time (y) 2.2 (2e4) 2.1 (2e4) 4 (2.2e6)d

Size 6753.082 (606.983) 6658.341 (616.29) 7030.536 (490.741)d

Degree 1204.765 (132.373) 1191.003 (129.279) 1245.069 (135.429)b

Connectivity density 17.845 (1.14) 17.896 (1.092) 17.697 (1.279)
Clustering 0.49 (0.022) 0.491 (0.021) 0.485 (0.023)
Path length 1.998 (0.021) 2 (0.021) 1.993 (0.022)
Gamma 1.688 (0.079) 1.698 (0.076) 1.661 (0.084)c

Lambda 1.097 (0.012) 1.098 (0.012) 1.093 (0.012)b

Small-world coefficient 1.539 (0.058) 1.545 (0.055) 1.519 (0.064)c

CSF, cerebrospinal fluid; MRI, magnetic resonance imaging.
Data are presented as N (%), mean (SD) or median (IQR) where appropriate.

a Grey matter volume was normalized to total intracranial volume.
b p < 0.065.
c p < 0.05.
d p < 0.01.
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< 0.001) (Figs. 1 and 2A). Individuals who progressed during
follow-up showed faster hippocampal atrophy rates than those
who remained stable (pinteraction < 0.001; Fig.2A; see also
Supplementary Fig. 1 and Supplementary Table 1). Additional an-
alyses performed in a subset of individuals who had amyloid PET
available showed highest uptake in the precuneus as compared
with controls with normal CSF amyloid levels (see Supplementary
Fig. 2).
3.2. Prediction of hippocampal atrophy rates

We first investigated whether baseline global networkmeasures
and other AD markers that have been related to cognitive decline
(MMSE scores, CSF total tau, and total gray matter volume) could
predict hippocampal atrophy rates. Baseline MMSE scores, CSF total
Fig. 1. Surface plots of regional atrophy rates over time. The color bar indicates stan-
dardized betas of regional atrophy rates and was obtained with linear mixed models.
Analyses were adjusted for age, sex, education, field strength, and total intracranial
volume. Subcortical structures are plotted in ventricular areas as approximation. Ab-
breviations: L, left hemisphere; R, right hemisphere. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of this
article.)
tau, and whole-brain gray matter volume did not show associations
with subject-specific hippocampal atrophy rates (all p > 0.05;
Table 2) (see also Fig. 2BeD). Lower connectivity density and lower
clustering at baseline predicted faster subsequent hippocampal
atrophy (b � SE; both 0.04 � 0.01; p < 0.005; Table 2) (see also
Fig. 2EeF). Analyses including disease progression as an additional
interaction term did not show significant interaction effects (all p >

0.05; see Supplementary Table 1), suggesting that the association of
baseline network measures and subsequent atrophy was similar for
individuals who remained stable and those who showed clinical
progression during follow-up.

3.3. Prediction of whole-brain atrophy patterns

We further investigated whether network measures in the
anterior cingulate and precuneus could predict the spatiotemporal
pattern of atrophy. Both local clustering and path length values
showed associations with subsequent gray matter atrophy, for
specific parts of the brain (Fig. 3, see Supplementary Fig. 3 for cross-
sectional relationships): Lower clustering values in the anterior
cingulate and precuneus of both hemispheres were associated with
faster atrophy in mostly temporal regions, including the right su-
perior, middle temporal pole, hippocampus, and left para-
hippocampal gyrus (all p < 0.05; Fig. 3AeD). Higher path length
values in the right anterior cingulate and bilateral precuneus were
associated with faster atrophy in mostly frontal regions, including
the right superior, middle frontal gyrus, and left middle cingulate
(all p < 0.05; Fig. 3EeH). Gray matter volumes of the anterior
cingulate or precuneus did not predict future hippocampal atrophy
rates (all p > 0.05; see Supplementary Table 2), indicating that
network measures contain information that relate to the rate of
hippocampal atrophy beyond volumetric measures.

