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Abstract

There are many possible ways to analyse repeated measures such as animal 

growth data. Recent developments in computational methods mean that the 

natural approach of modelling the growth of each animal with a parametric 

curve with the parameters allowed to vary randomly between animals is now 

practically as well as theoretically feasible. The basic model structure is one 

level for individuals, one for the population and a third for prior beliefs. This 

means that the individuals are modelled as being a sample from some population, 

as indeed they are.

We have used Markov chain Monte Carlo methods to fit such models to data 

for pigs and for cats. For one data set the growth was only recorded over a short 

time and was approximately linear. For this example we were able to use Gibbs 

sampling. Over longer time periods animal growth is generally non-linear. We 

discuss some of the commonly used growth functions for fitting such data. When 

using these non-linear functions at the first stage of our models we used random 

walk Metropolis algorithms in order to fit the models.

We also include an analysis of some data which included measurements of 

various body components made after slaughter as well as series of live weights. 

For this data we were able to use a more sophisticated model which used diphasic 

functions at the first phase. These functions comprised of the sum of two phases 

each of which represented a separate group of body components. This approach 

provided information on the development, or changes in the form of the animals 

over time, as well as on the overall growth.



A cknow ledgem ents

Firstly, and most importantly, I would like to thank my supervisor Tom 

Fearn for his guidance and support throughout this work.

Also, my thanks go to what was Dalgety for their financial support. The

project group comprising members from the former components of Dalgety was 

very helpful, in partcular I would like to thank Mary Garratt, Steve Jagger,

Pieter Knap, Sue Leeke and Hein van der Steen.

Finally, thanks to the other students at UCL for their help, comments and 

friendship.



Contents

1 Anim al Growth 10

1.1 Outline of thesis................................................................................... 10

1.2 Animal growth studies and their a im s.............................................  11

1.3 Possible methods of ana ly sis ......................   12

1.4 Growth func tions ...............................................................................  14

1.4.1 Single phase fu n c tio n s ........................................................ 15

1.4.2 Multiphase functions...........................................................  19

1.4.3 Attempts at justifying biological in terpretations............  22

1.4.4 Choosing a growth fu n c tio n ............................................... 23

2 Hierarchical M odels and MCMC M ethods 26

2.1 Introduction to hierarchical m o d e ls ................................................  26

2.2 Introduction to the Bayesian a p p ro a c h ................   27

2.3 The structure of our m o d e ls ............................................................. 29

2.3.1 First s ta g e ..............................................................................  30

2.3.2 Second stage ........................................................................ 32

2.3.3 Third s t a g e ........................................................................... 33

2.3.4 Fitting the m o d e ls ..............................................................  35

2.4 Markov chain Monte Carlo m ethods................................................  36

2.4.1 The ideas behind MCMC m e th o d s ...................................  36

2.4.2 The Cibbs sa m p le r...............................................................  36

2.4.3 The Metropolis-Hastings a lg o rith m ...................................  39

2.4.4 The Metropolis a lg o r ith m ................................................... 40



2.4.5 The independence sam p ler.................................................... 40

2.5 Choice of algorithm and proposal distribution for sampling the 6i 

param eters...........................................................................................  41

2.5.1 Choice of sampling m e th o d s................................................ 41

2.5.2 Points to consider..................................................................  41

2.5.3 Specific methods suggested in the l i t e r a tu r e ...................  43

2.5.4 Using mixtures of algorithms .............................................. 45

2.6 Practical m a t te r s ..............................................................................  45

2.6.1 Convergence d iagnostics......................................................  45

2.6.2 Other practical p o i n t s .........................................................  48

2.7 Heavy tailed d is trib u tio n s ...............................................................  50

2.8 Bayesian model checking.................................................................  52

2.9 Bayesian model selection.................................................................  53

2.10 Bayesian non-parametrics ...............................................................  55

2.11 Classical ap p ro ach es ........................................................................  55

3 Linear Growth 58

3.1 Introduction........................................................................................ 58

3.2 The d a ta .............................................................................................  58

3.3 The m o d e ls .......................................................................................  60

3.3.1 First le v e l ...............................................................................  60

3.3.2 Second le v e l............................................................................  60

3.3.3 Third level/priors...................................................................  60

3.3.4 The full conditionals............................................................. 61

3.4 Results from the Gibbs s a m p lin g ..................................................  62

3.4.1 Convergence............................................................................  62

3.4.2 Results...................................................................................... 63

3.5 All-inclusive m o d e l ........................................................................... 72

3.5.1 Results from the all-inclusive m odel....................................  72

3.6 Sensitivity analysis and checking assum ptions............................  75

3.7 Other methods of an a ly sis ...............................................................  76

3



3.7.1 A: Separate analysis for each time p erio d ............................ 77

3.7.2 B: Individual lines for each p e n .......................................... 77

3.8 D iscussion.......................................................................................... 78

4 Non-linear Growth 80

4.1 Introduction....................................................................................... 80

4.2 The d a ta ............................................................................................... 80

4.3 Choice of growth function to u se ......................................................  81

4.3.1 Choice of parameterization of the Gompertz function . . 83

4.4 The m odel...................................................................   85

4.4.1 First le v e l ............................................................................... 85

4.4.2 Second lev e l............................................................................ 86

4.4.3 Third level/priors..................................................................  86

4.4.4 Full conditional distributions................................................ 87

4.5 MCMC methods .............................................................................  88

4.6 Effectiveness of the MCMC m e th o d s ............................................. 89

4.7 R esults................................................................................................  91

4.8 Sensitivity to choice of priors ........................................................  97

4.8.1 Sensitivity to choice of R ......................................................  97

4.8.2 Using more informative p r io r s ............................................. 98

4.9 D iscussion..........................................................      101

5 Non-linear Growth with Information on B ody Components 102

5.1 Introduction.......................................................................................  102

5.2 The d a ta .............................................................................................  103

5.2.1 Feed i n ta k e ............................................................................  105

5.2.2 Details of the estimation of the fat values...........................  106

5.3 The data and notation used in our m odel.....................................  107

5.4 Choice of growth fu n c tio n ............................................................... 107

5.5 The m odel..........................................................................................  108

5.5.1 First le v e l ...............................................................................  108



5.5.2 Second le v e l...........................................................................  109

5.5.3 Third level/priors..................................................................  109

5.6 Full conditionals and ‘graph’ of the m o d e l ....................................  112

5.7 MCMC methods .............................................................................. 114

5.8 R esults.................................................................................................  116

5.9 Using just live growth d a ta ..............................................................  124

5.10 D iscussion..........................................................................................  124

6 Discussion 126

6.1 Practicalities of the sponsoring company using these methods . 126

6.2 BUGS and W in B U G S ..................................................................... 128

A Sampling m ethods 131



List o f Figures

1.1 Growth of two male c a t s ........................................................ 11

1.2 The Gompertz function........................................................... 17

1.3 The Logistic function ..............................................................  17

1.4 The von Bertalanffy function.................................................  17

1.5 The 3 functions with fixed maximum growth r a t e .......................  18

1.6 Growth rates for the functions in Figure 1 . 5 ................................  18

1.7 The 3 functions with fixed point of inflection................................  18

1.8 Growth rates for the functions in Figure 1.7  .............. 18

1.9 Diphasic function (two logistics)............................................. . 21

3.1 The light (+) and heavy (*) pens for boars fed the control diet . 59

3.2 Boxplots of the for weight group 1   64

3.3 Boxplots of the /i for weight group 2 ............................................  64

3.4 Boxplots of the fi for weight group 3 ............................................  65

3.5 Boxplots of the fj. for weight group 4 ............................................  65

3.6 Histograms of the samples of the difference in population mean

slopes (control diet - new diet) for weight group 1 .............  66

3.7 Histograms of the samples of the difference in population mean

slopes (control diet - new diet) for weight group 2 .............  67

3.8 Histograms of the samples of the difference in population mean

slopes (control diet - new diet) for weight group 3 ............. 67

3.9 Histograms of the samples of the difference in population mean

slopes (control diet - new diet) for weight group 4 ............. 68

3.10 Observed and fitted values for two pigs in weight group 1 . . . . 68

6



3.11 Standardised residuals for weight group 1 ..............................  69

3.12 Standardised residuals for weight group 2 ..............................  69

3.13 Standardised residuals for weight group 3 ..............................  69

3.14 Standardised residuals for weight group 4 ..............................  69

3.15 Sampled values of the 6 (diet) and p (sex) param eters............... 73

3.16 Sampled values of the pk p a ra m e te rs ....................   75

4.1 Some of the d a t a .............................................................................  81

4.2 Residuals plots for three single phase functions...........................  82

4.3 Contour plots of the RSS for Oiz and the three suggested 6i2S for

i = l .......................................................................................................  84

4.4 Contour plots of the RSS for On and the three suggested di2S (also

for 9i\ and *̂3 ) for i = l ..................................................................... 85

4.5 The first 3 x 500 iterations for the ^ 4 3  p a ra m e te r .....................  90

4.6 The final 3 x 750 iterations for the 0^2 p a ra m e te r .....................  90

4.7 Boxplots of the parameters for the ind iv iduals...........................  92

4.8 Observed and fitted plots for i= l:4 (reading horizontally first i.e.

1st row is 2 =  1 then i — 2 and so o n ) ............................................  93

4.9 Standardised residuals against age for all of the c a t s ..................  93

4.10 The fitted c u rv e s .............................................................................  94

4.11 Individual 1 ......................................................................................  95

4.12 Individual 2 ....................................................................................... 95

4.13 Normal probability plots for the elements of the 6i .....................  96

4.14 Medians and 95% highest posterior density regions for the ele

ments of / i ..........................................................................................  1 0 0

4.15 Medians and 95% highest posterior density regions for the diago

nal elements of E .............................................................................. 100

5.1 Growth for the 6  pigs with most data  ...............................  104

5.2 Components d a t a .............................................................................  105

5.3 The data for two of the p i g s ........................................................... 107



5.4 The m odel..........................................................................................  113

5.5 The iterations for individual 1 0 .....................................................  115

5.6 Observed and fitted p lo ts .................................................................. 117

5.7 The residuals for the live weight data for all individuals............  118

5.8 Residuals from the slaughter d a t a ..................................................  119

5.9 Standardised residuals from the slaughter d a ta ............................  119

5.10 The diphasic function given by the medians of the elements of /z

for the male p i g s ..............................................................................  121

5.11 The diphasic function given by the medians of the elements of /i

for the female pigs ...........................................................................  122



List o f Tables

3.1 Means and standard deviations of the samples of the difference in

population mean slopes (control diet - new d i e t ) .........................  70

3.2 Medians and 90% intervals for .............................................  70

3.3 Medians and 90% intervals for E (l, 1 ) .........................    70

3.4 Medians and 90% intervals for E (l, 2) .  ................   71

3.5 Medians and 90% intervals for E (2 ,2 ) .............................................  71

3.6 Medians, 90% intervals and posterior probabilities of parameters

being negative for Ô and p ............................................................... 74

3.7 Medians and 90% intervals for........E .............................................  75

3.8 Medians and 90% intervals for E for the analysis with an alter

native choice 0Î R   76

3.9 Diet means (and standard errors) for analysis A. The middle four

columns show the weight gain/pen/day (kg) for each of the four 

time periods........................................................................................ 77

3.10 Diet means (and standard errors) for analysis B ........................... 78

4.1 90% intervals for the elements of E ................................................. 91

4.2 90% intervals for the elements of E for the second analysis . . .  97

5.1 Posterior medians and 95% intervals for the p. parameters . . . .  120

5.2 Posterior medians and intervals for the r  and E parameters . . .  123



Chapter 1

A nim al Growth

1.1 Outline of thesis

This first chapter discusses animal growth. In particular, possible methods of 

analysing repeated measurements data, commonly used growth functions and 

the possibility of drawing biological interpretations from the fitted parameters 

of the relatively complex multiphase growth functions.

The second chapter outlines Bayesian hierarchical models which can be used 

for modelling animal growth. The chapter goes on to introduce and discuss 

Markov chain Monte Carlo methods which can be used to fit and draw inferences 

from these hierarchical models.

Chapter 3 illustrates the modelling process for the relatively simple case 

where the growth is approximately linear over the time period for which we have 

data. In these cases all of the posterior conditional distributions are standard 

distributions and Gibbs sampling is straightforward. The chapter also compares 

the results from our analyses with those from using other methods.

Chapter 4 illustrates the fitting of some non-linear growth data. Some of 

the conditional distributions are no longer standard and a form of Metropolis- 

Hastings algorithm was used for the sampling for these parameters. This process 

was made easier because there was a large amount of data for all individuals.
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Figure 1.1: Growth of two male cats

The analysis of a more complex data set is described in Chapter 5. As well 

as a series of live weight measurements for each animal there were also measure

ments of various body components made after the animals were slaughtered. By 

using a multiphasic growth function we were able to include some of this extra 

information in our models. The situation was further complicated by the data 

including differing amounts of data on different animals, in some cases very few 

measurements, and the lack of any animals with measurements to, or beyond, 

maturity.

This work was funded by a CASE Studentship and in Chapter 6 we discuss 

the value and practicality of using these methods within the sponsoring company.

1.2 Anim al growth studies and their aim s

There is a lot of interest in the growth of animals and studies aiming to further 

our knowledge are frequently conducted. In this thesis we have used repeated 

measurements data. For each animal, the measurements of body weight, or 

another quantity, form a growth curve showing the pattern of growth over time. 

We have used data for pigs and for cats in this thesis. Figure 1.1 shows the
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growth of two of the cats from the data used in Chapter 4.

Some of the reasons why we may be interested in this type of data are given 

below:

•  to compare the growth of two or more groups (e.g. diets),

•  to study the biological processes involved in growth,

• to monitor whether or not an individual’s growth is ‘normal’,

•  to quantify the amount of variability between individuals,

•  to investigate genetic variability.

1.3 Possible m ethods of analysis

There are a number of possible ways to analyse repeated measures data. The 

simplest is perhaps to fit growth functions to the data in order to assist in 

describing it or to provide smoothed plots of growth. Other methods include 

single and multiple t-tests. For example, we could use a two-sample t-test to 

compare two groups at a certain time (for example three months of age). An 

immediate problem with this is that if measurements have not been taken at 

the same age for all animals we cannot proceed. A further objection is that all 

of the data is ignored except for one particular snapshot of it. Aswell as being 

wasteful, this raises the point that the choice of which age to use will affect the 

result. To avoid this we may repeat the t-test at every time point. This again 

assumes that we have measurements at standard times for all individuals which 

is often not the case. Further, we have a problem of multiple comparisons and 

we should also note that for such tests there is generally dependence between 

the test statistics. For example, tests at three and at four weeks are clearly not 

independent.

In a landmark paper, Wishart (1938) introduced the two-stage model. The 

first stage was to fit curves to the growth data for each individual. The second 

was to analyse the fitted parameters as if they were the raw data. This ap

proach has since been improved upon by combining the two stages into a single
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model. To do this we assume that the subject-specific parameters are random 

variables from a distribution whose mean and variance are also estimated by the 

model. Lindley and Smith (1972) added a third stage by including priors for 

the second stage parameters. Fearn (1975) applied Lindley and Smith’s model 

to linear growth data. Various approximations were used in order to estimate 

the posterior distributions.

In their review of the mathematical models used in the first 50 years of the 

journal Growth, Zeger and Harlow (1987) stated that random effects models 

(such as those described above) have important applications to growth data. 

However, they noted that work was needed in order to be able to use such models 

with the typically, non-linear, functions commonly used to model growth.

Markov chain Monte Carlo (MCMC) methodology means that fully Bayesian 

analyses are now possible for linear and non-linear growth and without the need 

for restrictive assumptions or approximations. Gelfand et al (1990) include 

an analysis of linear growth data using the Gibbs sampler. Wakefield et al 

(1994) used the Gibbs sampler to reanalyse the data from Fearn. They also 

used the generalized ratio-of-uniforms technique in an analysis of non-linear 

pharmacokinetic data.

In this thesis we illustrate the use of MCMC methods to fit Bayesian hier

archical (population) models to both linear and non-linear growth data. One of 

the benefits of population modelling is that information about the individuals 

is combined to give information about the population. Also, the combined in

formation for all individuals tells us more about each individual than its data 

alone. One advantage of this is that individuals with sparse data can be included 

in the model and make a potentially useful contribution to it. The first step in 

fitting these models is to choose an appropriate growth function to use at our 

first stage to model the individual level growth. The remainder of this chapter 

is therefore dedicated to the subject of growth functions.
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1.4 Growth functions

Over the years many growth functions have been proposed. The aims of those 

working in this field have varied between looking for some kind of biological laws 

of growth to simply wanting to be able to make useful empirical summaries. Over 

time the emphasis has shifted towards using the functions as tools rather than 

as representing laws of growth. This shift has been because of the failure to find 

the desired fundamental law.

Growth curves are used in other fields as well as for animal growth. For 

example, plant growth (Hunt, 1982) and population growth (Solomon, 1976). 

There is quite a large overlap between the functions used in the various fields.

The level of complexity, or number of parameters, required in a growth func

tion will depend on the specific data we wish to analyse. For data over only 

a short period of time the growth is often well approximated by straight lines. 

When the data is for a somewhat longer period we may find that the growth is 

only mildly curvilinear. In these cases low order polynomials may be appropri

ate.

When we have measurements over a longer time period growth generally 

follows a roughly sigmoid shape. In these cases a ‘specialized’ growth function, 

rather than a polynomial, is usually the best choice.

A large number of possible functions have been suggested. These generally 

have a lower asymptote of zero and an upper aymptote which represents the 

mature weight. We note here that some species grow continuously throughout 

their life. In these cases a function with no upper asymptote is needed. For 

many species the approximate mature weight is reached and then very slow 

growth continues, for example, in humans weight tends to increase with age. In 

these cases a function with an upper asymptote will usually be adequate. This 

is especially so for the common cases when the data does not extend to, or far 

beyond, maturity.
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1.4.1 Single phase functions

Many of the proposed functions are single phase functions. By this we mean 

that if we plot the rate of growth against time we find a single peak, in other 

words, the growth rate increases until it reaches its maximum at the point of 

inflection and then decreases until zero when mature weight has been reached. 

Many three or four parameter functions of this form have been suggested. The 

most commonly used of these are outlined below. In each case, w represents the 

weight and t the time or age. Figures 1.2 to 1.4 illustrate the three-parameter 

functions outlined here. The solid lines show the weights and the dotted lines 

show the rates of growth. In each case we have chosen the parameters so that 

the maximum weight is 200kg, the point of inflection is at 100 days and the 

maximum growth rate is Ikg/day.

Figures 1.5 to 1.8 show these functions on the same axes enabling easier 

comparisons between them. For Figure 1.5 the inital weights, final weights and 

maximum rate of growth are the same for all three functions. For Figure 1.7 the 

point of inflection and the initial and final weights are the same for all of the 

functions. In each case the accompanying figure shows the rates of growth for 

each function.

Gom pertz

The Gompertz function can be written as:

_ e ( - f e ( i - D )w = ae

The three parameters must all be greater than zero and have the following 

interpretations:

a maximum weight,

c point of inflection,

k ‘rate of growth’ (dimensionless).

15



The weight at the point of inflection is 0.368a or J. The maximum growth rate 

is at this point and is given by

Logistic

The Logistic function can be written as:

w =  ^(1 +  tanh(fc(^ — 1))).

