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Maximum entropy approach 
to multivariate time series 
randomization
Riccardo Marcaccioli1 & Giacomo Livan1,2*

natural and social multivariate systems are commonly studied through sets of simultaneous and time-
spaced measurements of the observables that drive their dynamics, i.e., through sets of time series. 
Typically, this is done via hypothesis testing: the statistical properties of the empirical time series 
are tested against those expected under a suitable null hypothesis. This is a very challenging task in 
complex interacting systems, where statistical stability is often poor due to lack of stationarity and 
ergodicity. Here, we describe an unsupervised, data-driven framework to perform hypothesis testing 
in such situations. This consists of a statistical mechanical approach—analogous to the configuration 
model for networked systems—for ensembles of time series designed to preserve, on average, some 
of the statistical properties observed on an empirical set of time series. We showcase its possible 
applications with a case study on financial portfolio selection.

Hypothesis testing lies at the very core of the scientific method. In its general formulation, it hinges upon con-
trasting the observed statistical properties of a system with those expected under a null hypothesis. In particular, 
hypothesis testing allows to discard potential models of a system when empirical measurement that would be 
exceedingly unlikely under them are made.

However, there is often no theory to guide the investigation of a system’s dynamics. What is worse, in many 
practical situations one may be given a single—and possibly unreproducible—set of experimental data. This is 
indeed the case when dealing with most complex systems, whose collective dynamics often are markedly non-
stationary, ranging from  climate1,2 to brain  activity3 and financial  markets4–6. This, in turn, makes hypothesis 
testing in complex systems a very challenging task, that potentially prevents from assessing which properties 
observed in a given data sample are “untypical”, i.e, unlikely to be observed again in a sample collected at a dif-
ferent point in time.

This issue is usually tackled by constructing ensembles of artificial time series sharing some characteristics 
with those generated by the dynamics of the system under study. This can be done either via modelling or in a 
purely data-driven way. In the latter case, the technique most frequently used by both researchers and practition-
ers is  bootstrapping7,8, which amounts to generating partially randomised versions of the available data via resa-
mpling that can then be used as a null benchmark to perform hypothesis testing. Depending on its specificities, 
bootstrapping can account for autocorrelations and cross-correlations in time series sampled from multivariate 
systems. However, it relies on assumptions, such as sample independence and some form of  stationarity9, which 
limit its power when dealing with complex systems.

As far as model-driven approaches are concerned, the literature is extremely  vast10. Broadly speaking, model-
ling approaches rely on a priori structural assumptions for the system’s dynamics, and on identifying the param-
eter values that best explain the available set of observations within a certain class of models (e.g., via Maximum 
 Likelihood10). A widely used class for multivariate time series is that of autoregressive models, such as  VAR11, 
 ARMA12, and  GARCH13, which indeed were originally introduced, among other reasons, to perform hypothesis 
 testing12. In such models, the future values of each time series are given by a linear combination of past values 
of one or more time series, each characterised by their own idiosyncratic noise to capture the fluctuations of 
individual variables. Such a structure is most often dictated by its simplicity rather than by first principles. As a 
consequence, once calibrated, autoregressive models produce rather constrained ensembles of time series that 
do not allow to explore scenarios that differ substantially from those observed empirically.
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Another modelling philosophy places more emphasis on capturing the structural collective properties of 
multivariate systems rather than their dynamical ones. Random Matrix models are a prime example in this 
direction, which usually rely on ansatzes on the correlation structure of the system under study trying to strike 
a balance between the resulting models’ analytical tractability and their adherence to empirical observations. 
One of the first—and still most widely used—Random Matrix models is the Wishart  Ensemble14,15, which in 
its simplest form leads to the much celebrated Marčenko–Pastur  distribution16 for uncorrelated systems, up to 
rather recent developments to tackle non-stationarities in financial  data17.

Here we propose a maximum entropy approach—inspired by Statistical Mechanics—to perform hypothesis 
testing on sets of time series. Starting from the maximum entropy principle, we will introduce a (gran)canonical 
ensemble of correlated time series subject to constraints based on the properties of an empirically observed set 
of measurements. This, in turn, will result in a multivariate probability distribution which allows to unbiasedly 
sample values centred on such measurements, which represents the main contribution of this paper. The theory 
we propose in the following shares some similarities with the canonical ensemble of complex  networks18–21, and, 
as we will show, inherits its powerful calibration method based on Likelihood  maximization22.

The paper is organized as follows. In the next section, we outline the general formalism of our approach. 
Then, as a formative example, we show how the methodology introduced can be used to reconstruct an unknown 
probability density function from repeated measurements over time. After that, we proceed to study the most 
general case of multivariate time series, showing how our approach recovers collective statistical properties of 
interacting systems without directly accounting for such interactions in the set of constraints imposed on the 
ensemble. Before concluding with some final remarks, we present an application to financial portfolio selection, 
and we briefly mention an interesting analogy between our approach and Jaynes’ Maximum Caliber  principle23.

