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To summarize the distribution of glioma location within a patient population, registration
of individual MR images to anatomical reference space is required. In this study, we
quantified the accuracy of MR image registration to anatomical reference space with
linear and non-linear transformations using estimated tumor targets of glioblastoma
and lower-grade glioma, and anatomical landmarks at pre- and post-operative time-
points using six commonly used registration packages (FSL, SPM5, DARTEL, ANTs,
Elastix, and NiftyReg). Routine clinical pre- and post-operative, post-contrast T1-
weighted images of 20 patients with glioblastoma and 20 with lower-grade glioma
were collected. The 2009a Montreal Neurological Institute brain template was used
as anatomical reference space. Tumors were manually segmented in the patient
space and corresponding healthy tissue was delineated as a target volume in the
anatomical reference space. Accuracy of the tumor alignment was quantified using
the Dice score and the Hausdorff distance. To measure the accuracy of general brain
alignment, anatomical landmarks were placed in patient and in anatomical reference
space, and the landmark distance after registration was quantified. Lower-grade gliomas
were registered more accurately than glioblastoma. Registration accuracy for pre- and
post-operative MR images did not differ. SPM5 and DARTEL registered tumors most
accurate, and FSL least accurate. Non-linear transformations resulted in more accurate
general brain alignment than linear transformations, but tumor alignment was similar
between linear and non-linear transformation. We conclude that linear transformation
suffices to summarize glioma locations in anatomical reference space.

Keywords: glioma, magnetic resonance imaging, image processing, computer-assisted, linear registration, non-
linear registration

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 585

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00585
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00585
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00585&domain=pdf&date_stamp=2020-06-05
https://www.frontiersin.org/articles/10.3389/fnins.2020.00585/full
http://loop.frontiersin.org/people/859761/overview
http://loop.frontiersin.org/people/861614/overview
http://loop.frontiersin.org/people/923075/overview
http://loop.frontiersin.org/people/882180/overview
http://loop.frontiersin.org/people/859872/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00585 June 3, 2020 Time: 18:43 # 2

Visser et al. Accurate Normalization of Glioma MRI

INTRODUCTION

Tumor location is important when comparing treatment and
outcome between populations of patients with diffuse glioma.
The distribution of tumor locations can be summarized and
compared across patients by transforming tumor segmentations
from the individual patient space to a common anatomical
reference space. Tumor location, biopsy decision, and residual
tumor after surgery can then be summarized into tumor, biopsy,
or resection probability maps, respectively. These summaries
can provide answers to research questions on glioma-genesis
(Steed et al., 2016), location preference for molecular sub-types
(Ellingson et al., 2012, 2013), differences in surgical intervention
(De Witt Hamer et al., 2013; Müller et al., 2019), survival
prediction (Liu et al., 2016), and location of neuropsychological
domains (Hendriks et al., 2018).

Patient images are brought into spatial alignment with the
anatomical reference space through image registration. There is
a large number of different approaches to image registration,
which differ in the registration paradigm (e.g., the degrees of
freedom), similarity metrics, regularization, and the choices
in optimization (Viergever et al., 2016). Due to the diversity
in implementation of these characteristics, various (publicly
available) registration packages provide different solutions to
the same problem.

The accuracy of inter-subject brain MRI registration was
studied for several public software packages with publicly
available data of eighty healthy individuals, showing the added
value of high-degree-of freedom (non-linear) registrations (Klein
et al., 2009). However, registration becomes more challenging
when transforming images of brain tumors, lesions, atrophy, or
deformed brain to an anatomical reference space (Crinion et al.,
2007; Ripollés et al., 2012). For post-operative recurrent brain
tumor patients specifically, this was studied in a group of eight
patients by Ou et al. (2014).

Glioma registration has two main challenges. First, the
normal tissue contrast is altered by the tumor components and
surrounding edema. And second, mass effect from the tumor
and from surgery alters the volume and shape of normal tissue.
These challenges potentially diminish the registration accuracy,
resulting in less reliable summary maps.