3.4. Prediction of atrophy rates in control individuals

We then performed analyses in cognitively unimpaired, amy-
loid/tau normal, age-matched individuals (control) to investigate



Fig. 2. Association of baseline AD markers and whole-brain gray matter network measures with hippocampal atrophy rates. Predicted decline in hippocampal volume over time (A)
and associations of baseline AD markers (B)e(D) and whole-brain gray matter network measures (E)e(H) with subject-specific annual hippocampal atrophy rates. Longitudinal
decline in hippocampal volume over time was estimated with linear mixed models adjusted for age, sex, field strength, and total gray matter volume. To aid in comparison of
predictive performances we report standardized b � SE for (B)e(H) as estimated with linear regression analyses. Linear regression analyses included the terms for subject-specific
annual hippocampal atrophy rates as outcome and baseline values of AD markers (B)e(D) or gray matter network measures (E)e(H) as the respective predictor. Note that stan-
dardized betas for (B)e(H) estimated with linear regression analyses do not correspond to the betas in Table 2, which were estimated with linear mixed models.
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whether the observed effects were specific for preclinical AD in-
dividuals. At baseline, controls had more years of education (p <

0.05) and slightly higher gray matter volume (p < 0.065) than
preclinical AD (see Supplementary Table 3). We observed slightly
higher path length values (p < 0.065) and higher gamma, lambda,
Table 2
Effects of baseline ADmarkers and gray matter networkmeasures on cross-sectional
and longitudinal hippocampal volume

Predictor Cross-sectional effects Longitudinal effects

MMSE 0.11 � 0.07 �0.01 � 0.01
CSF total tau 0 � 0.08 �0.02 � 0.01
Gray matter volume 0.63 � 0.07b 0 � 0.01
Gray matter network measures
Size 0.04 � 0.1 �0.02 � 0.01
Degree �0.11 � 0.1 0.01 � 0.01
Connectivity density �0.06 � 0.06 0.04 � 0.01a

Clustering �0.04 � 0.07 0.04 � 0.01a

Path length 0.1 � 0.05 �0.01 � 0.01
Gamma 0.07 � 0.07 0.02 � 0.01
Lambda 0.09 � 0.06 0.02 � 0.01
Sigma 0.06 � 0.08 0.02 � 0.01

AD, Alzheimer’s disease; CSF, cerebrospinal fluid.
Data are presented as b � SE. Linear mixed models included the terms for the
baseline values of the respective predictor (e.g., baseline MMSE), follow-up time in
years and their interaction (e.g., baseline MMSE � time). Cross-sectional effects
represent the association between AD markers or gray matter network measures
and hippocampal volume when time is held constant and are given by the main
term for the respective predictor. Longitudinal effects describe the association be-
tween baseline AD markers or gray matter network measures on the rate of change
in hippocampal volume over time and are given by the interaction term for the
respective AD marker or network measure � time. All analyses were corrected for
age and gender, and additionally adjusted for field strength for gray matter volume,
and field strength and baseline gray matter volume for gray matter network
measures.

a p < 0.01.
b p < 0.001. p-values are adjusted with the false discovery rate.
and small-world coefficient values (all p < 0.05) for control than
those for preclinical AD, suggesting that networks were more
random in preclinical AD individuals. Over time, controls also
showed cortical atrophy with the steepest rate in the left hippo-
campus (b � SE; �0.1 � 0.01; p < 0.001; see Supplementary Fig. 4),
albeit at a much slower rate than preclinical AD. We found no ef-
fects of baseline whole-brain gray matter network measures or
other AD markers (i.e. CSF total tau, MMSE, and total gray matter
volume) on the rate of future hippocampal atrophy in control in-
dividuals (see Supplementary Table 4). On a regional level, higher
baseline clustering and path length values of the anterior cingulate
and precuneus were associated with faster atrophy rates in mostly
frontal and temporal regions but not the hippocampus (see
Supplementary Fig. 5; see Supplementary Fig. 6 for cross-sectional
relationships).
3.5. Effect of tau and sex on network disruptions and associations
with hippocampal atrophy rates

