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A bstract

Following an axiomatic introduction to the prequential (predictive sequential) prin­

ciple to statistical inference proposed by A. P. Dawid, in which we consider some of 

the questions it raises, we examine a conjecture on the supposed prequential asymp­

totic behaviour of significance levels based on a particular class of test statistics.

Then, after a presentation of some martingale probability frameworks recently 

proposed by V. G. Vovk, algorithmic constraints are introduced to give a definition 

of random sequences on the lines of Martin-Lof’s classical approach. This definition, 

instead of being given, as in the classical algorithmic approach, with respect to a 

Kolmogorovian probability distribution P , is given only with respect to a sequence 

of measurable functions by using the principle of the excluded gambling strategy. 

The idea underlying this approach is that if we axe to play an infinite sequence of 

fair games against an infinitely rich bookmaker, then, whatever computable strategy 

we choose, we shall never become richer and richer as the game goes on.

These random sequences, apart from some basic properties, have been shown to 

satisfy: an analogue of Kolmogorov’s strong law of large numbers; an analogue of the 

upper half of Kolmogorov’s law of the iterated logarithm for binary martingales; and 

an analogue of Schatte’s strong central limit theorem for the coin-tossing process. 

Besides, for these random sequences, we also investigated the distribution of the 

values of the corresponding infinite single realizations, in the case of two basic 

processes. These last results, together with the strong central limit theorem, would 

provide an instance in which ‘empirical’ distribution functions are derived without 

the assumption of any Kolmogorovian probability distribution.
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C hapter 1

Introduction

In a sentence, we could say that this thesis is all about one single idea, namely 

the idea of a sequential interpretation of the concept of probability. Our inves­

tigation will start by taking into consideration first, in the classical probability 

axiomatics of Kolmogorov, Dawid’s prequential principle, then Vovk’s martingale 

probability frameworks, and finally a new purely martingale definition of ran­

dom sequences. Let us consider the problem of assessing the goodness of a se­

quence of probability forecasts P " =  (P i,P 2 , . .. ,Pn)i for a sequence of random 

quantities X ” =  (X i,X 2, . . .  ,Xn), in the light of a sequence of realized outcomes 

x ” =  {xiyX2 , . . . ,  a;„). By the nature of the problem, it would seem sensible to ask for 

this assessment that it does not depend on the particular way the actual sequence 

of forecasts has been obtained. That is, it would seem sensible that two different 

forecasters, who happened to issue two identical sequences of probability forecasts, 

should receive the same cissessment irrespectively of the way they generated those 

forecasts. On these grounds, Dawid (1984) put forward a principle to statistical 

inference, the prequential (predictive sequential) principle, suggesting that the eval­

uation of a probabilistic model, in the light of an actual sequence of outcomes, 

should be based only on the sequence of probability forecasts the model made, or 

would have made, for this sequence of outcomes, and not, for instance, on forecasts 

the model would have made for outcomes that never materialized. The prequen­

tial principle, alongside with some of the questions it addresses, is considered in
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Chapter 2 where we also investigate, mainly by means of simulations, a conjecture, 

related to this principle, about the asymptotic behaviour of significance levels based 

on test statistics having the form

y  _  -  Hi)

'

where Z,- is a function of X*, and fii =  E(Z,|X*“^), a f =  Var(Z,|X*"^), are the ex­

pectation and variance of Z,- under the conditional distribution P,- =  P(Xi|X*“^). It 

turned out that this simulation work did not corroborate the conjecture in its gener­

ality. This, together with some other considerations, cast doubts on the possibility 

of finding any sequential interpretation of the concept of probability along the lines 

of the ideas of Seillier-Moiseiwitsch (1986), Dawid (1992), and Seillier-Moiseiwitsch 

and Dawid (1993).

In Chapter 3 some new frameworks for probability theory, alternative to Kol­

mogorov’s axiomatics, and based on the primitive notion of a martingale, are con­

sidered. In the prequential probability framework, put forward by Vovk (1993a) 

on an idea of Dawid (1985), instead of specifying a full Kolmogorovian probability 

distribution P  on a sample space (a cr-additive set function, normed to one, defined 

over a cr-algebra), we specify a probability forecasting system tt on a tree-like struc­

ture giving one-step-ahead probabilities, given the past. Under some restrictions, 

this probability framework has been shown to be essentially equivalent to another 

axiomatics for probability theory, Shafer’s event tree framework, which has been 

used by Shafer (1995) to provide a more appropriate framework for the study of the 

causal foundation of independence graphs. In the other probability framework con­

sidered, the purely martingale probability framework, which is due to Vovk (1993c), 

instead of specifying a probability distribution P , or a probability forecasting sys­

tem 7T, we only specify a sequence of measurable functions which we call the basic 

martingale. Then interpretation, definitions and results are given by using only the 

principle o f the excluded gamhling strategy.

Then in Chapter 4, after having introduced some algorithmic constraints, we 

give a definition of random sequences., which we called M-typical sequences, in a



purely martingale framework on the lines of the now classical approach proposed 

by Martin-Lof (1966). This definition, instead of being given, as in the classical 

approach, with respect to a probability distribution P , is given only with respect to 

a sequence of measurable functions by using the principle of the excluded gambling 

strategy. The idea underlying this approach, and giving an interpretation to it, is 

that if we are to play an infinite sequence of fair games against an infinitely rich 

bookmaker, then, whatever computable strategy we chose, we will never become 

richer and richer as the game goes on.

In Chapter 5, these M-typical sequences are shown to satisfy an analogue of 

Kolmogorov’s strong law of large numbers, and an analogue of the upper half of 

Kolmogorov’s law of the iterated logarithm for binary martingales, whereas in Chap­

ter 6 they are shown to satisfy an analogue of Schatte’s strong central limit theorem 

for the coin-tossing process. In Chapter 6, we also investigate the distribution of 

the values, corresponding to a single M-typical sequence, in the case of two ba­

sic processes. These distributions of the values, together with the strong central 

limit theorem, represent an instance in which distributional properties are obtained 

without assuming any probability distribution or forecasting system whatsoever.

Chapter 7 and Appendix A contain respectively some general conclusions, and 

some basic algorithmic notions necessary to the definition of M-typical sequences.
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C hapter 2

D aw id’s Prequential Principle

2.1 Introduction

Statistical inference is the area of statistics which is concerned with the study of 

ways of inferring, inductively, on unknown quantities on the basis of observed data. 

In the tradition of the subjectivist and predictivist approaches, which have been 

originated by, among others, de Finetti (1937), a new approach to statistical infer­

ence, the prequential (predictive sequential) approach, has been proposed by Dawid 

(1984). In the light of a sequence of observations, this approach requires the as­

sessment of any probabilistic model to be based only on the probability forecasts 

the model performed, or would have performed, for this particular sequence of out­

comes. This new approach has also found inspirations in the somewhat more applied 

area of probability weather forecasting, where a great amount of work had already 

been carried out, independently from the main streams of research in statistics (see, 

for a review, Dawid, 1986), on the more practical aspects of model assessment.

So far, the preferred inferential techniques of the prequential approach, for the 

assessment of a probabilistic model, have been probability assessment techniques 

such as scoring rules and calibration plots (see, e. g., Seillier-Moiseiwitsch, 1986). 

Prequential inferential techniques have been applied in the areas of probabilistic 

weather forecasting, educational scaling, patient progress modelling (see Seillier- 

Moiseiwitsch, 1986), and in the evaluation of the performance of probabilistic expert
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systems (see Spiegelhalter, Dawid, Lauritzen and Cowell, 1993).

In Section 2.2 we consider the prequential approach from an axiomatic point 

of view, namely through the prequential principle. Then in Section 2.3 another 

principle, the production principle, is considered which in some way tries to balance 

the requirements of the prequential principle.

By restricting the class of allowable probabilistic models, standard techniques 

such as the conditional probability integral transform or the standard martingale 

central limit theorem do lead to assessments which depend only on the realized 

sequence of outcomes and forecasts. Some of these standard techniques are consid­

ered from the point of view of the prequential principle in Section 2.4, whereas a 

conjecture on a class of test statistics is studied, mainly by means of simulations, 

in Section 2.5. It should be pointed out that, these techniques, or better their in­

ferential conclusions, even if fulfilling the prequential principle from an ‘axiomatic’ 

point of view, do not have any ‘within-sequence’ interpretation. Indeed, they all 

have a repeated-sampling interpretation which refers to all possible replications of 

the experiment that did not materialize.

We conclude the chapter by considering in Section 2.6 a calibration criterion 

due to Dawid (1982, 1985).

2.2 The Prequential Principle

At the basis of the prequential approach to statistical inference lies the philosophy 

that it is reasonable, at least in many contexts, to regard Nature as producing, se­

quentially, an infinite data-string x  =  (xi, 2:2, . . . ) ,  and that we should then regard 

X  as containing all the relevant empirical evidence (past and future). If a proba­

bilistic theory has been suggested for explaining the given data x  as a realization of 

the sequence of random quantities X  =  (X i,X 2, . ..), then alternative data-strings 

which ‘m ight’ have been produced should be regarded as strictly theory-dependent 

and, in this view, they should not have any empirical content.

Let us consider the task of assessing the adequacy of a probabilistic theory for
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the sequence of random quantities X  =  in the light of the sequence

of realized outcomes x. Following the prequential approach, we imagine the values 

arising sequentially. Just before we observe X,+i, uncertainty about its value is 

measured by the predictive distribution supplied by the theory.

Any probabilistic theory specifying a predictive distribution P,+i, for all i and 

X* =  (xi, 0:2, . . . ,  Xj), constitutes a probability forecasting system  (PFS) for X , and 

such a PFS essentially determines a joint probability distribution P  for X  (generally 

involving dependence), with the property of having the conditional distribution of 

Xi+i given X* =  x% that is, P (X i^ i\X i =  Xi,%2 =  X2, . . .  ,X,- =  x,), equal to the 

predictive distribution P,+i. On the other hand, any joint probability distribution 

P  over X, considered as a rule for generating a distribution P,+i for , for any 

values of i and x*, is a PFS (Dawid, 1984). So, the task of obtaining a global 

assessment of our theory at explaining x  can equivalently be stated in terms of the 

assessment of the joint probability distribution P.

For this task, a predictive sequential methodology could involve the comparison 

of each observation x,+i with the uncertainty assessed for it when it was about 

to be observed, that is with Pi+i, using probability assessment techniques such 

as scoring rules, calibration plots, etc. . More formally, the prequential approach 

demands that any method of assessing the success of a distribution P  at describing 

the specific data x  should depend only on the two sequences, of realized data-values 

and of realized forecasts,

X# 3/2 3/g • • • 3/yj • • • ^

P: Pi P2 P3 • . • Pn

This seemingly natural requirement has been proposed for the first time as an

inferential principle by Dawid (1984) who called it the prequential principle. In

some respect this principle is similar to the classical likelihood principle which, in 

the parametric case, requires the inference about a parameter to depend only on the 

observed likelihood. Note that both principles do not give any role to hypothetical 

outcomes that did not materialize.

Whereas the substantial motivations for the application of the prequential prin-
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ciple rest on the above arguments, which have been put forward by Dawid, we will 

try here to clarify some of the questions it raises by taking a rather formal point 

of view. In general, statistical inference could be performed by any rule or pat­

tern if no additional constraint would be imposed. The introduction and analysis 

of inferential principles and assumptions would then permit to characterize which 

inferential procedures are acceptable to us and which are not. This way of pro­

ceeding, even if not extremely common in statistical inference, is similar to other 

investigations to an axiomatic approach to a logic of statistical inference which have 

been carried out, among the others, by Birnbaum (1962) and Basu (1975) (see also 

Dawid, 1983).

Let us consider a class V  of joint probability distributions P  for the sequence of 

random quantities X  =  (Xi, X2, . ..) ,  defined on the sample space X  =  [Xi x A'2 x

D efin ition  2 .2.1 An inferential pattern I  is a rule producing an inferential state­

ment 7(x”,P )  from data x ” and model P, for all x" G n 6 N  and for all

P e v .

(Note that here we do not impose on I  any restriction, for instance, we do not impose 

that I  has to be R-valued.) From this more axiomatic point of view, the prequential 

principle can equivalently be translated as saying that we have to achieve the same 

inferential conclusions for every probabilistic model P  which happened to make the 

same sequence of probabilistic forecasts P ” for the realized sequence of outcomes 

x ”. This is asserted in the following definition.

D efin ition  2.2.2 An inferential pattern I  is prequential i f  it is a function only o f 

(x ^ ,P ").

So, to say that an inferential pattern I  is prequential is the same as to say that I  

does respect the prequential principle. Note that a prequential inferential pattern I  

satisfies the first part of metacriterion Ml and metacriterion M2 of Dawid (1985).

As a result of considering only the two sequences x  and P , for any given outcome 

sequence x and joint probability distribution P , it makes sense also to consider
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the set of all different distributions making the same sequence of forecasts P  for 

X  as does P. One particular choice is that distribution Q under which the (Xi) 

are independent, X{ having marginal distribution Pi. If we accept the prequential 

principle, then any test of the adequacy of P  in the light of x ” (and in general 

any inferential statement 7(x”, P)) should be identical with the test that we should 

conduct for Q in the light of x ” (should be identical with / ( x ”,Ç ), respectively). 

Since this particular distribution Q will play a role in the following sections, we put 

it in the next definition.

D éfinition  2.2.3 Given x and P, we call prequential independence model (p.i.m.) 

that model on X, Q say, under which the (X,) are independent and X i has marginal 

distribution Qi =  Pi, for all i, where the {Pi) are the predictive distributions of P  

for  X.

As in the case of the likelihood principle (which we distinguish from the ‘like­

lihood approach’), the prequential principle does not say actually how a statistical 

inference has to be performed. It just says that any inferential pattern has to be 

a function of (x”,P"). For the prequential principle, any inferential rule making 

a constant statement for all possible pairs (x’̂ , P ”) would be acceptable as well as 

any arbitrary one-to-one function of (x", P ”). In the case of a more common exam­

ple, such as when we consider the practical task of inducing, given x ’̂ , an ordering 

on the set V  of distributions for X, it would be acceptable to use any function of 

(x”, P ”) with values in R. A result of this is that, if we do not want to follow infer­

ential patterns which are completely unacceptable from many reasonable points of 

view other then the prequential principle, we need to restrict the class of allowable 

inferential patterns by means of other principles or particular assumptions.

2.3 The Production Principle

In a discussion of the prequential principle, Dawid (1991) singled out an essential 

feature which should characterize at least those inferential patterns which take the
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form of a probabilistic assertion. He started by considering an argument of Fisher. 

About Fisher (1956a), Dawid wrote:

‘Discussing the Welch solution to Behrens’s problem of testing the 
equality of two normal means when the variances are not supposed equal 

. . .  he showed that the nominal 10% test has rejection probability uni­

formly greater than 10.8%, conditional on the event that the two sample 

variances are equal. . . .  Calling such an event a “relevant subset” for the 
test, he put forward, as a requirement for the inferential validity of a 
test, that it should not admit any relevant subset.’

Later, Buehler (1959) applied this same logic to confidence intervals. After 

having named production model the model P  that describes the (known or assumed) 

probability processes directly leading to the observation of data, Dawid continued:

‘In other words, it is not good enough for a procedure to have correct 
overall probabilistic properties in the production model: if these are to 
have inferential relevance, it must not be possible to challenge them on 
the basis of specific data—which could be done by demonstrating their 

incorrectness conditional on some observable event.’

The production model, however, cannot be completely discharged, and Dawid 

(1991) argued as follows:

‘Suppose that a proposed method of inference is couched as a prob­
abilistic assertion, purported to have inferential validity conditional on 
the data. The form of this might be, for example, that the probability 
that the parameter 0 is less than some statistic T  is 95%. This could be 

considered as a confidence statement, a fiducial assertion or a Bayesian 

posterior probability—the interpretation is immaterial.

In such a case we are surely entitled to require, as a minimal validity 
requirement on any inferential procedure, that its overall probabilistic 
properties, in the production experiment, are compatible with its pur­
ported inferential content. This would not be so in the above example if, 
for instance, the production model sampling probability that T  exceeds 
6 is less than 93% for all which would mean tha t the whole space
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constitutes a relevant subset! We may term this (admittedly somewhat 
vague) validity requirement the production principle.^

Here, for the case in which an inferential pattern /(x^ , P) takes the form of a 

probabilistic cissertion, we distinguish between a class of weak production princi­

ples and a unique strong production principle. Whereas a weak production princi­

ple would require, for an inferential procedure, that its probabilistic assertions are 

compatible, on an overall basis to be appropriately defined, with its probabilistic 

properties under the production model P , the strong production principle would 

require, for an inferential procedure, that its probabilistic assertions are exactly 

valid under the model P , in the sense that they can be considered as usual proba­

bilities calculated under P . This strong production principle is the inspiration for 

the following definition.

D efin ition  2.3.1 A probabilistic inferential pattern I  is V-valid i f  fo r every x ”, 

n G N, the probabilistic assertion 2(x^, P ) holds under P  for every P  G P . I f V  is 

the set o f all possible distributions on X, we say that I  is probabilistically valid.

To require for I  to be probabilistically valid means that its probabilistic assertions 

should have an unquestionable probabilistic meaning under the production model 

P . Without this requirement, a probabilistic inferential pattern I  might generate 

probabilistic assertions with no validity at all under P .

2.4 A Prequential P ivotal Transform ation

Dawid (1984) noted that if the (X,) are continuous real variables we might consider 

test statistics based on the use of the well known ‘conditional probability integral 

transform’, that is, based on the quantities Ui =  P,(X,), Fi being the cumula­

tive distribution function corresponding to the probability distribution p .  In fact, 

Rosenblatt (1952) showed that, under any P  (for continuous real variables), the 

{Ui) are independent and that each U{ is uniformly distributed in [0,1]. Conse­

quently any diagnostic test, of the adequacy of P  in the light of x^, based on the
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independent identical uniform distributions of the (Ui) will be prequential, since it 

is a function of the realized (u,), which depend only on (x", P"), and will also be V- 

valid, in the sense of the strong production principle, in the class V  of all continuous 

distributions, since this distribution for the (Ui) holds under every P  £ V .

Here, we generalize this idea by considering a generic clâ ss V  of joint probability 

distributions P  for X.

L em m a 2.4.1 Let with ^  depending just on P ” , he a multivariate

transformation such that W ” has a fixed joint probability distribution for all P  € 

V . I f  I  is an inferential pattern whose statements I (x ^ ,P )  are expressed as a 

determinate probabilistic assertion in which w ” is considered as a realization from  

'W^ under P, then I  is prequential and V-valid.

P ro o f. Trivially, I  is P-valid by definition. Also, given x", w ” is a function of P ’', 

and having W ” a fixed distribution in P , it follows that I  is prequential. Q.E.D.

Observe that, if a model assuming independence is included in V  and Wi =  

for all 2, where depends only on Pi, then, under the fixed joint distribu­

tion of the lemma, the (W i)  have to be independent. An example of this particular 

case is readily supplied by taking the transformation ^  to be the previous ‘probabil­

ity integral transform’ of the predictive distributions P,-, and the class V  to be the 

class of all continuous distributions on X. Note that ^  operates a proper reduction 

of the information contained in (x”,P ”). The use of Ui =  Fi(Xi) can yield, for a 

given x ”, the same sequence u ’̂  for two different sequences of predictions P,, and 

so, an equal assessment for two models which had a different ‘historical’ behaviour. 

Another example of the previous lemma is provided by the standardized variables 

Wi =  (Xi — i'i)/Ti when V  is, for instance, the class of distributions under which 

the (Xi) have conditional densities Pi of the form r f^g{(xi — i/i)/Ti}.

The transformation discussed here, unlike the sum test statistics considered in 

the next section, supplies test statistics which provide prequential and P-valid sig­

nificance levels for finite n. However, while these sum test statistics are applicable, 

in great generality, even for discrete random variables, we do not have here an
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instance of the transformation ^  for the class of all discrete distributions on X.

2.5 A Prequential Inferential M odel

Dawid (1991), together with the introduction of the production principle, made also 

another proposal. He started again from a Fisherian idea, namely the idea of an 

inferential frame of reference. To understand this idea, the following key abstraction 

is necessary: in any given inferential situation we can distinguish two models for the 

data. The first model, the production model, which has already been described in 

Section 2.3, is just the standard ‘statistical model’ available before experimentation. 

The second model, which Dawid (1991) called the inferential model, is supplied by 

the relevant frame of reference and it is to be used for analysis of the data at hand. 

Dawid (1991) writes:

‘. .. Fisher, even when discussing sampling-theoretic concepts such as 

significance levels, did not accept that this production model was nec­
essarily the appropriate one in which to perform inferential probability 
calculations: for that purpose we need to discover the relevant frame of 
reference, which supplies what we may call the inferential model to be 
used for analysis of the data at hand. For example (Cox, 1958), if a coin 
has been tossed to decide which of two possible experiments to perform, 

then the randomness in the toss of the coin forms part of the produc­

tion model; but once the coin has landed and the chosen experiment 
has been performed, it should be excluded from the inferential model, 
together with any consideration of hypothetical results that might have 
been obtained had the other experiment been chosen. Thus an appropri­

ate frame of reference in this case might consist of all the possible results 
of the experiment that was actually chosen, and the inferential model 

would then be obtained from the production model by conditioning on 

the observed result of the coin-toss.’

He comments:

‘Very generally a frame of reference may be regarded as specifying 
an inferential model for the data, or for some appropriate reduction of
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the data such as the maximum likelihood estimator. An important fea­
ture of a frame of reference is that it should be tailored to the data 
that have been observed, and thus the inferential model will generally 

depend on those data. . . .  as conceived by Fisher, the relevant frame 

of reference need not necessarily be directly constructed from, or re­

lated to, the experiment as actually performed . . .  Consequently, even 

when the form of a Fisherian inference consists of “sampling probabil­

ity” statements within the inferential model, it might not have any valid 

sampling-theoretic interpretation within the context of the production 
model.’

And then he stresses, in dealing with the likelihood estimator ?  of a one­

dimensional parameter that:

‘...F ish er (1925), as elsewhere, ...appears to be putting the view 

that (in large samples) it is appropriate, after observing the data, to use 

an inferential model which treats Q as normally distributed with mean 
9 and (data-dependent) inverse variance J  [= —V'ifi)] . . .  We shall call 
this asymptotic inferential model for 6 the Fisher model. . . .  Although a 
sampling model, it is entirely determined by the realized likelihood func­
tion based on the given data. Any inferential model with this property 
may be termed a “likelihood model”.’

The Fisher model is thus entirely respecting the likelihood principle. Dawid 

(1991), analysing to what extent this model is in agreement with the production 

principle, verified that very generally it does satisfy this sampling criterion asymp­

totically. And he also found that a suitable extension of the Fisher model to non­

regular problems, in which the asymptotic likelihood need not be of approximately 

normal form, does satisfy the production principle as well.

Turning to the prequential case, Dawid then argued that if we accept the pre­

quential principle, then any test of the adequacy of P  in the light of x  should be 

identical with the test that we should conduct for Q (the prequential independence 

model) in the light of x. And, to ensure that this will be so, he suggested to take 

Q, which he called the prequential model, as the appropriate inferential null dis­

tribution for constructing the test. Analogously to the case of the Fisher model,
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the prequential model is entirely determined by the two sequences (x, P ), and its 

inferential use does permit respect of the prequential principle. Of course, this 

prequential null distribution is not required at all to lead to sampling inferential 

statements with any sort of validity in the production model. It would be our duty 

to find to which extent inferential probabilities, calculated under Q, do satisfy the 

production principle, that is, are in some sort of correspondence with sampling 

probabilities in the production model.

An example in which we can certainly use the prequential model is given by 

test statistics based on the quantities Ui =  when the {Xi) are continuous

random variables. In fact, under the inferential null distribution Q, the (Xi) are 

independent, and each Qi is identical with the realized Pi. Hence, under Q, the (Ui) 

are independent, and being each Ui a ‘probability integral transform’ they will also 

be uniformly distributed. But, as we have already noted in Section 2.4, exactly this 

same joint distribution for the {Ui) will also hold under the more general production 

model P. Consequently any diagnostic test based on the inferential null distribution 

of the {Ui), which wrongly assumes that the (X,) are independent with distribution 

Q, will nevertheless be exactly valid under the production null model.

In the remainder of the section we will consider a simulation study about a 

conjecture on the validity, under the production model, of the inferential null dis­

tribution Q for a class of test statistics.