The determination of image registration accuracy is not
standardized, nor well defined. Previous work determined
accuracy of different registration algorithms by comparing
difference between extrinsic (i.e., bone-implanted fiducials)
with intrinsic (i.e., intensity values in the images) registration
(West et al., 1997). Currently intrinsic registration has become
dominant in literature (Viergever et al., 2016), where the ground
truth of patient attached fiducials is lacking. Most commonly
registration results are checked visually, a qualitative approach
which is rater dependent. Manually segmenting structures in
the images allows for quantitative comparison (Caviness et al.,
1996; Shattuck et al., 2008), but is time-consuming and subject
to rater variability. Another quantitative method is placing
landmarks in the images (Chollet et al., 2014). Accuracy is
most reliably measured when using several forms of manual
annotation combined (Rohlfing, 2012).

In this study we compared the registration accuracy to
anatomical reference space for tumor alignment and for
anatomical landmark alignment of 20 patients diagnosed with
glioblastoma and 20 with lower-grade glioma, between pre-
and post-operative MRI time-points, between six publicly
available registration packages, and between linear and non-
linear registrations.

MATERIALS AND METHODS

Patients
Patients were randomly selected from a cohort treated at the
Neurosurgical Center of Amsterdam UMC, location VUmc,
between 2009 and 2013, and were previously reported on in an
inter-rater agreement study (Visser et al., 2019). The MR data
of 40 glioma patients was used, consisting of 20 patients with
histopathologically confirmed glioblastoma and 20 patients with
lower-grade glioma.

Imaging and Anatomical Reference
Space
Imaging was performed on a variety of systems (Siemens, model
Sonata or Avanto; GE medical systems, model Signa HDxt or
DISCOVERY MR750; Toshiba, model Titan3T; Philips, model
Panorama HFO or Ingenuity) with a field strength of 1T
(1% of all scans), 1.5T (62% of all scans), or 3T (37% of all
scans). The standardized protocol included sagittal 3D turbo
fluid-attenuated inversion-recovery (FLAIR) images [repetition
time/echo time/inversion time (TR/TE/TI) 4,800–8,000/125–
400/1,650–2,200 ms] with 1.3-mm slice thickness, axial T2-
weighted turbo spin echo images (TR/TE 5,190–8,670/93–
101 ms) with 5-mm slice thickness, and 3D T1-weighted
MPRAGE (TR/TE/TI 2700/1.5/950 ms)/3-D FSGPR (TR/TE/TI
6.6/3/450 ms)/3D TFE (TR/TE 7/3 ms) images with 0.5–1/0.5–
1/1–1.5 mm voxel size.

Following clinical protocol at the treatment site, the pre-
operative MRI was made within 1 week before resection. The
MRI after surgery was made within 72 h after resection for
glioblastoma and about 4 months after resection for lower-
grade glioma.

Only post-contrast T1-weighted MRI (T1c) images were used
for registrations in this study, and were registered individually
to the anatomical reference space, for which the symmetric
Montreal Neurological Institute 09a (ICBM2009a space) atlas1

was used (Fonov et al., 2009, 2011).

Manual Annotations
A single rater, a neurosurgeon with 20 years clinical experience,
segmented the gliomas in MRI at both the pre- and post-
operative time-point for all 40 patients. Segmentations in patient
space were made with the semi-automatic SmartBrush tool
(BrainLab, Feldkirchen, Germany). Radiological presentation of

1http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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glioma can be divided into MR non-enhancing and contrast-
enhancing tumors. Although exceptions exist, many non-
enhancing gliomas are histopathologically diagnosed as lower-
grade glioma (WHO grades II or III), and many contrast-
enhancing gliomas as glioblastoma (Scott et al., 2002). For
glioblastoma, the tumor segmentation was defined as enhancing
tumor elements including enclosed necrosis. The lower-grade
gliomas were segmented on T2/FLAIR images, which were co-
registered with the T1c in the BrainLab Elements software
suite, placing all segmentations in the patient T1c space. The
segmentation protocol and rater performance for this imaging set
are discussed in more detail in Visser et al. (2019).

To measure tumor registration accuracy a tumor target
volume in ICBM2009a space was defined, which corresponds
with the tumor volume in patient space. The same rater who
performed tumor segmentations in patient space also defined
the tumor target volumes in ICBM2009a space. This was done
by identifying the healthy tissue structures and salient edges
surrounding the tumor and finding the analogous areas in the
ICBM2009a template. For each segmentation in patient space a
corresponding target volume of healthy tissue was delineated in
MNI as ground truth for optimal registration, see Figures 1A,B.
Furthermore, anatomical landmarks were placed in patient space
and in anatomical reference space. A set of landmarks and their
corresponding intra-rater agreement was described in Chollet
et al. (2014). From these landmarks, we selected a subset
of 20 landmarks based on the coverage of the supratentorial
compartment and low intra-rater variation (≤2 mm), shown
in Figure 2. Specific locations of the landmarks are given in
Supplementary Table S1. Segmentations of target volumes in