Finally, we investigated the potential influences of tau abnor-
mality and sex on our analyses. Individuals with abnormal levels of
total tau (n ¼ 30) were on average older, had lower levels of CSF
amyloid beta 1-42, and had lower connectivity density and clus-
tering values at baseline than those with normal levels of tau (n ¼
80) (p < 0.05; see Supplementary Table 5). There was no effect of
tau abnormality on hippocampal atrophy rates over time (see
Supplementary Table 6). When including tau abnormality as addi-
tional interaction termwith the predictors for hippocampal atrophy
we observed no significant effects, suggesting that individuals with
abnormal and normal tau levels show similar associations between
AD markers or gray matter network measures and hippocampal
atrophy rates (all pinteraction > 0.05; Supplementary Table 6).



Fig. 3. Longitudinal effects of baseline precuneal and anterior cingulate network measures on regional atrophy over time. The color bar indicates the effect strength as t ratios,
which were obtained with linear mixed model analyses with longitudinal regional gray matter volume as outcome and time, baseline network measure (e.g., clustering in the left
anterior cingulate for panel a) and their interaction (time � network measure) as predictors. Analyses were adjusted for age, sex, field strength, and total gray matter volume.
Subcortical structures are plotted in ventricular areas as approximation. Abbreviations: L, left hemisphere; R, right hemisphere; n.s., not significant. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

E. Dicks et al. / Neurobiology of Aging 94 (2020) 71e8076
Comparing female with male individuals with preclinical AD,
male individuals were on average older, higher educated, and had
higher total intracranial volume and gray matter volume, whereas
they showed lower normalized gray matter volume than female
preclinical AD individuals (p < 0.05; Supplementary Table 7). Male
individuals further showed higher network size and degree and
lower lambda values at baseline. Both sexes had similar hippo-
campal atrophy rates over time (pinteraction > 0.05; Supplementary
Table 8). Repeating analyses for hippocampal atrophy including
sex as an additional interaction term showed stronger associations
between connectivity density and clustering values with future
hippocampal atrophy rates in female preclinical AD individuals
than in male individuals (interaction b� SE; both �0.05� 0.02, p<

0.05; Supplementary Table 8).

4. Discussion

The main result of our study is that individuals with preclinical
AD who had low clustering and high path length values in early
amyloid accumulating regions (i.e. anterior cingulate and pre-
cuneus) showed faster rates of subsequent atrophy in distant
temporal and frontal regions. These results suggest that graymatter
network measures may have use for identifying those individuals
with preclinical AD who will show disease progression but before
overt atrophy.

Individuals with preclinical AD are at increased risk for cognitive
decline (Donohue et al., 2017; Parnetti et al., 2019; Vos et al., 2013).
In our sample, 25% of individuals with preclinical AD progressed to
mild cognitive impairment or dementia during follow-up, which is
in line with previous estimates (Donohue et al., 2017; Parnetti et al.,
2019; Vos et al., 2013). Furthermore, we observed that individuals
with preclinical AD who later showed clinical progression had
lower gamma values at baseline than those who remained stable,
replicating our previous observations in another clinical cohort
(Tijms et al., 2018). We further found that lower gray matter
network measures at baseline predicted future hippocampal atro-
phy rates, whereas MMSE scores, CSF total tau, or total gray matter
volume were not associated with individual rates of hippocampal
atrophy, suggesting that network measures might capture more
subtle neurodegenerative changes in very early preclinical stages.
We did not find associations between networkmeasures and future
hippocampal atrophy rates in cognitively unimpaired age-matched
individuals without amyloid or tau pathology, suggesting that these
effects were specific for individuals with preclinical AD. A practical
implication of our findings is that disrupted gray matter network
measures may have use to identify those individuals with preclin-
ical AD who will show disease progression but before the onset of
irreversible atrophy and cognitive impairment. These results war-
rant further study in multiple independent data sets to investigate
to what extent single-subject gray matter network measures can be
used for e.g. patient identification in clinical trials.