General framework description
Let W be the set of all real-valued sets of N time series of length T (i.e., the set of real-valued matrices of size 
N × T ), and let W ∈ W be the empirical set of data we want to perform hypothesis testing on (i.e., Wit stores 
the value of the ith variable in the system sampled at time t, so that Wit for t = 1, . . . ,T represents the sampled 
time series of variable i). Our aim is to define a probability density function P(W) on W such that the expectation 
values 〈Oℓ(W)〉 of a set of observables ( ℓ = 1, . . . , L ) coincide with the value Oℓ of the corresponding quantities 
as empirically measured from W .

Following Boltzmann and Gibbs, we can achieve the above by invoking the maximum entropy principle, i.e., 
by identifying P(W) as the distribution that maximises the entropy functional S(W) = −

∑

W∈W P(W) ln P(W) , 
while satisfying the L constraints �Oℓ(W)� =

∑

W Oℓ(W)P(W) = Oℓ and the normalisation condition 
∑

W P(W) = 1 . As is well  known24,25, this reads

where H(W) =
∑

ℓ βℓ Oℓ(W) is the Hamiltonian of the system, βℓ ( ℓ = 1, . . . , L ) are Lagrange multipliers 
introduced to enforce the constraints, and Z =

∑

W e−H(W) is the partition function of the ensemble, which 
verifies �Oℓ(W)� = ∂ lnZ/∂βℓ, ∀ ℓ.

Figure 1 provides a sketch representation of the ensemble theory just introduced. The rationale for enforcing 
the aforementioned constraints is that of finding a distribution P(W) that assigns low probability to regions of the 
phase space W where the observables associated to the Lagrange multipliers βℓ take values that are exceedingly 
different from those measured in the empirical set W  , and high probability to regions where some degree of simi-
larity with W  is retained (it should be noted that in some cases this does not necessarily lead to the distribution 
P(W) being peaked around the values Oℓ ). This, in turn, allows to test whether other properties (not encoded in 
any of the constraints) of W  are statistically significant by measuring how often they appear in instances drawn 
from the ensemble. The existence and uniqueness of the Lagrange multipliers ensuring the ensemble’s ability to 
preserve the constraints Oℓ is a well known result, and they are equivalent to those that would be obtained from 
the maximization of the Likelihood of drawing the empirical matrix W  from the  ensemble26.

In the two following Sections, we shall illustrate our general framework on two examples—one devoted to 
the single time series case, one to the multivariate case. In both examples, we shall make a selection of possible 
constraints that can be analytically captured by the approach, i.e., constraints for which the resulting ensemble’s 
partition function can be computed in closed form. In particular, since we will apply our approach to financial 
data in a later section, we will choose constraints that have a clear interpretation in the analysis of financial time 
series. However, it should be kept in mind that such constraints are by no means to be interpreted as general 
prescriptions, and all results presented in the following could be reobtained—depending on the applications of 
interest—with any other set of constraints allowing for analytical solutions.

Single time series
As a warm up example to showcase our approach, we shall consider a simple case of a univariate and station-
ary system with no correlations over time. This amounts to a time series made of independent and identically 
distributed random draws from a probability density function, which we aim to reconstruct. In the next section 
we will then proceed to consider multivariate and correlated cases.

Let us then consider a 1× T empirical data matrix W  coming from T repeated samples of an observable of 
the system under consideration. If the processes is stationary and time-independent, this is equivalent to sam-
pling T times a random variable from its given, unknown, distribution and therefore the task of the model can 
be translated into reconstructing the unknown distribution given the data. Let us consider a vector ξ ∈ [0, 1]d 
and the associated empirical ξ-quantiles qξ calculated on W  . In order to fully capture the information present 

(1)P(W) = e−H(W)

Z
,
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in the data W  , we are going to constrain our ensemble to preserve, as averages, one or more quantities derived 
from qξ . Possible choices may be:

• The number of data points falling within each pair of empirically observed adjacent quantiles:
  Nξi =

∑

t �(Wt − qξi−1
) �(−Wt + qξi )• The cumulative values of the data points falling within each pair of adjacent quantiles:

  Mξi =
∑

t Wt �(Wt − qξi−1
) �(−Wt + qξi )• The cumulative squared values of the data points falling within each pair of adjacent quantiles:

  M
2
ξi
=

∑

t W
2
t �(Wt − qξi−1

) �(−Wt + qξi )

In each of the above constraints we assumed i = 2, . . . , d , and we have used �(·) to indicate Heaviside’s step 
function (i.e., �(x) = 1 for x > 0 , and �(x) = 0 otherwise). In general we are not required to use the same ξ for 
all constraints, for example we can freely choose to impose on the ensemble the ability to preserve Nξi∀i ∈ [1, d] 
together with the total cumulative values M =

∑

i Mξi , and total cumulative squared values M2 =
∑

i M
2
ξi

 , as 
well as each Mξi and M2

ξi
 separately. Note that the first constraint in the above list effectively amounts to con-

straining the ensemble’s quantiles.
As we will discuss more extensively later on, the above set of constraints is discretionary. A possible strategy 

to get rid of such discretionality, would be to partition the data based on a binning procedure aimed at compro-
mising between resolution and relevance, according to its definition introduced in Ref.27.

A defined set of constraints will lead to a different Hamiltonian, to a different number of Lagrange multipli-
ers and therefore to a different statistical model. If we choose, for example, to adopt all the constraints specified 
above, the Hamiltonian H of the ensemble will depend on a total of 3(d − 1) parameters:

(2)H(W) =
d

∑

i=1

T
∑

t=1

[

ai +Wtαi +W2
t βi

]

�(Wt − qξi−1
)�(−Wt + qξi ).