FIGURE 1 | Example of manual tumor annotations followed by pre-operative
linear and non-linear registration for glioblastoma and lower-grade glioma in
the left hemisphere. Manual segmentation of tumor in patient space is shown
in blue, the corresponding estimated target volume in anatomical reference
space in green, the tumor segmentation after linear transformation in orange,
and the tumor segmentation after non-linear transformation in red. The top
row shows imaging of a glioblastoma patient, and the bottom row shows
imaging of a lower-grade glioma patient. From left to right: patient space (A),
anatomical reference space (B), patient space linearly transformed to
anatomical reference space (C), and patient space non-linearly transformed to
anatomical reference space (D).

FIGURE 2 | Landmarks in ICBM2009a space. Chosen landmarks are a subset
of 20 chosen from the landmarks recommended in Chollet et al. (2014).

ICBM2009a space and landmark placements were performed in
ITK-SNAP (Yushkevich et al., 2016).

To be able to review the intra-rater consistency, the same rater
delineated the tumor target volumes again in three randomly
selected enhancing and three non-enhancing gliomas on both
sessions. This was done a year after the initial delineation and the
rater was blinded to the initial results.

Registration Packages
We selected registration packages from Klein et al. (2009)
that are most commonly used and work with the NIfTI file
format, and added two more recently developed packages: FSL
(FLIRT and FNIRT) (FSL, RRID:SCR_002823), SPM5 (SPM,
RRID:SCR_007037), DARTEL (SPM, RRID:SCR_007037),
ANTs (SyN) (ANTS - Advanced Normalization ToolS,
RRID:SCR_004757), Elastix (elastix, RRID:SCR_009619),
and NiftyReg (NiftyReg, RRID:SCR_006593). For SPM related
routines SPM5 indicates the registration method first introduced
in SPM5, and SPM12 is the implementation we used.

Preprocessing
DICOM data of the T1c images were converted to NIfTI with the
dcm2niix tool (Li et al., 2016). Standard pre-processing was used
for each method. Therefore, the pre-processing was different for
FSL, ANTs, Elastix, and NiftyReg than for SPM5 and DARTEL.

FSL, ANTs, Elastix, and NiftyReg
T1c images were pre-processed with N4-bias correction to correct
for low-frequent intensity non-uniformity (Tustison et al., 2010),
anisotropic diffusion smoothing to remove noise while respecting
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the edges in the images (Perona and Malik, 1990), and a brain
extraction routine from the ANTs image processing toolbox to
obtain a brain mask in patient space (Avants et al., 2009, 2011).
Of note, the brain mask in patient space was the union of healthy
tissue and tumor and/or surgical cavity. A brain mask for the
anatomical atlas was provided with the atlas1.

SPM5 and DARTEL
SPM5 and DARTEL registrations use the Unified segmentation
approach that incorporates similar operations as above together
with tissue segmentation (Ashburner and Friston, 2005). We
used the CAT12 implementation in SPM12 (Wellcome Centre
for Human Neuroimaging, London, United Kingdom) that has
its own bias-field correction, non-local means noise filtering
(Manjón et al., 2010), and brain masking (Gaser, 2009). Then
T1c images were segmented to gray and white matter for later
use during registration instead of the original T1c images.

Registration Scheme
Pre- and post-operative MRI were processed independently
to allow for comparison in registration performance. Tumor
segmentations and landmarks in patient space were transformed
to ICBM2009a space with linear transformations (Figure 1C),
and non-linear transformations (Figure 1D). Due to differences
in available options in each registration package the parameter
settings per package were not designed to match those of other
packages but were based on settings from previous work (van
der Lijn et al., 2009; De Witt Hamer et al., 2013; Ou et al., 2014;
Mutsaerts et al., 2018; Bartel et al., 2019) and are provided in the
Supplementary Material. Furthermore, non-linear registrations
were initialized with the linear transformations from the
corresponding registration package.

FSL, ANTs, Elastix, and NiftyReg
Linear registrations were performed without using masks in
ICBM2009a space, nor in patient space. Non-linear registration
was driven by the brain masks for either selecting voxels in
ICBM2009a space or cost-function masking in patient space. This
resulted in two registrations to ICBM2009a space for each T1c
image per package: a linear and a non-linear registration. The
entire registration scheme is shown in Figure 3.