One unresolved question in AD is the seeming spatiotemporal
disconnect between the brain areas that are prone to aggregate
amyloid early in the disease and medial temporal lobe atrophy in
later disease stages. One hypothesis is that this might be driven by
network (dis)connections: disruption of local synaptic functioning
or connectivity due to amyloid (Koffie et al., 2009; Shankar et al.,
2008; Walsh et al., 2002) and subsequent early neuronal cell
death might lead to the loss of neurotrophic factors and/or absence
of stimulation and thus atrophy of connected, but still more distant
regions (Salehi et al., 2006; Seeley et al., 2009). A previous study
showed that group-based structural covariance networks were
indeed predictive for the locations of dementia typeespecific at-
rophy patterns (Seeley et al., 2009). Our results further extent on
that work by showing with our single-subject approach in pre-
clinical AD that gray matter network measures in early amyloid
accumulating regions can predict the rate of future atrophy and the
anatomical location in individual persons. It should be noted,
however, that graymatter networks reflect similarity in graymatter
morphology, or atrophy patterns, which could exist in the absence
of direct anatomical connections. Future studies should further
investigate the neurobiological basis of these findings in combi-
nation with functional measures, such as functional MRI, or
anatomical measures such as diffusion tensor imaging to further
investigate in what way these distant regions are connected.

We also found that clustering coefficient and path length values
were both related to subsequent atrophy in other distant and
different regions of the brain, respectively in temporal and more
frontal regions. This suggests that clustering and path length may
reflect different aspects of neuronal degeneration as captured with
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gray matter covariance networks. Clustering values indicate the
interconnectedness of neighboring nodes, whereas path length
measures the average shortest connections between all nodes in
the entire network (Rubinov and Sporns, 2010). Possibly, lower
clustering values (i.e. higher dissimilarity between neighboring
nodes) reflect asynchronous atrophy of brain areas that were
initially more similar to each other, whereas higher path length
values (i.e. higher dissimilarity network-wide) potentially reflect
asynchronous atrophy over the entire brain. Higher path length
values were associated with faster future atrophy rates in pre-
dominantly frontal but still widespread areas of the brain. These
regions are affected relatively late in the disease by tau pathology
(Braak and Braak, 1991). It would be of interest for future studies to
investigate how network alterations are associated with tau PET
patterns. Our analyses in age-matched individuals without amyloid
or tau pathology showed that higher clustering and path length
values were most consistently associated with faster atrophy rates
in frontal and temporal regions, which are more associated with
“normal” aging processes (Fjell et al., 2009, 2014). Our finding that
higher clustering values were associated with faster atrophy rates in
these individuals suggests that neighboring regions show uniform
neurodegenerative changes, presumably because of causes other
than amyloid aggregation. Taken together, our findings suggest that
lower clustering values might indicate AD specific atrophy, whereas
higher path length values may indicate brain alterations that might
reflect “normal” aging.

Our finding that preclinical AD showed globally lower path
length values than controls but similar local associations of higher
path length values with faster atrophy rates seems conflicting.
Additional post hoc comparisons for local path length values
showed that for preclinical AD, path length values were lower in
mostly temporal regions than those of controls (Supplementary
Fig. 7), which explains the differences in global path length
values. Importantly, local path length values did not differ between
the groups for our a priori defined target regions (i.e. anterior
cingulate and precuneus). These results and our findings of similar
local associations of higher path length values with faster atrophy
rates further support that local path length values of the anterior
cingulate and precuneus may reflect normal aging processes.

