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A bstract

The thesis studies redescending M-estimators for the ordinary linear regression 

model, and maximum likelihood estimators for heteroscedastic regression models. 

In general, redescending M-estimators do not yield unique estimates of the model 

parameters, and the thesis shows that the difficulties associated with this have 

not always been fully appreciated in the literature. This motivates the develop­

ment of an approach whereby unique redescending M-estimates can be reliably 

obtained. This is achieved by embedding the linear model within a multivari­

ate t location-scatter framework, which is known in the literature for its desirable 

uniqueness properties. M-estimates derived from the conditional t distribution are 

also considered, but it is shown that the resulting objective function is intrinsically 

multimodal, with modes of infinity.

The nonregularity result for the conditional t model is found to have impli­

cations for heteroscedastic regression models. Two classes of commonly proposed 

models are considered. The first is found to yield an unbounded likelihood at 

points corresponding to nonreplicated observations, whilst for the second a much 

stronger linear independence condition is obtained for the likelihood to be un­

bounded.

The thesis concludes with a discussion of efficient methods for testing analytical 

conditions arising from the preceding studies.

Keywords: conditional distribution, heteroscedastic regression, mean-variance re­

lationship, multimodality, multivariate t distribution, redescending M-estimator, 

robust regression, singularity, uniqueness.
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Introduction

The work reported here relates to the study of redescending M-estimators for 

the ordinary linear regression model and maximum likelihood estimators for het- 

eroscedaatic regression models. The connection between these topics arises from 

the development of an approach that overcomes the well-known uniqueness prob­

lems associated with redescending M-estimators.

An M-estimator is one of many estimators that define statistics which are 

in some sense robust (Hampel, Ronchetti, Rousseeuw, and Stahel, 1986). Such 

estimators arise from the need to construct procedures which are not too sensitive 

to deviations from assumptions, such as normality and independence, that form 

the foundations upon which many classical procedures are built. For example, 

a common type of deviation is the presence of outliers, namely data which are 

away from the pattern set by the majority. These may be due to a genuinely 

long-tailed distribution or perhaps mistakes made in data collection and can, for 

example, have an arbitrarily large effect on estimates obtained from methods of 

least-squares.

Robust methods probably date back to the prehistory of statistics (Hampel 

et al., p. 34), although a general theory regarding robust estimation has really 

only evolved over the last thirty years or so. A key development in this area 

was the introduction of the M-estimator (Huber, 1964) for robust estimation of a 

location parameter, and generalisations to more complicated estimation problems 

have followed. Of particular interest are the so-called redescending M-estimators,



which are attractive in terms of their robustness properties but do not usually 

guarantee unique estimates of the model parameters. This has led to research 

into obtaining sufficient conditions under which a given sample will yield a unique 

redescending estimate, but these are not always useful. It is therefore of interest 

to consider an approach whereby unique redescending M-estimates can be reliably 

obtained, and this provides the principal motivation for the work presented here, 

which is structured as follows.

Chapter 1 presents an introduction to M-estimators and reviews the case for us­

ing the sub-class known as redescenders. This discussion is continued in Chapter 2 

where attention is brought to an important, but generally unrecognised difficulty 

that can arise within the redescending framework. This is found to affect strongly 

the uniqueness results for the linear model obtained by Rivest (1989), and provides 

further motivation for the development of a new redescending approach.

Such an approach is considered in Chapter 3, where it is proposed that unique 

redescending estimates may be obtained if the linear model is embedded within 

a multivariate location-scatter model. Sufficient conditions for the existence of 

unique estimates in the location-scatter caise have been developed by Kent and 

Tyler (1991), and these are of particular use when applied to the multivariate t 

distribution. Unique estimates for the linear model parameters are obtained from 

unique redescending estimates of location and scatter, and examples based on real 

data sets presented. They suggest that the multivariate t approach is a useful 

addition to the methods for robust regression already available. M-estimates 

derived from the conditional t distribution are also considered, but it is shown 

that the resulting objective function is intrinsically multimodal, with modes of 

infinity.

In Chapter 4 the nonregularity result for the conditional t model is found to 

have wider implications. It is observed that the essence of the problem lies in the 

heteroscedastic form of the conditional t model, and this motivates a more gen­

eral investigation of heteroscedastic regression models. Two classes of commonly



proposed models are considered. The first is found to yield an unbounded likeli­

hood at points corresponding to nonreplicated observations, whilst for the second 

a much stronger linear independence condition is obtained for the likelihood to be 

unbounded. Numerical examples explore the practical difficulties that can arise 

in these cases.

Chapter 5 discusses efficient methods for testing two existence conditions aris­

ing from the multivariate t and heteroscedastic regression studies, and concluding 

remarks are presented in Chapter 6 . Some computational details are included in 

Appendix A.



Chapter 1

M -estim ators

This chapter presents background material in order to ‘set the scene’ for following 

chapters. It is divided into two sections. The first provides an introduction to 

M-estimators and how they are defined for the linear model. The second section 

deals with the sub-class known as redescending M-estimators.

1.1 Introduction

1.1.1 Simple Location M odel

The definition of an M-estimator may be motivated by considering the method of 

maximum likelihood estimation for a one-dimensional location parameter. Sup­

pose X i , . . .  are independent and identically distributed (i.i.d.) one-dimensio­

nal random variables. A parametric model may be defined as a family of probabil­

ity distributions Fq on the sample space, indexed by an unknown location parame­

ter 6 belonging to some parameter space 0 . Denoting the densities as fe the well- 

known maximum likelihood estimator is defined as the value T„ =  Tn(ATi,. . .  ,X„) 

which maximises H* or equivalently by the value T„ which minimises

~  log/r„(A^t)- Huber (1964) proposed that minimizing some other function



may achieve more robustness, and so considered estimators that can be defined 

by a more general minimization principle of the form:

Tn minimises (1 .1 )
1=1

where p is a non-constant function. If p has a derivative xj)(x^O) =  (dldO)p(x^O)^

then for useful choices of p the estimator satisfies the implicit equation

è v - (^ ; ,r n )  =  0. (1.2)
*=1

D efin ition  1 .1 . Any estimator defined by (1.1) or (1.2) is an M-estimator.

Though (1 .1 ) and (1.2) are not always equivalent, for the sake of brevity M- 

estimators are often defined through a given ^-function. For example, ÿ  =  —f ' / f  

is equivalent to maximum likelihood estimation. Typically ^  is odd and, if strictly 

monotonically increasing, will yield a unique solution to (1 .2 ) due to the convexity 

of p. Otherwise a solution to (1 .2 ) may not be unique and difficulties may arise. 

These are discussed in Section 1.2 and in Chapter 2. There follow some examples 

of monotone ■0 -functions.

E x am p le  1 . 1 . The Huber M-estimator (Huber, 1964) with cut-off point c is given

by

0 c(z) =  min{c,max{x, —c}}

for 0 < c < GO. It has minimax variance over the distributions contained in 

a particular neighbourhood of the normal distribution (Hampel et al., 1986, p. 

172).

E x am p le  1 .2 . A similar, and perhaps aesthetically more pleasing example arises 

from the distribution function of the scaled logistic distribution F(j(x) =  { 1  -f 

exp(—a:/<j)}"^, for which we obtain the strictly monotone

0a(x) =  {2F^{x) -  1}/(T,

10



where 0  < a  < oo. The scale parameter a  is equivalent to the Huber cut-otF 

point c in that the larger c and cr are, the more similar the solution will be to 

least-squares, whilst smaller values tend to give more robustness.

Robustness properties of an estimator may be obtained via the influence func­

tion (Hampel et al., 1986, p. 84). It describes, at some underlying model distri­

bution F , the effect of an infinitesimal contamination at a point on an estimator, 

standardised by the mass of the contamination. For M-estimators it reduces to

(Hampel et al., 1986, p. 103), under the assumption that the denominator is 

nonzero. Among the measures that can be derived from the IF are the following 

(Hampel et al., 1986, pp. 85-88): the asymptotic variance of the estimator, which 

is simply the expected square of the IF; the gross-error sensitivity of ÿ  at given

by

7 * =  su p |IF (a ;;ÿ ,F ) |;
X

and the rejection point

p* = inf{r > 0; lF{x;xj^,F) =  0 when |ar| > r}. (1.3)

(If there exists no such r, then p* =  oo.) Thus all observations further away 

than p* are rejected completely. The Huber and logistic M-estimators both have 

p* = oo. M-estimators for which p* is finite will be discussed in Section 1.2.

The gross-error sensitivity measures the worst influence which a small amount 

of contamination of fixed size can have on the value of the estimator, and so it 

is extremely desirable that 7 * be finite. In such cases ÿ  is described as B-robust 

at F. It can be shown that, if F  has a unimodal and symmetric density /  that 

satisfies certain differentiability conditions (Hampel et al., 1986, p. 125), then ÿ  

is B-robust if and only if |ÿ | is bounded (Hampel et al., 1986, p. 132). It follows 

that the V’-functions considered in Examples 1.1 and 1.2 are B-robust for such F.

11



Furthermore, for a given upper bound on 7 *, the Huber ^  is optimal (in terms 

of asymptotic variance) B-robust at F  = Clearly an estimator cannot be B- 

robust if ÿ) is unbounded: for example, the sample mean is not B-robust, since it 

corresponds to ^p(x) =  x.

1.1.2 Linear Regression M odel

We now move on to consider the linear regression model, which contains the loca­

tion model as a special case:

î/i =  xfp-f-e.-, (1.4)

where {(j/i,x,): i =  1 , . .  . ,n} is a multivariate sample of size n for y* € R and 

X,- G R^, 3 is a vector of unknown parameters belonging to R^ and the {e,} 

are i.i.d. with distribution function F(e*/cr), where <j >  0  is an unknown scale 

parameter. The form of (1.2) can be easily extended to cope with this more 

complicated estimation problem. A more general form of (1 .1 ) defines the M- 

estimator for 3 (Huber, 1973; Hampel et al., 1986, p. 311) as the value 3 that 

minimises

or, on taking derivatives, solves the vector equation

(1.6)

where again, ÿ  =  p'. Thus p[i) = defines the least-squares estimator. There

remains the question of estimating cr. A natural approach is to consider an M-

estimator for cr, which may be defined as the solution of

g x ( ^ ) = 0 .  (1.7)

12



where % is some given function. For example, if we take %(t) =  sgn(| 11 — 0.6745), 

(Hampel et al., 1986, p. 107), we obtain

which is a robust estimator for scale. The division by % 0.6745 ensures

Fisher-consistency (Hampel et al., 1986, p. 83) when the data are normally dis­

tributed. Estimates ^ and d of P and cr may then be calculated by solving the 

system of equations (1 .6 ) and (1.7). Algorithms for this task are considered by 

Huber (1981, Chapter 7).

Unfortunately, the M-estimator defined by (1.6) can only have bounded in­

fluence with respect to outliers in the response variable (Hampel et al., 1986, p. 

313). Robustness against outliers in the x  space may be obtained via a generalised 

M-estimator for defined as a solution to

è  {Vi -  x f  P)/(T}x, =  0 (1.9)
t=l

(Hampel et al., 1986, p. 315), where the function 77 may be written in the form

?7(x,]() =  w{x)  • -0 (f • u(x)).

The Huber M-estimator thus corresponds to w{x)  =  v{x)  =  1. Robustness against 

outliers in the x space is achieved through the weight function w, which involves 

a robust covariance matrix in the x  space, to be determined by the solution of 

further implicit equations. For details, see Hampel et al. (1986, pp. 315-328).

1.2 Redescending iVf-estimators

1.2.1 General Remarks

We return now to the Huber M-estimator (1.6). In the preceding section it was 

mentioned that, if ÿ  is not monotonically increasing, then difficulties may arise

13



from non-unique solutions. This is important since non-monotone ^-functions are 

of great interest. The main examples of such functions are the so-called redescen­

ders, and these are considered in the present section.

The motivation for redescending M-estimators arises from the rejection point 

p* (1.3). Hampel et al. (1986, p. 8 8 ) say that it is desirable for p* to be finite, 

that is to say for M-estimators that there exists a fixed constant 0 < r  < oo such 

that ÿ(f) =  0 for all | f | > r. M-estimators with such ÿ-functions are described by 

Hampel as being redescending. However, this definition has not always been used 

in the literature: for example, Maronna and Yohai (1981) and Novovicova (1990) 

use the term to describe functions such that ÿ(f) 0 as 11 1 — oo, and Holland 

and Welsch (1977) use the terminology “soft redescender” to describe ^-functions 

that merely tend to zero, and “hard redescender” when Hampel’s condition is sat­

isfied. Indeed, “soft” redescenders, such as that used in the maximum likelihood 

estimator for the Cauchy distribution, give very little influence to extreme obser­

vations and behave almost like estimators with low rejection point, even though 

their rejection point is infinite (Hampel, 1974). Following Kent and Tyler (1991) 

who use the term “strong redescender” for ^-functions that vanish outside some 

central region, we shall observe the following:

D efin ition  1 .2 . If xp(t) ^  0 as | —»• oo, ÿ  is weakly redescending. If ÿ(^) =  0 

for 111 >  r, where 0  < r  < oo, ^  is strongly redescending.

It should be noted that the distinction between the two is important, as some 

conditions related to the existence and uniqueness of redescending M-estimators 

do not apply in both cases (Kent and Tyler, 1991). Here then, are some examples 

of redescending "^-functions, illustrated graphically in Figures 1.1, 1.2 and 1.3:

E x am p le  1.3. A strong redescender is obtained from a single cycle of the sine

14



function^ advocated by Andrews (Andrews et al., 1972):

V’s in ( a ) ( 0  —
sin (t/a)  if I i I < ott, 

0  otherwise.

E x am p le  1.4. In Andrews et al. (1972) Hampel proposed a three-part (strongly) 

redescending M-estimator:

^a,6,r( 0  —

t

asgn{t)
( r - \ t

- b

0

if 0  <  1^1 <  a, 

i î a < \ t \ < b ,  

sgn(t) if 6 <  111 <  r, 

otherwise,

where 0 < a < b < r <  oo.