The three parameters must all be greater than zero and have the same ‘meanings’ 

as for the Gompertz. The weight at the point of inflection is The maximum 

growth rate is at this point and is given by

von Bertalanffy

The von Bertalanffy function can be written as:

w = a (l —

The three parameters must again be greater than zero. Here a is the maximum 

weight but the d and /  parameters are not so easy to interpret. The point of 

inflection is at time and weight | |  or approximately 0.3a. The maximum 

growth rate is given by
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Figure 1.2: The Gompertz function Figure 1.3: The Logistic function
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function

Richards

For each of the above functions the point of inflection is flxed at a certain 

percentage of the mature weight. This obviously limits their flexibility and also 

makes it  less likely that they will be applicable to a wide range of species.

Richards introduced a fourth parameter in order to allow the point of inflec

tion to be flexible. Venus and Causton (1979) give the Richards function in the 

following form:

u; = a(l ±

where, a , / c >0 ,  —l < d < o o  and d ^ O ,  b may be any real number.

From the plus or minus option we use plus when d is positive and minus 

when d is negative. If d is —1 then there is no point of inflection. For values of

17
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d greater than — 1, as d increases the point of inflection gets later (as expressed 

as a percentage of mature weight).

We note here that if, for a particular species, none of the available three 

parameter functions had an appropriately placed point of inflection but we still 

wished to use only three parameters it would be possible to use the Richards 

function but with one parameter flxed in order to give the required position of 

the point of inflection.

1.4.2 M ultiphase functions

Single phase functions may be adequate summaries of growth in many cases, 

especially when we have relatively few measurements for each animal. However, 

in some cases more complex functions may be required. A number of studies 

have found that when weight gain or growth rate is plotted against time it 

often has more than one peak. For example, in humans three peaks have been 

distinguished and generally accepted. The largest peak is within the first year. 

The second peak is at about 7 years of age, sometimes called the mid-growth 

spurt. The third peak is at about age 12 for girls and age 14 for boys. This 

third peak is known as the pubertal or adolescence growth spurt and seems to 

be unique to primates (the highest order of mammals) (Tanner, 1962). Because 

of these multiple peaks Koops (1989) proposes the use of multiphase rather than 

single phase functions.

As well as looking at the growth of the whole body, many studies have con

sidered the growth of separate body components. These are known as allometric 

studies and can relate the growth of the various body components to the growth 

of other components and also to the body as a whole. These studies have shown 

that different parts of the body grow/mature at different ages. The order in 

which components mature is generally related to their importance to the func

tioning of the body. This order is generally nervous system, bone, muscle and 

finally fat. For example, Walstra (1980) studied the growth and carcass compo

sition of Dutch Landrace pigs and found this to be the case. These differences in
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the relative growth rates of the various body components result in development, 

i.e. changes in the form of the animal over time.

Different body components maturing at different times fits in with there 

being several peaks in the growth rate curve. An obvious suggestion is that 

each peak broadly represents a separate component or a group of components 

which have similar patterns of growth. A multiphase rather than a single phase 

function will be a better fit to the data when we have more than one peak in 

growth rate. If we can justify any biological interpretations of the phases then 

such information on the growth of the various components would be very useful.

Before Koops there was very little work done on multiphasic growth. He 

suggests a number of reasons for this:

•  the idea that ‘growth laws’ are the basis for single phase growth functions,

• in many cases a few parameters are adequate to summarize the growth,

• phases are almost undetectable if measurements are not taken frequently

and over a long enough period of time,

• the added complexity of using functions with more parameters.

The specific multiphase function suggested by Koops was a summation of n 

logistic functions where n is the number of phases. The logistic function was 

chosen because many data sets had shown growth rate to be in symmetrical 

bell-shaped phases. The logistic function is appropriate in this case. We note 

that any other suitable function could be used in its place if, for example, the 

phases were not symmetrical or the logistic was generally found to be a poor fit 

to the data.

The simplest multiphasic function is the diphasic. This is the sum of two sin

gle phase functions and so has six parameters (unless you use the four-parameter 

Richards function as the two single phase components). Figure 1.9 shows a 

diphasic-logistic function (with the two phases shown separately as well as the 

totals and with the growth rates shown as dotted lines). The parameters used

20
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Figure 1.9: Diphasic function (two logistics)

here were (95kg, 1.75, 85days,105kg, 2.04, ISOdays). Therefore, the function 

was given by:

w =  y ( l  +tanh(1.75(— -  1)))

H——(1 +  tanh(2.04(—  -  1)))

We would expect the diphasic to be a better fit to observed data than a 

three or four parameter function because of the extra parameters. This does not 

necessarily make it a better choice. For example, we should not overfit the data 

when a simpler function is adequate. Nevertheless, when we have a reasonable 

amount of data the diphasic function may well be a sensible choice.

We note that care must be taken when attempting biological interpretations 

of the parameters/phases. This is especially the case when we have no data 

on separate body components with which to back up these interpretations. For 

example, just because a diphasic function is a good fit to some growth data it 

does not necessarily mean that the two phases correspond to two actual (groups 

of) components. The next section discusses ways of measuring the growth of
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components and also ways of relating these components to phases of growth.

1.4.3 A ttem p ts at justifying biological interpretations

Unfortunately, measurements of body components are not as easy to obtain 

as those of the whole body. The most commonly used method of taking such 

measurements is to do chemical analyses of the body after slaughter. Using 

this method we can only obtain one set of measurements for each animal rather 

than several measurements over time. By slaughtering the animals at a range 

of different ages we can get an idea of the growth of the body components over 

time. However, this data is not as useful as serial measurements on each animal. 

We also note here that these chemical analyses do not give such accurate results 

as a simple weighing of the whole animal.

One way of obtaining serial measurements is to use a non-invasive technique, 

for example, dual X-ray absorptiometry. Such an approach also means that the 

animals do not need to be killed. Munday et al (1994) used this method in a 

study of the body composition of domestic cats. Unfortunately they did not 

make serial measurements on each animal but instead measured cats at ages 

ranging from 8 weeks to 10 years. These data confirmed the expected order of 

growth of components (bone, muscle and finally fat).

A few studies have used data obtained from chemical analyses to investigate 

whether we can interpret the separate phases of a multiphasic function as repre

senting different body components. Koops and Grossman (1991) and Kwakkel et 

al (1993) have done this for pigs and for pullets (young hens) respectively. Their 

methods were to fit diphasic-logistic functions to the average body weights of a 

group of animals and then separately to fit single phase logistic functions to the 

components data. At each age the component value used is the average value for 

the animals slaughtered at that age. Finally, they considered whether the fitted 

parameters obtained from these two approaches were in general agreement.

Koops and Grossman used two data sets for their work on pigs. For the 

first of these their overall measure was not whole body weight but total dry
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matter (which is roughly total body weight minus water content). They fitted 

a diphasic function to total dry matter and single phases to each of the two 

components, fat and fat-free dry matter. There was general agreement between 

the parameters obtained.

For their second data set the overall measure was carcass side weight. Data 

was available for five components: offal, muscle, bone, skin and fat. These 

were grouped by age at maximum gain into: i) offal, muscle and bone and ii) 

skin and fat. The agreement between parameters in this case was good for the 

asymptotic weights but less good for the age at maximum gain and the rate 

of growth parameters. This data was somewhat limited by only including eight 

measurement points, only one of which was at greater than about half of mature 

weight, making any conclusions rather tenuous. (The other data was better as 

it had 19 measurement points). Chapter 5 of this thesis outlines our attempts 

to investigate the same questions addressed by these papers by using a more 

sophisticated analysis.

1.4.4 Choosing a growth function

Having rejected the idea that any one growth function represents a fundamental 

law of growth (at least amongst the growth functions presently available) we are 

faced with the choice of which function to use for any particular analysis.

Walstra (1980) stated that ‘the choice between empirical models is hampered 

because models have hardly been mutually compared, especially in the case of 

pigs, on actual growth data.’ Since that time, Zullinger et al (1984) tested the 

logistic, von Bertalanffy and Gompertz functions on data for 331 mammalian 

species. They found that each of the three functions gave the best fit for some 

of the species. However, they wished to choose only one function for all of 

these species in order to enable comparisons to be made between their fitted 

parameters. They found the Gompertz function to be most suitable for this. 

Since then (and before) the Gompertz function has often been used to model 

mammalian growth. For example, Begall (1997) used it for data on Zambian
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common mole-rats. The von Bertalanffy function has often been used to model 

the growth of fish, for example by Misra (1980).

The choice of function is often based on the location of the point of inflection. 

Differences in this location are believed to reflect differences in the time of onset 

of puberty (Brody, 1945) . The point of inflection is generally reached at about 

30% of mature weight in higher animals. Humans appear to be unique in having 

a long juvenile period and having the point of inflection at about 60% of mature 

weight.

In order to choose suitable functions we first need to consider the general 

requirements of a good growth function:

• it should fit well at all parts of the curve (for which we have data),

• it should not have too many parameters for the amount of data available 

(i.e. it should not overflt the data),

• it is useful if the parameters have a biological interpretation (although 

care is needed to ensure that the interpretations are supported by the 

data),

• it should be easy to fit (this is less important now due to more sophisti

cated fitting methods being available than in the past).

Commonly used criteria to decide whether a function is suitable or which 

function fits best are:

• small residuals,

• absence of systematic deviations (trends in residuals),

• realistic parameter estimates.

Unfortunately, results from these criteria do not always agree, for example, 

functions with a good fit can give poor estimates, especially for mature weight. 

This is not too much of a problem because the mature weight parameter is often 

an asymptote (much) larger than any of the observed data. In these cases, any 

biological interpretations of such estimates are unreliable in any case.
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If there is little to choose between the fits of two or more functions then, 

ideally, rather than simply using one of the functions, we should consider the ro

bustness of any inferences to this choice. For example, if the Gompertz function 

was chosen rather than the logistic would this substantially change the conclu

sions from the analysis? If it would then we need either theoretical or empirical 

justification for our choice of function in order to support our conclusions.
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Chapter 2 

Hierarchical M odels and M C M C  

M ethods

2.1 Introduction to hierarchical m odels

Growth models fit naturally into a hierarchical framework. At the first stage 

we have our chosen growth function for which each individual has their own 

parameters, 6i. We then model the 6i as a sample from some population dis

tribution. This distribution forms our second stage. The 9i are not observable 

quantities but we can use the data, y, to estimate them and aspects of their 

population distribution. The parameters defining the population distribution 

are again random variables for which we assign prior distributions based on 

further parameters known as hyperparameters.

Non-hierarchical models are not ideal in many cases because if they have 

few parameters they often cannot fit large data sets accurately. With more 

parameters they can overfit the data. Hierarchical models avoid these prob

lems because they have enough parameters to fit the data well but the use of 

population distributions structures some dependence into the parameters thus 

avoiding overfitting. Also, the hierarchical approach allows us to include prior 

information in our models.
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2.2 Introduction to  the Bayesian approach

Lengthy debates about the relative merits of Bayesian and frequentist method

ologies are outside the scope of this thesis. However, we note that for relatively 

simple problems, frequentist and Bayesian methods often give similar results. 

An important advantage of the Bayesian approach is that it is relatively easy to 

extend Bayesian models in order to increase their complexity.

A quick introduction to the Bayesian approach follows. For more informa

tion see, for example, Lee (1989) (introductory), Gelman et al (1995) (more 

comprehensive) or O’Hagan (1994) (encyclopaedic).

A Bayesian model allows us to make probability statements about parameters 

and unobserved data, <̂, conditional on the observed data, y, and any observed 

covariates, z.

Given the prior distribution for <j) and the probability density function of y 

conditional on (j) we obtain the joint probability distribution,

p{4>yy) =  p{<t>)p{y I <f>)̂

Using Bayes’ rule we then obtain,

p(^ I y) = 
p{y) p(v)

Since p{y) does not depend on (j) and can be considered a constant for fixed y, 

we can omit it giving,

p{<t> 1 y) oc p{<l>)p{y I <̂)-

This is the joint posterior density over all model parameters. We can obtain 

the marginal posterior distributions for any parameter of interest by integrating 

the joint distribution over the remaining parameters. However, the form of 

p { y  I (/>) and p(0 ) and the typically high dimensions mean that the integrations 

involved are not straightforward. Fortunately, there is an alternative approach 

which is to use Markov chain Monte Carlo methods to simulate samples from the 

joint posterior distribution. From the samples obtained we can then obtain the 

marginal distributions by simply taking the sampled values for the particular 

parameter and ignoring the sampled values of the other parameters.
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Prior beliefs

As we have seen above, Bayesian inference involves specifying prior beliefs about 

our model parameters. By combining these prior beliefs with the observed data 

we obtain the posterior distribution, in other words, the probability distribution 

of our parameters, ÿ, given the data y and our prior beliefs. The posterior 

distribution is a compromise between the prior information and the observed 

data. As the amount of data increases the posterior distribution is increasingly 

dominated by the data at the expense of the prior beliefs.

Non-inform ative prior distributions

It is sometimes possible to use prior ignorance or improper priors (see, for ex

ample, Gelman et al, 1995) in our models. We may wish to do this to remove 

the subjectivity involved in the choice of prior and to ‘let the data speak for 

themselves’. However, improper priors are not properly defined distributions. 

This leads to questions about how sensible their use is. Also, various problems 

can arise when they are used. These include the following points.

In some cases using improper priors will lead to improper posterior distri

butions. For example, Robert and Casella (1996) consider the effects of using 

improper priors for the variance components of hierarchical linear mixed models. 

The conjugate structure of the prior specification allows the Gibbs conditionals 

to be obtained and the Gibbs sampler used without any need to establish that 

the posterior is proper. They give an example where a posterior is improper due 

to having an infinite amount of mass near cr̂  =  0  where is the second-stage 

variance parameter. (The same thing occurs for the models used in this thesis 

for which we use a second-stage covariance matrix, E, instead of the variance cr̂ . 

See page 34.) The authors then discuss how this example shows that the Gibbs 

sampler output relating to an improper posterior may appear perfectly reason

able. Thus, the user may proceed to draw inferences from the model without 

realising that the posterior is not, in fact, a proper distribution. They also give 

a theorem which may be used to check whether the posteriors resulting from
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improper priors are proper. Gelfand and Sahu (1999) also discuss the use of im

proper priors as well as parameter identifiability (and the relationships between 

these two topics). They give results for checking whether a posterior reulting 

from a (partly) vague prior specification is proper in the context of generalized 

linear models.

Often there are many possible improper prior distributions which could be 

used. For many problems a density that is vague in a given parameteriza

tion will not be so for another. (In some cases Jeffreys’ priors may be used, 

these are invariant to changes in the parameterization). Dawid et al (1973) de

scribe a number of routine statistical problems for which improper priors lead to 

marginal posterior distributions which have an unBayesian property (a lack of 

consistency). They call this the marginalization paradox and note that it could 

not occur if proper priors were employed.

Improper priors can also cause problems with Bayesian model selection (see 

Section 2.9 of this thesis). Further, we are unlikely to have complete prior 

ignorance about our parameters so why ‘pretend’ that we do.

However, improper priors can be convenient in situtations where we have 

a lot of data. This is because as the amount of data increases the likelihood 

increasingly dominates the prior. Therefore, when we have a large amount of 

data the prior has little effect on the posterior inference. In these situations 

we may be able to use weak or improper priors in order to save the effort of 

specifying more informative ones. In these cases we are not purposely specifying 

ignorance but using it for convenience since our choice of prior will have little 

effect anyway.

2.3 The structure o f our m odels

We outline here the most straightforward model structure we have used. Devi

ations from this basic structure are described later where applicable.
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2.3.1 First stage

We have generally worked with univariate weight measurements, yij, where 

2 =  1 , . . . , /  represents the individual and j  =  1 , nj represents the measurement 

number on that individual. So, for each individual we have a vector of measure

ments, 2/t, and a vector of times at which these measurements were taken, x*. 

For each individual, z, each of these vectors, y* and x*, has n* elements.

Let 9i denote the individual-specific parameters for our chosen growth func

tion. The number of elements, p, in the 9i depends on the choice of growth 

function.

The first stage of our model is given by,

P liV i  I ^t)j h i(0 j ,  Xj, A ))

where {a, B) represents a multivariate normal distribution with dimension 

n», mean a and covariance matrix, B.

See Section 2.7 for a discussion on the possibility of using multivariate Stu

dent’s t  distributions instead of Normal distributions.

9i(9ifXi) is the vector of body weights given by our growth function for 

parameters 9i and times x%. A is a vector of variance parameters, hi is an rii by 

rii non-singular matrix. The simplest covariance structure is to assume common 

and uncorrelated variances, so, A =  r  and /ii(0i,Xj, A) =  Is known

as the precision and is equal to the inverse of the variance).

We might expect the errors to be serially correlated because observations 

made closely together may have a positive association. For example, if an animal 

is very light one day it is also likely to be underwieght, compared to the model, 

the next day. As the data becomes more widely spaced in time (as our data is) 

this should become less apparent.

Glasbey (1979) gives five reasons why there will be residuals when fitting 

animal growth curves. These are:

• variations in gut fill between weighings,

• seasonal variations and changes in diet,
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• illness,

• errors in measuring procedures,

• choice of wrong parametric form of curve.

Of course, several of these may be happening at the same time. The second, 

third and fifth of these will probably result in correlated residuals. We may wish 

to model this correlation, for example if it is due to illness or seasonal variation. 

Alternatively, it may be that apparent correlation is due to lack of fit of the 

curve (for example, when a line has been used instead of a curve or the wrong 

curve has been used).

The use of individual level parameters induces correlations at the marginal 

level among measurements on individuals. It may be that this induced cor

relation structure is sufficient to adequately model the data. It is possible to 

incorporate further correlation structure in the model specification, however, as 

discussed in Davidian and Giltinan (1995) there are problems with doing this. 

The results may be difficult to interpret. The amount of data available may not 

be sufficient. Attempts by the model to include the correlations may interfere 

with fitting the mean function. There may be problems with model identifiabil

ity since the correlation between observations on an individual (at the marginal 

level) depend on both the individual level and the between-individual covari

ances. Davidian and Giltinan therefore recommend that unless there are strong 

reasons to use them and a large amount of data per individual then models 

explicitly including within-individual correlation are probably not a good idea. 

The simpler model may be a misspecification but the loss of efficiency involved is 

likely to be small compared to the potential instability of the more complicated 

model. For example, Spiegelhalter et al (1995, Examples Vol 2, Birats example) 

found such models to have very poor convergence properties. Because of the 

points discussed above we have only used the simple structure throughout this 

thesis.
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2.3.2 Second stage

We now model the 9i vectors as being exchangeable conditional on jjl and E,

P 2( ^ i  I  ^ ) *

Again, instead of the Normal distribution we can use a multivariate Student’s 

t distribution with some degrees of freedom. See Section 2.7 for a discussion of 

this.

Here, denotes a p-dimensional vector of second stage mean parameters 

and E represents the p x  p covariance matrix. A common refinement is to have 

different mean parameters for different groups, for example, one p  for males and 

one for females or one for each diet group. It is also possible to use different 

covariance matrices for different groups. In the interests of parsimony we have 

not done this here.

