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A bstract

The application of the efficient rank-one perturbation algebra of Bunch, 
Nielsen and Sorensen [BNS78] to the leave-one-out cross-validation of princi­
pal component regression is described. Similarly, we consider the restriction 
of the efficient leave-one-out cross-validatory algebra for continuum regression 
proposed by Stone and Brooks [SB90][SB92] to partial least squares regres­
sion. Implementations of both cross-validatory procedures are presented in 
the numerical analysis package GAUSS [Apt92], together with procedures for 
the com putation of principal component and partial least squares regression 
equations. We describe the application to the leave-one-out cross-validatory 
assessment of principal component and partial least squares prediction equa­
tions, using near infrared spectroscopic data. The methodologies are com­
pared with the existing procedures for efficiency and numerical accuracy. We 
derive influence measures from the cross-validatory computations and con­
sider an application in food analysis on the use of near infrared spectroscopy 
for the calibration of total oil content of white m ustard seeds. Finally, a 
published paper on the SIMCA [Wol76] method of classification which is 
based on the principal component decomposition and usually involves a cross- 
validatory assesment is bound in with this thesis, following the bibliography.
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N otation  Glossary

Y  column vector of observed responses

yi observed response for the observation

X  m atrix of observed predictor variables

Xj- row vector of observed predictors for the observation

1 column vector of I ’s

Y  column vector of mean-centred responses

yi mean-centred response for the z*̂  observation

X  m atrix of mean-centred predictor variables

X* row vector of mean-centred predictors for the ẑ  ̂ observation

rank of X  

S sample covariance m atrix

s sample covariance vector

C cross-products m atrix

c cross-products vector

Q m atrix of component coefficients

c{j column vector tha t contains the component coefficients 

A diagonal m atrix of principal component variances

9
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\ j  the variance of the principal component 

E  diagonal m atrix of principal component eigenvalues

6j the eigenvalue of the principal component 

U  m atrix of component scores

Uj column vector tha t contains the component scores 

W  m atrix of standardized principal components

I  identity m atrix

gj the standard basis vector 

n number of observations

p number of predictor variables

7  number of components selected for the construction of a predic­
tion equation

z normalized principal component scores for a cross-validated ob­
servation

(z) a subscript used to indicate quantities tha t have been downdated
for the omission of the ẑ  ̂ observation

P( / , m)  perm utation m atrix

rotation m atrix 

1/  the cross-validatory constant n/{n  — 1)

p the total eigenvalue downdate

6 an angle

fij the normalized eigenvalue downdate

^  a rational function

(/) a rational function
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T a constant of order unity 

rj the machine epsilon

Il II the Euclidean vector norm

Il II2 the m atrix  2-norm

I I the absolute value
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Much interest in m ultivariate statistics has centred recently on the use and 
development of statistical methodology in the field of chemometrics. This is 
particularly so for the calibration of linear regression equations for prediction, 
using high dimensional predictor data. Typical examples are in the applica­
tion of near infrared spectroscopy to the compositional analysis of foodstuffs 
[OFMD84]. Many measurements in food chemistry are difficult or expensive 
to obtain with classical methods from analytical chemistry. Spectroscopic 
analysis on the other hand is often quick and less expensive to perform and 
the spectral da ta  may contain information relevant to the measure of in ter­
est. Near infrared spectroscopy in particular is a relatively inexpensive and 
simple m ethod of analysis which has often been applied with success in food 
analysis. The objective of these analyses is to replace existing procedures for 
the determ ination of a measure of interest with a prediction rule obtained 
from a properly calibrated regression equation, using the spectral data. It 
is at this point th a t statistical methodology is applied to construct and op­
timize prediction equations for use in practical applications. Many of these 
applications have been restricted to linear regression of the measurements to 
be calibrated on the m atrix of predictor data.

The spectra generated from a spectroscopic analysis are usually stored 
as m easurements on a fixed grid of equidistant wavelengths. The size of the 
predictor m atrix  is thus determined by the size of the calibration set and 
the num ber of wavelengths at which the spectra are measured. The la tte r is 
potentially unlim ited, while sample sizes are usually restricted. Thus, in these 
applications, the number of measurements available for prediction is normally 
much larger than the number of samples available. More im portant than  the 
dimensionality problem, these calibration problems are usually complicated 
by the fact th a t it is typically the small-variation perturbations which are 
correlated with the measure of interest. In most applications this precludes 
ordinary or minimum-length least squares for the construction of a linear 
prediction equation, as small sources of variation will inflate the variability 
of the prediction rule. Thus, if we want to m aintain the convenience of 
linear prediction equations, a problem of bias-variance trade-off with respect 
to least squares calibration needs to be addressed. While there are several 
possibilities to address this problem, least squares regression on principal 
or partial least squares components has often been employed, using cross- 
validatory assessment, as described by M artens and Naes [MN89] as well as 
Brown [Bro93], for example.
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These methodologies have depended heavily on advances in technology 
and instrum entation. This is particularly true for improvements in compu­
tational facilities which have made efficient computations for large data  m a­
trices possible. Thus, techniques like principal component or partial least 
squares regression have become routine calculations in the calibration of 
m any prediction equations involving high dimensional data. Furthermore, we 
can employ the pioneering work of such researchers as Householder [Hou58], 
Wilkinson [Wil65] and Golub and Van Loan [GL89] for the efficient com­
putation of principal component regression equations. Similarly, for partial 
least squares regression, efficient computations have recently been proposed 
by Stone and Brooks [SB90] for both the partial least squares decomposition 
and cross-validatory computations, embedded in a more general algebra for 
continuum regression.

To date, however, no such efficient computations have been made avail­
able for the leave-one-out cross-validation of principal component regression 
equations. Naive implementations proceed from a random or system atic di­
vision of the data into subsamples, referred to as validation samples. For 
each subsample, the remainder of the data constitutes a construction sam­
ple. The cross-products matrices are then recomputed for each construction 
sample followed by a complete principal component analysis of the new cross- 
products m atrix. W ith such implementations, the cost of a full leave-one-out 
cross-validation may be extremely high. An algorithm proposed by Bunch, 
Nielsen and Sorensen [BNS78], based on work by Golub [Gol73] and fur­
ther investigated by DeGroat [DeG90], provides an elegant solution to the 
problem of leave-one-out calculations. By applying this algorithm to the 
cross-validation of principal components, one can calculate a full leave-one- 
out cross-validation from a single principal component analysis on the whole 
data. R ather than recomputing the principal components from scratch after 
leaving out an observation, we consider the change in the principal com­
ponents tha t results from a leave-one-out perturbation. This com putation 
is based on the downdating of the eigenvalues tha t is associated with the 
omission of an observation. The m ethod is conceptually elegant, as we only 
calculate the decomposition tha t we are actually interested in. We can store 
this decomposition for use in further analysis.

As for principal component regression, we can implement an efficient 
leave-one-out cross-validatory algebra for partial least squares. This is ob­
tained through the restriction of the efficient leave-one-out cross-validatory
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com putations for continuum least squares [SB90] to the partial least squares 
case. Both these algorithms are implemented in the numerical analysis pack­
age GAUSS [Apt92, Version 3.0]. Finally, we consider the derivation of in­
fluence measures in the leave-one-out cross-validatory algebra and consider 
their use in the calibration of linear prediction equations with the m ethods 
considered.

Throughout, we restrict ourselves to the decomposition of the covariance 
m atrix, for both principal component and partial least squares regression 
and their cross-validatory assessment. The algebra described does not apply 
to the correlation m atrix. This has also been observed by Sundberg [Sun93] 
and Stone and Brooks [SB90][SB92] in the cross-validation of continuum 
regression. In such situations where a scaled analysis may be preferable, one 
could scale the data prior to analysis in a manner which is not dependent on 
the data. One could then apply the cross-validatory algebras which will be 
presented here for principal and partial least squares components.

1.1 P relim in aries
We formalise some of the previous discussion. Assume tha t a sample of n 
observations {yi, x n , . . . ,  Xip), i = 1, . . . ,  n, has been generated from a spec­
troscopic analysis, where

Ÿ =  ( ÿ , , - - - , ÿ n f

is a column vector of measurements on a variable of interest and

/ x :  \
X  =

V Xn /

is a corresponding m atrix of predictor data, with Sti = { x n , . . .  ,X{p), i = 
1, . . . ,  72. It is often more easy to work with mean-centred data and hence we 
introduce the notations

Y  =  { y i  - Y , . . .  , y n  -  Y ) ^  =  (t / i ,  . . . ,  yn)^
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where Y  — Vi /  n and

X  =
X i  -  X  /  X i  N

with X  =  Ya - \  X i/n. The sample covariance m atrix is defined as

X ^X
n — 1

and likewise, we may define a sample covariance vector

X ^Y

We will be concerned with the application of full leave-one-out cross- 
validation [Sto74] to the construction of a linear prediction equation of the
form _

Y l - f X a ,

for the univariate set of measurements Y , from the observed explanatory 
data  X , using principal component [Jol86 , page 129][MN89, page 97] and 
partial least squares [MN89, page 116] regression, where a  is a column vec­
tor of regression coefficients and 1 is a column vector of I ’s. These biased 
regression methods adhere to the Stone-Brooks [SB90] formulation of contin­
uum  regression, in tha t they sequentially derive a set of regressors Uj = Xq^-, 
j  = 1, . . . ,  r ;̂, where = min(n — l,p )  is the rank of the predictor m atrix X, 
such th a t the regressors have positive variances and are uncorrelated, with 
each vector of coefficients q j, j  =  1, . . . ,  a column vector of unit length. 
The coefficient vectors q^, j  =  1 , . . . ,  define a new system of coordinates 
in the observed m ultivariate predictor space. We will refer to these directions 
as component coefficients. Likewise, we may refer to the vector of coordinate 
values Uj, y =  1, . . . ,  r ,̂, of the observations in this new coordinate system as 
scores or components.

Each m ethod constructs, for each 0 <  7  < r ,̂, a biased prediction formula

Y  — Y l  -|- 61U1 T  • • • -(- 6 û..y
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from an ordinary least squares regression of Y  on Ui , . . . ,  u^. Hence, the only 
difference between both methodologies is in the optim ality properties of the 
derived components. Therefore, the above framework of biased regression is 
complete apart from two points. First, and obviously, there is the optim ality 
criterion to be employed in the construction of the components. Secondly, an 
appropriate stopping rule must be used to choose the number of regressors 
for optim al prediction.

Stone and Brooks considered a full leave-one-out cross-validatory choice 
of the num ber of regressors in their original paper on continuum regression 
[SB90, page 245].

An application of full leave-one-out cross-validation to the above frame­
work for biased regression involves, for each datum  (yi,Xi), i =  1, . . .  , n,  the 
com putation of the leave-one-out cross-validated prediction equation

^(*,7) — ^  («) 1 +  • • ' +

th a t is obtained when the datum  is left out of the calculations. This equation 
is then applied to the left-out datum , to obtain the cross-validated predicted 
value _

= ^ (0  +  + -----H
for ÿi, where _

with the vector of component coefficients when the observation has 
been removed from the data. A full leave-one-out cross-validatory assessment 
may then be calculated for each 0 < 7  < from the differences between 
the observed values ÿ*, i = 1, . . . ,  n, and the cross-validated predicted values 

.y), i =  1, . . . ,  n. A suitable criterion is the prediction error sum of squares

PRESS, =  Ê ( î / i  -
i=l

or equivalently, the mean prediction error sum of squares

M SEP, =  ~  _
n

which may also be referred to as the mean squared error of prediction. This 
im plem entation of cross-validation is referred to as full leave-one-out cross- 
validation, as each observation is removed from the data on its own, retaining
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all other observations for the calculation of the prediction equation for the 
left-out datum .

Cross-validation makes efficient use of the data as it does not require a 
separate validation set. Full leave-one-out cross-validation is particularly ef­
ficient in its use of the data, as each cross-validated prediction equation is 
calibrated from the maximum number of observations and hence, at least 
from a purely heuristic point of view, leave-one-out cross-validation uses the 
data  to the full. Unfortunately, the computational cost of naive implementa­
tions of full leave-one-out cross-validation can be prohibitively high. Hence, 
the above described efficiency does not extend to the com putational aspects 
of leave-one-out cross-validation.

Stone and Brooks have considered the efficient cross-validation of contin­
uum  regression and, by implication, of partial least squares. Unfortunately, 
the Stone-Brooks computations for continuum regression do not extend to 
the principal component limit. Therefore, we will consider the efficient nu­
merical com putation of full leave-one-out cross-validatory calculations for 
principal component regression. We may then consider the application of 
the Stone-Brooks cross-validatory algebra to partial least squares regression 
and draw comparisons.

It is clear tha t the essential step in the cross-validatory com putations is 
the calculation of the cross-validated components cjj, j  =  1, . . . ,  irrespec­
tive of whether we use principal component or partial least squares decom­
position. We will refer to these as the downdated component coefficients and 
to the process of computing the cross-validated components as downdating. 
Thus, the problem of constructing efficient methods for the leave-one-out 
cross-validation of principal component and partial least squares decompo­
sitions reduces to the downdating of the components under leave-one-out 
perturbations of the data. The leave-one-out cross-validatory algebra will be 
simplified if we introduce the cross-products m atrix

c  = x^x,

such th a t S =  C /(u  — 1) and the cross-products vector

c = X^Y,

such th a t s =  c /(n  — 1).
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These methods may be criticised on a number of points. First, although 
they deal effectively with the dimensionality problem they ignore the natu­
ral ordering of wavelengths completely. Potentially more damaging criticism 
may be found in the approach to the bias-variance trade-off. For princi­
pal component regression, the above implementation has been justly  criti­
cised (e.g. Jolliffe [Jol82]) as the high-variance components may not be the 
best predictors for the response considered. Thus, although rejecting small- 
variance components is optimal in terms of rejecting those components tha t 
increase the variability of the prediction rule most, the prediction equation 
obtained may not be optimal when the ordering of components with respect 
to correlation with the response measure differs from tha t obtained on the 
basis of predictor variance alone. Some reordering of components may be 
needed so as to allow for relative differences in correlation between principal 
components. Many authors have suggested a ranking according to correlation 
with the measure of interest [J0I86].

Ordering of components is intrinsic in the partial least squares approach 
but the covariance criterion itself may be sub-optimal. This problem is ad­
dressed by continuum regression as it seeks to find the optimal optimisation 
criterion through a cross-validatory assessment. Thus, continuum regression 
attem pts to achieve a similar result to tha t which would be achieved through 
selection of principal components. The above version of principal compo­
nent regression emerges as one limit of continuum regression and hence, this 
implementation is of interest from a purely computational point of view. 
Furthermore, it is a straightforward exercise to change an im plem entation 
of the subsequent cross-validatory algebra to allow for a different ordering 
of the principal component scores in regression, using a perm utation of the 
principal component indices. For these reasons, and to simplify notations, 
we restrict ourselves to the previously described implementation .

1.2 M u stard  data
We will use an example from near infrared spectroscopy to illustrate the 

efficient cross-validatory computations. The example is concerned with 50 
samples of white m ustard seed and was provided by the Camp den Food and 
Drink Research Association [EJH91]. In this application, interest resides in 
the to tal oil content of the samples. After determ ination of these measures.
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Figure 1.1: The near infrared spectra of fifty samples of white m ustard seed.
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the data  were stored as the response variable Y  to be predicted. A near 
infrared spectroscopic analysis was also carried out for the same samples, 
measuring the absorbance log(l/i^) at 700 wavelengths, ranging from 1100 
nanometres to  2500 nanometres at intervals of 2 nanometres. Figure 1.1 
shows a plot of the measured near infrared spectra for these samples of white 
m ustard seed. These data were stored as the predictor data X  and are a fairly 
typical example of the use of near infrared spectroscopy in the analysis of 
foods. While the distinct spectra are of a smooth and predom inantly parallel 
nature, their interpretation is only of secondary interest. True interest lies in 
the calibration of the measure to be predicted. Interpretation of the predictor 
data often comes only at a subsequent stage, after calibration, possibly in the 
form of the interpretation of the principal or partial least squares components.

Principal component and partial least squares regression are applied to 
these d a ta  to construct linear predictors for the oil content from the observed 
spectra, as explained in chapters 2 and 3 respectively. Leave-one-out cross- 
validation is used to choose the number of components so as to optimize the 
mean squared error of prediction.



C hapter 2

Principal C om ponent 
R egression

22



C H A P T E R  2. PRINCIPAL COM PONENT REGRESSION  23

2.1 P r in cip a l C om ponent D eco m p o sitio n  and  
C ross-va lid ation

2.1.1 Principal Com ponent D ecom position
Principal components are derived sequentially, such tha t each component 
maximizes the sample variance of the corresponding principal component 
scores, subject to the side conditions tha t the principal component scores 
are uncorrelated between distinct components and have positive sample vari­
ance, while the principal component coefficient vectors are of unit length 
[HotS3][Jol86, page 1]. Stone and Brooks [SB90, page 241] remark th a t prin­
cipal component regression is peculiar as the components are constructed 
without reference to the observed response. This has also been noted by 
Gnanadesikan and Kettenring [GK72, page 110] who refer to principal com­
ponent decomposition as a purely internal data analysis technique.

P rin cip al C om p on en t A lgebra

The algebra of principal component decomposition is well known and has 
been described in many texts on multivariate statistics [And58][Krz88][Jol86]. 
As this algebra parallels th a t of continuum regression, and therefore also tha t 
of partial least squares, we will include it here for completeness.

The first component coefficient vector qi must maximize the sample vari­
ance q ^ S q  of the linear combination X q, among all q  with q ^ q  =  1. Hence, 
using the m ethod of Lagrange multipliers, we must maximize

Li(q) =  q^S q  -  A(q^q -  1),

and the first component coefficient vector is the solution of the equation

— Li(q) =  Sq -  Aq =  0.

Therefore, q  satisfies the equation

Sq =  Aq,

and hence, q% is an eigenvector of the square symmetric m atrix S. Further­
more, the variance of the principal component scores Ui =  Xq% is q ^S q i,
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which equals the eigenvalue of q i, and hence, as Ui must have maximum 
variance, q i must be the first eigenvector of S.

Let us postulate tha t the first k principal component coefficient vectors q^ , 
j  = are the first k eigenvectors of S, such that each component
coefficient vector equals the eigenvector. The variance of the principal 
component scores Uj = Xq^ is equal to the eigenvalue of S.

Consider the com putation of qA:+i, with 1 < k < We must maximize 
the criterion q^Sq, subject to the side conditions q ^q  =  1 and q J S q  =  0, 
j  = Hence, we must maximize the Lagrangian equation

L)t+i(q) =  q ^ S q -  A(q^q -  1) -  a i q f S q  Q^^tqfSq.

As the first k components are eigenvectors, the side conditions q j S q  =  0, 
j  = reduce to q jq  =  0, j  =  1, . .  .,1k, and the Lagrangian equation
becomes

Lfc+i(q) =  q ^ S q -  A (q ^ q -  1 ) - « i q f q  o^tqlq.

Thus, qfc+i is the solution of equation

^LA;+i(q) =  Sq — Aq — « iq i — • • • — akC[k = 0.

Using q j q  =  0, j  =  1 , . . . ,  A;, we find tha t q JS q  =  Qj, j  =  1 , . . . ,  A:. However, 
q J S q  =  q^S q j =  0, j  =  1, . .  .,&, and hence o;i =  • • • =  =  0. Therefore,
qjt+i satisfies the equation

Sq =  Aq.

Hence, as for the first k components, we find tha t q^;+i is an eigenvector of 
S. Furtherm ore, with the same argument as used for q i, we find th a t q^+i 
is the {k +  1)̂  ̂ eigenvector, with variance equal to the {k +  1)̂  ̂ eigenvalue 
of S.

This proves by induction tha t the principal component coefficient vectors 
are the eigenvectors of the square symmetric m atrix S, such tha t

S =  Q A Q ^,

where Q =  (qi, • • •, =  [(%)) is the m atrix of principal component coef­
ficients with

= I,
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and A is a diagonal m atrix with the principal component variances Ai > 
" > on the diagonal [Krz88, page 63] [Jol86, page 3] [Seb84, page 176] 

[Rao73, page 592].

P rin cip al C om p on en t C om pu tation s

We have shown th a t principal component decomposition is the orthogonal 
decomposition of the sample covariance m atrix. Hence, any m ethod for the 
com putation of the orthogonal decomposition of a real square symmetric 
m atrix  may be used for the computation of the principal component decom­
position.

A standard m ethod for the computation of such a decomposition is the 
sym m etric QR algorithm, as described by Golub and Van Loan [GL89, chap­
te r 8], Wilkinson [Wil65, chapter 8] and Wilkinson and Reinsch [WR71]. 

The principal component scores may be obtained from

U  =  X Q ,

where U  =  ( u i , . . . ,  u,.^) =  [{uij)] with

U ^U  =  E,

and E is the diagonal m atrix with the eigenvalues ei >  • • • > of the 
cross-products m atrix  C on the diagonal. We have

A =  ^
n -  1 ’

or equivalently, (Ai , . . . ,  Â )̂ =  ( e i , . . . ,  e,.^)/(n — 1) and

X  =  U Q ^.

The last equation points to an alternative m ethod for the com putation of 
the principal component decomposition. We may compute the singular value 
decomposition

X  =  W E&Q^,

where W  =  X Q E  &̂ such tha t W  W  =  I. We have U  =  W E L  The Golub 
and Reinsch m ethod [GL89, pages 239 and 430] [GK65] [GR70] [WR71] is



C H A P T E R  2. PRINCIPAL COM PONENT REGRESSION  26

an efficient algorithm for the computation of the singular value decompo­
sition th a t avoids the errors involved in forming the cross-products m atrix . 
Another attractive feature of the singular value decomposition is th a t the 
principal component coefficients, the principal component eigenvalues and 
the principal component scores may be computed simultaneously. A com­
prehensive discussion of the efficient and numerically stable com putation of 
the singular value decomposition may be found in the book by Golub and 
Van Loan [GL89].

From a practical point of view, we can always obtain the principal com­
ponent decomposition in the regular case (n — 1 > p) from the eigendecom- 
position of the cross-products m atrix

C = QEQ^.

In the singular case (n — 1 < p), it is more efficient to compute the prin­
cipal component decomposition from the eigendecomposition of the m atrix  
X X ^:

XX^ = WEW^.

The principal components are then obtained from

Q = X^UE-i = X^WE-&.

2.1.2 Principal Com ponents and Cross-validation
The earliest description of principal component decomposition dates back 
to 1901 and is due to Pearson who considered a purely geometric definition 
of principal components [PeaOl]. This approach is essentially one of find­
ing good lower dimensional approximations to high dimensional data, using 
simple linear combinations and the Euclidean distance as a goodness-of-fit 
criterion. The statistical definition of principal component decomposition 
as a transform ation of a set of random variâtes is due to Hotelling [Hot33]. 
Thus, the above definition and derivation of principal components as a set 
of uncorrelated variâtes may be referred to Hotelling and has since become a 
standard way of introducing principal component analysis, as in Anderson’s 
book on m ultivariate statistical analysis [And58] or Jolliffe’s reference book 
on principal component analysis [Jol86], for example. Many different char­
acterisations and properties of principal components have since been found.
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R ao’s article on the ‘Use and Interpretation of Principal Component Analysis 
in Applied Research’ [Rao64] is a good summary and Jolliffe’s book provides 
a more recent treatm ent with an extensive account of properties and appli­
cations.

The numerical computation of principal components has long remained 
a problem, lim iting practical applications of principal components in mul­
tivariate analysis. The solution of this problem has depended essentially 
on the identification of principal component decomposition as an eigende­
composition problem. Seber, for example, has defined principal component 
analysis directly as the eigendecomposition of the sample covariance m atrix 
[Seb84, page 176], ignoring the more conventional introduction of principal 
components in the statistical literature.

The pioneering work of Householder and Wilkinson as well as the advent 
of modern com puter technology provided the breakthrough necessary for the 
efficient com putation of principal component decompositions. Indeed, the 
development of numerical methods for principal component decomposition 
has gone hand in hand with developments in the computer industry. The 
fundam ental reference text on the numerical treatm ent of eigenproblems is 
‘The Algebraic Eigenvalue Problem ’ by Wilkinson in 1965 [Wil65j. Many of 
the fundam ental algorithms that stem from this work have been published 
in ALGOL versions in the ‘Handbook of Automatic Com putation, Volume 
2, Linear Algebra’, edited by Wilkinson and Reinsch [WR71]. The numerical 
com putation of eigendecompositions and related topics continues to a ttrac t 
much attention. A recent account of the fundamentals as well as many refer­
ences can be found in the second edition of ‘M atrix Com putations’, by Colub 
and Van Loan [CL89].

Most of the methods described in these books have been made available 
through the numerical software library EISPACK [SBI'""70][CBDM72]. An 
autom atic distribution system accessible through electronic mail has been 
implemented with the NETLIB facility, which operates free of charge. A 
description of this electronic distribution service may be found in the book 
from Colub and Van Loan, as well as in an article from Dongarra and Crosse 
[DS87]. A complementary library of routines tha t deals with numerical m eth­
ods for linear algebra is available in the LINPACK [DBMS78] package. An 
updated library LAPACK has now been implemented which is intended to 
supersede both the EISPACK and LINPACK set of routines and is available 
through the same channels.
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LAPACK and EISPACK, as well as LINPACK, are w ritten in FORTRAN. 
User friendly packages have been w ritten which devise an easy and in tu­
itive m atrix language to make these procedures available to a wider public. 
GAUSS [Apt92] and MATLAB [Mat92] are the main implementations.

