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Abstract

Peripheral capillary oxygen saturation (SpO2
) exhibits a complex pattern of fluctuations

during hypoxia. The physiological interpretation of SpO2
variability is not well under-

stood. In this study, we tested the hypothesis that SpO2
fluctuation carries information

about integrated cardio-respiratory control in healthy individuals using a network

physiology approach.We explored the use of transfer entropy in order to compute the

flow of information between cardio-respiratory signals during hypoxia. Twelve healthy

males (mean (SD) age 22 (4) years) were exposed to four simulated environments

(fraction of inspired oxygen (FIO2
): 0.12, 0.145, 0.17, and 0.2093) for 45 min, in a

single blind randomized controlled design. The flow of information between different

physiological parameters (SpO2
, respiratory frequency, tidal volume,minute ventilation,

heart rate, end-tidal pressure of O2 and CO2) were analysed using transfer entropy.

Normobaric hypoxia was associated with a significant increase in entropy of the SpO2

time series. The transfer entropy analysis showed that, particularly at FIO2
0.145 and

0.12, the flow of information between SpO2
and other physiological variables exhibits

a bidirectional relationship. While reciprocal interactions were observed between

different cardio-respiratory parameters during hypoxia, SpO2
remained the main hub

of this network. SpO2
fluctuations during graded hypoxia exposure carry information

about cardio-respiratory control. Therefore, SpO2
entropy analysis has the potential for

non-invasive assessment of the functional connectivity of respiratory control system

in various healthcare settings.
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1 INTRODUCTION

Peripheral capillary oxygen saturation (SpO2
) is measured non-

invasively and is extensively used for monitoring patients in clinical
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settings. Although the absolute value of SpO2
is currently used by

clinicians, SpO2
time series exhibit a complex pattern of fluctuations

which may carry useful information (Bhogal & Mani, 2017). For

example, it has previously been reported that the inclusion of
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SpO2
variability data into routine clinical practice can predict the

requirement of hospitalization in children with acute illness (Garde

et al., 2016). Likewise a recent study has demonstrated that SpO2

fluctuation exhibits a fractal-like pattern which can assist in the

diagnosis of sleep apnoea (Vaquerizo-Villar et al., 2018).

The complexity of physiological time series data can be measured

by computing the degree of irregularity of the signal (i.e. entropy)

(Pincus, 1991). By applying entropy analysis to SpO2
time series data,

we have previously demonstrated that SpO2
entropy, and not its

absolute value (ormean), can distinguish older healthy individuals from

their younger counterparts (Bhogal & Mani, 2017). More recently,

we have demonstrated that as the concentration of inspired oxygen

(FIO2
) is decreased, SpO2

entropy increases, and there is a strong

significant negative correlation between mean SpO2
and its entropy

during normobaric hypoxic exposure (Costello et al., 2020). In addition,

SpO2
entropy, but not mean SpO2

, was correlated with perception of

breathlessness in otherwisehealthy individualswhenhypoxic (Costello

et al., 2020).

The entropy of a physiological time series is a measure of how

much total information the signal contains (Mitchell, 2009; Pincus,

1994). Thus, it is reasonable to suggest that SpO2
fluctuationsmay carry

information about the integrity of the respiratory system. Although

this hypothesis is plausible, it has not been systematically investigated

using empirical data. Respiration is tightly controlled and requires

transfer of information from chemoreceptors, which are centrally

and peripherally located. Tissue oxygenation involves a complex

network of feedback loops that integrate different components of both

the cardiovascular and respiratory systems. Thus, respiratory rate,

tidal volume, heart rate and partial pressure of oxygen and carbon

dioxide interact in a non-linear fashion tomaintain respiratory homeo-

stasis (Tipton, Harper, Paton, & Costello, 2017). We have recently

described the physiological response to graded normobaric hypoxia in

healthy individuals and found that while SpO2
variability is significantly

increased, mean respiratory rate, tidal volume and heart rate were not

markedly altered during graded hypoxia when resting (Costello et al.,

2020). After completing these analyses and publishing the findings

(Costello et al., 2020), we subsequently became curious to discover

if useful information is present in the cardio-respiratory time series

which is not reflected in their mean values. An ideal method for

assessing the complex interactions in a control system is to measure

the causal relationship between physiological signals. This can be

achieved by measuring the flow of information between parallel time

series. Schreiber developed an analytical tool (i.e. transfer entropy)

to detect the directed exchange of information between two systems

(Schreiber, 2000). Several groups have extended this concept and

demonstrated that measures of information transfer may serve as

proxies for causal interactions (Barnett, Barrett, & Seth, 2009; Wibral,

Vicente, & Lindner, 2014). This motivated us to look at the interaction

between SpO2
andother cardio-respiratory time series during ahypoxic

challenge using transfer entropy.