2.5.1 A Conjecture

Let us consider the class of test statistics having the form

Y  _  Zi=i{Zi -  t^i) M l)

where Z* is a function of X*, and /z,- =  E(Z, |X*“^), <7? =  Var(Z*|X*"^), are the expec­

tation and variance of Z,- under the conditional distribution Pi. Seillier-Moiseiwitsch 

and Dawid (1993) noted that, since, under Q, the (Z,) are independent and //,• and 

a f are fixed, it requires only weak additional conditions to ensure that the null 

inferential distribution of Yn will be asymptotically A f{0 ,1). And for such a test
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statistic they also showed that (still under very weak conditions) this identical null 

cLsymptotic distribution for Yn will continue to be valid under the production null 

hypothesis P.

Dawid (1991), by analogy with the results for the likelihood model of Fisher in 

non-regular problems, thought that even when the conditions under which Yn has 

an asymptotic normal distribution under Q fail, use of the inferential distribution 

Q could still have some validity in the production model. By letting a (x ”) be the 

observed significance level for Yn calculated from data x ” and the corresponding 

forecasts Pi, P2? • • • 5 Pn? assuming the independence null distribution Q, he conjec­

tured that, in great generality, as n —> 00, the distribution of a(X ^) should be 

asymptotically uniform over [0,1] under the production null hypothesis P . And he 

also said that, if this result were to fail in a given case, it would cast doubt on the 

validity of basing a test on Yn-, in either the production or the prequential model.

We will see that this conjecture is not supported by the following simulations, 

but let us first make a couple of remarks about it. First note that, for a given model 

P , since Q depends on the realized data-sequence x, the asymptotic distribution of 

Yn, under Q, has to be conceived, at least at first glance, varying with x. Secondly, 

observe that the conjecture itself could be corroborated either strongly or weakly. 

It would be corroborated strongly if we would observe the same asymptotic distri­

bution for Yn, not necessarily normal, under both P  and Q, or if we would observe 

the same asymptotic observed significance level, under both P  and Q, Or, it would 

be corroborated weakly, on an ‘overall’ basis, even if the asymptotic observed sig­

nificance level under Q does not equal that under P , if the distribution of o:(X"^) 

would be asymptotically uniform over [0,1] under the production null hypothesis P . 

In this case, however, the asymptotic distribution of Yn under Q has necessarily to 

vary with x, since the conjecture cannot be true for a fixed inferential distribution 

not valid under P .

22



2.5.2 Sim ulation R esults

In the following examples, simulations have been carried out for investigating the 

validity, under the null hypothesis P , of using the inferential null distribution Q in 

the calculation of the asymptotic observed significance level of Yn. Chosen a partic­

ular probabilistic model P  for the sequence of random quantities X , an histogram 

of the distribution of a (X ”), the observed significance level of Yn calculated under 

Q, has been obtained by generating a large number s of samples of fixed length n 

under P.

Exam ple 2.1; The probabilistic model P  has been taken to be a Gaussian autore­

gression Xi+i |X* ^  Af{0, k^X f), X i ^  JV(0, P ) ,  where k is a, constant, and Z{ =  Xi

has been considered in the test statistic Yn. The observed significance level a(x^),

under the independence null distribution Q, is given by

a(x") =  Q(Y„ >  y„) =  Q ( è Xi >  è 2:; ) =  1 -  $(ÿ„),
\*=1 t=l /

where yn is the value of Yn for x ” , and 0  is the standard normal distribution 

function. Various combinations of different values of k and n have been considered 

with s =  10,000. Figure 2.1 and 2.2 present the histogram of a (X ”) respectively 

for the cases k = 1 with n = 2,500 and k =  1.2 with n =  100. In both cases, 

the simulated distributions cannot be considered uniform over [0, 1] and so, at least 

in its greatest generality, the asymptotic conjecture cannot be corroborated. For 

very small and very high values of k it turned out that uniform histograms did 

actually appear. Figure 2.3 shows, for instance, the histogram of a(X ^) for the case 

k =  100 with n =  50, and, apart from random variation, the asymptotic simulated 

distribution of o:(X”) can be considered uniform over [0,1]. This fact, however, 

relies on reasons that cannot be ascribed to the Dawid’s conjecture. Indeed, it is 

just the consequence of the fact that the first and the last observations determine, 

respectively in the case with k very small and the case with k very high, the values 

of the statistics involved, so that under P  we obtain, irrespectively of the value of 

n, an approximate standard normal distribution for Yn. Note that, for the choice 

Zi = X i/{ k X i- i) ,  where Xq =  1, is exactly standard normal for finite n, under
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Figure 2.1: Histogram of a (X ”) under the production model X,+i|X* ~  vV(0, k'^Xf), 
Xi  ~  AT(0, k^), k =  l ,  with 5 = 10,000, n = 2,500, Z, =  X ,.

m
0.6

Midpoint

1.0

Figure 2.2: Histogram of a (X ”) under the production model X{+i  |X* ~  A^(0, k^Xf),  
Xi  ~  A^(0,A;2),  ̂ ^ L2, with s =  10,000, n =  100, Z,- =  Xi.
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Figure 2.3: Histogram of a (X ’̂ ) under the production model X ,+ i|X * ~  A/’(0,

X i  ~  AA(0, k %  k =  100, with 5 =  10,000, n =  50, Z. =  X,.

both P  and Q, and a(X^) is exactly uniformly distributed over [0, 1].

In the next examples we report the simulated asymptotic distribution of 5^, 

under both P and Q. As we have already noted, different asymptotic distributions 

of Yn, under P  and under Q, do not confute the conjecture, and this could still be 

corroborated strongly by equal cisymptotic observed significance levels, or weakly 

on an overall basis. But, if the cisymptotic distribution of Yn under Q is independent 

of the data, then the above discrepancy is enough to confute the conjecture, that 

is, it implies that the cisymptotic distribution of a (X ”) is not uniform over [0,1].

E xam ple 2.2: Take for the production model P  the exponential autoregression

X:+i|X* -  £ {l/X i), Xi ~  f ( l) ,  with E(Xi+i|XO =  Xi and Var(X,-+i|X‘) = X?, 

(Xo = 1), and set Z,- =  X,- in the test statistic Yn given by (2.1). The observed sig­

nificance level a (x ”), under the independence null distribution Q, can be calculated 

directly by convolution and it is given by

o(x") =
\*=1 :=1 /
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i=l i=i ^i-1 ^t-1

The simulated distribution of a (X ”), for n =  50, was concentrated in the interval 

[0.4,1], whereas the simulated distributions of Yn, for s =  10,000 and n =  50, under 

Q, were independent of the data (obtained under P) and highly different from the 

simulated distribution of Yn, under the null model P . As in the previous example, 

we note that if Z,- =  {Xi — X ,_i)/A ’,_i, then Yn has the same identical distribution, 

under both P  and Q, for every n, and a (X ”) has an exact uniform distribution over 

[0 , 1].

E x am p le  2.3: Assume, for the model P , the uniform autoregressive model

Xi+i|X* ^  U(0,bXi), X i ^  W(0,6), (Xo =  1), where 6 is a positive parameter, 

and take Z, =  X{ in the test statistic Yn given by (2.1). The calculation of the 

observed significance level a (x ”), under the independence distribution Q, can be 

performed using the Laplace transform, yielding

e(x") =
\t=l i=l /

=   ̂ I <  - + 6;)):n . i i i = i O i  y =̂1 i<j

— (w -  {bi +  bj +  6t))+ H h (—1)'' (w — ^  6*1 I ,
i<j<n t=l ' + /

where 6, =  6xt_i, w =  T* and stands for (a+)" with =  (a +  |u |)/2 

for any real number a. The simulations of the distribution of a (X ”), carried out 

only for very small values of n, did not result in a uniform distribution over [0,1]. 

Moreover, the simulated distribution of Yn, for s = 10,000 and n =  50, under Q, 

was independent of the data and completely different from that obtained under P . 

For the choice Z, =  (X,- — where Vi =  6X,_i/2 and r f  =  6^X?_i/12, it is easy

to check that Yn has the same distribution, under both P  and Q, for finite n, and 

that o:(X”) has, still for finite n, a uniform distribution over [0,1].

Exam ple 2.4: In this example the model P  is supplied by a non-central chi-
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squared law in which the rule of dependence is given by |X‘ ~  xî(^O î ~  Xi- 

For the choice Z,- =  Xi in (2.1), we get = 1 + X i-i and <7? =  2 + 4X,_i, where 

Xo = 0. The simulated distribution of the observed significance level a(X ”̂ ) was 

not uniform over [0,1]. Figure 2.4 gives the histogram of the simulated distribution 

of Yn, under P, with s = 10,000 and n = 100. For the same values of s and n.

Oo

§
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Midpoint

Figure 2.4: Histogram of y„ under the production model X,+i|X* ~  X\{Xi),  Xi  
Xi, with s — 10,000, n = 100, Z, = Xi.

Figure 2.5 gives instead an histogram of the simulated distribution of Yn, under Q, 

which is an asymptotic standard normal, for every data-sequence from P. As before, 

the two histograms do not provide any support to the conjecture. For the choice 

Zi =  {Xi — 1 — A'i_i)/(2 + 4X,_i)^/^, we get that Yn is just a sum of standardized 

random variables, under both P and Q, and so that Yn has an asymptotic standard 

normal distribution, again under both P  and Q.

The next and last example provides an instance in which, unlike the previous 

ones, the asymptotic distribution of the observed significance level a(X"^) is uniform 

over [0,1] for the choice Z* = X,-.

E xam ple 2.5: Consider the binary Markov Chain model with $i =  Pi{Xi =

l|Xi_i =  0), O2 =  Pi{Xi = l|X,_i = 1), where Pi{Xi = 1) = ^1. Taking Zi = Xi in
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Figure 2.5: Histogram of y„ under the prequential model Q for the production model 
Xi+i|X* ~ Xi ~ with s = 10,000, n = 100, Z, = X,.

(2.1), we have //,• = 9\{\ — X,_i) + ^2-^1—i 3<nd = ^i(l — ^i)(l — Xi_i) -t- 02(1 — 

^2)^ :-! , (Â o = 0). With some algebra, we can see that the observed significance 

level a (x ”), under the independence distribution Q, is given by

o(x") = Q
\i=i i=i /

n̂o + Xn
= E

k>ni
E

i<no+in
j < T » i  — I n

n o + X n - t  1
—  O2 )n\—Xn—3

where rii = ZlîLi &nd no = n — n^. Figure 2.6 shows the simulated cumulative 

distributions of a(X ”), when B\ = 0.4 and B2 =  0.7, for n =  10 and n = 50 (the 

closest to the diagonal) respectively. In this case, has an asymptotic standard 

normal distribution under P, as well as under Q, which implies that the asymptotic 

distribution of the observed significance level a(X ") is uniform over [0,1].

The first conclusion we can draw from these simulations is that, in its generality, 

the original conjecture has not been corroborated. It would seem, quite strongly, 

that the asymptotic use of the test statistic Yn does not guarantee to respect both 

the prequential principle and the production principle, even on an overall ‘a-level’
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Figure 2.6: Distributions of a(X") under the binary Markov Chain production model 
with =  0.4, $2 =  0.7, and s =  5,000, n =  10 ( ------), n = 50 (------- ), Z, =  X{.

basis. From this point of view, these simulations would better sustain the form of 

Yn in which the Zi are standardized quantities.

Besides, the rejection of the conjecture seems to cast doubts also on the general 

inferential relevance of the prequential independence model Q itself. In this case 

further investigations about the prequential model Q, for instance in the direction 

of possible analogues to the concepts of sufficiency and ancillarity (in the classical 

sense of, e. g., Fisher (1956b)) when the production model is restricted to an element 

of a parametric family, would seem of little interest.

2.6 Dawid’s Calibration Criterion

In the previous sections we considered the problem of assessing the ‘goodness’ of 

a probabilistic model in the light of a sequence of outcomes, so as to respect the 

prequential principle. That is, in such a way that the assessment depends only on 

the realized sequence of probability forecasts the model would have performed for 

a given sequence of outcomes. A general rule satisfying this requirement has been 

proposed by Dawid (1982, 1985) with his calibration criterion.
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Following Dawid (1986), an intuitive introduction to these ideaa can be given by 

considering the practical task of assessing the goodness of a sequence of probability 

forecasts. Dawid writes:

‘At its simplest, probability forecasting refers to the process of at­
taching a numerical probability to an uncertain event. . . .  A single non- 

categorical probability forecast (i. e., not 0 or 1) can never be said to 

have been “right” or “wrong”. But when a forecaster has issued a long 
string of such forecasts, it becomes possible to apply checks of external 
validity.

Suppose that of n sequential forecasts, the ith  is p,- and the real­

ized outcome of the associated event A* ( “rain on day z”) is a,- (=  0 
or 1). Then we can compare the overall average forecast probabil­

ity =  n~^ Pi with the overall relative frequency of occurrence 

ân =  n~^ YJi-i o*' If p„ — ân, the set of forecasts may be regarded as 
approximately valid on an overall basis. . . .

A more incisive test looks at that subset of occasions z for which 
the forecast probability p,- was at, or suitably close to, some preassigned 
value p*, and compares the observed relative frequency in this subset, 
a(p*) say, with p*. If a(p*) ~  p* for all p*, the forecasts have been 
variously termed “unbiased in the small” , “reliable” , “valid” , or “well 
calibrated”.’

Elaborating this intuitive idea, Dawid (1982) introduced an extended calibration 

criterion. He considered an arbitrary subsequence of (1,2, . . . , n )  subject to the 

constraint that the decision on whether or not z is to be included in the subsequence 

should be determined only by the previous outcomes (ai,fl2, • • •, a^-i), and not by 

a{ or any later outcomes. Then, indicating with p'  ̂ the average forecast probability, 

and with the empirical relative frequency, for the events in this subsequence, he 

required as a validity criterion that pĵ  ~

Dawid (1982) justified this by showing that if the (pi) are constructed sequen­

tially as appropriate conditional probabilities from a joint distribution P  for the 

events (Ai, A2, . . .) ,  so that p* =  f(A*|(Zi,02, "  . ,a ,_ i), th e n â ^ —p^ —> 0, as n —>■ 00, 

with probability one, under P , provided that the cardinality of the subsequence goes
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to infinity. He observed that if and p'  ̂ are not close enough together, there is 

a suggestion that, in fact, does not tend to zero, and this would serve to

discredit the probability assignments made by P.

Elaborating further these ideas, Dawid (1985), in an algorithmic probability 

setting, calling completely calibrated a sequence of forecasts which satisfies the cali­

bration criterion for every ‘admissible’ subsequence, showed that if and (pj^^) 

are each completely calibrated computable forecast sequences, for a given infinite 

sequence of outcomes, then pĵ  ̂ — pP^ —> 0, as z —> oo. And, since this criterion of 

complete calibration is strong enough to exclude all but one limiting assignment of 

probabilities, he argued in favour of the existence of what he called calibration-based 

empirical probabilities, in an attem pt also to provide a probabilistic foundation to 

the prequential principle.

2.7 D iscussion

In this chapter we have presented some of the problems which arose from the seem­

ingly natural requirement of respecting the prequential principle. Related problems 

had already been highlighted. With regard to the use of test statistics Yn of the 

form (2.1), Seillier-Moiseiwitsch, Sweeting and Dawid (1992), in the case of tests 

of composite null hypotheses, showed, in some specific cases, that the asymptotic 

distribution of Yn is standard normal, thus providing, in those circumstances, a 

straightforward test for the validity of the statistical model. However, they were 

not able to prove the above result under more general conditions and put forward, 

instead, only some heuristic arguments. Besides, in facing the problem of assessing 

the goodness of a probabilistic model for a given data-sequence, respecting the pre­

quential principle, Seillier-Moiseiwitsch and Dawid (1993) said that the asymptotic 

distribution of the test statistics considered had been studied imposing conditions 

on the null distribution P. They argued that it would had been more satisfactory, 

in the derivation of the asymptotic standard normal distribution of to impose 

conditions only on the actual realized sequence of probability forecasts, thus tak­
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ing the prequential principle more seriously. However, at the present moment, a 

solution to this problem is still to come, and there are reasons to believe that the 

problem itself might have to be reconsidered.

From a standard algorithmic point of view, the complete calibration criterion of 

Dawid (1985) could be seen, as noted by Dawid himself, aa an attem pt to give a 

definition of randomness for non-Bernoulli distributions by means of the frequency 

approach, as initially conceived by von Mises (1951), with his idea of a ‘collective’. 

However, such an attempt has in itself some fundamental differences which make it 

difficult to consider it simply as a generalization of von Mises’s approach. Indeed, 

Uspenskii, Semenov and Shen’ (1990) remark, still from a standard algorithmic 

point of view, that if we want to give a definition of randomness on the lines of 

von Mises frequency approach, it is essential that the distribution considered is a 

Bernoulli one.

On the issue of the relationship with other approaches to statistical inference, 

Dawid (1992) studied the similarities between the prequential approach and the 

rather new approach to statistical inference called stochastic complexity, which is 

based on the connections between probability distributions and coding systems. 

The underlying philosophy of this approach (see, e. g., Rissanen, 1989) considers a 

transmission problem in which a sender, who observes a (finite) data-string, wishes 

to transmit this, by means of a coded message, to a receiver; and the success of 

a coding system is measured by the shortness of its code for the observed data- 

string. Dawid (1992) showed that the empirical assessment of a model based on 

the minimal length of a coded message, needed to transmit the data, is essentially 

equivalent to the prequential assessment based on the ‘logarithmic scoring rule’.
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C hapter 3 

M artingale Probability  

Frameworks

3.1 Introduction

Vovk (1993a), inspired by the ideaa of Dawid (1984) and Dawid (1985, Section 13.2), 

but extending them in a different direction, put forward a probability framework, 

alternative to that of Kolmogorov, based on the idea of a probability forecasting 

system. In this framework, which makes use of a ‘martingale calculus’, Vovk (1990a, 

1990b, 1991) showed versions of the weak and strong law of large number, the central 

limit theorem, and the law of the iterated logarithm. We present this framework in 

Section 3.2. Let us note here that the difference between Vovk’s calculus, which, in 

other words, was motivated by the idea of building a probability framework starting 

from the sequences of conditional probabilities given the past (not just the sequence 

of the actually observed conditional probabilities for the actual realized sequence of 

outcomes, as in the prequential principle), and Kolmogorov’s probability framework 

is mainly foundational, and the same applications can equivalently be treated in 

both frameworks.

Before going further, we have here to make a note about the different ideas 

behind the world ‘prequential’. With respect to Dawid’s prequential principle, this 

word has a meaning mostly in terms of the two sequences of actual probability
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forecasts and of actual realized outcomes. On the other hand, when related to 

Vovk’s prequential probability framework, this term  acquires a somewhat wider 

meaning referring to all possible sequences of probability forecasts and outcomes, 

and not just to the realized ones. Moreover, apart from this, the word ‘prequential’ 

may also be related to results or statements, in whichever probability framework, 

which are based on local properties, that is, on properties which talce account only 

of conditional probabilities given the past.

In Section 3.3, we present an axiomatics of probability theory, due to Shafer 

(1985, 1993), which, even if it originated from quite different considerations, is 

strongly related to Vovk’s prequential probability framework. This axiomatics, 

which will be formally connected to Vovk’s prequential framework in Section 3.4, 

has been used by Shafer to provide a framework for the study of the causal foun­

dation of independence graphs. Whereas in the previous chapter the prequential 

principle had been considered in Kolmogorov’s probability axiomatics, in Section 3.5 

it will briefly be considered in Vovk’s prequential probability framework. Very re­

cently, another foundation for probability theory, based entirely on the primitive 

notion of a martingale, has been proposed by Vovk (1993b, 1993c, 1995a). In this 

foundation, neither a probability distribution nor a probability forecasting system 

are introduced. An instance of this purely martingale probability framework is 

considered in Section 3.6.

3.2 Vovk’s Prequential Probability Framework

In this section we present the prequential probability framework of Vovk (1993a). 

Let N  denote the set of positive integers 1 ,2 ,... ,  and R  the set of real num­

bers. We introduce the following notation. Let us fix an observation space fl, 

with generic element w, endowed with a cr-algebra. ÇT is the set of all finite se­

quences X  =  W1W2 . . .  of elements of 0 ; U* includes the empty sequence □. If 

X  Ç. Q,*, then |z| denotes the length of the sequence T, and, for w G 0 , z * w denotes 

the sequence obtained from x by adding w on the right-hand side. The set of infinite
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sequences W1W2 . . .  of elements of Ct is denoted by 0®°. A forecasting system (over 

the observation space Q,) is defined as a function ttiD  H, where D  is an arbitrary 

measurable set in Q* and II is the set of probability distributions in Q. Sequences x 

in D  are called 7r-prior. This forecasting system tt represents for us a probabilistic 

theory about the world that, for some given sequences of past data x, is able to 

make probability forecasts for the results of future observations w. Note that, t t  is 

not required to make predictions for every past sequence ar G H*, but just for those 

sequences x £ D. When D = the forecasting system t t  is total, that is, it makes 

predictions for all x G Cl*. We denote by 7t(x,A), where x £ D and A Ç Cl, the 

probability 7t{x ) { A )  of the set A  for the observed sequence x.

For a fixed forecasting system t t ,  let us give the basic elements of this frame­

work. These are the measurable functions, called non-negative ir-supermartingales, 

S:Cl* —> [0,00] such that

S{x) > J^S{x* Lv)'7r{x, dw).

for any 7r-prior x, and S(x)  =  S(x * u), for all w, for any x  which is not x-prior. A 

non-negative x-supermartingale S  is interpreted as a gambling strategy against an 

infinitely rich holder of the theory x.

With these ingredients, Vovk (1993a) gave his martingale calculus of probability. 

He gave a definition of ‘global probability’ of an event E , which is a measurable set 

in Cl°°, in terms of the ‘local probabilities’ x(x). We follow here the second of his 

two equivalent formulations. Being ^ =  w%W2 . . .  an infinite sequence of elements 

of Cl and n G N, the initial segment w%W2 .. of (  of length n, we say that 

a non-negative x-supermartingale S  is successful on an event E  if, for all (  G 

^  1* The global t:-probability of E  is then defined as

pr,(-F) =  inf{5(D)},

where S  ranges over the non-negative x-supermartingales which are successful on 

E.

If X is non-total, global x-probability is not additive, and even if x is total, it is 

not necessarily cr-additive. However, global x-probability is subadditive. That is,
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for any forecasting system t t  and any sequence, finite or infinite, of events £'2, . . . ,

< Y ,V ^À E k).
k k

Global TT-probability is in agreement with Kolmogorov’s calculus of probability. 

Let us consider a probability distribution P  in fî®®. With P  we can associate total 

forecasting systems t t  such that 7r(o;ia;2. . .  w„)(A) is a variant of the conditional 

probability, relative to P , that the (n +  l)th  observation will lie in A  given that the 

first n observations have been W1W2 .. .a;„. All such t t  are in some sense equivalent, 

and any one of them is said to be generated by P . Vovk (1993a, Theorem 4) proved 

that, if n  is a Borel space and P  is a probability distribution in generating a 

total forecasting system x, then pr,  ̂ =

3.3 Shafer’s Protocols and Event Trees

We consider here the basics of a mathematical structure for probability theory which 

has been proposed by Shafer. In a discussion on the use of conditional probability, 

Shafer (1985) convincingly argued that its use is fully justified only in the presence 

of a protocol, that is, of a set of rules that tell, at each step, what can happen next. 

He gave the following definition.

D efin ition  3.3.1 A protocol is a non-empty collection S  of subsets of a non-empty 

set T such that

(i) any two elements of S  are either disjoint or nested, and

(a) if  V £ T , S  £ S , and v ^  S, then there is an element o f S  that contains v 

and is disjoint from S.

Note that, a protocol is essentially a tree-like structure added to a sample space 

T. The elements of S  are called situations. If E  is an event in the sample space T 

and 5  is a situation, then every situation S  corresponds to an event E , but most 

events do not correspond to a situation. Trees whose root is T and whose nodes are 

elements of S  are called by Shafer event trees. The main point of Shafer (1985) W c i s
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to show that the classical probabilistic rule of conditioning on an event is justified 

only if the conditioning event is a situation. W ith a protocol, he said, the rule of 

conditioning can be treated as a theorem; otherwise its use is questionable.

On this tree-like structure, Shafer (1985) considered a set of axioms for prob­

ability, and proved, to show the richness of the framework, a version of Bernoulli 

law of large numbers. Here, we will present his axiomatics as presented in Shafer 

(1993). When an event E  contains a situation 5, we say that E  is certain in S. 

When E  is disjoint from 5, we say that E  is impossible in S.  When E  is impossible 

or certain in 5, E  is determinate in S.  Otherwise, it is indeterminate in S.  We say 

that an event E precedes an event F  if ^  is determinate in any situation in which F  

is determinate. And we say that E  and F  are incompatible in S  if the intersection 

of the three events is empty.