Cross-validation is a much more recent development in statistics. The first 
comprehensive treatm ent is due to Stone in his extensive paper on ‘Cross- 
validatory Choice and Assessment of Statistical Predictions’ [Sto74]. Many 
of the ideas leading to the unified theory explained in this article had been 
around for much longer though. Stone refers to Mosteller and Tukey [MT68] 
for the first accurate description of full leave-one-out cross-validation.

Given the development of principal component computations, it is not 
surprising th a t the application of full leave-one-out cross-validation to prin­
cipal component analysis has been cumbersome. This is prim arily due to 
com putational problems, as the cost of naive implementations makes such 
calculations unpractical. A further reason is concerned with the application 
of Stone’s paradigm to the cross-validation of principal components.

The first application of cross-validation to principal component decom­
position has been in chemometrics rather than in statistics. This has been 
described by Svante Wold in 1976 for the SIMCA method of biased discrim­
inant analysis [Wol76]. Wold’s approach adheres to Stone’s and M osteller’s 
paradigm  in th a t it is based on the complete omission of observations from 
the data. Wold splits the data in a limited number of subgroups to reduce the 
workload, rather than computing a full leave-one-out analysis. Furthermore, 
his com putations employ the NIPALS algorithm, which is essentially an im ­
plem entation of the power m ethod, rather than any of the efficient methods 
available at th a t time. This approach was subsequently generalized in an 
article from the same author, to the cross-validation of principal component 
and factor analysis models, in 1978 [Wol78]. The methodology is identical to 
th a t used for the SIMCA method, except tha t principal component decom­
position is generalized to a framework of ‘data modelling structures’ which 
may also be applied to factor analysis. Again, computations are based on 
the NIPALS algorithm and the deletion of subgroups rather than individual 
observations.

The first and often quoted contribution in statistics is in an article from 
Fastm ent and Krzanowski, in 1982 [FK82]. This article considers the cross- 
validatory choice of the number of components in a principal component rep­
resentation of the data and largely ignores the previous work due to Wold.
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East ment and Krzanowski take the view that for applications of principal 
component decomposition to obtain low dimensional representations of data, 
an application of Stone’s paradigm must be based on the omission of in­
dividual cells from the data m atrix, rather than on the complete omission 
of a datum . A computational scheme for this alternative cross-validatory 
procedure is proposed and Monte Carlo simulations are considered to verify 
the performance of the algorithm. Two subsequent articles by Krzanowski 
consider further simulations as well as an application to the Alate Adelges 
data  [Krz83][Krz87].

This approach has largely set the tone for the statistical treatm ent of 
principal component cross-validation in statistics. Jolliffe [J0I86 , page 99] 
follows this framework completely in a discussion on the cross-validation of 
principal components, as does Seber [Seb84, page 187]. An exception may 
be found in the paper by Stone and Brooks on continuum regression [SB90].

Most of these applications of cross-validation to principal component 
analysis have been concerned with the choice of the number of components 
necessary for an adequate representation of data. In chemometrics, the m eth­
ods developed by Wold have subsequently been used in the calibration of 
principal component prediction equations, with similar com putational ap­
proaches. Hence, these methods are based on the power algorithm and con­
sider subsets of the data, rather than a full leave-one-out approach. A de­
scription of these methods may be found in the book from M artens and Naes 
on ‘M ultivariate Calibration’ [MN89, page 254]. Essentially, the same ap­
proach to the cross-validation of principal components has been considered 
by Stone and Brooks in their treatm ent of continuum regression [SB90], but 
with a leave-one-out implementation. In the limit to ordinary least squares, 
their implementation of cross-validation will coincide with the classical im ­
plem entation of cross-validation for least squares. Unfortunately, this algebra 
breaks down in the principal component limit.
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2.2 L eave-O ne-O ut P rin cip a l C om p on en t M o d ­
ifications

2.2.1 Leave-One-Out Perturbations
The downdated principal component m atrix Q(^) for the deletion of the 
datum  is obtained from the orthogonal eigendecomposition

of the downdated cross-products m atrix C(*) =  X^^Xp), where

Xi — Xp)

X(i) = Xi-i — X(j)
Xi+l id

\  — X(i) /

with X(j) the mean of the leave-one-out downdated predictor data. We have

C(i) =  C -  z^xfxi,

with 1/ = n /{n  — l) [Seb84, page 15] and hence, employing the principal com­
ponent decomposition C =  Q E Q ^, the leave-one-out modification problem 
reduces to the eigendecomposition of the m atrix

E  — p z ^ z ,

where z =  X iQ /||x iQ || and p =  i/||x iQ |p  =  z/||xi||^.
From the principal component decomposition

E — pz^z =  VE(i)V ^,

we obtain the downdated m atrix E(^) with the eigenvalues . . . ,  on 
the diagonal. The downdated principal components may then be derived 
from

Q(o =  Q V .



C H A P T E R  2. PRINCIPAL CO M PO NENT RE G RESSIO N  31

This determines the framework for leave-one-out principal component 
downdating. The downdating principal components V  will be computed in 
two stages. W ith  this terminology we distinguish the components V  which 
are applied to downdate Q from the downdated m atrix Q(j) itself. The down- 
dated principal component eigenvalues are computed first. The principal 
components V  are then obtained as a function of the downdated eigenvalues 
ei(i),. . . ,  the eigenvalues e i , . . . ,  and the principal components Q.

D efla tion

It is im portant th a t we study those situations for which the downdating 
problem is trivial, so as to identify a well-behaved problem. This will also 
reduce the workload in any implementation, as those components tha t do 
not downdate may be removed from the computations immediately.

We may always assume that p is strictly positive. Indeed, p =  0 is 
equivalent to z =  0 , which corresponds to the trivial downdating problem in 
which none of the principal component eigenvalues and principal components 
are downdated. The geometric interpretation of this phenomenon is tha t the 
cross-validated observation is situated at the mean of the data. Hence this 
observation does not contribute to the sum of squared projections of the 
data  on the principal component directions and, as a consequence, it can not 
influence any of the principal component directions.

The second situation is tha t in which zi = 0 for some 1 <  / <  In this 
case 6/ — î{i)

( E  -  p z ^ z ) g /  =  E g /  =  e /g /,

where g; =  (0 , . . . ,  0 , 1, 0 , . . . ,  0) is the standard basis vector, and hence, 
V/ =  gi. This follows as the ordering of the downdated components is un­
affected, as may be seen from the present deflation algebra and theorem 
2.2, which will be discussed subsequently. If there is a ^  0 for some
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I < m  < then we can find a perm utation P( / , m )  of elements,

0 • • • 0 
. 1

m

I m

tha t interchanges the positions of zi and Zm in z, while leaving all other 
elements of z unchanged. This amounts to a perm utation of the principal 
component directions, and hence, the same perm utation must also be applied 
to the m atrix of principal component coefficients Q as well as to the diagonal 
m atrix  of eigenvalues E. We have that

P (/, m f E P { l , m )

is a diagonal matrix. As a consequence, all zero elements of z may be per­
m uted to the ‘bottom ’ of the eigensystem.

The last case is tha t for which e/ =  for some 1 < I < m  < In this 
case we can find a Jacobi or Givens rotation [GL89, pages 201 and 463] of
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elements,

J ( / ,  m, $)

cos{0)

cos(0) m

m

such tha t the component of

z J(/, m, 6)

is zero. As for the previous case, this rotation must be applied to the diagonal 
m atrix  of eigenvalues E  and to the m atrix of eigenvectors Q. As for the 
previous case, we find tha t

is diagonal. We may now apply the previous analysis and perm ute the rotated 
dimension to the ‘bottom ’ of the eigensystem.

From a repeated application of the above steps we may find an orthogonal 
transform ation m atrix T  such tha t T ^ E T  =  diag(di , . . . ,  with di > 
. . .  > dk and ^ =  zT  with (k+i = "  ' = (r^ = 0 .  We have shown th a t the 
downdating of the last r^ — k components of this transformed eigensystem is 
trivial. The downdating of the first k components is a subproblem of the same 
type as before, but with distinct eigenvalues and no zero principal component 
scores for the left-out observation. Hence, we may restrict ourselves to the 
decomposition of such eigensystems.



C H A P TE R  2. PRINCIPAL COM PONENT REG RESSIO N  34

T h e e ig en sy stem  o f E — p z ^ z

We will assume tha t all eigenvalues are distinct, such tha t ei >  • • • >  and 
th a t z has no zero components.

Bunch, Nielsen and Sorensen [BNS78] considered the following theorem 
for the com putation of the m atrix of downdating principal components V  =

T h eorem  2.1 If  A  is a square invertible realn b y n  matrix,  u a n d v  are real 
n by 1 vectors and p is a real number different from zero, then the s tatements

(A +  puv^)x =  b.

and

A  u X b
.6». .0 .

X =  A  — OA ^u, =  v^A ^b, with  ̂ v^A  ^u,
P

are equivalent.

This theorem originates from the original paper by Bunch and Rose [BR74] 
on the ‘partitioning, tearing and modification of sparse linear system s’. An 
application of this theorem shows tha t V  may be computed directly without 
any further iterative computations, such as inverse iteration [Wil65][WR71, 
page 418][PW79][GL89, page 383], once the downdated eigenvalues have been 
obtained.

Consider the computation of component v^. Deflation ensures th a t D ;̂ =  
E  — ejt(i)I is invertible, or equivalently, E  and E — pz^z  do not have any 
eigenvalues in common. Indeed, if we were to assume th a t was an
eigenvalue of E, for instance, then ek{i) — e;, for some 1 <  / <  and

0 =  g/[(E -  ek(i)I)vk -  p{zvk)z'^] = -p{zvk)z i .

As p and zi are non-zero, we have zv^ =  0 and therefore Ev^ =  ^k{i)^k‘ 
However, as E  has distinct eigenvalues, this implies tha t is in the vector 
space spanned by g/ and hence, z\ = zv^ =  0 , which is in contradiction to 
the assumptions.

We may now apply theorem 2.1 to the equation

(Dk -  pz^z)v)k =  0,
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with A  =  Da;, u  =  V  =  and b  =  0. We find tha t the equations of 
theorem  2.1 are consistent if and only if ^ =  0 and $ arbitrary. Hence, we 
find tha t

VA: OC (E -  6A:(qI)"^Z^,

and therefore
( E  -

'  | | ( E - e . ( o I ) - ' z r | r

as v j v k  = 1.
A simpler argum ent tha t avoids the use of the above theorem  has been 

considered by Golub and Van Loan [GL89, page 462]. Each downdating 
eigenpair (cA;(q, VA=) satisfies the equation

(E -  pz^z)vfc =  et(qVA;,

and hence,
(E  -  CA:(qI)v& -  p (zv t)z^  =  0.

As we work with defiated eigensystems, E  — eA;(qI is invertible and zva; ^  0. 
Hence, VA= is in the span of

(E — CA;(î)I) ^z^

and we find
_  ( E  -  e , ( o I ) - ' z ^

V A; — ||( E - e , ( i ) I ) - i z r | |

as before.
The downdated principal component coefficients may now be computed 

from
HA:(q — Q v t,

and hence, the downdating principal component coefficients , j  =  1, . . . ,  
are obtained once the downdated eigenvalues ei(q, • • • have been com­
puted. The downdating of the principal component eigenvalues is therefore 
central to  the leave-one-out cross-validation of principal components.

The following theorem  is fundamental to the computation of the down- 
dated principal component eigenvalues.
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T h eorem  2.2 The eigenvalues o f  E  — pz^z ,  with E =  diag(ei, • • •, 
ei > • • • >  er^, p ^  0 and ||z|| =  1, such that no components  o f  z  are zero, 
are

î(*) ~  ~  Pl^jii ~  ' ' ' Hxi

with Pj =  1 0 <  pj  <  1, j  =  1 , . . .  , r^. The eigenvalues o f E  — p z ^ z
stric tly  separate those o f E ,  such that

6l >  Cl{i) > &2

^  ^  ^i+i

T̂x — l ^ ^ T̂x
T̂x ^ r̂x{i) ^ T̂x P'

W hereas the direct computation of the downdating principal component 
coefficients is a fairly recent discovery, the properties of leave-one-out eigen­
value downdating have been known for much longer. One of the first com­
prehensive descriptions may be found in Wilkinson’s book on ‘The Algebraic 
Eigenvalue Problem ’, which considers the eigenvalues of a sum of two sym­
m etric matrices in the context of perturbation theory [Wil65, page 95]. For 
a general sum of two symmetric matrices only a minimax characterisation 
is derived. For the perturbation of a symmetric m atrix by another of rank 
one, the downdated eigenvalues may be expressed as the solutions of a char­
acteristic polynomial. This polynomial has a simple structure which can be 
exploited to obtain the properties of the perturbed eigenvalues. The above 
theorem  is a summary of these results for the downdating case.

The same findings have also been considered by Thompson [Tho76] as 
well as by Golub [Gol73] and Bunch, Nielsen and Sorensen [BNS78]. A good 
sum m ary of this theory may be found in the book from Golub and Van Loan 
[GL89, page 462]

The quantities ppj ,  j  = 1 , . . . ,  in the above theorem may be referred 
to as the eigenvalue downdates. The downdated variances Aj(q are obtained 
from

. n - 1  , pfij
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2.2.2 Efficient Rank-One Principal Com ponent Vari­
ance Perturbations

As before, we may assume that all eigenvalues are distinct, such th a t ei >
• • ■ > Gtx and that z has no zero components.

T h e secular equation

The downdated eigenvalues are those values A for which the equation

(E — pz ^ z )v  = Av

has a non-trivial solution. Hence, the downdated eigenvalues are the solutions 
of the equation

/(A) =  det(E  — pz^z  — AI) =  0.

This equation is ill-conditioned due to catastrophic cancellation [Gol73][GL89, 
page 62]. An equivalent function tha t is suitable for com putation can be 
found by rearranging the equation. We have

/(A) =  det(E  -  AI) det(I -  f (E  -  A I)-‘z^z)
Tx / Tx

= II(®J “ '̂ )( 1 '
as zTz  is a m atrix of rank one [Seb84, page 518]. Furthermore, because of 
deflation, the downdated eigenvalues are strictly smaller than the eigenvalues 
Cl, . . . ,  and hence, the downdated eigenvalues are the solutions of the 
equation

u; ( A)  =  1 -  p ^ =  0.

The function w(A) has been referred to as the secular function by Golub 
[Gol73, page 327]. The same function was described by Wilkinson [Wil65, 
page 96] in the related context of bordered diagonal matrices and perturbed 
sym m etric matrices.

W hen downdating the eigenvalue, the secular equation may be rew rit­
ten as a function of the proportion change p from the to tal eigenvalue down­
date p for the principal component eigenvalue ep.



C H A P TE R  2. PRINCIPAL CO M PO NENT REG RESSIO N  38

where 6j = (e, — ej)/p^ j  = 1 , . . .  , r^ and X = ei — pp. Hence, the modifi­
cation of the eigenvalues is obtained by solving the secular equation for the 
proportion change.

Bunch, Nielsen and Sorensen proposed a variant of the Newton m ethod 
to  solve the secular equation, in the following manner. We may rewrite the 
secular equation as

uji{p) =  14- ipi(p) 4- (t>i{p),
z'2 2̂

where 'ipi(p) = Y^]=i and = E j=i+i Hence, we m ust solve the 
equation

— =  14-

for //, with 0 <  /X < m in(l — 6), where 8 =  The function —0i(/z)
is a decreasing function on this interval, while 1 -f <l>i{p) is increasing. Both 
functions are positive and convex. They intersect at the solution.

This geometry is exploited to obtain an efficient method for the approx­
im ation of the roots. The dominant term s of the functions 'ipi and <j)i in the 
interval [0,^i+i] are z'f!{8i — p) and — p) respectively. These are
simple rational functions and hence, an efficient procedure of the Newton- 
Raphson type may be obtained from rational function approximations to the 
true functions. The computations proceed from an initial approximation to 
to the true value. Successive corrections to the true value are then calculated 
with these rational function approximations at each current approximation 

The above equation is solved with the rational function approximations 
and a new approximation is obtained. Two different choices for the 
rational functions have been considered in the literature.

T he quadratic m eth od

The quadratic method approximates the true functions ÿ* and ÿ* with the 
rational functions

and
$i{t) =  r  4- for

at each current approximation This choice is due to Bunch, Nielsen and 
Sorensen in their original implementation of the methodology [BNS78]. From
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the  usual first order fitting conditions, we find tha t

1 =

r =
and

where A =  6 A new approximation t^+i is obtained by solving the
quadratic equation

—  ̂ 17 =  1 +  r  +  - —  
m  — t 0 — t

Bunch, Nielsen and Sorensen [BNS78] have shown that the correct iteration 
formula may be written as

26

where

with

The details and reasons for arranging the equations in this way have been 
explained in the original paper from Bunch, Nielsen and Sorensen. They 
are concerned only with the numerical stability of the resulting algorithm. 
Bunch, Nielsen and Sorensen provide extensive proof tha t this optimisation 
scheme has a guaranteed convergence to the solution if the starting value to 
is chosen in the interval ]0, //;[. Such a value may be obtained from a solution 
to the equation
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A numerically stabilized formula for the correct solution is

a + J a ^  - i S z f ( l +  5j i? )
V

where a = zf  22  T ^ ) -  initial value for the last eigenvalue

is special and may be obtained from a solution to the equation

A  =  i  + t  4

The solution is

1 +  E j= i -  1)
The iteration for the last eigenvalue simplifies to

1 +

as ^ =  0 .

T he linear m eth od

The linear m ethod considers the approximations

and

at each current approximation This choice is due to DeGroat [DeG90]. 
A first order approximation to the true functions is obtained when

1 =

_  (1 +

and
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1 +  (f)i{tC)

A new approximation may then be found from the solution of the linear 
equation

—I r
m  — t s — t

The solution is

DeGroat shows that this updating scheme will converge when an appropriate 
initial value is chosen. The correct initial value is the solution of the equation

and

i  + U 0 )  = - U S )  + f - j ,  if 1 +  <̂ .(0) >

1 +  ^i(O) =  —'ipi{S) +  H— if 1 +  ^i(O) <

Hence, the initial value may be found from 

and

where a =  1 +  +  ÿ*(6). As before, the rationale behind this choice is in
the geometry of the approximating rational functions, as has been described 
by DeGroat. The last eigenvalue is special. The initial value is the solution 
of the equation

The solution is
z!

1 + Ei = l ~ 1) +
Iterations for the last eigenvalue are as for the quadratic method.
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C onvergence

Both the quadratic and the linear method have a quadratic rate of conver­
gence, such that,

I  ^ K + i  ~  | <  T  I  “  [J’ i  r ,

with T a positive constant of order unity and independent of the iteration. 
The proof is in the literature [BNS78][DeG90].

2.2.3 Im plem entation
D efla tion

To implement the deflation analysis, we need to specify criteria to  decide 
when an element zi of z is close to zero and when two adjacent eigenvalues 
ei and are close enough to be considered equal.

To solve this problem, Dongarra and Sorensen [DG87] ask the question 
when an eigenpair of E may be considered a good approximation of the 
corresponding eigenpair of E — pz^z .  Hence, we consider

||(E -  pz^z)g/ -  e/g/|| =  \pzi\\\z\\ = p\zi\.

This leads to a criterion of the type

\zi\ < p)/p,

where p is the machine precision. In contrast, Golub and Van Loan [GL89, 
page 463] suggest the criterion

\zi\ < p{ei T  p).

We will employ this criterion and similarly, for the comparison of the eigen­
values, we will use

6/ — Cf+i < p{ei T p)-

C ancella tion

It is param ount th a t numeric cancellation [GL89, page 62] is minimized in 
the com putation of the eigenvalue downdates as well as in the eigenvector
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downdating. To obtain stable numerical computations, we may exploit the 
normalization of the eigenvalue downdating problem. Let us write

=  -p F k ,

where Fk = d iag(A f, • • •, with =  Sj — pk- The vector has the
same direction as and hence, the downdated eigenvectors may also be
obtained from

F r 'z J -
,|F->zî'||

and
qt(:) =  QVife.

This will minimize cancellation in the iterations, as the successive eigen­
value updates may be applied directly to each current approximation of F^, 
and hence we do not have to compute the downdated eigenvalues explic­
itly. Indeed, at each iteration, we only compute the update A(/«), such tha t 

-f A(^«) and hence, these updates may be applied to the current 
approxim ation F^:« of F^, such tha t

FkK+l — Fkn ~  ^(^«)

with Fko = to—Aj.  If necessary, the downdated eigenvalues may be computed 
separately, from the updating sequence

9k+i ~  9k A(^«)

with go = Ck!p — to. If is a good approximation of pk-, then pg^ will 
approxim ate ek[i) with the same relative accuracy.

C onvergence C riteria

We m ust decide on an appropriate stopping rule for the approximation of 
each eigenvalue downdate. A good stopping rule is to accept the current 
approximation t^ of the normalized downdated eigenvalue when

| | ^ ( q q f c ( q K  ~  I I
7*

|C ( 0
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We have

l|C(i)q*(i)^ -  =  ||Q^C(i)QQ^q*.(j)^ -

=  | | ( E  -

Hence, we must ensure that

| | ( E  -  pz^z)vk, -  e j , ( i ) ,V fcJ |  <  v l | E  -  pz^z\\,.

Utilising the previous updating scheme, we find

II (E  -  pz^z)vk^ -  e t ( . ) .V ( t J |  =  j jE vfc ,  -  f ( z v t j z ^  -  (et -  /9 < « )v * J j

f | | F t ^ ( F L ' z n  +  ( z ^ F t - » z ^ | |

=  I  ̂ ''

and hence, as 1 +  z ^ F ^ z  =  1 +  ^ (L )  +  ||z|| =  1 and ||F ^ z ^ ||^  =
we must have

I 1 +  V^(^k) +  | <  7?— -----

This convergence criterion may be employed for both the quadratic and the 
linear methods, as the quantities <f)'{tC)̂  and are calculated
anyway in the iteration. Both the quadratic and linear methods have a 
quadratic rate of convergence, and hence, the criterion

I ^K+l ~ \< £ \ tn \

may be employed as a second test on convergence, where e is the required 
relative accuracy.

Hence, a good stopping rule is to accept if

1 +  +  Htn)  |<  ,

and

I ^K +  l  I ^  ^ I I )

with V = m ax(l, ei — p), as ||E ||2 — ei.



C H A P T E R  2. PRINCIPAL CO M PO NENT REG RESSIO N  45

2.3 P r in cip a l C om p onent R egression  and  In­
fluence M easures

2.3.1 Principal Com ponent Regression
The application of full leave-one-out principal component cross-validation to 
the com putation of the PRESS statistic in principal component regression 
proceeds along the following lines.

We must compute the cross-validated predicted values for i =
1, . . . ,  n and 0 <  "y <  We have

^  —  7 ^  ^

=  Y (i) +  Y,{ÿni,k) -  for 0 <  7 <  r„,
k=l

and
?.(i,i) = Y(.) for 7 = 0.

The principal components are uncorrelated and hence,

y .(a) -  (2 .1)

where =  yj — Y(,). We have

X; -  Xp) =  Xj +  -  X ^x //(n  -  1)
/=1 l î

= Xj -f ((n -  1) ^ X (  -  n ^ X / ) / ( n ( n  -  1))
1 = 1

= X j + X i / ( ^  -  1) -  Y ^ ^ i / { n { n  -  1))
/=i

Xj +  X;/(n — 1) — X /(n  — 1)
=  Xj +Xi/(72 -  1),

for any j  = 1, . . . ,  n, and hence,
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for j  = i and

if 7 ^  i. This allows us to simplify the computations further, as

=  Uv/j,

and hence, we do not need to downdate the principal component coefficients 
explicitly in principal component regression. Instead, we apply the downdat­
ing principal component coefficients directly to the principal component 
scores U . Also, we have

and hence, we do not need to compute the denominators (equation 2 .1)
explicitly if we m aintain the downdated eigenvalues in the downdating algo­
rithm .

2.3.2 Influence M easures
The concept of influence is relatively new in statistics and is intrinsically 
linked to the notion of full leave-one-out cross-validation. Indeed, in the 
discussion of Stone’s paper on cross-validation [Sto74], Atkinson remarks 
th a t it ‘should be possible to extract some information on the presence of 
outliers’ in leave-one-out cross-validatory calculations.

In principal component decomposition, the analysis of influence poses 
serious com putational difficulties. The following quote from Jolliffe [Jol86 , 
page 187] more or less sums up the state of affairs to date.

The intuitive definition of the influence of an observation on a
statistic  such as the eigenvalue [ê ;], or eigenvector [qj, of a
sample covariance m atrix is simply the change in [ejt] (or [q*]), 
perhaps normalized in some way, when the observation is deleted 
from the sample. The problem with influence defined in this way 
is th a t there may be no closed form for the influence function, 
and it needs to be computed afresh for each different sample.

It is of interest th a t Jolliffe considers the leave-one-out perturbations of 
the principal component eigenvalues. From a heuristic point of view, these
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measures seem appropriate, as the principal components are defined so as to 
sequentially maximize sums of squared projections, subject to orthogonality 
constraints. This approach is vindicated by the present cross-validatory al­
gebra which identifies the principal component eigenvalue perturbations as 
fundam ental in the leave-one-out cross-validatory algebra. Moreover, these 
influence measures have been identified as downdates with intuitively appeal­
ing properties. Hence, the eigenvalue downdates emerge as natural influence 
measures in a principal component analysis.