Figure 1.  Schematic representation of the model. Starting from an empirical set of time series W  , we construct 
its unbiased randomization by finding the probability measure P(W) on the phase space W which maximises 
Gibbs’ entropy while preserving the constraints {Ol(W)}L

l=1
 as ensemble averages. The probability distribution 

P(W) depends on L parameters that can be found by maximising the likelihood of drawing W  from the 
ensemble. In the figure, orange, turquoise and black are used to indicate positive, negative or empty values of the 
entries Wit , respectively, while brighter shades of each color are used to display higher absolute values. As it can 
be seen, the distribution P(W) assigns higher probabilities to those sets of time series that are more consistent 
with the constraints and therefore more similar to W  .  See20 for a similar chart in the case of the canonical 
ensemble of complex networks.
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The freedom to choose the amount of constraints of course comes with a cost. First of all, it must be noted that 
the Likelihood of the data matrix W  will be in general a non linear function of the Lagrange multipliers and 
therefore of the constraints. These latter can vary both in magnitude (by choosing different values for the entries 
of ξ ) and in size (by choosing a different d). In general, finding the optimal positions for the constraints, given 
their number d, can become highly not trivial and goes out of the scope of the present work. However, loosely 
speaking, the Likelihood of finding W  after a random draw from the defined ensemble is an increasing function 
of the number of constraints, coherently with the idea that a larger number of parameter leads to better statistics 
on the data used to train the model. As a result, in order to avoid overfitting, given a set of constraints, we can 
compare different values of d by using standard model selection techniques such as the  Bayesian28 or Akaike 
information  criteria29.

In the following we are going to show how to apply the methodology just outlined to a synthetic dataset. For 
this example, let us assume that the data generating process follows a balanced mixture of a truncated standard 
Normal distribution and a truncated Student’s t-distribution with ν = 5 degree of freedom. The two models we 
are going to use to build the respective ensembles are specified by the following Hamiltonians:

The model resulting from H1 will have a total of 2(d − 1) parameter and will preserve the average number of data 
points contained within each pair of adjacent quantiles together with their cumulative values, while the model 
resulting from H2 will be characterised by d + 1 parameters and will preserve the average number of data points 
contained within each pair of adjacent quantiles together with the overall mean and variance calculated across 
all data points. In order to find the Lagrange multipliers able to preserve the chosen constraints, we first need to 
the find the partitions functions of the two ensembles Z1,2 =

∑

W e−H1,2(W) . In order to do that, we first need 
to specify the sum over the phase space:

The above expression leads to the following partition functions (in the Supplementary Information we present 
a detailed derivation of the partition function shown in the next Section; the following result can be obtained 
with similar steps):

where with erf  we indicate the Gaussian error function erf(z) = 2
π

∫ z
0 e−t2dt.

In Fig. 2 we show how the models resulting from the partition functions Z1 and Z2 are able to reconstruct 
the underlying true distribution starting from different amounts of information (i.e different sample sizes) 
and quantiles vector set to q = [−∞, q0.25, q0.5, q0.75,∞] (the steps to obtain the ensemble’s probability density 
function from its partition function are outlined in the Supplementary Information for the case discussed in the 
next Section). First of all we note that, as expected, estimating the unknown distribution from more data gives 
estimates that are closer to the real underlying distribution. Moreover, looking at Fig. 2, we can qualitatively 
see that the model described by Z1 does a better job than Z2 at inferring the unknown pdf. We can verify both 
statements more quantitatively by calculating the the Kullback–Leibler divergence of the estimated distributions 
from the true one: for the case with 40 data points we observe DKL(PZ1 |PT ) = 0.10 and DKL(PZ2 |PT ) = 0.19 
while for the case with 4000 samples we have DKL(PZ1 |PT ) = 0.01 and DKL(PZ2 |PT ) = 0.08 . Of course, we cannot 
conclude yet that Z1 gives overall a better model for our reconstruction task than Z2 since they are described by a 
different number of parameters. As mentioned above, in order to complete our model comparison exercise, we 
need to rely on a test able to assess the relative quality of the models for a given set of data. We choose the Akaike 
information criterion which uses as its score function AIC = 2k − 2 log L̂ , where k is the number of estimated 
parameters and L̂ is the maximum value of the likelihood function for the model. We end up with AICZ1 = 130 
and AICZ2 = 950 for the 40 data points case and AICZ1 = 1, 15× 104 and AICZ2 = 2.11× 105 when 4000 data 
points are available. Of course it is worth repeating that all the steps mentioned above are performed given a 
fixed vector q common to the two models.

Multiple time series
In this Section we proceed to present the application of the approach introduced above to the multivariate case.

Let us consider an N × T empirical data matrix W  whose rows have been rescaled to have zero mean, so 
that Wit > 0 ( Wit < 0 ) will indicate that the time t value of the ith variable is higher (lower) than its empirical 
mean. Also, without loss of generality, let us assume that Wit ∈ R �=0 , and that Wit = 0 indicates missing data. 
For later convenience, let us define A± = �(±W) and w± = ±W�(±W) (we shall denote the corresponding 

(3)

H1 =
∑

i

[

αiNξi + βiMξi

]

H2 =
∑

i

[

αiNξi + βMξi + γM2
ξi

]

.