E x am p le  1.5. A weakly redescending M-estimator is obtained from the p-dimen- 

sional t distribution on i/ > 0  degrees of freedom:

{u + p) t
W t e

All redescending M-estimators are B-robust since |ÿ | is bounded by definition 

(Hampel et al., 1986, p. 153). However, it is their ability to reject extreme out­

liers which makes them preferable to monotone ^-functions. Hampel et al. (1986, 

pp. 166-167) compare the asymptotic variances for some strongly redescending 

location M-estimators with those of the Huber and scaled logistic M-estimators. 

They find that the Huber and logistic are the most efficient at the normal model 

and that they do well at relatively short-tailed distributions. However, their vari­

ance goes up considerably at distributions which produce large outliers, where the 

redescenders are up to 20% more efficient. At such distributions, the monotone ÿ  

suffer in that they can never reject an outlier, no m atter how far away.

15
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Figure 1 .1 : Andrews’ sine function.

-b—r - a

Figure 1.2: Shape of Hampel’s three-part redescending ÿ»-function.

Figure 1.3: Shape of the weakly redescending M-estimator.
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1.2.2 The Uniqueness Problem

Though the motivation for using redescending M-estimators is clear, their lack of 

monotonicity ensures that if a solution to (1.6) exists, it may not be unique. To 

counter this difficulty, several approaches have been proposed. Klein and Yohai 

(1981), in a study of asymptotic behaviour, overcome the difficulty by defining 

the estimate as the limit (if it exists) of a given iterative sequence, and Huber 

(1981, p. 192) suggests that one might ‘start with a monotone ÿ , iterate to death, 

and then append a few (1  or 2) iterations with the non-monotone However, 

Huber does not discuss the choice of monotone ^  or the adequacy of the solution 

thus obtained. This is perhaps not too surprising, given his earlier comments (p. 

103) to the effect that, in his opinion, the difficulties associated with redescenders 

more than offset the improvements in asymptotic variance obtained at heavy-tailed 

distributions.

A similar approach is to compute only a one-step M-estimator (Bickel, 1975), 

where the estimate is computed from one iteration of a Newton-Raphson type 

algorithm, using a robust estimate for the starting value. For non-monotone ÿ  

the estimator is safe in that the problem of uniqueness is avoided, but the approach 

is somewhat circular in that one requires a robust estimate in order to obtain a 

robust estimate.

For the regression problem, a very robust starting value for P is the least median 

of squares estimator (Rousseeuw, 1984), defined as the value that minimises

m s  =  M E D { ( ÿ i - x f p f }

over P, but this proposal presents great computational difficulties, though algo­

rithms are available (Souvaine and Steele, 1987).

Rather than develop alternative computational strategies, one might consider 

obtaining sufficient conditions for a system of estimating equations to yield a 

unique solution. This can be done even if one specifies only that the equations are 

real-valued and continuous (Zeidler, 1986), but the price paid for such generality

17



is that the conditions obtained are extremely strong, and almost impossible to 

test for all but the simplest of problems. Conditions have been developed for 

the Af-estimation framework by, for example. Maronna and Yohai (1981) and 

Rivest (1989). However, these do not seem to provide a straightforward means 

of testing the uniqueness (or indeed existence) of a solution to (1.6). Indeed, 

the results in Rivest (1989) warrant detailed consideration, for in the event that 

(1.6) does not admit a unique solution, Rivest defines P as the value of P that 

corresponds to the global minimum of (1.5). The tacit assumption is that the 

global minimum is attained at a unique value of p. However, this need not be the 

case, as demonstrated in the next chapter.

18



Chapter 2

On the uniqueness o f M’-estim ates

2.1 Introduction

Rivest (1989) considers the uniqueness of M-estimators for the linear model (1.4). 

The M-estimator of (3 is defined as the solution of

where c is a ‘positive constant of robustness’, and a is to be estimated by (1.8). It 

is noted that (1 .8 ) is a special case of a generalised estimator for <7 , given by the 

solution to

(2.2)

where %(f) is an even function, increasing in [0, oo), and 7  =  E [%(%)], where Z  

is a A/’(0 ,1) random variable. One of Rivest’s objectives is to obtain sufficient 

conditions concerning ^  and % so that the non-linear system (2 .1 ) and (2 .2 ) has 

a unique solution; however, they do not seem to be complete. Defining ÿt(^) =  

0 (</Â;), the non-linear system

è  -  x fP )  =  0 (2.3)
1=1

19



is considered. For monotonie ip, the system admits a unique solution P*; in the 

contrary caae, Rivest defines Pt as the solution of (2.3) which minimises

For a given P;t, Rivest also defines

Rivest claims that for strongly redescending tp the definition of p t excludes from 

the study all the solutions of (2.1) and (2.2) which do not minimise (2.4). However, 

the possibility that (2.4) does not uniquely define Pit has not been acknowledged.

To examine the uniqueness of the solution to (2.1) and (2.2), Rivest states that 

an equivalent problem is to find a value of k for which k =  and proceeds to 

consider k/ck  as a function of k. If k/(Tk is increasing, he writes, the system has 

a unique solution for all c. By way of example, for various ÿ  and sets of data 

Rivest evaluates the function k/(Tk at 60 equidistant values of k  ̂ and the points 

{kjk/(7k) thus obtained are joined to form a continuous curve. By joining the 

points Rivest implicitly assumes continuity, but this need not be the case. For 

example, if at some k the global minimum of (2.4) is attained at more than one 

value of p, then Pit will not be uniquely defined. This means that CTk will not be 

uniquely defined either, and so the function k/ak  need not be continuous at values 

of k corresponding to a switch from one solution to another. Examples of this 

behaviour are given in the next section, and these are followed by discussion of 

the implications for Rivest’s analytical conditions.

2.2 Examples

E x am p le  2 .1 . Consider the univariate case =  x^P, where fi is the location 

parameter of a Cauchy density with scale parameter a:

a
7r{a2 +  (y- / i )2}  

20



0.025

0.020 -

^  0.015 -

0.010 -

0.005

0.030 0.035 0.0400.010 0.015 0.020 0.025

Figure 2.1: Discontinuity from use of Cauchy Af-estimator on clustered data.

Take ÿ  =  —f ' / f  as a weakly redescending function, and without loss of generality 

take c =  1 . The estimator fik is thus defined as the solution of

E = 0. (2.6)
■tï +  iVi -

For the highly clustered data set

y = (-1 .03, -1.02, -1.01, -1.00, -0 .2 , -0.1,0.95,1.0,1.05,1.10,1.12),

solutions to (2.6) satisfying (2.4) were found for 100 equidistant values of k in 

the range (0.01,0.04), and the points {k,k/ak)  thus obtained are presented in 

Figure 2.1.

The discontinuity present at A: % 0.0255 is caused by a switch in the estimate 

of the location parameter /z from the cluster around -1 to that around -f-1. This 

can be seen in the plots of p{{yi ~  p) / ^}  against /z (i.e. minus the log-likelihood 

against /z) presented in Figure 2 .2 . For large k the function becomes unimodal, 

and non-uniqueness is no longer a problem, but for k 0.0255 there exist two 

values of /z that minimise (2.4), and so crjt is not uniquely defined. (It should be

21
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Figure 2 .2 : pliVi ~  p) / k}  as a function of /i, with data points denoted by “x ”,
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noted that in the narrow range of values for k considered here, the slow change in 

the estimates /zjt either side of the discontinuity gives rise to a near constant cTk] 

hence the linearity present in Figure 2.1).

E x am p le  2.2. Rivest gives an example based on the “Stack-Loss” data (Brown­

lee, 1965), comprising 21 observations on y =  stack-loss and three covariates. 

Using the strong redescender 0  =  V>sin(o), with a =  1/tt, Rivest obtains a continu­

ous graph of the function k/ak. However, it includes a suspiciously steep drop in 

the region of A: =  6.2. When examined in detail, this is found to be a discontinuity 

caused by the same problem outlined in Example 2.1. For instance, at A; =  6.164, 

both

0.808 
0.548 

\  -0 .070y

and =

^-39.098^ 
0.890 

10.537 
-0 .094y

are solutions to (2.3), with minimising (2.4). This yields ak = 1.4966. How­

ever, aX k = 6.1645, is the solution that minimises (2.4), giving ak =  1.6503. 

There exists a A;* % 6.16435 for which the solutions give the same value of (2.4), 

and so ak* is not uniquely defined. The function k/ak is therefore not continuous, 

as shown in the magnified section of Rivest's graph given in Figure 2.3.

The question arises as to which of the estimates for pjt* one should take. An 

additional criterion may be to choose the one with minimal residual sum of squares. 

However, when other values of k are considered, this is not necessarily consistent 

with (2.4). For example, p6!i64 above minimises (2.4) but has a smaller

residual sum of squares. In any case, Rivest's method for examining the function 

k/ak  is clearly inadequate, and in the light of this result, other examples presented 

by him may also require correction.
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Figure 2.3: Discontinuity from use of sine M-estimator on Stack-Loss data.

2.3 Analytical Conditions

The implications of the previous discussion for Rivest’s analytical conditions are 

now considered. Further to the generalised estimator for the scale parameter 

defined by (2 .2 ), let ak be the solution to

Rivest argues that the non-linear system (2 .1 ) and (2.2) has a unique solution for 

a given value of c if

(2.7)

has a unique solution, and that therefore, in considering without loss of generality 

the case c =  1 , this is equivalent to ^xt (y*  — x^P t) being a decreasing function 

of k, where Xk{t) =  x(V^)* Following the results of Section 2.2, this argument 

is flawed, for values of k may exist where Pt minimising (2.4) is not unique. 

Therefore, '^XkiVi — xfP^) may be decreasing, but due to a discontinuity there 

may exist a value of c for which (2.7) has no solution, let alone a unique one. For
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Figure 2.4: Second Cauchy M-estimator example. Note that k/ak  increases mono- 
tonically for Â; > 2 .

example, returning to the Cauchy M-estimator of Section 2.2, if the data set is 

changed to

y =  ( - 1 . 1 ,  - 1 . 0 5 ,  - 1 . 0 3 ,  - 1 . 0 ,  - 0 . 9 7 ,  - 0 . 9 5 ,0 . 9 7 ,1 .0 3 ,1 .0 5 ,1 .1 ,1 .2 ,1 .3 5 ,1 .5 ) ,

the k/cTk function given in Figure 2.4 is obtained, where 20,000 equidistant values 

of k are taken in the range (0 .0 0 0 1 ,2 .0 ) .  Here, at A: % 0.0714, the discontinuity 

jumps in the opposite direction to that shown in Figure 2.1, and since —»■ 0

85 A; 0 , it seems that there exist values of c for which =  c has no solution. 

Therefore, Rivest’s argument would be more accurately expressed by saying that 

if the function kja^  is increasing, then the system has at most a unique solution 

for all c.

Turning now to the analytical conditions, whilst assuming that ^  and % are 

differentiable, with derivatives and x ' respectively, Rivest suggests that the
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-1
Tri -  x /

»=1 .3=1 i= i

function X) Xk{yi — x f  pjt) is decreasing for a given value of k if and only if

x K n ) >  0  (2 .8 )

where r,- =  y,- — '4>'k[y) =  i^'{ylk) and Xk{y) ~  x \ y ! ^ )  for values of k for

which is an invertible matrix. Furthermore, in the case where the

scale parameter is defined by (1.8), Rivest proposes that the system (2.1) and (1.8) 

has a unique solution if, for all k and for all z =  1 , . . .  , n,

- 1

0.6745 > SixJ
i=i 3=1

(2.9)

provided that ^DxjxJV’U^i) is invertible, where s,- =  sgn(r,).

Two points arise here. Firstly, it has already been shown that ÿ  and % cannot 

be assumed to be continuously differentiable, and so the validity of (2 .8 ) and

(2.9) as conditions for uniqueness requires clarification. For example, (2.9) may 

be satisfied for all k where is defined, but the behaviour of the function k/(7k 

at discontinuities and its effect on the existence of solutions to (2 .1 ) and (1 .8 ) 

remains unclear. Secondly, even if some proposed condition for the existence of

for all k is satisfied, it is not immediately obvious how the conditions (2 .8 ) and

(2.9) may be put to profitable use, for to test (2.9) one is apparently faced with 

the task of finding |3jt for aU & — a non-trivial problem in all but the simplest

cases.

2.4 Discussion

Attention has been drawn to a problem that all too easily may be overlooked. 

That the system of equations (2.3) may not have a unique solution has been 

appreciated by Rivest, but he has not considered the possibility that the solution 

corresponding to the global minimum of (2.4) may also be non-unique. In this he 

does not appear to be alone, for in comments on the non-uniqueness of strongly
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redescending M-estimates for the univariate case, both Huber (1981, p. 54) and 

Hampel et al. (1986, p. 152) state that one way of overcoming the problem is to 

take the global minimum. This is curious, since when discussing the linear model, 

Hampel et al. (1986, p. 339) note that there may be multiple global solutions to 

the minimization problem.

In considering solutions to (2.3), it has been demonstrated, in examples using 

both artificial and real data, that even the “optimal” estimate of the regression 

parameter Pt, in the sense of minimising (2.4), is not necessarily unique. This 

suggests that, if redescending ^-functions are to be used, then the estimator for 

P should be defined in a different way. An alternative definition is considered in 

the following chapter.
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Chapter 3

Unique R edescending

iU -estim ates for the linear m odel

3.1 Introduction

In the previous chapter we saw the complications that can arise when using re­

descending M-estimators for the linear model. In this chapter, a redescending 

approach is developed that does not suffer these drawbacks, since unique esti­

mates will, in general, be obtained. This is achieved by application of recently 

developed results for the existence of unique weakly redescending M-estimates 

for the location-scatter model, and in particular, for location-scatter estimates 

corresponding to the multivariate t distribution.

A p-dimensional t distribution on i/ > 0 degrees of freedom gives rise to a 

weakly redescending ^-function:

(3 1 )

This ^  is appealing in that the degrees of freedom parameter i/ may be regarded 

(IS a parameter of robustness: as can be seen from (3.1), the degree of down-
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weighting on outliers increases with decreasing i/, and since in the limit as i/ —+ oo, 

—*■ t, (3.1) includes least-squares as a special case.