Network physiology is an emerging field that reveals the topology of

functional interactions between different components of physiological

systems (Bashan, Bartsch, Kantelhardt, Havlin, & Ivanov, 2012; Kanter

New Findings

∙ What is the central question of this study?

What is the physiological interpretation of SpO2

fluctuations observed during normobaric hypoxia in

healthy individuals?

∙ What is themain finding and its importance?

There is a significant flow of information between

SpO2
and other cardio-respiratory time series

during graded hypoxia. Analysis of the pattern

of SpO2
variations has potential for non-invasive

assessment of the engagement of respiratory

control system in health and disease.

et al., 2015). By measuring the information that is exchanged between

different physiological parameters, we could potentially assess the

connectivity of physiological control (Buchman, 2002; Pincus, 1994).

Transfer entropy has the potential to compute bidirectional inter-

action between cardio-respiratory time series and thus reveal the

network of interaction between different physiological parameters

(Faes, Marinazzo, Montalto, & Nollo, 2014; Marzbanrad, Kimura,

Palaniswami, & Khandoker, 2015). Therefore, in this study, we tested

the hypothesis that SpO2
fluctuation carries information about cardio-

respiratory control in healthy individuals using a network physiology

approach. In order to address this hypothesis, the engagement of

different physiological parameters, i.e. respiratory frequency (fR), tidal

volume (VT), minute ventilation (V̇E), heart rate (HR), SpO2
, end-tidal

pressure of O2 (PETO2
) and CO2 (PETCO2

) were analysed using transfer

entropy in healthy volunteers who were exposed to normobaric hypo-

xia.

2 METHOD

2.1 Ethics

All participants provided their written informed consent before taking

part in this study. The experimental procedures adhered to the

standards set by the latest revision of theDeclaration of Helsinki, except

for registration in a database, and were approved by the Science

Faculty Ethics Committee of The University of Portsmouth (project

number 2017-025).

2.2 Experimental design

This study was part of a larger project investigating effects of

normobaric hypoxia on physiological and cognitive function and the

experimental design has been described in detail elsewhere (Costello
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et al., 2020;Williams et al., 2019). A convenience sample of 12 healthy

males participated in this study, with mean (SD) age 22 (4) years,

height 1.78 (0.05) m, mass 75 (9) kg, FEV1/FVC ratio 85 (5)%. All

participants were non-smokers, free of any cardiovascular, respiratory

and cerebrovascular diseases, were not diabetic, and were not taking

any prescription drugs at the time of or before participation. A within-

participant, single blind randomized controlled design was employed.

Participants were required to visit the laboratory on five occasions

(one health screening and four experimental conditions). For each

experimental condition, participants were exposed to normobaric

hypoxia for 45 min in a purpose-built hypoxic chamber (Sporting

Edge, Sherfield on Loddon, UK). The fraction of inspired oxygen (FIO2
)

values were 0.2093 (≈ sea level), 0.17 (equivalent to ∼1600 m), 0.145

(∼3000 m), and 0.12 (∼4500 m). If PETO2
or PETCO2

fell below 45 and

25 mmHg, respectively, for three consecutive breaths, or if SpO2
went

below 65%, participants were given a supply of normoxic air and sub-

sequently removed from the chamber. Experimental conditions were

separated by a minimum of 48 h and conducted at the same time

of day.