(4)
∑

W∈W
≡

T
∏

t=1

∫ qξd

qξ1

dwt .

(5)Z1 =
T
∏

t=1

d−1
∑

i=1

e−αi
e
−βiqξi − e

−βiqξi+1

βi

(6)Z2 =
T
∏

t=1

d−1
∑

i=1

√

π

4γ
e
β2

4γ −αi

(

−erf

[

β + 2γ qξi
2
√
γ

]

+ erf

[

β + 2γ qξi+1

2
√
γ

])

,
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quantities measured on the empirical set as A± and w± ), and let us constrain the ensemble to preserve the values 
of the following observables:

• The number of positive (above-average) and negative (below-average) values N±
i =

∑

t A
±
it  , and the number 

of missing values N0
i = T − N

+
i − N

−
i  recorded for each time series ( i = 1, . . . ,N).

• The cumulative positive and negative values recorded for each time series: S±i =
∑

t w
±
it  ( i = 1, . . . ,N).

• The number of positive, negative, and missing values recorded at each sampling time: M±
t =

∑

i A
±
it  , 

M
0
t = N −M

+
t −M

−
t  ( t = 1, . . . ,T).

• The cumulative positive and negative value recorded at each sampling time: R±
t =

∑

i w
±
it  ( t = 1, . . . ,T).

Note that the second constraint in the above list indirectly constrains the mean of each time series. As mentioned 
in the General Framework section, we selected the above constraints inspired by potential financial applications 
(and indeed we will assess the ensemble’s ability to capture time series behaviour on financial data). In such 
context, the above four constraints respectively correspond to: the number of positive and negative returns of 
a given financial stock, the total positive and negative return of a stock, the number of stocks with a positive or 
negative return on a given trading day, the total positive and negative return across all stocks on a given trading 

Figure 2.  Comparisons between empirical PDFs (shown as histograms), CDFs and survival functions (CCDFs) 
and their empirical counterparts reconstructed with our ensemble approach from the Hamiltonians in Eq. (3), 
shown in yellow ( H1 ) and red ( H2 ), respectively. (a) Results on the PDF obtained by calibrating the models on 
40 data points. (b) Results on the PDF obtained by calibrating the models on 4000 data points. (c) Results on 
the CDF (and associated survival function) with models calibrated on 40 data points. (d) Results on the CDF 
(and associated survival function) with models calibrated on 4000 data points. In all plots the dashed black lines 
marked as “True” correspond to the analytical PDF, CDF and survival function (depending on the panel) of 
the synthetic data generating process (given by a mixture of a Gaussian and a Student-t, see main text). Vertical 
dashed lines correspond to the 0.25, 0.5, and 0.75 quantiles employed to calibrate the models. The results 
from the ensemble have been obtained by pooling together 106 time series independently generated from the 
ensemble.
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day. Such constraints amount to some of the most fundamental “observables” associated with financial returns. 
As we will detail in the following, forcing the ensemble to preserve them on average also amounts to effectively 
preserving other quantities that are of paramount importance in financial analysis, such as, e.g., the skewness 
and kurtosis of return distributions, and some of the correlation properties of a set of financial stocks (which 
are central to financial portfolio analysis and selection.)

The above list amounts to 8(N + T) constraints, and the Hamiltonian H depends on the very same number 
of parameters:

where we have introduced the Lagrange multipliers associated to all constraints. This choice for the Hamiltonian 
naturally generalizes the framework introduced  in30.

Let us remark that none of the above constraints explicitly accounts for either cross-correlations between 
variables or for correlations in time. Accounting for these would amount to constraining products of the type 
∑T

t=1 witwjt (in the case of cross-correlations) and 
∑N

i=1 witwit′ (in the case of temporal correlations), which 
introduce a direct coupling between the entries of W, resulting in a considerable loss in terms of the approach’s 
analytical tractability. However, as we shall see in a moment, the combination of the above constraints is enough 
to indirectly capture some of the correlation properties in the data of interest.

In order to calculate the partition function Z =
∑

W e−H(W) , we first need to properly specify the sum over 
the phase space. Given the matrix representation we have chosen for the system, and the fact that w±

it = witA
±
it  , 

this reads:

where the sum specifies whether the entry Ait stores a positive, negative or missing value, respectively. This signi-
fies that negative and positive events (this in general holds for any discretization of the distribution of the entries 
of W), i.e., values above and below the empirical mean of each variable, obviously cannot coexist in an entry Wit , 
which, once occupied, cannot hold any other event. In this respect, we can anticipate that negative and positive 
events will effectively be treated as different fermionic species populating the energy levels of a physical system. 
Following this line of reasoning, the role of w±

it  is that of general coordinates for each of the two fermionic species. 
In principle, the integrals in Eq. (8) could have as upper limits some quantities U±

it  to incorporate any possible 
prior knowledge on the bounds of the variables of interest.