Exchangeability

We use the definition of exchangeable random variables given in O’Hagan (1994). 

For a more detailed discussion of exchangeability see that volume. Random 

variables, are said to be exchangeable if for all k =  1 ,2,3,... and all

1 ^  ^  ^  ^  2/u,

P { O i  <  t i ,  62  ^  ^2 , . . . ,  Ok <  t k )  — P { O i i  ^  t \ ,  Oi2 ^  ^2 , , ^

i.e. the joint distribution of the first k OiS is the same as for any other k OiS. 

Also, all OiS have the same marginal distribution (the case A; =  1 ).

IID random variables are clearly exchangeable. Further, if conditional on 

Z  = z the îS are iid with a common distribution function Gz and Z  has a dis

tribution, f{Z ),  then it is straightforward to show that the 0{ are exchangeable. 

De F inetti’s theorem can be (informally) generalized to show that if ^1 , ^2 , " 

are exchangeable then they can be represented as conditionally iid. This is the 

converse of the above result.

When our prior beliefs are such that we have the same beliefs about any 0{ as 

about any other, and the same beliefs about any two groups of the same number
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of 9iS then we assume that the 9iS are exchangeable random variables. This 

judgement in turn justifies modelling the 9i as iid with an unknown distribution 

function.

We now relate the above theory to the growth curve setting. We have in

dividuals represented by 9i vectors. Given the second stage of our model, the 

common distribution function of the *̂s, we have the same beliefs about any two 

sets of the same number of 6iS. Conditional on the next level of our models our 

prior beliefs are the same for any two 0jS. These judgements mean that we can 

assume (conditional) exchangeability and can therefore model the 6i as iid with 

unknown distribution function.

Different prior beliefs between the 9i may be incorporated by having different 

second stage distributions. For instance, if some individuals are male and some 

are female we may use two different ji parameters.

2.3.3 Third stage

Finally, we specify prior distributions for /z, A and E. We denote these priors 

by P3 (/i, A, E 1 A) where A is a vector of known hyperparameters. The separate 

parts of this prior definition are outlined below.

When using the simple variance structure described above (where A =  r), 

we define a gamma prior for r ,

T ~  G a ( | ,  ^ ) .

Throughout, we have written Gamma distributions as Ga(a, P) using the nota

tion of Gelman et al (1995). The mean is ^ and the variance Therefore, for

the prior given above, the mean is ^  and the variance is

By our choices of i/q and tq it is possible to specify a wide range of prior beliefs. 

Setting z/Q and tq to zero results in an improper prior for r ,  but, provided the 

prior for E is proper, we still get a proper posterior.

We use a p-dimensional Normal prior for p,

/i ~  C),
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where rj and C  are known hyperparameters. When there is little prior infor

mation we take C to be diagonal with large elements. We must be careful here 

since setting the diagonal elements of C to oo does not always give a proper 

posterior. We can however use a diagonal matrix with large elements so that it 

has little influence.

For the second stage covariance matrix, E, we use an inverse Wishart distri

bution,

^ W ,{ { p R ) - \p ) .

The Wishart distribution was used because the conditional posterior distribution 

for E “  ̂ is also Wishart and sampling from it is relatively straightforward.

The mean of this distribution is R~^ and we choose the value of as an 

approximate prior estimate of E. However, we note here that although the prior 

expectation of E “  ̂ is the expectation of E is not R  and depends on the 

choice of p. Nevertheless, we argue here that jR is a prior estimate of E in the 

sense that the full conditional for E~^ (see for example. Section 3.3.4) includes 

both an estimate of E (from the summation term — p){9i — p,)') and R

(weighted by I  and p respectively).

We should not use an improper prior because the data do not rule out the 

possibility that all of the 9i are equal to /i, in other words that there is no vari

ability between the individual level parameters. The likelihood is proportional 

to

|E | “ 2 exp(—- t r { ^ ( ^ i  — p){9i — /x)'E~^}).
^ 1=1

As |E| tends to zero, the first term of the likelihood tends to infinity. This 

will generally be ‘cancelled out’ by the second term which tends to zero since 

exp(—/ )  tends to zero as f  tends to infinity. However, this will not happen if 

9i = pL for all i. When this is the case the second term will be exp(O) =  1. 

Therefore, unless we have a suitable prior the posterior will have a singularity 

at this point in the parameter space.

The prior we use is proportional to

exp(-itr{ i2"^E “ ^}).
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As |E| tends to zero, the elements of tend to infinity and tr ( iî“^E“ )̂ also 

tends to infinity. {R~^ is a fixed value, not zero). Therefore, exp(—|t r { i î “ ^E“ ^}) 

tends to zero thus ‘cancelling out’ the term tending to infinity in the likelihood. 

(Also, the |E“ |̂^~2~̂  term may tend to zero depending on the value of p). 

Therefore, when using such a prior we do not have the singularity in the posterior 

parameter space. For our prior to be defined (and proper) we must have p greater 

than or equal to p. Taking p equal to p gives the least informative proper prior 

distribution. We also note here that with a proper but weak prior the posterior 

may have a significant shoulder (O’Hagan, 1985) which may lead to misleading 

inferences.

2.3.4 F ittin g  th e m odels

Inferences from the model come from the posterior distribution which is propor

tional to Pi X p2 X p^. We may be most interested in components of the 9i, i.e. 

in individuals, or in the second stage parameters, i.e. population characteristics. 

Unfortunately, the integrals needed are not typically available in closed form. To 

get around this problem we need to use numerical or simulation techniques. We 

often have non-linear first stages and a large number of individuals/ parameters. 

This is often also the case when hierarchical models are used for pharmacoki

netic d a ta  as by Bennett (1996). He outlines possible numerical integration and 

Laplace methods which could be used for these models but concludes that these 

methods become impractical as the dimensionality of the posterior distribution 

increases.

Simulation techniques in the form of Markov chain Monte Carlo (MCMC) 

appear to  be the easiest way to get reliable results. We must remember however 

that care must be taken to ensure that these methods are used properly.
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2.4 Markov chain M onte Carlo m ethods

2.4.1 The ideas behind M CM C m ethods

Our aim is to generate a sample from the joint posterior distribution p{<j) | y) 

but we cannot do it directly. Instead we can construct a Markov chain whose 

equilibrium distribution is p(ÿ | y)- A number of suitable Markov chains can be 

constructed. Having chosen such a chain we run it until we have approximate 

convergence to the required distribution. We may then use the simulated values, 

after convergence, as if they were a sample from p{(j) | y). These values can then 

be used to summarize any features of p(ÿ | y) which we are interested in.

For simulating from Bayesian posterior distributions the Metropolis-Haatings 

family of algorithms have been found to work well. We now discuss these algo

rithms and other possible approaches.

2.4.2 The Gibbs sampler

The Gibbs sampler was introduced by Geman and Geman (1984) as an algo

rithm to generate joint and therefore marginal distributions when we have full 

conditional distributions which can be sampled from straightforwardly and effi

ciently.

Full conditionals will always be available for hierarchical Bayesian models 

constructed as a sequence of conditional probability distributions. They will be 

standard distributions when our first stage growth funtions are linear and we 

take conjugate priors and hyperpriors. In these cases the full conditionals will 

be easy to sample from.

We divide ÿ into m  scalar components or subvectors/matrices. It is often 

useful to group together the parameters relating to an individual or to a covari

ance matrix for example. This reduces the number of conditional distributions 

we have to sample from while increasing their dimension. Grouping, and hence 

sampling, highly correlated components together may help to avoid problems of 

slow convergence.

36



The first step is to take arbitrary starting values, ÿ T , m-

We then sample 0 from p{<j)i \ (j) 2% 0 m)j

and then, ÿ Ÿ from p ( 0 2  | <̂ T , 0 T , - ,  </» m),

and so on

until, (j) from | ÿ T , - ,  <!> m-i)-

This completes one iteration of the sampler. If we wish we may choose the 

updating order randomly at each iteration. After t  repetitions of this process we 

have (ÿ ...,ÿ  m)- If  ̂ is large enough then can be considered to

be a simulated observation from the joint distribution of (j> and <)> a simulated 

observation from the marginal distribution of <j>s. (Geman and Geman).

If all of the full conditionals are standard distributions then the sampling 

is straightforward. However, when our first-stage growth functions are non

linear the full conditionals for the first-stage, 0*, parameters will not be standard 

distributions. In these cases we use a sampling procedure which uses Gibbs 

sampling for those parameters which have standard full conditionals and then a 

more complicated algorithm, within the general sampling, for the 6i parameters.

We now discuss some possible methods of sampling the 6i parameters starting 

with the rejection sampling and the ratio-of-uniforms methods. A third possi

bility is to use some form of Metropolis-Hastings algorithm. This algorithm and 

some of its special cases are outlined in the following subsection.

R ejection sampling

Samples are drawn from a density proportional to G, where G is an envelope 

function of our required unnormalized density, g (so G{Y) > g(Y) V Y). We 

then accept point Y with probability accepted points then form an in

dependent sample from g. (Ripley, 1987). Each decision between accepting and 

rejecting a point involves evaluating g{Y) and G{Y). Evaluating g{Y) is typi

cally computationally expensive. Also, many rejections may occur before we get 

an acceptance. These facts together mean that the method can be slow. There

fore, it is important to reduce the number of rejections by making the envelope
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G close to g and to improve computational efficiency by making it easy to sample 

from and evaluate. It is possible to reduce the required number of evaluations 

of g by using squeezing functions a (y ) and h{Y)^ where a(Y) > g{Y) > b(Y) for 

all Y  and a and b are cheaper to evaluate than g. The accept/reject test then 

becomes:

sample a U(0 , 1 ) random variable U; 

i iU  > reject Y;

else if U < accept Y; 

else i f U <  accept Y.

The first two tests allow a decision to be made without having to evaluate the 

computationally expensive g.

Generalized ratio-of-uniforms m ethod

This method draws samples from an unnormalized univariate density, g, by 

generating bivariate points in the region, C:

C =  {(n, u) : 0  < < g with r  > 0 .

The ratio-of-uniforms, has distribution Further details and ways of 

improving the efficiency of this method are given in Wakefield et al (1991). A 

successful strategy is to contain C within a rectangle where the vertices are 

found by maximisations and minimisations of the function, g, raised to various 

functions of r. The only restriction on this method is that these maxima/minima 

exist, log-concavity of g is not required.

This method can be computationally inefficient since several maximisations 

or minimisations are required to obtain each sampled value, and also, there 

may be a large number of rejections. However, using a recommended strategy 

from Wakefield et al (1991), Wakefield et al (1994) found typical acceptance 

probabilities to be about 0.8. Wakefield et al (1991) also give a multivariate 

version of the basic method.
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Adaptive rejection sampling

For the previous methods there is a need to find a tight envelope function or 

region in order to reduce the number of rejections. Gilks and Wild (1992) give 

a method for obtaining such an envelope function when we have log-concave 

univariate densities.

Gilks (1995) states that multivariate generalizations of this are possible but 

had not been implemented at that time. The amount of computation involved 

was thought to be of about order m®, where m  is the number of dimensions. If 

this is indeed the case then this method would only appear to be useful in low 

dimensions.

2.4.3 The M etropolis-H astings algorithm

The basic idea here is to sample a potential new value, or proposal, from a chosen 

proposal distribution. We then decide whether or not to accept this value as 

our next iteration by calculating an acceptance probability.

Firstly we choose a starting point, 0°,

then for t= l , 2 ,...,

sample a value 9* from the proposal (or jumping) distribution at time t,

Jt{6'  I

calculate, a =

(which is a ratio of importance ratios),

9* with probability min(a,l),
set =

9̂ ~̂  otherwise.

Further details and references are given in Gilks et al (1995). Any sensible 

proposal distribution will give samples from the required distribution eventually. 

Section 2.5 considers the choice of proposal.

We note here that the Gibbs sampler is a special case of the Metropolis- 

Hastings where every proposed value is accepted.
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2.4.4 The M etropolis algorithm

This is a special case of the Metropolis-Hastings algorithm where the proposal 

distribution is symmetric,

I I e*) for all t  and *.

For example, a multivariate normal distribution with constant covariance and 

mean the present value

The acceptance probability now simplifies to min(a,l) where,

_ pjO' I y)

Random-walk Metropolis is a special case of this for which,

j{0 '  I e‘- i)  =  j ( |  e* -  I).

2.4.5 The independence sampler

This sampler is another special case of the Metropolis-Hastings algorithm. Here, 

the proposal does not depend on the present value, 9*~̂ . For example, a mul

tivariate normal with a fixed mean. The acceptance probability is given by 

m in(a,l) where,
„ _  p(^‘ 1 y ) / j m

P(^-' I y)/MS*-^Y
For this sampler to work well the fixed mean used should be a good estimate 

of the actual mean of the posterior, for example, the mode or the MLE. Also, 

the proposal should be a good approximation to the target distribution. It 

is safest to use a proposal with heavier tails than the target distribution. To 

illustrate why this is the case, suppose we have a proposal with lighter tails 

than the target distribution and that our current point, is in the tails of 

the target distribution. Most proposed points will not be in the tails so 

will be (possibly much) larger than leading to low acceptance probabilities. 

Therefore there is the possibility of long spells where the sampler is stuck in the 

tails of the target distribution. We can avoid this problem by using a proposal
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with heavier tails than the target distribution. The downside of doing this is 

that we will have a lower overall rate of accepting proposed points.

2.5 Choice of algorithm  and proposal distribu

tion  for sam pling th e param eters

2.5.1 Choice of sam pling m ethods

Because of their relative ease of implementation and their computational effi

ciency we will use some form of Metropolis-Hastings algorithm to sample the 

first stage 0» parameters. In order to implement this sampling we need to con

sider the exact choice of type of algorithm and also the form of the proposal 

distribution. For Metropolis-Hastings to work well some effort is needed to find 

suitable proposals. This can be difficult in some cases.

2.5.2 Points to  consider

At least in theory, any (sensible) proposal distribution would give samples from 

our target distribution after enough iterations. However, in practice some fine 

tuning is needed. How well the chain mixes and therefore the rate of convergence 

will depend on how similar the proposal distribution is to the target distribution. 

When choosing a proposal distribution the questions we have to address are:

•  what family of distributions to use?

• where to centre the distribution?

• what scale and shape to use?

•  how many repetitions of the Metropolis-Hastings sampling 

to do within each overall iteration?

When considering the family of distributions to use, our requirements are that 

the proposal should be relatively easy to sample from and to evaluate, in other 

words:
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• for any Oj we can easily sample from Jt(9i \ Oj ^),

• calculation of the acceptance probabilities is straightforward.

Multivariate Normal distributions are often used as they meet the above criteria. 

If necessary, the parameters may be transformed so that a Normal proposal is a 

sensible approximation to the target distribution. Except for the independence 

sampler, the distribution is often centred at the present value. We shall discuss 

the choice of scale and shape later.

Two or more repetitions of the Metropolis-Hastings sampling are often done 

for each overall iteration. This is because not all of the proposed values are 

accepted.

In order to consider the scale and shape of the proposal distribution we can 

list these further properties which a good proposal should have:

• jumps should not be rejected too often,

• the jumps should go a reasonable distance.

Essentially, these points have to be traded-off against one another. If the jumps 

are too small they will not be rejected very often but the chain will move too 

slowly. Conversely, if the jumps are too big they will be rejected too often and 

the chain will waste a lot of time standing still. We need to find a sensible 

compromise between these two extremes.

Gelman et al (1995) give some useful results which have been obtained for 

Normal distributions. These results were found to hold for many examples. 

Suppose that the posterior distribution of 9i =  (0ti,..., 0id) is d-dimensional 

Normal with known covariance matrix, M, and that we use the Metropolis 

algorithm with:

J t{ e i \9 l^ )  = N { e t \ e l - \ c M ) .

In other words, our proposal distribution has the same shape as the target 

distribution. The most efficient choice of scale was found to be c w For 

the multivariate Normal this choice of c was found to give acceptance rates
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from around 0.44 for 1 dimension declining to about 0.23 for more than about 

5 dimensions.

Gelman et al (1996) give and discuss a theoretical result supporting the 

above findings. Further detail of the theory involved is given in Roberts et 

al (1997). They obtained a weak convergence result giving the asymptotically 

optimal choice of scaling. Simulations for low dimension cases showed that the 

limiting results were appropriate approximations for as few as six dimensions. 

The optimal choice of scaling is related to the asymptotically optimal acceptance 

rate of the algorithm which is 0.23 for large dimensions. This fact can be used 

to try to maximise efficiency by tuning algorithms so that the acceptance rates 

are about 0.23, or higher for lower dimensions.

In practice, aswell as choosing the scale, we also have the not insignificant 

problem of estimating the covariance matrix, M. Some ways of doing this are 

detailed in the following section. It seems likely that when we only have an 

estimate of M  (as in nearly all practical applications) and/or the posterior dis

tribution is not Normal then the acceptance rates will be lower and the scale 

may have to be reduced, from the ^  suggested above, in order to increase the 

number of acceptances.

2.5.3 Specific m ethods suggested in the literature

For two data sets Bennett (1996) compared various possible methods of sampling 

the individual level parameters, 0*. Three of these methods are described below. 

Before describing them we include a brief reminder of our first stage parameters. 

The first stage of our model is

PliVi  I  ^ t j ^ t ) ' ^ )  —  • ^ n i ( P l ( ^ t j  ^ x ) j  ^niXrti)'

Therefore the log likelihood for the 2-th individual is given by:

log f*(^t,T) =  —-  •
^ j=i

Each of the sampling methods described below uses the inverse information
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matrix, Ùi, which is given by:

logli{ei,ry~^
Cli = — SOiôOi

and is evaluated at the present value of r  and at the maximum likelihood es

timate or some other estimate of 9i. Using the Ùi matrix is only appropriate 

when we have enough data for the 6i and hence the Cl{ to be calculated for each 

individual. We now describe three of the methods used by Bennett.

Random-walk M etropolis

Covariance matrix given by a constant c times the inverse information matrix, Q*, 

evaluated at the maximum likelihood estimate or some other estimate. Various 

different values of c were tried. The proposal was centred at the present value.

Independence M etropolis-Hastings

Covariance Q*, centred at maximum likelihood estimates.

M LE/prior M etropolis-Hastings

The likelihood function, r) can be approximated for fixed r  by a multivari

ate Normal distribution for 0* : N{6i, Ùi). For Normal second-stage distributions 

the full conditional [0* | .] is then approximately multivariate Normal with mean 

§i — Ùi{Ùi -f- — /z) and covariance H- where //, E, r  and Ù^^

(which depends on r) take their present values.

Out of these methods the first was found to work best. Presumably, the 

other two methods might be improved if we allowed the estimated covariance 

matrices to be scaled by an appropriate factor, c, as well.

For another example, Bennett again used random-walk Metropolis but found 

that some of the elements of the matrices were very large. This was due to 

poor behaviour of the 6 -dimensional likelihood surface. In this case the Ùi matri

ces were transformed to asymptotic correlation matrices (rather than covariance
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matrices). This retained the main features of the likelihood surface. The value 

of c (0.005) was chosen to give suitable acceptance rates.

For a further example Bennett did a pilot run of 1250 iterations for each 

individual. For this pilot run each element of the parameter vector was sam

pled separately using random-walk Metropolis with arbitrary variance of 0.25. 