SPM5 and DARTEL
Intermediate and final templates in the SPM format are needed
for the registration to the ICBM2009a space. SPM5 and DARTEL
use the ICBM152 template (Mazziotta et al., 2001), and the
1.5 mm × 1.5 mm × 1.5 mm IXI-database template (Gaser,
2009), respectively. These two templates were additionally
aligned with the ICBM2009a template using geodesic shooting
registration (Ashburner and Friston, 2011). The so obtained
transformation was applied to all SPM5 and DARTEL results
to transform them to the ICBM2009a space for comparison.
Preparing the dedicated registration priors using the ICBM2009a
template would provide a possible alternative approach avoiding
the intermediate transformation; however, the errors introduced
by the extra transformation were minimal.

We used a hybrid implementation of the DARTEL registration
(Mutsaerts et al., 2018). In the region within and around the
tumor we used the results of SPM5. In the surrounding tissue,
the original DARTEL transformation was used. In the margin
around the tumor that encompassed the maximal difference in
the transformation fields on the tumor border, we have combined
the SPM5 and DARTEL fields with cubic weighting depending on
the distance from the lesion to ensure continuity of the merged
transformation fields.

Measures of Accuracy
Rater Consistency
The locations of post-operative target volumes should be
consistent with their respective pre-operative target volume
locations in ICBM2009a space. We define rater consistency as
the percentage of post-operative voxels with a distance < 3 mm
outside the pre-operative target volume. The voxels of the post-
operative target volumes were assumed to be located close to the
edge and preferably inside of the pre-operative target volumes, as
this would be the most probable region where the surgeon might
have left residual tumor.

To evaluate the intra-rater consistency on the tumor target
volumes in the ICBM2009a space, the Dice score and the
modified Hausdorff distance were calculated (see the following
section). Additionally, the generalized conformity index (GCI = |
regROI∩tarROI|/| refROIG∪tarROI|) was calculated to allow
comparison with our previous study on intra-rater agreement in
glioma segmentation (Visser et al., 2019).

Tumor Registration
The overlap between the segmentations and target volume was
determined with the Dice score as:

Dice =
2|regROI ∩ tarROI|∣∣regROI

∣∣+ |tarROI|
(1)

where
∣∣regROI

∣∣, |tarROI, and |regROI ∩ tarROI| are the volumes
of the registered tumor segmentation, the target volume in
ICBM2009a space, and their intersection, respectively. Dice
scores below 0.4 were considered poor agreement, 0.4–0.6 as
reasonable, 0.6–0.7 as good, and 0.7–1 as excellent (Bartko, 1991;
Cicchetti, 1994).

The average distance between the borders of the registered
tumor segmentation and target volume in ICBM2009a space was
determined by the modified Hausdorff distance proposed for
object matching in Dubuisson and Jain (1994),

dmodH = max{
1

NR

∑
r∈R

d(r, T),
1

NT

∑
t∈T

d(t, R)} (2)

where NR and NT are the number of vertices describing the
border of the registered tumor segmentation and target volume
in ICBM2009a space, respectively, r and t give a specific vertex
from the border of the registered tumor segmentation and
target volume in ICBM2009a space, respectively, and d defines
the minimal distance of a point from an object, d (r, T) =
mint∈T ||r-t| | .
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FIGURE 3 | Registration flowchart. Images were bias corrected and smoothed and subsequently passed to the linear registration. Brain masks were used to drive
the non-linear registration step, which was initiated with the results of the linear registration.

Landmark Registration
General brain alignment accuracy was determined by an average
distance in mm between the registered patient space landmarks
and the corresponding landmarks in ICBM2009a space.

davL =
1

NL

NL∑
i=1

d(Lreg
i , LMNI

i ) (3)

where davL is the average distance for a single patient, NL is
the number of labels, and d(Lreg

i , LMNI
i ) is the distance between

the registered landmark (Lreg
i ) to the corresponding landmark in

ICBM2009a space (L MNI
i ).