Due to the com putational costs of naive implementations of leave-one- 
out principal component cross-validation, the exact com putation of principal 
component influence measures is cumbersome. For this reason, statisticians 
have concentrated on the derivation of adequate approximations for prin­
cipal component influence measures instead. Such derivations have been 
based on a theoretical influence function, which postulates a form for the 
influence of an observation, as explained by Radhakrishnan and Kshirsagar 
[RK81], for example. W ith this approach, approximate influence measures 
have been obtained for the principal component eigenvalues, by Radhakrish­
nan and Kshirsagar as well as Critchley [Cri85], for the decomposition of the 
covariance m atrix. For scaled analyses, based on the decomposition of the 
correlation m atrix , Jolliffe [J0I86, page 187] points to work carried out by 
Calder [Cal84j.

The present approach shows tha t, for the case of the covariance m atrix, 
principal component influence measures may be derived with an efficient pro­
cedure and hence we need not worry about the lack of closed form solutions. 
Furtherm ore, we may exploit the eigenvalue downdating properties to refine 
and extend the principal component influence analysis suggested by Jolliffe.

From theorem  2.2, we know that the total principal component eigenvalue 
downdate

Tx

P = -  ^i(o)
i=i

is a sum of influence measures, and hence it defines an influence measure in 
its own right. We have

p ~  ^ll^îQll ~  ^ 11X211

and therefore, these measures are easily obtained, without any need to re­
sort to a Newton-Raphson-type approximation method. In essence, the to tal
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eigenvalue downdate p is determined by the Euclidean distance ||x^|| of the 
downdated observation from the sample mean, 1/  being a cross-validatory 
constant. Hence, the length of an observation is a principal component influ­
ence measure. This explains the geometric intuition th a t observations tha t 
are far removed from the sample mean of the data have a large influence 
on the principal component decomposition, irrespective of their geometric 
orientation. We may always consider this influence measure, whether the 
principal component decomposition is used in the context of principal com­
ponent regression or not.

Theorem 2.2 shows tha t the total principal component downdate p must 
be complemented with the proportion principal component eigenvalue down­
dates prx to describe the principal component eigenvalue downdating
completely. This provides us with the obvious normalisation of the principal 
component eigenvalue downdates. Essentially, we may distinguish two sets 
of principal component eigenvalue influence measures. The first is the total 
downdate p. The second set of statistics are the proportion change statistics

_ 6; -  e,(i)
P‘3 ■) J — J- 5 • • • 5 ' a:*

P

We may wonder what statistics would be appropriate to study the influ­
ence of observations on the principal component directions. The choice of the 
influence measures is less clear cut here. The cross-validatory algebra shows 
th a t the eigenvalue downdating is crucial in the cross-validatory com puta­
tions. Nevertheless, the downdated eigenvalues are not sufficient on their 
own to compute the downdated principal component coefficients. These are 
obtained from linear combinations of the principal component coefficients Q. 
Hence, an influence analysis of the principal component directions requires a 
choice of the features of the eigenvector downdating tha t we wish to study. 
The most obvious measure seems to be the angle between each principal com­
ponent direction and the downdated direction qA;(q, as has already been 
considered by Pack et al. [PJM 88] in the decomposition of the correlation 
m atrix. We have

cos((9fc(q) =  qfqfc(i),

w ith 9k(i) the angle between q̂  ̂ and q^(q, as ||qA;|l =  ||çiA;(i)|| =  1- The angle 
between q̂  ̂ and qt(q is identical to the angle between and v^, as Q defines
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an orthonorm al transform ation and hence

cos{Ok[i)) =

The norm \\c[k — <4A:(i)ll is an equivalent measure, as

W^k — <4A;(î‘)||^ =  2 — 2cOs(6k{i)),  

and hence, it is a function of cos(^^(q) only.

2.3.3 C om putational Cost and Perform ance
We compare the computational cost of the efficient algorithms for principal 
component cross-validation with the costs involved in naive implementations 
of leave-one-out cross-validation. W ith respect to the theoretical consider­
ations on the computational cost of the algebra for the efficient methods 
(discussed subsequent to the results on simulations and real data), we ignore 
the initial computations on the complete data in this comparison, as these 
are only done once.

Sim ulations

The linear and quadratic methods of eflScient leave-one-out cross-validation 
for principal component regression have been implemented in the numerical 
analysis package GAUSS [Apt92] (appendix, page 118). The performance 
of these implementations has been compared with an im plem entation of the 
naive approach, in the same package, using simulated data.

The im plem entation of the naive method was based on the native GAUSS 
procedure EIGHV (GAUSS Gommand Reference [Apt92, volume 2 , page 
1180]) for the orthogonal decomposition of a square symmetric m atrix. The 
regression coefficients of the downdated principal component scores were cal­
culated with the formula

ft.,., -  , _  1 ^

This formula reduces the computations to a minimum for the naive approach, 
as we exploit the fact th a t the principal component scores are uncorrelated.
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Hence, each subsequent value of the PRESS statistic can be computed from 
a correction to the previous value, as is done in the efficient method.

D ata were generated with the GAUSS pseudo-random number generator 
RNDU (GAUSS Command Reference [Apt92, volume 2 , page 1452]), which 
simulates numbers from the uniform distribution. The distribution itself is 
irrelevant to the present purposes, as we only require these simulations to 
assess the com putation times of the implementations. We are not concerned 
with the statistical properties of the methods involved. These simulations 
were run on an IBM 70/386 PC equipped with 4 Mb RAM and running 
at 25 mhz. Timing was done with the GAUSS procedure HSEC (GAUSS 
Command Reference [Apt92, volume 2, page 1242]). In these simulations, 
the num ber of observations was chosen to be small and kept fixed, for both the 
regular and the singular case, so tha t the com putation times will prim arily 
reflect the costs due to the number of predictor variables.

For the regular case (n — 1 >  p), matrices of 100 observations by 5, 10, 15, 
20, 25, 30, 35, 40, 45 and 50 predictor variables were generated. For the re­
sponses, a vector of 100 uniformly distributed numbers was generated for each 
sim ulated m atrix of predictor variables. The three implementations of full 
leave-one-out cross-validation were then applied to each of these simulated 
regression problems, each tim e cross-validating all principal components and 
calculating the PRESS statistics for all factors. Figure 2.1 shows the com­
putation times in seconds for each m ethod versus the number of predictor 
variables. Results are plotted on the log scale for the number of predic­
tor variables, so as to enhance the effect of the different methods when a 
small num ber of predictor variables is generated. The naive m ethod starts 
to perform worse than the quadratic and linear methods when the num ber 
of predictor variables exceeds 20. For 40 predictor variables, a halving of the 
com putational tim e is achieved. For 50 variables, the com putation tim es are 
1079 seconds for the naive approach, 517 seconds for the quadratic m ethod 
and 411 seconds for the linear method. We did not consider regression prob­
lems with more predictor variables, as the memory requirements for the naive 
m ethod become prohibitive.

The same procedure was applied to the singular case (n — 1 <  p), bu t with 
matrices of 12 observations by 15, 20, 25, 50, 75, 100, 500, 1000 and 2500 
predictor variables respectively. For each simulated problem, we calculated 
the PRESS statistics for all 10 factors with each of our three im plem enta­
tions of full leave-one-out cross-validation (we lose two dimensions as the
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Figure 2.1: Com putation times in seconds for full leave-one-out cross-
validation of principal component regression in the regular case with 100 
observations.



C H A P T E R  2. PRINCIPAL CO M PO NENT REG RESSIO N 52

&
I

naive
quadratic
linear8

o
00

8

o

250015 25 100 500 100050

number of predictors

Figure 2.2: Com putation times in seconds for full leave-one-out cross-
validation of principal component regression in the singular case with 12 
observations.
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data  are m ean-centred and because of leave-one-out cross-validation). Fig­
ure 2.2 shows the results. The results are again plotted on the log scale for 
the number of predictor variables. The cost of both the linear and quadratic 
m ethod appears to be largely unaffected by the number of predictor vari­
ables considered. There is a minor increase in the com putational tim e for 
both the quadratic and linear methods beyond 1000 predictor variables. This 
is probably due to the cost of computing the initial principal component de­
composition. The naive method suffers from a linear increase in cost as the 
num ber of predictor variables increases. W ith our implementation, the naive 
m ethod broke down, when more than 2500 predictor variables were gener­
ated, due to insufficient memory. For the quadratic and linear procedures, 
it was possible to consider problems with up to 10000 predictor variables, 
at no extra  com putational cost. As expected [DeG90], the linear method 
was invariably quicker than the quadratic method. Both methods are signif­
icantly faster than the naive procedure when a large number of variables is 
considered.

Real Data

A limited num ber of real data sets from the statistical literature on principal 
component regression was also analyzed. The conclusions were no different 
from those above. A full leave-one-out cross-validatory analysis of the ethanol 
data (11 observations and 101 predictor variables, as described by Stone and 
Brooks [SB90]) was accomplished in 4.1 seconds for the naive m ethod, 4 
seconds for the quadratic method and 2.9 seconds for the linear method. 
For the wheat data  (24 observations and 6 variables, published by Fearn 
[Fea83] and reanalysed by Stone and Brooks), calculations were done in 1.37 
seconds for the naive m ethod, 4.5 for the quadratic m ethod and 3.4 for the 
linear m ethod. As a last example, we calculated a full leave-one-out cross- 
validation of the NIR data tha t was considered by Stone and Brooks (page 
252, the data  originate from Osborne et al. [OFMD84]). We considered all 40 
observations (including outlier) with measurements at 601 wavelengths. The 
com putational times were 1005 seconds for the naive approach, 115 seconds 
for the quadratic m ethod and 87 seconds for the linear method.

To understand the findings from these simulations, we consider a theo­
retical study of the com putational costs involved in these procedures. To
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simplify the analysis, we will only concern ourselves with orders of magni­
tude of costs. Furthermore, following Bunch and Nielsen in their analysis 
of the cost of updating the singular value decomposition [BN78], we only 
consider the number of multiplications as a measure of efficiency. As before, 
the regular and the singular case are considered separately.

The regular case

Naive implementations of leave-one-out principal component cross-validation 
are based on the recom putation of the cross-products matrices after the dele­
tion of an observation. There is an order of np^ multiplications involved in 
the com putation of each cross-products matrix. Hence, the to tal num ber of 
multiplications due to the computation of the cross-products m atrices is of 
order rPp^.

For each cross-products m atrix, the principal component decomposition 
must then be computed from scratch. The number of multiplications in­
volved in the com putation of the principal component coefficients and the 
principal component scores depends on the method tha t is chosen for these 
computations. Golub and Van Loan [GL89, page 423], Wilkinson [Wil65] and 
Wilkinson and Reinsch [WR71, part 2] are the standard references on the 
com putation of the symmetric eigenvalue problem. For the symmetric QR 
algorithm [GL89, page 423], the computations will be of order p^. Calculat­
ing the principal component scores from the principal component coefficients 
will involve np^ multiplications. Thus the total cost of the cross-validatory 
procedure will be of order rPp^ -|- np^.

Several authors in the statistical literature refer to the singular value 
decomposition as a suitable method for the joint com putation of the princi­
pal component coefficients and the principal component scores [Jol86, page 
235] [Seb84, page 506]. An implementation of the naive approach w ith the 
Golub and Reinsch method [GL89, page 430] for the singular value decom­
position will involve an order of np^ +  p^ multiplications for each datum  
[GL89, page 239]. Performing this for all data  requires an order of rPp^ Tnp^  
multiplications. Hence, such implementations will involve roughly the same 
com putational costs as compared to those based on the QR algorithm.

W ith the efficient procedures, the number of multiplications involved in 
downdating the principal component coefficients is of order for each da­
tum . Hence, the overall cost of the computations for the principal component
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coefficients is of order np^. Therefore, when the number of observations is 
large compared to the number of predictor variables, this approach should be 
significantly faster than the naive implementations of principal component 
coefficient downdating. This is because we avoid a com putation of order n^p^. 
Thus we achieve an order of magnitude improvement in the downdating of 
the principal component coefficients.

Unfortunately, for applications to principal component regression, this 
gain is largely lost in the computation of the PRESS statistics. Indeed, the 
leave-one-out cross-validation of principal component regression involves the 
com putation of the principal component scores, which requires an order of 
rPp^ multiplications. This does not mean tha t we no longer achieve the 
improvement in the calculation of the principal component coefficients, but 
ra ther th a t this improvement is drowned in a subsequent calculation which 
is of the same order of m agnitude as for the naive procedures. Hence, we can 
only halve the number of multiplications in the regular case.

Method
Object

Naive Efficient

S ( i ) np^ not applicable

Q(.) p ' p '
U ( . ) np^ np^
Total np^ +  p^ np^ +  p^

Table 2.1: The contributions of a single observation to the order of the num ­
ber of multiplications needed for the downdating of a principal component 
decomposition in the regular case with the leave-one-out approach.

T h e singular case

In the singular case, the naive approach is based on the com putation of the 
m atrices X(qX^^. There is an order of prP multiplications involved in the 
com putation of each such matrix. Thus, the to tal number of multiplications 
necessary for the com putation of these matrices is of the order pn^. W ith the 
QR algorithm, the number of multiplications necessary for the com putation
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Method
O bject

Naive Efficient

S(i) np^ not applicable

Q(.) p^ not applicable
U(i) np^ np^
Subtotal np^ 4- p^ np^
PRESS np np
Total np^ P np -\- p^ np^ 4- np

Table 2.2: The contributions of a single observation to the order of the 
num ber of multiplications needed for the computation of the prediction error 
sum of squares for principal component regression in the regular case, using 
the leave-one-out approach.

of the principal component decomposition of one such m atrix is of the order 
n^. The principal component scores can be obtained from this decomposi­
tion, which requires an order of multiplications. We must also compute 
the principal component coefficients, which involves an order of -f mul­
tiplications. Thus, the total number of multiplications necessary to obtain 
the cross-validated principal component analysis is of the order prP +  n'*.

The efficient rank-one modification procedure involves an order of mul­
tiplications for the computation of the downdated principal component scores 
for all observations and an order pn^ — prP [BN78] multiplications for the 
calculation of the principal component coefficients. In principal component 
regression, we only need to consider the downdating of the scores. As can be 
seen, the com putational cost of calculating these quantities does not depend 
on p. As a consequence, the computational cost of the efficient approach is 
constant when the number of observations is fixed, irrespective of the number 
of predictor variables tha t are considered.

In applications to principal component regression, the calculation of the 
PRESS statistic will involve an order of multiplications and hence, this 
gain is m aintained in the full leave-one-out cross-validation of principal com­
ponent regression. Thus we achieve an order of magnitude reduction for the 
cross-validation of principal component regression in the singular case and
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the computational cost due to the number of variables is elim inated com­
pletely.

Method
Object

Naive Efficient

Sp) prP not applicable
Qp) pn^ T  n? prP -f n?
Up) rP
Total prP + prP -F rP

Table 2.3: The contributions of a single observation to the order of the num ­
ber of multiplications needed for the downdating of a principal component 
decomposition in the singular case with the leave-one-out approach.

Method
Object

Naive Efficient

S ( i ) prP not applicable
Q ( . ) prP -p rP not applicable
U ( . )

Subtotal prP +
PRESS rP
Total prP -P

Table 2.4: The contributions of a single observation to the order of the 
number of multiplications needed for the com putation of the prediction error 
sum of squares for principal component regression in the singular case, using 
the leave-one-out approach.

Finally, tables 2.1 up to 2.4 summarize these results. The tables are 
concerned with costs induced by each single observation in the full leave-one- 
out cross-validation. Hence, the appropriate quantities must be multiplied 
by n for comparison with the relevant quantities in the text.
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2.3.4 A ccuracy
Detailed analyses on the accuracy of the efficient methods for the leave- 
one-out downdating of the principal component decomposition are in the 
numerical literature. In fact, this is precisely what these publications are 
concerned with: to provide efficient methods for rank-one modifications of 
the  eigendecomposition of square symmetric matrices such tha t a minimum 
and prespecified level of accuracy is achieved, irrespective of the condition of 
the problem.

Most articles consider the performance of the rank-one modification al­
gorithm  within the ‘divide and conquer’ method. This is a relatively new 
m ethod to compute the eigendecomposition of large square symmetric m a­
trices when the classical approaches based on the QR decomposition break 
down. Thus, the ‘divide and conquer’ has been one of the first applications 
of the rank-one modification methods for principal component decomposi­
tions. C uppen’s article [CupSl] on the ‘divide and conquer’ m ethod for the 
sym m etric tridiagonal eigenproblem deserves special mention here for an ex­
tensive m athem atical analysis of the perturbation properties of the rank-one 
modification m ethod, as well as for a report on experiments with simulated 
data. This compares the eigendecompositions obtained from a numerically 
stable algorithm  using the QR method with those obtained from the ‘divide 
and conquer’ approach, based on the rank-one algorithm. Likewise, Don- 
garra and Sorensen [DS87] report theoretical work on the rank-one modifi­
cation algorithm  and simulations for the ‘divide and conquer’ method. The 
la tte r compare the performance between a number of different computing 
platform s. Finally, Bunch, Nielsen and Sorensen [BNS78] discuss theoreti­
cal considerations and simulations based on the uniform distribution for the 
rank-one modification algorithm only.

Cuppen concludes tha t the ‘divide and conquer’ method, and by conse­
quence the rank-one modification algorithm, is numerically stable and effi­
cient. The conclusions from other publications are similar.

Not w ithstanding this published material, we have considered the accu­
racy of the GAUSS implementations for the leave-one-out cross-validation of 
principal component regression in the simulations discussed in the previous 
section. For both the regular and the singular case, the absolute difference 
between the PRESS statistics calculated by the efficient and naive proce­
dures was never larger than 10e“ ^̂  and almost always smaller than  10e~^^.
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7 A B C

1 1.3322676e-15 1.33226766-15 0
2 0 8.88178426-16 8.88178426-16
3 3 .9968029e-15 3 .99680296-15 0
4 2.5535130e-15 2.77555766-15 2.22044606-16
5 7 .7715612e-16 5.55111516-16 2.22044606-16
6 9 .1038288e-15 8.99280656-15 1 .1102230e-16
7 1.7708057e-14 1.78190806-14 1.11022306-16
8 2.6534330e-14 2.66453536-14 1.11022306-16
9 1.1601831e-14 1.13797866-14 2 .22044606-16

10 3.07531786-14 3.08086896-14 5.55111516-17
11 3.14193126-14 3.15303346-14 1.11022306-16
12 3.71924716-14 3.71369606-14 5.55111516-17
13 1.74693596-13 1.74804626-13 1.11022306-16
14 2.43638446-13 2.43749476-13 1.11022306-16
15 2.11053406-13 2.11164426-13 1.11022306-16
16 1.13908886-13 1.13853376-13 5.55111516-17
17 5.09037266-13 5.08870726-13 1.66533456-16
18 9.67170796-13 9.67115286-13 5.55111516-17
19 3.88022956-13 3.87911926-13 1.11022306-16
20 5.75040026-13 5.74984506-13 5.55111516-17
21 2.89412946-12 2.89412946-12 0
22 1.14697146-12 1.14697146-12 0
23 3.55032676-12 3.55016026-12 1.66533456-16
24 8.86363216-12 8.86374316-12 1.11022306-16
25 5.80185906-12 5.80174806-12 1 .11 0 2 2 3 0 ^ 1 6
26 7.92438346-12 7.92432796-12 5.55111516-17
27 1.06800686-11 1.06799576-11 1.11022306-16
28 2.49013036-11 2.49013036-11 0
29 1.67477706-11 1.67478816-11 1.11022306-16
30 2.60880216-12 2.60869106-12 1.11022306-16
31 2.24811846-11 2.24810176-11 1.66533456-16
32 8.54782916-12 8.54771816-12 1.11022306-16
33 9.70035166-12 9.70035166-12 0
34 7.71627216-12 7.71616106-12 1.11022306-16
35 2.47893936-11 2.47895046-11 1.11022306-16
36 5.82015556-11 5.82016666-11 1.11022306-16
37 7.35492786-11 7.35490566-11 2.22044606-16
38 5.45171696-11 5.45171696-11 0
39 9.74684786-11 9.74682566-11 2.22044606-16
40 1.50847566-10 1.50847456-10 1 .1102230e-16
41 1.92824986-10 1.92824766-10 2.22044606-16
42 1.93186916-10 1.93186696-10 2.22044606-16
43 1.54130386-10 1.54130046-10 3.33066916-16
44 1.24761766-10 1.24761536-10 2.22044606-16
45 1.41941016-10 1.41940686-10 3.33066916-16
46 1.34191666-10 1.34191446-10 2.22044606-16
47 1.39833486-10 1.39833376-10 1.11022306-16
48 1.50028106-10 1.50028106-10 0

Table 2.5: Absolute differences between the mean prediction error sum of 
squares for principal component regression of the M ustard data  calculated 
with (A) the linear m ethod and the naive approach, (B) the quadratic m ethod 
and the naive approach and (C) the linear and the quadratic m ethod.
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Finally, we have compared the performance of the efficient implementations 
with th a t from a naive implementation of principal component regression, us­
ing the principal component regression algorithm in the appendix (page 117) 
on the M ustard data  described in chapter 1. The results in table 2.5 show 
the absolute differences in the computed mean squared error of prediction 
statistics. They are slightly worse than those obtained from the simulations. 
This is probably due to the condition of the dispersion m atrix, which is likely 
to be worse than  th a t obtained for random simulations. There is a gradual 
decrease in accuracy as further components of increasingly smaller variance 
are added to the prediction equation, although the results are of sufficient 
accuracy throughout. Interestingly, both the linear and quadratic methods 
coincide in the results obtained, as these are indistinguishable up to machine 
precision.

2.4 E fficient L eave-O ne-O ut P rin cip a l C om ­
p o n en t R egression  C ross-va lidation  A p ­
p lied  to  N ear Infrared S p ectroscop y

2.4.1 Cross-validation
G A U SS Im p lem en ta tion

The appendix contains complete transcripts of GAUSS implementations of 
efficient leave-one-out cross-validation for principal component regression, for 
both the quadratic (page 118) and the linear m ethod (page 129). A complete 
leave-one-out cross-validatory analysis can be computed with this code in a 
normal GAUSS session, in the following manner.

A GAUSS m atrix  x must be created tha t contains the predictor data. 
Each row m ust contain the data from a single observation and each column 
must represent one predictor variable. Similarly, a GAUSS column vector y 
must be created th a t contains the observed responses for these observations, 
in the same order. The statem ents

{msep, dd, d d if  f , ycvpred, 1, q} =  pcrcvq(y , x, w);

will then generate the leave-one-out analysis with the quadratic method, and
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similarly,

{msep, dd, d d if  f , ycvpred, 1, q} =  p c rc v l(y , x, w);

generates the same results with the linear method, w is a positive integer 
th a t specifies the number of components tha t must be derived in the cross- 
validation.

The output from these procedures is as follows. The m atrix msep will 
contain the PRESS and MSEP statistics in the second and third columns 
respectively. The first column is the number of components in the prediction 
equation. Thus, the top row will contain the results when there are no prin­
cipal components in the prediction equation and only the mean is used in 
prediction. The last row gives the results when w components are used in the 
construction of the prediction equation, ycvpred  is a m atrix tha t contains 
the cross-validated predicted values for each observation, with the observa­
tions in the same order as for x and y. This m atrix has w+1 columns. The 
first column contains the cross-validated means. The next columns contain 
the cross-validated values when further principal components are added, up 
to the last column which contains the predicted values when all w components 
are in the prediction equation. In a similar m anner, dd and d d i f f  contain 
the cross-validated eigenvalues and the eigenvalue downdates, respectively, 
dd has w columns, one for each component tha t is cross-validated. In this 
way, the first column contains the downdated eigenvalues for the first com­
ponent, and so on, up to the last column, which contains the results for the

component. As for ycvpred, the result are in a single row for each obser­
vation, using the same order, d d i f f  has the same layout for the eigenvalue 
downdates. Finally, 1 contains the principal component variances for the 
complete data, and similarly, q is the principal component coefficient m atrix 
from the initial principal component decomposition on which the efficient 
cross-validatory computations are based, with the coefficients for the first 
component in the first column, and so on.