From this pilot run the first 250 iterations were discarded. The remaining 1000 

iterations for each individual were used to calculate the (7-dimensional) sample 

covariance matrices which were then used as the covariance matrices for the 

main run.

2.5.4 U sing m ixtures of algorithm s

Especially when ‘bad’ initial values are used, convergence is often slow due to 

chains becoming ‘stuck’. One way to avoid this is to use a mixture of algorithms 

(Tierney, 1994). For example, a program for the analysis of population pharma

cokinetic data (POPKAN, see Bennett, 1996) uses the following algorithm:

i) 5000 iterations using random-walk Metropolis with arbitrary fixed 

covariance matrix,

ii) main run, each with probability | ,

a) Random-walk Metropolis with covariance matrix given by 

initial 5000 iterations,

b) Metropolis-Hastings with centre at the present value of /x 

and covariance the present value of E (sampling from the 

prior for 6i).

2.6 Practical m atters

2.6.1 Convergence diagnostics

One of the main difficulties with MCMC analyses is the problem of assessing 

convergence. We need to ensure that we run the simulation long enough so that

45



the sequence has converged. Otherwise the sample will not be representative of 

our required distribution.

Various methods have been proposed for assessing convergence. Unfortu

nately, none of these is foolproof (Cowles and Carlin, 1995). The best approach 

appears to be to use some convergence diagnostics and also to inspect plots 

and/or summary statistics of the sampled values. By doing this we can make a 

fairly confident assessment of convergence whilst bearing in mind that we cannot 

be certain that convergence has been achieved. The CODA program (Best et 

al, 1995) is a collection of S-functions which can be used for this process. We 

now outline two of the most popular convergence diagnostics.

Gelman and Rubin (1992)

The idea behind this method is to take 2 or more independently simulated se

quences with widely varying starting values and then to compare the variation 

between and within the simulated sequences. If the sequences have mixed then 

the ‘between’ variation and the ‘within’ variation should be roughly equal. Each 

scalar quantity of interest is monitored separately and any all-positive parame

ters are transformed by taking logs. For each quantity we discard the first half 

of the iterations and then compute the between and within sequence variances 

for the remaining iterations. These enable us to calculate the potential scale 

reduction, \ fh .  This is a measure of the factor by which the scale of the current 

distribution for the quantity might be reduced if the simulations were continued 

in the limit n tends to infinity. This quantity reduces to 1 as n tends to infinity. 

If it has a large value then we should increase the number of iterations. Gelman 

et al (1995) consider that for most examples values under 1.2 can be considered 

to be suitably small. They note that for expensive datasets and final analyses 

smaller values, such as less then 1 .1 , might be sensible.

We note here that having sequences with widely varying starting values may 

not be suitable for those models where the MCMC approach is found to work 

poorly unless ‘good’ starting values are used. For example, for models where
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convergence is very slow it will be more efficient to have one long run rather 

than several shorter ones.

Raftery and Lewis (1992)

This is a method for single chains. Its aims are to try and detect convergence 

to the stationary distribution and also to estimate how long the chain should be 

run for in order to give the required accuracy in the estimates of the quantities 

of interest. To use this method you must specify three quantities. These are 

the quantile of interest, for example 0.025, the accuracy with which you wish 

to estimate this quantity, for example ±  0.0125, and the probability of the 

estimate being within this level of accuracy, for example 0.95. Given a pilot 

run of at least Nmin (depending on the values chosen, 600 for those suggested 

above) the method estimates how many iterations should be discarded and how 

many iterations should be done in order to achieve the required accuracy. The 

method also recommends a value k for thinning the chain by keeping only the 

/cth iterations if there are high correlations between successive iterations.

This method generally works well. However, Wakefield (1993) found that it 

can be unreliable for non-well-behaved posteriors or bad parameterizations. He 

gave an example of this which we briefly describe here as it is also of interest 

on the question of parameterization (see below). He considered two possible 

parameterizations one of which had high posterior correlations between two pa

rameters, for the other the correlation was much lower. In each case 10 runs 

of 1000 iterations were done and Raftery and Lewis statistics calculated for 

each repetition. The average recommended number of iterations for the ‘good’ 

parameterization was about half that for the other parameterization. The unre

liability of the recommendations was suggested by the large amount of variability 

between values for the 10 repeats for the ‘bad’ parameterization (between 5803 

and 29744). In contrast, for the other parameterization all of the recommenda

tions were between 4289 and 6165 iterations.
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2.6.2 Other practical points  

Burn-in

Burn-in is the name given to the early iterations before convergence has been 

attained. These iterations must be discarded before making any inferences from 

the sample.

Reparameterization

As discussed in Hills and Smith (1992) the parameterizations used in the prior 

and in the likelihood will affect the accuracy and efficiency of Markov chain 

sampling methods. When sampling each component separately using Gibbs 

sampling it is desirable to have low correlations between the parameters as this 

generally improves mixing/convergence. For a simple example, Hills and Smith 

showed that really high correlations greatly slow down the convergence of the 

Gibbs sampler. By reducing this correlation, even only to 0.8, convergence was 

much faster with even bad starting values quickly forgotten. Using a suitable 

parameterization is one way to reduce the correlations. For example, when 

fitting straight lines it is common to centre the age values by subtracting the 

mean age from each value. Doing this means that the intercept is the weight 

at the mean age rather than at age/time zero. This parameter may be less 

correlated with the slope parameter. For non-linear models the situation is less 

clear cut. Ross (1990) gives some suggestions on stable parameterizations. By 

stable he means that the parameters should represent contrasting features of 

the data and so be less likely to be correlated. When using Metropolis-Hastings 

algorithms an alternative to reparameterization is to use a well chosen proposal 

distribution which has the same correlation structure as the target distribution. 

Unfortunately, this is not always straightforward.

Gelfand et al (1995,1996) propose the use of hierarchical centering reparam- 

eterizations in order to reduce correlations and so improve the efficiency of the 

MCMC sampling. They consider normal linear mixed effects models and non

normal generalized linear mixed models. For example, for a two-stage normal
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linear model,

li I ?7i ^ iV(Xi77i,r/„J,

(/X , 771, 77„ )  is the centered parameterization whereas ( / x ,  a i , with 

(Xi = Tji — fj. is the uncentered parameterization. (The a» have mean zero and 

the fJL term needs to be incorporated into the first-stage of the hierarchy).

Gelfand et al show using analytical arguments, simulations and examples 

that the centering is likely to improve efficieny in cases where the variance of 

the random effects is large relative to the first-stage or error variance. This is 

likely to be the case for models where random effects are used. Our basic model 

structure (see earlier in this chapter) is defined in a centered form.

This centering is not intended to reduce correlations between the parame

ters for an individual. However, these parameters are often sampled together as 

vectors thus reducing the problems caused by high correlations. Also, it is man

ageable to use transformations within these relatively low dimensional blocks in 

order to reduce the correlations.

Number of chains

There is ongoing discussion about whether it is better to run one very long chain 

or several shorter ones. In some situations one very long chain can fail to show 

a lack of convergence which would have become apparent if several chains had 

been run with an overdispersed distribution of starting values. On the other 

hand, the creation of such a distribution can be time consuming. The decision 

of whether this extra work is necessary or not will depend on the particular 

application.

Starting values

The choice of starting values is not crucial as the chain will move away from 

them as it converges. However, by taking some care over the choice we can
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reduce the time taken to convergence. In some cases convergence can be very 

slow if ‘good’ starting values are not used.

Blocking

When generating highly correlated components individually we may find that 

movement and therefore convergence is painfully slow. Blocking these compo

nents together into a vector or matrix may improve mixing. However, the down

side of this is that generating from multivariate distributions may be harder. For 

instance, for the Metropolis-Hastings algorithm, the acceptance rate often de

creases as the dimension increases.

U pdating order

The order in which we update, or sample from, the various components may 

be fixed or random. Also, we do not need to update all components at each 

iteration. One possibility is to update only one component, i, at each iteration 

choosing it with some probability, 5 (2). Zeger and Karim (1991) suggest that 

mixing may by improved by taking high probabilities, 5 (2), for highly correlated 

components. We note here that if the 5 (2) depend on the present state of the 

chain then the formula for the acceptance probabilities must be modified.

Thinning

If storage space is limited and a very long run is required due to high correlations 

between successive iterations then we may wish to thin the chain by only saving 

every /cth iteration {k > 1).

2.7 Heavy tailed distributions

It is possible to replace normal distributions in our models with heavier tailed dis

tributions. The most commonly used of these are Student’s-t distributions and 

they are principally used to make inferences more robust. By using a Student-t
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distribution at the first stage of our models we can make our models more robust 

to data outliers. With a Student-t distribution at the second stage the model 

becomes more robust to the presence of outlying individuals.

In classical analyses we often wish to detect outliers in order to omit them 

from the data. Bayesian models using Student-t distributions are better because 

they can automatically accomodate outliers and decrease the contribution they 

make to the posterior distribution.

Wakefield et al (1994) use a Student-t distribution at the second stage of one 

of their examples. They wished to guard against outlying individuals unduly 

infiuencing the population mean inferences. They used scale mixtres of normals 

to implement this. Gibbs sampling could still be used and the introduction of 

an extra parameter for each individual provided a diagnostic for second stage 

outliers. There is no need to remove these outliers as might be done in classical 

analysis since their influence on the model is automatically downweighted. How

ever, in order to compare the inferences produced, Wakefield et al did remove 

the two outlying individuals they found and reanalysed the reduced data (using 

a normal model). As expected they found that the parameter estimates from 

the Student-t model lay between those for the normal model with all the data 

and those for the normal model with the reduced data set.

One representation of a multivariate t distribution is as a multivariate nor

mal with unknown variance. This is the situation we have in our models since 

the variances (or variance matrices) are themselves unknown parameters of the 

models. However, this does not make the models robust in any real sense unless 

they have différent variance parameters for different individuals/observations 

(which ours did not).

We illustrate this with a simple example, we have a single measurement, y, 

on a number of individuals (indexed by i). In the common variance case we may 

model these measurements as follows,

Ui ^  iV(/i, C7̂ ), (7̂  ^  JG(...).

With this structure, the yi have a t-distribution marginally but not indepen
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dently. The estimate of /z would simply be ÿ.

By using different variances for the different individuals we introduce robust

ness to the model. We now have,

The estimate of /z will now be a weighted average of the y{. Outlying yi will 

have large af. The effect of this outlying yi on the estimate of /z will therefore 

be reduced since the weighting factors decrease as af increases.

To summarize, although we do have t-distributions in a sense, this does not 

make our (common variance) models robust to outliers.

Outliers in the data are an example of conflict between sources of information. 

The outlier(s) conflict with the remaining observations. We can also have a 

conflict between the data and our prior beliefs. Our posterior beliefs are a 

compromise between the prior and the likelihood. When the difference between 

the two is large compared to both standard deviations a normal model still 

gives posterior estimates which are compromises. By using a heaver tailed prior 

distribution the prior beliefs will be rejected in favour of the data, when the prior 

beliefs are more reliable we may wish to compromise with the data or we could 

even reject the data in favour of the prior. In general, the information source 

with the lighter tailed distribution will be preferred to that with the heavier 

tailed distribution. Therefore, we have a choice of how such conflicts should be 

resolved. O’Hagan (1988 and 1995) discusses these issues in more detail.

2.8 Bayesian m odel checking

Perhaps the simplest approach to model checking is to inspect the residuals. 

However, as discussed in Pettit (1986) there is no single definition of residuals 

in Bayesian analyses. We can estimate the residuals by calculating the observed 

minus the fitted values where the fitted values are obtained from some estimates 

of the model parameters. The problem then arises of which estimates to use, for 

example, the mean or the mode of the posterior distribution of the parameters.
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Also, this is not necessarily the best method because for non-linear functions the 

expectation of the whole function is generally not the same as the function of 

the expectations. In the spirit of using all of the available information, Chaloner 

and Brant (1988) and Chaloner (1991) discuss the use of the whole posterior 

distribution of the error or residual terms. They propose the use of such distri

butions to define outliers and to calculate posterior probabilities of observations 

being outliers. Also, they advocate the use of residual plots showing both the 

point estimate and 95% highest posterior density intervals of the residuals. We 

can easily use these ideas since it is straightforward to calculate the residuals 

at each iteration of the MCMC process thus obtaining the required posterior 

distributions.

Many other approaches to model checking are possible, Hodges (1998) gives 

references to many of these and then proposes a new approach which takes full 

advantage of the structure of hierarchical models and provides diagnostics for 

all parts of the models. The basic idea is to add artificial ‘cases’ to the data 

corresponding to the higher levels of the hierarchy. This enables the model to 

be expressed in the form of ordinary linear models.

2.9 Bayesian m odel selection

Given a collection of models (which may all be adequate) the question often 

arises as to which is best. Classical methods of answering this question include 

using likelihhod ratio tests. However, these involve approximations which may 

not be accurate and they are only applicable for comparing nested models. This 

restriction does not apply to Bayesian methods, of which a common approach 

is the use of Bayes factors.

Inference from our models proceeds from the posterior f{6  | Y). However, 

since different models will have different parameters, 6, we cannot use this poste

rior for model choice. Instead, we can use f {Y) ,  a density which can be compared 

with the actual observations. This distribution is the marginal distribution for
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the data V. For model i with parameters 0i it is given by,

MV) = /  M r  10i)M&i)d9i.

The Bayes factor for model 1 against model 2 is then We may specify

our prior probability that model 1 is correct, giving prior odds on model 1 of 

Then the posterior odds on model 1 are given by the prior odds multiplied 

by the Bayes factor. When the Bayes factor is greater than 1 the probability 

for model 1 is increased from our prior beliefs. This happens, generally, when 

model 1 fits the data better than model 2.

Unfortunately, there can be problems with the use of Bayes factors, in par

ticular when we have improper priors (since f {Y )  will also be improper). We 

cannot then assess when a Bayes factor is large since any multiple of it can be ar

bitrarily obtained since c.f{9) has the same prior information as f{9) when f{9) 

is improper. Two ways of getting around these problems are to use the device 

of imaginary observations and to use partial Bayes factors. See O’Hagan (1994) 

for further details of the problems which can arise and also of these possible 

solutions.

The Bayes factor uses f {Y )  which we can call the prior predictive density, it 

is also possible to use other predictive densities. For example, cross-validation 

predictive densities, f{yr | F(r)), where YJr) represents all of the data, Y,  except 

2/r- These are usually proper densities even if f ( Y )  is not. The quantity

f{yr,obs  I  Yçr),obs)

is the conditional predictive ordinate (CPO) (Pettit and Young, 1990). Small 

values of the CPO suggest that the value yr,obs does not support the model. 

We may compare two or more models by plotting the CPO values against the 

observation number, r, for each model on the same axes. This will show us 

which models do better by seeing which tend to have the highest values. We 

will also be able to see which models are similar and whether some points are 

poorly fit under all models and so on. We may also do a global comparison of 

two models using the pseudo-Bayes factor. This is the product over all of the
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observations of the CPO ratio,

Q    f{yr,obs  I  ^{r),obsi
f{yr,obs  I  ^{r),obsi ^ 2)

Gelfand (1995) discusses the computational issues involved and gives a (growth 

curve) example using these ideas. Also, see Gelfand et al (1992) for further 

discussion and another (growth curve) example.

A further point worth noting here is that when our main purpose is not model 

selection but, for example, estimating parameters, then selecting just one model 

may not be the best approach. This is because model uncertainty is ignored 

and therefore the uncertainty involved in the estimates of the parameters of 

interest will be underestimated. See Raftery (1995) for more information. He 

also discusses methods of computing marginal likelihoods in order to be able to 

calculate Bayes factors.

2.10 Bayesian non-parametrics

It is possible to use a non-parametric approach at the second-stage of hierarchi

cal models. Suitable methods were proposed by Escobar and West (1992). They 

modelled the distribution of the individual level parameters as arising from the 

class of distributions given by the Dirichlet process. Because of the flexibility 

afforded by this approach multimodality or skewness of the population distri

bution can be handled by the models. Wakefield and Walker (1994) extended 

this approach to the nonlinear hierarchy. The downside of the extra flexibility is 

that the implementation of MCMC methods becomes more complex. We have 

not used this approach here.

2.11 Classical approaches

There are a number of possible classical approaches to nonlinear population 

modelling. These include two-stage methods and methods based on lineariza

tion. For two-stage methods there needs to be enough data for each individual
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to be able to estimate the parameters for each individual separately. These es

timates are then used to make inferences about the population parameters. If 

we have normality at the second-stage then it is possible to incorporate the un

certainty involved in the estimation of the individual level parameters. Iterative 

procedures can be used to obtain estimates from the model, convergence to sen

sible estimates occurs for most cases but can be slow. The two-stage approach 

was used in a growth curve context by Berkey (1982).

Linearization methods approximate the model with a form which is additive 

in the random effects and individual errors. Estimation methods similar to 

those for the linear case can then be used. Of course, this depends on the 

validity of the approximation. This type of approach was used by Lindstrom and 

Bates (1990) and by the NONMEM package (Beal and Sheiner, 1989) which was 

developed for pharmacokinetic models. For further references and a comparison 

of the NONMEM package with the Bayesian approach using MCMC see Bennett 

(1995).

Other classical approaches which have been proposed include non-parametric 

and semi-parametric methods. Davidian and Giltinan (1995) give details of these 

and also further details on the methods discussed above.

Another possible approach is that of multilevel modelling (Goldstein, 1995) 

and the MLwiN software (Goldstein et al, 1998). MLwiN can be used to fit a 

variety of multilevel models including repeated measures models and multilevel 

logit, loglinear and time series models. An iterative generalized least squares 

(IGLS) algorithm is used and gives consistent estimates of the model parameters, 

and maximum likelihood estimates when normal assumptions are met.

Goldstein et al (1994) illustrate the use of one of the previous versions of 

this package (ML3, Prosser et al, 1991) for a repeated measures model with 

autocorrelated level one residuals. They assume multivariate normality and use 

the IGLS algorithm. The authors noted that care was needed choosing the 

starting values for the iterative procedure and that for moderate sized data sets 

there could be numerical convergence problems due to the relative flatness of
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the likelihood surface.

Goldstein (1991) discusses non-linear multilevel models and proposes a pro

cedure using linearization. In particular, loglinear models are studied. The 

estimation proceeds by first linearizing the nonlinear function and then using a 

standard procedure for the now, linear multilevel model. In this case, the IGLS 

algorithm was again used. The linear first-order terms of the Taylor expansion 

were used and details are given of how the package may be used to consider the 

adequacy of this first-order approximation. The author noted that further work 

was needed to consider the properties of the estimates of the random parameters. 

The current method used a weight matrix which was based upon assumptions 

of multivariate normality.

Some statistical packages can now be used to fit mixed models. For exam

ple, S-Plus (Version 4.5, 1998) can fit both linear and non-linear mixed effects 

models. Structured covariance matrices can be used. Either maximum likeli

hood or restricted maximum likelihood is used. Derivatives to be used in the 

optimization may be supplied by the user or the program can use numerical 

derivatives.