We found no associations between baseline MMSE scores, CSF
total tau, or total gray matter volume with future hippocampal at-
rophy. Individuals with preclinical AD are still cognitively normal,
and all had very high MMSE scores; so, the limited variability may
explain the lack of predictive power for hippocampal atrophy.
Furthermore, while changes in CSF total tau levels might occur
relatively early in the disease process around the same time as at-
rophy in the hippocampus starts (Bateman et al., 2012), previous
studies in individuals with preclinical AD also did not find direct
associations between levels of CSF total tau and hippocampal
(Wang et al., 2015) or entorhinal cortex atrophy (Desikan et al.,
2011), which is in line with our findings. In addition, the observed
associations between network measures and hippocampal atrophy
did not depend on tau abnormality, and there were no differences
between individuals with abnormal and normal levels of total tau in
gray matter network disruptions (when accounting for age differ-
ences). Possibly, this indicates that CSF total tau levels and gray
matter network disruptions may reflect different aspects of neu-
rodegeneration. In line with this explanation, we previously also
found that when predicting clinical progression in predementia AD,
gray matter network measures contained predictive information in
addition to CSF total tau levels (Tijms et al., 2018). Another previous
study reported higher clustering values for individuals with
abnormal levels of phosphorylated tau in CSF (Cantero et al., 2018).
Possibly, the discrepancy with our results is that those individuals
had normal amyloid levels, which has also been called “suspected
non-AD pathophysiology” or “SNAP” (Jack et al., 2016) which re-
flects other disease causes than AD. Possibly, gray matter networks
change differently depending on the underlying pathology, and
future research should further investigate gray matter network
alterations in SNAP populations. In addition, baseline total gray
matter volume and precuneus and anterior cingulate volumes were
not associated with future hippocampal atrophy, suggesting
measurable, gross atrophy had not manifested yet in these in-
dividuals. These findings are in line with the notion that whole-
brain gray matter network measures contain more information
than more simple volumetric measures and suggest that network
measures can predict hippocampal atrophy before irreversible
overt atrophy and cognitive impairment manifest.

Finally, we observed that the associations of connectivity den-
sity and clustering values on hippocampal atrophy were stronger
for female than for male individuals, whereas there were no sig-
nificant differences between female and male individuals in base-
line network measures or hippocampal atrophy rates over time.
While to date, no study has investigated the effect of sex specifically
on graymatter disruptions in AD, this result seems to be in linewith
other studies showing that female individuals who have higher
levels of amyloid show relatively faster hippocampal atrophy or
cognitive decline as compared with male individuals and as such
hint at potentially higher susceptibility for AD pathology in women
(Buckley et al., 2018; Koran et al., 2017). Future studies should
further investigate potential implications of sex differences for in-
dividual patient-based measures on their e.g. gray matter network
measure profile.

A potential limitation of our study is that although this is the
largest longitudinal data set on preclinical AD available, with in-
dividuals followed up to nine years, the median follow-up dura-
tion was of 2.2 years. Therefore, we cannot exclude the possibility
that more individuals would have shown disease progression if
they would have been followed up for a longer period of time.
Still, even within this relatively short median follow-up duration,
we were able to observe a relationship between baseline gray
matter network measures and subsequent atrophy. Another po-
tential limitation of this study is that, while we ensured that scans
of the same field strength were included within subjects, field
strengths differed between individuals. To account for this, we
included field strength as covariate in our analyses, and although
we cannot exclude that this might have influenced our results,
previous studies in ADNI have shown similar atrophy rate esti-
mates for 1.5 Tesla and 3 Tesla scans (Dicks et al., 2019; Ho et al.,
2010). A strength of this study is the use of our method to
construct individual participant level gray matter networks,
whereas previous approaches only allowed to construct 1
network across a group of individuals. This method enabled us to
investigate associations of gray matter network measures and
atrophy rates within individuals. Furthermore, gray matter net-
works were reconstructed from structural MRI, which is routinely
acquired in patient care and therefore has high potential to
translate to daily practice.
5. Conclusion

In conclusion, we showed that lower gray matter network
measures in early amyloid accumulating regions predict the rate
and anatomical pattern of future atrophy in cognitively normal
individuals with abnormal amyloid markers. These results suggest
that gray matter network measures are a sensitive measure to
detect future gray matter atrophy and so may be useful as a tool to
select individuals for potential prevention opportunities in the
earliest stages of AD.
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