T h e  M u s ta rd  d a ta

Using these procedures, the results from a leave-one-out cross-validation 
of principal component regression for the M ustard data are as shown in ta ­
ble 2.6. A plot of the cross-validatory index versus the number of components 
is shown in figure 2.3. The cross-validatory index equals 88.2% for a principal
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7 MSEP INDEX 7 MSEP INDEX

0 3.3466262 0
1 3.2601899 0.025827909 25 0.40632839 0.87858567
2 2.5588577 0.23539185 26 0.41160549 0.87700883
3 1.1609123 0.65310965 27 0.42838069 0.87199626
4 0.68795101 0.79443447 28 0.42241545 0.87377872
5 0.72123705 0.78448832 29 0.43209750 0.87088564
6 0.56175546 0.83214275 30 0.46338557 0.86153650
7 0.39447966 0.88212617 31 0.47898626 0.85687489
8 0.39490756 0.88199831 32 0.47900025 0.85687071
9 0.32686328 0.90233051 33 0.50620231 0.84874250

10 0.31741968 0.90515234 34 0.64771512 0.80645729
11 0.32714911 0.90224510 35 0.62871990 0.81213322
12 0.33641040 0.89947775 36 0.59526733 0.82212913
13 0.36743405 0.89020762 37 0.50359747 0.84952085
14 0.37193583 0.88886245 38 0.50840066 0.84808561
15 0.40468830 0.87907574 39 0.51229011 0.84692342
16 0.42650823 0.87255576 40 0.55915348 0.83292025
17 0.45367112 0.86443926 41 0.62723446 0.81257708
18 0.48900661 0.85388072 42 0.59155810 0.82323748
19 0.43636159 0.86961150 43 0.59291498 0.82283203
20 0.45729522 0.86335635 44 0.55681674 0.83361849
21 0.46513218 0.86101460 45 0.54275339 0.83782073
22 0.44417680 0.86727624 46 0.52929253 0.84184295
23 0.39996337 0.88048759 47 0.52043810 0.84448873
24 0.40344986 0.87944579 48 0.52171454 0.84410732

Table 2.6: Full leave-one-out cross-validatory analysis for principal compo­
nent regression of the M ustard data.
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Figure 2.3; Cross-validatory index for a full leave-one-out cross-validation of 
principal component regression of the M ustard data.

component regression prediction equation with seven principal components. 
The inclusion of the two subsequent principal components increases the cross- 
validatory index to 90.2%. The maximum is achieved for the cross-validatory 
index when the first ten components are used for prediction. Although these 
results are obtained from a cross-validatory analysis, we will take a cautious 
point of view and restrict ourselves to a seven component prediction equation.

To study the selected principal component prediction equation, a sepa­
rate GAUSS program has been w ritten which can be used after a suitable 
prediction equation has been chosen from the previous cross-validatory proce­
dures. The appendix (page 117) contains the code. W ithin the same GAUSS
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session, the statem ents

{ypred, y re s id , b e ta , q, u} =  pcr(y , x, w);

generate the first w principal component regression equations.
The output is as follows, ypred  is a m atrix th a t contains the predicted 

values, such tha t each column gives the predicted values for the prediction 
equation with j  components. The layout of y r e s id  is identical for the resid­
uals. Likewise, b e ta  gives the regression coefficients, with the same layout 
for columns, with the coefficients for each variable in the row. q is the 
m atrix  of principal component coefficients which has already been obtained 
from the cross-validatory computations, and u is the m atrix of principal com­
ponent scores, such tha t u=(x-m eanc(x) ')* q .

Plots of the first seven principal component loadings are shown in fig­
ure 2.4. As often, the first component represents the general trend in the 
observed spectra. An interpretation of the remaining components would be 
difficult and requires expert knowledge of the near infrared spectroscopy of 
white m ustard seeds. Figure 2.5 shows the regression coefficients for the 
selected principal component prediction equation.

2.4.2 Influence A nalysis
The output from the GAUSS procedures pcrcvq, p c rc v l  and p e r  provides 
the measures necessary to perform an influence analysis.

Figure 2.6 shows plots constructed from the cross-validated predicted val­
ues, the cross-validated residuals and the observed values. The top plot con­
siders the cross-validated predicted values versus the observed values. There 
do not appear to be any consistent deviations from a straight line relation 
between the observed and the cross-validated predicted values. Neither are 
there any obvious outliers. The two subsequent plots of the cross-validated 
residuals versus the observed and cross-validated predicted values suggest 
some evidence of heterogeneity, although not conclusively. The plots reveal 
some peculiar features of the sampling design. First of all, the data appear 
to have been sampled from three distinct groups, according to oil content. 
Furtherm ore, within each group, several samples are present which share the 
same oil content. This suggests th a t some repeat sampling from the same 
source may have been employed.
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Figure 2.4: Principal component loadings for the first seven principal com­
ponents.
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Figure 2.5: Regression coefficients for a principal component regression pre­
diction equation with seven components.
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Figure 2.6: Scatterplots obtained from the cross-validated predicted values, 
the cross-validated residuals and the observed values.
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Ignoring these problems, the plots appear to preclude the subsequent 
analysis of influence for the principal component decomposition, as there 
are no observations with unduly large cross-validated residuals. In practice, 
this analysis should be carried out for the selected model, as well as for 
a few submodels, to investigate whether individual observations are unduly 
inflating the cross-validatory estimate. Once this estim ate has been obtained, 
however, the prediction equation is calibrated from the complete data. Not 
w ithstanding the cross-validatory assessment of the prediction equation, it 
would be undesirable for a single observation to have excessive influence 
on the decomposition of the complete data. Hence, we would still want 
to consider the sensitivity of the principal component estim ates for leave- 
one-out perturbations of the data. This is particularly so in applications in 
chemometrics, where sample sizes are often small.

The most simple principal component influence plot is a plot of the to tal 
eigenvalue downdate p of each observation versus the observation number, as 
shown in figure 2.7. This may be complemented with figure 2.8, which show 
a plot of the cross-validated residuals versus the total downdates. Neither of 
these plots identify any unduly influential observations.

We should expect tha t principal components with larger variances will 
dominate the eigenvalue downdating. Hence, it would make sense to con­
sider the first few principal components separately in a principal component 
influence analysis. Figure 2.9 shows a plot of the sum of the first seven 
eigenvalue downdates versus the observation number. This plot is virtually 
identical to figure 2.7 and as a consequence, figure 2.10 can hardly be distin­
guished from the corresponding plot in figure 2.8. The reason becomes clear 
from the scree diagram shown in figure 2.11. The first component accounts 
for 95.3% of the variation of the data and hence this component dominates 
the eigenvalue downdating.

The nature of the downdating process for the M ustard data is clarified 
from a separate plot of the normalized eigenvalue downdates for the first seven 
components, as shown in figure 2.12. Most of the eigenvalue downdating 
takes place along the first principal component direction, as the normalized 
eigenvalue downdates for the first component are between 80% and 100% 
for most observations. This situation reverses in the remaining principal 
component directions. The further along we go in the principal component 
sequence, the less eigenvalue downdating there is. The m aximum normalized 
eigenvalue downdate is smaller than 3% for the seventh principal component.
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Figure 2.7: Total eigenvalue downdate p versus the observation number.
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Figure 2.8: Cross-validated residuals versus the to tal eigenvalue downdate p.
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Figure 2.9: Sum of the eigenvalue downdates for the first seven principal 
components versus the observation number.
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Figure 2.10: Cross-validated residuals versus the sum of the eigenvalue down­
dates for the first seven principal components.
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Figure 2.11: Scree diagram.



8
I sO ft)

seventh norm alized eigenvalue dow ndale fifth norm alized eigenvalue downdate third norm alized eigenvalue dow ndate first norm alized eigenvalue dow ndate

CO

ol-j

Nft)

Î0
ft)

r
Q-
ft)

ft)
i-j

ft)
§

Cl.ts
0.

ê

O

è

a

sixth norm alized eigenvalue downdate

I  5 Ê I  S

o

ë

O

o

o

fourth norm alized eigenvalue dow ndate

Ê

ë

©

ê

second norm alized eigenvalue dow ndate

ê

I
I
to

I
I
O
0

1I
I



C H A P T E R  2. PRINCIPAL CO M PO NENT RE G RESSIO N  75

while most observations have a normalized eigenvalue downdate smaller than 
0.5%.

These plots are appropriate to analyse the influence of observations on 
the eigenvalues of specific principal component directions. Observation 40 is 
a clear outlier for the sixth component. Plots of the cross-validated residu­
als versus each of the seven normalized eigenvalue downdates are shown in 
figure 2.13. The 40^^ observation has a cross-validated residual close to zero.

The normalized eigenvalue downdates suggest a summary influence m ea­
sure for the eigenvalue downdating in the first seven principal components. 
We may consider the sum of the normalized eigenvalue downdates for the first 
seven components versus the observation number, as shown in figure 2.14. 
The 30*̂  ̂ observation emerges as a clear outlier from this plot. Plotting the 
cross-validated residuals versus this sum of normalized eigenvalue downdates, 
as shown in figure 2.15, we find tha t this observation has a cross-validated 
residual close to zero.

The previous analysis is restricted to the influence on the eigenvalues. 
Figure 2.16 show plots of the downdating angles for the first seven principal 
components. There are no suspect observations. The size of the downdating 
angles varies between the components. The downdating angles are smaller 
than one degree for the first component, whereas the fourth and fifth compo­
nent have downdating angles of up to 25 degrees. The plots of the downdating 
norms, shown in figure 2.17, are virtually identical to those of the downdating 
angles, as expected.

2.5 C on clusions
We have dem onstrated how an efficient leave-one-out algebra due to Bunch, 
Nielsen and Sorensen [BNS78] can be applied to the cross-validation of a prin­
cipal component decomposition. The algebra replicates results from naive 
implementations, using efficient computations tha t achieve an order of mag­
nitude reduction in com putational cost with respect to the cross-validation of 
the principal component decomposition. In the application to the calibration 
of principal component regression equations, this order of m agnitude reduc­
tion is m aintained for the singular case only. Fortunately, in applications in 
chemometrics, this is precisely the case we are interested in, as spectroscopic 
analysis will typically generate large numbers of measurements on samples
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Figure 2.13: Cross-validated residuals versus normalized eigenvalue down­
dates for the first seven principal components.
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Figure 2.14: Sum of the normalized eigenvalue downdates for the first seven 
principal components versus the observation number.
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Figure 2.15: Cross-validated residuals versus the sum of the normalized eigen­
value downdates for the first seven principal components.
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of interest.
The efficiency of the leave-one-out computations stems from the reduc­

tion of the downdating problem to the cross-validation of the eigenvalues. 
These computations no longer depend on m atrix algebra and can be exe­
cuted fast and accurately. The algorithm depends crucially on the properties 
of principal component eigenvalue downdates. These properties may in turn  
be utilized to formulate a system of principal component influence measures, 
most of which were already in the literature in some form or another. An 
application of the influence measures to near infrared spectroscopic data  
highlights interesting features in the data which would have gone undetected 
otherwise.

We have only considered the application of the efficient cross-validatory 
algebra and influence measures to principal component regression. O ther ap­
plications exist, where the principal component decomposition is of interest 
in its own right. This may be in term s of its dimension reduction properties 
or as a model of data, as in the SIMCA [Wol76] approach to classification, for 
example. The use of principal component influence measures in particular 
requires more work in these applications. Furthermore, the cross-validatory 
algebra only applies to the decomposition of the covariance m atrix. From a 
statistical point of view, in many applications of principal component decom­
position, the analysis of the correlation m atrix is often more useful. Hence, 
more work is needed to make efficient cross-validatory computations available 
in this case.
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3.1 P artia l L east Squares D eco m p o sitio n  and  
C ross-va lidation

In the Stone-Brooks approach, the full leave-one-out cross-validation of par­
tial least squares components becomes particularly elegant and, to some ex­
ten t, analogous to the cross-validation of principal components.

Implementations of cross-validation for partial least squares computations 
are usually based on the naive approach which recomputes the partial least 
squares decomposition for each construction sample, irrespective of the al­
gorithm  used for the computation of the decomposition. The Stone-Brooks 
[SB90] generalisation of partial least squares regression incorporates an ef­
ficient cross-validatory algebra for the leave-one-out case. While the Stone- 
Brooks algebra generally involves the numerical optimisation of a param eter 
over a known param eter space, this param eter cancels from the equations 
in the partial least squares restriction. Thus the Stone-Brooks com puta­
tions reduce to the sequential application of a com putation which is purely 
matrix-based. For this reason, the Stone-Brooks implementation of partial 
least squares regression deserves special attention as it leads to efficient cross- 
validatory computations.

3.1.1 Partial Least Squares D ecom position
The Stone-Brooks approach derives partial least squares components sequen­
tially, such tha t each component maximizes the sample covariance between 
the corresponding component scores and the observed response, subject to 
the conditions tha t the partial least squares component scores are uncor­
related and have positive sample variance, while the component coefficient 
vectors are of unit length [SB90]. The restriction to uncorrelated partial 
least squares components is not essential in this definition. As for principal 
components, we may consider an alternative restriction in the derivation of 
the partial least squares components, which defines the component coeffi­
cient vectors to be m utually orthogonal, as considered by M artens and Naes 
[MN89, page 119].
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P a r t ia l  L e a s t S q u a re s  A lg e b ra

We will describe the application of the Stone-Brooks approach to the con­
struction of a partial least squares algebra.

The first component must maximize the sample covariance (s^q)^, or 
equivalently ( c ^ q ) ^ ,  among all q  with q ^ q  =  1. Hence, using Lagrange 
multipliers, we find th a t q  must maximize

Li(q) = (c^q)^ -  A(q^q -  1).

Therefore, the vector of component loadings for the first component is the 
solution of the equations

L i ( q )  =  2 c  — 2 A q  =  0 ,

and we find tha t the first partial least squares component loadings are pro­
portional to the sample covariance vector c .  We have

c
qi =  TTTT-

Consider the calculation of the component loadings q/c+i for the k +  
component, with 1 <  k < r^- The component must maximize the criterion 
(c^q)^, subject to the conditions q ^ q  =  1 and q J C q  =  0, for j

At this point, we are forced to change the notation for principal compo­
nents and we will write C =  V E V ^  for the principal component decomposi­
tion of the complete data, such tha t V  is the m atrix of principal component 
coefficients. Using the Stone-Brooks approach to partial least squares de­
composition, we derive the partial least squares component from a rotation 
of the principal component decomposition of the complete data. Stone and 
Brooks give proof tha t the principal components span the same space as the 
partial least squares components. Hence, we may write

q = Vr,

and we m ust now find the optimum of the Lagrangian equations 

Lfc+i(r) = (d^r)  ̂ -  A(r^r -  1) -  a^A^r,
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where d  =  V ^c, = ( a i , . . . ,  a^) and A =  E V ^Q , with Q =  ( q i , . . . ,  q t̂) 
the  m atrix  formed by the first k vectors of partial least squares component 
loadings. The optim um  is the solution of

— =  2d — 2Ar — Ao; =  0.

Hence, absorbing the constant 2 in the Lagrange multipliers, we find tha t

r  oc d — A(x

w ith A ^ r  =  0 and therefore,

r  oc (I — A (A ^ A )“^A ^)d.

We find
M d

r  =
,|M d ||’

with M  =  I - A ( A ^ A ) - 'A ^ .

P artia l Least Squares C om pu tations

The above algebra is inefficient in its present form. This is because the com­
putation of M involves the inverting of a m atrix tha t must be recomputed 
for each component, in the sequence of partial least squares components. 
A naive approach to this computation would involve, for each partial least 
squares component, the computation of the principal component decompo­
sition of M . This would render the cross-validatory algebra useless. The 
problem is tha t the cross-validatory algebra does not yet take full account of 
the leave-one-out nature of the downdating. Stone and Brooks have shown 
th a t an efficient formula can be found for the com putation of these inverse 
m atrices, using the Sherman-Morisson theorem, which may be derived as a 
special case of theorem 2.2. We may employ the updating formula

for M  at each stage in the cross-validatory computations, where a is the 
column appended to A at stage k I. The details of this may be found in 
the paper by Stone and Brooks.



C H A P T E R  3. P A R T IA L  L E A S T  SQ U ARES RE G RESSIO N  86

The singular case may be dealt with using the same methods as explained 
for principal component decomposition. Indeed, we are deriving the partial 
least squares components from a rotation of the principal component decom­
position and hence, we may use the same methods as before to derive the 
initial principal component decomposition in the singular case.

3.1.2 Partial Least Squares and Cross-validation
P artial least squares is more generally known as a class of path  modelling 
techniques in which the interrelation of blocks of observed variables is mod­
elled through sets of latent derived factors. The latent variables are obtained 
through a sequence of least squares projections. The technique was origi­
nated by Herman Wold [Wol66] [Wol85] in the context of econometric predic­
tion modelling and inherits from factor analysis techniques in psychometry. 
The methodology has been much applied since, with applications in different 
branches of science.

In chemometrics, partial least squares has been successful in the calibra­
tion of linear equations for prediction. In these applications, the num ber of 
predictor variables is often huge, as in spectroscopic data for example, while 
the num ber of observations is small. The usual formulation of partial least 
squares in these applications is as an application of the NIPALS algorithm, 
as described by Wold [WL69].

It is recent studies of the partial least squares approach to regression 
by Hoskuldsson [Hos88], Holland [Hel88] and Stone and Brooks [SB90] tha t 
have shown tha t the partial least squares component coefficient vectors may 
be interpreted as directions in the measurement space tha t optimize the 
covariance with the observed response. This strips partial least squares from 
its algorithmic formulation. The interpretation was used explicitly by Stone 
and Brooks [SB90] to derive the partial least squares components from a 
rotation of the principal components of the predictor data. There has been 
no work on the efficient cross-validation of partial least squares regression. 
All implementations of cross-validation for partial least squares are based, 
essentially, on Wold’s approach to the choice of the number of components 
in factor and principal component models [Wol78], Thus, they consider the 
NIPALS algorithm and subsets of data rather than a full leave-one-out cross- 
validation.
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3.2 S ton e-B rook s L eave-O ne-O ut C ross- 
valid atory  A lgebra

As for principal component cross-validation we may exploit the efficient leave- 
one-out downdating formula

C(i) =  C -  i^x fxi

for the com putation of the downdated cross-products m atrix. The corre­
sponding leave-one-out downdating formula for the cross-products vector c  

is
C(i) =  c  -  lyyixf.

Using the same argument as for the partial least squares decomposition of 
the complete data, we find tha t the first cross-validated partial least squares 
component is proportional to C(q.

Let us again consider the derivation of the A; +  cross-validated vector
of partial least squares component loadings qfc+i(q. We must maximize the 
criterion (c^^q)^, subject to the side-conditions qJjj-^C(qq = 0, j  = 1, . . . ,  A; 
and q ^ q  =  1. As for the partial least squares decomposition of the complete 
data, we may derive the downdated partial least squares decomposition from 
a rotation of the principal component decomposition C =  V E V ^  of the 
complete data, and hence, we write

q =  Vr,

as before. We must now find the maximum of the Lagrangian equation 

U + i { r )  = { d l f Y  -  Ar^r -  a^Q^)Cp-)Vr, 

with dp) =  V^C(i), -  (« 1, . . . ,  a^) and Qp) =  (q ip ) ,. • •, qt(q). We have

d(i) =  V^cp) =  d -  p y d f ,

where — x ,V  and

= Q^jCVr -  i/Qji)xfxiVr 
= Q(i)CVr -  i/Q^)xfxiVr 
=  Q ^ )V E r-(/Q ^ )V fffir  

=  (Q ^ )V E -F Q ^ )V f/'f.)r ,
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and hence, writing =  (Q^^VE — we have

L(,)(r) = (d^)rr-Ar^r-«^Ag)r.

W ith the same argument as for the partial least squares decomposition of 
the complete data, we find tha t

w ith M(i) =  I  -  A (i)(A ^)A (,))-‘A^).
W ith this cross-validatory algebra, a m atrix R  =  ( r i , . . . ,  r,.^) is derived. 

Each Fj, j  =  1 , . . . ,  is a linear combination tha t rotates the principal 
components to the downdated partial least squares component.

As for the computations on the complete data, we must exploit the rank- 
one nature of the leave-one-out cross-validatory computations to obtain an 
efficient com putation of the projection matrices M . We have, as before

T

for M(q at each stage in the cross-validatory computations, where a is the 
column appended to A(q at stage k L

Detailed proof of the validity of this cross-validatory algebra can be found 
in the paper from Stone and Brooks [SB90].

3.3 P artia l L east Squares R egression  and In ­
fluence M easures

3.3.1 Partial Least Squares R egression
The application of the Stone-Brooks leave-one-out cross-validatory algebra 
to partial least squares regression is completely analogous to the discussion 
for principal component regression.

As before, we consider the com putation of the cross-validated predicted 
values for i = 1, . . .  ,n  and 0 <  7  <  As the partial least squares
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components are uncorrelated, we may again exploit the updating formulae

^ —  7 ^ ^
=  Y (i)  +  J2 {y.(i,k) -  for 0 <  7  <  r* ,k=l

and

where

lli{i,k) l/i{i,k-l) 9 '^ik{i)t

as before. Therefore, the same procedure may be applied for the cross- 
validation of partial least squares regression as for principal component re­
gression, and we find

for j  = i, and
'^jk{i) — ^j^k{i) T  — 1),

if j  /  i. We have,
Xqfc(i) =  X V fa: -- Fta:,

w ith F  the m atrix of principal component scores for the complete data. 
Hence, as for principal component regression, the partial least squares com­
ponent loadings are not downdated explicitly, but rather, we apply the linear 
combinations directly to the principal component scores F.

3.3.2 Influence M easures
There is no satisfactory approach in the literature to the analysis of influ­
ence in a partial least squares setting. This is probably due to the compu­
tational cost of naive implementations of full leave-one-out cross-validatory 
calculations for partial least squares regression, as well as to the algorithmic 
approach to partial least squares in most of the literature. M artens and Naes 
[MN89, page 285] extend the application of influence measures for ordinary 
least squares to the partial least squares setting. These measures have the 
advantage tha t closed form formulae exist which may be employed to reduce 
the computational cost. However, the validity of this approach in a partial 
least squares setting is doubtful. This is because it will typically ignore the
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contributions of partial least squares components which have not been incor­
porated in the selected regression equation. Furthermore, this method will 
not identify observations which are influential for the partial least squares 
decomposition itself.

The Stone-Brooks cross-validatory algebra provides an ideal opportunity 
to  consider the problem of influence for partial least squares. Full leave-one- 
out cross-validation for partial least squares regression involves the compu­
tation of the cross-validated sums of squared projections

hk(i) y  yÇxjÇtfcp") T 1)) ,

for each partial least squares component and each observation in the 
cross-validatory calculations. Hence, as for principal component regression, 
we could consider the influence measures

hk —

where is the sum of squared projections of the complete data on the 
vector of partial least squares component loadings q^. However, in contrast 
to the principal component eigenvalue perturbations, these statistics will re­
flect the extent to which an observation is outlying in the response space as 
well as in the predictor space. More importantly, these statistics do not have 
the elegant properties of the corresponding principal component influence 
measures. First of all, they may no longer be interpreted as sums of squared 
projection downdates for the corresponding partial least squares components. 
The sum of squared projections for a partial least squares component may 
well increase when an observation is removed from the data. Also, these 
measures no longer sum to the total principal component eigenvalue down­
date p and they are not central to the Stone-Brooks approach to partial least 
squares leave-one-out cross-validation. Hence, they are not appropriate as 
partial least squares influence measures. Likewise, their sum no longer ap­
pears suitable for a possible normalisation of the individual sums of squared 
partial least squares projection perturbations.

A more natural partial least squares influence measure would be the per­
turbation of the sample covariance vector d. Indeed, partial least squares 
decomposition optimizes the sample covariance and hence, we could consider 
the influence measure

| |d t  -dfc( i ) l l  =  pydlW-
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This seems to be a summary influence measure tha t considers the influence 
of observations in both the predictor and response space simultaneously by 
weighting the sum m ary principal component influence measure p with the 
square of the observed response for the removed datum.

As always in these cross-validatory computations, we may easily generate 
the leave-one-out cross-validated residuals

yi{k) yi{i,k)'

3.3.3 C om putational Cost and Perform ance
We would like to compare the computational cost of the Stone-Brooks cross- 
validatory computations for partial least squares with naive implementations 
of full leave-one-out partial least squares cross-validation. For the naive im ­
plem entations, we will consider the orthogonalized and non-orthogonalized 
partial least squares algorithms of M artens and Naes [MN89, pages 119 to 
125] [Den91, pages 62 and 64], as well as the partial least squares com puta­
tions described by Helland [Hel88].

S im u lations

The Stone-Brooks approach to full leave-one-out partial least squares re­
gression cross-validation was implemented in the numerical analysis package 
GAUSS [Apt92] (appendix, page 146). The naive procedures for the cross- 
validation of partial least squares regression were also implemented in GAUSS 
(appendix, pages 141, 142 and 143 for the base procedures).

We used the native GAUSS procedure OLSQR [Apt92, volume 2, page 
1352] for the com putation of the least squares fits in both M artens’s non- 
orthogonalized m ethod as well as in Helland’s m ethod for partial least squares 
decomposition. This procedure is based on the QR decomposition. The ini­
tial eigendecomposition necessary for the Stone-Brooks approach was com­
puted with the GAUSS procedure EIGHV [Apt92, volume 2, page 1180].

The simulations were done in the same manner as explained for principal 
component regression cross-validation. For the regular case (n — 1 > p), data  
were generated with the GAUSS pseudo-random number generator RNDU 
[Apt92, volume 2, page 1452]. We generated predictor matrices with 5, 10, 15, 
20, 25, 30, 35, 40, 45 up to 50 predictor variables and 100 observations. For
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Figure 3.1: Com putation times in seconds for full leave-one-out cross-
validation of partial least squares regression in the regular case with 100 
observations.
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each simulated problem, a response vector of 100 numbers was generated and 
the four implementations of full leave-one-out cross-validation were compared 
on each sim ulated problem. For each simulation, all partial least squares 
factors were derived and the PRESS statistic was computed for all factors. 
Figure 3,1 shows the computation times in seconds, with the num ber of 
predictor variables plotted on a log scale. There appears to be an order of 
m agnitude difference in the computational cost between the non-orthogonal 
and the orthogonal methods.