Then, by letting E  and F  be events, and S, T  and U be situations, Shafer 

encapsulated in the following axioms the properties of the probabilities Ps(E)  of 

event E  in situation S.

81. 0 <  Ps(E)  < 1 for every situation S and every event E.

82. Ps{E)  = if  and only if E  is impossible in S.

83. Ps{E)  =  1 i f  and only if  E is certain in S.

84. I f  E  and F  are incompatible in S, then Ps{E U F) = Ps(E) +  Ps(P)-

85. I f  S precedes T  and T  precedes U, then P${U) =  P s { T ) P t (U) .

Axioms S1-S5 are satisfied whenever probabilities in situations are taken to be 

conditional probabilities with respect to some overall probability measure on the 

sample space. Conversely, if the numbers Ps{E)  satisfy axioms S1-S5, then for each 

situation 5 , the mapping that assigns the number Ps{E)  to each subset F  of T is 

a probability measure on T.

W ithout S5, the remaining axioms would specify just a set of unlinked probabil­

ity measures on the sample space, one for each situation. S5 supplies the connection

37



among these probability measures by means of which any set of probabilities in sit­

uations satisfying S1-S5 can be regarded as a set of conditional probabilities with 

respect to an essentially unique overall probability measure on the sample space.

Though axioms S1-S5 are in agreement with Kolmogorov’s axiomatics, Shafer 

maintained the view that it would be better to abandon it for the event tree frame­

work. Event trees, he says (see Shafer, 1990, 1991, 1993), provide the best frame­

work for the philosophical study of probability, and in Shafer (1995) they are used 

to provide a probabilistic foundation to the study of probabilistic causation.

3.4 A Basic Prequential Framework

The two probability frameworks we have just presented in Section 3.2 and 3.3 share 

two basic fundamental features. They both are based on a tree-like structure, and 

conceived in terms of local probabilities by means of which it is then possible to 

specify a global probability on the sample space. To the end of this section we will 

see how under some restrictions they happen to integrate.

For a fixed set fl, let us consider the infinite product space Ct°° =  0  x x • • •.

This is the set of all infinite data-sequences (  =  wiW2   The set Cl is called the

observation space, Ct°° is called the sample space, and, to emphasize the tree-like 

structure of this space, H x x • • • is called the event tree. This structure, in which 

finite data-sequences and situations coincide, will be the basis of what we will call 

the basic prequential framework.

Building on the idea of a ‘sub-forecasting system’ (Dawid, 1993), we introduce 

the following notation. For x £ Cl* and u  £ Cl, x * uj denotes the sequence obtained 

from X by adding w on the right-hand side. In the same way, ioi A  Ç. Cl, y £ Cl* and 

E  Ç Cl°°, the quantities x*  A, x * y , x * E ,  etc., are similarly defined. For instance, 

x * A is the set of sequences of form x  with u  £ A. For every sequence x £ Cl*, 

the cylinder set Ç Cl°° is defined by

=  {( : =  x).

When x ,y  £ Cl*, x Ç y means that x is a prefix of y. Of course, x Ç. y implies
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G Fg;. If X is a forecasting system with domain D Ç ÇI*, then for x € we 

denote by the forecasting system, with domain Dg = {y £ Q* : x* y  E D}, which 

for y G Dx and A  Ç ÇÎ satisfies 7Tx{y, A) =  7t(x * y  ̂A). The global probabilities 

associated with t t  and tTx are denoted with pr and pr ,̂ respectively. And for every 

event E  Ç we denote by Ex the event in given by

=  {( : a; * (  G E, (  G

for which x*  Ex =  D Fa,. With these definitions, we are now in a position to work 

with the probabilities pr3,(£’x) which can be thought of as the basic elements of our 

framework.

If TT is a total forecasting system, generated by a probability distribution P  in 

n°°, then pr(E) =  P{E) and pi^{Ex) =  P (x  * Ex\Tx) =  f  (E |F r). A basic property 

enjoyed by the probabilities prg,(^r), for a generic t t  and for z , y, z G H*, is

pri(rj,.z) = pr.(r,)pr,.,(r^).

Similarly, ioi x^y £ Q* and E  Ç we also have the formula

p i 'x C - É 'x  F l  F y )  =  p r a . ( F y ) p r j p ^ y ( J ? a ; ^ y ) .

Another interesting property relating the probabilities prg.(Æ"r) is given by the re­

cursive formulae

PT^{Ex) =
/  Prx*u;(^x*u;)7r(a;,du;), x e  D,
J (3.1)

which can also be used to calculate pr(£^) =  prg(^a). (Compare these formulae 

with the similar but different formulae of Dawid (1993).)

We can now start to formally connect, in our basic prequential framework, 

Vovk’s prequential probability framework to Shafer’s axiomatics. To this end, to 

facilitate the exposition, we first recall the definition of global probability based on 

non-negative 7r-martingales (Vovk, 1993a), and secondly translate into our notation 

Shafer’s definition of probability in situations.

39



D efin ition  3.4.1 For a given forecasting system t t ,  a measurable function >

[0, oo], is a non-negative T-martingale if  S{x) =  5"(T * w)7r(T, dw), fo r Tr-prior x,

and S{x) = S{x * w), for all w, fo r x which are not t:-prior. Then, fo r  E  Ç 

Vovk’s global probability is defined as

pr(E) =  inf{5(a)},

where S  ranges over the non-negative t t -martingales which are successful on E , that 

is, such that fo r all ^ E E , sup,^gN{5(f”)} > 1.

D efin ition  3.4.2 Let x ,y ,z  £ 0* and E ,F  Ç then pi^{Ex) is a probability in 

situations i f  it satisfies the following axioms.

51. 0 <  prg.(^a;) <  1 for every sequence x and every event E .

52. pij.{Ex) =  0 if  and only if  E  is impossible in x.

53. pra,(J5’x) =  1 if  and only if E  is certain in x.

54. I f  E  and F  are incompatible in x, then pi^iEx  U Fx) = pr^(Er) +  pr^(Fx).

55. IfT y  Ç Tx and Ç Ty, then pr^((r^)x) =  pr^i:((rj,)x)prj,((r^)y).

We can now consider the following propositions.

P ro p o s itio n  3.4.1 Vovk’s global probability satisfies Shafer’s axioms when t t  is 

total and the event tree is Q x Q x .

P ro o f. For every x £ Q*, let pr ,̂ be defined in accordance with Vovk’s definition of 

global probability. By theorem 4 of Vovk (1993a), if P  is a probability distribution in 

Q°° generating a total forecasting system t t ,  then pr =  P. Also, pTj.{Ex) =  P{E\Tx) 

is a probability distribution in 0,°°. Thus, for all x € fî* and E  Ç 0°°, pi^(Ex)

satisfies SI, 82, S3 and S4. Moreover, for x ,y ,z  £ Cl*, Ç Ty and Ty Ç F^, the

standard product rule applied to P  yields

f ( r , | r , )  =  P(Ty\T,)P{T,\Ty), 

and then prg.(Pa;) satisfies S5 too. Q.E.D.

In the next proposition we assume Cl to be countable.

40



P ro p o s itio n  3.4.2 For a countable set Cl, Sha ferprobability  in situations sat­

isfies Vovk’s definition o f global probability when t t  is total and the event tree is 

Ü X Cl X "

P ro o f. Suppose the probability pr^(£'x), defined for all x G Cl* and for all E  Ç Cl°°, 

satisfies Shafer’s axioms. Then, for an x G H*, taking the event E  to be of the form 

E  = { i '  £ A}, where A C  Cl, and writing 7t (x , A) =  pr^(|Ju;€A =

pij,(Ex), we see that, for every x £ Cl*, 'k(x ,A )  satisfies the usual axioms for a 

probability distribution in Cl. To show that pr(JF) satisfies Vovk’s definition of 

global probability, we note that, for every x £ Cl* and a generic E  Ç Cl°°,

pi^{Ex) =  ^

By writing prj.(rw) as Tr{x,u), we can see that, for every fixed E  £ Cl°°, pTj.(Ex) is 

a non-negative x-martingale which we call S '(x). Thus,

pi(E) =  S '{n)  =  inf{5(D)},

where S  ranges over the non-negative 7r-martingales which are successful on E. In 

fact, S'{x) is successful on E  because prg.(Ea;) =  1 when E  is certain in x, and 5"(û) 

is the infimum because pr^(£'a:) =  0 when E  is impossible in x. Q.E.D.

Note that the correspondence we have just proved, between Shafer’s axiomatics 

and Vovk’s prequential probability framework, is bound to a particular special case. 

In the more general case of a non-total forecasting system t t ,  we just remember that 

Vovk’s global probability satisfies, on the event tree Cl x  Cl x  "  just axioms SI, 

S2 and S5.

3.5 On the Prequential Principle

In this section we briefly discuss Dawid’s prequential principle, which has been 

considered in Chapter 2 in the classical Kolmogorov probability axiomatics, in 

Vovk’s prequential probability framework. For a discrete observation space Cl =
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{ o i ,  0 2 ) • • • ? O m ,  • • • } ,  c o n s i d e r  a  t o t a l  f o r e c a s t i n g  s y s t e m  t t  o n  t h e  e v e n t  t r e e  0  x  0  x  

• • •  ( a n d  a  c o r r e s p o n d i n g  d i s t r i b u t i o n  P  o n  S u p p o s e  w e  p e r f o r m  a n  e x p e r i ­

m e n t .  A n  e x p e r i m e n t  a l l o w s  u s  t o  o b s e r v e  o n e ,  a n d  o n l y  o n e ,  s i n g l e  p a t h  d o w n  t h e  

t r e e .  A n d  o n c e  t h e  e x p e r i m e n t  h a s  t a k e n  p l a c e ,  a l l  o u r  e m p i r i c a l  i n f o r m a t i o n  w i l l  

b e  e n c a p s u l a t e d  i n  t h e  f i n i t e  d a t a - s e q u e n c e  x "  =  ( w i , W 2 , . . .  w h e r e  G  0 ,  

2  =  1 , 2 , . . . , n .  I n  t h e  l i g h t  o f  x ” , t h e  p r e q u e n t i a l  p r i n c i p l e  s a y s  t h a t  w e  s h o u l d  

e v a l u a t e  o u r  f o r e c c t s t i n g  s y s t e m  t t  o n l y  o n  t h e  b a s i s  o f  t h e  t w o  s e q u e n c e s  o f  r e a l i z e d  

d a t a - v a l u e s  a n d  o f  r e a l i z e d  p r o b a b i l i t y  f o r e c a s t s ,

x " :  W i  W 2  W 3  . . .  w „ ,

t t ” : 7t ( D , - )  7 r ( x \ ' )  7 r ( x \ " )  . . .  : r ( x " - \ ' ) ,

w h e r e  t h e  7 r ( - ,  - ) ’s  a r e  t h e  p r e d i c t i v e  d i s t r i b u t i o n s  s u p p l i e d  b y  t t .  T h e  p a i r  o f  r e a l i z e d  

s e q u e n c e s  ( x ” , 7 t ” )  w i l l  b e  c a l l e d  t h e  prequential path.

G i v e n  t h e s e  t w o  s e q u e n c e s ,  l e t  u s  c o n s i d e r  t h e  s e t s  D ij =  { ^  : ^*  = W i W 2  . . .

f o r  2  =  1 , 2 , . . .  , 7%,  a n d  j  =  1 , 2 , . . .  , m , ____  E a c h  Dij i s  a  s e t  i n  w h i c h  d e p e n d s

o n  t h e  r e a l i z e d  d a t a - s e q u e n c e  x ”  =  ( w i , W 2 , . . .  W e  c a l l  t h e  prequential path

partition  t h e  p a r t i t i o n  o n  Cl°° d e f i n e d  b y

H r  =  {Di j  : 2  =  1 , 2 , . . . ,  n  a n d  aj  ^  a ; ,  i f  2  <  n } .

T h i s  p a r t i t i o n  d e p e n d s  j u s t  o n  t h e  s e q u e n c e  x ”  o f  r e a l i z e d  o u t c o m e s ,  a n d  i t  i n c l u d e s  

a l l  t h o s e  e v e n t s ,  a n d  o n l y  t h o s e ,  f o r  w h i c h  t h e  f o r e c a s t i n g  s y s t e m  t t  w a s  a s k e d  t o  

g i v e  i t s  p r e d i c t i o n s ,  w h i l e  o u r  k n o w l e d g e  a b o u t  t h e  w o r l d  u n f o l d e d  d o w n  t h e  t r e e  

n  X  n  X  • • • a l o n g  t h e  p a t h  x " " .  N o t e  t h a t  t h e  p r o b a b i l i t y  ( u n d e r  P ,  w e  c a n  s a y )  o f  

t h e  s e t s  Dij  G  I I x  i s  c o m p l e t e l y  d e f i n e d  ( u n l i k e  t h a t  o f  a  g e n e r i c  e v e n t  E)  b y  t h e  

p r e q u e n t i a l  p a t h  ( x ” , 7 t ” ) ,  t h r o u g h  t h e  f o r m u l a

P{Di j )  =  2 r ( 0 , w i ) ? r ( x \ w 2 )  • • • x ( x * " ^ , a ; , _ i ) x ( x * “ \ a j ) .

F o r  a  g e n e r i c  e v e n t  E  Ç  l e t  u s  n o w  d e f i n e  i t s  u p p e r  p r o b a b i l i t y  b y

n m
^ x (£ ) =  E  E  {P (A i)  : A i  n £  7̂  0}.

t=l J=1
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Note immediately that, for the sets Dij € IIx, we have Px{Dij) =  P{Dij). The 

probability Px{’) can be thought of as a way of transporting the probabilistic infor­

mation at hand from the prequential path (x", t t”) to the sample space Indeed, 

Pa:(') is in one-to-one correspondence with the couple (x”, tt”), and every inference 

based on the probabilities P®(-) will thus respect the prequential principle.

This upper probability has an interesting interpretation in terms of Vovk’s global 

probability. Consider the ‘minimal’ forecasting system t t ,  which is non-total, whose 

^-prior are the initial fragments of the realized data-sequence x ” and whose predic­

tions, for these 7r-prior, are identical to the predictions made by t t .  Then

Px{E) =  pr^(P),

where pr^(P) is Vovk’s global probability for the forecasting system W. This can 

be seen using the recursive formulae (3.1) given in Section 3.4. In this simple case, 

put a one on the nodes of the event tree at which E  happens and put a zero on the 

nodes at which E  fails. (Using the language of Section 3.3, we say that E  happens 

at S  li E  is certain in S', but not in the situation immediately above it. And we 

say that E  fails at S  iî E  is impossible in S, but not in the situation immediately 

above it.) These ones and zeros are just the probabilities pij.{Ex) when x is a node 

at which E  happens or fails. Then the global probability pr: (̂jE') can be obtained 

by applying the recursive formulae towards the root of the tree.

Another interpretation of the upper probability Px(E ) comes from Dempster- 

Shafer theory of belief functions (see Shafer, 1976). In accordance to this theory, 

Px(E) is a plausibility function, whereas

P^{E) = l - P x { Q ° ^ \ E ) ,

is a belief function.

C o n s i d e r  n o w  w h a t  h a p p e n s  i f  t h e  o b s e r v a t i o n  s p a c e  Ct i s  u n c o u n t a b l e .  F o r  a  

t o t a l  f o r e c a s t i n g  s y s t e m  t t  o n  t h e  e v e n t  t r e e  x x • • - , c o n s i d e r ,  a s  b e f o r e ,  a n  

o b s e r v e d  s e q u e n c e  o f  o u t c o m e s  x ”" =  (w % , W 2 , . . . ,  w , i ) ,  a n d  a n  o b s e r v e d  s e q u e n c e  o f  

p r o b a b i l i t y  f o r e c a s t s  tt"  =  ( 7 r ( 0 ,  • ) ,  7 t(x ^ , - ) , . . . ,  7 r (x ” “ ^, • ) ) .  F o r  i  =  1 , 2 , . . . ,  n ,  a n d
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a G n , define the sets Dia Ç 0°° by

A a  =  { ( : ( * =  W 1 W 2  . .  . w * _ i a } ,

where (  G Then the analogue of the prequential path partition of the discrete 

case is given by the partition on ft®® defined by

Hx =  {Dia : 2 =  1 ,2 , . . . ,  n, a G ft and u w* if % < m}, 

and, for every E  Ç ft°°, the upper probability is now given by the formula

Px{E)  — ^2 ^\J{Dia’‘Dia(^E^Ib,aeiî,a^ujiiî i< n}iC )D {d^}•

These quantities now lose much of their original appeal. If 7 t ( ü ,  dw) is an absolutely 

continuous distribution with respect to Lebesgue measure, only the first term in the 

sum can be positive. Indeed, all other terms would be identically zero, being the 

integral, for * =  2 ,3 , . . . ,  n, over a set of Lebesgue measure zero. Similar considera­

tions would arise for a non-total forecasting system t t .

3.6 A Purely M artingale Probability Framework

In Section 3.2, we considered a probability framework in which no Kolmogorovian 

probability distribution P  over ft®® was being introduced. In that framework, a 

definition of probability over ft®®, called global 7r-probability, was given by means 

of martingales, namely 7r-martingales, which were defined with respect to a prob­

ability forecasting system t t .  Vovk (1993b, 1993c, 1995a), instead of a probability 

distribution P , or of a probability forecasting system t t ,  proposed, as a foundation 

for probability theory, to use only sequences of measurable functions, which are 

called M-martingales, applying directly to them the principle of the excluded gam­

bling strategy (see also Shafer, 1995). In this section, we will present a variant of 

this purely martingale framework, which will also be used in the following chapters. 

Our exposition will follow to a considerable degree Vovk (1993c).

L e t  ( f t® ® , ( P o ,  P i ,  • • . ) ,  P " )  b e  a  f i x e d  f i l t e r e d  s p a c e  w i t h  P o  =  { 0 ,  f t® ® } . T o  t h i s  w e  

a d d  a n  R ^ - v a l u e d ,  A; G N, s t o c h a s t i c  s e q u e n c e  M , t h a t  i s ,  a  s e q u e n c e  o f  R ^ - v a l u e d
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random elements Mo, M i , . . .  such that Mq =  0, and each M„ is ^-m easurab le . The 

stochastic sequence M is called the basic martingale^ and the stochastic sequence 

Ml — M q ,  M2—M l , . . .  is called the basic martingale difference sequence. The filtered 

space (.^o,.Fi,.. complemented with the basic martingale M  forms a 

finite-dimensional martingale model.

If V  =  (Vi, V2, . . .) is an R*-valued predictable sequence (that is, a sequence 

of R*-valued random elements such that each Vn is .Fn-i-measurable), then the 

stochastic sequence defined by

t=l

where • in the right-hand side stands for the inner product of vectors in R^, is called 

the martingale transform V  • M. Stochastic sequences of the form c - \ - V '  M , with 

c E R , are called M-martingales.

To these definitions are attached the following gambling interpretations. Each 

element of the, in general multivariate, basic martingale M  can be considered the 

evolution of our capital in an infinite sequence of fair games against an infinitely 

rich bookmaker in which at each trial we bet a unit of our capital. Each element 

of the multivariate value M„ is interpreted as our capital after n games, in the 

corresponding infinite sequence of fair games. The predictable sequence V  and the 

martingale transform V  • M  represent, respectively, a combined strategy of varying 

bets over all the k infinite sequences of fair games represented by M, and the 

evolution of our capital which corresponds to this strategy.

With these elements, Vovk (1993c) gave the following definition of a null set. 

Note that a null set is not necessarily a measurable subset of

D efinition 3.6.1 A set E  C fl°° is M-null i f  there is a non-negative M-martingale 

S  such that 5o =  1 and Sn{i) —»• 00, as n 0 0 , for all ^ E E .

In accordance with this definition, we also say that a set E  Ç Çt°° is M-almost sure 

if the set 0®° \  is M-null. This definition, which provides the foundations of the 

purely martingale framework we present, is interpreted in terms of the infinitary
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principle of the excluded gambling strategy (Vovk, 1993a, Section 3). If 5  is a pre­

specified non-negative M-martingale such that So = 1 and (  is the realized outcome, 

then, as long gis we believe in our martingale model M , we can be practically sure 

that 6'n(^) does not tend to infinity, as n —> oo. So, if a set E  is M-null, we can be 

practically sure that it will not happen.

As given by Vovk, this definition of an M-null set does not make use of any 

probability distribution, and so does not make use of Kolmogorov’s axioms of prob­

ability. Nevertheless, consider extending our filtered space to a probability model 

by adding a probability distribution P  in T .  In this case, if a pre-specified event 

E  £ !F satisfies P{E)  =  0, we can be (almost) sure that E  will not happen (provided 

we believe in the model).

Theorem  3.6.1 (Vovk, 1993c) I f  M  is a local martingale (see, e. g., Shiryayev, 

1984) respect to a probability distribution P in and an event E  E P

is M-null, then P{E)  =  0.

P ro o f. Let E  E he M-null. There is a predictable R*^-valued sequence V  such 

that the M-martingale 5  =  1 +  V • M  is non-negative zind 5n(f) —» oo, as n —> oo, 

for all (  G jF. W ith respect to P , 5 is a non-negative local martingale, and hence, 

by Fatou’s lemma, a non-negative supermartingale for which E|5n| < oo, for all 

n >  0. Then, for any constant c > 0,

P{E) < P { ( : Sn(0  oo, as n -> oo} < P {(  : 3 n s.t. 5„(^) >  c},

and, by Doob’s inequality (Shiryayev, 1984, p. 464),

: 3 n s.t. SniO  > c} <  i .

Therefore P{E)  =  0. Q.E.D.

This theorem asserts that Vovk’s martingale definition of an M-null set, which 

does not require the introduction of any probability distribution, does not lead 

to any contradiction when such a probability distribution is present. The converse 

statement that, for any E  E P , i i  P(E)  =  0, then E  is M-null, is not true in general.
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For instance, if the basic martingale is such that, for all n € N , m in(M „|^„_i) < 

M n-\ < max(Af„|^„_i), then no ^-m eaaurable event, for n finite, can be M-null.

To show the power of these foundations, Vovk (1993c) proved a version of Kol­

mogorov’s strong law of large numbers, and, by enriching the framework, Vovk 

(1995a) proved also a version of Lindeberg’s central limit theorem. Note that Vovk’s 

definition of an M-null set provides a definition of ‘probability zero’. Probabilities 

other that zero could be defined by adapting the martingale construction in Vovk 

(1993a, Section 4). To this end, however, we would have to consider only basic 

martingales which are in some sense coherent, that is, basic martingales for which 

no gambling strategy can ensure a guaranteed profit at some future time.

3.7 D iscussion

From an empirical point of view, subjective theory of coherence leaves open the 

problem of how to cope with coherent probabilistic assertions which seem to dis­

agree with the actual observations. In the tradition of de Finetti and Savage, the 

classical non-contradictory way to assess subjective probabilistic assertions is to 

use scoring rules, without attaching to them any probabilistic meaning. Dawid 

(1982), in an attem pt to find a more objective solution to this problem, proposed 

to discredit any probability assessment which failed to give positive probability to 

a pre-specified event that actually materialized, and Dawid (1985), using a gen­

eralization of the calibration criterion, also argued in favour of the existence of 

calibration-based empirical probabilities. On the other hand, Vovk (1993a) pro­

posed to tackle the problem of the relation of disagreement between theory and 

observations in a different way. Attempts to create a general empirical theory of 

probability, he said, should be abandoned, and he argued that we should content 

ourselves with what he called the logic of probability, establishing relations between 

probabilistic theories and observations. To him, the problem of disagreement can 

only be solved by the introduction of an appropriate principle, and, inspired by the 

ideas of Dawid (1985, Section 13.2), he proposed to base the measure of disagree-
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ment on martingales taking very large values, by using a version of the principle of 

the excluded gambling strategy.
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C hapter 4

M -Typical Sequences

Random sequences are usually defined with respect to a probability distribution 

assuming Kolmogorov’s axioms for probability theory. In this chapter, without 

using this axiomatics, we will give a definition of random (typical) sequences taking 

as primitive the notion of a martingale and using the principle of the excluded 

gambling strategy, on the lines of the purely martingale probability framework of 

Section 3.6.

To ease our exposition, we recall here some notation from the previous sections 

which will be used in this and the next two chapters. The set of positive integers 

1 ,2 , . . .  is denoted by N , and the sets of rational and real numbers are denoted 

respectively by Q and R. For any set fl, ft* is the set of finite sequences wiW2 .. 

of elements of fl; Ü* includes the empty sequence □. The set Cl is called the 

observation space. The length of a sequence x E Cl* is denoted by |x|, whereas the 

concatenation of x  with an element u; E Cl is denoted by z * w. For every x E Cl*, 

the cylinder set F^ Ç Çl°° is defined by

r .  =  : (I'l =  x}.