2.3 Physiological recording

Participants’ cardiorespiratory parameters, including fR, VT, V̇E,

HR, SpO2
(using an ear clip), PETO2

and PETCO2
, were measured

and monitored non-invasively for 45 min using a metabolic cart

(Quark CPET, Cosmed, Rome, Italy). During each experimental

condition participants wore an oro-nasal facemask for complete

breath collection (7400 series Vmask, Hans Rudolph, Shawnee, KS,

USA). The sampling rate was one sample per respiratory cycle. We

have previously demonstrated that it takes ∼15 min for participants

to acclimate with the experimental setting during each condition

(Costello et al., 2020). Thus, time series taken in the last 30 min

were used for analysis in this study (i.e. minutes 15–45). A digital

filter was developed in MATLAB (The MathWorks Inc., Natick,

MA, USA, R2019b) and applied to remove any missing data and

replace them with the overall average value of the data thread. Data

were discarded if missing data equated to more than 5% of total

length of the time series. Accordingly, one participant had more

than 5% missing data and was subsequently discarded from the

analyses.

2.3.1 Sample entropy calculation

Sample entropy of physiological time series was calculated using an

algorithm developed in MATLAB (Goldberger et al., 2000). Sample

entropy is a measure of irregularity of a time series by calculating

the logarithmic likelihood that a sequence with window length,m, and

degree of tolerance, r, will be repeated at a later time. In the present

analysis, m and r were set at 2 (window length) and 0.2 (0.2 × SD)

as described previously (Bhogal & Mani, 2017; Richman & Moorman,

2000).

2.3.2 Transfer entropy

Transfer entropy reflects the measures of causal relationship between

two parallel time series (Barnett et al., 2009; Schreiber, 2000). In

this study, it was employed to quantify the level of directed influence

and information transfer that a data segment of one physiological

time series can have on the future progress of another in a different

time series. We used an open source function in MATALB to compute

the transfer entropy between two parallel time series (Lee et al.,

2012; code of this function can be found at PhysioNet: https:

//www.physionet.org/content/tewp/1.0.0/; Goldberger et al., 2000).

Probability density estimation was based on Gaussian kernel density

estimation. Calculation of transfer entropy requires parameters such

as the time lag,whichwas set to 1. The number of equally spaced points

alongeachdimensionwhereprobabilitieswereestimatedwas set to10

(Lee et al., 2012).

2.3.3 Statistical analysis

Data are presented as the mean (SD), unless otherwise stated. The

distributionof datawas assessedusing descriptivemethods (skewness,

outliers and distribution plots) and inferential statistics (Shapiro–

Wilk test). A one-way ANOVA followed by Tukey’s post hoc test was

used to compare the physiological indices at different FIO2
values.

Statistical analyses were carried out using MATLAB and GraphPad

Prism (version 7, GraphPad Software Inc., SanDiego, CAUSA). P<0.05

was considered statistically significant.

2.4 Network visualization

The directed transfer entropy values that physiological time series (i.e.

fR, VT, V̇E, HR, SpO2
, PETO2

and PETCO2
) exerted on each other following

exposure to an FIO2
of 0.17, 0.145, 0.12 were compared against

those at sea level (FIO2
: ∼0.2093–0.21). With the values obtained, any

significant value in transfer entropy calculation was then compiled to

form an adjacency matrix for each FIO2
. If there was no statistically

significant difference in transfer entropy in comparison of with FIO2

0.21, a transfer entropyof zerowas considered in the adjacencymatrix.

Thismatrix was used to plot a directed graph. The codes for calculation

of transfer entropy and plotting the network were written in

MATLAB.

3 RESULTS

Eleven participants completed the study (45 min conditions × 4

sessions). One participant was removed from the chamber in FIO2
0.12

(PETO2
fell below 45 mmHg). A sample representing 30 min recording

of physiological signals during hypoxia is demonstrated in Figure 1.

Table 1 displays the changes in mean fR, VT, V̇E, HR, SpO2
, PETO2

and

PETCO2
at the various FIO2

values.While mean fR, VT, V̇E and HR did not

https://www.physionet.org/content/tewp/1.0.0/
https://www.physionet.org/content/tewp/1.0.0/
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F IGURE 1 A sample representing fluctuations of physiological signals during normobaric hypoxia (length of recording 30min, FIO2
: 0.145). fR,

respiratory frequency; HR, heart rate; PETCO2
, end-tidal pressure of CO2; PETO2

, end-tidal pressure of O2; SpO2
, peripheral capillary oxygen

saturation; V̇E, minute ventilation; VT, tidal volume

TABLE 1 Comparison of mean value of physiological parameters during graded normobaric hypoxia