The t distribution has been widely considered as an alternative to the strict as­

sumption of normality that is often made in classical statistical inference. Maronna 

(1976) presents an example using t M-estimates for multivariate location and scat­

ter, and Pendergast and Broffitt (1985) mention the t distribution as a potential 

M-estimator for growth-curve models. Zellner (1976) considered inference un­

der an assumed multivariate t distribution on the vector of errors in the linear 

regression model, and Sutradhar and Ali (1986) generalised this to multivariate 

regression. However, the models contained therein are of no use in the context 

of robust regression, since the resulting objective function is maximised at the 

least-squares estimate.

Lange, Little, and Taylor (1989) report a study of maximum likelihood esti­

mation for regression models with assumed t errors, and note its equivalence to 

redescending M-estimation. However their approach to the uniqueness problem of 

redescending M-estimators is given thus: ‘multiple maxima of the likelihood seem 

possible, particularly when u is small; however, we did not find any for our prob­

lems’. Since Gabrielsen (1982) notes that one can show that for all i/ and all linear 

models, there exist, with probability greater than zero, data such that the joint 

likelihood for the regression parameter and the scale parameter is multimodal, the 

acknowledgement of Lange et al. that ‘widely distributed software should recog­

nize and deal with the possibility of multiple maxima of the likelihood’ is certainly 

a valid one.

Unique t M-estimates may be obtained if the linear model is embedded within 

a multivariate location-scatter framework. Some uniqueness results related to 

the location-scatter model are reviewed in Section 3.2, and particularly how they 

apply to the multivariate t distribution. Unique redescending t M-estimates for 

the linear model are then obtained from within the location-scatter framework by 

utilising a standard result for the form of a conditional location parameter of an
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elliptically symmetric distribution. Examples based on real data are presented in 

Section 3.3. For many data sets it is not reasonable to embed the covariates within 

a multivariate t framework. Therefore, in Section 3.4, we consider M-estimates 

derived from the conditional t distribution, so that, as with least-squares, estimates 

may be defined without regard to the joint marginal distribution of the covariates. 

However, it is shown that the resulting objective function is extremely nonregular, 

being, in general, unbounded at each of the data points. Attempts to obtain 

estimates from a local mode are generally not successful. Finally, the merits and 

limitations of the methodologies used are discussed in Section 3.5.

3.2 M ultivariate t M ethodology

3.2.1 Location-Scatter M odel

The existence and uniqueness of redescending M-estimates for the multivari­

ate location-scatter model have been considered by numerous authors, includ­

ing Maronna (1976), Tyler (1988) and Kent and Tyler (1991). Specifically, let 

{zj : i = l , . . . , n } , b e a  data set in and denote Vp aa the set of symmetric p x p  

positive definite matrices. Kent and Tyler (1991) consider estimates p € and 

è  € “Pp to maximise objective functions of the form

i ( n ,  S ) =  - in lo g  |S | -  n f  S - ‘ (zi -  n )} , (3.2)
t=l

where p is continuous. If p is differentiable, then setting the derivative of (3.2) 

with respect to p and S  to 0  yields the estimating equations

p =  ave{w,z,}/ ave{wj, (3.3)

é  =  ave{w,(z, -  p)(z,- -  p)^}, (3.4)

where w,- =  u(s,), u(s) =  2p'{s) and s,- =  (z,- — p)^S~^(z,- — p). Here “ave” stands

for the arithmetic average over i =  l , . . . , n .  Kent and Tyler give a sufficient
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condition for the existence of a unique solution p € S  € to (3.3) and

(3.4) for the weakly redescending case (which in their notation implies s^/^u(s) is 

increasing near 0  and decreasing near oo), and as an example consider multivari­

ate t M-estimates. Such estimates correspond to the solutions of the likelihood 

equations for the location-scatter families of elliptically symmetric t distributions 

(Cornish, 1954) on z/ > 0 degrees of freedom. In this case the log-likelihood, up to 

an additive constant independent of p and S , is given by (3.2) with p{s) taken as

Pu{s) =  i(z/ -t- p) log {(z/ +  s) lu )  , 

and the likelihood equations correspond to (3.3) and (3.4) with u(s) taken as

U:,(s) =  (z/ +  p)/(f/ +  s).

The sufficient condition for the existence of a solution (fi^, Sj,) is then:

Condition D*. For any hyper plane i f  G with 0 <  dim (if) <  p — 1, 

Pn{H) < {z/ -h d im (if)}/(p -\- v).

Here, Pn(‘) denotes the empirical distribution of the {z,}. This condition becomes 

increasingly strict as z/ decreases, as the upper bound on the proportion of data 

points lying in lower dimensional hyperplanes also decreases.

Kent and Tyler also prove that, for z/ >  1 , if a solution exists it will be 

unique, and they note that when sampling from continuous distributions in R^, 

Condition D* holds with probability 1 for samples of size n > p -f 1. However, 

the effectively discrete nature of real data may negate this welcome property, and 

so the question of whether or not to test Condition D* must be addressed. Since 

the sufficient condition D* can be made a necessary condition for the existence 

of a solution (p^, Sj,) by replacing the strict inequality with a simple inequality, 

in order to demonstrate that a solution does not exist we must find, for some q 

such that 0 < g < p  — 1 , a subsample of size Uq > n {{u q) /  { p u ) }  that lies 

in a hyperplane of dimension q. An efficient method for verifying the existence of
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such a subsample is discussed in Chapter 5. However, in practice, if an estimate is 

obtained, it must be unique. The results on uniqueness do not apply for 0 <  z/ <  1.

3.2.2 Linear Regression M odel

The linear model is embedded in the location-scatter framework as follows. Let 

us interpret a p-dimensional observation (y ,x^) from the linear model as an ob­

servation =  (zi , . . . ,  Zp) from a multivariate <p(p, S,z/) distribution; i.e. for 

z =  (z i , . . . ,  Zp)^,

/(z )  =  c„,p |sr*/^ { l +  (z -  -  n)/i/} ,

where is a normalizing constant independent of p and S  (Mardia, Kent, and 

Bibby, 1979, p. 57). For samples of size n > p -f 1 , and values of z/ >  1, there is a 

unique estimate (p^, if Condition D* holds for the sample. Hence a unique esti­

m ate p of the parameter for the “regression” of Zi on (Z2 , . . . ,  Zp) may be obtained 

from the component-wise location parameters of the conditional distribution of 

Zi I Z2 , . . . ,  Zp. More generally, consider the partition z =  (z f z^)^, p =  (p f 

and
S ii  S 12

^ 1 2  ^ 2 2

where z,-, p,- G {i =  1 , 2 ) with pi +  P2 =  p, and the submatrices are of 

order p,- x pj. Then, using elliptical symmetry, it can be shown (Fang, Kotz, and 

Ng, 1990) that the conditional location parameter, p, of Zi | Z2 =  Z2 is given by

P =  Pi 4- (z2 — ^ 2)' (3.5)

For the linear model (1.4), pi =  1, P2 =  p — 1, Zi = y and Z2 =  x. A unique 

estimate P of the regression of Zi on Z2 may then be obtained from a unique 

estimate (p, A) of location and scatter. Specifically, we will have

(3 =
-  S i 2 S 22*A2 I ,  .

è - i é r  I •\  2 j 22 ^ 1 2
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A major advantage of this approach over the M-estimator defined by the so­

lution to (1 .6 ) is that we may obtain robustness against outliers in the response 

variable y and in the covariates x, as with generalised M-estimators. This can be 

seen by noting that

u. {(z, -  '(z , -  A)} =  {(Xi -  AzfÊ^^Xx, -  Az) +

where r,- =  yi — (1  x f ) p  and This can be proved by

employing a standard identity for a partitioned quadratic form (DeGroot, 1970, 

p. 54). Hence both outlying covariates and outlying responses receive less weight 

than non-outlying observations, since «^/(s) is decreasing in s.

The idea of embedding the linear model in a location-scatter framework has 

already been proposed by Maronna and Morgenthaler (1986), who consider the 

implicit equations (3.3) and (3.4) with arbitrary u and no underlying objective 

function. They note that the influence function for the scatter estimator (Huber, 

1981, pp. 223-226), and hence for the regression estimator, is bounded only if 

su{s) is bounded, but they do not discuss how the choice of u affects the ex­

istence and uniqueness of estimates. This is an important omission, because if 

su{s) is bounded, then must redescend to 0 as s —> oo (Kent and Tyler,

1991). In general, one cannot assume the existence and uniqueness of redescending 

location-scatter estimates, and so the function u should be chosen with care. The 

multivariate t choice u =  Uj, is extremely favourable, as su„(s) is bounded and the 

estimator enjoys the existence and uniqueness properties already discussed.

Unfortunately, the regression models available for consideration are limited in 

tha t estimates cannot be obtained if Condition D* is not satisfied. For smaller 

values of i/ this may prevent the inclusion of factors and interaction terms in 

the model, due to the large number of indicator variables required to represent 

the various levels. Similar problems occur if the covariates arise from a designed 

experiment, but then the use of a multivariate t distribution jointly for y and 

would be hard to justify, as it also is in the case of factors and interactions.
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When it exists, may be obtained via a guaranteed-convergent algo­

rithm  given by Kent and Tyler. The estimate (fi, S ) can then be taken as a value 

Ay) corresponding to a global maximum of the likelihood function (3.2) over 

I/. In the event that such an estimate is not unique, the ‘uniqueness problem’ is 

generally reduced to consideration of the 1-dimensional parameter %/, so it will be 

readily apparent if competing estimates exist. This does not apply, however, if 

the data suggest an estimate corresponding to 0 < i/ < 1, where Kent and Tyler’s 

uniqueness results do not hold. In such cases one would have to settle for the best 

local-maximum estimate that could be found.

There remains the problem of assessing the adequacy of the multivariate t 

model. This may be achieved by considering probability plots, since if Z is a p- 

dimensional t(p, S , i/) random variable, then 5  =  (Z — ^i)^S“^(Z — \Cjjp Fp,y. 

Hence ‘observed’ values S{ of S  may be calculated from an estimate (p. A), and 

the ordered values of P (5  < s,) may be plotted against i/(n  -f-1 ), for i = 1 , . . . ,  n.

3.3 Examples

E x am p le  3.1. Stack-Loss data. The first example is the stack-loss data set pre­

sented by Brownlee (1965). This data set has been examined by numerous authors, 

including Andrews (1974), Lange et al. (1989) and, of course, Rivest (1989). As­

suming that the 2 1  observations ony  = stack-loss, Xi = air flow, X2 =  temperature 

and X3  =  acid concentration may be regarded as a multivariate sample from a 4- 

dimensional t distribution, estimates (p.y. Ay) were calculated for a broad range of 

1/ values. A selection of estimates of the regression parameter (3.6) thus obtained 

is given in Table 3.1. Maximised log-likelihoods are given in the second column of 

the table; they describe the profile log-likelihood as a function of i/. It can be seen 

that the multivariate t approach actually points to the least-squares estimator, 

given by 1/ =  oo. The probability plots given in Figure 3.1 also suggest that the 

data are moderately consistent with a random sample from a multivariate normal
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distribution. This conclusion is quite different from that reached by Lange et al. 

(1989), who modelled the data under the assumption of univariate homoscedastic 

errors, and obtained ù = 1 .1 . However, whether or not this represents a signif­

icant improvement in fit over u = oo they leave open to question. The estimate 

given by Lange et al. is similar to that of Andrews, and they seem to give the 

best fit for the majority of the observations in this data set.

E x am p le  3.2. Scottish Hill Races data. Staudte and Sheather (1990, pp. 265- 

268) analyse a data set comprising 35 observations on a dependent variable y =  

recorded time in minutes, and independent variables x\ = distance in miles and 

X2 =  climb in feet. They give generalised M-estimates, defined as the solution to 

(1.9), with w(x^) =  u(x,) =  (1 — hi)/y/hi  and ip{ti • u(x,)) =  ^c(f(/u(x^)), where 

hi is the 2th  diagonal element of the matrix X(X^X)~^X^ and is the Huber

^-function defined in Example 1 .1  with c =  kV{p +  l) /n . A selection of t M-  

estimates for the data are given in Table 3.2, together with the estimate obtained 

by Staudte and Sheather when k = 1. The maximised log-likelihoods given in 

column 2  suggest taking ù % 1 .6 , and this is confirmed by the probability plots 

given in Figure 3.2. The largest residuals calculated from the resulting estimate 

P of the regression parameter correspond to the cases 7, 18, and 33, and are 

respectively 52.9, 64.8 and 24.7 — consistent with the equivalent residuals from 

the Staudte and Sheather estimate, which are 47.8, 64.9 and 18.6.

Staudte and Sheather also consider the median of the absolute deviations from 

the median (MAD) and interquartile range (IQR) of the residuals as criteria for 

judging how well the fitted model agrees with the bulk of the data — small values 

indicating a good fit. Their estimate has an MAD of 3.66 and an IQR of 7.46, 

whereas the multivariate t M-estimate for i/ =  1.6 has an MAD of 3.42 and an 

IQR of 6.90, indicating a slight improvement in fit.

Finally, Staudte and Sheather note that the robust approach they used is 

perhaps too inefficient at the normal model to be recommended for general usage.
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Method
Log-

likelihood Intercept Air-Flow Temp. Acid

2, z/ = 1 -243.01 -35.61 0.81 0.65 - 0 .1 2

t, u = 3 -236.79 -38.19 0.82 0.81 -0.13
t, u = 10 -234.26 -39.81 0.78 1.05 -0.14

u = oo -233.15 -39.92 0.72 1.30 -0.15
Andrews -37.20 0.82 0.52 -0.07
Lange -38.50 0.85 0.49 -0.07

Table 3.1: Stack-Loss results.
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Figure 3.1: Probability plots for Stack-Loss data.
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Method
Log-

likelihood Intercept Distance Climb

z/ = 1 .0 -512.80 -7.11 6.07 0.008
tj u = 1 .6 -511.48 -7.42 6.16 0.008
(, z/ = 5.0 -518.90 —8.83 6.42 0.008
ty 1/ = oo -549.18 —8.99 6 .2 2 0 .0 1 1

Staudte -8.92 6.61 0.008

Table 3.2: Scottish Hill Race results.