The set of infinite sequences wiUg. . .  of elements of Cl is denoted by Cl°°. If (  =  

W1LJ2 . . .  is an infinite sequence of elements of ÇI and n G N , is the initial segment 

W1W2 .. .oJn of ^ of length n.

Moreover, in what follows, for any real number z, the largest integer not greater
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than z will be denoted by [z j. We will write In z to indicate the natural (base e) 

logarithm of z. And the indicator function of the interval (—oo,z], z G (—00, 00), 

will be denoted by 7(_oo,z](").

4.1 The N otion  of Random ness

Consider the following two sequences of twenty zeros and ones

0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1  1, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 ,

and suppose that we were asked to decide whether they are or not the result of 

the random flipping of a fair coin. Almost every one would agree that the first 

sequence could be the result of such a random experiment, and that the second 

sequence could not. In favour of this thesis, many would argue that the probability 

of the second sequence is too small, being equal to 2~^°, but they would forget that 

the first sequence has the same exact probability! The point is that when we are 

presented with something like the first sequence we do not consider it individually, 

but consider it as a class of sequences of the same type. And in thinking at the 

probability of the first sequence we actually think at the probability of a much 

bigger event. In some sense, this is due to the intrinsic complexity of the succession 

of zeros and ones in the sequence and not only at a priori probability.

This is not however just an isolated example. According to classical probability 

theory, every time we are faced with an experiment or a situation in which ele­

ments of uncertainty are present we are usually led to consider just a probability 

distribution governing the probabilities of all a priori possible outcomes. And in 

a situation like that above we are led to consider only the a priori probabilities of 

the two sequences without considering any other possible element. From the point 

of view of classical probability theory, even if our intuition is different, the above 

two sequences should both be regarded as possible results of the random flipping
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of a fair coin. A more satisfactory answer to this problem is provided by the algo­

rithmic approach. By enriching probability theory with some algorithmic notions 

it becomes possible to distinguish between the above two sequences and to justify 

the choice of the first sequence in accordance with our intuition.

4.2 Typical Sequences

Consider the set Cl°° of all possible infinite sequences of outcomes of an infinite 

sequence of random experiments described by a probability distribution P  (not 

necessarily assuming independence). Also, consider a set of simple properties, each 

of them characterizing a small subset of Following our intuition, an infinite 

sequence (  G 0°° is felt to be non-random if there is one of these properties by 

means of which it can be characterized, whereas it is felt it could be random if 

there is no such simple property. Statistically, a simple property characterizing a 

small subset of is represented by a test of ‘absence of regularity’ (randomness), 

which is a partition (E,Cl°° \  E) of such that P(E)  =  1, which is required 

to be algorithmically computable. Every sequence ^ € E  is regarded as having 

passed the test and a sequence which passes all computable tests of randomness 

is said to be random. That we have to examine only tests which are computable 

is justified by considering that no sequence could ever pass all possible conceivable 

tests. This is in agreement with what our intuition would suggest, that an extremely 

complicated and convoluted property (that is a property that cannot be given by a 

finite amount of information) would be rejected as a characterization of non-random 

sequence. Since, by this criterion, a random sequence does not belong to any small 

fraction of all sequences, that is, to any (computable) subset having measure zero, 

such a sequence can be thought of as a typical representative of the class of all 

sequences. This property of typicalness, as an appropriate property characterizing 

the intuitive notion of randomness, was first proposed by Martin-Lof (1966).

In accordance with Kolmogorov and Uspenskii (1987), random sequences char­

acterized in this way are called typical., to distinguish them from those random
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sequences which arise from the chaotic and the stochastic approaches (the current 

use of the terms ‘typical’, ‘chaotic’ and ‘stochastic’ has been set in the above pa­

per). The property of typicalness leads to the same class of random sequences as 

the property of chaoticness, whereas the property of stochasticness leads to a dis­

tinct definition of randomness with many drawbacks (see, for a review, Uspenskii, 

Semenov and Shen’, 1990).

Once the concept of a random (typical or chaotic) sequence has been defined, it is 

possible to give ‘pointwise’ algorithmic counterparts to many of the classical almost 

sure limit results of probability theory such as the strong law of large numbers and 

the law of the iterated logarithm.

4.3 Com putable M artingales

Assuming Kolmogorov’s axioms for probability theory, martingale processes have 

been widely used and extensively studied (see, e. g., Schnorr, 1971, 1977) as test 

functions for defining typical sequences with respect to a probability distribution 

P. Our present goal, however, is that to make use of the concept of a martingale in 

a more direct way. Instead of defining a typical sequence with respect to a proba­

bility distribution P , we will define a typical sequence with respect to a sequence of 

measurable functions, which we declare to be a martingale, by using the principle 

of the excluded gambling strategy, and without introducing any probability distri­

bution. This use of the principle of the excluded gambling strategy as a foundation 

for probability theory, parallels, in an algorithmic framework, the purely martingale 

approach of Section 3.6.

To give our definition of a typical sequence, we will introduce in this purely 

martingale framework some algorithmic concepts, but first we will have to reconsider 

the framework itself. In this and the following two chapters, we will restrict ourselves 

to finite-dimensional martingale models for which each cr-algebra is generated 

by a countable partition. We will always consider the observation space 0  to be a 

subset of Q (a classical example being H =  {0,1}). And, for a fixed observation
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space n , we will always consider the family of (t-algebras • • •) on Cl°° to be

the filtration generated by the cylinder sets a; G H*. Stochastic and predictable 

sequences axe now regarded as functions from Cl* into (A; >  1). A stochastic 

sequence 5  is a function S:Cl* R*, (for every fixed n G N , is measurable 

with respect to and a predictable sequence V is a function V:Cl* R* such 

that, for every fixed n G N, is measurable with respect to ^ n -i-  In what

follows, quantities like 5'(f*), ), etc., will often be abbreviated to 5,-, Vi, etc..

It will be evident from the context if they refer to a stochastic sequence or to 

the realized sequence of values for a given f . The gambling picture of Section 3.6 

will still be used to give an interpretation to the framework. The evolution of our 

capital, in an infinite sequence of ‘fair games’ against an infinitely rich bookmaker, 

in which at each trial we bet a unit of our capital, is represented by a given scalar 

stochastic sequence Mo, Mi, .. ., which is called the basic martingale. The value 

Mn is interpreted as our capital after n games. In the same way, a finite collection 

of infinite sequences of ‘fair games’ is represented by a multivariate M . A strategy 

for varying the sizes of the bets is represented by a predictable sequence Vi, V%,

.. . ,  and then the evolution of our capital corresponding to the application of this 

strategy is represented by the martingale transform

[ V - M ) n  = j^ V i^  { M i - M i . i ) .
t=i

Stochastic sequences of the form c V  • M,  where c G R  represents a starting 

capital, are called M-martingales.

Let us now give the following algorithmic definitions. More general definitions 

and some more elements of the theory of algorithms axe given in the Appendix. We 

say that a stochastic sequence S:Cl* —̂ R  is computable if there is an algorithm U 

which transforms any input x £ Cl* and positive integer n into a rational number 

r satisfying |5(x) — r| <  2~”. That is, the stochastic sequence S  is computable if 

its values can be computed arbitrarily accurately by some fixed algorithm. We also 

say that a stochastic sequence S  is lower semicomputable if there is an algorithm U 

which, when fed with a rational number r  and an input x £ Cl*, eventually stops if 

S{x) > r and never stops otherwise. Lower semicomputabiHty of S  means that if
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S{x) > r this fact will sooner or later be learned whereas if S{x) <  r  we may be 

for ever uncertain. For a computable basic martingale M , M-martingales obtained 

from a computable predictable sequence V hy c V  • M , where c is a rational 

number and V • M  is a martingale transform, are computable. Since there is only 

a countable number of algorithms, the sets of all computable M-martingales, and 

of all lower semicomputable M-martingales, are countable.

4.4 M -Typical Sequences

Under the usual Kolmogorov axiomatics for probability theory, every definition of 

typical sequences, with respect to a probability distribution P , corresponds to a 

definition of an effectively null set (see, e. g., Uspenskii, Semenov and Shen’, 1990, 

Section 2.1). In our purely martingale framework, we define an effectively null set 

as follows (cf. Definition 3.6.1).

D efin ition  4.4.1 A set E  C is effectively M-nuU if there is a lower semicom­

putable non-negative M-martingale S  such that 5o =  1 and S(Ç^) —> oo, as n oo, 

for all (  E P .

As before, we also say that a set P  Ç is effectively M-almost sure if the set 

\ E \ s  effectively M-null. Notice that, to define an effectively M-null set it is not 

necessary to assume that the basic martingale M  is computable. All that is algorith­

mically needed is the set of lower semicomputable non-negative M-martingales with 

respect to an arbitrary basic martingale M. (For a criticism on the arbitrariness of 

the choice of this set, see Howard (1993).)

D efin ition  4.4.2 An infinite sequence ^ E is M-typical if, for any lower semi- 

computable non-negative M-martingale S, such that Sq = \, 5 ( f”) does not tend to 

infinity.

An M-typical sequence may be interpreted as follows. Let us suppose that 

in our gambling picture, starting with a positive amount of money, at each trial 

we bet a fraction of our capital, with the constraint that we can never incur a
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debt. Of course, for any possible sequence of outcomes there would always be a 

winning strategy among all possible strategies. But if we limit ourselves to only 

those strategies which are not too complicated, viz. those which can be effectively 

calculated by means of some algorithm, then we would expect that, whatever betting 

strategy we might decide to employ, we will never become richer and richer as the 

game goes on (see Figure 4.1). If it really happens that we become richer and richer, 

this is because the actual sequence of outcomes is not random at all.

1

0 n

Figure 4.1: Realization of a lower semicomputable non-negative M-martingale 6",
5o = 1, for an ilf-typical sequence

An effectively M-null set E  cannot contain any M-typical sequence. In fact, if E  

were to contain an M-typical sequence (, then for some lower semicomputable non­

negative M-martingale 5 , with Sq =  1, we would have S((^)  —> oo, as n —»■ oo, in 

contradiction with (  being M-typical. We denote the set of all M-typical sequences 

by Tm - Then this set is the intersection of all effectively M-almost sure sets or, 

equivalently, the set \  Tm  is the union of all effectively M-null sets.

In the traditional treatment of random sequences, assuming Kolmogorov’s ax­

iomatics, the enumerability of the set of all test functions leading to some notion 

of typicalness guarantees that the set of all typical sequences has measure one (by 

using, e. g.. Proposition 2.4(a) of Williams (1991)). In our context, this property 

translates into the statement that the set of all M-typical sequences is M-almost
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sure (see Definition 3.6.1).

L em m a 4.4.1 The set Tm  of all M-typical sequences is M -almost sure.

P roof. We have to prove that the set \  Tm  is M-null. That is, we have to find 

a non-negative M-martingale S  such that 5o =  1 and > oo, as n —> oo, for

all (  G \  Tm . N ow, since the set of all lower semicomputable M-martingales 

is countable, we can consider an enumeration of all lower semicomputable non­

negative M-martingales starting at one, say, and consider the non­

negative M-martingale

t=i ^
The non-negative M-martingale S  is such that So = 1 and 5(^”) —> oo, as n —> oo, 

whenever there is an i such that —> oo, as n —> oo. Q.E.D.

This lemma tells us that we can reasonably substitute the set 0,°° of all infinite 

sequences with the smaller set Tm  of all M-typical sequences.

A similar result, but of a somewhat different nature, would state that the set 

Tm  is also effectively M-almost sure, that is, that the union of all effectively M-null 

sets is also an effectively M-null set. The existence of such a ‘maximal’ effectively 

null set is guaranteed, for instance, under Kolmogorov’s axiomatics, by the classical 

definition of typical sequences proposed by Martin-Lof (1966, Section III). In our 

framework, to prove that the set Tm  is eflPectively M-almost sure, we would have 

to consider M-supermartingales instead of M-martingales in Definitions 4.4.1 and 

4.4.2 of an effectively M-null set and of an M-typical sequence respectively (Vovk, 

1995b).

4.5 M ore on M -Typical Sequences

In this section we consider the problem of whether an M-typical sequence can also 

be typical with respect to some other stochastic sequence different from M. For a 

given basic martingale M  and for an arbitrary stochastic sequence N , we will say 

that an infinite sequence (  € is A^-typical if Definition 4.4.2 holds for ^ when
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N  is taken to be the basic martingale. With this terminology, let us now consider 

the following lemma.

L em m a 4.5.1 Let Mn =  am R^-valued (k > 1) computable basic mar­

tingale and let Nn =  c +  K’ ’ where c is a rational number and V is an 

-valued ( k > \ )  computable predictable sequence, be a computable M-martingale. 

Then every sequence ^ £ 0,°° which is M-typical is also N-typical.

P ro o f. Consider an M-typical sequence (  G We have to show that (  is N- 

typical, that is, that for any lower semicomputable non-negative iV-martingale S  

with 5o =  1, does not tend to infinity. Let 5  be a lower semicomputable

non-negative A^-martingale with 5o =  1, then

5n =  l  +
t=l

=  l  +  f , { W i V i ) - X i ,

for some predictable sequence W . So, S  is also a lower semicomputable non-negative 

M-martingale with 5o =  1. Then, since ^ is M-typical, 5(^”) does not tend to 

infinity, and (  is also iV-typical. Q.E.D.

In plain words, this lemma says that the set of all lower semicomputable non­

negative iV-martingales, starting at one, is included in the set of all lower semicom­

putable non-negative M-martingales, starting at one. A more general result, which 

also includes the previous lemma, is the next one.

Lem m a 4.5.2 Let Mn =  122=1 6c an 'R^-valued (k > 1) computable basic 

martingale, and consider the computable M-martingales ' ̂ i )

j  =  1 ,2 ,. . . , J ,  where cj are rational numbers and are -valued (k > 1) 

computable predictable sequences. Define the computable stochastic sequence Nn =  

[ N ^ \  N ^ \  . . . ,  . Then every sequence f  G 0°° which is M-typical is also

N-typical.

P ro o f. Since for an valued computable predictable sequence W  we have that 

1 +  ^  Wi * {Ni — N i-i)
t=i
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t=l

=  1+ Ê  +• • -+ W M V,f),. . . ,  • -+ W j.v ^  )][%!.,..
t=l

every lower semicomputable non-negative A^-martingale 5 , with 5o =  1, is also 

a lower semicomputable non-negative M-martingale, with 5o =  1. Then, for an 

M -typical sequence (, for any lower semicomputable non-negative A^-martingale 5, 

with So =  1, 5($”) does not tend to infinity, and (  is also TV-typical. Q.E.D.

Note that, in general, we cannot say that a sequence (  G 0°° is 

typical just because it is simultaneously M^^htypical and M^^htypical, where M^^) 

and M(^) are computable stochastic sequences.

4.6 D iscussion

The above definition of M-typical sequences provides the basis of an approach to 

randomness in which, unlike the standard algorithmic approach, assuming Kol­

mogorov’s axioms of probability, no probability distribution P  over 0,°° needs to be 

introduced. All that we need is an infinite sequence of ‘fair games’, and an appeal to 

the long-term impossibility of winning against an infinitely rich bookmaker. Even 

if M-typical sequences are so unpredictable that no computable gambling strategy 

can hope to gain anything against them, this does not mean that they cannot sat­

isfy interesting asymptotic statistical properties. Indeed the contrary is true. In the 

next two chapters we show some algorithmic versions for M-typical sequences of the 

strong law of large numbers, of the upper half of the law of the iterated logarithm, 

and of the strong central limit theorem. This algorithmic use of the principle of the 

excluded gambling strategy, as a foundation for probability theory, parallels its use 

made in Section 3.6 in the purely martingale probability framework of Vovk (1993b, 

1993c, 1995a). On the other hand, the algorithmic counterpart of the prequential 

probability framework of Vovk (1993a) has been considered by Vovk and V’yugin 

(1993, 1994).

The algorithmic framework that has been laid in this chapter is powerful enough
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to handle any situation in which the observation space is a subset of the rational 

numbers. For dealing with the more general situation in which the observation space 

is a subset of the computable real numbers, we would have to deal with computable 

functions defined over sets of computable real numbers, which requires a non-trivial 

extension of the algorithmic definitions used here. It should also be stressed that this 

approach is suitable for dealing with limiting results, that is, with results for infinite 

sequences of outcomes. For dealing with finite sequences of outcomes we would 

have to replace our definition of M-typical sequences with some purely martingale 

equivalent to the standard notion of ‘deficiency of randomness’ (see Kolmogorov 

and Uspenskii, 1987). The resulting algorithmic approach would probably become 

much less appealing, as is the case in the standard Kolmogorov framework, in which, 

with respect to the non-algorithmic formulation, exact equalities and inequalities 

have to be replaced by equalities and inequalities to within a constant factor.

59



C hapter 5 

Strong Law of Large N um bers and  

Law o f the Iterated Logarithm

In this chapter we will prove some versions for M-typical sequences of the strong 

law of large numbers and of the upper half of the law of the iterated logarithm. Let 

us note that these results will be derived in a framework in which no probability 

distribution P  over is being introduced, and so, without assuming Kolmogorov’s 

axioms of probability. Due to its importance, the convergence lemma used in the 

proof of the sitrong law of large numbers and of the upper half of the law of the 

iterated logarithm is presented in Section 5.1. In Section 5.2 and 5.3 we give the 

strong law of large numbers with some of its variants. In Section 5.4 and 5.5 we give 

a calibration theorem and a classical refinement of the strong law of large numbers 

respectively. In Section 5.6 and 5.7 we then give the upper half of the law of the 

iterated logarithm, again with some of its variants, for the case of a binary basic 

martingale. Finally, in Section 5.8 we consider a strong law of large numbers in the 

case of sampled martingales.

5.1 T he Convergence Lemma

The following lemma, which will be used in the proof of the strong law of large 

numbers and of the upper half of the law of the iterated logarithm, is an analogue of
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Doob’s martingale convergence theorem (Doob, 1953, Ch. VII, Section 4), restricted 

to non-negative martingales. The proof, which is in a way archetypical, depends on 

a reductio ad absurdum which involves the definition of M-typical sequences and the 

asymptotic behaviour of an appropriate computable non-negative M-martingale.

L em m a 5.1.1 I f  S  is a computable non-negative M-martingale with Sq > 0 and (  

is an M-typical sequence, then the limit limn-+oo (of the sequence o f values of

S  for the M-typical sequence exists and is finite.

P roof. (Reductio ad absurdum.) Suppose the limit lim^_^oo 6'((^) does not exist. 

Then there are rational numbers ui, C2, &i, 6% such that

lim infS '(f”) < ui <  C2 < 6i < 62 <  lim sup5'(^”).
n—*-oo n—♦oo

Fix an algorithm computing 5, Us say, and consider the algorithm, which takes as 

input ((", m), m =  1, 2, . . . ,  and yields as output zero or one for n =  1, 2, . . .  and 

never stops for n =  0, represented by the flowchart of Figure 5.1.

OED

w := 0, i := 1, Vi •= 1

r '= U s{C ,k), 
k such that 

(62 — 6i ) / 2 > ^

if r —^  >61 then 
Vi+i =  0, u; =  1 
else Vi+i =  Vi

k such that 
(û2 — û i) /2 > ^

if r - f  ̂  <fl2 then
Vi+i =  1, w =  0 
else K+i =  Vi

Figure 5.1: Flowchart of the algorithm Uv computing the binary predictable se­
quence V  in the proof of Lemma 5.1.1.
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(Note that, in the flowchart, the value of m  is not actually used, and r  is the rational 

provided by the algorithm Us when the input is ((% A;), k G N .) This algorithm, 

Uv say, is completely determined by the rational approximations to S  given by Us. 

It defines a binary predictable sequence, V  say, which is computable, by definition, 

by Uy itself (here whatever the value of m, V  is always computed exactly). The 

sequence V, starting at one, takes value one until S  crosses 6i or 62, then takes 

value zero until S  crosses a\ or G2, then again it takes value one until S  crosses 61 

or 62, and so forth.

We define

5 * (D  =  1 +  -^  Ê  [ s ic )  -  5 ( r - ^ ) ] .
*̂ 0 i=i

So

n0

1

n0

Figure 5.2: Non-converging realization of the M-martingale S and corresponding 
realization of the non-negative M-martingale S*.

The function S* is a lower semicomputable (indeed computable) non-negative M- 

martingale, with =  1, such that 00, as n —> 00, for the M-typical
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sequence ^ (see Figure 5.2). So, by contradiction, the limit lim^^oo exists.

To prove that this limit is also finite, just consider the lower semicomputable non­

negative M-martingale 5 /5q. Q.E.D.

In Lemma 5.1.1, and Lemma 5.2.1 below, we use flowcharts to depict our algorithms. 

It is a remarkable fact that the notion of a flowchart leads to a specific theory 

of flowchart computable functions which is equivalent to the classical theory of 

computability based on recursive functions (see, e. g., Odifreddi, 1992).

5.2 The Strong Law of Large N um bers

Let US consider, under a classical probability distribution P , the following general­

ization of Kolmogorov’s strong law of large numbers. If %i, - - - is a martingale

difference sequence with respect to a filtration (P o ,P i, . . .) ,  then

t=l

almost surely. Vovk (1993c), as an application of his purely martingale frame­

work, proved a version of this result using only his definition of an M-null set 

(see Section 3.6). And because of Theorem 3.6.1, his result also implied the above 

generalization under Kolmogorov’s axiomatics. In this section we will consider 

the ‘pointwise’ algorithmic version of this result based on the definition of M- 

typical sequences. In proving this version, we will parallel the proof given by Vovk 

(1993c) which resembles, in turn, the proof of Kolmogorov’s classical result given in 

Shiryayev (1984, Theorem Vll.5.4). This proof takes several steps, the first being 

provided by the lemma of the previous section.

An M-submartingale is defined as a stochastic sequence of the form T  = S  + 

A, where S:ü*  —> R  is an M-martingale and A:Q* —> R  is a non-decreasing 

predictable sequence. If S  and A are both computable, then T  is computable as 

well. Any such sequence A is called a compensator of T.

L em m a 5 .2.1 I f T  is a computable non-negative M-submartingale, A  is one of its
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computable compensators, and (  is an M-typical sequence, then,

v4oo(() < oo converges.

P ro o f. Suppose that the M-typical sequence ^ is such that Aoo{i) < oo. Then 

there is a C G N such that i4(^”) < C — 1, for all n.

Fix an algorithm computing A, U say, and consider the algorithm Ua that takes 

as input m ,n  =  1, 2, . . . ,  feeds U with * 0; ,m), where w is a fixed

element of fl, and yields as output the rational supplied by U. This algorithm 

computes A  yielding as output rational approximations that are predictable. We 

build out of Ua the algorithm Uv-, which takes as input m), m ,n  = 1, 2, . . . ,  and 

yields as output zero or one, given by the flowchart of Figure 5.3. (Note that, as in 

Figure 5.1, the value of m is not used.)

yes no

no
1 i f r + i < C  

0 otherwise
K- : = 0 I = n

yes

Figure 5.3: Flowchart of the algorithm Uv computing the binary predictable se­
quence V  in the proof of Lemma 5.2.1.

This algorithm specifies a computable predictable sequence V  with values zero and 

one. The paths of the sequence V  are step functions, with only one jump, such
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that, for n =  1, 2, . .

1, An ^  G — 1,

 ̂ 1 or 0, C — 1 < An < (7,

0, A„ > C.

Call S  the computable M-martingale T —A  and consider the stochastic sequence

t=l

where is the computable predictable sequence defined by

y(C) =  ^
5o +  C*

It is easy to see that is a computable non-negative M-martingale with = 

1. By Lemma 5.1.1, the limit l i m „ _ o o e x i s t s  and is finite and since, for 

n =  1, 2, . . . ,

5 ( r )  =  +  C] -  C,

(for the M-typical sequence (), also the limit limn_^oo exists and is finite. So, 

T((^) =  -I- A(^”) converges, A((") being a bounded non-decreasing sequence

by hypothesis. Q.E.D.

L em m a 5.2.2 Let S  he a computable M-martingale, let be a computable M - 

submartingale, and let A  be one o f its computable compensators. Then, for every 

M-typical sequence

AooiO < oo ==> converges.