Statistical Analysis of Accuracy Measures
Linear mixed models were used to evaluate the results with
Dice, dmodH, or davL as a response variable. Type of registration
package, pathology, time-point, and the type of transformation
were set as fixed-effects to examine their association with
accuracy results. The patient ID was set as a random effect with
a random intercept, and the time-point was nested inside the
patient ID. Because six registration packages were tested, the
differences between all possible combinations of packages were
tested with Tukey’s honestly significant difference test. A p-value
less than 0.05 was considered significant.

RESULTS

Patient Characteristics
Of the lower-grade glioma patients 12 had astrocytoma
WHO grade II, four oligodendroglioma WHO grade II, three
oligoastrocytoma WHO grade II, and one anaplastic astrocytoma
WHO grade III (Louis et al., 2007). Of the 20 glioblastoma
patients, 10 were female; median age was 65.7 years (IQR 52.1–
71.1 years); and 8 patients had a tumor in the left hemisphere.
Median and interquartile range for pre-operative tumor volume

was 29.6 mL (IQR 10.3–55.3 mL), and for post-operative 0.8 mL
(IQR 0.3–3.5 mL). Of the 20 lower-grade glioma patients, 8
were female; median age was 36.7 years (IQR 28.9–45.7); and
9 patients had a tumor in the left hemisphere. Median and
interquartile range for pre-operative tumor volume was 55.2 mL
(IQR 33.8–72.1 mL), and for post-operative 10.1 mL (IQR 5.5–
16.9 mL).

Rater Consistency
For glioblastoma and lower-grade glioma 73 and 87% of the
voxels defined as post-operative target volume in ICBM2009a
space were within 3 mm of the pre-operative target volume,
respectively. The mean Dice score, the modified Hausdorff
distance, and GCI for the intra-rater agreement of the delineation
in the ICBM2009a space was 0.87, 1.27, and 0.77 mm for
the pre-operative and 0.48, 2.21, and 0.32 mm for the post-
operative enhancing gliomas; 0.87, 1.04, and 0.76 mm for the
pre-operative and 0.67, 1.21, and 0.51 mm for the post-operative
non-enhancing gliomas.

Comparison of Accuracy Between
Glioblastoma and Lower-Grade Glioma
Examples of typical tumor registration accuracy are shown in
Figure 4.

Summarizing the results from all registration packages, the
median Dice scores at pre- and post-operative time-points were
0.4 and 0.0 for glioblastoma, and 0.7 and 0.3 for lower-grade
glioma. The median Hausdorff distances at pre- and post-
operative time-points were 5.7 and 5.8 mm for glioblastoma, and
3.8 and 4.5 mm for lower-grade glioma. The median landmark
distance at pre- and post-operative time-points was 7.5 and
6.7 mm for glioblastoma, and 6.7 and 6.4 mm for lower-grade
glioma. All accuracy scores are shown in Figure 5.

Compared with glioblastoma, lower-grade glioma had higher
Dice scores (estimated coefficient: 0.21, 95% CI: 0.14–0.28,
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FIGURE 4 | Typical tumor registration examples for (A) glioblastoma and (B) lower-grade glioma. Axial slices with delineated pre- and post-operative tumor are
shown in patient space (left), ICBM2009a space (middle) and after non-linear transformation by the DARTEL registration package (right). (A) A 66-year-old female
with a 46.4 mL preoperative tumor and 3.8 mL postoperative tumor. Dice scores are 0.67 for preoperative tumor and 0.43 for postoperative tumor, and modified
Hausdorff distances are 4.1 and 2.5 mm, respectively. (B) A 34-year old male with a 25 mL preoperative tumor and 12 mL postoperative tumor. Dice scores are 0.62
for pre-operative tumor and 0.55 for postoperative tumor, and modified Hausdorff distances are 4.5 and 4.2 mm, respectively.

p < 0.001), lower Hausdorff distance [estimated coefficient
−1.7 mm, 95% CI: (−3.3 mm–0 mm, p = 0.045) and lower
mean landmark distance (estimated coefficient−1.2 mm, 95% CI
−2.1 mm –−0.38 mm p = 0.006)].

Comparison Between Pre- and
Post-operative MRI Time-Points
Compared with post-operative MRI timing, pre-operative timing
had higher Dice scores (estimated coefficient 0.32, 95% CI 0.26–
0.39, p < 0.001), no difference in Hausdorff distance (estimated
coefficient −1.3 mm, 95% CI −2.–0.1 mm, p = 0.060), and
no difference in mean landmark distance (estimated coefficient
0.4 mm, 95% CI−0.3–1.2 mm, p = 0.259).