The above expression leads to the following partition function (explicitly derived in the Supplementary 
Information):

where the quantities µ1,2
it  , ǫit , and Tit are functions of the Lagrange multipliers (specified in the Supplementary 

Information).
Some considerations about Eq. (9) are now in order. First of all, the partition function factorises into the 

product of independent factors Zit , and therefore into a collection of N × T statistically independent sub-systems. 
However, it is crucial to notice that their parameters (i.e., the Lagrange multipliers) are coupled through the 
system of equations specifying the constraints ( �Oℓ(W)� = ∂ lnZ/∂βℓ, ∀ ℓ ). As we shall demonstrate later, this 
ensures that part of the original system’s correlation structure is retained within the ensemble. Moreover, with 
the above positions, the aforementioned physical analogy becomes clear: the system described by Eq. (9) can be 
interpreted as a system of N × T orbitals with energies ǫit and local temperatures Tit that can be populated by 
fermions belonging to two different species characterised by local chemical potentials µ1

it and µ2
it , respectively.

From the partition function in Eq. (9) we can finally calculate the probability distribution P(W):

where P±it  and Q±
it (w

±
it ) are functions of the Lagrange multipliers (specified in the Supplementary Information) 

and correspond, respectively, to the probability of drawing a positive (negative) value for the ith variable at time 
t and to its probability distribution.

As an example application of the ensemble defined above, let us consider the daily returns of the N = 100 
most capitalized NYSE stocks over T = 560 trading days (spanning October 2016–November 2018). In this 
example, the aforementioned constraints force the ensemble to preserve, on average, the number of positive 
and negative returns and the overall positive and negative return for each time series and for each trading day, 
leading to 6(N × T) constraints. When these constraints are enforced, an explicit expression for the marginal 
distributions can be obtained (see the Supplementary Information):

(7)H(W) =
N
∑

i=1

T
∑

t=1

[(

αN
i + αT

t

)

A+
it +

(

βN
i + βT

t

)

A−
it +

(

γN
i + γ T

t

)

w+
it +

(

σN
i + σT

t

)

w−
it

]

,

(8)

(9)

Z =
∑

W∈W
e−H(W) =

N
∏

i=1

T
∏

t=1

Zit =
N
∏

i=1

T
∏

t=1

[

1+ e−(αNi +αTt )

γN
i + γ T

t

+ e−(βN
i +βT

t )

σN
i + σT

t

]

=
N
∏

i=1

T
∏

t=1

(

1+ e
µ1it−ǫit

Tit + e
µ2it−ǫit

Tit

)

,

(10)P(W) =
N
∏

i=1

T
∏

t=1

[

P+it
]A+

it
[

P−it
]A−

it
[

1− P+it − P−it
]1−A+

it −A−
it
[

Q+
it (w

+
it )

]A+
it
[

Q−
it (w

−
it )

]A−
it ,
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where �±it  are also functions of the Lagrange multipliers (specified in the Supplementary Information). The above 
distribution allows both to efficiently sample the ensemble numerically and to obtain analytical results for sev-
eral observables. Remarkably, it has been  shown32 that sampling from a mixture-like density such as the one in 
Eq. (11) can result in heavy tailed distribution, which is of crucial importance when dealing with financial data.

Figure 3 and Tables 1 and 2 illustrate how the above first-moment constraints translate into explanatory 
power of higher-order statistical properties. Indeed, in the large majority of cases, the empirical return distribu-
tions of individual stocks and trading days and their higher-order moments (variance, skewness, and kurtosis) 
are statistically compatible with the corresponding ensemble distributions, i.e., with the distributions of such 
quantities computed over large numbers ( 106 in all cases shown) of time series independently generated from 
the ensemble. Notably, this is the case without constraints explicitly aimed at enforcing such level of agreement. 
This, in turn, further confirms that the ensemble can indeed be exploited to perform reliable hypothesis testing 
by sampling random scenarios that are however closely based on the empirically available data.

(11)P(Wit = x) = (1− P+it ) �
−
it e

�
−
it x �(−x)+ P+it �

+
it e

−�
+
it x �(x) ,

Figure 3.  Comparisons between empirical statistical properties and ensemble averages. In these plots we 
demonstrate the model’s ability to partially reproduce non-trivial statistical properties of the original set of 
time series that are not explicitly encoded as ensemble constraints. (a) Empirical vs ensemble average values of 
the variances of the returns calculated for each stock (red dots) and each day (blue dots). (b) Same plot for the 
skewness of the returns. (c) Comparison between the ensemble and empirical cumulative distributions (and 
associated survival functions) for the returns of two randomly selected stocks (Microsoft and Pepsi Company). 
Dots correspond to the cumulative distribution and survival functions obtained from the empirical data. 
Dashed lines correspond to the equivalent functions obtained by pooling together 106 time series independently 
generated from the ensemble. Different colours refer to different stocks as reported in the legend. Remarkably, 
a Kolmogorov–Smirnov test (0.01 significance) shows that 92% of the stocks returns empirical distributions are 
compatible with their ensemble counterparts. (d) Same plot for the returns of all stocks on two randomly chosen 
days. In this case, 82% of daily returns empirical distributions are compatible with their ensemble counterparts 
(K–S test at 0.01 significance).
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In that spirit, in Fig. 4 we show an example of ex-post anomaly detection, where the original time series of 
a stock is plotted against the 95% confidence intervals obtained from the ensemble for each data point Wit . As 
it can be seen, the results are non-trivial, since the returns flagged as anomalous are not necessarily the largest 
ones in absolute value. This is because the constraints imposed on the ensemble reflect the collective nature of 