P ro o f. If A is a computable compensator of the computable M-submartingale 5^, 

then

(5n +  1)  ̂ =  {Nn +  25n +  1) +  A%,

where W is a computable M-martingale, and so A is also a computable compensator 

of the computable M-submartingale (5 -fl)^ . By Lemma 5.2.1, S^{^^) and +

1)  ̂ converge when Aco(0 < oo. Then, since

5 ( D  =  5 [(■ ?«")+ i f - 5 ^ ( n - i
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5(^ ”) converges as well. Q .E .D .

T h e o re m  5.2.1 Consider the computable basic martingale

[ E ? = i W - d O

where X  is a computable stochastic sequence and d is a computable non-negative 

predictable sequence. For every M-typical sequence

P ro o f. Let Sq =  0, Si — S i-i — X i!i\ 5  is a computable M-martingale. Then, since

I g - j  -  E - i 7 - + 2 E T T . + g i ^ ’i>i
and the term in square brackets is a computable M-martingale, is a computable 

M-submartingale and difi^ is one of its computable compensator difference se­

quences. By Lemma 5.2.2, applied to the computable M-martingale 5,

f ; ^ < o o  = >  Y ; ^  converges.
t=l * t=l *

Finally, by Kronecker’s lemma (Stout, 1974, Lemma 3.2.3), which is valid for any

sequence of real numbers,
oo x ( F \  1 ”

— :—  converges lim — ^ % (( * )  = 0.

Q .E .D .

In our picturesque gambling interpretation, the strong law of large numbers can 

be described as saying that for a given M-typical sequence of outcomes the average 

of losses and winnings tends to zero, as n —> oo, if the corresponding realized 

sequence of fair games satisfies some regularity conditions.

5.3 Variants o f the Strong Law of Large N um bers

Here we will consider some variants of the strong law of large numbers which follow 

more or less directly from the law of Section 5.2. The first of these variants is for a 

generic martingale transform.
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T h eorem  5.3 .1  Consider the computable basic martingale

where X  is a computable stochastic sequence and d is a computable non-negative 

predictable sequence, and also consider a computable predictable sequence V. For 

every M-typical sequence

Nn =

i=l *

P roo f. Let (  be an M-typical sequence and consider the computable stochastic 

sequence

'  E?=i KXi 

E?=i V ^ iX f -  di)

Since the components of N  are computable M-martingales, (  is also iV-typical, and 

the desired result follows by applying the strong law of large numbers of Theo­

rem 5.2.1 with N  aa the basic martingale. Q.E.D.

As an illustration of this theorem, take the above basic martingale with X{ G

{ — 1, 1} and di =  1, i =  1 ,2 ,___ Then, for Vi = %*_i, the theorem says that for

every M-typical sequence the empirical autocorrelation at lag one

^ i=l
tends to zero, as n —> oo.

The next variant is a strong law of large numbers for sampled basic martingales.

T h eo rem  5.3.2 Consider the computable basic martingale

E L i -V.- 

E L i W  -  di)

where X  is a computable stochastic sequence and d is a computable non-negative 

predictable sequence, and let be a computable predictable subsequence. Then 

for every M-typical sequence

Mn =

j=l
where Yj = Xnj _ i + i  -I h Xnj .

k . 1
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P ro o f. Let Si — Si-i = ViXi, where Vi =  1 /j, rij^i < i < Uj. Then 

«  -

=  Ê  -  * )  +  2 Ê  E  +  Ê  K '4 ,
*̂Z=1 t=l \ r=l / J t=l

is a computable M-submartingale since the quantity in square brackets is a com­

putable M-martingale and is a computable non-negative predictable sequence. 

By Lemma 5.2.2, applied to the computable M-martingale 5,
oo oo

V^^di < oo = >  ^  ViXi converges,
t=i t=i

for any M-typical sequence (. Also, since

oo oo 1

E   1" ^nj ),
,=1 j=l J

and

converges = >  ^ ---------------H-------h ) converges,
t=i j= iJ

we can write

oo I  oo 2
-t2 +1 +  • • • +  d n , ) < oo = >  J Z  “  +1 +  ’ * * +  ) converges.

i=l  ̂ J=1 ̂

So, by Kronecker’s lemma,

oo y .  2 &
- r  converges = >  lim -r =  0.

Q.E.D.

A simple example of this theorem is given when d* =  1, i =  1 ,2 ,—  In this 

case, the theorem states that for every M-typical sequence (,

Ë  ~ r —  < °° ^  +  • • • + X„,) = 0,
j=l J ^ j=l

and so, the limit is guaranteed for every M-typical sequence, if nj is not growing 

too fast.

We now give a variant of the strong law of large numbers involving a sampled 

martingale transform.
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lim  T 53(^j-i+ l-^nj-l+ l -I 1" — 0.*-̂ ooAĈ _l

T h eo rem  5.3 .3  Consider the computable basic martingale

where X  is a computable stochastic sequence and d is a computable non-negative 

predictable sequence. Let V  be a computable predictable sequence and {n*} be a 

computable predictable subsequence. Then for every M-typical sequence

3=1 f  °°

P ro o f. Let (  be an M-typical sequence and consider the computable stochastic 

sequence

L Z L i v H x f  -  * )
Since the components of N  are computable M-martingales, ^ is also A^-typical and 

so Lemma 5.1.1, Lemma 5.2.1 and Lemma 5.2.2 still hold for (  when N  is taken to 

be the basic martingale. Then by an application of the strong law of large numbers 

of Theorem 5.3.2 with N  as the basic martingale we have the result. Q.E.D.

We end this section by considering a strong law of large numbers a bit more 

general than Theorem 5.2.1, which involves a slightly more general version of Kro­

necker’s lemma. Even for this law, we could have variants of it involving martingale 

transforms and subsequences, but we will not go into their detailed presentation.

T h e o re m  5.3.4 Consider the computable basic martingale

, ,  ' -  e<)M„ =

where X  is a computable stochastic sequence, e is a computable predictable sequence 

and d is a computable non-negative predictable sequence. Let b be a computable 

non-decreasing positive predictable sequence. For every M-typical sequence (, for  

which limn^oo

1
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P ro o f. Consider the computable M-martingale

t=l

and the computable stochastic sequence

bi

« = ( Z ^ )
-  f  ^  “  ^ * )  I o  ^  ~  ^i) i ^ 3  ~  ^ i ) l  , ^  di
-  Là ^  &— J + S w

Since the term in square brackets is a computable M-martingale, is a computable 

M-submartingale. Let (  be an M-typical sequence such that limn-^oo =  oo. 

By Lemma 5.2.2, applied to the computable M-martingale 5,

| ^ < o o  -  converges.

Then, by Kronecker’s lemma (Révész, 1968, Theorem 1.2.2), applied to this last 

series of real numbers,

§  converges ^  ) -  e ( n )  =  0.

Q.E.D.

5.4 A Calibration Theorem

Consider the following sequential situation. On each day (t — 1), i =  1, 2, . . . ,  a fore­

caster gives his probability p,- of an event A{ that will become known on the following 

day. Denoting with Xi the indicator of A{, it is assumed that pi =  P{Ai\J^i^i) =  

E (X ,|.^_ i), where A{ G Pi. That is, that the issued probability forecasts are the 

appropriate conditional probabilities with respect to a fixed probability distribution 

P  defined over a c-algebra p  =  (J%o where Po Ç P i Ç Let Vi be a sequence 

of indicator variables, such that V  is .Fi_i-measurable, representing a selection rule 

which picks out day z if % =  1, and otherwise if Vi =  0, and let

Ĵ n = '^ V i ,  = ViXi, K =  — E
t=i t=i i=i
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Then Dawid (1982), using a martingale argument, showed that, with f-probability 

one, if z/„ —> oo, cLS n —> oo, then 0, c t s  n —> oo.

In our algorithmic framework, this result is embodied in the following corollary.

C o ro lla ry  5.4.1 Consider the computable basic martingale

Mn =  -  Pi),
i=l

where X  is a binary computable stochastic sequence with values in {0,1}, and p 

is a computable predictable sequence with values in [0,1]. Let V  be a computable 

predictable sequence with values in {0,1} and let Vn =  Z)iLi K- Then for every 

M-typical sequence f  such that limn_»oo =  oo,

P ro o f. Let ^ be an M-typical sequence. Consider the computable stochastic se­

quence

Nn =
I% 1 V iiX i  -  Pi)

and note that

^ ( ( ^ i  - P i ) ' - P i ( l - P i ) )  =  E ( 1  -  2p.)(^ i -  Pi), 
i=l i=l

is a computable M-martingale. Then (  is also TV-typical and, if linin-+oo f/((^) =  oo, 

by applying Theorem 5.3.4 taking N  as the basic martingale and bn = since

y '( f ) p ( c ) ( i  - p i v ) )  ^  ^  0.25E
i=l

< E - i r  < ~ >j=l J

we have that

— =  0.

Q .E .D .
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5.5 A Classical Refinem ent

In this section we will state a result which, even though a direct consequence of 

the variants of Section 5.3, can be seen as refining the strong law of large numbers 

towards the law of the iterated logarithm. Let us first consider an example. Take 

Theorem 5.3.2 with di =  1, i =  1 ,2 ,. .. ,  and {njt} =  Then for every M-

typical sequence this theorem says that

1
lim T = 0,k—̂oo K *=1

which is equivalent to

t = i  «=1

and which is strictly stronger than the assertion that we could derive from the 

strong law of large numbers of Theorem 5.2.1.

On these lines, a more general result is given by the following corollary.

C oro lla ry  5.5.1 Consider the computable basic martingale

Mn =
-  e.)

Z U i i X i  -  CiY -  di)

where X  is a computable stochastic sequence, e is a computable predictable sequence, 

and d is a computable non-negative predictable sequence such that |di| <  k. For 

every M-typical sequence and any rational e > 0,

n ns+ '
0,

a s  n  O O .

P roof. Since

and 722+̂  is computable, by an application of Theorem 5.3.4 with bn 

have the result.

722̂ '- we 

Q.E.D.
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This refinement of the strong law of large numbers can be seen as an analogue of 

the classical result of Marcinkiewicz and Zygmund (1937a), proved in Kolmogorov’s 

axiomatics for independent and identically distributed random variables. For a 

statement of this classical result more similar to our corollary, see however Révész 

(1968, Theorem 2.8.1).

5.6 The Law of the Iterated Logarithm

In the classical probability setting, let X i ,X 2 , . . .  be a sequence of independent, 

not necessarily identically distributed, random variables with E(%*) =  0 and finite 

variance, and let Sn =  Kolmogoroff (1929) proved that, if, as n —> oo,

Vn =  Var(5n) —> oo, and ______

|X .| < £n1 Î n ln K ’

almost surely, for some constants 0, then

* ™ » P v /2V„lnlnV„

almost surely. This remarkable result provided the best possible refinement of the 

strong law of large numbers. Later it was noted by Marcinkiewicz and Zygmund 

(1937b) that if the constants > 0 are replaced by a constant £ >  0 the conclusion 

fails. Hartman and Wintner (1941) showed that, for X i,X 2, . . . ,  independent and 

identically distributed random variables, such that E(X,) =  //, Var(X,) =

*S*n nfi 
limsup , =  1,

n-̂ oo (T^y/Zn In In n

almost surely. Results of this kind are referred to in the literature as laws of 

the iterated logarithm. Under Kolmogorov’s probability axiomatics, martingale 

versions of Kolmogorov’s, and Hartman and Wintner’s law of the iterated logarithm 

were obtained by Stout (1970a, 1970b). (See also, for another martingale version 

of Kolmogorov’s law of the iterated logarithm. Stout (1974, Theorem 5.4.1).)

In this section, we will consider a version for M-typical sequences of the upper 

half of the law of the iterated logarithm in the case of a binary basic martingale. In
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proving our result, we follow the proof of the martingale extension of the upper half 

of Kolmogorov’s law of the iterated logarithm given by Vovk (1990a, 1990b, 1991) 

in his prequential probability framework, which is based on an idea originally due 

to Ville (1939, ch. V, Ire Section, § 3).

Before considering the theorem itself, we note that, when each observation is 

binary, specifying a univariate basic martingale is essentially equivalent to specifying 

a full probability distribution P  over Vt°°. For a univariate binary computable basic 

martingale =  X{ € {a,-, 6,}, where a and b are a negative and a positive

computable predictable sequence respectively, the higher powers of X i can all be 

given by

X f  = —üibi +  (a,- +  bi)Xi,

X f  =  —üibiiai H" bi) +  (a? +  +  b^)Xi,

and any martingale-like property involving these higher powers can be written as a 

martingale transform. For instance,

'£ { X f  + aibi) = '£ V iX i ,
t=l i=l

where the right-hand side is a computable martingale transform involving the com­

putable predictable sequence Vi = This fact has been used to adapt the proof

of Theorem 4 of Vovk (1990a) to prove the following law of the iterated logarithm.

T h e o rem  5.6.1 Let us consider the binary computable basic martingale Mn =  

E where a and b are a negative and a positive computable pre­

dictable sequence respectively. Let also Vn = — HJLi Then for every M-typical 

sequence (  such that, as n oo,

V ( C )  -  oo, (5.1)

A (f”) =  max *ü;)| =  o| A
v ( î " )  \

ln ln V (f’* ) i ’
(5.2)

we have that

lim s u p  E K L =  : <  1.
^J2V(f ”) In In V ((")
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P roof. Let (  G fi®® be an M-typical sequence for which condition (5.1) and (5.2) 

are satisfied. We shall prove that, for an arbitrarily small e > 0, from some n on

M (D  < (l+£)v/2V(f»)lnlnF(e)-

For a rational a  > 0, define the non-negative stochastic sequence 5^“  ̂ given by 

=  1 and

for n =  1,2 ,  It is easy to check that

=  l  +  w h e r e  =

and so, that is an M-martingale. Moreover, since a and b are two computable 

sequences, the predictable sequence and the M-martingale are also com­

putable.

Now, let £ > 0 be arbitrarily small, let ^ > 0 be a fixed rational small compared 

to e, and consider the non-negative stochastic sequence

Jb=l ^

where «(A:) are rational approximations, to a given precision, to the computable 

function

v '2( l + « ) - ‘ lnit,

and Cl >  0 is a rational chosen so that to ensure that 0 < 5o <  1. It is easy 

to check that, since for every k =  1, 2, . . . ,  is an M-martingale, also S  is

an M-martingale. As far as the computability of S  is concerned, note first of all 

that both the quantities ŷ 2(l -f 6)~^ In k and are computable functions in

k. Then, given an algorithm computing the function yj2{l +  6)"^ In fc, whatever the 

precision of its rational approximations ct{k), the sequence of stochastic sequences 

defined by

 ̂... ç(û(*)) jb — 1 25 /c — i ,  z , . . . ,
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is a computable sequence of computable functions, and since each one of them  is 

non-negative and for every given n the series in k converges, we have that S  is 

computable.

For the M-typical sequence (, by Lemma 5.1.1, the limit lim„_oo exists 

and is finite, that is, there exists a constant C2 such that <  C2, for every

n =  1, 2,   So, since 5  is a sum of non-negative stochastic sequences, for every

k — 1, 2, . . . ,

c i ^ 5 W * » ( D  < n = l , 2, . . . ,

or n =  1 ,2 ,—  (The constants c%, C2, C3 above and C4 below

depend only on 6.)

Let us consider now a sufficiently large n and choose the non-negative M- 

martingale where a(k)  is sufficiently close to y^2(l 4- <̂ )~* In k and

k =  (logi^g KiJ.

Then

In <  (1 -f 5) In -h lnc3 =  (1 +  S) In In K  -H C4, 

and, by the definition of S^°‘\

ln5<“) =  aM , -  ^ I n  (-
i=l \ bf (If

and so the last inequality is equivalent to

olM u < In I ——  ------   I -b (1 -(- 6) Inln -|- C4,
i=i V 0* -  /

where a = a{k). Using the inequalities

j - i  j- —f M

we obtain

(^Mn <  ^  I -------------- 7---------------------- I -f- (1 +  ^) Inln +  C4
i=i V -  «»■ /

< ~7T ^  +  (1 -b 6) In In +  C 4 ,
2 :=1
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and, defining A* =  max,<n A,-,

2

aM„ < y  V„e“^n + (1 + £) Inln K + A.

Now, since 14 —*• cx), as n oo, if n had been chosen sufficiently large, and the 

rational a{k)  computed with sufficient accuracy.

1 /2 ay /21n In
i +  «v K  -  '  'V K

Also, since A„ =  o ((l^ /ln ln l^ )^ /^ ), for sufficiently large n,

Thus, we finally get

M„ < | K e “ ^ ” +  i ( l + « ) l n l n K  +  ^

and for sufficiently small S this implies

M „ < y/2V „ ln lnV „ {l + e).

Q.E.D.

The following theorem gives the complete statement of the upper half of the law 

of the iterated logarithm for binary basic martingales.

T h e o rem  5.6.2 Let us consider the binary computable basic martingale Mn =  

G {u*, 6*}; where a and b are a negative and a positive computable pre­

dictable sequence respectively. Let also 14 =  consider an M-typical

sequence ^ such that, as n —*■ oo,

V{ C)  ^  oo, A (C ) =  m a x |X ( r ''* u ;) l  =

Then

^ 2 V ((") In In V ((")
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P roof. By the previous theorem we have

limsup .  <  1.
"-^0° y 2y ( (" ) ln ln y ( ( " )

Consider the stochastic sequences X ' =  —X  and M ' =  —M . Since for any arbitrary 

M '-martingale R

fl, = iio + Ê  Kx; = iJo +
1=1 1=1

any lower semi computable non-negative M'-martingale is also a lower semicom- 

putable non-negative M-martingale, and so, the M-typical sequence ^ is also M'- 

typical. Since X[ G {aj, 6J}, where aj =  —ai > 0, = —bi < 0, we have that

K  =  H  =  K ,
1=1 1=1

A '( D  =  max i r ( r - ’ * W)l =  A ( D ,

and by another application of the previous theorem to M ' we also have 

limsup =  l i m s u p - r = ^ M £ L =  <  1.
y 2y '( C ) k ln y '( ( ' ')  ^ 2V (|" )ln ln V (^")

Thus,

i f „ „ p , — < 1.
"-"o® yj2V ((") In In V ((*)

Q.E.D.

The next theorem gives a somewhat stronger assertion of the previous law of 

the iterated logarithm, which is achieved, following Vovk (1990b, Theorem 6), by 

a slight modification in the proof. Now the condition on the order of magnitude of 

Xn is weakened.

T h eo rem  5.6.3 Let us consider the binary computable basic martingale Mn =  

Y!Ji=i^i) G {(%;, 6*}; where a and b are a negative and a positive computable 

predictable sequence respectively. Let also

K. =  - Ê « A - ,  =
1=1  1= 1 bi — ai
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and consider an M -typical sequence (  such that, as n oo,

~ V { f )
y ( r ) - » o o ,  A (C ) =  n ^ |X ( r " '* w ) | =  Oi 

w { e ) = o \

A

A
y3(^n)

In In /

Then

limsup <  1.
n-̂ oo y  2V (f ” ) In In V )

P ro o f. Replacing in the previous proof the inequality

e* <  l +  f +  je l* l, 

e* < l + <  +  ^  +  l^el^l,

we obtain

ocMn < £  In ( —— 7   I +  (1 +  In In K  +  C4
t=i \  /

<  f y „  +  ÿ Ê e “ ^ ' ^ d ^ i f ^ ^  +  (l +  5 )ln ln K  +  C4,
Z  D bi <Z;

and, for A% =  max,<n, A%, as before,

oiM„ < y K  + +  (1 +  6) In in K  +  C4.

Then, since A„ =  0 ( ( K / ln ln K ) ’/^) and W„ = o ( ( ^ / I n  In % ,)'/') , for sufSciently 

large n,
A I  ÿâ

" < B ,  and W n < S ^ ‘ "
~ T T ~  ’ V l n l n K
InlnVn

for some B.  Thus, we get

Mn, <  —14 +  +  (1+^) Inln 14 H----
2 6 a

< v'aKIninK(1(1+6) + ^ ( l+ 6 ) '6 e ( l+ ^ )^ ^  + 1(1+6)' +

which for sufficiently small 6 implies

Mn < \f2Vnln\llVn (1 +  s),
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that is,

limsup <  1.
n-oo In In

Also, considering as before the stochastic sequences X '  =  —X  and M '  =  —M , and 

that
Ty, _  ^  4.|a.P -

= S  k - a .  = " ^ " ’
by applying the obtained result to M ’ we get

lim sup 
»-*» ^ 2V (^")InlnV (4")

and the conclusion then follows. Q.E.D.

5.7 Variants of the Law of the Iterated Logarithm

In the laws of the iterated logarithm of the previous section we considered a binary 

computable basic martingale M„ =  AT* € {o,-,6i}, where a and b are a

negative and a positive computable predictable sequence respectively. Of course, 

we could have just assumed that a,- ^  0, 6,- ^  0, and that, for every i, a,- and 6,- are 

opposite in sign, without wondering about which one is negative and which one is 

positive. Easily, given an M-typical sequence (  with respect to a basic martingale 

M  for which the latter assumption is true, we have that (  is also typical with respect 

to a computable stochastic sequence for which the former assumption is true.

The situation, however, is completely different if we allow a,- and/or 6* to be 

zero. In this case, the M-martingales 5^“  ̂ defined by =  1,

5 ( M - f r  - n f i l
1=1 'L~^— {bie^^i — t=i \  /Oi (Li

n =  1, 2, . . . ,  would not be computable any more, since the denominators could be 

equal to zero. To guarantee the existence of an algorithm giving rational approx­

imations to 5^“  ̂ to any desired precision we would need to treat separately the 

case in which a* and 6* are equal to zero. This will be possible by considering the 

following stronger computability assumption.
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D efin ition  5.7.1 A stochastic sequence El is strongly computable if  there

exists an algorithm which when fed with m) yields the symbol 0  i f  = 0 

and an approximation to 2“*” if  S{^^) ^  0.

W ith this definition we can now give the following result.

T h e o rem  5.7.1 Let us consider the binary computable basic martingale Mn =  

where X i € {o*, 6*}, a,- <  0, 6* >  0, is a strongly computable stochastic 

sequence. Let also 14 =  — E L i Then for every M-typical sequence (  such 

that, as n oo, condition (5.1) and (5.2) are true, we have that

limsup ,  : <  1.
n->oo y 21/((^ ) ln ln

P ro o f. The proof is the same as in Theorem 5.6.1, but for the following note. We 

set

-  a.e®^') =  1,
bi — ai

when either a,- or 6,-, or both, are equal to zero, so that 5^“  ̂ is now defined as

4 “’ =  1,

c(or)
^n - 1

5 <“ > =

« n < 0 , 6 n > 0 ,

■^n-i , “ n , i n ,  Or b o t h ,  a r e  z e r o ,

n =  1 ,2 , In this way, due to the strong computability of X ,  the M-martingales

a r e  s t i l l  c o m p u t a b l e  a n d  t h e  p r e v i o u s  p r o o f  r e m a i n s  p e r f e c t l y  v a l i d .  Q . E . D .

Let us note that assuming % to be a strongly computable stochastic sequence is 

similar to assume, as in Vovk (1988a), under Kolmogorov’s axiomatics, a strongly 

computable probability distribution P , in the sense that the set P “^{0} is decidable.

Making the same stronger computability cissumption about X ,  we similarly have 

that the conclusions of Theorem 5.6.2 and Theorem 5.6.3 are still valid when a* <  0, 

bi > 0. Then we can have the following result for a generic martingale transform.
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T h e o rem  5.7.2 Let us consider the binary computable basic martingale Mn =  

YJi=\Xi, where X i € {a,-, 6,}, a,- < 0, > 0, is a strongly computable stochas­

tic sequence, and a strongly computable predictable sequence U. Let also Vn — 

— Ufüibi, and consider an M-typical sequence (  such that, as n oo.

ln ln V (C )A
V ( D  ^  04 A ( r )  =  max|t/(0 ^ r - * * i J ) |  =  o|

Then

<  1.
n-oo y 2y ((* ) in in y ((" )

P ro o f. Let Nn = UiXi. Since TV is a computable M-martingale, the M-

typical sequence (  is also TV-typical, and the result follows by applying the law of 

the iterated logarithm, for a,- < 0 and 6* > 0, following from Theorem 5.6.2, taking 

TV as the basic martingale. Q.E.D.

5.8 Sampled Mcirtingedes

In this section we will consider a strong law of large numbers which, even if it 

seems to be similar to the previous variants for subsequences of Section 5.3, has 

nevertheless some intrinsic algorithmic differences. An application of subsequent 

Lemma 5.8.3 will be seen in the next chapter.