For the singular case (n — 1 < p), the same procedure was repeated, 
but with m atrices of 12 observations and 15, 20, 25,50,75,100,500,1000,2500 
up to 3000 predictor variables. For each simulation, all ten factors were 
derived in the cross-validation, A small number of observations was chosen 
so th a t the results will mainly reflect the costs due to the number of predictor 
variables derived in the cross-validatory computations. Figure 3.2 shows 
the results plotted on the log scale for the number of predictor variables. 
As for principal components, the computational cost due to the number 
of predictor variables appears to cancel out for the Stone-Brooks method. 
There is a slight increase in the computational cost of this m ethod when 
the num ber of predictor variables exceeds 500, This is probably due to the 
initial eigendecomposition. All other methods are an order of magnitude 
more expensive.

Let us again consider a theoretical study of the com putational costs to 
analyse these results. To simplify m atters, we will only concern ourselves 
with orders of m agnitude descriptions of the computational costs involved in 
these procedures. Also, we will have special attention for the com putational 
costs due to the number of predictor variables in the problem, as partial least 
squares com putations are often employed in problems with many predictor 
variables. Therefore, we will describe costs for the case when all partial least 
squares factors are derived,

A naive implementation of full leave-one-out cross-validation with the 
orthogonal scores algorithm of Martens and Naes involves an order of 
multiplications in the regular case and an order of pn^ multiplications in the 
singular case. For the non-orthogonalized algorithm described in the same 
book, as well as for the algorithm due to Helland, we will consider imple­
m entations based on the QR decomposition for the ordinary least squares 
fitting in the partial least squares algorithms, A naive implementation of full
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Figure 3.2: Com putation times in seconds for full leave-one-out cross-
validation of partial least squares regression in the singular case with 12 
observations.
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Case
Com putation

Regular Singular

w=xm’ym np^ pn'^
w=w/sqrt(w^w) p" pn
t=xm*w np^ pn^
t t = t  ^t np n^
p = x m 't / t t np"̂ pn"̂
q = y m 't / t t np n^
xm=xm-t*p^ np^ pn^
ym=ym-t*q np n^
Subtotal np^ T  np T  p^ pn^ pn -\- n^
PRESS pn
Total np^ -\- np -\- p^ pn'^ -\- pn n^

Table 3.1: Contributions of a single observation to the order of the number 
of multiplications involved in a full leave-one-out cross-validatory analysis 
of partial least squares regression with a naive implementation based on 
M artens’s orthogonalized algorithm, when all factors are derived in the cross- 
validation.
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Case
Com putation

Regular Singular

w=xm ̂  ym np^ prP
w =w /sqrt(w 'w ) p ' pn
t=xm*w np^ pn^
q q = o ls q r (y O ,t t [ . , 1  : i ] ) np^
xm=xm-t*w^ np^ pn^
ym =yO -tt[ . ,1  : i]* q q np^
Subtotal np^ +  np"̂  -f p^ +  pn +
PRESS pn  4- n^
Total np^ -t- np^ +  p^ pn^ -\- pn rU

Table 3.2: Contributions of a single observation to the order of the num ber 
of multiplications involved in a full leave-one-out cross-validatory analysis 
of partial least squares regression with a naive implementation based on 
M artens’s non-orthogonalized algorithm, when all factors are derived in the 
cross-validation.

Case
Com putation

Regular Singular

w=s-xm'(xm*b) np^ pn^
w=w/sqrt(w^w) p ' pn
xw [. , i]=xm*w np^ pn^
b=w w [.,1 : i]* o lsq r(y m ,x w [. np^ +  p^
Subtotal np^ +  np^ +  p^ pn^ +  pn -1-
PRESS p2 pn
Total np^ +  np^ +  p^ pn^ 4- pn -f n'^

Table 3.3: Contributions of a single observation to the order of the num ber 
of multiplications involved in a full leave-one-out cross-validatory analysis 
of partial least squares regression with a naive implementation based on 
Holland’s algorithm, when all factors are derived in the cross-validation.
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Case
Com putation

Regular Singular

a i= e . * z i-n u * s u m c (f i . * z i ) * f i /
m iai=m i*ai p^
m i=m i-m iai*m iai V a i 'm ia i p^
zi= m i*d i
z i = z i / s q r t ( z i 'z i )
Subtotal
PRESS np'  ̂ +  np
Total np^ n p T  p^

Table 3.4: Contributions of a single observation to the order of the number 
of m ultiplications involved in a full leave-one-out cross-validatory analysis 
of partial least squares regression with the Stone-Brooks m ethod, when all 
factors are derived in the cross-validation.

leave-one-out cross-validation for both these algorithms will involve an order 
of multiplications for the regular case, using the Householder method 
for the QR decomposition [GL89, page 219]. In the singular case, these al­
gorithms require an order of pn^ +  multiplications. The Stone-Brooks 
cross-validatory computations are based on the eigendecomposition of the 
cross-products m atrix, in the regular case, and of the m atrix X X ^, in the 
singular case. However, as these calculations are only done once, we may 
largely ignore the computational cost of these decompositions. The rem ain­
der of the calculations are of order n^p^ -f rPp in the regular case and of order 
rP in the singular case.

As for principal components, we have summarized these results in ta ­
bles 3.1 to 3.4, which consider the contributions of a single observation to 
the com putational costs of cross-validating the regression equation, for each 
observation. Again, the relevant quantities must be multiplied by n for com­
parison with the text.

A few conclusions may be drawn from this rudim entary analysis of com­
putational cost. First of all, computations are considerably slower in the 
regular case, not only because the number of observations tends to be larger.
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but also because the computational costs due to the number of predictor 
variables increase. In the singular case, the number of partial least squares 
components tha t may be derived is effectively restricted by the num ber of 
observations. Furthermore, in the regular case, the com putational cost of 
the non-orthogonal methods relates to tha t of the orthogonal approaches as 

relates to n^p^. Thus, for the same number of observations, we observe 
in effect an order of magnitude increase in cost due to the number of predic­
tor variables only. This is because both these methods compute correlated 
scores and hence, a numerically optimized least squares fitting procedure 
m ust be employed, like those based on the QR algorithm, to obtain reli­
able least squares fits. It is the cost of computing these QR decompositions 
th a t dominates the total computational cost for the non-orthogonal m eth­
ods. Our implementation is based on Denham’s approach [DenQl], who has 
implemented the algorithms of Martens, Naes and Helland in Spins [Sta92], 
using the native LS procedure for least squares fitting, which is based on the 
QR decomposition. Likewise, the tables on computational cost assume a QR 
decomposition for the non-orthogonal methods. M artens’s orthogonalized 
m ethod and the Stone-Brooks approach do not have these problems with 
uncorrelated scores.

In the singular case, the computational cost due to the number of predic­
tor variables cancels out for the Stone-Brooks approach. This is in analogy 
to the efficient cross-validation of principal component regression. The rea­
sons are similar. The cost of computing the partial least squares scores does 
not depend on the number of predictor variables and neither does the cost 
of computing the matrices M(q.

3.3.4 Accuracy
Applications of the Stone-Brooks algebra, for both partial least squares re­
gression and leave-one-out cross-validation, to partial least squares regres­
sion, revealed differences in accuracy when compared to implementations 
using the existing methods.

Table 3.5 shows maximum absolute differences between the fitted values 
from a partial least squares regression for the M ustard data  with the Stone- 
Brooks approach. M artens’s non-orthogonalized algorithm and Holland’s al­
gorithm on the one hand, and those obtained from M artens’s orthogonalized 
algorithm on the other hand. Similarly, table 3.6 shows absolute differences
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7 Stone-B rooks M art0n s (*) H0lland

1 2.1094237e-15 6.66133810-16 6.66133810-16
2 4 .0772941e-14 4.88498130-15 3.99680290-15
3 1.8185453e-13 7.99360580-15 7.02216060-15
4 4 .9138471e-13 6.21724890-15 6.66133810-15
5 1.28008710-12 3.55271370-15 6.52256030-15
6 3.32400770-12 6.88338280-15 9.76996260-15
7 4.46087610-12 1.35447210-14 7.21644970-15
8 1.02831080-11 4.59077220-14 9.76996260-15
9 2.12807550-11 9.51461130-14 8.82627300-15

10 5.57203170-11 2.41251460-13 7.21644970-15
11 1.53746790-10 4.50861570-13 8.16013920-15
12 3.25668940-10 8.35664870-13 1.23234760-14
13 4.39882240-10 1.04893870-12 1.32116540-14
14 6.58510580-10 1.46282990-12 1.99840140-14
15 8.30241210-10 1.94999570-12 2.22044600-14
16 1.17682860-09 3.22242230-12 2.15383270-14
17 1.26836340-09 3.45068420-12 2.25375270-14
18 1.61981870-09 3.68582940-12 4.11892740-14
19 1.82661100-09 3.33089110-12 1.13131730-13
20 1.89957410-09 3.12749830-12 5.95079540-14
21 1.96958080-09 2.63900010-12 3.77475830-14
22 2.12516960-09 2.09388060-12 3.24185120-14
23 2.28678540-09 2.93387540-12 4.41868760-14
24 2.25282850-09 4.39448480-12 4.30766530-14
25 2 .07720320-09 5.27577980-12 3.75255380-14
26 1.95823710-09 5.61706240-12 2.66453530-14
27 1 .97008010-09 5.63171730-12 2.97539770-14
28 1.95367390-09 5.62239140-12 3.99680290-14
29 2.06862390-09 5.43964870-12 4.97379920-14
30 2.12875630-09 5.40212320-12 2.90878430-14
31 2.10908070-09 5.37814240-12 3.53050920-14
32 2.08190530-09 5.35171910-12 3.41948690-14
33 2.05520130-09 5.33884050-12 4.15223410-14
34 1.89519110-09 5.33328940-12 3.87467840-14
35 1.79188580-09 5.32285330-12 3.19744230-14
36 1.64171120-09 5.31530380-12 4.79616350-14
37 1.63556750-09 5.31574780-12 3.28626020-14
38 1.81734830-09 5.32596190-12 2.33146840-14
39 1.73080750-09 5.32707210-12 2.95319320-14
40 1.77736410-09 5.33217910-12 2.90878430-14
41 1.78308650-09 5.32818230-12 1.78745910-14
42 1.71693760-09 5.32951460-12 1.26565420-14
43 1.51333010-09 5.32929260-12 1.88737910-14
44 1.48214330-09 5.33151300-12 1.37667660-14
45 1.08027230-09 5.33906250-12 1.97619700-14
46 9.10304830-10 5.32818230-12 1.86517470-14
47 8.73472740-10 5.32662800-12 2.28705940-14
48 9.31707040-10 5.32618390-12 2.26485500-14

Table 3.5: Maximum absolute differences in fitted values for the Mus­
tard data, in a comparison with M artens’s orthogonalized algorithm. (* 
=  M artens’s non-orthogonalized algorithm)
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between mean prediction error sum of squares for the M ustard data and par­
tial least squares regression, in a comparison of leave-one-out cross-validation 
com puted with the same three methods, and a naive implementation based 
on M artens’s orthogonalized algorithm. The choice of the reference algorithm 
is somewhat arbitrary and we have chosen the orthogonalized algorithm as 
it has been the earliest implementation, as well as the most simple, of the 
partial least squares decomposition.

The results suggest tha t the Stone-Brooks approach performs adequately 
for the M ustard data in the com putation of the partial least squares regres­
sion equation. Nevertheless, the maximum absolute differences between fitted 
values obtained from a comparison with M artens’s orthogonalized algorithm 
tend to be larger than those obtained for M artens’s non-orthogonalized algo­
rithm  and Holland’s algorithm. The best accuracy is obtained for M artens’s 
orthogonalized algorithm and Holland’s approach, with a maximum absolute 
difference in fitted values of 1.13e“ ^̂  between both methods. All methods 
seem to suffer from a gradual loss of accuracy as further components are 
added. This decrease is more pronounced for the Stone-Brooks m ethod, al­
though the accuracy stabilizes when 10 components have been added. A 
m aximum absolute difference of 2.29e“  ̂ is obtained for the Stone-Brooks 
method.

Things are different in cross-validation. All naive methods perform well 
for the M ustard data in this comparison. As before, all methods suffer from 
a gradual loss of accuracy as further partial least squares components are 
added to the prediction equation. However, in contrast to the Stone-Brooks 
approach, the accuracy of the naive methods seems to stabilize after a cer­
tain num ber of components has been included in the regression equation. 
The Stone-Brooks m ethod suffers from an uninterrupted loss of accuracy, 
and eventually loses all accuracy when most components are in the predic­
tion equation. This loss of accuracy is probably caused by the fact th a t the 
Euclidean length of the leave-one-out perturbations in the cross-validatory 
algebra becomes smaller as more components are added. This may provide 
an explanation as to the behaviour of the Stone-Brooks algebra in cross- 
validation, as compared to the computation of the partial least squares de­
composition.

The Stone-Brooks algebra performs well for the first 25 partial least 
squares components. The remaining components are of small variation and 
we are unlikely to include them  in any practical application to calibration.
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7 Stone-B rooks M artens (*) Hell and

1 1.7763568e-15 0 0
2 5.99520436-15 6.6613381e-16 2.22044606-16
3 1.4321877e-14 3.3306691e-16 5.55111516-16
4 3.77475836-15 0 1.11022306-16
5 6.31161796-14 2.77555766-16 2.77555766-16
6 1.88238316-13 5.55111516-16 0
7 9.69224706-14 1.6653345e-15 1.66533456-16
8 2.67730286-13 4.32986986-15 3.33066916-16
9 4.91828806-13 6.10622666-16 3.3306691e-16

10 1.25577336-12 1.38222776-14 6.1062266e-16
11 5.65658636-13 6.10622666-14 1.44328996-15
12 2.98803206-11 8.27116156-14 1.94289036-15
13 4.56056306-11 1.11133326-13 1.38777886-15
14 6.96108176-11 1.92401656-13 1.55431226-15
15 8.71320796-11 3.01036976-13 8.32667276-16
16 7.18737296-11 4.50806066-13 3.88578066-15
17 6.97134576-11 4.45088416-13 5.55111516-15
18 1.74172906-11 3.21298546-13 3.77475836-15
19 2.79365426-12 8.08131346-13 7.88258356-15
20 1.40978456-10 8.78630506-13 9.65894036-15
21 9.60409536-11 1.07591716-12 1.77635686-14
22 1.37760806-10 1.04394276-12 1.62092566-14
23 1.40868216-10 1.03961286-12 1.90958366-14
24 6.66906536-10 1.03594916-12 2.96429556-14
25 4.86225506-10 9.17488316-13 3.57491816-14
26 1.70907586-09 8.92619316-13 4.48530106-14
27 3.46336896-09 9.09716756-13 5.50670626-14
28 1.06398596-08 8.95616916-13 6.58362256-14
29 1.62265596-08 9.08384486-13 7.70494786-14
30 3.58570156-08 9.10049816-13 8.45989946-14
31 5.13468236-08 9.10604926-13 9.59232696-14
32 1.33040116-07 9.11493106-13 1.04805056-13
33 6.42975276-08 9.12492306-13 1.22346586-13
34 2.19655656-07 9.13047426-13 1.30007126-13
35 3 .6652035e-06 9.12603336-13 1.38555836-13
36 5.33065256-06 9.12936396-13 1.45994336-13
37 5.80522786-06 9.13158446-13 1.6264767e-13
38 5.65264966-05 9.12825376-13 1.70530266-13
39 8.95351996-05 9.12714356-13 1.88293826-13
40 0.00039045237 9.13047426-13 1.95066196-13
41 0 .0010489552 9.12603336-13 2.09943176-13
42 0.0083168697 9.12381286-13 2.30815376-13
43 0 .037980110 9.12825376-13 2.47579736-13
44 1.2591844 9.12825376-13 2.64899216-13
45 40.507619 9.12714356-13 2.80109276-13
46 140.25491 9.12714356-13 2.96873646-13
47 201.16291 9.12714356-13 3.04312136-13
48 202.62949 9.12492306-13 3.23852066-13

Table 3.6: Absolute differences between mean prediction error sum of squares 
for the M ustard data, in a comparison with M artens’s orthogonalized algo­
rithm . (* =  M artens’s non-orthogonalized algorithm)
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For this reason, the Stone-Brooks algebra may still be of interest. All cross- 
validatory results on the M ustard data in this chapter have been computed 
with the Stone-Brooks approach.

3.4  E fficient L eave-O ne-O ut P artia l L east 
Squares R egression  C ross-va lidation  A p ­
p lied  to  N ear Infrared S p ectroscop y

3.4.1 Cross-validation
G A U SS Im p lem en tation

A complete transcript of a GAUSS implementation of full leave-one-out cross- 
validation for partial least squares regression with the Stone-Brooks method 
is in the appendix (page 146). The code is used within a GAUSS session, as 
follows.

As for the cross-validation of principal component regression, a GAUSS 
m atrix  x must have been created for the predictor data, as well as a column 
vector y for the observed responses, with the same conventions (page 60). 
The statem ents

{msep, dd, d d i, ycvpred} =  p lscv (y , x, w);

will compute a full leave-one-out cross-validation with the Stone-Brooks 
m ethod. As for principal component regression, w is the number of partial 
least squares components tha t will be derived in the cross-validation.

The output from this procedure is organized with the same conventions 
as those for the cross-validation of principal component regression, msep is a 
m atrix  th a t contains the PRESS and MSEP statistics. The cross-validated 
predicted values are in m atrix ycvpred. The format of these matrices is 
exactly the same as tha t from the corresponding objects th a t are output 
for the cross-validation of principal component regression, dd and d d i are 
matrices of influence measures. The first is a m atrix  tha t contains the cross­
validated sums of squared projections for each of the partial least squares 
components derived. The m atrix  has w columns, such th a t the first column 
contains the influence measures for the first component, and so on, up
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to  the last column, which contains the measures for the last component 
derived in the cross-validation, dd i is a column vector tha t contains the 
cross-validated influence measures ||djt —

T h e M ustard data

This procedure was applied to the M ustard data. Table 3.7 shows the re­
sults. A plot of the cross-validatory index is shown in figure 3.3. The cross-
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0.0

10 20 30 40 500

number of partial least squares components

Figure 3.3: Cross-validatory index for a full leave-one-out cross-validation of 
partial least squares regression of the M ustard data, as computed w ith the 
Stone-Brooks method.

validatory index drops below zero when more than  44 components are used
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for prediction, which is due only to the loss of all significant digits in the 
Stone-Brooks approach. The plot only considers the first 44 prediction equa­
tions. The cross-validatory index equals 89.7% for a six component partial 
least squares regression prediction equation. This increases to 89.8% when 
a further partial least squares component is added. Hence, a six component 
prediction equation seems appropriate.

As for principal component regression, a special GAUSS program has 
been w ritten to compute the selected partial least squares regression equation 
w ithin the same GAUSS session, using the Stone-Brooks algebra. The code 
is in the appendix (page 144). W ith this code, the statem ents

{ypred, y re s id , b e ta , q, u} =  p ls (y , x, w);

will compute the prediction equations for each of the first w partial least 
squares regression equations. The output has the same format as described 
for the corresponding procedure for principal component regression (page 64). 
Figure 3.4 shows plots of the first six partial least squares component load­
ings. A plot of the regression coefficients for the selected partial least squares 
prediction equation is shown in figure 3.5.

3,4.2 Influence Analysis
As for principal component regression, the output from p ls c v  and p is  may 
be used to analyse the influence of observations on the partial least squares 
regression equations.

A plot of the cross-validated predicted values versus the observed values is 
shown in figure 3.6. As for principal component regression, this plot shows a 
straight line relation between the observed and cross-validated predicted val­
ues. The second plot in the same figure, which compares the cross-validated 
residuals with the observed values does not identify any observations with 
large cross-validated residuals. Hence, the conclusions from this analysis are 
similar to those found for principal component regression.

We will develop the partial least squares influence analysis, to exhibit its 
potential and to compare the influence measures with those from principal 
component regression.

In analogy to principal components, we may study the perturbations of 
the sums of squared projections for each of the partial least squares com­
ponents. Figure 3.7 shows a plot of these measures versus the observation
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7 MSEP INDEX 7 MSEP INDEX

0 3.3466262 0
1 3.1766852 0.050779811 25 0.51757407 0.84534452
2 1.7194746 0.48620655 26 0.52125185 0.84424557
3 0.64477544 0.80733569 27 0.52201571 0.84401732
4 0.50889399 0.84793820 28 0.52283098 0.84377372
5 0.43636637 0.86961006 29 0.52230300 0.84393148
6 0.34354859 0.89734480 30 0.52153150 0.84416201
7 0.34208401 0.89778243 31 0.52149933 0.84417162
8 0.34769427 0.89610603 32 0.52164224 0.84412892
9 0.37389645 0.88827660 33 0.52168057 0.84411747

10 0.43539933 0.86989903 34 0.52171472 0.84410726
11 0.53070963 0.84141951 35 0.52171410 0.84410745
12 0.49857490 0.85102163 36 0.52170876 0.84410904
13 0.47934740 0.85676697 37 0.52171975 0.84410576
14 0.48822256 0.85411500 38 0.52177101 0.84409044
15 0.43427971 0.87023358 39 0.52180405 0.84408057
16 0.49501340 0.85208584 40 0.52132408 0.84422399
17 0.52920586 0.84186885 41 0.52276350 0.84379388
18 0.52589643 0.84285773 42 0.53003141 0.84162217
19 0.57890167 0.82701932 43 0.55969465 0.83275854
20 0.56126072 0.83229059 44 1.7808989 0.46785245
21 0.56474361 0.83124987 45 41.029334 -11.259909
22 0.55657440 0.83369090 46 140.77662 -41.065236
23 0.52700528 0.84252640 47 201.68462 -59.265057
24 0.52569122 0.84291905 48 203.15120 -59.703285

Table 3.7: Full leave-one-out cross-validatory analysis for partial least squares 
regression of the M ustard data, as computed with the Stone-Brooks method.
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Figure 3.4: Partial least squares loadings for the first six partial least squares 
components.
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Figure 3.5: Regression coefficients for a partial least squares regression with 
six components.
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Figure 3.6: Scatterplots obtained from the cross-validated predicted values, 
the cross-validated residuals and the observed values.
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Figure 3.7: Perturbations of the sums of squared projections for the first six 
partial least squares components.
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num ber for the first six components. Plots of the cross-validated residuals 
versus these perturbation measures are shown in figure 3.8 for the first six 
components.

These perturbation measures are not restricted to be positive. This is 
because they may no longer be interpreted as downdates with respect to the 
partial least squares regression of the complete data. Nevertheless, for most 
observations these perturbation measures are positive. There are no clear 
outliers.

In analogy to the influence measures for principal components, we may 
normalize these perturbations with the total perturbation of the sum of 
squared partial least squares projections. This total perturbation is defined 
as the sum of the perturbations across all partial least squares components.

The effect is shown in figures 3.9 and 3.10. Some of the plots in these 
figures appear to identify outliers, none of which have large cross-validatory 
residuals.

The figures 3.11 and 3.12 show plots of the Euclidean length of the covari­
ance perturbations versus the observation number and of the cross-validated 
residuals versus the Euclidean length of the covariance perturbations respec­
tively. There are some observations with large values for the partial least 
squares influence measure considered in these plots. As before, none of these 
have large cross-validated residuals.

3.5 C onclusions
The application of the Stone-Brooks algebra to partial least squares regres­
sion and leave-one-out cross-validation for partial least squares regression 
emerges as an efficient com putational m ethod in comparison to naive im­
plem entations. However, in contrast to the efficient cross-validatory algebra 
for principal component regression, the present implementation of the Stone- 
Brooks approach to leave-one-out cross-validation is numerically unstable, at 
least in the partial least squares case. It is likely tha t these problems will 
persist in the full algorithm for continuum regression. This is because the 
cross-validatory algebra for partial least squares which is presented here is a 
restriction of the cross-validatory algebra for continuum regression. In con­
trast, the numerical accuracy of predicted values obtained from the partial 
least squares regression equation computed with the Stone-Brooks m ethod
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Figure 3.8: Cross-validated residuals versus the perturbations of the sums of 
squared projections for the first six partial least squares components.
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Figure 3.10: Cross-validated residuals versus the normalized perturbations 
of the sums of squared projections for the first six partial least squares com­
ponents.
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Figure 3.11: Length of the covariance perturbations.
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Figure 3.12: Cross-validated residuals versus the length of the covariance 
perturbation.
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was adequate for the analysis of the M ustard data considered here, although 
consistently lower than tha t obtained from naive implementations.

A part from these differences in performance, the fundam ental difference 
between the cross-validatory algebra provided by the Stone-Brooks method 
and the efficient algebra for the cross-validation of principal components is 
in the sequential nature of the Stone-Brooks approach. In contrast, the prin­
cipal component cross-validatory algebra can be modified to cross-validate 
a single principal component or eigenvalue, ignoring all other components. 
Furtherm ore, the restriction of the Stone-Brooks approach to partial least 
squares leads to an algorithm which is purely algebraic in nature, as a param ­
eter optim ization cancels, as compared to the more general implementation 
for continuum least squares. Efficient computations for principal component 
cross-validation are based, essentially, on Newton-Raphson optimization, as 
the computations are reduced to the downdating of the eigenvalues.

The analysis on the accuracy of the Stone-Brooks implementation which is 
presented here is clearly incomplete. It points to at least two issues which re­
quire further investigation. First, the performance of the Sherman-Morisson 
formula in the downdating of the partial least squares regression equation 
needs to be investigated. Secondly, given the sequential nature of the Stone- 
Brooks approach, any comprehensive analysis of the performance of this 
m ethod should address the accumulation of computational errors in the im ­
plem entation. Given the results on the M ustard data, it is unlikely tha t the 
second point on its own could account for the loss of accuracy observed.