The Bayesian method using MCMC is better than these classical approaches 

in the sense that no numerical or analytical approximations are needed. Inaccu

racies can arise through incorrect assessment of convergence or through Monte 

Carlo variability. We have some control over these through our choice of the 

number of iterations to be done. The other downside is the increased computing 

time over the classical approaches. The other benefits of the MCMC approach 

are discussed elsewhere in this thesis, for example the ability to include prior 

information and the ease with which confidence intervals can be obtained for 

any complicated (non-linear) function of the parameter(s) we are interested in.
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C hapter 3

Linear Growth

3.1 Introduction

This chapter illustrates the use of Bayesian hierarchical models for data which 

was collected on pigs over the approximately linear portion of growth. For this 

example, all of the full conditionals are standard distributions and we have used 

Gibbs sampling to obtain results from the models. For the purposes of compar

ison we also include some analyses of this data using other, more traditional, 

methods.

3.2 The data

There are 512 pigs which were weighed at 5 times from about 30kg to about 

95kg live weight. For this weight range the growth is approximately linear so we 

have used straight lines instead of curved growth functions. The pigs were at 

different (and unknown) ages at the start of the trial. The weighing interval was 

usually, but not always, 14 days. The pigs were housed in 64 pens in groups of 

8. Individual weights were not available, only averages for each pen, therefore, 

we used pens as our individual units.

Half of the pigs were gilts (female) and the other half were boars (male). For 

each sex two different diets were used, a control and a new diet. The new diet is

58



120

100

O)

O)

20

20 30 40
Time in days

50 60

Figure 3.1: The light (+) and heavy (*) pens for boars fed the control diet

cheaper and we are interested in whether or not it is as effective as the control 

diet. The new diet is different between the two sexes.

For each of the four diet x sex groups there were 16 pens. These 16 pens 

consisted of four replicates of four weight groups:

1. Heavy

2. Medium heavy

3. Medium light

4. Light

At the start of the trial the weights ranged from about 25 to 41kg. When

each batch of pigs started the trial they were allocated to the weight groups

simply by dividing them into four groups based on their present weight. The 

purpose of using these groups was to ensure that the distribution of starting 

weights was roughly the same for each diet group.

As an illustration of some of the data, Figure 3.1 shows the measurements 

for the light and heavy pens for boars fed the control diet.
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3.3 The m odels

Firstly, we analysed the data for each weight group separately using the same 

model in each case. For each weight group there were 16 pens, these were made 

up of four replicates of each of the four diet x sex groups. After these separate 

analyses we also discuss a model which includes all of the weight groups together.

3.3.1 First level

PiiVi I O i , X i , r )  = N5{g{0i ,X i) ,T- '^l5^5)

where yi are the vectors of the five weights for each of pens z =  1 : / ( /  =  16), 

Xi are vectors of the times these measurements were made. The 6i vectors consist 

of the intercept and slope parameters for each pen.

g{Oi,Xi) = 6ii +  0i2Xi =  XiOi

where Aj is a 5 by 2 matrix with first column made up of ones and second 

column equal to the vector of measurement times.

3.3.2 Second level

We used different means but the same covariance matrix for the 9i parameters 

for the four sex x diet combinations:

P2{^i I Pki

where A: =  1,2,3,4 represents the four sex x diet combinations.

3.3.3 Third level/priors

The structure of the third level is as outlined in Section 2.3.3. uq has been set 

to zero giving an improper prior for r. We have also used improper priors for 

the fj, parameters, by making all elements of C~^ zero. The prior for is the
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least informative inverse Wishart distribution that we can use, p =  2 =  number 

of parameters in the 6i.

The pigs chosen to start the trial weighed from about 25kg to about 41kg, a 

range of 16kg. They were then divided into four weight groups. Therefore, we 

would expect a rough range of 4kg in the initial weights, or intercepts, within 

each weight group. We use this value to make a very rough estimate of the stan

dard deviation as 2kg and therefore, the variance as 4kg^. For an approximately 

central starting weight of 33kg this variance equates to a coefficient of variation 

of about 6%.

Consultation with Steve Jagger of Dalgety Feed Limited, where the trial was 

done, revealed that they generally use the assumption that the coefficient of 

variation for the slopes, or growth rates, is about 5%. For a typical slope of 

Ikg/day this corresponds to a variance of 0.0025.

We don’t have a strong prior belief about the correlation between the slope 

and intercept parameters. This is because we might expect pigs which are larger 

at the start to grow quickly during the trial because they are fast growing pigs. 

On the other hand, remembering that the ages at the start are unknown, they 

may be heavier because they are slightly older. Alternatively, we might expect 

some element of regression to the mean. Therefore, we used zero as our prior 

estimate of the correlation.

To summarize the above, i2, the approximate prior estimate of E is a matrix 

with diagonal elements 4 and 0.0025 and zero off-diagonal elements.

Subsection 3.6 considers the effect of our choice of R.

3.3.4 The full conditionals

Because we are using linear growth functions in this example, the full condition

als are all standard distributions and we may use Gibbs sampling for all of the 

parameters.
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[9i I ?/,//, S  \  T, 9j, j  7̂  i] =  N[9i I DiirXlvi +  E V/fc), A ],

where =  rX[Xi  +  E“  ̂ and the appropriate /xjb parameter is used for 

each i.

W  I  y , 0 , E " \ r , { A i m , 7 n  ^  k}]  =  |

for =  1 : 4 where 9 represents the mean 9 for the relevant pens and Ik is the 

number of relevant pens (4). The matrix V  is defined by V~^ =  /*;E“  ̂+  C~^.

[ S - i  I y, 6,  M. r ]  =  |  { E ( %  -  -  M f c ) '  +  p R } ~ \ l  +  p],
1 = 1

where k is the appropriate value for each i.

[t 12/,^,/^, =  Ga[r | - { i/q +  n), — Xi9i)'{yi — Xi9i) 4- i'qTq)],

where n is the total number of meeisurements. The full conditionals for the 

fjLk and for r  simplify somewhat because of our choice of priors, C~^ = vq = 0 .

3.4 R esults from the Gibbs sam pling

3.4.1 Convergence

We sampled from the conditional distributions in the order given above and ran 

five sequences with different starting values. The values used were widely dis

persed about the approximate expected posterior distribution. This procedure 

was repeated for each of the four weight groups.

Gelman and Rubin (1992) statistics were calculated for each of the relevant 

parameters or scalar components. They were found to reach values close to 1 

very quickly. For each weight group five sequences each of 350 iterations were 

done. After 200 iterations all of the Gelman and Rubin statistics were less than 

1.12. The sequences were also inspected graphically to check for any signs of 

a lack of convergence. Since the Gelman and Rubin method discards the first
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half of the sequences before beginning the calculations we discarded the first 100 

iterations (half of 200) from each sequence leaving 1250 iterations in total for 

each weight group.

3.4.2 R esults

Figures 3.2 to 3.5 show boxplots of the sampled values of the /x parameters, i.e. 

the second stage means, for each weight group. The boxplots have lines at the 

median and the upper and lower quartiles. The rest of the data is shown by 

‘whiskers’. Outliers are shown by crosses and defined for the boxplots as values 

beyond the length of the ‘whiskers’. This length is defined to be 1.5 times the 

interquartile range.

For each figure the slope and intercept parameters are shown separately. 

The four columns in each plot represent the four sex x diet combinations in the 

following order:

Female New 

Female Control 

Male New

Male Control

No clear pattern emerges from these boxplots.

Our interest centres on the differences, if any, in the population growth 

rates, or slopes, between the diets. Therefore, for each weight group and sex we 

obtained a sample of the population slope parameter for the control diet minus 

the population slope parameter for the new diet. In each case this was done 

by calculating the 1250 values of slope^amtroi) ~  slopeç̂ new)- Figures 3.6 to 3.9 

show histograms of these samples. If there was a large difference in the slopes 

between the diets then zero would fall in the tails of these histograms. The 

sampled values would be mostly positive if the control diet has larger slopes 

(growth rates) then the new diet and vice versa. Table 3.1 gives the mean 

difference in the population slope parameters in each case and also the standard
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Figure 3.3: Boxplots of the fx for weight group 2
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Figure 3.5: Boxplots of the /z for weight group 4
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Figure 3.6: Histograms of the samples of the difference in population mean 

slopes (control diet - new diet) for weight group 1

deviation of the differences. Three of the eight means are negative and they are 

all close to zero providing little evidence that the new diet is worse than the 

control.

Figure 3.10 shows the fitted lines for the first two gilts in weight group 1 

which were fed the new diet.

Figures 3.11 to 3.14 show the standardised residuals for each of the four 

weight groups. There is some evidence of curvature in the residuals. This 

curvature is in the direction we would expect given that we know that the 

growth will form an S-shaped curve over a longer time period.

Tables 3.2 to 3.5 give medians and 90% sample intervals for and the 

elements of E for each weight group. We note here that the 90% intervals given 

here and throughout were found by omitting the lowest 5% and the highest 5% 

of the sample (equal tails intervals).
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Figure 3.7: Histograms of the samples of the difference in population mean 

slopes (control diet - new diet) for weight group 2

Gilts, W t.Gp. 3 B oars, W t.G p. 3

0.2 0.2

Figure 3.8: Histograms of the samples of the difference in population mean 

slopes (control diet - new diet) for weight group 3
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Figure 3.10: Observed and fitted values for two pigs in weight group 1
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Weight Group Sex Mean Std.Dev.

1 G .033 .039

1 B .022 .037

2 G -.015 .041

2 B -.018 .042

3 G .034 .046

3 B .028 .046

4 G -.031 .040

4 B .047 .041

Table 3.1: Means and standard deviations of the samples of the difference in 

population mean slopes (control diet - new diet)

Weight Group Median 90% Interval

1 3.59 (2.46, 5.24)

2 3.04 (2.08, 4.62)

3 5.26 (3.86, 7.54)

4 3.90 (2.75, 5.67)

Table 3.2: Medians and 90% intervals for r -1

Weight Group Median 90% Interval

1 6.7 (3.1, 15.8)

2 9.2 (4.6, 20.4)

3 4.5 (1.9, 10.8)

4 6.9 (3.1, 17.3)

Table 3.3: Medians and 90% intervals for 2(1,1)
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Weight Group Median 90% Interval

1 .037 (-.011, .112)

2 .085 ( .016, .204)

3 .040 (-.002, .118)

4 .050 (-.004, .133)

Table 3.4: Medians and 90% intervals for E( 1,2)

Weight Group Median 90% Interval

1 .0016 (.0006, .0037)

2 .0026 (.0012, .0054)

3 .0021 (.0008, .0050)

4 .0019 (.0008, .0048)

Table 3.5: Medians and 90% intervals for 2(2,2)
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3.5 All-inclusive m odel

As well as comparing the diets separately for each weight group we also fitted 

an all-inclusive model allowing an overall comparison between the diets to be 

made. For this model there is one second level mean, /ijb, for each weight group. 

Any differences between the diets or between the sexes are accounted for by 

including p and 5 parameters as shown below (for one weight group, k) :

Diet Gilts Boars

Control pk Pk + P

New Mit 4- (5 pk-^ P + à

The models including each weight group separately made few assumptions 

but had many parameters. The all-inclusive model, on the other hand, has 

fewer parameters but more assumptions. This simpler model has more chance of 

finding a small difference between the diets because it pools all of the information 

together and has fewer parameters.

Non-informative Normal priors were used for p and Ô with the other priors 

the same as before. Gibbs sampling was again used. Five cycles of 350 iterations 

with different starting values were done. For each cycle the first 100 iterations 

were discarded as all values of the Gelman and Rubin statistic were suitably 

small by this time.

3.5.1 R esults from the all-inclusive m odel

Figure 3.15 shows histograms of the sampled values of the slope and intercept 

components of the 8 and p parameters. We can see that zero is close to the 

centre of the distributions for both components of 8 meaning that we have very 

little evidence of a difference between the diets. In each case the median is 

negative, this equates to the parameters being lower for the new diet. The 

distributions for the components of p are further from zero, especially for the 

slope component. For these parameters the medians are positive, equating to 

larger values for boars than gilts. Table 3.6 gives the medians, 90% ranges and
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Figure 3.15: Sampled values of the S (diet) and p  (sex) parameters
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Element Median 90% Interval p(elenient)< 0

^int -.43 (-1.71, 0.92) 0.72

^slo -.013 (-0.040, 0.014) 0.80

Pint .71 (-0.51, 2.06) 0.17

Pslo .052 ( 0.024, 0.080) 0.00

Table 3.6: Medians, 90% intervals and posterior probabilities of parameters 

being negative for 5 and p

posterior probabilities of the parameters being negative for the four elements of 

these vectors. The main hypothesis we are interested in is whether the slopes, 

or growth rates, are lower for the new diet, i.e. is ôsio < 0. From Table 3.6 we 

see that the posterior probability of this is 0.8.

Because the new diet is cheaper the users of the feed may be willing to accept 

slightly lower growth rates because overall they would still save money. An 

advantage of our approach is that because we have a sample of values from the 

posterior distribution of 6aio it is straightforward to find the posterior probability 

that ôsio < * where * is a cut off point beyond which the benefits of cheaper 

food are outweighed by the costs of slower growth.

Out of the four elements the one for which we have the strongest posterior 

belief that the element is non-zero is the slope component of p. For this parame

ter the median is about 0.05 suggesting that the mean slope, or growth rate, for 

boars is about 0.05kg/day, or roughly 5%, higher than that for gilts. Figure 3.16 

shows boxplots of the sampled values for the slope and intercept components 

of the fik parameters. The four columns represent the four weight groups. The 

plots show the expected pattern over weight groups.

The median of the sampled values of r  was 3.5 with 90% range (3.0, 4.2). 

Table 3.7 gives a summary of the sampled values of the elements of E. The 

off-diagonal element relates to a correlation of 0.73.
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Figure 3.16: Sampled values of the fik parameters

Element Median 90% Interval

(1.1) 5.0 (3.4, 7.6)

(1.2) 0.065 (0.044, 0.097)

(2.2) 0.0016 (0.0010, 0.0025)

Table 3.7: Medians and 90% intervals for E

3.6 Sensitivity analysis and checking assum p

tions

The use of the Normal distribution at the first stage looks fine as the residuals are 

generally small and Normal probability plots show no evidence of non-normality. 

The fact that the weight measurements are averages over eight pigs rather than 

measurements on individuals lends support to the use of the Normal distribution.

We also need to consider the effect of our choice of R  on the results. In 

particular, does using different values have a substantial effect on the value 

of ôsio (which is the parameter we are most interested in as it represents the 

difference in ‘mean’ slopes or growth rates between the diets).

Therefore, the analysis was repeated with a second choice of R. The diagonal 

elements were 9 and .0009 with off-diagonal element .045. These values roughly 

equate to coefficients of variaton of 9% (higher than before) and 3% (lower then 

before) and a correlation of .5 (zero before). From this analysis the median 

of the sampled Ssio values was -0.013 with 90% interval (-0.040, 0.011). These 

values are similar to those in Table 3.6. We also repeated the whole analysis
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Element Median 90% Interval

(1.1) 5.8 (4.1. 8.6)

(1.2) 0.062 (0.043, 0.092)

(2.2) 0.0012 (0.0007, 0.0019)

Table 3.8: Medians and 90% intervals for E for the analysis with an alternative 

choice of R

with the original choice of R  in order to see how much variability there was 

between repetitions of the whole MCMC sampling procedure. (Rather than the 

variability between repeated sequences with different starting points which is 

measured by the Gelman and Rubin statistics). For this analysis the median 

of the sampled ôsio values was -0.014 with 90% interval (-0.040, 0.016). These 

values are similar both to those above and to those in Table 3.6. It does not 

appear that the alternative choice of R had any effect on the estimate of SsIq.

We can also consider the effect of R  on our estimate of E. The repeated 

analysis with the original choice of R  gave virtually identically medians and 

intervals for the elements of E to those from the original analysis (given in 

Table 3.7). For the second choice of R  the estimates of the diagonal elements 

were raised or lowered somewhat depending on the change in the relevant element 

of R  as we would expect. There was little change in the values for the off- 

diagonal element (the estimates now relate to a correlation of 0.74 instead of the 

0.73 obtained before). Table 3.8 gives these values.

3.7 Other m ethods of analysis

Two further analyses of this data were done by Mary Garratt of PIC Interna

tional Group PLC. Some of the results from these analyses are presented here. 

These methods, particularly the first, are commonly used to analyse this type 

of data.
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Diet

Start

Wt.(kg) Per.l Per.2 Per.3 Per.4

Final

Wt.(kg)

Control 33.1 0.938 0.964 1.010 1.045 90.2

New 33.0 0.879 0.937 1.033 1.058 89.4

(s.e.) (0.26) (0.014) (0.021) (0.016) (0.020) (0.58)

Table 3.9: Diet means (and standard errors) for analysis A. The middle four 

columns show the weight gain/pen/day (kg) for each of the four time periods

3.7.1 A; Separate analysis for each tim e period

For each time period the average daily weight gain was calculated for each diet 

over all weight groups and both sexes. The mean start and final weights were 

also calculated. Table 3.9 gives these values and also the standard errors. The 

difference between the diets is significant only for the first time period for which 

the mean weight gain was lower for the new diet than for the control.

From Table 3.9 we can also see that the average weight gains increase over 

time suggesting deviations from linearity. However, when plots of the data were 

inspected any such patterns appeared much less notable than suggested by the 

average gain figures. For five of the sixty-four pens there was some evidence of 

curvature in the form of increased growth rates in the final time period.

3.7.2 B: Individual lines for each pen

Straight lines were fitted individually to the 5 data points for each pen. The 

fitted intercept and slope parameters were then compared between diets as if 

they were the raw data. This was done over all weight groups and sexes. The 

results from this analysis are given in Table 3.10. The difference between the 

diets was not significant for either the slopes or the intercepts.

We note here that this is a standard analysis which would have been done 

within the company. It is very crude as it ignores the weight groups and sexes. 

It is of course possible to do a more sophisticated analysis of variance (ANOVA) 

including these variables.

77



Diet Intercept Slope

Control

New

32.6 0.990 

32.0 0.978

(s.e.) (0.26) (0.0086)

Table 3.10: Diet means (and standard errors) for analysis B

3.8 D iscussion

This chapter has described the use of Gibbs sampling to fit hierarchical models 

for linear data consisting of only five measurements per individual. Two alter

native formulations of the model are also detailed. Also discussed are two more 

traditional methods of analysis.

For this data none of the three methods show a very strong difference between 

the two diets. In general we would expect the Bayesian hierarchical approach 

to be more powerful than the other methods.

Of the more traditional analyses the first (A) is the most straightforward. 

The second (B) is a simple hierarchical analysis with two stages carried out one 

after the other (we first estimate the intercepts and slopes for each individual 

separately and then analyse these as if they were raw data). Our Bayesian 

hierarchical model is better than this because all of the parameters are estimated 

simultaneously. Therefore, the estimation of the individual level parameters is 

affected by the population level parameters which in turn are affected by all of 

the individuals. In other words, the process borrows strength from all of the 

individuals when estimating the parameters for each individual. This means 

that we can still obtain sensible estimates of the individual level parameters 

even for individuals with very little data and also that estimates for ‘unusual’ 

individuals may be pulled towards the estimates for the other individuals.