Figure 4.  Applications of the ensemble theory we propose to a system of stocks. (a) Anomaly detection 
performed on each single trading day of a randomly selected stock (Google). A return measured on a specific 
day for a specific stock is marked as anomalous if it exceeds the associated 95% confidence interval on that 
specific return (accounting for multiple hypothesis correction via False Coverage  Rate31). (b) Comparison 
between the empirical spectrum of the estimated correlation matrix (black dashed line), its ensemble 
counterpart (orange line) and the one prescribed by the Marchenko–Pastur law (blue line). The inset shows the 
empirical largest eigenvalue (dahsed line) against the ensemble distribution for it.

Table 1.  Fraction of empirical moments compatible with their corresponding ensemble distribution at 
different significance levels specified in terms of quantiles (e.g., 0.01–0.99 denotes that the 1st and 99th 
percentiles of the ensemble distribution are used as bounds to determine whether the null hypothesis of an 
empirical moment being compatible with the ensemble distribution can be rejected or not). Note that the 
confidence intervals used to obtain these results have not been adjusted for multiple hypothesis testing. Doing 
so (e.g., via False Coverage  Rate31) would further suppress the number of true positives, resulting an even 
larger fraction of moments being compatible with the ensemble distribution. Moments are calculated both for 
each stock and each trading day. In the last column, we also report, for each moment, the median relative error 
between the empirical value and its ensemble average.

Returns Significance null hypothesis

Median rel. err.Stat Sample 0.01–0.99 0.05–0.95 0.1–0.9

Var
Stock 0.95 0.76 0.59 0.2

Day 0.88 0.78 0.69 0.14

Skew
Stock 1 0.98 0.95 0.13

Day 0.78 0.58 0.49 0.46

Kurt
Stock 0.78 0.61 0.51 0.60

Day 0.85 0.68 0.55 0.1

Table 2.  Fraction of empirical return distributions (both for stocks and trading days) that are compatible with 
their ensemble counterparts based on Kolmogorov–Smirnov tests at different significance levels.

Ratio empirical aggregated pdfs not rejected by a K–S test

Aggregation level

K–S test significance

0.01 0.05

Stocks 0.92 0.68

Days 0.82 0.75
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financial market movements, thus resulting in the statistical validation of events that are anomalous with respect 
to the overall heterogeneity present in the market.

Following the above line of reasoning, in Fig. 4 we show a comparison between the eigenvalue spectrum of 
the empirical correlation matrix of the data, and the average eigenvalue spectrum of the ensemble. As is well 
known, the correlation matrix spectrum of most complex interacting systems normally features a large bulk 
of small eigenvalues which is often approximated by the Marchenko–Pastur (MP)  distribution33 of Random 
Matrix Theory (i.e., the average eigenvalue spectrum of the correlation matrix of a large system of uncorrelated 
variables with finite second moments)15,34,35, plus a few large and isolated eigenvalues that contain information 
about the relevant correlation structure of the system (e.g., they can be associated to clusters of strongly correlated 
 variables36). As it can be seen in the Figure, the ensemble’s average eigenvalue spectrum qualitatively captures 
the same range of the empirical spectral bulk (for reference, we also plot the MP distribution), and the ensemble 
distribution for the largest eigenvalue is very close to the one empirically observed, demonstrating that the main 
source of correlation in the market is well captured by the ensemble. Conversely, the average distance between 
the empirically observed largest eigenvalue and its ensemble distribution can be interpreted as the portion of the 
market’s collective movement which cannot be explained by the constraints imposed on the ensemble.

In the Supplementary Information, we also apply the above ensemble approach to a dataset of weekly and 
hourly temperature time series recorded in North-American cities. We do this to showcase the approach’s abil-
ity to capture inherent time periodicities in empirical data—which would be very hard to capture directly—by 
means of the constraints already considered in the examples above.

Applications to financial risk management
In this section we push the examples of the previous section—where we demonstrated the ensemble’s ability to 
partially capture the collective nature of fluctuations in multivariate systems – towards real-world applications. 
Namely, we will illustrate a case study devoted to financial portfolio selection.

Financial portfolio selection is an optimization problem which entails allocating a fixed amount of capital 
across N financial stocks. Typically, the goal of an investor is to allocate their capital in order to maximise the 
portfolio’s expected return while minimising the portfolio’s expected risk. When the latter is quantified in terms 
of portfolio variance, the solution to the optimization problem amounts to computing portfolio weights πi 
( i = 1, . . . ,N ), where πi is the amount of capital to be invested in stock i (note that πi can be negative when short 
selling is allowed). As is well known, these are functions of the portfolio’s correlation  matrix37, which reflects the 
intuitive notion that a well balanced portfolio should be well diversified, avoiding similar allocations of capital 
in stocks that are strongly correlated. The mathematical details of the problem and explicit expressions for the 
portfolio weights are provided in the Supplementary Information.