FIO2

0.21 0.17 0.145 0.12 P (ANOVA)

fR (breath min−1) 16.68± 2.73 17.24± 2.64 17.63± 3.67 17.08± 5.01 0.943

VT (l) 0.88± 0.28 0.82± 0.20 0.88± 0.16 0.97± 0.31 0.588

V̇E (l) 12.78± 1.89 12.86± 2.37 14.17± 2.78 14.58± 4.01 0.355

HR (beat.min−1) 66.01± 8.66 69.89± 11.77 74.14± 10.02 76.20± 11.18 0.120

SpO2
(%) 99.51± 0.55c 98.22± 1.00c 93.94± 1.85a 86.22± 2.80a,c <0.0001

PETO2
(mmHg) 106.87± 1.78b 77.31± 3.37a 61.61± 5.31a,b 49.53± 3.07a,b,c <0.0001

PETCO2
(mmHg) 37.24± 1.69 37.00± 1.70 36.39± 2.41 34.22± 3.34a,b 0.0198

Data are presented as means± SD (n= 11). Post hoc analysis: aP< 0.05 in comparison with FIO2
= 0.21, bP< 0.05 in comparison with FIO2

= 0.17, cP< 0.05 in

comparison with FIO2
= 0.145. fR , respiratory frequency; HR, heart rate; PETCO2

, end-tidal pressure of CO2; PETO2
, end-tidal pressure of O2; SpO2

, peripheral

capillary oxygen saturation; V̇E, minute ventilation; VT, tidal volume.

change during the hypoxic challenge, there were significant changes in

mean SpO2
, PETO2

and PETCO2
during normobaric hypoxia.

Sample entropy of the physiological time series are detailed in

Table 2. SpO2
sample entropy, calculated from SpO2

signals using an

ear clip oximeter with a resolution of one sample per respiratory

cycle, increased as the concentration of inspired oxygen decreased

(P < 0.0001). This finding is in agreement with our previous report

where SpO2
was recorded using a finger pulse oximeterwith a sampling

rate of 1 Hz (Costello et al., 2020). None of the othermeasured physio-

logical time series exhibited any alteration in their sample entropy

following the hypoxic challenge.

Graphical presentation of directed transfer entropy between

different physiological parameters is shown in Figure 2. These

networks were plotted based on the adjacency matrices of transfer

entropy at different FIO2
values in comparison with normoxia (Tables 3

and 4). At an inspired oxygen concentration of 0.17, there was a

significant increase in transfer entropy for SpO2
→ V̇E and SpO2

→ VT
in comparison with transfer entropy in FIO2

0.21 (Figure 2a). At lower

FIO2
exposures (i.e. 0.145 and 0.12) transfer entropy between SpO2

and

other physiological time series increased markedly in comparison to

transfer entropy in FIO2
0.21 (Figures 2b,c). The highest information

flow was detected for PETO2
→ SpO2

, which were 0.23 and 0.22 bits
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TABLE 2 Comparison of sample entropy of physiological parameters during graded normobaric hypoxia

FIO2

0.21 0.17 0.145 0.12 P (ANOVA)

fR entropy 1.62± 0.19 1.64± 0.16 1.71± 0.19 1.77± 0.22 0.234

VT entropy 1.12± 0.37 1.24± 0.31 1.32± 0.28 1.48± 0.38 0.095

V̇E entropy 1.57± 0.27 1.65± 0.18 1.74± 0.21 1.72± 0.33 0.394

HR entropy 1.21± 0.30 1.10± 0.30 1.06± 0.32 1.16± 0.27 0.652

SpO2
entropy 0.09± 0.17b 0.42± 0.27b 0.98± 0.28a 1.33± 0.47a <0.0001

PETO2
entropy 1.48± 0.43 1.58± 0.41 1.55± 0.45 1.57± 0.40 0.946

PETCO2
entropy 1.24± 0.41 1.24± 0.39 1.21± 0.35 1.43± 0.35 0.498

Data are presented as means ± SD (n = 11). Post hoc analysis: aP < 0.05 in comparison with FIO2
= 0.21, bP < 0.05 in comparison with FIO2

= 0.145. fR,
respiratory frequency; HR, heart rate; PETCO2

, end-tidal pressure of CO2; PETO2
, end-tidal pressure of O2; SpO2

, peripheral capillary oxygen saturation; V̇E,

minute ventilation; VT, tidal volume.