Other advantages of the hierarchical approach are that there is no problem 

with non-standard weighing times, missing values or some individuals having 

more measurements than others. For this data there are some differences in the 

weighing times between the replicates. Methods A and B could still be used
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because these difFerences were relatively slight and because the values used in 

Table 3.9 are weight gains per day rather than absolute weights (thus allowing 

differences in the number of days between weighings to be accounted for). Large 

difFerences in the weighing times or unequal numbers of measurements over 

individuals would present more serious problems. In the later case this is because 

any average weight gains or estimated parameters of individually fitted lines 

would be based of different numbers of observations and would therefore have 

different variances.

Other advantages of our hierarchical models are that they can estimate vari

ation both within and between animals, we can include prior information, we 

get estimates for individual animals and that individuals with very little data 

available can be included and make a useful contribution to the model.

We now consider the other side of the coin, the advantages of methods A 

and B over the hierarchical appraoch. The most obvious advantage is their ease 

of application compared with the greater amount of time and thought required 

by hierarchical modelling. Depending on the importance of the problem being 

studied, the simpler methods may be perfectly adequate. However, it is worth 

noting here that the time spent setting up a hierarchial model is not time wasted. 

This is because it gives us a greater understanding of the data. Implementing 

the Gibbs sampler can take some time, and understanding, but is by no means 

prohibitively time consuming.

Finally, it is worth noting a further advantage of method A over the other 

two methods. Because it makes separate comparisons at each time point it can 

find differences which only occur at parts of trial. When using methods which fit 

straight lines to the data for individuals such differences should also be exposed, 

as patterns in the residuals, but may be overlooked. However, we should also 

remember that method A uses multiple tests and so the significance levels should 

be suitably altered.
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C hapter 4

N on-linear Growth

4.1 Introduction

This chapter illustrates hierarchical modelling for some non-linear data. This is 

‘good’ data since there are frequent weight measurements over a long period of 

time. The Gompertz function was found to be suitable for modelling the indi

vidual’s growth. A random-walk Metropolis algorithm worked well for sampling 

the individual level parameters of the Gompertz function.

4.2 The data

There are weekly weight measurements for 10 male cats from birth to about 60 

weeks of age. About a third of the measurements are after the cats have reached 

maturity. For the first 24 weeks the cats were ‘on trial’, being fed a new diet. 

After this time they changed to an ‘old’ diet. This was because data analysis 

within the company was done over the roughly linear period of growth of 8 to 

24 weeks and the measurements after this were ignored. After 24 weeks there 

tends to be more variability in the measurements from one week to the next. 

This increased variability may be due, in part, to the cats drinking behaviour. 

Cats do not drink very often and therefore when they do it may have a large 

effect on weight. It is possible that this behaviour changes as they get older.
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Figure 4.1: Some of the data

Figure 4.1 shows the growth of four of the cats. The vertical line shows the end 

of the ‘on trial’ period.

4.3 Choice o f growth function to  use

We have a relatively large amount of data for each animal making it feasible to 

fit growth functions with more than one phase such as the diphasic. However, 

unlike the pig (protein and lipid), the cat has only one major body component 

(protein/muscle/lean) (Munday et al, 1994). This suggests that a single phase 

function may be a suitably good fit to our data. Therefore, each of the single 

phase functions with three parameters detailed in Chapter 1 was fitted to each 

cat using maximum likelihood estimation. The total residual sums of squares 

obtained were 7.0 for the Gompertz, 8.2 for the von Bertalanffy and 9.2 for the 

Logistic. As well as comparing the residual sums of squares we also looked for 

evidence of systematic departures from each of the functions. Figure 4.2 shows 

the residuals from each of the functions. All of the cats are included in each 

plot. All three plots show a systematic lack of fit. The Gompertz function is the 

best of the three. There is a strong pattern at early ages for the Logistic and 

von Bertalanffy functions. This suggests that the point of infiection for these 

functions is incorrectly placed for this data. Therefore, the Gompertz function 

was used in our models.
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Figure 4.2: Residuals plots for three single phase functions
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4.3.1 Choice o f param eterization of the G om pertz func

tion

In order to improve the behaviour of the MCMC sampling we would ideally like 

the three parameters making up the Gompertz function to have only small cor

relations between them (in other words, to be stable parameters). Also, because 

we will use a Normal distribution as our proposal distribution (see Section 4.5) 

we want the likelihood, which dominates the conditional distributions, to be ap

proximately Normal. We would also like the parameters to have straightforward 

biological interpretations if possible.

Firstly we considered the parameterization given in Chapter 1. Because the 

k or 6i2 parameter must be greater than zero, and takes values close to zero, we 

have adapted the function slightly by replacing 612 with exp(̂ %2 )- Therefore, we 

have,

g{Ou ^i) =  Oil exp[- exp{-exp(0 i2 ) ( ^  -  1)}]
"x3

We then considered two other possible parameterizations and compared these 

three possibilities in terms of our requirements (see the first paragraph of this 

section). Because 9n and 0*3 have straightforward biological interpretations 

(mature weight and age at point of inflection respectively) we kept these two 

parameters the same and looked at reparameterizing the ‘rate’ parameter, 0 *2 - 

For the parameterization given above the actual maximum rate of growth is a 

function of all of the components of 0* and is given by

One alternative is for 0 *2 to represent the maximum rate of growth. We also 

considered using the log of the maximum rate of growth. The first of these gives,

p ( 0 i ,  Xi)  =  0*1 e x p [ -  e x p { - ^ ^ ^ - ^ ^ ^ ^ ( x i  -  0 * 3 ) } ]
l ' i l

The second gives,

g{OuXi) =  0 *1 exp[-exp{ - { x i  -  0 *3 )}]
c ' i l

For each of these parameterizations we plotted contours of the residual sums 

of squares for combinations of 0*2 and 0*1 or 0*3 (having fixed the other parameter
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Figure 4.3: Contour plots of the RSS for 6is and the three suggested 0i2S for 1=1

to its maximum likelihood estimate). We also obtained the plot for 6n versus 

Ois. Examples of these plots (for 2 =  1, i.e. the first cat) are given in Figures 4.3 

and 4.4. In each case the five contours represent 1, 2.5, 5, 8 and 12. The pattern 

is similar for all 2 .

We rejected the possibility of using the maximum growth rate parameteriza

tion because of the suggestions of a lack of normality seen in the contour plots. 

There is little to choose between the other two possibilities. Estimates of the cor

relations between the parameters were obtained for each individual from the Ùi 

matrices (defined in Section 2.5.3). The correlations between the log(maximum 

rate) parameter and the mature weight parameter were all between -0.62 and 

-0.44. All of the correlations between the dimensionless rate parameter and the 

mature weight parameter were between -0.34 and -0.07. Similarly, the correla

tions with the point of inflection parameter were between -0.11 and 0.19 and 

between 0.41 and 0.70 for the two parameterizations. Partly because of the low 

correlations with the point of infiection and also because of the ease of biological 

interpretation we decided to use the log (maximum rate) parameterization.
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Figure 4.4: Contour plots of the RSS for 6n and the three suggested ^i2 S (also 

for 6ii and 9is) for i= l

4.4 The m odel

4.4.1 First level

There are J = 10 individuals and we have vectors, yi, of rij measurements taken 

at ages x*. The largest number of measurements on an individual animal is 65. 

The smallest number is 58.

PiiVi  I O i ,X i ,A )  =  N n i ( 9 { 9 i , X i ) , A ) ,  

where g is the Gompertz function in the following form:

g{di,Xi) =  Oil exp[- ex p { -^ ^ ^ % -^ — (xi -  ^is)}].
9iil

The three components of the 6i vectors have the following interpretations:

Oil mature weight (kg),

exp(^12) maximum growth rate (kg/week),

6i  ̂ age at point of inflection (weeks).
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A is a diagonal matrix with elements:

nriol for < 24,

V/trioi for > 24.

This allows the precision to be lower after the trial has ended. (See Section 

4.2).

4.4.2 Second level

We model the 6i vectors as being a sample from a Normal distribution with 

mean and covariance matrix S,

P2{0i I /x,E) = AT3(/i,E).
We include a reminder here that the mean is the same for all of the cats 

because all of the 10 cats/^» are exchangeable since they were all male and were 

all fed the same diet.

In order to consider the suitability of the Normal distribution at this stage we 

found the maximum likelihood estimates, and did Normal probability plots 

for each of the three elements of the vectors. These plots provided no evidence 

that the Normal distribution was not suitable.

4.4.3 Third level/priors

The structure of the third level is £is outlined in Section 2.3.3 except that we now 

have two first-stage precision parameters. For each of these we use an (improper) 

Ga(0,0) prior, (i.e. setting uq to zero). The prior for E“  ̂ is the least informative 

inverse Wishart distribution that we can use (p =  3 =  number of parameters 

in the Gompertz function). In order to obtain values for i2, the approximate 

prior estimate of E, we estimated ranges for each of the three parameters which 

we thought nearly all of this type of cat would fall inside (after consideration of 

other data).
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These ranges were:

mature weight 3 to 5.5kg,

maximum growth rate 0.1 to 0.2 kg/week,

point of inflection 9 to 15 weeks.

The range for the maximum growth rate equates to a range of (-2.3, -1.6) for 

the Qi2 parameter. (By taking logs).

We then set these ranges to 4 standard deviations giving diagonal elements 

of .R as follows: [.39, .03,2.25]. We might expect there to be a positive corre

lation between the mature weight and the maximum growth rate with faster 

growing cats growing to larger mature weights. On the other hand they may 

grow quickly but over a shorter period of time and cats with a lower maximum 

growth rate may end up being the same size or even larger at maturity. We 

have little substantive knowledge about this correlation or for those correlation 

terms involving the point of inflection and therefore we have set the off diagonal 

elements of R  to zero.

The prior for had mean, rj =  [4.25, —1.9,12], and a diagonal covariance 

matrix, C, with elements given by 100 x R. The values chosen for rj are the 

midpoints of the ranges used to estimate R  and are typical fitted parameters 

for a normal male cat. The value of -1.9 equates to a maximum growth rate of 

0.15kg/week since exp(—1.9) =  0.15. The large value used for C, the covariance 

matrix, means that this prior provides little information to our model.

4.4.4 Full conditional distributions

For all except the 6{ parameters the full conditionals are standard distributions. 

These are given below.

[u, I y , 0, S-', A] = N [ t i I + C -'^r,), V],

where 6 represents the mean 9 and the matrix V  is defined by V~^ =  /E “  ̂-f- 

C ~ \
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[E-> I y, e, M. A] =  | -  ii){6i -  /x)' +  p R }~ \ I  + p],
1=1

^trial I ? 7’o//triaf]

1 1 ^
=  Ga[Ttrial I -(f/Q +  Tltrial)i RSSijtrial) 4- Z/QTb}],

^  t = l

where ritriai is the total number of measurements made on trial (24 x I) and 

the RSSi{trial)s represent the residual sums of squares for the present values 

of the 6i but only summing over the trial period. We have used i/q =  0 so the 

distributions for Ttriai and Tq/ / trial simplify somewhat.

["̂0/ /trial I I'̂ trial]

1 1 ^
=  Ga[To//triai I +  7io//triai), i?5'5»(o//trza/) +  î o'T'o}],

^ ^ i=l
where rio//trial is the total number of measurements made off trial and the 

R SS i{o fftr ia l)s  represent the residual sums of squares for the parts of the fitted 

curves after the trial has ended.

The full conditionals for the 9i vectors are proportional to the likelihood 

multiplied by the prior:

24 _  .

4.5 M CM C m ethods

Gibbs sampling was used for all parameters except the first stage ones, 6{. For 

these, a random walk Metropolis algorithm was used.

This involved calculating the inverse information matrices, Cli, which we 

evaluated at the maximum likelihood estimates. We have a relatively large

88



amount of data for each individual enabling good estimates of these quantities 

to be made.

Suitable acceptance rates were obtained without multiplying the Cli by scal

ing factors. Therefore, for each the proposal was a multivariate Normal dis

tribution with mean the present value of 9{ and covariance matrix Cli.

4.6 Effectiveness of the M CM C m ethods

Three repeats comprising 1000 iterations each were done using different starting 

values for the individual rate and time of point of inflection parameters. The 

three pairs of values used were (.3, 1.0), (.45, 1.2) and (.6 , 1.4) representing 

early slow growth, central moderately paced growth and late fast growth. These 

values are well spread about the expected posterior distributions. Because of the 

relatively large amount of data when the animals are mature the mature weight 

parameters are easier to estimate than the other two parameters. Therefore we 

have used the final weight of each animal as the starting values for each of the 

3 repeats. The starting values used for all the other parameters (i.e. the 2nd 

stage ones and the r ’s) are also the same for each of the three repeats.

The overall acceptance rate was appropriate (0.25) and the individual accep

tance rates were all between 0.24 and 0.27. One Metropolis step was done for 

each individual at each overall iteration. When new values were not accepted 

the previously sampled values were retained.

Figure 4.5 shows the first 500 iterations for each of the three repetitions for 

the time of point of inflection parameter for cat 4. The speed of convergence 

seen in this plot is typical of that for the other cats and for the other parameters.

Gelman and Rubin’s statistic was calculated for each of the 41 parameters 

(as scalars and taking logs of positive valued parameters) at multiples of 1 0 0  

iterations. After 500 iterations all of the ^/È  values were less than 1 .1 . Consid

eration of plots of the iterations also suggested that convergence was attained 

relatively quickly.
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Figure 4.5: The first 3 x 500 iterations for the ^ 4 3  parameter

We therefore discarded 250 iterations from each repeat leaving 3 x 750 =  2250 

as our posterior sample. (Since at 500 iterations the \ / à  values were all less 

then 1 .1 , and these values are calculated after omitting the first halves of the 

sequences, i.e. the first 250.) Figure 4.6 shows the final 750 (retained) iterations 

for each of the three repetitions for the log(max. growth rate) parameter for cat 

6 . The sampling after burn-in can be seen more clearly here than in Figure 4.5.

-1.9

- 1.92

-1.94

2 - 1.96

- 1.98

Iteration

Figure 4.6: The final 3 x 750 iterations for the 9q2 parameter
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4.7 R esults

The posterior medians and 90% ranges for the elements of /x are given below: 

4.13 KGs (3.86, 4.41)

-1.91 (-1.97, -1.84 ) i.e. 0.148 KG/wk (0.139, 0.159)

12.0 weeks (11.2, 12.8)

The posterior medians of the elements of E are given below. These values 

correspond to correlations of 0.14 between the mature weight and rate parame

ters, 0.33 between the mature weight and time of point of inflection parameters 

and -0.08 between the rate and time of point of inflection parameters.

^ 0.2544 0.0084 0.2288

0.0143 -0.0131 

1.9419

Table 4.1 gives 90% intervals for the elements of E. We note that the intervals 

include zero for each of the correlation terms.

The medians and 90% ranges for the precision parameters when expressed 

as standard deviations (in grams) are given below: 

on trial: 75 (69, 81) 

off trial: 126 (119,134)

As expected, the standard deviation was considerably smaller for the on trial 

period.

\ /

Element 90% interval

(1.1) (0.136 0.596)

(2.2) (0.007 0.035)

(3.3) (0.971 4.650)

(1.2) (-0.028 0.055)

( 1 . 3 ) (-0.124 0.896)

(2.3) (-0.136 0.082)

Table 4.1: 90% intervals for the elements of E
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Figure 4.7: Boxplots of the parameters for the individuals

Figure 4.7 shows boxplots of the retained iterations for the individual pa

rameters for the mature weights and point of inflection parameters and also for 

the maximum growth rates (exp(0j2)’s). Each column relates to one cat.

The median of each component of the 6i vectors was used to calculate fitted 

values for each cat. Figure 4.8 shows these values along with the observed data 

for four of the cats. The total residual sum of squares for all cats was 7.2 (slightly 

higher than that from the maximum likelihood estimators). Figure 4.9 shows 

the standardised residuals for all of the cats and Figure 4.10 shows all of the 

fitted curves on one graph.

We also used the whole posterior distribution of the residuals as discussed 

in Section 2.8. The residuals were calculated at each iteration of the sampling 

procedure. The medians and 95% highest posterior density intervals of these 

residuals for the retained iterations were plotted for each time point for each 

individual. These plots are shown for two of the cats in Figures 4.11 and 4.12. 

In these plots, the vertical lines represent the intervals and the horizontal lines 

represent two standard deviations (estimated from the medians of the preci-
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Figure 4.8: Observed and fitted plots for 1=1:4 (reading horizontally first i.e. 

1st row is z =  1 then i = 2 and so on)
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Figure 4.9: Standardised residuals against age for all of the cats
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Figure 4.10: The fitted curves

sion parameters, Ttriai and Tq/ / trial)- Because we have two different precision 

parameters these lines showing two standard deviations are different for the two 

different parts of the data (giving the step pattern to the plots). The plots show 

that the ranges for the residuals are fairly narrow and also that the values are 

generally small.

Normal probability plots and also the lack of obvious outliers suggested that 

our use of normal distributions was reasonable, both for the data and for the 

first-stage prior. The normal probability plots for the elements of the 9i vectors 

are shown in Figure 4.13. This type of model may be sensitive to the assumption 

of normality. However, normality looks reasonable for our models and so we 

have used it here and elsewhere in this thesis. We note here that Student-t 

distributions can (and should) be used in many cases.

Finally, we compared the maximum likelihood estimates with our estimates. 

They were very similar, particularly so for the mature weight parameters. This 

is not surprising given the large amount of data for each individual.
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Figure 4.13: Normal probability plots for the elements of the 6i
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4.8 Sensitivity to  choice o f priors

4.8.1 Sensitivity to  choice o f R

The analysis was repeated with a different choice of R. The diagonal elements 

were the same as before but the off-diagonal elements relating to the covariance 

between the mature weight and maximum rate parameters were changed from 

zero to 0.054. This relates to a positive correlation of 0.5 between the two 

parameters.

This second analysis gave almost exactly the same estimates and intervals 

as before for the elements of /x, and for the r  parameters.

The medians and intervals for the first level, 6i, parameters are also very 

similar between the two analyses.

The medians for the elements of E are given below and the 90% intervals are 

in Table 4.2.

0.2512 0.0250 0.2338 '

0.0145 -0.0149 

1.9218

Element 90% interval

(i>i) (0.128 0.585)

(2,2) (0.008 0.035)

(3,3) (0.963 4.668)

(1,2) (-0.004 0.079)

(1,3) (-0.106 0.830)

(2,3) (-0.143 0.091)

Table 4.2: 90% intervals for the elements of E for the second analysis

The estimates of the elements of E given in the matrix are similar to those 

obtained in the previous analysis except for the covariance term whose prior 

estimate we changed. The posterior estimate is now 0.0250 as opposed to 0.0084
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previously. This relates to a correlation of 0.41 compared with the 0.14 obtained 

before.

We have seen that for this model the choice of R  does have an effect on the 

estimate of E but has little effect on the other parameters. If we are particularly 

interested in the estimate of E then we need to be sure that our choice of R  is an 

accurate representation of our prior beliefs, preferably obtained after discussions 

with experts in the relevant field.

4.8.2 Using more inform ative priors

Previously the priors used were weak. However, we did obtain genuine prior 

information and can make better use of this information by making the priors 

more informative. Also in this section, we remove some of the data to investigate 

whether with less data but stronger priors we can obtain answers as good as those 

obtained previously.