As for principal components, it is relatively easy to generate influence 
measures from cross-validatory computations for partial least squares regres­
sion. In addition to the efficiency gains, it is here tha t the Stone-Brooks 
approach has the advantage over naive implementations, as it is based ex­
plicitly on the downdating of the sample covariance vector. It is easy to store 
a measure of the leave-one-out perturbations of this vector during com puta­
tions.



A ppendix

A . P r in cip a l C om p onent C om p u ta tion s  

A .l  Principal Com ponent D ecom position
proc(5)=pcr(y,x,w); 0 univariate principal component regression

@ [ J 0 I 8 6 ][M N 8 9 ] 0

local beta,scores,pred,resid,be,re,pr,e,u,v,k, 
meanx,meany,xm,ym,n ,p ; <9 declarations 0

n=rows(x) ;p=cols(x) ; 0 initializations <9 
beta=zeros(p,w);pred=zeros(n,w);resid=pred;

if p==l; print "error:p == 1"; end;endif;

meanx=meanc(x) ' ;meany=meanc(y) ; (9 mean centering (9 
xm=x-meanx;ym=y-meany;

(9 principal component decomposition (9

if n-1 >= p; <9 regular case (9
if p < w;print "error:p < w"; end; 
else;
{e,v}=eighv(xm^xm) ; e=rev(e) ; (9 pea from proc EIG (9 
v=rev(vO^; <9 principal components (9 
scores=xm*v; (9 scores 0 
endif;

117
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endif;
if n-1 < p; @ singular case 0

if n-1 < w;print "error:n-2 < w"; end; 
else;
{e ,u}=eighv(xm*xmO ; e=rev(e [2 :n] ) ; 0 pea from proc EIG 0 
v=xm^rev(u[. ,2:n] 0  ̂ ./sqrt(eO ; <9 principal components 0 
scores=rev(u[. ,2:n] 0  ' .*sqrt(eO ; ® scores @ 
endif; 

endif;

0 principal component regression <9 

k=l ;
do while k <= w;

{be,re,pr}=olsqr2(ym,scores[.,l:k]); 
beta[.,k]=v[.,l:k] *be; 
pred[.,k]=pr+meany;resid[.,k]=re; 
k=k+l; 

endo ;

0 return predicted values 0
@ residuals 0
<9 beta coefficients @
(9 principal components (9
(9 principal component scores <9

retpCpred,resid,beta,V,scores);
endp;

A .2 Principal Com ponent Cross-validation
T he Q uadratic M eth od

proc(6)=pcrcvq(y,x,w) ; <9 full leave-one-out cross-validation (9
(9 univariate principal component regression 
<9 quadratic method (9 
<9 [BNS78] (9
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local n ,p ,msep,dd,ddiff,ypred,d ,q ; 

n=rows(x);p=cols(x);

if p==l;print "error:p == 1"; end;endif;

if n-1 >= p; 0 regular case 0
if p < w;print "error:p < w"; end; 
else;
{msep,dd,ddiff,ypred,d ,q}=pcrcvqr(y,x ,w ,n ,p); 
endif; 

endif;
if n-1 < p; 0 singular case 0

if n-2 < w;print "error:n-2 < w"; end; 
else;
{msep,dd,ddiff,ypred,d ,q)=pcrcvqs(y,x ,w ,n); 
endif; 

endif;

0 return msep @
0 cross-validatory index 0
0 downdated eigenvalues <9
0 eigenvalue downdates 0
<9 cross-validated predicted values (9
(9 initial variances (9
(9 initial principal components (9

retp(msep~1-msep/msep[1],dd,ddiff,ypred,d/(n-1),q); 
endp;

proc(6)=pcrcvqr(y,x,w,n,p);
<9 leave-one-out cross-validation for per (9 
(9 quadratic method (9 
<9 regular case (9

local toll,tol2,toles,xm,u,urt,udf,q,d,nu,i,z,zz,rho,tau,e,pe.
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press,pressu,modif,dd,ddd,ddff,ddiff ,yp,ypred;

toll=10e-16; (9 machine epsilon 0 
tol2=10e-10; @ tolerance relative accuracy 0

press=zeros(l,w+l); 
ypred=zeros(n,w+l); 
ddiff=zeros(n,w); 
ddd=ddiff; 
modif=ones(p,1);

0 overall principal component decomposition 0

xm=x-meanc(x) ̂ @ pea from proc EIG <9
{d,q}=eighv(xm'xm);d=rev(d);q=rev(q')^; 
if minc(d) < 10*toll;

print "warning:overall eigenvalues < 10*toll"; 
endif;
u=xm*q; (9 scores (9 (9 keep u d q <9 
nu=n/(n-l); (9 cross-validatory constant @

(9 cross-validation (9

i=l;
print "cross-validating";
do while i <= n; (9 leave-one-out loop <9

z=u[i, .] ' ;zz=z^z;z=z/sqrt(zz) ; <9 pea scores normalized (9 
rho=nu*zz; (9 deflation size (9
toles=2*toll* (d[1]+rho) ; <9 tolerance deflation (9 
tau=4*toll*maxc(l I (d[l]-rho) )/rho; (9 tolerance convergence <

if minc(d[l : (p-1)]-d[2:p] ) < toles; @ equal eigenvalues (9 
{urt ,z}=dfleig(u,d,z,p,toles) ; (9 eigenvalues (9 
{udf,e,z,modif,pe}=dflsco(urt,d,z,p,toles); @ scores 0 
{pressu,dd,ddff,yp}=
qmdfpcr(y,i,urt,udf,d,e,z,rho,modif,pe,w,n,nu,tol2,tau);
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press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(p,1); 

elseif minc(abs(z)) < toles; 0 zero scores <9
{udf,e,z,modif ,pe}=dflsco(u,d,z,p,toles) ; (9 scores (9 
{pressu,dd,ddff,yp}=
qmdfpcrCy,i,u,udf,d,e,z,rho,modif,pe,w,n,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(p,1); 

else;
{pressu,dd,ddff,yp}=
qmdfpcrCy,i,u,u,d,d,z,rho,modif,p,w,n,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 

endif;

i=i+l; 
endo ;

retp(press ’ ,ddd,ddiff,ypred,d ,q); 
endp;

proc(6)=pcrcvqs(y,x,w,n);
(9 leave-one-out cross-validation for per (9 
(9 quadratic method (9 
0 singular case (9

local toll,tol2,toles,xm,q,urt,udf,u,d,sqrtd,nu,i,z,zz,rho,tau,e, 
nn,press,pressu,nr,modif,dd,ddd,ddff,ddiff,yp,ypred;
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toll=10e-16; 0 machine epsilon 0 
tol2=10e-10; 0 tolerance relative accuracy @

press=zeros(l,w+l); 
ypred=zeros(n,w+l);
nu=n/(n-l);nr=n;n=n-l; @ cross-validatory constant 0 
ddiff=zeros(nr,w); 
ddd=ddiff; 
modif=ones(n,1);

0 overall principal component decomposition 0

xm=x-meanc(x) ̂ ; 0 pea from proc EIG 0 
{d,u}=eighv(xm*xm');d=rev(d[2:nr]);u=rev(u[.,2:nr] 
sqrtd=sqrt (dV); 
q=xm^u./sqrtd;
u=u.*sqrtd; 0 scores @ @ keep q d u <9 
if minc(d) < 10*toll;

print "warning : overall eigenvalues <10*toll";
endif;

<9 cross-validation (9 

i=l;
print "cross-validating";
do while i <= nr; (9 leave-one-out loop (9

z=q' xm[i, . ] ̂ ; zz=z^ z ; z=z/sqrt (zz) ; (9 pea scores normalized <9 
rho=nu*zz; <9 deflation size (9
toles=2*toll*(d[1]+rho) ; <9 tolerance deflation (9 
tau=4*toll*maxc(l| (d[l]-rho) )/rho; (9 tolerance convergence (9

if minc(d[l : (n-1)]-d[2:n] ) < toles ; (9 equal eigenvalues (9 
{urt ,z}=dfleig(u,d,z,n,toles) ; (9 eigenvalues (9 
{udf,e,z,modif ,nn}=dflsco(urt,d,z,n,toles) ; (9 scores (9 
{pressu,dd,ddff,yp}=
qmdfpcr(y,i,urt,udf,d,e,z,rho,modif,nn,w,nr,nu,tol2,tau);
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press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(n,1); 

elseif minc(abs(z)) < toles; 0 zero scores 0
{udf,e,z,modif,nn}=dflsco(u,d,z,n,toles)scores @
{pressu,dd,ddff,yp}=
qmdfpcrCy,i,u,udf,d,e,z,rho,modif,nn,w,nr,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(n,1); 

else;
{pressu,dd,ddff,yp}=
qmdfper(y,i,u,u,d,d,z,rho,modif,n ,w ,nr,nu,tol2,t au); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred [i,.]=yp; 

endif;

i=i+l; 
endo ;

retp(press',ddd,ddiff,ypred,d,q); 
endp;

proc(4)=qmdfper(y,i,ud,udf,d ,ddf,z ,rho,modif,p ,w ,n ,nu,tol,tau);
@ rank-one modification with the quadratic method 0

local z2,del,dl,nr,g,gf,gs,j,k,e,t,gf,gs,den,h2,h3,fl,fpl,sl,
sp1,a,xd,wl,w2,tdel,c ,b ,f ,it,press,count,yh,yhm,ud,df1,ind, 
ddiff,pupdate,ypred,fe;

z2=z"2;
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del=(ddf ̂ -ddf)/rho; 
nr=seqa(l,1,p); 
g=ones(p,l); 
count=seqa(l,1,n); 
press=zeros(l,w+l); 
ypred=press; 
dfl=minc(modif)==0 ; 
ddiff=zeros(l,rows(d)) ;
yh=selif(y,count./=i);yhm=meanc(yh);yh=yh-yhm;
press [1] =y]un-y [i] ;
ypred[l]=yhm;

if maxc(z) /= 1; © downdate eigenvalues ©

j=i;
k=l ;
do while j <= w; © first w components ©

if modif [j] /= 0; © eigenvalue changed © 
if k < p;

gf=nr.<=k;
gs=g-gf;

© initialize t © 
if p > 2;

e=l+ones(p-2,l)'(selif(z2,nr./=k .and nr./= k+1)./ 
(selif(del[.,k],nr./=k .and nr./= k+1)- 
del[k+l,k])); 

else;
e=l; 

endif;
f=z2[k]+z2[k+1]+del[k+1,k]*e; 
t=2*z2[k]*del[k+1,k]/

(f+sqrt (f''2-4*z2 [k] *del [k+1 ,k] *e)) ; 
if t <= 0 or t >= 1;
print "error : initial values k=" k "tinit=" t ;
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end; 
endif;

den=del[.,k]-t; 0 initialize denominator @
d[j]=d[j]/rho-t ; (9 initialize normalized eigenvalue
gf=nr.<= k;
gs=g-gf;
wl=0;
w2=0;
it=l ;
do until wl and w2; 

dl=den[k+l, 
h2=z2 ./den; 
h3=h2 ./den; 
fl=gf'h2; 
fpl=gf'h3; 
sl=gs'h2; 
spl=gs'h3; 
c=l+sl-dl*spl;
a=(dl*(l+sl)+fl"2/fpl)/c+f1/fpl; 
wl=l+sl+f1 ; 
b=(dl*wl*f1)/(fpl*c); 
tdel=2*b/(a+sqrt (a''2-4*b) ) ;
0 convergence eigenvector <9 
wl=abs(wl) < tau*sqrt(fpl+spl);
<9 relative convergence (9 
w2=abs(tdel) < tol*abs(t); 
t=t+tdel; <9 t update (9 
den=den-tdel ; (9 denominator update (9 
d[j]=d[j]-tdel; (9 normalized eigenvalue update (9 
if it > 30; 

if wl == 0;
print "error:no convergence in qmdfper"; 
end; 

else; 
print
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"warningitoo many iterations in qmdfper"; 
endif; 
break; 

endif; 
it=it+l; 

endo ;
ddiff[j]=rho*t;
d[j]=rho*d[j] ; 0 downdated eigenvalue (9 
xd=z./den;
ud[.,j]=udf*xd/sqrt(xd^xd); @ scores downdate @ 
k=k+l;

else; <9 last eigenvalue @

(9 initialize t (9 
t=z2[p]/(l+z2/(del[.,p]-l)); 
if t <= 0 or t >= 1 ;

print "error : initial values k=" k "tinit=" t ; 
end; 

endif;

den=del[.,k]-t; <9 initialize denominator <9 
d[j] =d[j]/rho-t ; (9 initialize normalized eigenvalue 
wl=0 
w2=0 
it=l
do until wl and w2; 

fl=g'(z2 ./den); 
fpl=g'(z2 ./den"2); 
wl=l+f1 ; 
tdel=wl*f1/fpl;
@ convergence eigenvector <9 
wl=abs(wl) < tau*sqrt(fpl);
<9 relative convergence <9 
w2=abs(tdel) < tol*abs(t); 
t=t+tdel; (9 t update (9
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den=den-tdel; 0 denominator update 0 
d[j]=d[j]-tdel; 0 normalized eigenvalue update ( 
if it > 30; 

if wl == 0;
print "error:no convergence in qmdfper"; 
end; 

else; 
print
"warningitoo many iterations in qmdfpcr"; 

endif; 
break; 

endif; 
it=it+l; 

endo ;
ddiff[j]=rho*t;
d[j]=rho*d[j]; @ downdated eigenvalue 0 
xd=z./den;
ud[.,j]=udf*xd/sqrt(xd'xd); 0 scores downdate @

endif; 
endif;

if dfl ==0; © n o  deflation © 
if d[j]<=tol;

print "warning PRESS:d[" j "]=" d[j] "<= toi, 
w may be too large";

endif;
pupdate=nu*ud[i,j]*(selif(ud[.,j],count./=i)+ 

ud[i,j]/(n-l))'yh/d[j]; 
press [j + 1] =press [j] +pupdate; 
ypred [j + 1]=ypred[j]+pupdate; 

endif;

j=j+i;
endo ;
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if dfl == 1; 0 sorting for deflation 0 
ind=sortind(-d); 
ud=ud[.,ind]; 
d=d[ind]; 
ddiff=ddiff[ind];
j = i ;
do while j <= w; 

if d[j]<=tol;
print "warning PRESS:d[" j "]=" d[j] "<= toi, 

w may be too large";
endif;
pupdate=nu*ud[i,j]*(selif(nd[.,j],count./=i)+ 

nd[i,j]/(n-1))'yh/d[j] ; 
press[j+1]=press[j]+pupdate; 
ypred[j + l]=ypred[j]+pupdat e;
j=j+i;

endo ; 
endif;

else;

j=selif(seqa(l,l,rows(d)),modif .== 1); 
d[j]=d[j] -rho; 
ddiff [j]=rho;

ind=sortind(-d); 
ud=ud[.,ind]; 
d=d[ind]; 
ddiff=ddiff[ind];
j=i;
do while j <= w; 

if d[j]<=tol;
print "warning PRESS:d[" j "]=" d[j] "<= toi, 

w may be too large";
endif;
pupdate=nu*ud[i,j]*(selif(ud[.,j],count./=i)+
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ud[i,j]/(n-1))'yh/d[j]; 
press [j + 1] =press [j ] +pupdate; 
ypred[j+1]=ypred[j]+pupdate;
j=j+i;

endo ; 
endif;

retp(press"2/n,d[l:w]',ddiff[1:w],ypred); 
endp;

Th e  Linear M e t h o d
proc(6)=pcrcvl(y,x,w); @ full leave-one-out cross-validation @

(9 univariate principal component regression 
0 linear method 0 
0 [DeG90] @

local n ,p ,msep,dd,ddiff,ypred,d,q;

n=rows(x);p=cols(x);

if p==l;print "error:p == 1"; end;endif;

if n-1 >= p; 0 regular case Q
if minc(p|n-2) < w;print "error:minc(p|n-2) < w"; end; 
else;
{msep,dd,ddiff,ypred,d ,q}=pcrcvlr(y,x,w,n,p); 
endif; 

endif;
if n-1 < p; 0 singular case 0

if n-2 < w;print "error:n-2 < w"; end; 
else;
{msep,dd,ddiff,ypred,d ,q}=pcrcvls(y,x,w,n); 
endif; 

endif;

@ return msep 0
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(B cross-validatory index <3
0 downdated eigenvalues 0
<3 eigenvalue downdates <3
(3 cross-validated predicted values (3
<3 initial variances (3
(3 initial principal components (3

retp(msep~l-msep/msep[l],dd,ddiff,ypred,d/(n-l),q); 
endp;

proc(6)=pcrcvlr(y,x,w,n,p);
(3 leave-one-out cross-validation for per (3 
(3 linear method (3 
(3 regular case (3

local toll,tol2,toles,pe,xm,u,d,q,nu,i,z,zz,e,
rho,tau,urt,udf,press,pressu,modif,dd,ddd,ddff,ddiff, 
ypred,yp;

toll=10e-16; (3 machine epsilon (3 
tol2=10e-10; <3 tolerance relative accuracy (3

press=zeros(l,w+l); 
ypred=zeros(n,w+l); 
ddiff=zeros(n,w); 
ddd=ddiff; 
modif=ones(p,1);

(3 overall principal component computations <3

xm=x-meanc(x)'; (3 pea from proc EIG (3 
{d,q}=eighv(xm'xm);d=rev(d);q=rev(q')'; 
if minc(d) < 10*toll;

print "warning:overall eigenvalues <10*toll"; 
endif;
u=xm*q; (3 scores <3 <3 keep u d q (3 
nu=n/(n-l); <3 cross-validatory constant (3
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0 cross-validation <9 

i=l;
print "cross-validating”;
do while i <= n; @ leave-one-out loop 0

z=u[i,.]';zz=z'z;z=z/sqrt(zz); 0 pea scores normalized 0 
rho=nu*zz; 0 deflation size @
toles=2*toll*(d[l]+rho); 0 tolerance deflation <9 
tau=4*toll*maxc(l I (d[l]-rho) )/rho; (9 tolerance convergence (9

if minc(d[l : (p~l)]-d[2:p] ) < toles; <9 equal eigenvalues (9 
(urt,z}=dfleig(u,d,z,p,toles); @ eigenvalues (9 
{udf,e,z,modif,pe}=dflsco(urt,d,z,p,toles); (9 scores (9 
{pressu,dd,ddff,yp}=
lmdfpcr(y,i,urt,udf,d,e,z,rho,modif,pe,w,n,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(p,1); 

elseif minc(abs(z)) < toles; (9 zero scores <9 
{udf,e,z,modif,pe}=dflsco(u,d,z,p,toles);
{pressu,dd,ddff,yp}=
Imdfpcr(y,i,u ,udf,d ,e ,z ,rho,modif,pe,w ,n ,nu,tol2,t au); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(p,1); 

else;
{pressu, dd, ddf f ,yp}=
ImdfpcrCy,i,u,u,d,d,z,rho,modif,p,w,n,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i, .]=dd;
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ypred[i,.]=yp; 
endif;

i=i+l; 
endo ;

retp(press',ddd,ddiff,ypred,d ,q); 
endp;

proc(6)=pcrcvls(y,x,w,n);
(9 leave-one-out cross-validation for per <9 
0 linear method 0 
0 singular case @

local toll,tol2,toles,xm,q,urt,udf,u,d,sqrtd,nu,i,z,zz,rho,tau,e, 
nn,press,pressu,nr,modif,dd,ddd,ddff,ddiff,yp,ypred;

toll=10e-16; 0 machine epsilon 0 
tol2=10e-10; 0 tolerance relative accuracy @

press=zeros(l,w+l); 
ypred=zeros(n,w+l);
nu=n/(n-l);nr=n;n=n-l; 0 cross-validatory constant <9 
ddiff=zeros(nr,w); 
ddd=ddiff; 
modif=ones(n,1);

(9 overall principal component decomposition (9

xm=x-meanc(x)'; (9 pea from proc EIG <9 
{d,u}=eighv(xm*xmO ;d=rev(d[2:nr] ) ;u=rev(u[. ,2:nr] 
sqrtd=sqrt(d'); 
q=xm'u./sqrtd;
u=u.*sqrtd; (9 scores ® (9 keep q d u <9 
if minc(d) < 10*toll;

print "warning : overall eigenvalues <10*toll";
endif;
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Q cross-validation <9 

i=l;
print "cross-validating”;
do while i <= nr; 0 leave-one-out loop (9

z=q'xm[i,.]';zz=z'z;z=z/sqrt(zz); (9 pea scores normalized <9 
rho=nu*zz; <9 deflation size @
toles=2*toll* (d[1]+rho) ; (9 tolerance deflation <9 
tau=4*toll*maxc(l| (d[l]-rho))/rho; (9 tolerance convergence <9

if minc(d[1 : (n-1)]-d[2:n] ) < toles; (9 equal eigenvalues (9 
{urt,z}=dfleig(u,d,z,n,toles); (9 eigenvalues (9 
{udf ,e,z,modif ,nn}=dflsco(urt,d,z,n,toles) ; <9 scores (9 
{pressu,dd,ddff,yp}=
ImdfpcrCy,i,urt,udf,d,e,z,rho,modif,nn,w,nr,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(n,1); 

elseif minc(absCz)) < toles; <9 zero scores (9
{udf ,e,z,modif ,nn}=dflsco(u,d,z,n,toles) ; (9 scores (9 
{pressu,dd,ddff,yp}=
Imdfpcr(y,i,u,udf,d ,e ,z ,rho,modif,nn,w ,nr,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd; 
ypred[i,.]=yp; 
modif=ones(n,1); 

else;
{pressu,dd,ddff,yp}=
Imdfpcr(y,i,u,u,d,d,z,rho,modif,n ,w ,nr,nu,tol2,tau); 
press=press+pressu; 
ddiff[i,.]=ddff; 
ddd[i,.]=dd;
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ypred [i,.]=yp; 
endif;

i=i+l; 
endo ;

retp(press ̂ ,ddd,ddiff,ypred,d ,q); 
endp;

proc(4)=lmdfper(y,i,nd,udf,d ,ddf,z ,rho,modif,p,w,n,nu,tol,tau);
0 rank-one modification with the linear method 0

local z2,del,tau,nr,g,j,k,e,t,gf,gs,den,hl,h2,fl,fpl,sl,spl,a,xd, 
ud,wl,w2,tdel,it,count,press,yh,yhm,dfl,ind,ddiff, 
pupdate,ypred;

z2=zT2;
del=(ddf ̂ -ddf)/rho; 
nr=seqa(l,l,p); 
g=ones(p,l); 
count=seqa(l,l,n); 
press=zeros(l,w+l); 
ypred=press; 
dfl=minc(modif)==0 ; 
ddiff=zeros(l,rows(d));
yh=selif(y,count./=i);yhm=meanc(yh);yh=yh-yhm; 
press[l]=yhm-y[i]; 
ypred[1]=yhm;

if maxc(z) /= 1; 0 downdate eigenvalues 0

j=i;
k=l ;
do while j <= w; 0 first w components 0

if modif [j] /= 0; 0 eigenvalue changed 0 
if k < p;
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gf=nr.<=k; 
gs=g-gf;