The fundamental challenge posed by portfolio optimization is that portfolio weights have to be first computed 
“in-sample” and then retained “out-of-sample”. In practice, this means that portfolio weights are always computed 
based on the correlations between stocks observed over a certain period of time, after which one observes the 
portfolio’s realized risk based on such weights. This poses a problem, as financial correlations are known to be 
 noisy34,35 and heavily non-stationary6, so there is no guarantee that portfolio weights that are optimal in-sample 
will perform well in terms of out-of-sample risk.

A number of solutions have been put forward in the literature to mitigate the above problem. Most of these 
amount to methods to “clean” portfolio correlation  matrices38, i.e., procedures aimed at subtracting noise and 
unearthing the “true” correlations between stocks (at least over time windows where they can be reasonably 
assumed to be constant). Here, we propose to exploit our ensemble approach in order to apply the same phi-
losophy directly on financial returns rather than on their correlation structure.

Using the same notation as in the previous section, let us assume that Wit represents the time-t return of 
stock i ( i = 1, . . . ,N ; t = 1, . . . ,T ). Let us then define detrended returns W̃it = Wit − �Wit� , where 〈Wit〉 denotes 
the ensemble average of the return computed from Eq. (11). The rationale for this is to mitigate the impact of 

Table 3.  Out-of-sample portfolio risk—quantified in terms of variance—with and without detrending the 
returns by subtracting their ensemble average. PN

1,2
 (with N = 20, 50 ) refer to two different portfolios made of 

randomly selected S&P stocks, whereas q = N/T denotes the portfolios’ “rectangularity ratio” (i.e., the ratio 
between the number of stocks and the length of the in-sample time window used to compute correlations 
and portfolio weights). The two top rows refer to portfolios whose weights are computed based on the raw 
returns, whereas the two bottom rows refer to portfolios whose weights are computed based on the detrended 
returns. In the latter case, the detrending is only performed in-sample to compute correlations and weights, 
and the out-of-sample risk is computed by retaining such weights on new raw returns. The numbers reported 
in each case refer to the average out-of-sample risk computed over a set of 30-days long non-overlapping time 
windows spanning the period September 2014–November 2018.

P
20
1

P
20
2

P
50
1

P
50
2

q = 2/3 0.041 (0.027 , 0.091) 0.955 (0.026 , 0.815) 0.1029 (0.011 , 0.287) 0.1553 (0.015 , 0.461)

q = 1/4 0.8488 (0.031 , 2.867) 1.001 (0.022, 3.011) 0.7846 (0.009 , 0.933) 0.0938 (0.009 , 0.136)

q = 2/3 0.0093 (0.0053 , 0.0155) 0.0081 (0.0046 , 0.0124) 0.0034 (0.0021 , 0.0056) 0.0033 (0.0023, 0.0053)

q = 1/4 0.0113 (0.0055 , 0.0158) 0.0081 (0.0053 , 0.0111) 0.0041 (0.0022, 0.0056) 0.0033 (0.0021 , 0.0054)



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:10656  | https://doi.org/10.1038/s41598-020-67536-y

www.nature.com/scientificreports/

returns that may be anomalously large (in absolute value), i.e., returns whose values are markedly distant from 
their typical values observed in the ensemble (as in the example shown in Fig. 4).

In Table 3 we show the results obtained by performing portfolio selection on the aforementioned detrended 
returns, and compare them to those obtained without detrending. Namely, we form four portfolios (two of size 
N = 20 and two of size N = 50 ) with the returns of randomly selected S&P500 stocks in the period from Septem-
ber 2014 to October 2018, and compute their weights based on the correlations computed over non-overlapping 
period of lengths T = N/q , where q ∈ (0, 1) is the portfolio’s “rectangularity ratio”, which provides a reasonable 
proxy for the noisiness of the portfolio’s correlation matrix (which indeed becomes singular for q → 1 ). The 
numbers in the table represent the average and 90% confidence level intervals of the out-of-sample portfolio 
risk—quantified in terms of variance—computed over a number of non-overlapping time windows of 30 days 
in the aforementioned period (see caption for more details), with the first two rows corresponding to the raw 
returns and the two bottom rows corresponding to the detrended returns (note that in both cases out-of-sample 
risk is still computed on the raw returns, i.e., detrending is only performed in-sample to compute the weights). 
As it can be seen, detrending by locally removing the ensemble average from each return reduces out-of-sample 
risk dramatically, despite the examples considered here being plagued by a number of well-known potential 
downsides, such as small portfolio size, small time windows, and exposure to outliers (the returns used here are 
well fitted by power law distributions—using the method  in39—whose median tail exponent across all stocks 
is α = 3.9 ). In the Supplementary Information we report the equivalent of Table 3 for the portfolios’ Sharpe 
ratios (i.e., the ratio between portfolio returns and portfolio variance over a time window), with qualitatively 
very similar results.