We did five further analyses. Firstly we kept the original data but made 

the priors stronger. We did this by increasing the value of p from 3 to 8. The 

new prior gives much narrower (and more realistic) ranges of likely values for 

the elements of E. We also decreased C from lOOi? to R. We continued to 

use improper priors throughout for Ttriai and Toff trial since their estimates were 

based on a relatively large amount of data (even when half the animals were 

removed from the data).

The effect of using the stronger prior was to make the highest posterior 

density (HPD) regions for the diagonal elements of E slightly narrower. The 

medians moved slightly nearer to the prior estimates. There was little change 

in the medians and intervals for the elements of p. These medians and HPD 

regions are shown in Figures 4.14 and 4.15. For each plot, and for each column, 

the line represents the 95% HPD region and the * the median. The first column 

relates to our original model, with all 10 cats and the weak prior. The second 

column relates to the new analysis with stronger priors and the same data.

The third columns of the plots relate to an analysis for which we randomly
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removed half of the cats and returned to our original weak priors. The HPD 

regions for the diagonal E elements are now much wider and the medians have 

moved slightly towards the prior estimates. The intervals for the elements of /i 

alos became much wider and the medians moved away from the prior estimates 

(because the five individuals remaining in the data were further from the prior 

beliefs than the five removed inidividuals).

For the analysis whose results are shown in the fourth columns of the Figures 

we again used the reduced data set but made the priors stronger. We used the 

same priors as in the second analysis {p =  8, C =  R). The medians of the 

diagonal elements of E remained similar but the intervals became much narrower 

as we would expect (still somewhat wider than for the original analysis though). 

For the elements of p, the medians moved towards the prior estimate and the 

intervals became narrower (again, as we would expect when making the prior 

stronger).

We then did two further analyses maintaining the value of p at 8 but making 

C progressively smaller {^R  and then -^R) therefore increasing the strength of 

our belief in 77, the prior estimate of p. There was little change in the estimates 

and intervals for the elements of E. This is as we would expect since we only 

changed the prior for p. For p  we observed the same pattern as from the third 

to the fourth analyses. With each increase in the strength of the prior the 

medians moved towards the prior estimate and the intervals became narrower. 

The intervals for the final analysis were narrower than for the original analysis. 

The increased strength in the prior has more than cancelled out the decrease in 

the amount of data. We have similar sized intervals although we have used less 

data. Of course, since the analysis with reduced data ‘relies more heavily’ on 

the prior it will be more sensitive to the choice of prior parameters.
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Figure 4.15: Medians and 95% highest posterior density regions for the diagonal 

elements of E
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We have not illustrated the effects of changing the model on the off-diagonal 

elements of S but the main effect was that the HPD regions again became 

narrower when using the stronger prior.

The estimates of the 6i vectors were very similar between the different analy

ses. The estimates of Ttriai and Tq/ / trial were different between the analyses with 

different numbers of individuals included. Within these groups of analyses the 

estimates were very similar between the analyses with different priors.

We emphasize here that when making the priors stronger the model becomes 

more sensitive to the choice of prior parameters. In other words, the model 

becomes less robust to changes in the values of the prior parameters used.

4.9 Discussion

The residuals were generally small. However, they did have some pattern, in 

particular a discontinuity at about 24 weeks of age perhaps due to the change 

in diet. It would be possible to improve the model to take account of this but 

this has not been done here.

The random-walk Metropolis algorithm worked well for this data since we 

could obtain good estimates of the posterior distributions to use as our proposal 

distributions. The model could easily be extended to allow, for example, a 

comparison of two groups of animals fed different diets.
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Chapter 5 

N on-linear Growth w ith  

Inform ation on B ody  

C om ponents

5.1 Introduction

As discussed in Chapter 1 we are interested not only in the overall growth 

of animals but also in the growth of the various components which make up 

the animal. Models including body components are generally of much greater 

interest to those studying the biological processes of growth than models which 

only include the overall growth.

Here we have data including measurements made after slaughter on various 

body components. This enables us to split the overall body into two groups of 

components modelling each one with a single phase function. The overall body 

weight is then given by the sum of these two phases (a diphasic function).

Therefore, we have a non-linear first stage and again use a random-walk 

Metropolis algorithm to sample the first stage parameters. This process is not 

as straightforward as in the previous chapter because as well as the diphasic 

function having more parameters than a single phase one we also have fewer 

measurements per animal and in some cases very few. This causes problems
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with finding maximum likelihood estimates and hence also the Q* matrices.

5.2 The data

The data used here were collected by van Lunen (1994) and analysed in his 

thesis. A brief summary of the reasons he was interested in the data follows. 

It was thought that previously accepted theories on growth and the nutrient 

requirements of pigs were not accurate for newly developed pig genotypes. These 

genotypes had been shown to have daily live weight gains of the order of Ikg/day 

with nitrogen deposition rates (related to protein or lean/muscle growth, protein 

deposition rate is approximately 6.25 times nitrogen deposition rate) of about 

30g/day. This compares to typical values of .8kg/day and 21.5g/day respectively 

for ‘conventional’ pigs. Because of these differences it was thought likely that 

growth patterns and body compositions would be different for these pigs and 

that they would have a higher daily requirement for protein and energy. Also, 

in ‘conventional’ pigs, boars (male) were thought to have higher potential for 

lean growth than gilts (female) or castrates. No work had been done on whether 

this sex difference also existed for these new genotypes. Using more advanced 

statistical methods than van Lunen we may be able to shed further light on 

these questions and can compare our results with his findings. The work in this 

chapter is also useful as an illustration of how this type of data may be analysed 

in order to investigate other biological matters.

The data incudes 60 pigs of a genotype with potential for fast lean growth. 

They were made up of 30 gilts and 30 boars. One of the boars was omitted 

because it died whilst on the trial. The pigs began the trial when they were 

about 10kg in weight (about 4 weeks old - unfortunately the exact ages are not 

available but are thought to be the same to within ±  3 days). Their weights 

were measured roughly weekly. One pig of each sex was slaughtered at 10kg 

intervals. This process began at 10kg live weight which means that there is only 

one live weight value for the first two pigs to be slaughtered and similarly small
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Figure 5.1: Growth for the 6 pigs with most data

numbers of measurements for the other pigs slaughtered early in the trial. The 

final pig to be slaughtered had reached 154kg after 25.5wks on the trial (i.e. 

at approximately 29.5 weeks old). This is some way off the expected mature 

weight of pigs. Nevertheless, pigs are generally slaughtered for their meat before 

this weight is reached meaning that the data is relevant for practical purposes. 

However, it does make the fitting of growth curves harder as we have little 

information on when the curves ‘level off’ as mature weight is neared. Figure 5.1 

shows the observed growth for the 6 pigs for which there is most data. Chemical 

and other analyses allowed the measurement of various body components after 

slaughter. The main components are water, lean/ muscle/ protein, fat/lipid and 

bone.

Interest centres on the relative amounts of lean and lipid (fat) in an animal 

and the interplay between these over the growth period. In order to investigate 

this we have split the slaughter data into two components, non-fat and fat. It 

is fortuitous that we wish to split the data in this way since the growth of fat 

has been found to occur later than the other components and it is therefore 

appropriate to model it using a separate phase (see later).

Figure 5.2 shows the non-fat (*) and fat (+) values for all of the pigs plotted 

together. For each of non-fat and fat there is only one measurement for each 

animal. The non-fat values rise rapidly from a relatively early age. This is as 

we expect since this genotype of pig has the potential for fast lean growth. In
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Figure 5.2: Components data

contrast, the fat values show a slower increase becoming more rapid towards 

the end of the data. Little information is available on the amount of fat in a 

mature pig of this type since, for economic reasons, the animals are generally 

slaughtered before ‘too much’ fat is put on.

By modelling these two components as separate phases of growth we should 

then be able to investigate ‘fat-adjusted’ growth by consideration of the first 

phase.

5.2.1 Feed intake

The pigs were fed ad libitum and the weekly food intake values were available 

for each pig.

Whittemore et al (1995) give the following equation:

E  = 52P + 53L +  0.44PK

where E  is energy intake in MJ per day, P  is daily increase in protein and L 

is daily increase in lipid. The third term on the right hand side represents the 

daily maintenance requirement at weight W. The value of 0.44 used in the main

tenance requirement was estimated from experimental work mainly done during 

the 1980s. Because the pigs in our data show fast lean growth they include a lot 

of protein/lean. This means that their metabolism and therefore maintenance 

requirements are generally higher than for previous genotypes. Therefore we
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have replaced the 0.44 in the formula with 0.6:

E  = ^2P + 53L +  0.6Ŵ °-̂ ®.

This change was made after discussion with Pieter Knap, an expert on pigs from 

PIC International Group PLC. Whittemore et al developed the equation above 

in order to predict required feed intakes, but we will use it in reverse to make 

rough estimates of the likely growth rates when defining our prior distributions.

It would also be possible to incorporate the feed intake data into a model in 

a more fundamental way. This has not been done here.

5.2.2 D etails of the estim ation of the fat values

The pigs were slaughtered a few days after their final live weight measurement 

was taken. During this time weight generally falls mainly due to decreases in 

gut contents and in water content. This was found to be the case for this 

data, most of the live weights on the day of slaughter were lower than the final 

measurements on the trial. Very little of this weight loss was thought to be 

due to a loss of fat. Therefore, we use the estimate of fat content made after 

slaughter as our estimate of fat content at the time of the last measurement on 

the trial. (Assuming also that there was little, if any, growth of fat during the 

intervening period).

These estimates of the fat content were adjusted to include leaf fat. This is 

a type of fat which is not included in the measurement process after slaughter 

(because the body parts containing the leaf fat are removed before the chemical 

procedure takes place). Leaf fat typically makes up between 6 and 9% of total 

fat and our estimates of fat content were increased by 7% to allow for this extra 

fat.

The non-fat values were obtained by subtracting the estimate of fat content 

from the final live weight on the trial.
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Figure 5.3: The data for two of the pigs

5.3 The data and notation used in our m odel

For each individual, we have live weights, ?/%, at times (approximate ages), 

Xj. Each of these is a vector with Ui elements. We also have the fat value, y* 

at time xj (which is the final element of Xj). The individuals z =  1 : 7 are 

roughly in order of age at slaughter, the pigs with low i values have the most 

data. Figure 5.3 shows the data for two of the pigs. The fat values (+) and 

non-fat values obtained by subtraction (x) are shown here along with the live 

weights (*).

5.4 Choice of growth function

We use a diphasic function in order to model the two components in the slaughter 

data as two phases of growth. The question is, which single phase function to 

use as the basis of the diphasic? A single Gompertz function is commonly used 

to model growth for pigs as the point of inflection is believed to be at about 

the right time. The Gompertz function has also been used to model the growth 

of various body components. For example, Whittemore et al (1988) used it to 

model protein growth, finding it to be more satisfactory than simpler models 

(linear and quadratic polynomials). We used the Gompertz here. Because of 

the large number of parameters for each individual and the relative lack of data 

for many individuals there will be high correlations between the parameters for
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each individual whichever parameterization we choose. Therefore, we used the 

same parameterization as in Chapter 4 because of the ease of interpreting the 

parameters in biological terms.

The logistic was also tried resulting in fairly good fits to the data but the 

results were not thought to be biologically reasonable. Because of the lack of 

data at later ages the estimated mature weights are highly dependent on the 

fitted position of the point of inflection which will be roughly the same for the 

logistic and the Gompertz (for data over these age ranges). This means that the 

Gompertz will give estimated mature weights for each component about 0.35 

higher than the logistic (because the point of inflection is at 0.368 of mature 

weight whereas for the logistic it is at half of mature weight). The mature 

weights from the diphasic-logistic function were thought to be unfeasibly low. 

However, we must bear in mind that we do not know how heavy these actual 

pigs would have become - only that the values were very low compared with 

other pigs which have been kept to later ages.

5.5 T he m odel

5.5.1 F irst level

The live weights, j/i, are modelled by the diphasic-Gompertz function.

P i  (2/i I O i , X i , T i )  =  N n i ( 9 { 0 i , X i ) , T Ï ^ I n i x n i ) ,  

where g is the sum of two Gompertz functions:

9\{Gh Xi)  =  Oil e x p [ -  -  9 # ) } ] ,
t/il

92(0h Xi) =  Oi4 exp[- exp{- .  _  %#)}].
t/i4

The biological interpretations of the parameters are as follows:

9ii, 6i4 mature weight of that phase (kgs),

^i2 , 0i5 rate of growth parameters,
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^i3 j î6 times of points of inflection (weeks).

The maximum growth rates (in kgs/week) are given by exp(̂ %2 ) and exp(^is). 

We used the simple variance speciflcation of constant variances because although 

we might expect the variability to increase with age/size we did have quite large 

residuals at early ages (see later).

The fat values are modelled as follows:

PMvt I I2) = O ,

where Q2 is as given above with the vector XjS replaced by the scalar xjs. 

We expect the variance to increase with the mean, in particular because the fat 

values are very small for early ages, and have therefore used a power relationship 

between them. We used power 2 so we have variance proportional to mean 

squared. This approximately corresponds to a log-normal error speciflcation. 

It is possible to include the power to be used as a parameter in the model. 

Wakefleld et al (1995) illustrate this approach. We initially tried this here but 

found the MCMC sampling to perform badly.

The gi component of the total diphasic function therefore represents the 

non-fat component of the body. The non-fat values are not explicitly modelled 

except as the diflference between the live weights and the fat values.

5.5.2 Second level

We use different means but the same covariance matrix for the di parameters 

for the two sexes:

P2{0i I /ijfejl!) =  NQ{fik,T>)j

where k = l,2  represents the two sexes (l=males, 2=females).

5.5.3 Third level/priors

We use the general structure outlined in Chapter 2 for the priors.
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We obtained rough estimates of the components of 77 and of R  from con

sideration of the literature on the growth of pigs and then adapted the values 

because of the expected differences between these pigs and ‘conventional’ pigs. 

This process was again discussed with Pieter Knap.

We estimated the mature weights to be 150kg and 60kg for the non-fat and 

fat components respectively.

In their analysis of fat and fat-free dry matter (see Chapter 1 ) Koops and 

Grossman (1991) estimated the points of inflection as 17 weeks and 26 weeks 

for non-fat and fat respectively. We have subtracted three weeks from each of 

these values because of the expected fast/early growth of these pigs. Therefore, 

the values used were 14 and 23 weeks of age.

Van Lunen (1994) defined fast growing pigs as those having a potential pro

tein depostion rate above 170g/day. Water content is thought to increase with 

protein and to be about 4 times the protein content. Between them these com

ponents make up the bulk of the non-fat component. Therefore, we estimated 

the maximum daily gain of the non-fat component by multiplying the 170g by 

5 and then adding a bit more to allow for the growth of bone and also to allow 

for the fact that the protein depostition may be above 170g/day. This gave us 

our estimate of Ikg/day or 7kg/week.

For our estimate of the maximum growth rate of the fat component we used 

the feed intake information and the energy intake equation given in Section 5.2.1. 

The feed used for the pigs in our dataset had an energy content of 14.5MJ/kg. 

The time of maximum lipid gain is thought to be after 20 weeks of age for 

which times the feed intakes were fairly constant. Taking 23 weeks as a possible 

time of maximum lipid gain, the feed intakes were about 3.2kg. Therefore, the 

energy intake was about 46MJ/day. At 23 weeks the pigs weighed approximately 

130kg making the maintenance requirement 23MJ/day. This leaves 23MJ/day 

for growth. We estimated the rate of protein growth at 23 weeks as 0.125kg/day. 

Using this estimate in the energy intake formula the rate of lipid growth comes 

out at 0.31kg/day.
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When converted into the appropriate units these values give the following 

values: 77 =  [150,1.95,14,60,0.775,23].

The C  matrix (see below) has quite large elements and so the values used for 

77 do not have a great effect on the analysis. They are also used as the starting 

values for the 6i (see below).

The prior structure is more complicated than that outlined in Chapter 2  

since we have two first stage precisions instead of one. For each of these we 

use a Gamma prior as suggested in Chapter 2  but with different parameters for 

the live weight and for the slaughter precision. For t\ we used vq =  0, i.e. an 

improper prior.

For T2 we used a more informative prior as there was a danger that all of the 

fat values could be fitted exactly by the model giving a residual sum of squares 

of zero. If this was the case and the prior was improper then the posterior for 

T2 would have infinite variance (Ga(a, h) with 6 =  0).

The values used were i/q =  32 and tq =  0.0025. These values relate to a 

Gamma prior with mean 400 and standard deviation 100. The standard devia

tion of the fat values from the fitted values is given by Tg ^92{0i,x’l). Therefore, 

for a pig slaughtered at about the middle of the trial and having g2{0i,x*) =  2 0  

(in other words, about 20kg of fat), a T2 value of 400 relates to a standard 

deviation of 1  kg.

For R  we used a diagonal matrix with elements:

/  225 \
0.010

1.56
156

0.017
V 6.25

This corresponds to the following 2  standard deviation ranges on either side 

of the means for the 9i values:

6ii 30kg, 0i4 25kg,

exp (0 *2 ) 1.4kg/week, exp (̂ *5 ) 0.56kg/week,

6is 2.5weeks, 5weeks.
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These values were discussed with Pieter Knap and the ranges were thought 

to be sensible. We used a diagonal matrix because we did not have strong 

prior beliefs about any of the off-diagonal, correlation, terms. As demonstrated 

in Chapter 4, the posterior estimates of the off-diagonal elements of E can be 

sensitive to the choice of correlation terms used in the priors and it might be 

wise to put more thought into the values used if we have a particular interest in 

the posterior estimate of E.

The value used for C  was 25 x /?, a fairly vague specification.

5.6 Full conditionals and ‘graph’ o f th e m odel

Figure 5.4 shows a ‘graph’ of the model and the full conditionals are given below.

I y, e, E - \  n ,  T2 , /X2 ] =  N[^i^ I V ih 'L -^e  +  C -^ 77), V],

where 9 is the mean of the 9i for sex 1 (males) and Ii is the number of males 

(29). The matrix V  is defined by V~^ =  /lE"^ -f C~^.

(Similarly for /i2 ).

[E"^ I y, e , f i i , f jL2, ruT2]

= W[L~̂  I {  5 3  W  “  A t i ) %  “  f̂ iY +  ( ^ t  “  M 2 ) ( ^ t  —  fJ>2Y +  I +  p ] >
males fem ales

In I y , ^ , / / i , / / 2 , S " \ r 2 ]
1 1 /

= Ga[ri I -n ,-{^R S S i{ liv e w e ig h ts)}] ,
^ ^ i = i

where n is the total number of live weight measurements and the RSSi are 

the residual sums of squares for these live weights when using the present values 

of the 9i to give fitted values.

[t-2 I y, ,̂/xi,/i2,2"Sn]
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sex k

tim e i

individual i

Figure 5.4: The model

The full conditionals for the Qi vectors are proportional to the likelihood 

multiplied by the prior (using the appropriate Hk value depending on the sex of 

individual i):

2 ' r2 {V i  -  9 2 ( 6 1 , X l ) f

2 92{6i,

X
T2

X e x p ( —- ( 0 f  — ^{ Oi  —  ^ k ) ) -
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5.7 M CM C m ethods

We used Gibbs sampling for all of the parameters except the 6i which we sampled 

as complete vectors using a random-walk Metropolis algorithm.

The present values were used as the means of the proposal distributions. 