This disadvantage is not shared by the multivariate t approach, as the degrees of 

freedom parameter z/ is estimated from the data, so that for multivariate normal 

data the least-squares estimate can be obtained.

E x am p le  3.3. Water Salinity data. The water salinity data is a widely studied 

example in the robustness literature. See for example, Ruppert and Carroll (1980), 

Staudte and Sheather (1990, pp. 264-265) and references therein. The data consist 

of 28 observations on y =  water salinity, xi  =  salinity lagged two weeks (sallag), 

X2 =  trend, which is one of the six biweekly periods in March-May, and xs = 

HgO Flow — the river discharge. Various t M-estimates for the data are given 

in Table 3.3, along with a trimmed least-squares estimate obtained by Ruppert 

and Carroll and the Staudte and Sheather estimate with k = 2. The maximised 

log-likelihoods suggest taking z) % 5, and the outlying cases are then 15, 16 and 

17 — with residuals of -2.38, 5.68 and -2.20, broadly agreeing with the results of 

Ruppert and Carroll and Staudte and Sheather. Note that the t M-estimate of P 

is very similar to the estimate given by Staudte and Sheather, and both are quite 

different from least squares.

In both of the studies cited above the MAD and IQR of the residuals are 

considered as means of comparing the fit of competing estimates. The MAD 

and IQR of the t M-estimate given by z/ =  5 are respectively 0.45 and 1.06, 

figures which are almost the same as those given by Staudte and Sheather and
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Figure 3.2: Probability plots for Scottish Hill Race data.

Method
Log-

likelihood Intercept Sallag Trend Flow

1/ = 1 -239.40 20.15 0.707 -0.173 -0.704
t, u = 3 -233.06 18.87 0.715 -0.166 -0.653
t, u = 5 -232.50 17.56 0.723 -0.148 -0.601
ty u = 7 -232.68 16.46 0.729 -0.131 -0.558
t, 1/ = oo -235.75 9.59 0.777 -0.026 -0.295
Ruppert 14.49 0.774 -0.160 —0.488
Staudte 16.89 0.715 -0.142 -0.570

Table 3.3: Water Salinity results. 
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Ruppert and Carroll for their estimates. Therefore in terms of these criteria the 

t M-estimate compares very favourably with those obtained from other robust 

methods.

E x am p le  3.4. Twickenham Run-Times. This is a much larger data set, consist­

ing of the finishing times of 556 runners (472 male, 84 female) who completed 

an 8  mile race in Twickenham, England, in 1983. For each individual there are 

measurements on the following:

y =  log (finishing time), x\  =  log (miles run per week 4- 1 ), X2 =  log(age), 

xz =  log( weight), 2:4 =  log (height),

a =  number of other active sports per week (0 , 1 , or 2 ), and 

s =  sex (0  =  male, 1 =  female).

A “body mass index” variable xs =  log(weight/height^) is also defined. For sim­

plicity, the runners who gave only partial information have been omitted.

We seek a simple linear model relating finishing time to the various explana­

tory variables, and a conventional multiple regression model selection procedure 

suggested the following:

2/ =  ^ 0  +  +  ^2^2 +  ^z^2 d" ^ 42:5 +  PsS +  e.

The data cannot be regarded as a random sample from a multivariate t distribu­

tion, particularly as both X2 and x\  are included in the model, but nevertheless, 

multivariate t M-estimates of the regression parameter are given in Table 3.4. 

For comparison, we also include the estimate obtained by using the Staudte and 

Sheather method with k = 1. The results suggest that the log-likelihood is max­

imised with % 4. The difference in log-likelihood between the best fitting t and 

the normal model yields a likelihood ratio chi-squared statistic of 356.3 on 1 df, an 

apparently significant improvement in fit. However, there is a negligible difference 

in terms of the MAD and IQR: for the t, u = A model we obtain an MAD of 0.066 

and an IQR of 0.132, whereas for the multivariate normal estimate the figures are
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Method
Log-

hkelihood Int. log(mr) log(age) log(age)2 log(bmi) sex

tj 1/ = 1 646.90 6.942 - 0 .1 0 1 -1.335 0.204 0.437 0.219
t, u = 2 710.84 6.997 - 0 .1 0 1 -1.375 0 .2 1 0 0.428 0.217
(, z/ = 3 723.77 7.032 - 0 .1 0 0 -1.401 0.214 0.421 0.215
t, u = A 723.93 7.056 -0.099 -1.419 0.216 0.416 0.215
f, z/ = 5 719.75 7.074 -0.099 -1.433 0.218 0.412 0.215
i, z/ = 10 689.36 7.127 -0.096 -1.474 0.224 0.403 0.214

u = 20 647.24 7.170 -0.094 -1.507 0.229 0.397 0.215
ty u = oo 545.78 7.283 -0.085 -1.590 0.241 0.393 0.219
Staudte 7.569 -0.097 -1.722 0.260 0.410 0.214

Table 3.4: Twickenham Run-Time results.

0.067 and 0.133. The Staudte and Sheather estimate yields the same values for the 

MAD and IQR as the u = A estimate, and so it appears that the least-squares 

estimate is adequate for this data set.

To examine whether or not the indicator variable for the sex factor has had an 

undue influence on the estimate z), separate estimates for males and females are 

also presented in Tables 3.5 and 3.6. For males only, z / 5, and for females, z/ % 4. 

It seems therefore that the estimate of v obtained for the combined data has not 

been largely influenced by the inclusion of an indicator variable. The MAD and 

IQR for the f, z/ =  5 male estimate are 0.065 and 0.130; for the f, z/ =  4 female 

estimate they are 0.075 and 0.153; the corresponding figures from the Staudte and 

Sheather estimates are 0.063, 0.127 and 0.074, 0.154.

Probability plots are given in Figure 3.3. The plot for z/ =  4 is quite good, 

save for the noticeable discrepancy at z/(n -|- 1 ) % 0 .8 , which may be due to the 

univariate probability plot obscuring the fact that the data are not multivariate 

t. The z/ =  4 plot is not, however, as good as the univariate normal probability 

plot for the least-squares estimate (not shown), which indicates no departure from 

normality whatsoever.
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Method
Log-

likelihood Int. log(mr) log(age) log(age)2 log(bmi)

t, u = 1 637.86 6.925 - 0 .1 0 1 -1.326 0.203 0.436
= 3 764.90 6.992 - 0 .1 0 0 -1.381 0 .2 1 1 0.418

t, 1/ = 4 774.99 7.016 -0.099 -1.400 0.214 0.412
1/ = 5 777.38 7.034 -0.098 -1.415 0.216 0.407
1/ = 6 776.34 7.048 -0.098 -1.423 0.218 0.404

t, u = oo 659.13 7.083 -0.083 -1.502 0.229 0.359
Staudte 7.527 -0.096 -1.704 0.257 0.405

Table 3.5: Twickenham Run-Time results — Males only.

Method
Log-

likelihood Int. log(mr) log(age) log(age)2 log(bmi)

t, 1/ = 1 135.47 5.644 -0.098 -0.534 0.088 0.323
1/ = 3 155.06 6.345 -0.103 -0.904 0.140 0.360

t, u = 4 155.55 6.543 -0.104 -1.004 0.155 0.376
ty u = 5 154.82 6.683 -0.105 -1.072 0.164 0.391
t, u = Q 153.64 6.784 -0.106 -1.119 0.171 0.403
t, u = oo 120.34 7.698 -0.107 -1.540 0.231 0.555
Staudte 7.020 -0.109 -1.233 0.187 0.427

Table 3.6: Twickenham Run-Time results — Females only.
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Figure 3.3: Probability plots for Twickenham Run-Time data.
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3.4 Conditional t A f-estim ates

3.4.1 Main Result

For many data sets, such as those arising from designed experiments and those 

involving curvilinear terms such eis Example 3.4 discussed earlier, it is not rea­

sonable to impose a multivariate t framework on the covariates. In such cases it 

would be preferable to estimate directly the conditional distribution of a response 

y given a set x  of explanatory variables, i.e., without regard to the joint marginal 

distribution of x. This is effectively what occurs in conventional least-squares re­

gression, which can be viewed as a method for estimating a conditional normal 

distribution.

Unfortunately, this approach breaks down when we consider the conditional t 

distribution, for as we prove in this section, it yields a highly nonregular likelihood 

function, being, in general, singular at each of the data points. The likelihood is 

thus intrinsically multimodal, with modes of infinity, so that unrestricted maxi­

mum likelihood estimation breaks down. We proceed as follows.

The conditional t M-estimate of |3 is the estimate defined by (3.6), but with 

its component terms obtained by maximising the log-likelihood function corre­

sponding to the conditional distribution of Z1 IZ2 =  Z2 , rather than the full joint 

distribution of Z% and Z2 . DeGroot (1970) notes that the conditional distribution 

is a Pi-dimensional t distribution on 1/1.2 =  ^-\-p2 degrees of freedom, with location 

parameter jx given by (3.5) and scatter matrix

S  =  Pt/(Z2 , P2 , S 22) S 1.2 ,

where

M2, S22) =  î i.2 { y  +  (Z2 — M2)^S^(Z2 — M2)} 

and S 1.2 =  S i i  — The conditional log-likelihood, up to an additive
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constant involving only U\ . 2  and pi, is given by

=  - 1  log IÊ.I -  1 I(z ii -  -  M.)}, (3.7)
1=1 t=l  ̂ ^

where \ii and S,- are respectively \i and S  evaluated at Z2 =  Z2*. For the linear 

model, we have Z2* =  x,-, fh =  (1  x f )P  and we may denote S 1.2 and È,- as, 

respectively, cr̂  and af, where af  =  ^^(x^, P2» S 22)

Ideally, maximisation of the full log-likelihood Lz(li, S , z/) as carried out in 

Section 3.2 would be equivalent to maximisation of the conditional log-likelihood 

^Zi|Z2 (l ĵ so that the results on existence and uniqueness may still apply.

This is true for the multivariate normal {v =  0 0 ) case, as can be shown by writing 

Tz(li,S ,z/) as

^z(p , S , z/) =  4- ^ 2 2 (112, ^ 22,%/),

where Tz2 (li2 , S 22, is the log-likelihood corresponding to the marginal distri­

bution of Z2 . In the normal case, it is easy to show that the marginal compo­

nents (corresponding to the marginal distribution of Z2) of the maximum likeli­

hood estimate (p, S ) for the full log-likelihood are the maximum likelihood esti­

mates (p2 , S 22) for the marginal log-likelihood. It follows that the derivative of 

-^Zi|Z2 (l^)S) with respect to \i and S  must equal 0  at the value (p, 2 ) =  (A ,S), 

and so for infinite z/, maximising the full likelihood is equivalent to maximising the 

conditional likelihood. For finite z/, this is not the case, since the conditional like­

lihood contains information about P2 and S 22. This difficulty is, however, minor 

in comparison to the more fundamental existence problem given in the following 

theorem. Before presenting the theorem, however, it is convenient to make a minor 

change to the notation, by denoting the number of occurrences of an observation 

Z2i in a given data set as r,-.

T h e o rem  3.1. For a data set {z,- =  (z^ z^J^ E i =  1 , . . .  ,n}, the condi­

tional likelihood (3.7) is unbounded at the points \i =  z,- whenever r,- =  1.
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Proof. Assume that the scatter matrix S  of the joint distribution of Zi and Z2 is 

of the form
^ 1 1

p i p
•*•12 ^22

where 0  >  0  is a 1-dimensional dummy parameter, and the T{j are any constant 

matrices such that S  G Vp. For some observation Zjt =  (z ^  z ^ )^  for which rjt =  1, 

put Pi =  Zijt and P2 — Z2t . Then jxk — Sjt — ^ (F n  ^ 1 2 ^ 2 2  F i2)/^^'i.2 3nd 

the contribution to the conditional log-likelihood from the observation z* reduces 

to —|lo g  |Sjfe|, which —> 00 as 0  > 00.

To complete the proof it is now shown that as ^ > 00, the contributions to

the conditional log-likelihood from all observations zj (j ^  k) remain finite, a 

sufficient condition for which is that, in the limit, S j  be strictly positive definite. 

Thus

 ̂ +  0{z2j — Z2t)^ F 22 (Z2; “  Z2fc)} (F ji — r i 2F 22

— > ------- ( Z 2 j  — Z 2 t ) ^ F g 2  (Z 2 ;  “  2.2k) ( F h  — F ^ 2 F 2 2  F ^ )  a S  ^   ̂ OO.
1/1.2 ^ '

So as 0 —> OO, S j approaches a constant positive definite matrix. □

Thus the conditional likelihood for the multivariate t distribution is an example 

of a nonregular maximum likelihood estimation problem. In the event that r* >  1 

for all 2, the conditional likelihood will not diverge to infinity under the conditions 

described in the proof; however, the existence of a unique maximum in this case 

seems unlikely.

3.4.2 Additional Remarks

The singularity problem seems to be very similar to the well-known difficulties 

associated with estimating finite normal-mixtures, where the resulting likelihood 

function can also be made singular at each of the data points. However, in a 

review of the normal-mixture literature, Titterington, Smith, and Makov (1985)
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note that despite its singularity problems, maximum likelihood is still viable as 

consistent estimates may be obtained from a well-defined local maximum of the 

likelihood function. Since the conditional t distribution can be regarded aa an 

infinite normal-mixture, and as the singularity properties of its likelihood function 

are of a similar nature to those of the finite normal-mixture, it seems natural 

to suggest that conditional t M-estimates might still be obtained if (3.7) has a 

local maximum. Finding such a maximum is, however, another m atter, as the 

singularities in the likelihood surface seem to present a substantial problem in 

the multivariate setting, although estimates have been found for the data set 

considered in the following example.

E x am p le  3.5. Carroll and Ruppert (1988) and Mak (1992) consider a set of 

85 paired-measurements from two hormone assay methods, y =  ‘test method’ and 

X =  ‘reference method’, and one aspect of the study is to see how the test measure­

ment y is related to the reference measurement x. A linear model j/ =  /?o +  P\x -f e 

is thought reasonable, but as can be seen in Figure 3.4 the data are obviously het- 

eroscedastic. The conditional t model, with its ‘built-in’ heteroscedastic function 

gi/{') seems highly appropriate for this data set, and the regression estimates given 

by homoscedastic normal (least-squares), full bivariate t and univariate conditional 

t models are shown in Table 3.7.