Let us introduce the following notation. Fix a filtered space (Fo? 

with ^ 0  =  {0, n°°}, where D is a subset of Q and the family of a-algebras (Fb, ...) 

is the filtration generated by the cylinder sets in Also, fix a subsequence {%&}

of {n}, and consider the induced filtered space ( 7 1 ) , For a

given basic martingale M„ = on the filtered space

we consider, on the induced filtered space the induced

basic martingale M„^. For (  € and Y j = Xnj_i+i 4 h Xn,, we have

i=l i=nj_i +1
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We define -martingales, Mnjt-submartingales, compensators and other quanti­

ties in an obvious manner. For instance, an -martingale S  is an .7^*-stochastic 

sequence (measurable with respect to ^nk) of the form

Sk = C-\-J2 ^ j '  i^ n j  -
3=1

where c is a real number and V j is an .^^-predictable sequence.

W ith this terminology, we can now give our strong law of large numbers for 

sampled martingales following the steps of the proof of Theorem 5.2.1.

Lem m a 5.8.1 Consider a computable basic martingale Mn =  Z)?=i that

for every n G N , min(M„|.^„_i) < M n-i < max{Mn\J^n-i)■ Also, let {%&} be 

a computable subsequence and (  be an M-typical sequence. I f  S  is a computable 

non-negative Mn^ -martingale

Sk = S o - \- '^ V j ' {Mnj -  Mnj_i),
3=1

with Vj a computable sequence and So > 0, then \imk-^oo Sk{i^'‘)

exists and is finite.

P roof. Consider the .^-stochastic sequence R  defined by

Rn = S o - \- ^ U i^ X i ,
t=l

where Ui =  Vj, rij_i < i< n j. This stochastic sequence is a computable M-martingale 

such that i?o > 0, jRn* =  Sk, for all k £ N . Since min{Mn\J^n-i) <  M n-i < 

max(Mn|.?>i-i), for all n G N , also m m {Rn\^n-i) < Rn-i <  m a x ( j^ |.^ _ i) , for 

all n G N. So, from Rnk ^  0, for all k, we have that -^fc-2 ? • • •

non-negative, that is, that R  is non-negative. Thus, by Lemma 5.1.1, the limit 

limn_oo -Rn(^”) exists and is finite, and since =  Sk, also the limit limt_oo 

exists and is finite. Q . E . D .
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L em m a 5 .8 .!2 Let M  and {%&} be as in Lemma 5.8.1.  I f T  is a computable non­

negative Mn^-submartingale, A  is one of its computable compensators and the com­

putable Mnf, -martingale S  = T  — A  is such that
k

j= l

fo r  some computable IFrn.-pf'^dictable sequence W j ,  then for every M-typical sequence 

6

^oo(0  < oo = >  converges.

P ro o f. The proof is the same as in Lemma 5.2.1. We just note that the stochastic 

sequence

=  1  +  E  -  5 , - , )  =  1  +  E  ■ ( M „ ,  -  ) ,
j= l  Oo + O OO +  U

is a computable non-negative -martingale, with =  1, where V j W j / { S o  -f- 

C) is a computable .^^-predictable sequence. Thus, by Lemma 5.8.1 the limit 

limt^oo exists and is finite. Q.E.D.

L em m a 5.8.3 Let M  and {%&} be as in Lemma 5.8.1.  I f  S  is a computable Mn^-  

martingale (obtained from M  with a computable -predictable sequence), is a 

computable Mn,,-submartingale, A  is one of its computable compensators — A  is 

an Mn,,-martingale which can be obtained from M  with a computable J^nk’P'f'^dictable 

sequence), and (  is an M-typical sequence, then

v4oo(() < oo = >  Sk{C ‘) converges.

P ro o f. The proof is the same as in Lemma 5.2.2. Here, we just note that
k

S i  -  Ak =  Nk =  N o A ' ^ V j ' (Mnj  -  Mnj_i  ),
J=1

for some computable .Fn*-predictable sequence Vj, and that 

{Sk “H 1)  ̂— Ak =  14- Nk 4- 26't
k r k

i=i i=i

=  (1 +  iVo +  25o) +  + 2Wi)-{M„,
j=l
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for some computable ^^-predictable sequence Wj.  Q.E.D.

T h eo rem  5.8.1 Let M  be a computable basic martingale such that min(Mn|.^n-i) < 

M n-i <  max(M„|.^n-i), for all n € N , and let a component o f M , and

{%&} be a computable subsequence. Assume that

-  4), IG = n̂,..+l + --- + x„„
i=i

is a computable Mn^-martingale (which can be obtained from M  with a computable 

Tnk~P‘̂^dlotable sequence) where d is a computable non-negative -pred2c^o6/e se- 

quence. Then for every M-typical sequence

j= l •' j=l

P ro o f. Consider the computable -martingale

k Y-

j=i J

and

5 .^ = (è W  = [ É ^ ^ 2 ^ + 2 E f ^ ] + Ê ^ -
\j=l j  / ‘■7=1 3 j>r  J  ̂J j = l 3

Since S i  is a computable -submartingale, by Lemma 5.8.3,

V  < 00 = >  > - r  converges,
7=1 3 7=1 3

and by Kronecker’s lemma we have the result. Q.E.D.

5.9 Discussion

Let U S  conclude this chapter by stressing some points about the results we have just 

presented. In Kolmogorov’s probability axiomatics, the reformulation of almost sure 

results in algorithmic terms, by stating them for every random sequence, leads to 

an essential strengthment of the corresponding non-algorithmic theorems. To see
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an example of this strengthment in our purely martingale framework, just take the 

case of the strong law of large numbers. Define the following two subsets of

and consider the set Tm of all M-typical sequences. Then whereas the strong law 

of large numbers of Theorem 5.2.1 says that the set Tm  H i f  PI is empty, its

non-algorithmic counterpart (Vovk, 1993c, Theorem 2) would just say that this set 

is M-null.

Another key feature of the algorithmic approach, in whatever probability frame­

work, is that it naturally suggests results based on ‘local conditions’. To show 

this point, consider, in Kolmogorov’s probability axiomatics, a scalar local m artin­

gale Mn =  with respect to a filtration {Tn)n>o^ where E (V i|.^_ i) =  0,

'Ej[X‘f \T i- i)  =  and is a predictable sequence. Then, for a predictable subse­

quence {%&}, the sum Mn̂  ̂ =  E j= i where Yj =  Vn^.i+i H VXnj^ is a sampled

martingale with Yj{Yj\Tj-i) = 0 and

t=nj_i+l t=nj_i+l

and by the generalization of Kolmogorov’s strong law of large numbers, considered 

at the beginning of Section 5.2, we have that,

3=\ J j=l

almost surely. On the other hand, in our purely martingale algorithmic framework, 

the strong law of large numbers of Theorem 5.3.2 states that, for every M-typical 

sequence (,

j=i j  j=i

and it is clearly evident, by comparing the latter condition on the cumulative vari­

ance with the former, that this last statement has a specific local character. In 

fact, this last condition involves only the conditional variances given the past of the 

martingale differences Xi, and not the conditional variances of the sampled mar­

tingale differences Yj. Note, however, that the statement of the strong law of large
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numbers for sampled martingales of Theorem 5.8.1 is based on a condition which 

has the same non-local character of the previous non-algorithmic formulation.

As far as the law of the iterated logarithm is concerned, let us remember that, 

in the usual probability ajciomatics with respect to a probability distribution P , 

Vovk (1988b) proved it for chaotic sequences, whereas Vovk (1988a) proved it for 

typical sequences, using, in this latter result, martingale ideas similar to those used 

in the proof, in the prequential probability framework, of the law of the iterated 

logarithm of Vovk (1990a). We did not attem pt to prove any lower half of the 

law of the iterated logarithm for M-typical sequences. Vovk (1990b, Theorem 7) 

proved, in the prequential probability framework, a variant of Kolmogorov’s lower 

half of the law of the iterated logarithm, while Vovk (1991, Section 10) noted that 

the lower half of the law of the iterated logarithm seemingly cannot be formulated 

without loss in his ‘finitary’ prequential probability framework.
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C hapter 6

D istributions o f Values and  

Strong Central Limit Theorem

In this chapter we deal with the problem of characterizing the distribution of values 

corresponding to a single M-typical sequence in the case of stochastic sequences 

obtained from the basic martingale M . From the point of view of applications, the 

cases considered are fairly elementary and the basic martingale M  will be essentially 

a coin-tossing process. In Section 6.1, we will consider the distributions of values for 

two stochastic sequences obtained from a symmetric Bernoulli stochastic sequence, 

namely a moving average and a first-order autoregressive stochastic sequence. Then 

in Sections 6.2, 6.3 and 6.4 we consider the strong central limit theorem, concerning 

the distribution of values, in logarithmic density, or in suitable subsequences, of a 

standardized sum statistic.

6.1 Distributions of Values

In this section we will consider the distributions of values, corresponding to a single 

M-typical sequence, of a martingale difference sequence, a moving average stochas­

tic sequence, and a first-order autoregressive stochastic sequence. These results 

could be seen as the analogue of the strong consistency, in Kolmogorov’s probability 

axiomatics, of the empirical distribution functions of the corresponding stochastic
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processes. Throughout this section we always consider a scalar binary basic mar­

tingale difference sequence with only two possible fixed values, for example {—1, 1}, 

so representing just a simple coin-tossing process. If the values of the scalar binary 

basic martingale difference sequence were not fixed (as in the case of the law of the 

iterated logarithm of Section 5.6) we could not guarantee, in general, the existence 

of a distribution of values for any given M-typical sequence. For instance, no se­

quence, M-typical or not, admits a distribution of values when the binary basic 

martingale difference sequence is such that X{ € {—1, 1} for i =  1, 2, Xi € {—2, 2} 

for i =  (2 -f-1), • • •, (2-|-2^), Xi G {—1, 1} for i =  (24-2^-1- 1) , . . . ,  (24~2 -̂}-2^), and so 

forth. Note also that, if we were to deal with ternary observations, we would have 

to consider, to characterize distributions of values, multivariate basic martingales.

Let us start by considering the simple case of a scalar binary basic martingale 

difference sequence. Let Mn =  Z)r=i be a computable basic martingale such that 

X i E {a, 6}, and a < 0, 6 > 0 are rational numbers. For every z € R , we have that

I(~cx>,z]{Xi) —

0, z < a,

y ^ ( 6 -  a < z < b ,

1, z >  6,

and so, that

Fn{z) =

0 ,

"  1=1 

1,

b — CL b — d n it=i

z < a, 

a < z < b,

z > b.

Then, since any M-typical sequence (  is also TV-typical, where N  is the computable 

stochastic sequence defined by

Nn =

we have, by an application of the strong law of large numbers of Theorem 5.2.1 

taking N  as the basic martingale, that, for any M-typical sequence f, Fn{z)(^'^) —>• 

b/{b — a), a < z < b, as n oo. We will examine now the case in which a =  —1 

and 6 = 1.

’  E?=i ’ E?=i A-i

+  “6 ) .
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6.1.1 A  Sym m etric Bernoulli S tochastic Sequence

Let us consider the symmetric Bernoulli stochastic sequence given by a computable 

basic martingale X{ with Xi € {—1,1}. Let (  be an M-typical sequence,

^  9, Ç € N , and consider the following auxiliary finite probability space. Define 

the -f 1 sets

E   — {n I Ti ^  N , Xfi — 1, Xji—i — 1, . . . ,  Xfi—q — 1},

E  1. =  {n I n ^  N , Xn — 1, Xn—I — 1, . . . , Xn—q — 4"1},

-̂ -j—I—(- — {n I n ^  N , Xji — “Hi,Xn—i — "hi , .. «, Xn—q — 4"1},

Eo =  {n : n < N, Xm =  0 for some m =  n ,n  — l , . . . , n  — ç),

where X q =  X - i  =  • • • =  X-q  =  0. These sets are disjoint, their union is equal 

to the set {1,2, . . .  ,N }  of the first N  natural numbers, and some of them could 

well be empty. We regard these sets formally. They are, empty or not, the ‘points’ 

of a finite space Ag+i. On this space we consider the algebra Aq+i generated by 

the above sets, and the measure giving equal probability l / 2 ‘̂*"̂ to all points 

E  € Ag+i, but to E q to which it gives probability zero.

On the probability space (Ag+i,.4g+i), define also the frequency measure 

given by

Vj î^E--------) =  I n ^  Nj Xn =  1, Xn—l — 1? • • • ? Xn—q — l},

v n{E------+) =  ^ # { n  : n < A”, Xn = - 1, X n-i = - 1, . . . ,  ATn-g = -M},

=  ^ # { n  : n < A, Xn = +1,X„_1 =  4-l , . . . ,Xn_g = + 1 } ,

vn{Eq) — ^ # { n  : n < A, Xni =  0 for some m =  n ,n  — 1, . . .  , n  — ç}.

L em m a 6 .1.1 Let M  be the symmetric Bernoulli stochastic sequence. Then, for 

any M-typical sequence the measures to the measure p, uniformly over

.4g+i, as N  oo.
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P ro o f. To show this, we will consider in turn the sets E+, then the sets E  ,

E+^, and so forth up to the sets E  G Ag+i. Let us start with the sets

and E+. Since Xn G {—1,1}, we have that Z)JLi =  # { n  : n < N, Xn =

1} — # { n  :n  < Ny Xn = —1}. So, since we can write

^n (E+) =  : n < iV, Xn =  1} =  -  +  — -X n ,

un(E^)  =  1 -  un{E+) =  2 ~  2"^”’

by the strong law of large numbers of Theorem 5.2.1 we have that, for the M-typical

sequence (,

un{E+) —> 1/2, vn[E^)  —> 1/2,

as X  - 4- GO.

Let us consider the sets £^++, and E  We define the computable

predictable sequences

1? X n-l — 1,
K  =  {

1, X n-l =  —1, 

0, otherwise.0, otherwise.

By using the predictable sequence similarly as before, we have that

^  =  ^  ( # {w : « <  X , Xn =  1, X n-l =  1} -  # {n I n <  X , Xn =  - 1, X n -l =  1}̂  ,

and so

i/iv(^++) =  ^ # { n : n < X , X n = l , X n - i  =  l} =  - + X ^  ( 2 4 ’

v n {E -+ )  =  — # { n  : n <  X , X n =  - 1 ,  X n-i =  1} =  J  S  (“  J

Also, by considering the predictable sequence V ~ , similar expressions can be written

for v n {E^-)  and ^^{E __), and by the strong law of large numbers for martingale

transforms of Theorem 5.3.1 we have that, for the M-typical sequence

i/jv(£^++) —> 1/4, z/iv(£^_+) —» 1/4, v n [ E ĵ - )  —> 1/4, v n { E — ) —> 1/4,

as X  —> oo.
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For the sets -B+++, — , £*_++, ^ - + - ,  E —+, E  , by using

the computable predictable sequences V~'^, , defined by

I j  ^ n —l — 1, -^n-2 — 1?_________

0, otherwise, 

we have, for instance, that

1) ^ n —l — 2— 1 ;

0, otherwise.
etc..

^n{E+^+) =  — # { n : n < N , X n  = l ,X n - i  = l , X n - 2  = l}

and so, for the M-typical sequence (, un{E+++) —»> 1/ 8, as —> oo. And similarly

for the other sets.

Proceeding in this way, we can show that, for the M-typical sequence ( , for any 

set E  G Aç+i, but for E q for which i/ n { E q ) — 0, as A” —> oo, i/ n { E )  —> as

A  —> oo. Also, since Ag+i is finite, vn{A) —> ^(A), as A  —> oo, uniformly for all 

sets A  in the algebra -4g+i, and thus, the desired result is proved. Q.E.D.

6.1.2 A  M oving Average Stochastic Sequence

Let us consider now a simple moving average stochastic sequence. Let Mn =  

IZ?=i A; be the symmetric Bernoulli stochastic sequence, and consider the com­

putable stochastic sequence defined by

Yn =  Xn +  ^ \X n -\  + ^2Xn-2 +  ’ * * +  ^qXn-q-, Tl = 1 , 2 , . . . ,  (6.1)

where X q = X - i  =  • • • =  =  0, and f t , f t ,  • • • , /?g are rational numbers.

T h e o re m  6 .1.1 For the moving average stochastic sequence (6.1), for any M- 

typical sequence as A  —> oo,

l # { n  : n < N ,  Y{C)  < z } y (z ),

uniformly in z G R ,  where (p{z) =  P t{Z q +  Z i  \-Zq <  z ) ,  and Z q, Z i , . . . ,  Z , are

independent discrete random variables with Pr(Zj =  f t)  =  Pr(Zj =  —f t)  =  1/2, 

/ f t  — 1/; j  — 6 ,1 ,. . . ,  Ç.
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P ro o f. Consider (A,+i,.4g+i), fi and as defined in Section 6.1.1. On the prob­

ability space (Ag+i,.4ç+i), define the random variables Zo, Z i , . . . ,  Zg given by

/?g, E  =  ,

0, E  = E q̂

— ̂ q, E  =  E ----

1, E  = E+...,

Zo{E) = < 0, E  = Eo, , , Zg(E) =

—1, E  =  E-...^

W ith respect to the measure /i, these random variables are independent and such 

that n{Zj  =  pj) =  /z(Zj =  - p j )  =  1/ 2, j  =  0, 1, . . . ,  Ç.

Then since, for every z € R , we have that

^ # { n : n < A T ,  < z} =  ^ # | n : n < A T ,  n €  some E  s.t. ^ Z ; ( E )  <  z j

=  v n[ e :E Ç: Kq^i ,Y^Zj{E)  < z \
 ̂ 3-0 ^

= ^ n i ^ Z j ^ E )  < z \
\j=o '

the desired result is proved since by Lemma 6.1.1 the measures i/jv tend to the 

measure /i, as —> oo, uniformly over Aq+i. Q.E.D.

6.1.3 A  First-Order A utoregressive Stochastic Sequence

Let Mn =  HS=i X i be the symmetric Bernoulli stochastic sequence, and consider 

the computable stochastic sequence defined by

Yn == a Y n - i X n ,  n =  l , 2, . . . ,  (6.2)

where Iq =  0, and a , with |a | < 1, is a rational number.

Let us remark that, in the following theorem, we will use a technique, which 

relies on the properties of Levy’s metric, adapted from the proof of Theorem 5.2 

of Elliott (1979), in which it is studied the limiting distribution of the values of 

additive arithmetic functions.

T h e o rem  6 .1.2 For the first-order autoregressive stochastic sequence (6.2), for  

any M-typical sequence as N  oo,

l # { n  : n <  JV, y ( D  < z} ^  <f{z),

93



uniformly in z E R; where

(p{z) =  (Pr(z) =  Pr(Zi +  ^2 -I-------- \- Zr < z),

and Zi, Z2, . . . ,  Zr are independent discrete random variables with Pr(Zj = a^~^) = 

Pr(Zj = =  1/2, j  = 1, 2,

P ro o f. Let (  be an M-typical sequence, and consider, for large N,  the computable 

stochastic sequences

where X q = 0, X - i  = 0 ,  For any arbitrary r, 1 <  r  <  jV, we split Vn as follows,

j— 1 j=l j=r+l

say, and to show the theorem, we just have to show that (see the remark following 

Lemma 1.7 of Elliott (1979))

(0  y'(r)(n < 4 ^  y ( 4 .

(n) l # { n  : n <  JV, |F " ( r ) (D I  > 4 - ^ 0 ,  for a lU  > 0,

for an r  =  r(N)  —*■ oo, as N  oo.

Let us show (%). For every fixed r, Y^(r) is a moving average stochastic sequence 

of order q =  r  — 1, where Pj =  q-̂ , j  =  0, 1, . . . ,  r  — 1, and we have already seen that

l # { n  : n < N ,  F '( r ) ( r )  <  4  ^  Wr(4,

uniformly in z G R , as oo. Then we can certainly find a sequence {c^}, > 0,

Cr —> 0, as r  —> oo, and integers {Nr},  such that, for every z G R ,

-n̂ N, F'(r)(r) < 4  -  M̂) <C. Cr,

for every N  > Nr. Thus, there exists a function r  =  r(7V) which tends to infinity, 

as TV oo, slowly enough to ensure that

: "  <  JV, F '( r ) ( D  < 4  y ( 4 ,
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uniformly in 2 G R , as —> oo.

Let us now show (n'). Note that |}^%r)| =  0, n =  1,2, . . .  , r ,  and that

Y ^ir) =  E  ZÜ) =  E
j=r+l i=l

n =  rH- l , r - f2, t h a t  is, that

|l^n'(r)l =  I E  <  E
i=l t=l

So, for every e > 0, there is an r* such that for every r  >  r*, |i^ '( r) | < e, and 

l/7V #{n :n  < N , > e} =  0. That is, (u) is true for any r =  r (N)  —> oo,

as N  00. Q.E.D.

6.2 Schatte’s Strong Central Limit Theorem

Assuming Kolmogorov’s axiomatics, let » - - he a sequence of independent

identically distributed (i.i.d.) random variables, with E(%*) =  0, Var(Xj) =  1, on 

a probability space f  ), and let 6"̂  =  +  %2 4- ' "  4- Then, by the

classical central limit theorem, we know that the distribution of the standardized 

sum Sn/y/n  converges to the standard normal distribution 0 (z), as n —> 00, but, 

of course, we do not know anything about the distribution of values of a single 

realization of the sequence of random variables S n /y /n . Indeed, Schatte (1988) 

showed that, owing to the strong serial dependence in the sequence {Sniy/n) (see 

for a depiction Figure 6.1), the probability is zero that the arithmetic means of the 

sequence /(_oo,2](*S'n/v^) converge, as n 00.

On the other hand, by considering ‘logarithmic means’ instead of arithmetic 

means, Schatte proved the following result.

T h e o rem  6 .2.1 (Schatte, 1988, Theorem 2) Lei X i , ^ 2, . . .  be iA.d. random vari­

ables such that E(X,) = 0, Var(X,) = l, E(|%^p) < 00, and Sn =  Xi-\-X2-\ VXn-

Then
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almost surely, for all z € (—00, oo), where 0 (z) is the standard normal distribution 

function.

s .
y/n

z

0 n

Figure 6.1: Typical realization of the standardized statistic S n/y /n .

Results of this kind, known as strong central limit theorems, were first shown 

independently by Schatte (1988) and by Brosamler (1988), this last for i.i.d. ran­

dom variables having finite (2 4- ^)th moments, and later by Lacey and Philipp 

(1990), assuming only finite variances. Schatte (1988) showed that the dependence 

among the (S'n/v/n) can also be overcome by considering a suitable thinning of the 

original sequence of values, giving the following strong central limit theorem for 

subsequences.

T h e o rem  6 .2.2 (Schatte, 1988, Theorem 3) Let X \ , X 2 ^ . .. he i.i.d. random vari­

ables such that E(%;) =  0, Var(X,) =  l, E(|AT,p) < 00, and Sn be as before. Then 

for Uk =  \c^\, c >  1 , where [c*J is the integer part o f c^, we have that

almost surely, for all z G (—00, 00).

The strong central limit theorem has been extended, still in the classical Kol­

mogorov probability axiomatics and a non-algorithmic framework, to a variety of
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other stochastic processes. However, these results are usually proved by extending 

the strong central limit theorem for a sequence of i.i.d. random variables to the 

desired stochastic process, using some invariance principle. In particular, a direct 

martingale-based proof of this result does not yet seem available.

In the case of the strong central limit theorem for subsequences, a more direct 

argument is provided, for a martingale process, by the following reasoning. Let 

5o,iS'i,... be a martingale process, with respect to the filtration {Tn)n>o on the 

probability space (0 °®,.^, P), such that the differences = Sn — Sn-i satisfy 

E(X n|P’n-i) =  0 and Var(Xn|P’n-i) =  1- Fix a constant a  G (0,1), and consider 

the equality
Snk _  -y/yifc-l -^njfc.i+l-H-------H ^rik
y/'^k yj'^k yj^k—l y/'^k

where is such that ri\ =  1, and, for k =  2,3, . . . ,  rik is the first integer for

which
yj'^k—l ,
■■ ____  <  a .

y/'^k

Defining =  S n jy /îïk  and Un  ̂ =  + -----1- this equality can

approximately be rewritten as

where ^{Unk\^nk-i) =  0 and Var(f/nJP’nfc_i) =  {^k -  rik-i)/nk  % 1 -  a^. Thus, 

under some mild conditions assuring that

r „  =  - ^ - ^ A T ( 0, l ) ,
y/Tl

as n —> 00, Tn̂  behaves approximately as a Gaussian autoregressive process of 

first-order with a standard normal stationary distribution, and so, by the classical 

ergodic theorem, the empirical distribution function

almost surely, as Â; —> oc.