F IGURE 2 Graphical presentation of directed transfer entropy between different physiological parameters as the concentration of inspired
oxygen decreases (n= 11). (a) FIO2

= 0.17, (b) FIO2
= 0.145, and (c) FIO2

= 0.12. Each node represents a physiological time series. Network edges
(links) represent the link between two variables if there is a statistically significant difference in transfer entropy in comparison with FIO2

= 0.21.
The number on each edge represent transfer entropy (bits). fR, respiratory frequency; HR, heart rate; PETCO2

, end-tidal pressure of CO2; PETO2
,

end-tidal pressure of O2; SpO2
, peripheral capillary oxygen saturation; V̇E, minute ventilation; VT, tidal volume

TABLE 3 Transfer entropy between physiological variables (horizontal→ vertical) at FIO2
= 0.21

SpO2
HR fR VT V̇E PETO2

PETCO2

SpO2
0.029± 0.009 0.024± 0.005 0.022± 0.009 0.024± 0.006 0.052± 0.018 0.037± 0.028

HR 0.025+ 0.021 0.103± 0.030 0.084± 0.031 0.092± 0.027 0.081± 0.022 0.075± 0.020

fR 0.036± 0.041 0.140± 0.049 0.103± 0.030 0.129± 0.039 0.139± 0.032 0.122± 0.033

VT 0.029± 0.035 0.087± 0.033 0.089± 0.029 0.081± 0.037 0.096± 0.024 0.090± 0.032

V̇E 0.028± 0.026 0.128± 0.040 0.143± 0.046 0.083± 0.047 0.128± 0.039 0.114± 0.029

PETO2
0.021± 0.026 0.105± 0.026 0.103± 0.022 0.102± 0.027 0.123± 0.040 0.060± 0.013

PETCO2
0.043± 0.043 0.125± 0.031 0.123± 0.026 0.114± 0.032 0.121± 0.051 0.092± 0.019

Data are shown as means ± SD. fR, respiratory frequency; HR, heart rate; PETCO2
, end-tidal pressure of CO2; PETO2

, end-tidal pressure of O2; SpO2
, peripheral

capillary oxygen saturation; V̇E, minute ventilation; VT, tidal volume.
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TABLE 4 Adjacencymatrices representing transfer entropy of physiological signals at different fraction of inspired oxygen (FIO2
)

A: FIO2
= 0.17; B: FIO2

= 0.145; C: FIO2
= 0.12. Zero value means that there is no statistically significant difference in transfer entropy in comparison with

FIO2
= 0.21. fR, respiratory frequency; HR, heart rate; PETCO2

, end-tidal pressure of CO2; PETO2
, end-tidal pressure of O2; SpO2

, peripheral capillary oxygen

saturation; V̇E, minute ventilation;VT, tidal volume.

in FIO2
of 0.145 and 0.12 bits respectively (Table 4). Moreover, this

enhanced connectivity displayed a bidirectional flow of information

as shown in Figure 2. While, bidirectional interactions were observed

between various cardio-respiratory parameters at an FIO2
of 0.145,

SpO2
exhibited the highest connectivity in the network (Figure 2b). In

FIO2
0.12, SpO2

remained the main hub of the network as shown in

Figure 2c.

4 DISCUSSION

The main finding of this study, in support of the hypothesis, was that

SpO2
fluctuations during graded normobaric hypoxia exposure carry

information about cardio-respiratory control. Specifically, during lower

FIO2
exposures (0.145 and 0.12), transfer entropy between SpO2

and

other time series increased in comparison to normoxia. Moreover, this

enhanced connectivity showed bidirectional flow of informationwhich

supports the existence of multiple feedback loops within the auto-

nomic control of the cardio-respiratory system. These findings imply

that patternanalysis of SpO2
fluctuationshas thepotential for assessing

the integrity of an individual’s cardio-respiratory system in response to

physiological challenges (e.g. hypoxia).