All three methods yield similar estimates of the regression parameter and give 

comparable values of the MAD and IQR. However, the estimated standard errors.

Method Po (s.e.) Pi (s.e.) MAD IQR

Normal
Full i, «  1.15 
Conditional % 3.48

0.0849 (0.5057) 
-0.2532 (0.2012) 
-0.2669 (0.1457)

0.9520
0.9551
0.9583

(0.0314)
(0.0390)
(0.0393)

0.894
0.879
0.887

1.836
1.837
1.837

Table 3.7: Hormone eissay results.
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Figure 3.4: Scatter-plot of hormone assay data.

calculated from the observed information matrices, are more interesting. The t 

standard errors for are much smaller than that for the normal model, whilst the 

estimated standard errors of f t  are slightly larger. This is not surprising, since 

the variability of the test measurement increases with the size of the reference 

measurement, and so the heteroscedastic model can estimate the intercept more 

precisely than can the homoscedastic normal model. Probability plots for each 

of the three models are given in Figure 3.5. It can be seen that the conditional 

t model fits the data very well and, as expected, the homoscedastic normal is 

extremely poor. It is interesting to note that the conditional t estimates and 

standard errors are very similar to the iterative weighted-least-squares estimates 

for these data, using a quadratic mean-variance function (Mak, 1992, Table 1). 

However, Mak excluded the last pair of observations from his study, and does not 

discuss how his estimates are affected by its inclusion.

The conditional t M-estimates for the previous example were obtained via an 

EM algorithm (see Appendix A.2). However, we were unable to compute estimates 

for the data sets considered in Section 3.3, where the number of covariates is greater
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Figure 3.5: Probability plots for hormone assay data. For homoscedastic normal, 
-s* =  iVi — P o -  PiXi)/à and F  ^  N {0 , 1 ); for full t, s,- =  (z,- -  — {i)/2
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than one. This may be because a sensible local maximum of the conditional 

likelihood function does not exist for those data sets, or because the starting point 

used for the algorithm was not sufficiently close to a well-defined solution in order 

to prevent the estimates being captured by one of the singularities.

Further evidence for the computational fragility of the conditional t model 

has been obtained from a simulation study. Conditional t data was obtained 

by simulating samples of covariates from a bivariate distribution with location 

P2 =  (1 2 )^ and scatter matrix S 22 =  (1 0.59, 0.59 4), and responses were 

then simulated from a univariate te distribution with location /i,- =  1 +  zii -f X2 i 

and dispersion af  =  2 ^4 (x,, P2 , S 22). For each sample local maximum likelihood 

estimates were sought using the EM algorithm described in Appendix A.2, with 

the true parameter values used as starting points. Samples yielding well-defined 

estimates were found, but n had to be quite large for convergence to occur reliably. 

For example, at n =  100 only 4 samples from 10 generated yielded local maximum 

likelihood estimates, but at n =  400 all but one of 50 samples generated led to 

satisfactory convergence. At n =  2000, estimates were obtained for all 50 samples 

generated. When convergence occurred, estimated standard errors were calculated 

from the observed information matrix, which in turn was obtained by numerically 

differentiating analytical derivatives of the conditional t likelihood (see Appendix 

A.3). Summary statistics of the results obtained from 49 samples of 400 obser­

vations and from 50 samples of 2000 observations are given in Table 3.8. It can 

be seen that the sample estimates of P and are much less variable than those 

of P2 and 2 2 2 ' This is not too surprising, given that we are effectively trying to 

estimate the location and scatter matrices of the covariates without making any 

distributional assumptions. Of greater interest is the indication that the estimates 

may share the properties of maximum likelihood estimates obtained from regular 

likelihoods. For example, the observed standard deviations are consistent with 

the averages of the standard errors calculated by using regular asymptotic theory; 

as n increases from 400 to 2000 there is an approximate 1 / y/n reduction in the
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standard deviations of the p and estimates; and at n =  2 0 0 0 , probability plots 

(not shown) indicate that the sample estimates for all parameters are approxi­

mately normally distributed. On the other hand, there is a greater-than-expected 

reduction in the standard deviations for the P2 and S 22 estimates, possibly due to 

the presence of several outliers in the estimates observed at n =  400. It is not clear 

if these outliers are a result of a small sample problem (at n =  400 !) or a failure 

to find the best local maximum. However, the magnitude of the average standard 

errors does suggest that the data may be consistent with a simpler model, even 

though we know a more complex model is true. It would appear, therefore, that 

even at n =  400, the likelihood contains little information with respect to the P2 

and S 2 2  parameters.

To summarize, when there is more than one covariate, large samples of condi­

tional t data are required in order to obtain local maximum likelihood estimates 

reliably. We therefore cannot expect to obtain such estimates from much smaller 

samples of real data, such as those considered earlier in this chapter. Regrettably, 

we seem obliged to reject the conditional t likelihood as a mechanism for obtaining 

robust regression estimates. However, modifications to the standard likelihood ap­

proach can be employed for nonregular cases, and these are discussed in the next 

section.

n P A2 S 22

Mean 1.009 0.993 0.996 1.941 1.006 1.897 1.800 0.733 5.606
400 S.D. 0.130 0.080 0.036 0.309 0.515 0.810 1.852 2.037 4.483

A.S.E. 0.127 0.082 0.041 0.335 0.648 0.986 2.141 2.621 5.559
Mean 0.999 0.993 1 .0 0 1 1.975 1.015 2.073 1.057 0.608 4.167

2 0 0 0 S.D. 0.063 0.042 0.018 0.145 0.131 0.288 0.246 0.317 0.973
A.S.E. 0.057 0.037 0.018 0.139 0.141 0.276 0.233 0.346 0.914

Table 3.8: Summary statistics for estimates obtained from simulated conditional 
t data. A.S.E. denotes ‘Average Standard Error’.
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3.4.3 Alternative Approaches

As mentioned in the previous section, the unbounded likelihood problem is not 

restricted to the conditional t model. As well as the finite normal-mixture model, 

it is often studied in connection with continuous univariate distributions with an 

unknown threshold parameter, such as the three-parameter Weibull distribution. 

These studies have led to the proposal of modifications to the likelihood function 

so that singularities may be avoided. We now consider two that might be applied 

to the conditional t likelihood.

A lternative 1

Cheng and Amin (1983) introduced maximum product of spacings (MPS) esti­

mation for data arising from continuous univariate distributions. Consider an 

ordered sample Xi < X2 < - " <  x„, drawn from a distribution with density 

/ (x , ^o), assumed strictly positive on some interval (a i, 0 :2) and to be zero outside 

this interval. The MPS method is then simply to choose 6 to maximise

n+l

^  =  (« +  i ) " ' E i o g A ,
t=i

where D{ is a spacing defined by

Di = !  f{x^6)dx  (i =  1 , 2 , . . .  , n - f - 1 ),
Jxi-l

such that Zo =  cti and Xn+i =  « 2 . This approach avoids the singularity problem, 

as jy is bounded above, due to the constraint that ^ D i  = 1 . This implies that 

the maximum value of H  is attained when the D /s  are equal.

In the regression context, the spacings would seem to have to be defined with 

respect to the residuals. For example, suppose we have the ordinary regression 

model (1.4). Then an ordered, univariate sample may be obtained by calculating, 

for given values of P and (j, scaled residuals r,- =  (y,- — x fP )/o ’, to yield an ordered 

sample < r(2) < < r(„). Values of P and a  would then be chosen to
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maximise

if* =  (n +  l)"  £ l o g /  f {u)du,
t=i •'̂ (•■-1)

where r(o) =  — oo and =  + 0 0 . However, one need not consider how to

compute such estimates, since the MPS approach actually breaks down when 

applied to regression models in this way. This is because H* attains its upper 

bound when

I f{u)  du =  — - for all z, (3.8)
r(j_i) n +  l

that is to say when r(,) =  F~^{z/(n +  l)} for all z, where F  denotes the distribution 

function of / .  It becomes apparent that there exist data sets for which totally 

inappropriate values of P yield the upper bound of H*. For example, suppose, in 

the simple case z/,- =  /?o +  we have data Xi =  F"^{z/(n +  1 )} and we observe 

yi = Xi for all z. Then a = 1, /?o =  0, f t  =  1 gives a perfect fit to the data, 

but on taking f t  =  0 we obtain residuals that satisfy (3.8). In this case, a plot 

of the residuals against fitted values would indicate an extremely poor fit, whilst 

a probability plot would indicate a perfect fit! This simple example highlights 

the point that probability plots should never be used in isolation to measure the 

adequacy of a regression model. The MPS approach does not therefore appear to 

extend to the regression context, though there remains the possibility that some 

other implementation of the MPS approach could yield useful results.

A lternative 2

Titterington (1985) remarked that MPS estimation may be regarded as a maxi­

mum likelihood approach based on grouped data, that is to say the likelihood ob­

tained from a sample z/i,. . . ,  z/n+i of which all that is known is that x,_i <  yi < Xi. 

Titterington points out that usually the grouping would be achieved by allocating 

the Xj’s to histogram bins (i.e. grouped) and that, for example, this may be used 

to eliminate the likelihood singularities that arise from a mixture of two univariate
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normals. A similar procedure might, therefore, be applied to linear model data in 

order to remove singularities from the conditional t likelihood.

Grouping is introduced to the linear model if a response observation yi is 

not known exactly but is known only to lie between known constants ai and 6 ,* 

(Burridge, 1981). In practice, of course, when dealing with ‘continuous’ data, it is 

always the case that y,- is not known exactly since, as Heitjan (1989) notes, ‘in a 

fundamental sense, all continuous variables are eventually rounded or coarsened,

i.e., grouped’.

In the conditional t framework, the {y,} may be regarded as observations from 

a heteroscedastic location-scale density of the form fv{{yi — /^%)/o'*}, where f„ 

is the standard tf, density. If it is known only that, for i =  1 , . . . ,  n, a,- <  y,- <  6 ,-, 

then the conditional log-likelihood (3.7) is replaced by a grouped data likelihood 

of the form
n

L g  =  ^ l o g 7 ^ ( u ^ ,U i ) ,
t=l

where u,- =  (a,- — //,)/a-,-, = (6,- — //;)/cr, and

F^{u,v)= f  fty{e)de.
Ju

Maximum grouped-likelihood estimates would be obtained by maximising Lq  with 

respect to (3, P2 , ^ 2 2  and u. Unfortunately, whilst the grouped approach

does prevent the singularity problem, it also reduces the amount of information 

contained in the likelihood. This is a severe drawback in the conditional t case, 

because the computational results of the previous section indicate that generally 

there is too little information in the ungrouped likelihood. Attempts to maximise 

the grouped conditional likelihood arising from the various data sets considered in 

this chapter were only successful for the hormone assay data, which gave results 

similar to those presented in Table 3.7. We therefore seem to be forced to abandon 

the conditional t framework as a means of providing robust estimates for regression 

models.
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3.5 Discussion

The method of least-squares for obtaining a regression estimate is equivalent to 

treating the data as a random sample from a multivariate normal distribution, with 

location vector p and scatter matrix S . The least-squares estimate p may then 

be obtained from maximum likelihood estimates and S , through (3.6). W ith 

this motivation for least-squares, a robust estimate of P might then be obtained 

by considering a generalisation of the multivariate normal distribution, namely 

the multivariate t distribution, as an Af-estimator. The methods proposed in Sec­

tion 3 .2  may then be employed to obtain a unique and robust bounded influence 

estimate of p. This is achieved by using the (unique) conditional distribution de­

rived from the full estimated joint distribution for the data. The general approach 

outlined in Section 3.2 also allows for multivariate regression models, where the 

required estimate is a matrix of regression coefficients.

For genuinely multivariate data, this form of modelling the data is plausible, 

although the same parameter i/ is used to measure the degree of non-normality 

across all of the variables. The examples presented in Section 3.3 demonstrate 

that the method can also be successfully applied even when the multivariate t 

assumption cannot be justified, and estimates could be obtained for data sets 

arising in designed experiments; but here the usefulness of the t approach would 

be substantially reduced, as robust estimates may not always exist for models 

appropriate to the data.

One can obtain robust t M-estimates by modelling the error distribution in

(1.4) as a univariate homoscedastic t distribution (Lange et al., 1989), but the 

question of uniqueness remains unresolved (Gabrielsen, 1982), and robustness is 

only achieved against outliers in the response variable. The conditional t model 

seems to provide a balance between the multivariate and univariate approaches, as 

it provides robustness against outliers in all of the variables, but without regard to 

the joint marginal distribution of the covariates. The resulting likelihood function
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is, however, markedly nonregular, although the examples based on the hormone 

aasay and simulated data sets indicate that the conditional t likelihood can have 

a well-defined local maximum. In general though the conditional t framework 

seems to have too many parameters for reliable estimation from “small” data sets. 

Furthermore, conditions for the existence of a local maximum remain unclear, and 

so the reliability of the EM algorithm described in Appendix A.2 cannot as yet be 

ascertained.

In conclusion, when a regression model is desired for genuinely multivariate 

data, the multivariate t M-estimator should be strongly considered as a means of 

providing an estimate of the regression parameter that will be unique and robust 

for all of the variables contained in the linear model. For other types of data 

the conditional t model is more appropriate, but singularities in the likelihood 

surface make the approach too unstable to be of general use. In the next chapter, 

this nonregularity is found to have implications for likelihoods derived from other 

heteroscedastic models and sufficient conditions for two well-known models to yield 

unbounded likelihoods are presented.
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Chapter 4

Nonregular Likelihoods in

H eteroscedastic Regression

4.1 Introduction

4.1.1 General Remarks

In the previous chapter it was established that the likelihood function for the 

conditional t distribution is unbounded at points corresponding to nonreplicated 

observations. The problem arises from the form of the conditional dispersion 

matrix, which allows the fitted dispersion to be made singular for one observation, 

yet nonsingular and bounded for all other observations. Thus the essence of the 

problem lies in the heteroscedastic nature of the model, rather than some specif 

property associated only with t distributions. This result forms the motivation for 

the present chapter, for although unbounded likelihood problems are well-known 

for finite normal-mixture models (Titterington, Smith, and Makov, 1985, Chapter 

4), and also for certain models arising in extreme value theory (Smith, 1985), they 

have not yet been noted in the context of heteroscedastic regression.