This argument, even if it does not provide any formal proof, apart from giving a 

clear intuition of the result, also points out the fundamental role which seems to be

97



played by the ergodic theorem, by means of which it is possible to attain  an almost 

sure convergence from a convergence in distribution.

Now, unlike many other almost sure results, neither the ergodic theorem nor the 

strong central limit theorem, which are both about an asymptotic regularity which 

is valid with probability one, that is, which is valid for almost every single infinite 

realization, have yet been proved in an algorithmic framework for some random 

(typical or chaotic) sequences (Vovk, 1995b). And, indeed, it might be that the 

ergodic theorem does not hold for some random sequences. On the other hand, as 

far as M-typical sequences are concerned, we will tackle the problem of proving the 

strong central limit theorem in our purely martingale algorithmic framework in the 

next two sections.

6.3 Toweirds the Strong Central Limit Theorem

In this and the next section we will consider the problem of proving the strong 

central limit theorem for M-typical sequences in the case of a computable basic 

martingale M„ =  with Xi G {—1,1}. Here, we will start by considering

some properties about the indicator function of the standardized martingale M n/\/n- 

We will end this section by showing two results. One about the disjoint sums of the 

beusic martingale M, and the other about a simplified version of the strong central 

limit theorem for subsequences.

Let us first consider the indicator function 7(_oo,z] (%  A /^) the case z =  0, for

which it reduces to 7(_oo,o](M,i/yn) =  L(_oo,o](Mn). For n =  1, we simply have

T ( Y  \  ^i(_oo,0](Aij -  -  -  — .

For n =  2, by setting =  L(_oo,o](A'*), and by considering the following table, in
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which all possible combinations of X i , X 2 are considered,

X i X 2 7(--oo,0](^l4-%2) 7i I 2 7(_oo,o] (-^14- ̂ "2 )

1 1 0 0 0 —

1 -1 1 0 1 (1 — 7i)/2

- 1  1 1 1 0 7i(l —1 2 )

—1 —1 1 1 1 7i/2

it is easy to check that

7(-oo,0](^l 4- %2) =  (1 —7i ) /2 4- 7i(l — r \ , T r 3 X i X 2h )  +  7i/2 =  -  -  -------- --

In the same way, we would also have, for n =  3,

-f(-oo,0]( l̂ -|-%2 4-%3) =  d" A^2(l — ̂ 3) +  7i( l —/2)^ +  (I"
_  1 X i X 2 X 3 X1X2X3

2 4 4 4 4 ’

for n =  4,

-f(-oo,0] (-̂ 1 + X2 +  X3 + X4 )

=  71/2/3/4 +  /l 72/3(1 —A) + 71/2(1 —73)74 + 71/2(1-7s) (1 —A) + 7i( l  —/ 2) /3/4 

+ /l( l  —/ 2) /3(l —74) + 7l ( l - / 2)(1 —73)74 + (1—71)72/374 + (1—71)72/3(1-74) 

+(1 —71)72(1 — 73)74 + (l — 7i)(l —72)73/4 

" 16 16 ^ 4) — -^{XiX2  +  ̂ l%3 +  ̂ 1^4 4-X2X3 +  -^2^4 4-X3X4)

+ ^ { X i X 2 X 3  + XiX2X4 + XiX3X4+X2X3X^)  + ^ X ^ X ^ X s X i ,  
io io

and so forth, for all n € N. Here, just note that the sum of the coefficients of the

expression in the Xi  is zero, for every n G N, since it is the value of the expression

when all the Xi  are equal to one.

It is easy to see that all these indicator functions can be written as

7(-oo,o](^i) “  2 l^i^i?

7(-oo,0]('^l + ^ 2 ) =  ^ +  2̂1-X̂ l +  1^2-^2, 

7(-oo,o](-^i4-%2 4-%3) =  g  4" 1 1̂- 1̂ +  V32X2 +  V33X3,
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I { - o o f i ] [ ^ l - V X '2 - \ -X z - \ -X 4)  — — 4- V ^ iX i 4- V42-̂ 2 4- V43X3 4- V44X4,

where the Vni depend only on Xi, X2, . . . ,  X ,-i, and that, noting that the predictable 

sequences defined in the proof of Lemma 6.1.1 satisfy

V~  =  /n-l, =  1 -  In-U

K*" = K‘ K-1 = /n-l/n-2, = V+K-1 = (1 -  In-l)In-2. ctc.,

we can also write

I[-oo,0]{Mi) =  -  -  -% i,

/(-oo,0](M2) =  - - - X i - - ^ f  X^^

■f(-oo,o](^3) =  -^-•^ ‘̂ X i - - X 2 — -jp /^~  -\-V^'^)Xz,

7(_oo.0](M4) =  H - l 3 X i - i ( y 2 - + 2 V + ) X 2 - J ( V 3 ^ -  +  F 3'̂  +  y3"+)X3

In this way, for every n E N, the indicator function of Afn, for z =  0, can be written 

as a polynomial expansion in the X{ of the form

7(-oo,0](-^n) = 4" V nlX i  4" * * ’ 4"

where (fn is a rational number in (1/ 2, 1], such that 1/ 2, as n —> oo, and the

I4i are computable quantities which depend only on Xi, X2 , . . . , % _̂i.

Consider now the case of a general z E Rc- Similarly to before, for every n € N , 

the indicator function /(-oo,z](-^7„/\/n) can be written as the sum of m  products of 

n terms, where m  is the number of paths of length n such that <  \/n z , and the

n terms are of the form (1/2 ±  X,/2). That is, we can write

7(_oo,z] — V̂ n(̂ ) 4- Vni(z)Xi + ---------h Vnn(^)Xn,

where (Pn(^) is a rational number which does not depend on the Xi,  and the Vni{z) 

are computable quantities which depend on the X{ only through Xi, X2 , . . . ,  %%_i.
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By the structure of this polynomial expansion, it is easy to see that is

just m/n,  that is, the proportion of paths of length n for which Mn <  y/nz. And, 

by introducing on the auxiliary uniform Bernoulli measure /z, since

fM n

we also have that (pn(^) —̂ 0(z), as n —> oo, by the De Moivre-Laplace central 

limit theorem (Feller, 1968, Theorem VII.3.2). Let us note that here and later the 

measure fi plays only an auxiliary role and in our purely martingale framework it 

does not have any probabilistic interpretation. Indeed, it just provides a convenient 

way to express an underlying combinatorial argument.

W ith the help of the auxiliary measure fi, the quantities Vni{z) can be evaluated 

by considering the proportion of paths of length n for which <  y/nz, given the 

initial realizations • • • ? Â x)- In fact, we have

= E 1^1,..., Xi)

=  ^n{z) +  yn\{z)X \ +  • • • +  Vni{z)Xi,

where the expectation E(*) is taken with respect to //, since, under fi, the X( are 

independent random variables with E(%,) =  0 and Var(X,) =  1. And so, by 

considering the two conditioning sets (%i , . . . , %*_i) and { X i , . . .  , X i - i , X i  = 1), 

we immediately have

V„i{z) =  <  z lXi , . . . ,X._i )  +  <  ^ | Xi , . . =  l ) .

By rewriting this last expression as

Vni{z) =  -/z(M n_t+l < z*)  +  fl{Mn-i <  Z* — 1),

where z* =  Zy /n  — (X i  h A"*_i), it is possible to see that we can bound Vni{z)

by

= 0), or — =  l)j
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depending on whether [n — i) is even or odd, which, by using Stirling’s formula 

(Feller, 1968, Section II.9), can both be approximated by

1
(6.4)

as 72 —> oo.

6.3.1 D isjoint Sums

Let us consider now the following result which can be seen as a first step towards 

the strong central limit theorem for subsequences.

T h e o re m  6.3.1 Consider the computable basic martingale Mn =  X)r=i

X i  €  { — 1, 1}, and an arbitrary computable subsequence { 72^}, such that Ij =  rij —

72j_i —»• 00, as j  —> 00. Then, for every M-typical sequence

for all z  € Rc, where Rg is the set o f all computable real numbers, 0 (z) is the 

standard normal distribution function, and Yj =  Xnj^^+i +  • • • +  Xnj-

P ro o f. Let us fix a z E Rc By using the previous properties about the indicator 

function, we can write

where V is a computable predictable sequence, every 72j_i +  l <72<72j, depends 

only on Xnj_i+i +  • • • +  Xn, and the (pi- are rational numbers in [0, 1], such that 

pi- 0(z), as Ij —» 00. Since, by the properties of the arithmetic mean, the first 

average on the right-hand side tends to $(z), as K  00, we have just to show that 

the second average, on the right-hand side, tends to zero, a.s K  00.

Let (  be an M-typical sequence, and note that, since Sn =  HiLi ViXi is a com­

putable M-martingale, the sequence (  is also 5-typical. Consider the computable 

5nfc-martingale

-(Kij_i+l-^nj_i+l H-------f- yujXnj),
j= l J i = l J
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and also the computable stochastic sequence

r K d j)  ^   ̂^  Sjij — ‘S'ny-i Snt  ̂ “  ^  d,’E \^nj , oV^ ‘̂ rij-x ^rih
7*2 ; t  "I" 2^  ,-2 ’
J i'>h J ^"3-1 -/ i>/i

where d is a computable non-negative predictable sequence defined by

dj = f l j  -

By noting that I(-oo,z](') =  (7(_oo,z]('))^, we can see that 1 — 2ipij is a computable 

predictable sequence, and that

S  [{^rij — Snj_xŸ ~  41 =  13 [ ( - ^ ( - o o , z ] ( ^ / — ^ j - l )  — “  4
j=i i=i

a: _________
= 13  [1 - [A-oo,d(^/V^i - ^ i - i )  -  y/,

j=i

=  S  [1 -  2¥>;J(5„j -  5„^_,).
i=i

So, considering the right-hand side of since both sums in square brackets are 

computable 5n^-martingales, the whole sum in square brackets is a computable 

5njk-martingale, and Y l f = i d j l p  is a computable compensator of the computable 

5nfc-submartingale Rj^. Then, since

j = i  J j = i  J j= i J

by Lemma 5.8.3, applied to R k  and % ,  we have that R k  converges, and, by 

Kronecker’s lemma, that

^ (K j_ i+ l^ n j_ i+ l H-------h VnjXnj) = 0.

Q.E.D.

6.3.2 Signs in Subsequences

We consider a simplified version of the strong central limit theorem for subsequences 

in which the standardized sum M n/y/n  is replaced with a statistic which permits 

use of the argument employed in Theorem 6.1.2.
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For every fixed rational number a  G (0 ,1), let {?%*} be the computable subse­

quence such that Ui =  1, and, for A: =  2, 3 , . . njb is the first integer for which

(6.5)
y/nj;

T h e o re m  6.3.2 Consider the computable basic martingale Mn = Z)S=i with 

Xi  G {—1,1}, and, for a fixed rational number a  G (0,1), the computable subse­

quence {nfc} given by (6.5). Define

-1 , 1^<0,

w ,  =  < 0, Yj =  0,

1, Y , > 0 ,

where Yj =  Xnj_-,+i +  • • • +  X n , ,  and consider the weighted sum statistic

Then, for any M-typical sequence as K  oo,

uniformly in z  G R , where y ( z )  is as defined in Theorem 6.1.2.

P ro o f. For r  G N, 1 <  r  < ÜT, we have

-  s  -  s  S ' " -  *  , i „  ™

say. Then it is enough to show that, for any M-typical sequence

(0  - - k ^ K ,  l l ( r ) ( M  < z } - ^  <p(z),

(ii) ^ # { k  : k < K ,  m ( D I  > 4 ^ 0, for all t  >  0,

for an r  =  r (K)  —> oo, as K  oo.

Let us prove (i). For a fixed r, consider the truncated weighted sum statistic

j=k -r+ l
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Following the argument used in Theorem 6.1.2, and using the result for disjoint 

partial sums of Theorem 6.3.1, we have that, for any M-typical sequence f,

: k < K ,  I l ( r ) ( r ‘ ) < 4 -* ‘fir(z),

uniformly in z G R , as —> oo, where (pr{z) = Pr(Zi Z 2 Zr <  z), and

Zi , Z2, . . . , Z r  are independent discrete random variables with Pr(Zj =  a^~^) =  

Pr(-^i =  =  1/2, j  = l , 2 , . . . , r .  Then, since y/fij/y/nj^ ak-j ,  (j =

k - r - \ - l , k  — r-\-2,. . . ,  fc), as > 00, for every M-typical sequence (, we also have 

that LJt(r)(f”*) —̂ as A: —> 00, and that

: k < K ,  i ^ ( r ) ( D  <  4  ^  <  if , I l ( 4 ( D  < 4 ^  V r(4 ,

as /<" —> oo. Thus, since this is valid for every fixed r, it is also valid for some 

r =  r[K)  —> oo, as > oo, and so (z) is proved.

To show (zz), note that, \L'l{r)\ =  0, A: =  1, 2 , . . . ,  r, and

k =  r - | - l , r 4 - 2 , T h a t  is, (zz) is true for any r =  r{K)  —> oo, as K  —> oo. So, 

the result is proved. Q.E.D.

Note that, as compared with the statement of the central limit theorem for 

subsequences, we have replaced the standardized sum

;&5^"
that is, we substituted Yj with the easier binary quantity y/ujW j. Also the distri­

bution of values obtained, as in the case of the first-order autoregressive stochastic 

sequence, is not standard normal.

6.4 The Strong Central Limit Theorem

We will present here some strong central limit theorem type results for M-typical 

sequences in the case of a computable basic martingale M„ =  A",-, with Xi G

{—1, 1}. In Section 6.4.1 we use logarithmic averages, while in Section 6.4.2 we give 

results for subsequences.
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6.4.1 Logarithm ic Averages

The following result is a version for M-typical sequences of the strong central limit 

theorem for logarithmic averages, in the case in which the basic martingale M  

represents a coin-tossing process. Note that, for finite TV, the logarithmic average 

considered by Schatte’s strong central limit theorem in (6.3) is not a distribution 

function, being greater than one for z large enough. However, it tends to a distri­

bution function, as TV oo.

T h e o rem  6.4.1 Consider the computable basic martingale Mn =  IZ?=i 

X i G { — 1,1}. Then, for any M-typical sequence

nTSo i è v  S  ( ^ )  =

uniformly in z  G Rc, where Rc is the set of all computable real numbers, and $ (z) 

is the standard normal distribution function.

P ro o f. Let us fix a z G Rc Since, from Section 6.3, for every n G N ,

I{-oo,z] = V̂n + V n lX i H---------h V n nX m

where cpn is a rational number in [0,1], such that (pn 0 (z), as n oo, and the Vni 

are computable quantities which depend on the Xi only through X i, JV2, . . . , %^_i, 

we can write

5  (^)=& 5 + Ù  S +■ ■ ■+
Since the first term on the right-hand side tends to 0(z), as TV —+ oo, it remains to 

show that the second term tends to zero, as TV 00. Let us note that the sum in 

this second average, that is, in

 ̂ E  V n l ^ l + - - -  +  K „X „), (6.6)
In- ^ , 3 »

is not an M-martingale, and we cannot apply any strong law of large numbers 

directly to it. Nevertheless, the average (6.6) can be written as

1 AT 1 1 1 1

W V  5  n +  ■ ■ ■ +  -  WV
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where

( ooi \  / oo 1 \ / oo 1 \ iV

E-%iFi+(E 4 -1 E -V r N )X N  = E W iX i ,
r=l  ̂ / V=2  ̂ / V=JV  ̂ / t=l

say, is a computable M-martingale, and is a computable predictable sequence, 

negative, and, by using the asymptotic approximation (6.4), with

\Wi\ =
oo 1

where c is a constant.

Then since, for i j  =  [e^J,

t L  &  E  I  E (M ^ v - .+ i^ .v - .+ i  +  • ■ • +
t= l t-OO k

and since

oo 1 °°  1 /  r2 r^\ .

E • •+ij) < 5 < oo.

by the strong law of large numbers of Theorem 5.3.3 we have that, for any M-typical 

sequence.
1 N

I n i V è ï

as TV — oo. Thus, since by the law of the iterated logarithm of Theorem 5.6.2, for 

any M-typical sequence,

\  _ i / < r  lim -—— V27VlnlniV .—
N^oo In TV y/Nlim

TV—►oo In TV\M n \ nn = N + l

and since the Vni are all non-positive, and for i  < TV,

E
n=TV+l n

< Ê
n=AT+l n

where the term on the right-hand side tends to zero, as TV —̂ oo, we have that

1 oo 1 1 1

I] - (1 4 iA :i-H ''-+ 1 4 T v X N ) =  ^ r - ^  ^  -(14TV% i +  - ' -+%^TV%TV) =  0 ,TV--00 InT V ^^n ^-oolnT V ^^n

and the theorem is proved. Q.E.D.

Let us consider now the following result which is about the first moment, in 

logarithmic average, of the standardized martingale M njy/n.
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L em m a 6.4.1 Consider the computable basic martingale Mn =  1̂7=1 X i €

{—1,1}. Then, for any M-typical sequence

lim =
N-^oo In N  ~  n y/n

P ro o f. Write

J _ f  = w .y ._  J _  f  1 5
I n jV ^  ' ' l n iV „ ^ ^ jn v Æ ’

where

is a computable predictable sequence.

Then, by considering that W{Xi is a computable M-martingale, since, for 

ij = [e-̂ J,

&  I  1 + • • • +

and since

oo 2̂
<  O O ,

by the strong law of large numbers of Theorem 5.3.3 we have that, for any M-typical 

sequence,
1 ^

I n N U
as N  —*■ oo.

Moreover, by using the law of the iterated logarithm of Theorem 5.6.2, we have 

that, for any M-typical sequence,

limN—*’Oo
1 A  

In N  ^ = ^ 1  n y/fi
< lim -——\/2jV In IniV—= =  =  0.
- A T ^ o o l n T V  V Ï V + T

Q.E.D.

Note that, in the same way, we could consider all the moments, in logarithmic 

average, of the standardized martingale M„/ y/n.
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6.4.2 Subsequences

The following theorem is a version for Af-typical sequences, always in the case of a 

basic martingale M  representing a coin-tossing process, of Schatte’s strong central 

limit theorem for subsequences. It is worth noting that its proof follows closely the 

proof of Theorem 6.4.1.

T h e o rem  6.4.2 Consider the computable basic martingale Mn =  ^ i)

X i € {—1, 1}, and, for a fixed rational number a  G (0, 1), the computable subse­

quence given by (6.5). Then, for any M-typical sequence (,

uniformly in z G Rc

Proof. Let us fix a z G Rc From Section 6.3, for every nj, j  = 1 ,2 ,. . . ,

/ ( - oo , z ] [ — =  <̂ rij - \ - V n j , l X i  H \- V n j ,n jX n j ,
\  y^Uj J

where is a rational number in [0, 1], such that  ̂ $ (z), as rij —»■ oo,

and the Vnj,i are computable quantities which depend on the X i only through 

X i, X 2, . . . ,  X i- i .  Then we have

— /(-oo,z] +  "F + -----^ Vnj,njXnj),
j=l ^  j=l ^  j= l

and since the first term on the right-hand side tends to 0(z), as K  —> 00, we have 

to show that the second term tends to zero, as K  00. To show this, we can write

1 7  -I-------1- ) =  1 7 R k  ~  1 7  Y 1  “• ^
^  j= l  ^  ^  j= K + l

where

and

K
R k  =--------------------------- H-------h WnjXnj),

i=i

r=j
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is a negative computable predictable sequence, such that, by using the asymptotic 

approximation (6.4),

1 ^ 1  1 1 ^
\W n,\=

T = j

a
,4^1 -  rij a/1 - Q 2r —

<  c a?

where c is a constant.

Then, since |lTi| <  \Wnj\^ when i < nj,

oo 1 oo 1

E  3 ( K - . + i + - ■ ■ + K ' I  ^  E  -  %-i)  <  c' ( i  - « ' ) E ;
j= i  J i= i J j= i -/

and by the strong law of large numbers of Theorem 5.3.3 we have that, for any 

M -typical sequence,

l in i  —  5 ^ ( l ^ n j _ i+ l^ n j _ i+ l  4 f- W r i j X n j )  =  0 .K^oo A

Also, by the law of the iterated logarithm of Theorem 5.6.2, for any M-typical 

sequence.

and since the are all non-positive, and for i < u k ,

OO 00

<
j = K + l j = K + l

where the term on the right-hand side tends to zero, as AT —> oo, we have that

1 °° 1 
lilïl 4------^^nj^nKXntc) = 4 J  =  0,

and the theorem is proved. Q.E.D.

Let us consider now the analogue for subsequences of Lemma 6.4.1.

L e m m a 6.4.2 Consider the computable basic martingale Mn = Z)?=i Xi ,  with Xi  € 

{—1, 1}, and, for a fixed rational number a  € (0, 1), the computable subsequence 

{nt} given by (6.5). Then, for any M-typical sequence (,

lim
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P ro o f. We have

^njc

where
oo 1 oo 3 - 1

since y /n j ^  I  ■y/n] < a . Then

^  1 , , .2, , 1 -  a" ^  1

and by the strong law of large numbers of Theorem 5.3.3 we have that, for any 

Af-typical sequence,

^  E  ^ i(^n j_ i+ l H h Xnj) = 0.

Also, by the law of the iterated logarithm of Theorem 5.6.2, for any M-typical 

sequence,

1 °° 1 1 /----------------
J im  ^  ^ ) / 2% l n l n % Y ^  =  0,

and the result is proved. Q.E.D.

6.5 D iscussion

In real applications, the distributions of values considered in Section 6.1 would 

represent the statistical distributions of large sets of outcomes observed sequentially, 

under some, fairly elementary, stochastic mechanisms. These results can be seen as 

the analogue of the strong consistency, in Kolmogorov’s probability framework, of 

the usual ‘empirical’ distribution functions. However, these limiting distributions 

are obtained without assuming any Kolmogorovian probability distribution P. As 

far as we know. Theorem 6.4.1 and 6.4.2 represent the first algorithmic versions, in 

any probability framework, of the strong central limit theorem. Indeed, it seems 

tha t in the traditional algorithmic approaches, where a Kolmogorovian probability
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distribution P  is employed, no version of this result has yet been proved (Vovk, 

1995b).

In Chapter 2, in Kolmogorov’s probability ajciomatics, we noted that, by re­

stricting the class of allowable probabilistic models, a simple application of the 

standard martingale central limit theorem leads to assessments, in this case signif­

icance levels, which respect the prequential principle. That is, which depend only 

on the actual realized sequence of outcomes and on the actual realized sequence 

of forecasts. These significance levels, however, even if respecting the prequential 

principle (in the restricted class of models), lack any ‘within-sequence’ interpreta­

tion. The limiting standard normal distribution, valid under the martingale central 

limit theorem, has a repeated-sampling interpretation, which refers to all possible 

realizations. Now, as far as we are concerned, the strong central limit theorem 

does not lead as well to any asymptotic significance level with a ‘within-sequence’ 

interpretation. Even if, appealing to the strong central limit theorem, referring the 

realized value of the test statistic S n / y / n  to the standard normal distribution does 

not involve any realization that did not materialize, but only an infinite continua­

tion of the finite sequence actually at hand, the strong central limit theorem, just 

for this reason, does not lead to any asymptotic significance level, with whichever 

interpretation. Nevertheless, the strong central limit theorem seemed to be the 

result Seillier-Moiseiwitsch (1986, Chapter 8) was looking for as to provide a prob­

abilistic background for asymptotic significance levels with a ‘purely prequential 

within-sequence’ interpretation.

112



C hapter 7

Conclusions

We conclude with a few words about the interpretation of some of the probabilistic 

concepts involved in the previous chapters. Like Vovk (1993a), we believe that the 

only source of probability (using this term very broadly) is probabilistic theories, 

where for probabilistic theories we mean empirical theories about the world whose 

interpretation come from the definition of their empirical content. To maLe a paral­

lel, for us probabilistic theories are theories about some aspect of the world, based 

on some concept of probability, much as Newton’s theory of gravity is a theory 

about the falling of bodies and the movement of stars and planets, based on the 

concept of gravity.