0 initialize t@
e=l+sumc(z2[1:k] ./del[l:k,(k+1)] ) +

sumc(z2[(k+1):p]./del[(k+1):p,k]); 
if e >= 0;

t=z2[k]*(del[k+1,k]/(z2[k]+del[k+1,k]*e)); 
if t <= 0 or t >= 1 ; 

print
"error : initial values k=" k "tinit=" t "e>0"; 
end; 

endif; 
else;

t=-del[k,k+l]/(z2[k+l]/(del[k,k+l]*e)+l) ; 
if t <= 0 or t >= 1 ; 

print
"error : initial values k=" k "tinit=" t "e<0"; 
end; 

endif; 
endif;

den=del[.,k]-t; 0 initialize denominator Q 
d[j]=d[j]/rho-t; @ initialize normalized eigenvalue 
wl=0 
w2=0 
it=l
do until wl and w2; 

hl=z2 ./den; 
h2=hl ./den; 
fl=gf'hl; 
fpl=gf'h2; 
sl=gs'hl; 
spl=gs'h2; 
a=l+sl; 
wl=a+f1 ;
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tdel=(wl*a*f l)/(a''2 *fpl+fl''2 *spl) ;
<9 convergence eigenvector 0 
wl=abs(wl) < tau*sqrt(fpl+spl);
0 relative convergence 0 
w2=abs(tdel) < tol*abs(t); 
t=t+tdel; 0 t update 0 
den=den-tdel; @ denominator update 0 
d[j]=d[j]-tdel; 0 normalized eigenvalue update 0 
if it > 30; 

if wl == 0;
print "error:no convergence in Imdfpcr"; 
end; 

else; 
print
"warningitoo many iterations in Imdfpcr"; 

endif; 
break; 

endif; 
it=it+l; 

endo ;
ddiff [j]=rho*t;
d[j]=rho*d[j] ; 0 downdated eigenvalue <9 
xd=z./den;
ud[. , j]=udf*xd/sqrt(xd'xd) ; @ scores downdate <9 
k=k+l;

else; (9 last eigenvalue (9 

(9 initialize t @
t=z2[p]/(l+z2/(del[.,p]-l)+z2[p]); 
if t <= 0 or t >= 1;

print "error : initial values k=" k "tinit=" t ; 
end; 

endif;

den=del[.,k]-t; (9 initialize denominator (9
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d[j]=d[j]/rho-t ; (9 initialize normalized eigenvalue 
wl=0 
w2=0 
it=l
do until wl and w2; 

fl=g'(z2 ./den); 
fpl=g'(z2 ./den"2); 
wl=l+f1 ; 
tdel=wl*f1/fpl;
@ convergence eigenvector 0 
wl=abs(wl) < tau*sqrt(fpl);
(9 relative convergence (9 
w2=abs(tdel) < tol*abs(t); 
t=t+tdel; (9 t update <9 
den=den-tdel; (9 denominator update (9 
d[j]=d[j]-tdel; (9 normalized eigenvalue update < 
if it > 30; 

if wl == 0;
print "error:no convergence in Imdfpcr"; 
end; 

else; 
print
"warning:too many iterations in Imdfpcr"; 

endif; 
break; 

endif; 
it=it+l; 

endo ;
ddiff [j]=rho*t;
d[j] =rho*d[j] ; (9 downdated eigenvalue (9 
xd=z./den;
ud[. , j]=udf*xd/sqrt(xd^xd) ; <9 scores downdate @

endif; 
endif;
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if dfl == 0;
if d[j]<=tol;

print "warning PRESS:d[" j "]=" d[j] "<= toi, 
w may be too large";

endif;
pupdate=nu*ud[i,j]*(selif(ud[.,j],count./=i)+ 

ud[i,j]/(n-l))'yh/d[j]; 
press[j+1]=press[j]+pupdate; 
ypred[j+1]=ypred[j]+pupdate; 

endif;

j=j+i;
endo ;

if dfl == 1; @ sorting for deflation 0 
ind=sortind(-d); 
ud=ud[.,ind]; 
d=d[ind]; 
ddiff=ddiff[ind] ;
j = i ;
do while j <= w; 

if d[j]<=tol;
print "warning PRESS:d[" j "]=" d[j] "<= toi, 

w may be too large";
endif;
pupdate=nu*ud[i,j]*(selif(ud[.,j],count./=i)+ 

ud[i,j]/(n-D) 'yh/d[j] ; 
press[j+1]=press[j]+pupdate; 
ypred[j+1]=ypred[j]+pupdate;
j=j+i;

endo ; 
endif;

else;

j=selif(seqa(l,l,rows(d)),modif .== 1);
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d[j]=d[j] -rho; 
ddiff[j]=rho;

ind=sortind(-d); 
ud=ud[.,ind]; 
d=d[ind]; 
ddiff=ddiff[ind];
j=i;
do while j <= w; 

if d[j]<=tol;
print "warning PRESS:d[" j "]=" d[j] "<= toi, 

w may be too large";
endif;
pupdate=nu*ud[i,j]*(selif(ud[.,j],count./=i)+ 

ud[i,j]/(n-1))'yh/d[j]; 
press[j+1]=press[j]+pupdate; 
ypred[j + 1]=ypred[j]+pupdat e;
j=j+i;

endo ; 
endif;

retp(press''2/n,d[l :w] ̂ ,ddiff [1 :w] ,ypred) ; 
endp;

D efla tion

proc(2)=dfleig(q,d,x,p,tol);
0 deflation @
0 equal eigenvalues 0

local prm,check,dfl,j,tau,c,s,tl,t2;

print "dfleig: equal eigenvalues";

prm=seqa(l,l,p);
check = (d[l:(p-1)]-d[2:p]) 11 < toi;
dfl=l;
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do while dfl;
j =miiic(selif (prm,check)) ; 
if abs(x[j]) > toi; <9 jacobi rotations @ 

if abs(x[j]) < abs(x[j + l]);
tan=x[j]/x[j+l] ;c=l/sqrt(l+tau''2) ;s=c*tan; 

else;
tau=x[j + l]/x[j] ;s=l/sqrt(l+tau"2) ;c=s*tau; 

endif;
x[j + l]=s*x[j]+c*x[j+l] ;x[j]=0; 
tl=q[.,j];t2=q[.,j + 1] ; 
q [ . ,j]=c*tl-s*t2;q[.,j+l]=s*tl+c*t2; 

endif;
p=p-1;check[j]=0; 
if p == 1;

dfl=0; 0 stop deflation 0 
else;

dfl= maxc(check); 0 check deflation 0 
endif; 

endo ;

retp(q,x); (9 return deflated problem (9 
endp;

proc(5)=dflsco(q,d,x,p,tol) ;
(9 deflation 0 
(9 zero scores (9

local dfl,j,ind,modif;

print "dflsco:zero scores ";

modif=abs(x) >= toi; 
dfl=l;
do while dfl;

if abs(x[p]) < toi;
p=p-l;d=d[l:p];x=x[l:p];q=q[.,l:p] ; 

else;
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j=minindc(abs(x)) ; (9 deflate for jth component 0 
q=selif(q',seqa(l,l,p)./=j)'; 
d[j]=d[p] ; 
x[j]=x[p] ; 
p=p-l; 
d=d[l:p]; 
x=x[l:p]; 

endif; 
if p == 1;

dfl=0; (9 all eigenvectors unchanged - stop deflating <3 
else;

ind=rev(sortind(d));@ sort deflated results (9 
d=d[ind]; 
x=x[ind];
dfl= minc(abs(x)) < toi; (9 check deflation (9 

endif; 
endo ;

retpCq,d,x,modif,p); @ return deflated problem <9 
endp ;

B . P a rtia l L east Squares C om p u tation s

B .l  Partial Least Squares D ecom position
M a rten s’s O rthogonalized  A lgorithm

proc(2)=plsmartl(y,x,k) ; (9 univariate partial least squares (9
(9 orthogonal scores algorithm @
(9 [MN89, page 121] (9

local i,w,ww,t,tt,p,pp,q,qq,xm,ym; (9 declarations

xm=x-meanc(x)'; (9 initializations <9 
ym=y-meanc(y); 
ww=zeros(cols(x),k);
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pp=ww;
qq=zeros(k,1);

<9 pis computations <9 

1= 1 ;
do while i <= k; 

w=xm ̂ ym;
w=w/sqrt(w'w);ww[.,i]=w;
t=xm*w;
tt=t't;
p=xm't/tt;pp[.,i]=p; 
q=ym't/tt;qq[i]=q; 
xm=xm-t*p'; 
ym=ym-t*q; 
i=i+l; 

endo ;

(9 return partial least squares components and q 0 
(9 beta coefficients = ww*inv(pp'ww)*qq <9

retp(ww*inv(pp'ww),qq); 
endp;

M a rten s’s N on-O rthogonalized  A lgorith m

proc(l)=plsmart2(y,x,k); (9 univariate partial least squares
<9 orthogonal loadings algorithm @
(9 [MN89, page 123] (9

local i,w,ww,t,tt,qq,xm,yO,ym; <9 declarations

xm=x-meanc(x)'; (9 initializations <9 
yO=y-meanc(y); 
ym=yO;
ww=zeros(cols(x),k);
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tt=zeros(rows(x),k);

@ pis computations @ 

i=l;
do while i <= k; 

w=xm'ym;
w=w/sqrt(w'w);ww[.,i]=w; 
t=xm*w;tt [.,i]=t; 
qq=olsqr(yO,tt[.,l:i]); 
xm=xm-t*w'; 
ym=yO-tt[.,1 :i]*qq; 
i=i+l; 

endo ;

0 return beta coefficients @

retp(ww*qq); 
endp;

H ella n d ’s A lgorith m

proc(l)=plshell(y,x,k); 0 univariate partial least squares 0
0 Helland 0 
0 [Hel88] 0

local s,w,ww,xw,b,i,xm,ym; 0 declarations 0

xm=x-meanc(x)'; 0 initializations 0 
ym=y-meanc(y); 
ww=zeros(cols(x),k); 
xw=zeros(rows(x),k);

0 pis computations 0

s=xm'ym; 0 first pis component 0
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w=s ;
w=w/sqrt(w'w); 
ww[.,l]=w; 
xw[. , l]=xm*w; 
b=w*olsqr(ym,xw[.,1]);

i=2; 0 further pis components 0 
do while i <= k; 

w=s-xm'(xm*b); 
w=w/sqrt(w'w); 
ww[. ,i]=w; 
xw[. ,i]=xm*w;
b=ww[.,1 :i]*olsqr(ym,xw[.,1:1]) ; 
i=i+l; 

endo ;

@ return beta coefficients @

retp(b); 
endp ;

S to n e-B ro o k s’s A pproach

proc(5)=pls(y,x,w); @ univariate partial least squares 0
0 Stone-Brooks method 0 
@ [SB90] 0

<9 y is a column vector that contains the observed responses.® 
® X is a matrix that contains the predictor variables.®
® w is the number of partial least squares factors derived.®

local c,beta,scores,pred,resid,be,re,pr,s,e,u,v,d,m,k,a,ma,z, 
meanx,meany,xm,ym,n,p; ® declarations ®

n=rows(x);p=cols(x); ® initializations ® 
c=zeros(p,w);beta=c;
scores=zeros(n,w);pred=scores;resid=scores;
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if p==l;print "error : p == 1 end ;endif;

meanx=meanc(x) ̂ ;meany=meanc(y) ; 0 mecin centering @ 
xm=x-meanx;ym=y-meany; 
s=xm'ym; 0 covariance 0

0 principal component decomposition 0

if n-1 >= p; @ regular case <9
if p < w;print "error : p < w"; end;
else;

(e,v}=eighv(xm'xm);e=rev(e); @ pea from proc EIG (9 
v=rev(v')'; (9 principal components <9 
m=eye(p); (9 initialize m (9 

endif; 
endif;
if n-1 < p; (9 singular case <9

if n-1 < w;print "error : n-2 < w"; end;
else;

{e,u}=eighv(xm*xmO ;e=rev(e[2:n] ) ; (9 pea from proc EIG 
v=xm'rev(u[.,2:n]')'./sqrt(e'); @ principal components 
m=eye(n-l); <9 initialize m (9 

endif; 
endif;

(9 pis computations <9 

d=v's;
c[.,l]=s/sqrt(s's); (9 first pis component (9 
scores [.,1]=xm*c[.,1] ;
{be,re,pr}=olsqr2(ym,scores!.,1]); 
beta[. , 1] =c [. , 1] *be; 
pred[.,1]=pr+meany;resid[.,1] =re; 
k=2 ;
do while k <= w; (9 further pis components (9
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a=e.*v'c[.,(k-1)]; 
ma=in*a;
m=m-ma*ma'/a'ma; 
z=m*d;
c[.,k]=v*z/sqrt(z'z); 
scores[.,k]=xm*c[.,k] ;
{be,re,pr}=olsqr2(ym,scores[.,l:k]); 
beta[. ,k]=c[. ,l:k] *be; 
pred[.,k]=pr+meany;resid[.,k]=re; 
k=k+l; 

endo ;

@ return predicted values @
(3 residuals @
0 beta coefficients 0
Q pis components @
@ pis scores <3

retpCpred,resid,beta,c,scores) ; 
endp;

B.2 Partial Least Squares Cross-validation
proc(4)=plscv(y,x,w) ; (3 full leave-one-out cross-validation (3

(3 univariate partial least squares (3 
(3 Stone-Brooks method (3 
0 [SB90] (3

(3 y,x and w are as in the partial least squares algorithm.(3

local i,k,s,e,v,u,sqrte,d,fi,di,mi,ai,miai,zi,yh,yhm,fz, 
msep,pressu,hpress,pupdat e ,dd,ddi,ddii,ypred,xm,ym, 
nr,nu,n,p;

n=rows(x) ;p=cols(x) ; 0 initializations <3 
nu=n/(n-1); 
nr=seqa(l,l,n);
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msep=zeros(w+l,1); 
pressTi=msep; 
dd=zeros(n,w); 
ddi=zeros(n,1) ; 
ypred=zeros(n,w+l);

i f  p==l; print "error : p == 1"; end;endif;

xm=x-meanc(x)^;ym=y-meanc(y); 0 mean centering 0 
s=xm'ym; 0 covariance @

0 principal component decomposition <9

if n-1 >= p; 0 regular case 0
if p < w;print "error : p < w"; end;
else;

{e,v}=eighv(xm'xm); 0 pea from proc EIG 0 
e=rev(e) ; v=rev(vO ' ;u=xm*v; 

endif; 
endif;
if n-1 < p; Q singular case <9

if n-2 < w;print "error : n-2 < w"; end;
else ;

{e,u}=eighv(xm*xmO ; <9 pea from proc EIG <9 
e=rev(e [2 :n] ) ;u=rev(u[. ,2:n] 0  ' ; sqrte=sqrt (eO ; 
v=xm'u./sqrte;u=u.*sqrte; 

endif; 
endif;

@ cross-validatory computations (9

d=v^ s ;

i=l;
do while i <= n;

yh=selif(y,nr./=i);yhm=meanc(yh);yh=yh-yhm;
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pressu[1]=yhm-y[i]; 
ypred[i,1]=yhm;

k=l; @ first pis component @
mi=eye(minc((n-1)Ip)); 0 initialize mi 0
fi=u[i, ;
ddii=nu*ym[i]*fi;
di=d-ddii;ddi[i]=sqrt(ddii'ddii);
zi=di/sqrt (di Mi) ;
fz=u*zi;
hpress=selif(fz,nr./=i)+fz[i,.]/(n-1); 
dd[i,1]=hpress'hpress; 
pupdate=nu*fz [i,.]*hpress'yh/dd[i,l]; 
pressu[2]=pressu [1]+pupdate; 
ypred[i,2]=ypred[i,1]+pupdate; 
do while k < w; 0 further pis components 0 

k=k+l;
ai=e.*zi-nu*sumc(fi.*zi)*fi; 
miai=mi*ai;
mi=mi-miai*miai’/ai ̂ miai ; 
zi=mi*di;
zi=zi/sqrt(zi'zi); 
fz=u*zi;
hpress=selif(fz,nr./=i)+fz[i,.]/(n-1); 
dd[i,k]=hpress'hpress; 
pupdate=nu*fz [i,.]*hpress'yh/dd[i,k]; 
pressu[k+1]=pressu[k]+pupdate; 
ypred[i,k+l]=ypred[i,k]+pupdate; 
endo ;

msep=msep+pressu"2/n; <9 update msep 0 
i=i+l; 
endo ;

0 return msep 0 
@ dd <9
(9 ddi (9
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(9 ypred @

retp(msep); 
endp;
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Principal component outlier detection methods are discussed 
and their application in the soft independent modelling of class 
analogy (SIMCA) method of pattern recognition is clarified. 
SIMCA is compared to allocation procedures based on the 
Mahalanobis distance. Finally, the differences between the 
SIMCA method and quadratic discriminant analysis are 
discussed. The discussion is illustrated with an example from 
spectroscopy.
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Multivariate Outliers

Many applications of chemometrics are concerned with the 
analysis of multiple measurements on a sample of objects. 
Typical examples include the problems of pattern recognition 
and calibration in spectroscopy. In any such application, there 
is usually a multitude of ways in which erroneous observations 
can arise. Such aberrant or outlying observations can invali­
date the results of an analysis. Hence there is a need for outlier 
detection m ethods.'-

Outlier detection poses a particular problem in multivariate 
statistics. A multivariate measurement may be outlying 
because the scale of the measurement is inconsistent or 
because it has an orientation in multidimensional space that is 
different from that of other observations.^  ̂ This contrasts 
with univariate statistics, where we can readily rank the 
observations according to their degree of extremity. The 
problem is exacerbated by the fact that the graphical 
representation of multivariate data is cumbersome when the 
number of variâtes exceeds three.^ ^

Consider an application of near-infrared spectroscopy in 
which 13 samples of whole rice were examined and the results 
stored as transmittance (T) measurements at 100 wavelengths, 
ranging from 850 to 1048 nm at equal intervals (Fig. 1).

Let us examine two different ways in which an outlying 
sample measurement may arise. The transmittance of a 
sample may be different across the whole measurement range, 
i .e . , by a vertical shift affecting the whole spectrum almost to 
the same extent, so that the spectrum is clearly separated from 
other spectra. Alternatively, a spectrum may be affected 
differently at various parts of the spectrum.

In the first instance, we can usually spot the outliers quite 
easily, either on a plot of the spectra or from the transmittance 
at a set of well chosen wavelengths. Such differences in 
transmittance will often relate to particular physical features 
in the analysed sample, for instance, moisture content or grain 
shape and size. The detection of other types of outliers will 
depend on a careful analysis of the perturbations in the 
spectrum that are not associated with any major difference in 
absorption.

For the rice data (Fig. 1), all samples have similar spectra, 
except for the French Camargue sample, that has a different 
transmittance pattern. There are three spectra with a lower 
over-all absorption, while their transmittance pattern seems to 
be consistent with that from the remaining spectra. These 
three observations are samples of glutinous rice. The other 
observations are samples of Basmati rice, except for the odd 
observation, which is a sample of rice from the French 
Camargue. Glutinous rice can be distinguished visually from 
the other samples as its particle size is very different.

The issues illustrated by this example are common to all 
problems of outlier detection in multivariate statistics. The 
samples of glutinous rice are outlying because their seale of 
measurement is inconsistent with that from other samples. 
Such samples can usually be detected by using methods that 
are essentially univariate. Samples that are aberrant because 
of other reasons have a different orientation in multivariate 
space as compared to other samples. Their outlying position 
cannot be explained as a mere shift along the general trend or 
orientation of the data.

With spectral data, we could study scatter plots of the 
observations for two or three well chosen wavelengths. 
However, the selection of wavelengths may pose a problem. 
Furthermore, such a procedure restricts us to work with only 
three wavelengths at maximum, whereas an anomalous 
pattern may be owing to a small but consistent aberration 
across the range of wavelengths. Univariate measures or 
simple scatter plot techniques will fail to detect such outliers.

As spectra have a natural two dimensional representation, 
we could study a plot of the raw spectra. However, when the 
number of features in a spectrum is large, visual comparison 
will become exceedingly difficult. Hence the need for a 
statistieal evaluation of outliers in spectral data that can 
accumulate information across all wavelengths.
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Fig. 1 Near-infrared transmittanee spectra for 13 samples o f rice: A , 
French Camargue; B (all solid lines), Basmati; and C, glutinous.
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Principal Component Analysis and Outliers

Most approaches to outlier detection in multivariate analysis 
involve some form of dimension reduction. Ideally, we would 
want to reduce the data to a single univariate statistic that is 
sensitive to outliers. Alternatively, we may try to reduce the 
data to a set of uncorrelated univariate statistics which we then 
analyse independently of one another. Principal component 
analysis is such a method of dimension reduction. Applica­
tions in spectroscopy have been discussed by Cowe and 
McNichol^ as well as Cowe, McNichol and Cuthbertson^'* and 
Bertrand, Robert and Tran ,9 for example. We will briefly 
review the properties of principal component decomposition 
first and then the applications to outlier detection.

Consider a sample of n observations of p  variâtes X/ = 
(x;i,..., Xip), i = 1 ,..., n. We will write

X =

To simplify the notation, we will assume that the data are 
mean centered and that n — 1 >  p .  The generalization to the 
singular case (n -  1 <  p) is straightforward.

Principal components are derived sequentially, as the 
orthonormal set of vectors q, = 9 p j V J  =  l , - - - , p ,  for
which each linear combination Uy = Xqy has maximum 
variance among all linear combinations Xq with q orthogonal 
to the first j  — I principal c o m p o n e n ts .5  This definition was 
described by Hotelling." The principal component decompo­
sition can be written as

X = UQ^

where Q = (qi,...,q^) =  [(^,y)] is the matrix of principal 
component loadings, with QQ^ = Q^Q =  I, and U =  (u i,.... 
Up) = [(w,y)] is the matrix of principal component scores.

For any r <  p ,  the first r principal components give the best 
representation of the data in r dimensions, in the sense that the 
total amount of variation explained by these components is 
maximum in the set of all r dimensional representations.'*^ 
From a purely geometric point of view, the principal com­
ponents are the set of orthogonal directions in multidimen­
sional space for which the sum of the squared distances of the 
observations from their projections on the subspace defined 
by the first r principal components is minimized for each r <

10,12 This property was originally used by Pearson in 1901 to 
define the principal component decomposition.'^ This pro­
vides the basis for using principal component analysis as a 
dimension reduction tool.

Principal component decomposition is not scale invariant, 
and hence we must decide prior to any analysis whether we 
want to scale the data. In applications to spectroscopy one will 
often prefer to analyse the original data as the variability is 
comparable across the different wavelengths. Indeed, in 
applications to classification or outlier rejection, scaling tends 
to amplify noise at wavelengths with small between-group 
variability. Similarly, scatter correction may remove some of 
the between-group variability.

The adequacy of the principal component representation 
can be assessed from the variances Xj, j  =  1 , . . . ,  p of the 
principal component scores Uy, j  =  1 ,..., p. We have

Xy =
n — 1 

= u[uj/(n -  1)

=  q T X ^ X q j / ( n - l )

=  q/Sqy

where S =  X^XJ(n — 1) is the sample covariance matrix. It

follows that the principal component decomposition may also 
be written as

S = QAQ^

with A a diagonal matrix with the variances X, >  ... >  X,, on the 
diagonal. Rao'^ proposed the criterion X,. + , -f ... -f X̂  to 
assess the r dimensional representation. We have

n p

1  1  4
V-H + .

which is proportional to the sum of the squared distances of 
the observations from their projections on the fitted principal 
component subspace. We may refer to this criterion as the 
absolute lack-of-fit of the principal component representa­
tion, as it equals the total amount of variation that is left 
unexplained by the principal component representation. The 
total amount of variation in the measured data is Xi -f ... -t- X̂ , 
and hence, we may use the equivalent lack-of-fit ratio

Xr 4- 1 T . . . -|- X/j
X] 4- . . .  4- Xy, 

or alternatively, the goodness-of-fit ratio 

X | 4- . . .  4- X;- 
X] 4- . . .  4- Xy,

If the first k <  p  principal components provide an adequate 
representation of the data, then the remaining principal 
components are often interpreted as representing the near­
constant linear relations in the data. The variation of the 
corresponding principal component scores will be small.

Consider the rice data. The first principal component 
accounts for 98.9% of the variation in the data. This variation 
is caused by differences in packing density in the sample cell. 
As can be seen from Fig. 2, the weights on this component are 
virtually constant, as compared to the second component. 
Hence, this component accounts for the vertical separation of 
the spectra as it represents the average transmittance spec­
trum of the rice samples. As a consequence, the first 
component separates the samples of glutinous rice, as shown 
in the principal component scores plot in Fig. 3. This is 
because their spectra are characterized by a substantial and 
consistent difference in absorption, across all wavelengths. As 
can be seen on this plot, there is a further separation within the 
group of Basmati rice. This separation is owing to three 
samples that have a smaller transmittance compared with the 
remaining samples. This difference is masked somewhat on 
the plot of the raw spectra, as the spectrum of rice from the 
French Camargue is overlaying. In comparison, the second 
component contrasts the responses at the two ends of the 
wavelength spectrum. This may be compared with the 
appearance of the spectrum of the sample from the French 
Camargue on Fig. 1 and the position of this sample in the 
principal component scores plot. The mean transmittance of
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Fig. 2 Principal com ponent loadings for the first two principal 
com ponents for the rice data: A , first and B , second component.
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this sample compares to that from Basmati rice, and hence this 
sample is not outlying on the first principal component. 
However, this sample is extreme on the second component, 
because of an increase in transmission at the higher 
wavelengths, compared with a decrease in response at the 
lower end of the spectrum.

This example illustrates some of the general principles of 
principal component outlier detection.

Observations that are extreme on the larger variance 
components inflate the variances and covariances of the 
original variables.3 '* '" Such outliers can often be detected 
with univariate methods, as they are usually caused by a large 
perturbation in one or a few of the variâtes. Our example is 
extreme in this respect, as the first principal component causes 
a vertical shift of the spectra, and hence, almost any 
wavelength could be used to test for such outliers. Observa­
tions that are outlying on the smaller variance components are 
typically incompatible with the orientation of the observed 
data and may obscure the linear relations in the data.^ ’o We 
may not always be able to detect these observations as outliers 
on individual variâtes or even from scatter plots of the 
measured data. They arise from small but consistent perturba­
tions in the measured variâtes. As a consequence, the smaller 
variance principal components are especially useful in multi­
variate outlier analysis. In spectroscopy, the smaller variance 
components are essential, as they will detect small pattern 
aberrations that could be obscured by large variation trends in 
the data. These properties of smaller variance components 
have been exploited in applications to spectroscopy by several 
authors {e.g.,  Cowe and McNichol^).

Principal Component Outlier Detection and SIMCA

The principal component scores may be used individually in 
univariate outlier detection t e s t s , a s  well as in scatter 
plots,3.'5-i'7 for the detection of outliers. This implicitly uses 
the property that the principal component scores are uncorrel­
ated. A natural progression of these ideas is to combine the 
information from several principal components in a single 
statistic.

Suppose that the first k  components give an adequate 
representation of the data. To assess whether an observation 
X, is an outlier, we may consider the contribution of the 
observation to the absolute lack-of-fit statistic. Hence, we 
define the statistic

^i(A)W = 2
y  =  A: +  1

which is the squared length of the perpendicular from the 
observation to the principal component subspace defined by 
the first k components. This statistic was originally proposed 
in 1964 for outlier detection by Rao in his extensive paper on 
applied principal component a n a ly s is .T h e  statistic reflects

0.2
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Ü  - 0 .1
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only the small variance perturbations in the data and ignores 
the major sources of variation. Hence, the purpose of this 
statistic is to accumulate information on the small variation 
aberrations. Gnanadesikan and Kettenring^ used this statistic 
in a gamma probability plot for outlier detection. The statistic 
has also been used in quality control problems by Hawkins, 
Hawkins and Fatti’  ̂ and J a c k s o n .