56



This chapter considers two well-known classes of heteroscedastic regression 

models. For the first class, it is shown that, under a weak condition similar to 

that noted in Theorem 3.1, the likelihood is singular at points corresponding to 

nonreplicated observations, causing unrestricted maximum likelihood estimation 

to break down. For the second, a much stronger linear independence condition is 

obtained for the likelihood to be unbounded, and it is suggested that in this case, 

the singularity difficulty will, in general, be avoided.

4.1.2 H eteroscedastic Regression M odels

Techniques for analyzing data with nonconstant variability have been examined by 

numerous authors, including McCullagh and Nelder (1989), Davidian and Carroll 

(1987), Carroll and Ruppert (1988) and Mak (1992). In particular, the maximum 

likelihood approach has been criticised for its sensitivity to misspecification of the 

error density and the assumed model for the dispersion. However, as shown in this 

chapter, there is also a problem of a more practical nature, as the likelihood surface 

may contain singularities, causing unrestricted maximum likelihood estimation to 

break down. As in the conditional t case, the problem arises if the dispersion 

model allows one fitted dispersion to be singular, whilst the remainder are kept 

nonsingular and finite.

The models under consideration are of the following form. Let {y,-, i =  

1 , . . .  ,n} be a set of independent observations in R, which have a location-scale 

error density of the form f{(y% — //,)/<7,}, for some fixed function /  such that 

0  <  f{u)  < oo for all u G R, where /i,- =  ;^t(|3) is a real-valued regression location 

function of known form indexed by a set of unknown parameters P, and a,- =  o’,-(a) 
is a dispersion function of known form indexed by a set of unknown parameters 

a. The log-likelihood function, L(P, a), is then given by

L(P,a )  =  -X ^ lo g a ,( a ) - |- 5 ^ 1og/{(yi -/^ iO ))/(T ,(a)} .
t t

The functions ji and a may involve known fixed covariates x,-, recorded for each
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unit i. The terminology ‘location-dispersion’, rather than ‘mean-variance’, is used, 

since the framework allows for densities, such as the Cauchy, which do not have 

finite moments. The key observation is that if there exist directions in the a-space 

along which, for some j ,

cTj —> 0 and cr,- —> a* where 0 < s,- < oo for all i j ,  (4.1)

then at any value po of p where =  yj, the likelihood will diverge to infinity.

The singularity problem does not seem to be restricted to the location-scale 

model outlined above. Problems might also occur if the objective function is a 

quasi-likelihood derived from a mean-variance relationship, or if the are

estimated nonparametrically. However, for clarity of exposition, we shall concen­

tra te  on the existence of singularities in the likelihood framework. This is consid­

ered in the next section, where sufficient conditions for the existence of directions 

satisfying (4.1) are developed for two well-known dispersion models.

4.2 M ain Results

4.2.1 M odel 1

The existence of directions in the cx-space that satisfy (4.1) depends on the data 

and the form of the dispersion model. First, consider

o-,(a) =  z f a ,  (4.2)

where the {z,} are either fixed covariates or functions of the {/x,}. For example, 

one might have a quadratic model in the location, that is

ai =  ao +  ocif î +  of2/i-. (4.3)

Models similar to (4.3) have been considered by Davidian and Carroll (1987), 

Carroll and Ruppert (1988), and Mak (1992) gives maximum likelihood estimates
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for a real data set, using a quadratic function for the dispersion. However, as is 

shown by the following theorem, maximum likelihood estimates need not always 

exist:

T h e o rem  4.1. The log-likelihood, is unbounded at the points for which

//j(Po) =  y3 i f  there exists an ocq such that

=  0 and 0 < zJ ocq < oo for all i ^  j .  (4.4)

Proof  Suppose there exists an ocq for which (4.4) is true. Then, apart from the 

trivial case zj = 0 , it is clear that there exists an «i such that 0  < z f« i <  oo 

for all i. Consider the value ccx = AtXi +  (1 — A)c(o, where 0  <  A <  1 . Then 

0  < zfotA < oo for all z, and

X (3o, «a) =  -  log a -  log zjOil + log /(O ) -  log z f  «A +  X )  log f{{Vi  -  / / , ) / z f  ocx}.

As A —> 0, all terms except the first tend to a finite limit and hence L{^o, 0:^) —»■ oo 

as «A —̂ « 0  as A 0. □

Therefore previously reported maximum likelihood estimates may at best corre­

spond to local maxima (or indeed minima).

The condition that there exists an cCq that satisfies (4.4) has a useful geomet­

rical interpretation. It simply says there is a half-space with boundary through 

the origin that contains Zj in its boundary, whilst all other zs are contained in its 

interior. So for example, if zJ =  (1  pj /zj), such a half-space exists provided Zj is 

nonreplicated.

4.2.2 M odel 2

Let us now consider dispersion models of form such as

o-,(a) =  exp(zfa), (4.5)

59



which are commonly proposed in the literature. Since (4.5) is strictly positive for 

finite z fa ,  the difficulty seems unlikely to occur, except in quite special cases, 

for models of this form. This would appear to be true, since it is now shown 

that there exists a direction in the «-space that satisfies (4.1) if and only if Zj is 

linearly independent of the other z values. Note, however, that (4.1) may not be 

absolutely necessary for singularities to occur.

First, let Z =  ( z i , . . . ,  z„)^, be the matrix obtained by deleting the j th  

row of Z, c =  Z«o and c(^) =  Z^^^ckq for some arbitrary finite starting point (Xq. A 

nonzero direction u is required such that

z ju  < 0 and Z^^^u =  0, (4.6)

which by elementary linear algebra (Towers, 1988, p. 147) exists if and only if zJ  is 

linearly independent of the rows of Z^^\ i.e. if and only if rank(Z) =  rank(Z^^^)-f 1. 

Now let «A =  +  Au, so that zJax  —> —oo as A —> oo, and Z^^^«a =  for all

A. Any such direction u will satisfy (4.1). If zJ  is linearly dependent on the rows 

of Z(-f) there cannot exist a direction satisfying (4.1), since whenever Z^^^ax tends 

to a finite limit, so must z ja x .

The linear independence condition can be tested immediately when the {z,} 

are known, but this is not possible when they depend on unknown parameters, 

as in (4.3). For such cases it would be desirable to test whether or not there 

exists a point in the parameter space where the linear independence condition 

is true. In general this will not be straightforward, but for some models the 

linear independence condition for Z has a simple geometrical interpretation in 

terms of the model for the location. For example, suppose /i,- =  and zJ  =  

(1 fit fi]). For some j  and some P, it is required that rank(Z) =  rank(Z(^)) -}- 1 

and fij =  yj. Since Z is in Vandermonde form (Isaacson and Keller, 1966, p. 188), 

rajik(Z) =  rank(Z(^)) whenever Ẑ ^̂  contains three or more distinct rows, and so 

rank(Z) =  rank(Z(-')) -f 1 if and only if for all i ^  j ,  fit 7  ̂ fij and Z( )̂ has no more
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than two distinct rows. Hence a P is required such that

\y j

ki o i k2 i f î ÿ ^ i ,

where ki ^  k2 are arbitrary constants such that ki ^  yj and k2 ^  yj. It is easily 

seen that this has a solution in P if and only if the {x,} satisfy the very strong 

requirement that they consist of two or three parallel subsets of co-planar points, 

such that one subset is a singleton. This contrasts with the weaker result for model

(4.2), where any singleton yields an unbounded likelihood. In simple regression, 

for example, this means that the regressor variable can take at most three distinct 

values, otherwise there is no direction in the a-space for which (4.1) will be true. 

The argument extends easily to the case where z f a  is a polynomial in /z,-.

4.3 Examples

We now illustrate some of the points raised in the preceding discussion with two 

numerical examples. Both examples indicate that local maximum likelihood esti­

mation can be a viable approach when the data satisfy conditions for the likelihood 

to be unbounded.

E x am p le  4.1. We first consider a dispersion model of the form (4.2). Let //» (P) =  

A  +  <T (̂a) =  ao +  aifii -\- « 2//^, where ao, a.2 >  0 , a j  — 4 ao« 2  <  0 , and let

/  be the standard normal density. It was proved in Section 4.2.1 that if a data 

set includes a nonreplicated observation, then this model yields an unbounded 

likelihood. To demonstrate this, it is convenient to make a minor change in pa­

rameterization, and write a-?(a) as <7?(a*) =  « 5  +  for a%, a j  > 0 .

The profile likelihood for a j, calculated by maximising

L = (4.7)
,=1 t=l

with respect to (P,o:J,o;5) as a j  varies, should then tend to infinity as a j  —»■ 0 .
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Taking 3 =  (0,1)^, a j  =  3, a j  =  2 and a j  =  5, a data set was generated 

by simulating values of y from /  for x = { 1 ,1 .5 ,..., 10.5}. A scatter plot of the 

data is given in Figure 4.1. For ag € [0.001,5.0] the estimated profile shown in 

Figure 4.2 has been obtained, and the divergence as a j  —> 0 is clear. However, it 

should be noted that the numerical methods employed may only have converged 

to local maxima, since we know that the likelihood function becomes extremely 

nonregular as a j  becomes small. The true profile likelihood for ag may therefore 

diverge faster than the curve shown in Figure 4.2.

It is interesting to note the existence of a well-defined local maximum in the 

estimated profile, which suggests that, despite the presence of singularities, the 

likelihood approach may still yield useful results. This is in common with previ­

ously reported applications of maximum likelihood to the normal-mixture model.

E x am p le  4.2. The second example considers a dispersion model of form (4.5). 

We now let cr,(a) =  exp(ao +  +  « 2/^?), and take +  Pi^ii +  Aa^2i-

It was shown in Section 4.2.2 that this model will yield an unbounded likelihood 

if the {x,} consist of two or three parallel subsets of co-planar points, such that 

one subset is a singleton. For example, consider the data in Table 4.1, where the 

{x,} have been chosen to satisfy this condition, and the {y,} have been simulated 

under the assumption that |3 =  ( 2 —1 0.5 «  =  ( —2 —2 0 .5  and /  is the

standard normal density. Local maximum likelihood estimates were sought for 

these data using two methods: the first used the numerical routines of the matrix 

programming language GAUSS 3.0 to maximise the log-likelihood (4.7), using a 

routine to evaluate the analytical derivatives

and

dcK
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Figure 4.1: Scatter-plot of Example 4.1 data.
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Figure 4.2: Estimated profile likelihood for a j.
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where z,- =  ( 1 ^  )^; the second used the GLIM 3.77 macros given by Aitkin

(1987), which maximise the likelihood by alternating between weighted-normal 

and gamma/log-link regression models. The results obtained are presented in 

Table 4.2. It can be seen that the estimates obtained by the two methods only 

agree to two significant figures, and the consequent discrepancy between the log- 

likelihoods is even greater. Also, the absolute values of the derivatives d L /d ^ i  

and dL /dP 2 a-re very large when evaluated at the GLIM estimate. The GLIM 

results were not improved by increasing the number of iterations and accuracy used 

at the normal and gamma regression steps, and only a minor improvement was 

obtained by using the higher-precision GLIM 4. Further checks revealed that when 

GLIM evaluated the log-likelihood at the GAUSS estimate, the value returned 

(0.759 to 3 significant figures) was much closer to that returned by GAUSS, and 

that both sets of parameter estimates yield negative definite matrices of second 

derivatives. However, the second derivatives do indicate extreme curvature with 

respect to the P parameters. A possible explanation for the discrepancies may 

therefore be that GAUSS, working at the unusually high level of 80-bit precision, 

is less susceptible than GLIM to the numerical condition of the problem. This 

explanation is consistent with the fact that similar results were obtained for a 

larger sample (n =  65) that satisfied the parallel hyperplanes condition, but when 

uniform ‘noise’ was added to the {x2,} in Table 4.1, the level of agreement between 

GAUSS and GLIM estimates increased as the sample size increased.

To summarise, the results indicate that, as in the previous example, local 

maximum likelihood estimates can be obtained when the data satisfy the condition 

for the likelihood to be unbounded. However, there is evidence to suggest that the 

accuracy of estimates obtained by GLIM macros may be less than that achieved 

for data sets that do not satisfy the unboundedness condition. It is therefore of 

practical interest to know if the condition is satisfied. An efficient method for 

checking this will be developed in the next chapter.
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X, Vi

2  6 2.9630
3 7 2.5250
4 8 1.9980
5 9 1.5140
6 10 1.0250
7 11 0.4390
8 12 0.1230
9 13 -0.1980
2 1 0.5360
3 2 -0.0630
4 3 0.3620
5 4 -4.4150
6 5 13.1530
7 6 22.3940
8  7 1003.6790
9 8 -1983.7790
5 6 -0.0040

Table 4.1: Data for Example 4.2.

Method à L

GAUSS 2 .0 0 2  

< 1 0 "^°
-0.990 
< 1 0 “ °̂

0.496 
< 1 0 “ °̂

-1.916 
< 1 0 "^°

-2.193 
< 1 0 "^°

0.537 
< 1 0 -^° 0.761

GLIM 2 .0 1 2  

< 1 0 "^
—0.989
21.87

0.494
43.81

-1.911 
< 1 0 -®

- 2 .2 0 2  

< 1 0 -®
0.540 

< 1 0 -®
0.734

Table 4.2: Estimates and absolute derivatives for Example 4.2.
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4.4 Discussion

Unbounded likelihoods seem likely to occur widely for dispersion models of form

(4.2), given the rather weak condition (4.4) for the existence of a direction that 

satisfies (4.1), and so the use of (4.2) cannot be recommended. As an alternative, 

if the dispersion model (4.5) is considered inappropriate or computationally too 

demanding, one might consider the commonly proposed power functions

(7i(a) =  (ao +  |/iti)“  ̂ and <7i(a) =

where ao > 0 , since it is easily seen that these only yield unbounded likelihoods 

when yi =  0  for some i.