P r o b a b i l i t y .  Traditionally, the concept of Probability (now, using this 

term  in its usual strict sense), for instance, in Kolmogorov’s probability axiomat- 

ics, is usually provided with either an interpretation admitting repetitions, or an 

interpretation for which it makes sense only to speak of a single realization of an 

event. Whereas for the former Kolmogorov’s (1933) propensity interpretation can, 

to me, still provide a valid elucidation, for the latter there are, I believe, at least 

two different understandings. I distinguish between these two different understand­

ings, which very often are not distinguished at all, not on the basis of the different 

information available (see Vovk, 1993a), but on the basis of the different paradigms 

which are being used. For me, whereas one interpretation is based on the idea of
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proportion of an ideal population, the other (the real epistemic one) is based on 

the idea of pure degrees of belief When asked about the probability of having a 

head in a tossing of a coin, or of having a black mouse in a genetic experiment, we 

almost always look out in our mind for the right proportion in an ideal population 

of similar events. It does not m atter if this population is completely arbitrary or 

if we are thinking of a real one. The point is that we actually use a population, 

ideal or real as we please, to give our probabilities. On the other hand, if we were 

asked on a Friday evening to give the probability of a football team winning the day 

after or the probability that the distance to the sun is greater than 10® km, most of 

us would not use any ideal population of similar events to state our probabilities. 

We would hardly think, for instance, of a population of similar football matches 

considering all the peculiarities that led to that particular one. And we will not 

think at all of any population when asked about the probability that the 10^°th 

digit of 7T =  3.1415... is one.

Nevertheless, however common it might be to employ interpretations of Prob­

ability for a single realization of an event, a serious point could be raised against 

them, particularly those based on pure degrees of belief, by results like the strong 

law of large numbers or the calibration theorem. Under a pure degrees of belief in­

terpretation of the concept of Probability, it seems it does not have much meaning 

to group together the ‘outcomes’ of uncertain events or quantities like, for exam­

ple, the marriage of my sister, the height of the Eiffel Tower, the freezing point 

of mercury, and so on. But if we do it, by considering, for instance, a strong law 

of large numbers or a calibration theorem, for an infinite sequence of such events, 

then we have to expect (with a probabilistic degree of belief one) some ‘frequency 

property’ even for the outcomes of such events. That is, to an event (the frequency 

property) which does not have any meaning under a degrees of belief interpretation, 

we have to give nonetheless probability one. To me, this would seem to suggest that 

the concept of Probability has in itself an unavoidable interpretation in terms of 

repetitions. Dawid (1982) argued about the destructive implications for the theory 

of coherence of the calibration theorem. Here, my suggestion is that there seems
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to be some incompatibility in considering limit results like those above, when we 

adopt an interpretation of the concept of Probability for a single realization of an 

event. In such a case, a possible solution seems to be, particularly in the case of a 

pure degrees of belief interpretation, to admit that, in our mind (or in the logical 

‘m ind’ of a computer program making probabilistic predictions), due to the impos­

sibility of reducing the complexity of the situations in question, we actually use the 

concept of Probability with some sort of repetitive interpretation, when comparing 

two completely unrelated events by giving them similar probabilities.

In Chapter 2, we started our investigation by considering Dawid’s prequential 

principle, as proposed by Dawid (1984, 1991), in the classical probability framework 

of Kolmogorov. In an attem pt to find significance levels (which have a repeated- 

sampling interpretation under an assumed probability distribution P) satisfying 

the prequential principle, in Section 2.5.1 and 2.5.2 a simulation study was car­

ried out of a conjecture put forward by Dawid (1991) on the supposed prequential 

asymptotic behaviour of significance levels based on test statistics Yn having the 

form in (2.1). This simulation work did not corroborate the general conjecture, 

although standardized test statistics, in which Z{ is such that E(Z,|X*“ )̂ =  0 and 

Var(Zj|X*~^) =  1, lead to significance levels which are much more ‘robust’ from a 

prequential point of view.

The study of the asymptotic behaviour of the above test statistics was also 

motivated by a more philosophical question. The fact that the test statistic Yn 

has an asymptotic standard normal distribution, under some mild conditions, not 

involving independence, on the form of the underlying probability distribution P , 

suggested (see, Seillier-Moiseiwitsch (1986), Dawid (1992), and Seillier-Moiseiwitsch 

and Dawid (1993)), together with other investigations (e. g., Dawid, 1985), that it 

could have been possible to define, in contrast with the more traditional ‘sample- 

space’ interpretations, some sort of Probability with a ‘within-sequence’ interpre­

tation, for events defined only in terms of the sequence of the actual realized out­

comes. However, about such a suggestion, we did not find any reasonable solution, 

neither in Kolmogorov’s probability axiomatics, nor in Vovk’s prequential proba­
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bility framework, nor in Vovk’s purely martingale probability framework. And we 

now doubt that such a solution could exist.

F a ir n e s s . The probabilistic foundations, alternative to Kolmogorov’s ax­

iomatics, considered in Chapter 3, had all been inspired by the idea of building 

a probability framework on a tree-like structure with one-step-ahead probabilities, 

given the past. In the prequential probability framework proposed by Vovk (1993a), 

instead of considering a usual filtered probability space (.Fn)n>o»^, f  ), we con­

sider a partially specified probability forecasting system giving one-step-ahead

probabilities, given the past, not necessarily for every finite sequence of past out­

comes. This framework was shown to be essentially equivalent, at least in the 

discrete case, and when ;r is total, to the event tree framework of Shafer (1985, 

1993). In the purely martingale probability framework of Vovk (1993c), neither a 

probability distribution P  nor a probability forecasting system tt were introduced. 

Mathematically, we needed just to introduce a sequence of measurable functions, 

which we called a basic martingale, and to use the principle of the excluded gam­

bling strategy. Even if from the point of view of the applications, either Vovk’s 

prequential probability framework or Vovk’s purely martingale probability frame­

work are essentially equivalent to the classical Kolmogorov axiomatics, these newer 

probability frameworks are interesting from the point of view of their interpretation. 

Both these frameworks come with a genuinely sequential interpretation which seems 

to be more complete than the usual sample-space interpretations of the concept of 

Probability. Indeed, these traditional interpretations do not give any relevance to 

the sequential aspect of the observation process. For them, a finite or infinite se­

quence is always considered as a ‘point’ in some space, and only the quantity F (E ), 

with F  E .F, is provided with an interpretation. However, this sequential interpre­

tation is not based on the idea of Probability, but rather on the idea of fairness, 

as embodied by the concept of a martingale. And it takes account of all possible 

realizations that did not obtain, not only of the sequence of the actual realized 

outcomes.
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As for the interpretation, in the prequential probability framework, of the one- 

step-ahead probabilities provided by x, I believe, unlike Vovk (1993a), that these are 

completely compatible with more that one interpretation of the concept of Probabil­

ity, and, in particular, with both of the above interpretations for a single realization 

of an event, namely that based on the idea of proportion of an ideal population 

and that based on pure degrees of belief. Moreover, I believe that Kolmogorov’s 

propensity interpretation is perfectly compatible with forecasting systems t t  admit­

ting dependence: we have just to start again from the beginning.

On the problem of the relation of disagreement between theory and observations, 

in the case of interpretations for a single realization of an event, I think, like Vovk 

(1993a), that this can only be solved with the introduction of an appropriate prin­

ciple. With respect to sample-space interpretations of the concept of Probability 

this would be based on events with very small probabilities; whereas with respect 

to Vovk’s martingale interpretation the measure of disagreement would be based 

on martingales taking very large values.

R a n d o m n e s s ,  in Chapter 4, by introducing some algorithmic constraints, 

we gave a definition of random sequences^ which we called M-typical, in a purely 

martingale framework, on the lines of the algorithmic approach based on the prop­

erty of typicalness proposed by Martin-Lof (1966). This definition, instead of being 

given, as in this classical approach, with respect to a probability distribution P , is 

given only with respect to a basic martingale, by using the principle of the excluded 

gambling strategy. The idea underlying this approach, and giving an interpreta­

tion to it, is that, if we are to play an infinite sequence of fair games against an 

infinitely rich bookmaker, then, whatever computable strategy we choose, we will 

never become richer and richer as the game goes on. This martingale interpretation 

of the concept of randomness provides the most sequential interpretation of the 

concept of probability (in a broad sense) among those we have considered so far. 

Nevertheless, even the theory of M-typical sequences, as presented in Chapters 4, 5 

and 6, is not based only on the single realized sequence of outcomes, since it cannot
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completely avoid considering all the possible realizations that did not materialize. 

It has already been noted in different forms (von Mises (1951), Dawid (1985), etc.), 

that the principle of the excluded gambling strategy as a basis for probability has 

much in common with the principle of the impossibility of perpetual motion as a 

basis for physics.

In Chapter 5 and 6, these M-typical sequences were shown to satisfy analogues 

of the classical Kolmogorov strong law of large numbers; of Kolmogorov’s upper half 

of the law of the iterated logarithm; and of Schatte’s strong central limit theorem. 

In Chapter 6 we also investigated the distribution of the values corresponding to 

a given M-typical sequence, for some basic stochastic sequences, in the case of a 

basic martingale which was essentially equivalent to a Kolmogorovian probability 

distribution P. These results, together with the strong central limit theorem, repre­

sent an instance in which distributional properties are obtained without using any 

probability distribution P , or forecasting system tt  whatsoever. Similarly to the 

results obtained with the theory of typical sequences of Martin-Lof, these results 

would reassure us that frequency properties, considered by von Mises as a basis 

for probability, and, in particular, the distributional properties considered in Chap­

ter 6, are a consequence of the more powerful concepts of fairness and randomness, 

which in our case are embodied by the concept of an M-typical sequence. From a 

conceptual point of view, these results would also seem of help in the distinction 

between the nature of the statistical distributional properties embodied by a prob­

ability distribution P , and those embodied by a distribution of the values, or, using 

a traditional term, by an ‘empirical’ distribution function. In a way, it would seem 

that the concept of a distribution of the values, or, equivalently, the concept of an 

empirical distribution function, still provide the best understanding of a concept of 

Probability with a sequential within-sequence interpretation.
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A ppendix  A

C om putable Functions

In this Appendix we present in a concise and intuitive form some simple properties 

about operations with real-valued computable functions essential to our definition 

of M-typical sequences, and to the proof of their properties, which do not seem 

easy to find in the literature in the form we need, and which can be derived directly 

from some basic definitions. It is probably worth noting that whereas the classical 

theory of computability over natural numbers is dealt extensively in the literature 

and presented in many books, the standard reference for the advanced study of the 

theory of recursive functions being Rogers (1967), there seems to be a shortage of 

references dealing with computations over real numbers. Two books which deal 

explicitly with computable real numbers and computable real functions are Bridges 

(1994) and Kushner (1984), the former being an introductory book containing just 

a short account on the topic and the latter a fairly thorough monograph on recur­

sive mathematical analysis. Books which include also an account of algorithmic 

probability theory are rare; two exceptions are Uspensky and Semenov (1993), and 

Li and Vitanyi (1993), this last being particularly complete.

A .l  Basic Definitions

The basic facts and definitions from the theory of algorithms grouped in this section 

are taken mainly from the account on computability given in Vovk and V’yugin
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(1993), and in some other papers from the same authors, which are already in a 

form convenient to us.

Intuitively, an algorithm is a precise prescription defining a discrete, determin­

istic process of transforming finite objects. Finite objects are objects that can be 

given by a word in some fixed alphabet, that is, by a finite sequence of symbols from 

a finite fixed primitive list. Examples of finite objects are given by integers, rational 

numbers, intervals of the real line with rational end-points, finite sequences of finite 

objects, but not by real numbers. When an algorithm U is fed with a finite object 

it yields as output, in those cases where the process terminates, a finite object. An 

infinite sequence of finite objects is computable if some algorithm transforms any 

positive integer i into the zth term of the sequence.

A real number z for which there is an algorithm U transforming every natural 

number n into a rational approximation to it to within 2“” is said to be a computable 

real number. For any computable real number there is in general more than one 

algorithm giving rational approximations to it, possibly differing, to any desired 

precision, and a computable real number can always be given by any one of these 

algorithms. We denote the set of all computable real numbers by Rc.

D efin ition  A .1.1 A real-valued function f : A  —> R , where A  is a set o f finite 

objects, is computable if there is an algorithm U which transforms any input a £ A  

and positive integer n into a rational number r satisfying \f{a) — r| <  2“” .

In simple words, /  is computable if its values can be computed arbitrarily accurately 

by some fixed algorithm. It follows from the definition that the values f{a )  of a 

real-valued computable function are computable real numbers.

D efin ition  A .1.2 A real-valued function / :  A R  is said to be lower or upper 

semicomputable if there is an algorithm U which, when fed with a rational number 

r and an input a £ A, eventually stops if  f  {a) > r or f{a ) < r respectively and 

never stops otherwise.

This means, for example, that, for a lower semicomputable function / ,  if f{a ) > r 

this fact will sooner or later be learned, whereas if f{a )  <  r  we may be for ever
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uncertain. A real-valued function / :  A —> R  is computable if and only if it is both 

lower and upper semicomputable. Sometimes we shall use the expressions com­

putable or lower (upper) semicomputable by U to indicate the particular algorithm 

giving to a function the corresponding algorithmic property. For our purposes, we 

will need to consider only real-valued computable functions defined over sets of fi­

nite objects and we will not consider computable functions defined over sets of real 

numbers or computable real numbers.

The following concepts are sometimes useful in the derivation of the subsequent 

properties. We term vicinities the following finite objects: open intervals of the real 

line with rational end-points; sets consisting of a single finite object; products of 

vicinities. We say that a set U is effectively open if it is the union of a computable 

sequence of vicinities.

Then we have that a function / :  A —> R  is lower (resp. upper) semicomputable 

if and only if its subgraph Gi =  {(o,r) : o E A, r  < f{a )}  (resp. supergraph 

Gu = {(o,r) : a G A ,r > f{a)})  is effectively open. For example, /  is lower 

semicomputable if Gi = USi K? where =  {(a,-s) : s € (çi, 92)}, some a E A, 

çi,Ç2 € Q, and there exists an algorithm U which transforms any positive integer i 

into the zth term %. Also, since a real-valued function is computable if and only if 

it is both lower and upper semicomputable, a real number /  is computable if and 

only if the rays (—0 0 , / )  and ( / ,  00) are effectively open.

An alternative definition which is sometimes useful is the following. A function 

/ :  A —» R  is lower semicomputable if and only if the set Di = {(o,g) : a E A, g E 

Q ,ç  <  /(a )}  is semicomputable, that is, there exists an algorithm U which stops 

when fed with (a,q) E Di and never stops otherwise (alternatively we could say 

that Di is the domain of a 2-ary partial recursive function).

A .2 A rithm etic Operations

Let us consider now the problem of determining the computability of the result of 

some arithmetic operations upon computable and lower semicomputable functions.
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The computability of the result of transformations like é  or log i could then be 

determined from the computability of these simpler operations by using Taylor 

series expansions. A treatment of other more elaborate constructions, including 

Fourier series and Fourier transforms, can be found in Pour-El and Richards (1983). 

Computability of the result of the following operations is determined directly from 

the above definitions without introducing any other concept or result.

A .2.1 Com putable Functions

Let /,•: A —+ R ,  z =  1 ,2 ,...,  be computable functions defined over a set A  of finite 

objects. The algorithms computing that is, giving rational approxima­

tions to them to any desired precision, are denoted by Z/i,2Y2, . . .  respectively.

N egative . The negative —/ i  of a computable function is a computable function. 

It is trivial to see that, given U\^ an algorithm computing —/ i  exists.

S um . The sum / i  4- /2 of two computable functions / i  and /2 is a computable 

function. Since there exist two algorithms U\ and %  giving rational approximations 

q\ and q2 to f i  and /2 to any desired precision, and the addition of two rational 

numbers is a computable operation, there exists also an algorithm giving rational 

approximations q to f i  /2 to any desired precision. Indeed, for every a G A, to 

approximate fi(a )  4- / 2(a) to 2“” , we just need to consider q = qi 92, where qi 

and Ç2 are approximations of /i(u ) and / 2(u) to since

\ç — ( / i ( a )  +  / 2(a))!

=  \qi 4- 92 -  / i ( a )  -  / 2(a)! <  k i  -  / i ( a ) |  +  1̂ 2 -  / 2 (a)! <  +  2 mT ~  2” ’

Of course, since we can always add two functions at a time, any finite sum 

of computable functions is again a computable function. Besides, since —/2 is 

computable, also the function f i  — /2 is computable.

In fin ite  sum . If / i , / 2, . . .  is a computable sequence of computable functions (that 

is, there exists an algorithm U which for any given (z, a, n) gives as output a rational
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number r  such that \fi{a) — r| <  2“”) and /,• >  0, for all z, then the function /,• 

is lower semicomputable. Without going into the details, this fact can be proved 

by considering an algorithm which, for any given (a, 9), g > 0, tries to ‘allocate’ 

q among all the values / i ( a ) , / 2(a ) ,. . .  and eventually stops if it will succeed and 

never stops otherwise.

R ec ip ro ca l. If f i  ^  0, then the function I / /1 is computable. For every a G 

A, since f i  ^  0, by asking better and better approximations to the algorithm 

computing / i ,  we would know, sooner or later, if / i(a )  is positive or negative, and 

if 2“’” , m >  n, is the minimum precision required for this information, and q is the 

corresponding rational approximation provided by Ui, we would have that

|/i(a ) | > k | -  ^  > 0.

To obtain an approximation of l / / i ( a )  to 2"” , we would have then to consider 1 /r, 

where r  is an approximation of fi{a)  to 2 ~^, and q is the minimum natural number 

such that 2  ̂ >  2^  and

In fact, we can see that 

1 1
fi{a )

_  l / i ( a )  - r |  ^  1 1 1 ^  2"*2’> 2”  1 ^ 1
|r ||/ i(o ) | -  |r| |/i(a ) | 2" “  2’"2’>|?| -  2" -  2"  2” |?| -  1 2" “  2" '

P ro d u c t.  The product / 1/2 of two computable functions is computable. To show 

this, consider the algorithm which, for any given couple (a, n), obtains from Ui and 

U2 the preliminary approximations qi and q2 of /i(a )  and / 2(a) to 2“” , then the 

final approximations and V2 to 2 ~^, where

m =  m ax {n ,l +  [logg (2’‘|çi| +  2” |ç2| +  5)]},

and gives as output the rational riT2. Then

\riV2 -  f i ( a ) f 2 {a)\
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— k i (^2 — / 2 (a)) +  / 2(a)(n  — /i(û )) | <  \r i{r2 — / 2(a))! +  | / 2(a)(?'i — /i(a )) |

-  +  ^  ( l « l | + l « 2 | ^

As a special case of this, note that, if c G Rc, then the function c/i is computable.

M inim um  and m axim um . The functions m in ( / i , /2) and m a x ( /i ,^ )  are both 

computable. To see this, consider the algorithms which, for any given couple (a, n), 

feed Ui and U2 with (a, n), to obtain the rational approximations qi and Ç2, and 

give as output min{çi,Ç2} and max{çi,Ç2} respectively.

A bsolute value. The function |/ i | is computable. It is easy to see this by consid­

ering an algorithm which, for any given couple (a ,n ), feeds Ui with (a ,n ) to obtain 

the rational approximation q, and gives as output q ,i{ q >  0, and —q, if ç < 0.

A .2.2 Lower Sem icom putable Functions

Here, fii A  —» R , z =  1 ,2 ,...,  where A  is still a set of finite objects, will be 

lower semicomputable functions. Similarly to before, we will denote by l / i , ^ 2? • • • 

the algorithms lower semi computing, in terms of Definition A. 1.2, the functions 

/ i ,  / 2, • • • respectively.

N egative. The negative —fi  is upper semicomputable. To see this just consider 

the algorithm which, for any given couple (a, 9), feeds Ui with (a, —ç), and gives 

as output the output of Ui. In this way, the algorithm will eventually stop when 

—q < / i(a ) , that is when q > —/i(u), and never stop otherwise, as required by the 

definition of upper semicomputable function.

Sum . The sum f i  4- /2 of two lower semicomputable functions is again a lower 

semicomputable function. This can be shown by using the alternative definition of 

lower semicomputable functions in terms of their effectively open subgraphs. An 

algorithm lower semicomputing f i  4- / 2, that is generating a sequence of vicinities 

covering its subgraph, can be built by running simultaneously the algorithms, which
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can be determined from li\ and generating the coverings of the subgraphs of / i  

and /2 respectively.

In fin ite  sum . If / i ,  / 2, . . .  is a lower semi computable sequence of lower semicom- 

putable functions (in the sense that, in Church’s A-notation, the function Xia.fi{a) 

which transforms a into fi{a) is lower semi computable) and /,• >  0, for all i, then 

ICSi fi  is a lower semicomputable function. Similarly to the case of an infinite sum 

of computable functions, it is possible to find an algorithm lower semi computing 

this infinite sum by trying, for any given (o,ç), ç > 0, to ‘allocate’ q among all the 

values / i ( a ) , / 2(a ) ,.. ..

R ec ip ro ca l. If f i  > 0, then the function I //1 is upper semicomputable. To see 

this, we have just to consider an algorithm which, for any given couple (a, g), never 

stops, if Ç <  0, and gives as output the output of the algorithm Hi, when fed with 

{a ,l/q ) ,  if Ç > 0. In fact, Ui would eventually stop for f(a )  > 1/q, that is, for 

l / / ( a )  < q, and never stop otherwise.

Note, that, in the same way, if f i  > 0, then the lower semicomputabihty of f i  

can be derived from the upper semicomputability of I / / 1. Besides, it is also easy 

to see that if / i  <  0 and f i  > —00, then I //1 is upper semicomputable.

P ro d u c t.  If / i ,  /2 >  0, then the product / 1/2 is a lower semicomputable function. 

An algorithm generating a sequence of vicinities covering the subgraph of / 1/2 can 

be obtained by running simultaneously the algorithms generating the coverings of 

the subgraphs of f i  and /z.

Moreover, for c € Rc, the function cfi is: computable, if c =  0; lower semicom­

putable, if c > 0; upper semicomputable, if c <  0.

M in im u m  an d  m ax im um . The functions m in ( / i , /2) and m a x ( /i , /2) are both 

lower semicomputable. To show that m in ( /i , /2) is lower semicomputable, we need 

just to consider an algorithm which, for any given couple (a,q), feeds Ui and U2 

with (a, q), and stops when both algorithms stop, and never stops otherwise. On the
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other hand, to show that m a x ( /i ,/2) is lower semicomputable, we need to consider 

an algorithm which, for any (a, q), feeds Ui and %  with (a, g), and stops when either 

one or the other of the two algorithms stops and never stops otherwise, running Ui 

and U2 simultaneously.

A b so lu te  value Here, unlike for the computability case, from the lower semi com­

putability of / i ,  we cannot deduce the lower, or upper, semi computability of |/ i |.  

All that we can show is the lower semicomputability of |/ i | ,  when / i  is considered 

only on the subset of A  on which it is negative, or the upper semicomputability of 

I/ll, when f i  is considered only on the subset of A  on which it is positive.

A .3 A  N ote

Let U S  make a technical note about the introduction of algorithmic notions in proba­

bility theory. Broadly speaking, following the classification given by Uspensky and 

Semenov (1993), algorithmic studies in mathematical analysis could be classified 

either as constructive analysis, computable analysis, or partly computable analysis.

In constructive analysis, at least in some of its strongest ramifications, we are not 

allowed to use either the law of the excluded middle, which permits the abstraction 

to actual infinity and the use of indirect proofs, or the axiom of choice, which is, for 

instance, necessary in the proof of the countable additivity of Lebesgue measure. 

As a consequence of this requirement, in this approach we are only allowed to deal 

with constructive, or computable, objects, and ideally everything should have to be 

given or to be proved in a constructive way.

In computable analysis and partly computable analysis, on the other hand, the 

problem of computability is addressed without any logical restriction and in par­

ticular the law of the excluded middle and the axiom of choice can still be used. 

The difference between these two less extreme approaches lies in the fact that while 

in the former we only deal with computable objects, in the latter (also called ap- 

proximational approach) we consider the computable objects as a subset of all
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objects. For instance, while in the latter we can still deal with functions defined 

over real numbers, as in classical mathematical analysis, in the former we can deal 

just with functions defined over computable real numbers, which take values in 

the computable real numbers. A classical result which can help to highlight the 

differences between the two approaches is probably given by the existence of mono­

tonie bounded sequences of computable real numbers which do not converge to a 

computable real number. In this case, while in partly computable analysis such 

sequences are still considered to converge, in computable analysis they are not, and 

in this last approach a monotonie bounded sequence does not always converge.

Now, as far as we are concerned, most of the studies in algorithmic probability 

theory, either in the traditional approach using probability distributions or in the 

newer approach using martingales, could be classified either as partly computable 

analysis or as computable analysis. In our previous definitions, for instance, the 

algorithm computing a real-valued computable function did not have to be actually 

specified, eis would have been required by a constructive logic, but needed just to 

exist. It is also common practice, in most of algorithmic probability theory, to 

actually consider functions defined over sets of real numbers and to ask for their 

computability only as a later requirement, and so to follow an approximational 

approach.
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