Control of respiration requires transfer of information from central

and peripheral chemoreceptors to ensure a rigorous balance between

supply and use of oxygen. If oxygen availability is reduced, the

respiratory centres in thebrainstemrespond to this flowof information

by changing their firing pattern to alter breathing rate and volume

(Jubran & Tobin, 2000). Such physiological responses require optimum

transfer of information between the different components involved in

the homeostatic control of tissue oxygenation (e.g. respiratory centres

in the brainstem, autonomic and cardiovascular centres, cardiac

pacemaker, vasculature, airways, respiratory muscles, etc.). Previous
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reports have indicated that hypoxia leads to the development of sub-

tle ventilatory oscillations which have not been thoroughly examined

in the existing literature (Jubran & Tobin, 2000). Some investigators

have suggested that the engagement of the respiratory control system

in the response to environmental or pathological challenges can be

quantified by studying the pattern of respiratory rhythm and volume

(Jubran & Tobin, 2000; Satti et al., 2019; Shirazi et al., 2013; Tipton

et al., 2017). The current findings have further extended our under-

standing of this process by demonstrating that there is a higher

degree of information transfer between different components of the

respiratory control system, despite the absence of a significant change,

or increase, in average fR, VT, or V̇E. Our findings also highlight that this

bidirectional flow of information can be quantified by transfer entropy,

a tool which shows merit in network visualization of the respiratory

control during hypoxia.

A novel finding in the present study was the existence of a

causal relationship between SpO2
fluctuations and respiratory control.

Although previous observational and experimental studied have

shown that SpO2
instability is associated with pathophysiological and

environmental challenges, the interpretation of such observations had

remained speculative (Costello et al., 2020; Dipietro, Caughy, Cusson,

& Fox, 1994; Garde et al., 2016; Roe & Jones, 1993). In general,

investigating the causal relationship between physiological signals

has largely been limited to reductionistic approaches (i.e. in vitro,

ex vivo studies) (Altimiras, 1999). However, novel analytical methods

have provided reliable tools to assess causal inference in multivariate

time series data. Barnett and colleagues showed that the transfer

entropy between two time series is equivalent to theGranger causality

and can be used for data-driven causal inference (Barnett et al.,

2009). Thus, transfer entropy has potential for the assessment of

the respiratory control system based on multivariable recording of

physiological signals, which is often available in acute clinical settings

(e.g. intensive care units). Alternative methods that measure flow of

information between parallel time series (e.g. mutual information and

cross-entropy), do not reveal bidirectional relationship between time

series (Raoufy et al., 2016; Richman & Moorman, 2000). This makes

transfer entropy a unique method to non-invasively study the feed-

back loops responsible for autonomic control of the cardio-respiratory

system.

In the present study, we observed that during exposure to FIO2

0.17, SpO2
had a causal influence on VT and V̇E, but not fR (Figure 2a).

This corroborates previous literature showing that the ventilatory

response to normobaric hypoxia is influence by VT more than fR
(Tipton et al., 2017). However, at a lower FIO2

, the flow of information

between SpO2
and other variables (fR, VT, V̇E, PETO2

, PETCO2
) exhibits

a bidirectional relationship. This may indicate tighter regulation as

the physiological challenge or stimulus is increased. The presence of

bidirectional relationships in the network suggests that SpO2
is not

only influenced by ventilatory parameters, but also has an impact

on respiratory variables, possibly through feedback regulation. As

expected, the strongest causal link was related to PETO2
→ SpO2

(Figure 2b,c). This corroborates a recent observation on mechanically

ventilated pigs, which demonstrated that variations in the arterial

partial oxygen pressure (PaO2
) is related to cyclic fluctuations of

alveolar oxygen tension during respiratory cycles (Formenti et al.,

2017). Thus, the information derived from physiological fluctuations

in alveolar oxygen tension can be transmitted to the systemic arteries

and hence be reflected in haemoglobin saturation and its fluctuations.

We also observed a reciprocal association between HR and SpO2

time series in FIO2
0.145 and 0.12 (Figure 2). This relationship

was weaker than that observed between SpO2
and the respiratory

variables, and is consistent with previous reports on the relationship

between SpO2
and HR variability at high altitude or during normobaric

hypoxia (Krejčí, Botek, & McKune, 2018; Saito, Tanobe, Yamada, &

Nishihara, 2005).