When the dispersion is modelled by (4.5), a direction satisfying (4.1) exists 

if and only if the rank of the dispersion model can be decreased by deleting one 

observation. Whilst it has not been verified that this condition is necessary for the 

likelihood to be unbounded, it does seem that by using models of form (4.5) the 

difficulty will largely be avoided. Exceptions are perhaps most likely to occur with 

data arising from factorial experiments, in which case a specific structure is built-in 

to the covariates. Heteroscedastic models based on (4.5) have been considered for 

replicated factorials by Aitkin (1987) and Nair and Pregibon (1988), although in 

the full replication case it is highly unlikely that there will exist a direction in the 

parameter space for which (4.1) will be true. However, if the model is applied in 

the nonreplicated case we would strongly recommend that the linear independence 

condition be checked, if it is possible to do so. As well as indicating the presence 

of singularities in the likelihood surface, it may also warn of potential reductions 

in accuracy if estimates are to be computed using GLIM (as they often are), as 

demonstrated by Example 4.2. If numerical problems are identified one might 

then consider an alternative dispersion model that yields a bounded likelihood.

As noted in the introduction, the scope of the problem is not restricted to the 

framework discussed here. An apparent example of this can be found in Rigby and
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StcLsinopoulos (1994), who estimate semi-paxametric heteroscedastic models using 

quasi-likelihood. They consider counts of AIDS cases over time and present graphs 

of estimated location and dispersion functions. However, the final six observations 

are fitted perfectly and have dispersion values of zero. This is not commented on 

by the authors, despite the fact that the observations in question are contained in 

the most variable part of the time series.

The results in this chapter provide a salutary warning for those who work with 

heteroscedastic models. If conditions for the likelihood to be unbounded hold, 

then numerical routines may fail to converge, or converge to spurious estimates. 

In the absence of a guarantee that the likelihood function will have one finite 

mode, great care should be taken to ensure that a satisfactory local maximum has 

indeed been found.

In the next chapter we propose a method for testing the parallel hyperplanes 

condition that was developed in Section 4.2.2. The condition for the existence 

of t Af-estimates that arose in Chapter 3 is also considered, since it too is of a 

co-planar points form.
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Chapter 5

Testing the existence of

m axim um  likelihood estim ates

5.1 Introduction

In this chapter efficient methods are proposed for testing two conditions for the 

existence of maximum likelihood estimates. The first condition is the ‘parallel hy­

perplanes’ condition for the heteroscedastic regression model of Section 4.2.2; the 

second is ‘Condition D*’ (Kent and Tyler, 1991) for the location-scatter model of 

Chapter 3. In each case it has been shown that maximum likelihood estimates will 

not exist if the data satisfy a given geometrical property, but practical methods for 

testing the data have not been discussed. In this chapter we provide such meth­

ods and illustrate their use with examples. We begin by reviewing the conditions 

listed above.

Chapter 4 considered heteroscedastic regression models for data {(j/,-, x,-) : i =  

1 , . . .  ,n} , where the {j/,} are univariate responses and the {x,} are p-dimensional 

covariates. It was shown in Section 4.2.2 that the location-scale relationship /z,- =
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x f  p and Œi =  exp(ao +  a i / ^ t ) gives rise to an unbounded likelihood function 

if the {x,} consist of two or three parallel subsets of co-planar points, such that one 

subset is a singleton. A simple method for testing the {x,} would be to enumerate 

all possible combinations of two or three subsets such that one is a singleton and 

test each one in turn. A calculation reveals the total number of such combinations

"  ^  0  ^  "  { S  ( "  r  0  +  ( " n ,  ' )  } ’
where U2 denotes the integer part of (n — l ) / 2 . Clearly this quantity explodes in

size as n increases: for example, at n =  20 it is around 5 million, but at n =  30 it

increases to 8053 million and so an approach based on complete enumeration will

only be possible for very small data sets.

A similar problem arises for the condition derived by Kent and Tyler (1991), 

which is also of a co-planar points form. For a set of p-dimensional observations 

{y,}, they show that, iov u > 1, estimates of the location and scatter parameters, 

defined implicitly by the equations (3.3) and (3.4), exist only if Condition D* 

is satisfied. Although Kent and Tyler point out that the condition is satisfied 

with probability one for random samples of size n > p -\-\ from any continuous 

distribution, the effectively discrete nature of real data may negate this welcome 

property. One might therefore wish to check if, for some q such that 0 <  ç <  p — 1, 

there exists a subsample from the data of size rig = [n{v-\-q)l{v-\-p)]-\- \  that lies in 

a hyperplane of dimension ç, where denotes integer part. In practice it is useful 

to test the condition for i/ =  1 , since if the condition is not satisfied for v = 1 , it is 

not satisfied for all u > 1 . Unfortunately the total number of subsamples available 

for testing grows extremely quickly with n and p. For example, with n =  30, p =  4 

and 1/ =  1 there are

subsamples for consideration. So once again it will only be possible to enumerate 

and test all possible subsamples when n is small. Therefore, in order to test
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either of these conditions large numbers of combinations must be excluded from 

consideration before they are enumerated. In the following section algorithms are 

described that achieve such a reduction in computation.

5.2 Description of algorithms

5.2.1 Parallel Hyperplanes

We consider first the parallel hyperplanes condition. The objective is to determine 

if the minimum number r, say, of parallel hyperplanes that contain all the data, 

subject to a singleton constraint, is less than or equal to 3. If we determine that 

r  <  3 then maximum likelihood estimates will not exist; otherwise, they almost 

certainly will.

Matters can be simplified slightly by first performing two operations on the 

m atrix X  =  ( x i , . . .  ,Xn)^. Firstly, if the matrix has a constant column it may 

be deleted in order to reduce the dimension of the problem and hence the com­

putational burden. Secondly, we may delete any replications, so that the {x,} we 

actually test are all distinct. This is justified since if the condition is not satisfied 

for a set of distinct points it cannot be satisfied when we add replications. Fur­

thermore, if it is satisfied for a set of distinct points we need only then check if the 

point in the singleton hyperplane, Xg say, has a replication. If there is no repli­

cation the condition is satisfied. Otherwise the likelihood will be unbounded only 

if all replications of Xg yield responses equal to y s. This is of course unlikely, but 

it may occur if the procedure for measuring the response involves gross rounding. 

Therefore in the following it may be assumed that the {x,} are distinct and that 

X  does not contain a constant column. To avoid trivial cases we shall also assume 

the following: that the dimension, p, of the {x,} is greater than one, since to test 

the condition for p =  1 one need only check if n > 3; that X  has full rank; and 

finally, that n > p -f 1 and there exists a set of p -f 1 points in general position.
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In order to develop an efficient method we exploit the geometry of the condi­

tion. Let us suppose the condition is true and we have available a set of p -|- 1 

points in general position that does not include the singleton. Since p+ 1  points in 

general position determine the vertices of a simplex, we can obtain from its facets 

p -f 1 candidate hyperplanes such that one corresponds to a ‘solution’ hyperplane, 

that is, one of the two or three parallel hyperplanes that between them contain 

all of the data. For example, consider the data shown in Figure 5.1. In case (a) 

the simplex yields a solution hyperplane through points Xi and Xg. If, however.

(a)
1 1

Xg

\  /  •  X5 /  >  Xs \  Xs

v K  * V /  *
)L

X3 X3
------------------------------ ►-

V
X3

Figure 5.1: Simple example for p =  2.

the set of p 4- 1 points does include the singleton, as in case (b), then the facets 

of the simplex need not define a solution hyperplane. In practice, of course, we 

do not actually know if a given set of p -f 1 points includes the singleton, so to 

be sure of obtaining a solution hyperplane we must consider p +  2  non co-planar 

points and find the, not necessarily distinct, candidate hyperplanes for each of the 

|( p  -|- l)(p  -f 2) selections of p points, as in (c). If the condition is true, one of the 

candidate hyperplanes must be a solution. This leads to a simple algorithm for 

testing the condition.

Step 1 : Find a sample of p -f 2  non co-planar points.

Step 2 : Calculate the hyperplanes defined by each selection of p points.

Step 3: Check if each hyperplane could be one of two or three parallel hyperplanes 

that contain all the data. If no such hyperplanes are found, the condition is not 

satisfied.
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There follow some comments regarding the practical implementation of these 

steps. Step 1 is easily achieved, so let us assume without loss of generality that 

X i,. . .  are non co-planar, so that we can take S  =  { x i, . . .  ,Xp+2} as the

sample. For step 2 , we first define, for z =  1 , . . .  ,p  -f 1 , Hi to be the hyperplane 

defined by the p points obtained by deleting x,- and Xp+ 2  from S. We now have 

p -f 1 distinct hyperplanes. In order to calculate the remaining \p{jp +  1) hyper­

planes we proceed as follows: for all z =  2 , . . . ,  p -}-1 and j  =  1 , . . . ,  z — 1 , delete x* 

and Xj from S  and define a new hyperplane from the remaining p points. Note, 

however, that if for some z, Xp+2 E H{^ we need not consider the deletions for any 

j  since we will just duplicate Hi. Similarly if, for some j ,  Xp+2 G i / j ,  we need not 

consider deleting x,- and Xj since we will duplicate Hj. Incorporating these checks 

into step 2  will ensure that we only define (and hence test) distinct candidate 

hyperplanes.

We now consider step 3. For a given candidate, the approach is to check each 

observation in turn, defining a new hyperplane parallel to the candidate if the 

current observation is not contained in any of the available hyperplanes. This 

continues until we are forced to define a fourth hyperplane, in which case the 

candidate cannot be one of two or three parallel hyperplanes that contain all of 

the data. This procedure is described exactly in the following algorithm, which 

we start with z =  1 and d equal to the number of hyperplanes defined in step 2 .

(i) If z > d go to (vi). Otherwise, let Pi =  if,-, fail =  0, r  =  1, rzi =  0, ZZ2 =  0, 

723 =  0 and j  =  1 . Go to (ii).

(ii) If fail =  1 or if j  > 72 go to (v). Otherwise, let m =  0, A; =  1 and go to (iii).

(iii) If A; > r  go to (iv). If Xj G P t, let rzjt =  72̂  -f 1, in =  1 and go to (iv).

Otherwise let A: =  A: -f 1 and go to (iii).

(iv) If in = 1 let j  = j  I and go to (ii). Otherwise let r  =  r  -f 1. If r  >  3 let

fail = 1 and go to (ii). Otherwise let p . be the hyperplane through Xj parallel to 

Pi. Let 72r =  72r -f 1, j  = j  -f 1 and go to (ii).
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(v) If/az7= 0 and ni =  1 or « 2  =  1 or « 3  =  1 , write “condition true” and stop. 

Otherwise let z =  z +  1 and go to (i).

(vi) Write “condition false” and stop.

5.2.2 Condition D*

We now turn to Condition D*. For given values of n, p and v such that n > p  and 

f/ >  1 , we wish to verify if for some value g, such that 0  <  ç <  p — 1 , there exists 

a sample of size riq = [n{i/ +  +  p)] +  1 that is contained in a hyperplane of

dimension q.

In this case the condition does not require the entire data set to satisfy a given 

geometrical property, and so it has not been possible to develop as efficient an 

algorithm as that developed for the parallel hyperplanes condition. We are, how­

ever, still able to make significant gains over complete enumeration by adopting a 

‘branch and bound’ approach. The idea is to start with an empty sample and em­

ploy a simple branching strategy that either includes or excludes each observation 

in turn. At each branching, the sample is checked to see if it is not contained in 

a hyperplane of dimension q or if the number of observations excluded from the 

sample is greater than n — rig. If either of these conditions is true we must bound 

the sample and re-start the branching strategy from the last included observation. 

This process continues until a sample is found that satisfies the condition or until 

the first n — rig observations have been excluded, in which case the condition is 

not true. In practice, this process can be simplified slightly by noting that the 

hyperplane check need not be carried out if the sample contains g -|- 1 or fewer 

observations. Furthermore, it will not be necessary to compare the sample size 

with rig in these cases, since it is easily shown that r i g >  q -\-\ whenever n > p .

A detailed algorithm to implement the strategy outlined above is now pre­

sented. It uses indicator variables, a,-, such that a,- =  1 if the zth observation is 

included in the sample, and a,- =  0 otherwise. Initially we let a,- =  0 for all i. We
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now start the algorithm by setting q = p and going to step 1 .

Step 1 : Let q = q — I f ç < 0  write “condition false” and stop. Otherwise, let 

riq =  [n{v +  +  p)] +  1, set a,- =  0 for all i and set i =  0. Go to step 2 .

Step 2 : Let 2 =  2 +  1 . If a,- =  1 let a,- =  0. Otherwise let a,- =  1 . Go to step 3.

Step 3: Calculate n = i — J2j If n > n — go to step 7. Otherwise step 4. 

[If more than n — riq observations have been excluded, we cannot form a sample of 

size riq and must therefore attempt to exclude an observation from the sample.)

Step 4: If a,- =  0  go to step 1 . Otherwise, if o,j <  +  1 , go to step 2 , else go

to step 5. i^Since any set of q 1 or fewer points is contained in a q-dimensional 

hyperplane, there is no need to check the actual observations).

Step 5: If the observations for which a,- =  1 are contained in a ^-dimensional 

hyperplane, go to step 6 , else go to step 7. {If the current sample does not consist 

of co-planar points, we must attempt to exclude an observation from the sample.)

Step 6 : If aj =  write “condition true” and stop. Otherwise go to step 2.

Step 7: If a,- =  0 for all i go to step 1 . Otherwise let k be the largest value of i for 

which a,- =  1 , set 2 =  A: — 1 and go to step 2 .

5.3 Examples

E x am p le  5.1. (Parallel Hyperplanes). To demonstrate the computational saving 

of the algorithm over complete enumeration, we applied it to an X  m atrix of 

standard normal random deviates, with n =  30 and p =  4. As already noted, 

for n =  30 an approach based on complete enumeration would have to consider 

some 8053 million partitions in order to prove that r  > 3. However, the parallel 

planes algorithm needs to consider just 15 candidate hyperplanes and, coded in the 

matrix programming language GAUSS, took 0 .2  seconds (on a 486-DX2 50 PC)
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to prove that r  > 3, whereas a program based on complete enumeration would 

certainly take hundreds of hours.