In the Supplementary Information, we provide details of an additional application of our ensemble approach 
to financial risk management, where we compute and test the out-of-sample performance of estimates of Value-
at-Risk (VaR)—the most widely used financial risk  measure40—based on our ensemble approach. This applica-
tion is specifically aimed at demonstrating that—despite the large number of Lagrange multipliers necessary to 
calibrate the more constrained versions of our ensembles—the approach does not suffer from overfitting issues. 
Quite to the contrary—in line with the literature on configuration models for networked  systems19,20, which are 
a fairly close relative of the approach proposed here—we find the out-of-sample performance of our method to 
improve even when increasing the number of Lagrange multipliers quite substantially. The reason for this lies in 
the fact that in classic cases of overfitting one completely suppresses any in-sample variance of the model being 
used (e.g., when fitting n points with a polynomial of order n− 1 ). This is not the case, instead, with the model 
at hand. Indeed, being based on maximum entropy, our approach still allows for substantial in-sample variance 
even when building highly constrained ensembles. We illustrate this in the aforementioned example in the Sup-
plementary Information by obtaining progressively better out-of-sample VaR performance when increasing the 
number of constraints (and therefore or Lagrange multipliers) the ensemble is subjected to.

Relationship with Maximum Caliber principle
Before concluding, let us point out an interesting connection between our approach and Jaynes’ Maximum 
Caliber  principle23. It has recently been  shown41 that the time-dependent probability distribution that maximizes 
the caliber of a two-state system evolving in discrete time can be calculated by mapping the time domain of 
the system as a spatial dimension of an Ising-like model. This is exactly equivalent to our mapping of a time-
dependent system onto a data matrix, where the system’s time dimension is mapped onto a discrete spatial 
dimension of the lattice representing the matrix.

From this perspective, our ensemble approach represents a novel way to calculate and maximize the caliber of 
systems sampled in discrete time with a continuous number of states. This also allows to interpret some recently 
published results on correlation matrices in a different light. Indeed,  in21 the authors obtain a probability dis-
tribution on the data matrix of sampled multivariate systems starting from a maximum entropy ensemble on 
their corresponding correlation matrices. Following the steps outlined in our paper, the same results could be 
achieved via the Maximum Caliber principle by first mapping the time dimension of the system onto a spatial 
dimension of a corresponding lattice, and by then imposing the proper constraints on it.

Discussion
In this paper we have put forward a novel formalism—grounded in the ensemble theory of statistical mechan-
ics—to perform hypothesis testing on time series data. Whereas in physics and in the natural sciences, hypothesis 
testing is carried out through repeated controlled experiments, this is rarely the case in complex interacting 
systems, where the lack of statistical stability and controllability often hamper the reproducibility of experi-
mental results. This, in turn, prevents from assessing whether the observations made are consistent with a given 
hypothesis on the dynamics of the system under study.

The framework introduced here tackles the above issues by means of a data-driven and assumptions-free 
paradigm, which entails the generation of ensembles of randomized counterparts of a given data sample. The 
only guiding principle underpinning such a paradigm is that of entropy maximization, which allows to inter-
pret the ensemble’s partition function in terms of a precise physical analogy. Indeed, as we have shown, in our 
framework events in a data sample correspond to fermionic particles in a physical system with multiple energy 
levels. In this respect, our approach markedly differs from other known methods to generate synthetic data, such 
as bootstrap. Notably, even though the Hamiltonians used throughout the paper correspond to non-interacting 
systems, and therefore the correlations in the original data are not captured in terms of interactions between 
particles (as is instead the case in Ising-like models), the ensemble introduced here is still capable of partially 
capturing properties typical of interacting systems through the ‘environment’ the particles are embedded in, i.e., 
a system of coupled local temperatures and chemical potentials.
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All in all, our framework is rather flexible, and can be easily adapted to the data at hand by removing or add-
ing constraints from the ensemble’s Hamiltonian. From this perspective, the number and type of constraints can 
be used to “interpolate” between very different applications. In fact, loosely constrained ensembles can serve 
as highly randomized counterparts of an empirical dataset of interest, and therefore can be used for statistical 
validation purposes, i.e., to determine which statistical properties of the empirical data can be explained away 
with a few basic constraints. The opposite situation is instead represented by a heavily constrained ensemble, 
designed to capture most of the statistical properties of the empirical data (the examples detailed in previous 
sections go in this direction). From a practical standpoint, this application of our approach can be particularly 
useful in situations where sensitive data cannot be shared between parties (e.g., due to privacy restrictions), and 
where sharing synthetic data whose statistical properties closely match those of the empirical data can be a very 
valuable alternative.

For example, the constraints in the applications showcased here (i.e., on the sums of above and below aver-
age values) result in two fermionic species of particles. More stringent constraints (e.g., on the data belonging 
to certain percentiles of the empirical distribution) would result in other species being added to the ensemble.

As we have shown, our framework is capable of capturing several non-trivial statistical properties of empirical 
data that are not necessarily associated with the constraints imposed on the ensemble. As such, it can provide 
valuable insight on a variety of complex systems by both allowing to test theoretical models for their structure and 
by allowing to uncover new information in the statistical properties that are not fully captured by the ensemble. 
We have illustrated some of these aspects with a financial case study, where we demonstrated that a detrending 
of stock returns based on our ensemble approach yields a dramatic reduction in out-of-sample portfolio risk.

Once more, let us stress that the main limitation of our approach is that of not accounting explicitly for cross-
correlations or temporal correlations. As mentioned above, these could in principle be tackled by following the 
same analytical framework presented here, but would result in a considerably less tractable model. We aim to 
explicitly deal with the case of temporal correlations in future work.

Data availability
The financial data employed in this paper are freely available to download from Yahoo Finance.
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