Understanding integrated physiological function is the focus of

network physiology (Bartsch, Liu, Bashan, & Ivanov, 2015). Here

using a network approach, we have demonstrated that the degree

of connectivity in the cardio-respiratory network was markedly

higher during normobaric hypoxia compared to normoxia. This finding

supports what we already knew: that the functional connectivity of

different physiological systems is crucial for the effective response

to environmental (or pathological) challenges, and hence survival.

Likewise, recent evidence suggests that patients are more likely

to survive critical illnesses as long as the physiological systems

remain part of a connected interactive network (Asada et al., 2016).

According to these studies, despite being matched for the severity

of their illnesses, non-surviving patients exhibit significantly less

functional physiological system (network) connectivity in comparison

with survivors (Asada et al., 2016). Although we have only studied the

integrity of the cardio-respiratory network in healthy individuals, our

observations have made us speculate that the functional connectivity

between respiratory parameters might be disrupted in patients with

illnesses where responses/adaptation to hypoxia plays an important

role in their survival (e.g. chronic obstructive pulmonary disease

acute respiratory distress syndrome, and possibly COVID-19). Thus,

a network approach may help understand the pathophysiology of

such complex illnesses beyond what has already been found using

traditional reductionistic methods.

While reciprocal interactions were observed between different

cardio-respiratory parameters during hypoxia, SpO2
remained themain

hub of the network (Figure 2). This may indicate that indices derived

from SpO2
variability analysis have potential for non-invasive field

and clinical studies to measure the connectivity of the respiratory

control system. For example, application of fractal analysis of SpO2

signals has been suggested as an alternative in paediatric sleep apnoea

(Vaquerizo-Villar et al., 2018). Future studies are therefore warranted

to investigate the application of non-invasive SpO2
fluctuation

analysis in monitoring individuals exposed to terrestrial altitude

or patients who are susceptible to respiratory failure (e.g. patients

with COVID-19). Despite extensive literature describing the physio-

logy of respiration in health and disease, our understanding is not

complete (Bunn & Poyton, 1996; Tipton et al., 2017; West, 2004).

Recent observations of individuals displaying symptoms of ‘happy’ or

‘silent’ hypoxia with COVID-19 have not been thoroughly explained

(Couzin-Frankel, 2020; Wilkerson, Adler, Shah, & Brown, 2020). A
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network physiology approach, using information transfer between

cardio-respiratory variables, may help to decipher these observations

in the future.

4.1 Study limitations and future perspectives

This study uses a convenient sample of healthy young males to test

the feasibility of the proposed method. First, in order to generalize

the findings, future research is required to expand these findings to

females and older individuals. Second, all of the participants were

healthy and did not have any comorbidities that would affect the

dynamics of the cardio-respiratory network. Therefore, the application

of SpO2
fluctuation analysis to the general population may show

different results. For example, we have previously shown that SpO2

entropy is affected by ageing (Bhogal &Mani, 2017). Other underlying

conditions (e.g. respiratory diseases) are likely to impact the network

and require attention in future research.

Pulse oximeter technology has recently expanded beyond

measurement of SpO2
to other applications, including detection

of pulsus paradoxus and fluid responsiveness based on variability

analysis of the plethysmography waveform (Hess, 2016). However, the

potential application of analysing the variability in the SpO2
signal per

se has only recently been appreciated (Costello et al., 2020; McGrath,

Perreard, MacKenzie, & Blike, 2020). To the best of our knowledge,

this was the first time that the transfer of information between SpO2
,

fR, VT, V̇E, PETO2
, PETCO2

and HR time series during graded normobaric

hypoxia has been demonstrated.

It appears that SpO2
fluctuations during graded normobaric hypo-

xia exposure carries information about cardio-respiratory control.

Implementations of the algorithms developed in the present study

could be utilized as physiological signal predictors incorporated into

smart devices and fitness equipment, making them suitable for

monitoring changes in aerobic fitness and physical health beyond the

infrequent monitoring of patients during clinical interventions and

rehabilitation programmes. Future studies should also examine if SpO2

variability analysis could be used to improve monitoring in intensive

care settings (e.g. need for or step-down from mechanical ventilation)

in a similarway that is described for respiratory rate variability analysis

(Seely et al., 2014).

4.2 Conclusion

SpO2
fluctuations during graded hypoxia exposure carry information

about cardio-respiratory control. SpO2
entropy analysis has potential

for non-invasive assessment of the engagement of the respiratory

control system.
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