It is clear that the major factor in the running time is the value of p, as it 

determines the number of candidate hyperplanes to be tested. Increasing the 

value of p does have a large effect, but the running times can still be short. For 

example, increasing p to 8  increased the running time to 1 .2  seconds and p =  16 

gave 10.3 seconds. The running time is generally unaffected by an increase in n 

because to reject the condition we need only verify that the condition does not 

hold for a subset of the data.

E x am p le  5.2. (Condition D*). Once again we consider a random normal data 

matrix, with n =  30 and p =  4. We take u = 1 and so an approach based on 

complete enumeration would need to test some 176 million samples in order to 

show the condition does not hold. The branch and bound algorithm visited step 2 

just 7866 times, but performed the hyperplane test in step 5 only 3057 times, due 

to the bounding steps 3 and 4. The program took 15 seconds to run. Increases in 

n and p do have a large effect on the running time, due to the increased number 

of samples that must be considered. For example, at n =  100 and p =  4 the 

running time increased to 21 minutes; with n =  100 and p =  5 to 110 minutes. 

Nevertheless, a data set of this size could not possibly be tested by complete 

enumeration (the number of samples is of the order of 1 0 ®̂) and so branch and 

bound still presents a huge gain in efficiency.

It should be noted that the run-times quoted in this example and in Exam­

ple 5.1 should be regarded as lower bounds for testing data sets that do not satisfy 

the conditions. This is because random data sets, such as those considered in these 

examples, will be in general position and hence candidate solutions will be rejected 

at the earliest possible stage.
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5.4 Discussion

This chapter has discussed approaches for testing conditions for the existence of 

maximum likelihood estimates in two models. The conditions are such that naive 

approaches based on complete enumeration of available combinations will generally 

be computationally too expensive to be viable.

The results discussed in Example 5.1 suggest that the parallel hyperplanes 

algorithm will be useful for virtually all data sets for which a heteroscedastic linear 

model is thought appropriate. Many data sets can now be tested for Condition 

D*, but certainly not all. This is because even the branch and bound approach 

will become too expensive for large enough values of n and p. Nevertheless, the 

branch and bound approach does enable the condition to be tested for many data 

sets of interest, where previously this may not have been the case.

Finally, it should be noted that the time taken for either algorithm to stop will 

depend on the order of the observations. However, investigation into a procedure 

for finding an optimal ordering has not been undertaken, as it does not seem 

useful.
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Chapter 6

Concluding Remarks

The original work presented in the thesis commenced in Chapter 2 with an ex­

amination of the uniqueness problems that can arise when using redescending 

M-estimators for linear regression models. The results obtained by Rivest (1989) 

were shown to be flawed in that they neglect a continuity problem which arises 

when the solution corresponding to the global minimum of (2.4) is not unique. 

This motivated the development of a redescending approach from which unique 

estimates of the model parameters could be reliably obtained. Such an approach 

was considered in Chapter 3, where estimates were obtained by embedding the 

linear model in a multivariate t location-scatter framework. This enabled the 

location-scatter existence and uniqueness results of Kent and Tyler (1991) to be 

applied in the regression context. Whilst robust regression estimates have already 

been defined in terms of robust estimates of location and scatter by Maronna and 

Morgenthaler (1986), their work is limited in that the key question of uniqueness 

is not addressed.

In practice, with the exception of the results obtained for the Stack-Loss data 

set, the multivariate t Af-estimates compared favourably with estimates obtained 

from other robust methods. They are easily computed, and for genuinely multi­
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variate data the approach to modelling the data is plausible, although examples 

have demonstrated that useful results can also be obtained when the multivariate 

t assumption cannot be justified. For such cases it would be preferable to model 

the data via the conditional t approach, since the estimates will not be affected 

by an assumed joint marginal distribution for the covaxiates. However, as noted 

in Theorem 3.1, the resulting objective function is extremely nonregular, being 

unbounded at points in the parameter space corresponding to nonreplicated ob­

servations. Attempts to identify local modes were generally unsuccessful for real 

data sets, although modes were found for large samples of simulated conditional 

t data. It would be desirable to obtain a sufficient condition for the conditional t 

likelihood to have a well-defined local maximum, but this has not been attem pted 

due to the theoretical difficulty of the task and the lack of practical success in 

identifying modes for real data sets. Modifications to the conditional t approach 

were considered, but not found to be useful.

Although the conditional t discussion proved to be of limited importance in 

the context of robust regression, it led to the discovery, in Chapter 4, of hitherto 

unrecognised likelihood problems for certain well-known heteroscedastic regression 

models. Sufficient conditions were obtained for a location-scale framework to yield 

an unbounded likelihood when the dispersion was modelled by either

a,(ex) =  z f «  or a ,(a ) =  exp(zfa).

For the first model the likelihood was shown to be unbounded under a very weak 

condition noted in Theorem 4.1, whereas for the second model a much stonger 

linear independence condition was obtained for the likelihood to be unbounded. 

The choice of dispersion function can therefore have a great effect on the regularity 

of the likelihood. For example, when the {z,} are quadratic in a linear location 

function, the first model yields an unbounded likelihood at any unreplicated obser­

vation, whereas the second yields an unbounded likelihood if the covariates satisfy 

the very strong parallel hyperplanes condition.

78



Examples baaed on simulated data suggested that, in the unbounded case, lo­

cal maximum-likelihood estimation can be viable for both of the dispersion models 

considered, although questions have been raised over the accuracy of estimates ob­

tained using GLIM when the covariates satisfy the parallel hyperplanes condition. 

However, this condition may be tested very efficiently by using the simplex-based 

algorithm discussed in Chapter 5.

Finally, there is scope for further work in this area since the problem may occur 

in more complicated heteroscedastic models than those considered here. In the 

meantime, one should proceed with caution if an objective function derived from 

a heteroscedastic model is not known to be bounded.
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A ppendix A

Likelihood Fitting

A .l Full M ultivariate t iW -estimates

We have experience with two algorithms for maximising the multivariate t log- 

likelihood: a simple approach based on the estimating equations (3.3) and (3.4) 

and a guaranteed-convergent algorithm given by Kent and Tyler, which involves 

embedding the location-scatter estimation problem within a scatter-only problem 

of greater dimension. In both cases the degrees of freedom parameter v is held 

fixed in order to calculate an estimate (fij,, S^). This process is then repeated over 

a grid of values of i/, in order to obtain a final estimate (p, S ) that corresponds to 

a maximum of the profile log-likelihood as a function of v. For comments on the 

uniqueness aspects of this approach, refer to the text of Section 3.2.2.

First we consider the less complicated of the two algorithms. Given initial 

estimates G and G “Pp, define

j (̂m+i) _  ave{a;,z,-}/ave{o;i}

=  ave{u;i(z.--  p(^))(z,--

where w* =  u^(s^), u^(s) =  (i/4 'p)/(f/ +  6 ) and si — (z, —p(”^))^(S^”^̂ )“^(z, —

This algorithm is attractive in its simplicity, but is not guaranteed-convergent for
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all possible starting values. In practice however, no problems were encountered 

with this algorithm. The validity of estimates obtained from it was examined by 

using them as starting values for the Kent and Tyler algorithm. No discrepancies 

unattributable to the limitations of machine precision were encountered.

The algorithm presented by Kent and Tyler, when applied to the multivariate 

t distribution, is as follows: for a data set {z,-, i =  l , . . . , n }  G define d,* =  

( z f , 1)^ G Also, given S  G Pp and p G R^, define A G Vp+i by

A =

Given some initial estimate A °̂  ̂ G Vp+i define

l^jT j j  d ,d f

where u*(s) =  u^{s — 1 ) for s > 1 and u*(6 ) =  u^(0) for s < 1. The new estimate 

is then scaled by the value of its ( p + l ,p + l )  element, so that Ap^J’pîj.i =  1 . 

For details, see Kent and Tyler, where it is shown that this algorithm will always 

converge to a unique estimate

A =
S  +  pp

e n p+i?

such that Tz(p, S , f/) < Tz(p, S , i/) for all p G R^, S  G Vp.

In practice the Kent and Tyler algorithm proved to be the fastest, by a narrow 

margin over the simple algorithm, results typically being obtained in just a few 

seconds (using GAUSS 3.0 on a 486-DX2 50 PC). Alternatively, one could attem pt 

to estimate p, S  and u simultaneously using the EM algorithm (Dempster, Laird, 

and Rubin, 1977). However, this notoriously slow algorithm was not implemented 

due to the success of the profile approach.
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A .2 Conditional t A f-estim ates

In the following discussion it is assumed that v is fixed. The procedure may then 

be repeated over a grid of values of i/, in order to obtain a final estimate.

First, consider the model

2/ 1 u ~  jV'(/i,a^/u) and (A .l)

where f/ > 0. As noted by Lange et al. (1989), this framework yields the following 

standard results:

(i) y  ̂(//,<j2 ,i/);

(ii) u \y  ^  x l+ i/{^  4  <̂ )̂, where 6  ̂ = {y -  Hence

E[u\y] = {i /+ + 6^).

Lange et al. use this framework in order to calculate maximum likelihood estimates 

via the EM algorithm. In order to maximise the conditional t log-likelihood (3.7), 

we extend (A.l) thus: let

y I (x ,u) ~  A/'(/?o +  x^Pi,crVw) and u |x  ^  z^.,(x, 1̂2, ^ 22). (A.2 )

A straightforward but tedious calculation shows that this formulation yields the 

required conditional t distribution for y | x, i.e.

y \ x^ t { / 3o- { -  x^Pi,^^(x , P2 , S 22)(r \ 1/1.2).

Maximum likelihood estimation for the conditional t model may therefore be a t­

tempted by applying the EM algorithm, with missing data {u* : i =  1 , . . .  ,n}. 

Note, however, that the normal model in (A.2) does not include the function 

and has no parameters in common with the chi-squared model, so the models may 

be estimated independently for given values of u. In the normal case this can be 

achieved simply using weighted-least-squares. Given estimates
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and 2 2̂ ^ at iteration m, a calculation reveals the weight computed at the E 

step to be

4 " '  =  E  [ui I s/i, P i”* \  E<?>]
_  f/ + P ________________
“  ^1.2 f4 ” >, s ‘T >) +  {vi -  -  X?’p(’» ')V ^ 2(".) •

The M step involves maximising the complete data log-likelihood, which is the

sum of a normal and a chi-squared log-likelihood. We first calculate estimates

to maximise the normal likelihood, with weights

i.e. we find the value that minimises

t
and then calculate

^ 2(m+l) _  i  ^  (y. _  _  x f p î ’"+'))^
n .

We then find and to maximise the chi-squared log-likelihood which,

up to an additive constant, is given by

-^(P2 ) 2 2 2 ) =  logp^(x,-, P2 , 2 2 2 ) — Wi^^gt,{xi, P2 , S 22) j  • (A.3)

Differentiating (A.3) with respect to P2 and 2 2 2  yields estimating equations which 

may be solved iteratively by, for example, successively redefining the estimates 

in terms of the estimating equations, as in the simple algorithm considered in 

Appendix A.l.

The question of what starting values to use for this EM algorithm does not 

seem to have a clear-cut answer. Obvious candidates are the parameter estimates 

obtained by using the full multivariate t approach, and when the data are multi­

variate t, these should be adequate. Otherwise, such starting points may not be 

sufficiently close to a well-defined local maximum to enable the EM algorithm to 

converge satisfactorily. Modifications to this algorithm should therefore be inves­

tigated, with the aim of ensuring convergence to a satisfactory solution for those 

data sets where such a solution exists. Such possibilities are not investigated here.
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A 3 Calculation of Derivatives

Section 3.4.2 presented examples where standard errors were quoted for conditional 

t Af-estimates. The standard errors were obtained from observed information ma­

trices, which in turn were calculated by numerically differentiating the analytical 

first derivatives of the log-likelihood (3.7). Including the term for the degrees of 

freedom parameter i/, this may be written as

P i ,  cr^, \ i 2 -> S 2 2 ,

where r, =  y,- -  ^ 0  -  x fP i, cr? =  {z/ H- (x,- -  P2)^ S ^ (x ^  -  \i2 )}<̂ '̂ / Vv2 and z/1.2 =  

V p — 1 . Straightforward calculations reveal that

= ( u  + p ) t
dPo S  f/1.2 <7? +  r]

d L _  " XiVj
d^i  ̂  ̂ ^  1/12 +

dL 
d<j‘̂

dL
d\i2

We now introduce the operators vec and vech, such that for a. p x  p matrix A, 

vec(A) returns the x 1 vector obtained by writing the columns of A one below 

the other starting with the first, and vech(A) returns the p(p -f l) /2  x 1 vector 

obtained by returning only the lower triangular portion of A. We also let Dp 

denote the p{p +  l) /2  x matrix of indicators that satisfies, for symmetric A,

Dp vec(A) =  vech(2A — diag A).

For example.

D , =
/ l  0  0  o \ 

0  1 1 0  

^0 0 0 ly
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We can now differentiate L  with respect to the distinct components of E 22 by 

introducing the parameterization (  =  vech(S22) and employing the results sum­

marised by Rao (1985, Table 4). We obtain

Finally,

dv

2 ^ 1  I  2 i/i .2 é ï  o-?(i/i.2<7? +  r ? ) ’

where tl){a) =  ^  log r (a ) ,  the so-called digamma function (Abramowitz and 

Stegun, 1964). In practice, this was calculated using an algorithm due to Bernardo 

(1976).

The following algorithm was devised for the calculation of Dp: start with a 

p{p-\-1)/2 X  p^ matrix of zeros. Then, for all (i^j) such that 1 < i  <  z < p ,  set for 

each r  =  (j — l)(p — j / 2 ) -|- z, ci =  [j — l)p -f- i and C2 =  (z — l)p +  J, the elements 

(r. Cl) and (r, C2) to one.

Estimated second derivatives were compared with analytical second derivatives 

for all terms except d^L/du^.  However, only negligible differences were observed. 

The evaluation of was not attem pted as it was felt that additional ‘pre­

cision’ gained analytically would be offset by lack of precision in the evaluation of 

^ '(a ) ,  the trigamma function.
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