Consider the one-dimensional principal component rep­
resentation of the rice data. The absolute lack-of-fit of this 
representation.

is 0.023 and, hence, the outlier statistic (x,) for an
individual observation should be of the same magnitude, if the 
principal component representation fits the data well and if 
the observation is not an outlier.

Fig. 4 contains a histogram of statistic The average
value is 0.021. All values are smaller than 0.03, except for the 
sample from the French Camargue, which has a value of 0.149 
on this statistic. The outlier statistic detects this sample, as it is 
outlying on the second component. The glutinous samples, 
however, can not be detected with this statistic, as it ignores all 
information from the first component. The values for the 
glutinous samples were 0.024, 0.001 and 0.0001.

This procedure has been applied by Wold to problems of 
pattern recogn ition .W old  studied the problem of comparing 
a new observation x with a set of observations X from a single 
homogeneous group. It is implicit in this notation that x has 
been mean centered for the mean of the group with which it is 
compared. Consider a A:-dimensional principal component 
representation. The absolute lack-of-fit of the representation 
is

É 2  4  É ^i(t) (x/)
/ = 1 j = k + \___ / = /________

n — 1 n — \

To compare the observation x with the group, we calculate the 
distance of the observation from the principal component 
representation. Hence, we compute Rao’s statistic

D\(k) (x) -  2
j = k + \

where Vj = xqy, j  =  I , . . . ,  p .  We compare the value of the 
observation on this statistic with the spread of the values of the 
observations within the group. We reject the observation if 
this value is well separated.

This procedure is referred to by Wold as the SIMCA 
method of pattern recognition, where SIMCA stands for ‘Soft 
Independent Modelling of Class Analogy’. Wold’s derivation 
of the SIMCA procedure differs from the approach outlined

7
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0.02 0.06 0.10 0.14

First principal component score 
Fig. 3 Plot o f the rice data versus the first two principal com ponents.

Midpoint

Fig. 4 Histogram o f the values o f R ao’s statistic for the rice data.
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above. Wold writes the A:-dimensional principal component 
representation as

X = U(fc) Q^) + €,
with € a matrix of residuals from the /c-dimensional represen­
tation, U(A:) =  (u i,..., u )̂ andQ(jt) =  (q i,..., q&). The principal 
component representation defines a ^-dimensional subspace 
that fits best to the mean-centered data in a least squares 
s e n s e .T h e  absolute lack-of-fit of this representation may be 
defined as

n p
S  2  4/ = 1 y = 1

n — I

We can prove that

which shows that we obtain Rao’s lack-of-fit test in this 
derivation.

To compare the observation x with the group, we fit the 
observation to the principal component representation and 
calculate the residual:

X = PQ(A:)̂  + n
where P = (P i,..., P>t) may be interpreted as a vector of 
regression coefficients and q is the vector of residuals: Rao’s 
statistic may now be calculated as

(x) =
This approach is reminiscent of analysis of variance in 

regression. Indeed, in analogy to least squares residuals, 
Gnanadesikan and Kettenring refer to the orthogonal distance 
^i(^)(x) of an observation from the principal component 
representation as the orthogonal residual. The corresponding 
principal component scores Vy, ; = k +  are referred to
as the principal component residuals^. This analogy is not too 
far fetched, as we have seen that the principal component 
representation may be interpreted in terms of a least squares 
fit. Hence, we will introduce some new terminology by 
referring to the principal components qj, j  =  1 ,..., A: as the 
model or primary components and similarly, we may refer to 
the complementary set of components as the residual com­
ponents.

This analogy between least squares residuals and principal 
component residuals is quite fundamental in the paper by 
Gnanadesikan and Kettenring. It is also exploited by Wold, 
who interprets the principal component representation as a 
model of the data. The residuals from this model are used to 
detect aberrant samples, in a similar way as residuals are 
analysed for the presence of outliers in analysis of variance.

Wold’s implementation of SIMCA is essentially an 
application of principal component outlier analysis to 
classification. A principal component outlier statistic is 
defined and the extremity of an observation with respect to a 
particular group is evaluated with this statistic. Wold proposed 
the statistic

D̂ (k) (x) —
Duk) (x)/(p -  k)

X  (x/V((p -  k ) ( n -  k  -  1))
i  =  J

to assess a new observation x. The numerator in this 
expression is interpreted as the variance of the deviations q of 
the observation x from the principal component model and the 
denominator as the variance of the deviations €. This statistic

is compared to some critical value of an F-distribution. It is 
important to note that this formula is for the regular case. In 
the singular case, p  should be replaced by n — 1, which is the 
number of principal component dimensions that can be 
estimated from the data.

If several groups are present in the data, then a separate 
principal component representation is derived for each group 
and the observation is compared with each group, using the 
above procedure. As a consequence of Wold’s approach, an 
observation may be left unclassified if it is extreme for all the 
groups, as the allocation procedure consists of a set of outlier 
tests that are evaluated independently of one another. 
Alternatively, an observation may be assigned to several 
groups.

There is further information in the position of an 
observation in the primary space. Hence, the above 
classification procedure may be complemented by an 
additional outlier analysis on the primary principal component 
scores.20 As a consequence, some authors have described 
SIMCA as a ‘box’ model.22 Indeed, if we decide on the 
appropriate rejection values for the principal component 
outlier tests, then a box is defined for each group. The 
previously described procedure is then equivalent to assigning 
an observation to a group if it is inside the corresponding box.

This extension of SIMCA is not general in the literature. In 
his original paper on the SIMCA method,2" Wold takes the 
view that the classification procedure becomes ‘rather 
complicated’ if we incorporate the primary scores in the 
analysis. His original approach was to generate a misfit 
indicator’ from the primary component scores that is reported 
together with the actual classification as obtained from the 
residual scores, ‘if one wishes’. This may go some way towards 
explaining why there appears to be no consensus in the 
literature on SIMCA as to how the primary information 
should be used.

Another approach would be to ignore the information from 
the primary components altogether and assign an observation 
to the group for which the smallest value of Dw(k) (x) is 
observed. This is the approach of Frank,23 Frank and 
Friedm an24 and M cL achlan25. It defines SIMCA as a classifi­
cation procedure, in a manner similar to some more conven­
tional allocation procedures in statistics. Furthermore, it 
restricts the SIMCA method to the bare essentials and hence, 
we will restrict attention to this formulation from now on.

A problem with the SIMCA method that we have not yet 
discussed is the choice of the dimensionality of the principal 
component representations. The same problem poses itself in 
outlier detection. For the rice data, for example, it is by no 
means clear whether we should regard the second 
component as redundant information, even though its varia­
tion is small. However, the performance of Rao’s statistic will 
decrease if we add this component to the model components.

To choose the number of components in the SIMCA 
procedure. Wold used a cross-validated estimate of the 
absolute goodness-of-fit

« p2 2 4
i  =  J j  =  I 

n — \

Unfortunately, while this aproach may be safeguarded against 
influential observations, it does not optimize the SIMCA 
classification rule directly. Droge and Van’t Kloostsr2f'27 
studied an empirical criterion that is referred to as 
Malinowski’s indicator function :2?

i p - k y -
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with

p 2 =  L
n(p -  k)

Essentially, this criterion is a version of Rao’s absolute 
lack-of-fit test that takes the number of deleted components 
into account. According to Droge, this criterion is more 
reliable than cross-validation when there are less than 15 
observations available to calibrate the procedure. Similar 
caution should be applied here with respect to the degrees of 
freedom to be used, as we explained for Wold’s F-test.

Hawkins prefers a more ad hoc approach. He standardizes 
the measured variâtes prior to analysis and discusses three 
different criteria to choose k. The first of these is to treat all 
components with variance less than one as residual 
components. The second criterion is to postulate a normal 
distribution for the measured data and calculate the power of 
Rao’s statistic for different values of k. We may then select 
that value for which the maximum power is achieved. As a last 
procedure, he considers the principal component weights and 
chooses k so that all measured variâtes are adequately 
represented in the residual components. His final decision is a 
compromise value based on the results of these separate 
analyses. The aim of this approach is not so much to obtain an 
adequate representation of the data, but rather to calibrate the 
outlier statistic optimally with respect to outlier detection. 
Standardization of the measured data is not essential to this 
procedure.

Furthermore, the variation of the data is substantially larger 
along the first principal component direction than along the 
second component. For these reasons, A is closer to the group 
in statistical terms. These arguments show why a proper 
statistical distance measure must take the scale and orienta­
tion of the data into account.

This is achieved if we compute the standardized principal 
component scores and use the Euclidean distance for these 
transformed measures. Indeed, consider Fig. 6, which con­
tains the same data as shown in Fig. 5, plotted versus the 
standardized components. Observation A is much closer to 
the group in the transformed space. This is because the 
standardized principal component scores are an uncorrelated 
set of variâtes with unit variance. Essentially, the principal 
component decomposition has removed the correlations and 
differences of scale from the data so that we may again use the 
Euclidean distance. This procedure defines a distance 
measure that is fundamental in multivariate statistics. The 
distance is referred to as the Mahalanobis distance and may be 
written as

x,S-' \ f =  Wn/X] + ... + ujp/kp

We may apply these ideas to define the Mahalanobis 
analogue to Rao’s statistic:

Dl(k) (x/) =  XyS-i x f -  (x,q,)2/X, -  ... -  {Xiqk)ykk

This statistic was proposed by H a w k i n s . As with Rao’s 
statistic, we have

Dz(k) (x/) — un/X] 4- ... -I- ufp/'kp — ujifk\ — ... — ujk̂ lkk
^ i k  4- \ l k f (  4- 1 E  . . .  -|- U j p f k p

SIMCA and the Mahalanobis Distance
We have demonstrated how SIMCA is based, essentially, on a 
lack-of-fit test. This statistic has a serious drawback, however. 
Indeed, Rao’s statistic merely adds all residual principal 
component scores together, irrespective of their variability. 
As a consequence, a smaller variance component that 
separates groups well may be obscured by an irrelevant larger 
variance component. More generally, we may wonder 
whether Rao’s statistic gives enough weight to the smaller 
variance components, as we have already pointed out that it is 
especially these components that may provide the directions in 
which groups separate.'"

The problem stems essentially from the fact that we have 
implicitly assumed that the measured data are represented in a 
Euclidean s p a c e a n d ,  as a consequence, the orthogonal 
distance from the principal component representation was 
measured as a Euclidean distance. Indeed, we have

=  u f i  +  . . .  +  U% uji — ufk
=  X/Q(x,Q)7^ -  (x,q,)2 (x.qfc)2

and hence

D^k) (x,) =  XiX-T- (x ,q ,)2  -  . . .  -  (x,q^)2

The first term in this equation is the Euclidean distance of the 
observation from the sample mean. The remaining terms 
remove the contributions from the primary components from 
the distance measure.

Fig. 5 contains an illustration of the problem associated with 
the Euclidean metric. Observations A and B are plotted at 
equal Euclidean distances from the mean center of a group of 
observations. However, the position of observation A is along 
the first principal component direction while the orientation of 
observation B is orthogonal to the first component. Hence, 
the orientation of most observations in the group will be closer 
to the orientation of A  than to the orientation of B.

Fig. 5 Plot o f two observations, A  and B , at equal Euclidean  
distances from a group of observations. Observation A  is positioned  
along the first principal com ponent, while B is along the second  
principal com ponent.

Fig. 6 Plot o f the observations, A  and B , versus the standardized 
principal com ponents o f the group o f observations.
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and hence Hawkins’s statistic may be seen as a lack-of-fit test 
that is defined as the sum of the squared residual standardized 
principal component scores, in a manner analogous to the 
definition of Rao’s statistic. Hawkins proposed an interesting 
alternative derivation of this s t a t i s t i c ,

As Hawkins states, there is no obvious advantage involved 
in working with the Euclidean distance. We should expect that 
implementations of SIMCA that are based on the Mahalano­
bis distance will separate groups better in most applications. 
This is confirmed in applications to quality control, as 
discussed by Hawki ns , Hawki ns  and Fatti’  ̂ and Fellegi.^s 
Some chemometricians might argue that Rao’s statistic can be 
computed conveniently as a residual sum of squares with the 
nonlinear iterative partial least squares (NIPALS) 
algorithm.29 Given the efficient algorithms for principal 
component decomposition that are available today, however, 
this would be a very weak argument in favour of this statistic. 
Furthermore, the above formula implies that we may calculate 
Hawkins’s statistic from the primary components and hence 
we do not need to calculate the residual scores explicitly. 
According to Jackson,^" there is a qualitative difference 
between Hawkins’s and Rao’s statistic, in that Rao’s statistic 
may be interpreted ‘in terms of residuals’ while Hawkins’ 
statistic must be interpreted ‘in terms of the deleted com­
ponents’. However, the principal component decomposition 
of the data is the same, irrespective of whether we are using 
the Euclidean or the Mahalanobis distance’  ̂ and hence, 
despite Jackson’s statements, we may interpret both statistics 
as lack-of-fit tests for the same principal component represen­
tation.

The Mahalanobis distance upweights the smaller variance 
components so that all components have equal weight. The 
opposite effect is achieved if we multiply all residual scores 
with their respective standard deviations. This leads to the 
statistic

3̂(t) (X/) =  Xk + \ + \ +  ■■■ +  ^ptljp

=  +  . . .  +  l̂ pujp —  —  . . .  —

= x,Sx/ -  Xt(x,qi)2 -  ... -  kA:(x,q*)2

which was studied by Gnanadesikan and Kettenring in 1972.3 
This statistic gives more weight to the larger variance 
components and reduces the contribution of the smaller 
variance components. As a consequence, we will often find 
that this statistic does not separate groups well in discriminant 
problems.

Hawkins^3 proposed a further statistic for outlier 
detection that is based on the normalized components. It is 
defined as

D 4(k) (x,) =  max|w,y/V)ÿ|k<j
In contrast to the statistics that were defined above, this 
statistic is not a lack-of-fit test for a principal component 
representation. It is proposed more on empirical grounds, 
because of the optimal properties of the normalized principal 
components in outlier detection. If we postulate a normal 
distribution for the data, then the principal components are 
independent and the above statistic can be interpreted as the 
largest test result from a set of independent test statistics. 
Similar methods to those discussed above may be used to 
determine the number of components to delete.

Let us consider the application of these statistics in a 
SIMCA discriminant analysis of the rice data. We add three 
more samples of rice from the French Camargue (F), as well as 
a new group of 5 samples of white rice (W) and a group of 5 
samples of rice from Laos (L) (samples of Basmati rice are 
indicated with B).

Using a full leave-one-out cross-validated estimate of the 
absolute goodness-of-fit statistics, we find that the first

component accounts for more than 97% of the cross-validated 
variation in each of the groups. Hence, we use a one­
dimensional principal component representation for each 
group. This essentially removes the grain size effects from the 
SIMCA outlier statistics, while retaining all other small 
pattern aberrations. Tables 1 to 5 give the full leave-one-out 
cross-validated SIMCA classification tables for each of the 
lack-of-fit statistics that we have discussed.

The results confirm the previous discussion. The Mahalano­
bis distance (Table 2) reduces the total cross-validated error 
rate, as compared to the Euclidean metric (Table 1). The total 
cross-validated error rate obtained for Wold’s statistic 
(42.5%) (Table 5) is smaller than that obtained for Rao’s 
statistic (52.5%) but larger than the cross-validated error rate 
obtained for Hawkins’s statistic (31.8%). The total cross­
validated error rate for distance D4 is 35.3%.

Table 1 Classification table using R ao’s statistic D ,(,)

To

From B W F L Total

B 9 0 0 0 9
W 0 2 0 3 5
F 0 1 2 1 4
L 0 4 1 0 5

Total 9 7 3 4 23

Total cross-validated error rate 52.5%

Table 2 Classification table using H awkins’s statistic £>2 (1)

To

From B w F L Total

B 7 0 0 2 9
W 0 1 0 4 5
F 0 0 3 1 4
L 0 0 0 5 5
Total 7 1 3 12 23
Total cross-validated error rate 31.8%

Table 3 Classification table using Gnanadesikan’s statistic

To

From B w F L Total

B 7 2 0 0 9
W 0 4 0 1 5
F 0 2 2 0 4
L 0 4 1 0 5

Total 7 12 3 1 23

Total cross-validated error rate 48.1%

Table 4 Classification table using statistic

To

From B W F L Total

B 8 0 0 1 9
W 0 1 0 4 5
F 0 0 2 2 4
L 0 0 0 5 5

Total 8 1 2 12 23

Total cross -validated error rate 35.3%
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SIMCA and Biased Discriminant Analysis

We have discussed the application of the Mahalanobis 
distance to principal component outlier detection and SIMCA 
methods of pattern recognition. The Mahalanobis distance is a 
fundamental concept in statistical discriminant analysis. We 
would like to compare the SIMCA approach to classification 
with some classical methods of discriminant analysis in 
statistics. We will assume that the prior probabilities of group 
membership are equal.

Consider the minimum-distance classification procedure in 
which an observation is assigned to the group for which the 
smallest Mahalanobis distance is observed. In such applica­
tions where it is reasonable to assume that the dispersion of 
the data is similar in the distinct groups, a common covariance 
matrix may be postulated for the groups. Some pooled 
estimate of the covariance matrices may then be used in the 
calculation of the Mahalanobis distances. As a consequence of 
pooling the covariance estimates, the variability of the 
discriminant rule decreases, due to a drastic reduction in the 
number of parameters that are estimated from the data. The 
minimum-distance discriminant rule itself reduces to classical 
linear discriminant analysis,^ first derived in 1936 by Fisher^* 
for the two-group case, from a purely data-based point of 
view.^

In many classification problems, however, an assumption of 
equal dispersion is not warranted and we must allow for the 
differences in the spatial distribution of the data in the distinct 
groups. Quadratic discriminant analysis generalizes linear 
discrimination by postulating different covariance matrices for 
the distinct groups. As for linear discriminant analysis, the 
quadratic allocation rule may be derived from an assumption 
of multivariate normality for each group, assigning a new 
observation x to the group for which the posterior probability 
of group membership is maximum. Hence we assign x to the 
group for which we observe the smallest value of the 
discriminant score

D q  ( x )  = xS“ ’ x^ + In [det(S)]

where det(S) refers to the determinant of 8 .“̂’̂  The last term in 
this equation is a measure of the size of the covariance matrix,p
as det(S) = \j.  It reflects the scale of the spread of the data

j ~ 1
in the group. The first term is the Mahalanobis distance of x 
from the group. Needless to say, this allocation rule will 
reduce to linear discriminant analysis if the covariance 
matrices are pooled in a single estimate of covariance. Hence, 
it is essential that the estimation of the covariance matrix S is 
specific to each group.

Quadratic discriminant analysis is probably the standard 
statistical discriminant technique when the data have unequal 
within-group dispersion. However, a serious problem asso­
ciated with the quadratic rule is that it may not perform well 
when the number of observations is limited. Many statisticians 
have reported applications where the linear rule performed 
better, even though the assumptions for pooling the data were

Table 5 Classification table using W old’s statistic £>vi/(i)

To

From B W F L Total

B 9 0 0 0 9
W 0 1 0 4 5
F 0 0 2 2 4
L 0 1 1 3 5

Total 9 2 3 9 23

Total cross-validated error rate 42.5%

not met (Seber gives an interesting discussion on minimal 
sample sizes,^ as well as Friedman^z). This is because the 
quadratic rule requires the estimation of a much larger 
number of parameters and hence the variability of the 
quadratic discriminant function increases rapidly when the 
number of observations decreases. We may employ a linear 
discriminant analysis in such a situation as a form of 
regularization, in which estimates are biased to achieve 
smaller variability.

In contrast to these statements, it is claimed in the 
chemometrics literature that the SIMCA method performs 
well, even for exceptionally small calibration sets.33 This 
should be of particular interest, as both quadratic discriminant 
analysis and SIMCA postulate distinct covariance matrices S 
for each group and therefore, we may think of both these 
procedures as methods that model the within-group variation 
separately for each group. As the SIMCA approach retains a 
separate modelling of the within-group variation, we are 
particularly interested in a comparison of the SIMCA method 
with the quadratic rule and we may wonder whether the 
SIMCA rule can improve on the performance of the quadratic 
rule when there are few observations.

There is an interpretation of SIMCA as another method of 
regularization for discriminant problems with unequal class 
covariance matrices and a small number of observations. To 
discuss this, we will first discuss a reformulation of the outlier 
statistics that we have discussed.

We may rewrite Hawkins’s statistic as

Dl{k) (x) =
where = Q [k)^\k)Q \k)^ , with Q̂ ;̂ ) = (q  ̂ + i,---, Q/,) 
and A(/t) is a diagonal matrix with the values + , > . . . >  on 
the diagonal. In a similar fashion, Gnanadesikan’s statistic can 
be written as

D\k) (x) = xŜ t) x̂
These statistics are of the type

xDx̂
where D = QAQ^ and A is a diagonal matrix with non­
negative weights ôi,...,ô^ on the diagonal. D is a symmetric 
matrix and hence the above statistics define a set of distance 
measures. These measures are variants of the Mahalanobis 
distance, which itself assigns equal importance to each of the 
principal component directions. We may change the relative 
importance of the principal components by changing the 
weights in the distance measure.

In the SIMCA method, we always have 6 , =  ... =  0*; = 0. 
Hawkins’s statistic is then obtained for ôy = 1/Xy, j  =  k  +  
l , . . . ,p.  Likewise, Gnanadesikan’s statistic is obtained for ôy =  
kj, j  =  k +  while Rao’s statistic is obtained from ôy = 1,
j  =  k +

Wold’s version of the SIMCA method fits into the same 
framework. We have

S o ?i(̂ ) (x,) =  ( n -  1) 2
y  =  *  +  1

and hence. Wold’s statistic is obtained for

(n -  /c -  1)
}k + 1

j = k + \
As we can see. Wold’s version of the SIMCA method 
downweights the smaller variance components, as compared 
to the Mahalanobis distance, by using a uniform weight that is 
inversely proportional to the average residual principal 
component variation, instead of ôy = 1/Xy, j  =  k +
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Wold’s implementation of SIMCA is not identical with that 
which is obtained for Rao’s statistic, as the principal com­
ponent variances are calculated from a within-group principal 
components decomposition and are therefore group depen­
dent.

From these results, we find that an implementation of 
SIMCA with any of the above statistics is a quadratic 
allocation procedure. A further interpretation of these results 
has been considered by Frank and Friedman, in the following 
m a n n e r . 24 The small eigenvalues contribute substantially to 
the variation of the Mahalanobis distance in the quadratic 
allocation rule. This effect is worsened by the biased estima­
tion of the principal component variances in the principal 
component decompostion of the covariance matrix S. The 
small variances are biased to values that are too low, while the 
larger variances are biased to values that are too high. This 
bias is more severe when the poplulation size d e c r e a s e s . 4 io

Wold’s variant of the SIMCA method tries to rectify this 
problem by down-weighting the small variance components, 
as compared to the weighting in the Mahalanobis distance. 
Hence, SIMCA is a biased form of quadratic discriminant 
analysis. A  similar discussion can also be found in Friedman’s 
paper on regularized discriminant analysis, although he does 
not discuss SIMCA explicitly.22

Some critical comments on this interpretation are in order. 
Although Wold’s version of the SIMCA method may reduce 
the variability of the distance measure, we may lose some 
relevant information from the smaller variance principal 
component directions. More importantly, it is not at all clear 
how the particular reweighting employed by Wold’s version of 
the SIMCA method should be justified. Originally, Wold’s 
statistic was introduced as a statistic that could easily be 
obtained from the NIPALS algorithm and there was no 
intention of optimizing a bias-variance trade-off in any way. 
Indeed, Wold’s argument makes no reference to any inter­
pretation of SIMCA as a biased discriminant analysis.

Let us now turn to a final comparison between quadratic 
discriminant analysis and the SIMCA allocation r u l e . 24 First of 
all, SIMCA differs from quadratic discriminant analysis in that 
it ignores the last term {ln[det(S)]} in the quadratic discrimi­
nant rule. As a consequence, the allocation rule may perform 
badly when the scale of the variation is very different in the 
distinct groups. Unfortunately, this is precisely one of the 
situations in which we would want to use a SIMCA type 
variant of the quadratic rule, when the number of observations 
is small. Indeed, if there are no substantial differences in 
within-group variation, we may wonder why we should bother 
at all with a method that postulates separate models for the 
within-group variation. Secondly, as we have pointed out 
before, a minimal implementation of SIMCA will ignore all 
information from the primary principal components and there 
is no generally accepted method to incorporate this informa­
tion in the analysis. We may therefore expect poor perfor­
mance from such SIMCA classifiers when the groups are 
separated mainly along the primary components. The last 
difference is concerned with the biased estimation of the 
residual principal component variances. SIMCA biases the 
estimation of the group covariance matrices to reduce the 
variability of the allocation rule. Hence, SIMCA may be 
regarded as a form of regularized quadratic discriminant
analysis.24.25

Frank and F r i e d m a n 2 4  used simulations and real data to 
compare the SIMCA method with some new methods of 
discriminant analysis in which the bias-variance trade-off is 
optimized explicitly. Given the above analysis, it is not 
surprising that the results did not favour the SIMCA method.
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Errata

In the publication, page 2779: change the last displayed equation to

i=A:+l