Because of the relative paucity of data for some pigs and consequent problems 

with estimating the maximum likelihood estimators and therefore also the in

formation matrices, it was not sensible to use the information matrices as the 

covariance matrices in our proposals. Instead we did some preliminary runs in 

order to obtain better estimates of the covariance matrices of the posterior or 

target distributions for each individual. The initial run of 750 iterations used 

different covariance matrices depending on how much data there was for each 

individual. For the 39 pigs with least data the matrix used was proportional to 

E, the second stage covariance matrix. The scaling factors were proportional to 

^  so that as the precision increased, the size of the proposed steps decreased. 

This meant that for the early iterations, when the 0» parameters give poor fitted 

values and hence low precisions, the proposed steps will be quite large and the 

scheme will quickly move to parameters giving better fits. As this happens the 

precision increases and the size of the proposed steps decreases and the proposed 

values of the 6i do not change so much thus continuing to give good fitted values. 

The scaling factors were related to the amount of data for an individual, the less 

data the larger the scaling factor. These scaling factors (and the square root 

above) were chosen to give appropriate acceptance rates.

For the other 20 pigs the covariance matrix used in the proposal was 2.5 x Hi 

where Ùi is an estimate of the inverse information matrix for the pig with most 

data. The expression for Qi includes the precision parameters so again the size 

of the proposed steps decreases as the precision increases.

The initial 750 iterations were then used to calculate covariance matrices for 

each of the 9i vectors. These covariance matrices (again scaled appropriately 

but no longer dependent on the precision parameters since they were relatively 

constant by now) were then used in our proposals for a further 2 0 0 0  iterations
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Figure 5.5: The iterations for individual 10

for which the starting values were the final values from the previous run. The 

covariance matrices were then calculated for these 2 0 0 0  iterations and used in 

our proposal distributions for a further run of 2000 iterations. The covariance 

matrices were again calculated and used for our final run of 6000 iterations 

(again scaled appropriately and using the final values from the previous run as 

our starting values).

At each stage of this process the covariance matrices used in the proposals 

were better estimates of the covariance matrices of the target/ posterior distri

butions. For the final run of 6000 iterations the scaling factors were 0.6 for all 

individuals.

The average acceptance rate for the final run was 0.23. The acceptance rates 

varied between 0.13 and 0.31 between individuals but there was no pattern in 

this variation. Figure 5.5 shows the final 6000 iterations for the components of 

9 for one individual (i =  10).
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The original starting values were: 

for all i,I

77,

M2 77,

E R,

n 0.002,

T2 5.

The sampled values moved away from the starting values during the initial runs 

and therefore the final run was used for our inferences without removing any part 

of it as burn-in. Inspection of plots of the iterations for the various parameters 

suggested that convergence had been satisfactorily attained.

5.8 R esults

The medians of the sampled values of each element of the 9i vectors were found 

and used to calculate fitted growth curves for each individual. Figure 5.6 shows 

observed and fitted plots for the four pigs with most data. The fitted values 

appear to fit the observed data well.

However, inspection of the residuals in Figure 5.7 reveals a strong pattern 

at the early ages. No differences were apparent between the sexes in this pat

tern when they were plotted separately. The model tends to overestimate the 

live weights at about 6 to 10 weeks of age. The observed weights do not in

crease very much in the first few weeks on the trial. It may be that the pigs 

were moved from another location before they started the trial. In this case, 

the transportation and the acclimatization to the new surroundings may have 

slowed the growth process down somewhat. Similarly, some biological process 

or veterinary procedure may have caused the weights to be low between 6 and 

10 weeks old. Alternatively, it might be explained by the presence of an earlier 

phase of growth accounting for part of the nervous system and bone. We could 

include such a phase in our model by assuming that this phase of growth was
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Figure 5.6: Observed and fitted plots

complete before the start of this trial and adding an extra parameter to the 

diphasic function (so the first phase becomes gi{6i,Xi) +  Oij). It is also possible 

that the lack of fit is because the Gompertz function is not exactly right for the 

phases for this data. The position of its point of infiection is at an essentially 

arbitrary proportion of mature weight. It is entirely feasible that this proportion 

is not exactly correct for this data. It is theoretically possible to use a Richards 

function and thus allow the point of infiection to be fiexible. Unfortunately, in 

practice this would introduce very high correlations between parameters. This 

has been found to be a problem with the Richards function even for simpler 

(single phase) cases and with data extending over longer periods (Davies and 

Ku, 1977).

Figure 5.8 shows the residuals from the slaughter data. They appear to 

be randomly scattered above and below zero and there is a pattern of increas

ing magnitude with increasing age suggesting that we were right to make the 

precision dependent on age at slaughter.

We investigated whether our chosen power relationship between the mean
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Figure 5.7: The residuals for the live weight data for all individuals

and variance (variance proportional to mean squared) was appropriate by plot

ting the residuals divided by the standard deviations,

tH vÎ  -  9 2 { 8 j , x l ) )

92{Si,x')

Figure 5.9 shows this plot. Table 5.1 gives the posterior medians and 95% 

intervals for the parameters. Figures 5.10 to 5.11 show the diphasic functions 

obtained from the medians of the elements of the vector for each sex. The 

solid lines represent the two phases of growth and the overall growth (given by 

the sum of the two phases). The dotted lines represent the growth rates of the 

two phases and overall (and relate to the right hand y-axes).

By summing the two mature weight parameters for each sex we obtain an 

estimate of the population mean mature weight for each sex. These values are 

235kg for boars and 220kg for gilts. As part of his analysis, van Lunen (1994) 

estimated the mature weights by fitting a single phase Gompertz equation to all 

of the data for each sex using maximum likelihood. This method gave estimates 

of 192kg for both sexes. Our mature weights are higher and more in line with 

values reported in the literature. Also, we detected a difference between the 

sexes which the simpler method did not. The sex difference in our results is 

that we would expect the boars to be on average about 15kg heavier overall.
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Figure 5.8: Residuals from the slaughter data

W -0.5

5 10 15 20 25
Approximate a g e  w hen finishing trial (w eeks)

Figure 5.9: Standardised residuals from the slaughter data
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Male Female

Phase Parameter Median 95% interval Median 95% interval

1 Mature wt.(kgs) 164 (155, 174) 138 (130, 148)

1 ‘rate’ 1.93 (1.88, 1.97) 1.80 (1.76, 1.84)

1 Pt.of inf.(wks) 14.1 (13.5, 14.7) 13.2 (12.6, 13.9)

2 Mature wt.(kgs) 71 (56, 86) 82 (71, 100)

2 ‘rate’ 0.32 (0.13, 0.45) 0.58 (0.45, 0.73)

2 Pt.of inf.(wks) 27.0 (23.7, 31.6) 27.1 (24.6, 30.3)

Table 5.1: Posterior medians and 95% intervals for the /x parameters

When looking at the components separately the boars tend to be leaner with 

about 26kg more lean content and about 11kg less lipid/fat than the gilts. These 

values can be used to answer some of the questions raised in Section 5.2. Our 

estimates suggest that boars do have a higher potential for lean growth than 

gilts for this genotype as well as for ‘conventional’ pigs. Both phases are centred 

a bit earlier for gilts than boars.

It is useful to convert the medians of the /x elements into estimates of the 

‘mean’ maximum daily growth rates for each phase for each sex. This was done 

by taking the exponential of the ‘rate’ elements of the /x vectors and then dividing 

by seven to give daily not weekly growth rates. The values obtained (and 95% 

intervals) were 0.98kg/day (0.94, 1.02) and 0.20kg/day (0.16, 0.22) for the boars 

and 0.86kg/day (0.83, 0.90) and 0.26kg/day (0.22, 0.30) for the gilts. We can 

see from Figures 5.10 and 5.11 that the overall maximum daily gains occur close 

to the centres of the first phase and are about 1.13 kg/day for boars and 1.03 

kg/day for gilts. We note here that we should not place too much faith in the 

estimates, particularly for the second phase, because of the lack of data at later 

ages and consequent model uncertainty as regards the choice of growth function.

Table 5.2 gives the medians and 95% intervals for T%, T2 and the elements of 

E. The estimate of the precision parameter for the live growth data corresponds 

to a standard deviation of 1.49kg (95% range 1.41, 1.57).
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Figure 5.10: The diphasic function given by the medians of the elements of /x 

for the male pigs
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Parameter Median 95% interval

Tl 0.452 (0.405,0.505)

T2 368 (219,594)

2(1,1) 254 (144,477)

2(2,2) 0.009 (0.006,0.015)

2(3,3) 1.58 (0.92,2.83)

2(4,4) 76 (42,151)

2(5,5) 0.027 (0.011,0.076)

2(6,6) 3.53 (1.74,7.16)

2(1,2) -0.00 ( -0.56, 0.68)

2(1,3) 12.45 ( 5.31, 27.56)

2(1,4) -9.01 (-99.87, 66.56)

2(1,5) 1.16 ( -0.11, 2.92)

2(1,6) -3.60 ( -27.30, 14.25)

2(2,3) -0.06 ( -0.11, -0.02)

2(2,4) -0.07 ( -0.53, 0.31)

2(2,5) -0.01 ( -0.02,-0.00)

2(2,6) 0.01 ( -0.10, 0.14)

2(3,4) 1.52 ( -4.66, 7.89)

2(3,5) 0.12 ( 0.03, 0.26)

2(3,6) -0.31 (-1.76, 1.11)

2(4,5) 0.39 (-0.23, 1.66)

2(4,6) 3.33 ( -3.81,15.63)

2(5,6) -0.07 (-0.36, 0.12)

Table 5.2: Posterior medians and intervals for the r and E parameters
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5.9 Using just live growth data

We also fitted the same model but only including the live weights in order to see 

how similar the results were. Specifically, to see how similar the two separate 

phases were to those obtained when including the slaughter data.

When fitting this simpler model the total residual sum of squares was slightly 

lower than for the previous model. However, the pattern observed in the resid

uals in Figure 5.7 was still present.

There were quite large differences between the estimated parameters from 

this model and the one including the slaughter data. We conclude that quite 

large changes in the fitted parameters will give fitted curves which are almost as 

good a fit to the live growth data. Therefore, when not including the slaughter 

data in the model any biological interpretations of the two phases obtained would 

be very unreliable. On the other hand, our full model, including the slaughter 

data, does not give the diphasic curves which are the best fit to the live growth 

data, but instead gives almost as good a fit and has phases which can be reliably 

linked to body components.

5.10 Discussion
Markov chain M onte Carlo m ethods

The sampling needed to fit the models in this chapter was less straightforward 

than that done in the previous two chapters. This was because of the increased 

number of parameters in our growth function and the relatively small amount 

of data for all individuals (and some in particular). These factors combined to 

cause large correlations between the 6 parameters for each individual making 

sampling and accurate estimation of the parameters harder. Therefore, more 

effort was required to find suitable estimates of the covariance matrices to use 

in our proposal distributions. Also, longer runs were needed because of the 

correlations between parameters.
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Benefits of our modelling approach

The use of sophisticated statistical models allowed us to make more use of the 

available data than other methods could. In particular, we were able to detect 

a difference in lean growth between the sexes. The models are also more com

prehensive than other approaches. For example, they give us information on the 

amount of variability between individuals (ignored by methods which simply 

average over individuals).

Further work

Often, back fat measurements are recorded as well as live weights. These are 

relatively crude measurements of the thickness of fat at certain points on the 

animal’s back. Equations have been developed to relate these measurements 

to the total amount of body fat. These estimates are less accurate than the 

chemical measurements made after slaughter but they have the advantage that 

repeated measurements may be made on each animal. It would be possible to 

adapt our model to include such measurements possibly increasing the accuracy 

of the estimation of the ‘fat’ phase.

Summary

This chapter has shown how complex hierarchical models can be fitted to animal 

growth data, including components measurements, using Markov chain Monte 

Carlo methods. At the present time these types of models and the MCMC 

means of fitting them appear to be the ‘best’ way of modelling such data. Best 

is used here to mean that we have powerful and flexible models which can be 

adapted (for example, to include more data or to better model the error struc

ture), we do not have to use large numbers of restrictive assumptions, we can 

include all of the data in one comprehensive model (even for animals with little 

data), we can include prior knowledge in our model and we automatically obtain 

intervals as well as point values for all estimates from the model. Against all of 

these advantages we have the effort of specifying prior knowledge and of finding 

appropriate sampling schemes and the computational burden of the sampling.
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Chapter 6

D iscussion

6.1 Practicalities of the sponsoring com pany us

ing these m ethods

This work was funded by a CASE Studentship, the company involved being 

interested in the growth of various species. This thesis has used data from trials 

carried out on pigs and cats to illustrate the value of hierarchical models. We 

now consider how practical it would be to use these methods within the company.

We have illustrated the use of Bayesian hierarchical models for several datasets 

of increasing complexity. In Chapter 3, the data used was for only a small part of 

the growth process and the observed data could be fitted by straight lines. This 

meant that the Markov chain Monte Carlo procedure was straightforward as all 

of the full conditionals were standard distributions and Gibbs sampling could be 

used with little difficulty. Using such hierarchical models provides many benefits 

as discussed at the end of Chapter 3. Against these we have the extra effort 

required to set up suitable models and to do the Markov chain Monte Carlo 

sampling. Because of the relative ease of Gibbs sampling, the programs we have 

used could be used by a non-expert to analyse other data. However, a certain 

level of competence would be required in order to fully understand the models 

and to properly assess convergence and interpret the output. Nevertheless, this 

should be feasible, certainly for someone with a reasonable amount of statistical
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knowledge and some guidance/ training initially.

Many of the same points apply to the analysis of non-linear growth data 

discussed in Chapter 4. The situation is further complicated here by the need 

for a Metropolis sampling step for the first stage, 6i, parameters. However, if 

the Gompertz function was again used and the data had a similar number of 

measurements (and over a similar age range) we would expect the sampling 

scheme we used to work reasonably well. In fact, the data in Chapter 4 in

cludes more than enough measurements at maturity and we should still obtain 

good estimates of the 6{ and hence the Ùi and the sampling should still work 

well with fewer measurements at maturity. The program could also easily be 

adapted to allow different population mean vectors for different diets to allow 

diet comparisons to be made.

Some further work would be required to allow the use of a different growth 

function at the first stage. This would not be terribly demanding for an expert 

and would involve some alterations to the program and also the relevant differ

entiations in order to obtain the Ùi matrices for the new function. Given these 

changes we would expect the sampling to work well, assuming that the chosen 

growth function was a good fit to the data and also that we had a suitable 

amount of data for each individual.

The hierarchical modelling approach provides benefits in the relatively straight

forward analyses discussed above. However, it really comes into its own for the 

more complicated data in Chapter 5 and enables us to address difficult questions 

about the growth of different body components.

Unfortunately, the sampling procedure was not as straightforward for this 

data. We note here that this was more because of the relative lack of data at 

later ages than because of the more complicated model structure. Calculating 

the covariance matrices to use in our proposal distributions from early iterations 

worked reasonably well. However, care is needed with this Approach to ensure 

that the proposals used initially lead to enough moves of a reasonable size being 

accepted.

127



For these reasons and also if refinements to the model are required, for exam

ple to include back fat measurements as discussed at the end of Chapter 5, we 

would recommend that expert assistance would be required for further analyses. 

After such collaboration, and for ‘standard’ model structures for which pro

grams would be provided, analyses could probably be done, with care, within 

the company, but only by the ‘trained’ person/people.

6 . 2  BU G S and W inBU G S

An alternative to using the programs we have developed is the BUGS (Spiegel- 

halter et al, 1995) (or WinBUGS) program. These programs should work well 

for linear growth data when Gibbs sampling may be used throughout.

The programs now also include Metropolis algorithms, in BUGS Version 

0.6 this is implemented using a simple (univariate) histogram-based proposal 

distribution (Ritter and Tanner, 1992) and any parameters which require this 

sampling must have bounded range. Unfortunately there is presently a bug in 

the multivariate normal sampler for BUGS Version 0.6 and so we were unable 

to try using this program for our models (as they include multivariate normal 

distributions).

It is planned that WinBUGS will eventually be able to use Metropolis sam

pling for any distribution for which it is needed. However, at the present time 

only a univariate Normal proposal density for sampling defined on the whole 

real line has been implemented. This univariate sampling can make convergence 

slow when the parameters are highly related. The same problem may occur for 

the sampling generally since each node is simulated in turn.

We used WinBUGS 1.2 to fit the Gompertz model from Chapter 4 of this 

thesis. The program uses an adaptive Metropolis algorithm for the Oi vectors. 

For the first 4000 iterations the algorithm adapts so that suitable acceptance 

rates are achieved. This means that the first 4000 iterations must be discarded.

The program weis easy to use and entering the model was straightforward
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using a Doodle. Obviously, some time was required to become familiar with the 

program. We also note here that although (or because) the program is easy to 

use it would be easy to make mistakes because of the complex nature of MCMC 

sampling. A certain amount of expert knowledge is required in order to use the 

program properly. The educational version of the program was not sufficient for 

our model and so the (presently freely distributed) key for unrestricted use was 

required.

A single run of 6000 iterations with ‘good’ initial values was done. This 

consisted of 4000 from the adaptive phase to be discarded and a further 2000 

from which to obtain results. This was about the same number of retained 

iterations as for our MATLAB analysis. Because of the adaptive procedure, the 

WinBUGS analysis required more iterations (6000 instead of our 3 repetitions of 

1000). However, the two programs took almost the same amount of time to do 

these different numbers of iterations on the same machine. It should be possible 

to speed up the MATLAB programs by compiling them. This was not necessary 

for our analyses due to the relatively short run times.

The WinBUGS acceptance rates were suitable after about 1500 iterations. 

Nevertheless the adaptive procedure had to complete the whole 4000 iterations 

as that is how the procedure is defined. The final 2000 iterations were used 

to obtain parameter estimates and ranges. The results from the two programs 

were very similar. There was no evidence of a lack of convergence. There were 

autocorrelations up to about lag 20 for the elements of the 0*. This aspect of 

the sampling was poorer than for our MATLAB sampling. This was because 

WinBUGS samples these elements univariately rather than as complete vectors 

for each individual.

WinBUGS has the advantage that the user does not have to write their 

own programs. On the other hand, for some models, we would expect slow 

convergence. For example, those in our Chapter 5 where the correlations between 

elements of the 9i for an individual are much higher than for the Chapter 4 model. 

Also, for some models, WinBUGS will not be suitable. For example, because of
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greater complexity or because of the distributions used. In these cases specially 

written programs will be needed.

We can recommend the use of WinBUGS 1.2 for the hierarchical models 

discussed in this thesis (with the caveats expressed above). More use would 

have been made of it in the present work if it had become available sooner.
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A ppendix  A

Sam pling m ethods

Throughout this work the Markov chain Monte Carlo sampling was implemented 

in MATLAB (The MathWorks, 1997).

For sampling from (multivariate) Normal distributions we used transforma

tions of standard Normals generated by a built-in MATLAB function.

For Gamma distributions a function built into the MATLAB Statistics Tool

box was used.

For Wishart distributions we used the algorithm of Odell and Feiveson (1966) 

(which in turn used the MATLAB functions for sampling from Normal and 

Uniform distributions).

We checked that the MATLAB functions produced approximately the re

quired distributions by using Kolmogorov-Smirnov tests of the empirical cdf 

based on large samples.
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