Effect of Registration Software Packages
For registation accuracy differences between registration
packages measured in Dice score SPM5, DARTEL, and NiftyReg
did not show significant differences when compared to each
other, and SPM5 and DARTEL had statistically significant
higher accuracy than FSL, ANTs, and Elastix. For all significant
differences the estimated coefficients were ≤0.04.

When measured with Hausdorff distance ANTs, SPM5,
DARTEL, and NiftyReg did not show differences when compared
to each other and SPM5 and DARTEL had statistically significant

higher accuracy than FSL and Elastix. For all significant
differences estimated coefficients were ≤−0.78 mm.

The registation accuracy differences between registration
packages measured in landmarks for SPM5, DARTEL, and
NiftyReg did not show differences when compared to each
other, and had statistically significant higher accuracy than FSL,
ANTs, and Elastix. For all significant differences the estimated
coefficients were ≤−0.85 mm.

Comparison of Accuracy Between Linear
and Non-linear Transformation
Differences between non-linear and linear registration are shown
in Figure 6. Non-linear registration had lower Dice scores (effect-
size −0.02, 95% CI −0.03 − −0.01 p < 0.001), no difference
in Hausdorff distance (estimated coefficient 0.2 mm, 95% CI 0–
0.4, p = 0.122), and lower mean landmark distance (estimated
coefficient −1.1 mm, 95% CI −1.2 − −1.0, p = <0.001) than
linear registration.

Excluding the tumor from the cost-function of the non-
linear registration for FSL, ANTs, Elastix, and NiftyReg had
some influence on the location and shape of the registered
tumor by all registration packages, most strongly present for
FSL (Supplementary Figure S1). No difference was observed
in accuracy results for non-linear registration with either
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FIGURE 5 | Accuracy of the six packages for both linear and non-linear registration of the pre- and post-operative time-points. Left column shows accuracy for
glioblastoma, and the right column for lower-grade glioma. For Dice score higher values indicate better accuracy, for Hausdorff and mean landmark distances
smaller values indicate better accuracy. The dashed line indicates the average intra-rater agreement as reported previously (Chollet et al., 2014), multiplied by two to
account for error in placement in both patient and ICBM2009a space. Each dot is a data point for an accuracy measure for a single patient. Dot transparency is
controlled by the volume of the tumor connected to that data point divided by the maximum tumor volume in that distribution (more transparent is smaller relative
volume). The whiskers extend to the most extreme data points not considered outliers, outliers are plotted individually using the ‘+’ symbol, boxes show the
interquartile range, and the contained red line shows the median of each respective distribution.

including or excluding the tumor from the cost-function
(Supplementary Figure S2).

DISCUSSION

The results of this study showed that registrations with non-linear
transformations were more accurate for general brain alignment,
but similar to linear transformation for tumor alignment.
Furthermore, registrations of lower-grade glioma were more
accurate than those of glioblastoma, but registrations of pre- and
post-operative MRI were similar in accuracy. SPM5 and DARTEL
were slightly more accurate and FSL was slightly less accurate
than the other registration packages. The manually created target
volume estimates were shown to be consistent in regard to
localization of pre- and post-operative tumor.

Compression of the mass effect in glioblastoma proved
particularly challenging (Figure 1), which might explain why

lower-grade glioma registered with higher accuracy, as these
tumors typically have more infiltrative than expansive growth.
Dice scores were reasonable for pre-operative glioblastoma
registrations, and good for lower-grade glioma. Dice scores were
poor for postoperative registration of both glioblastoma and
lower-grade glioma. This was most likely a volume effect in
the sense that the Dice score is more sensitive to misalignment
of small volumes, since Hausdorff distances were comparable
to those of pre-operative registration results (Figure 5). Upon
visual inspection of the non-linear registrations, these were
considered to provide a reasonable representation of the
normal brain structures distant from the tumor without gross
deformation. The accuracy of the tumor registrations depended
on the tumor volume and extent of mass effect, which is
unsurprising since regions in the patient images without analog
in the reference space can – by definition – not be aligned
correctly. Another source of visual registration imprecision
was ventricular enlargement, which was observed in a few
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cases. Furthermore, unlike the source images used to create
the ICBM2009a atlas, the patient images in this study were
acquired after gadolinium administration, which sometimes
resulted in erroneous alignment of the superior sagittal sinus with
(sub)cutaneous structures at the vertex.

Although SPM5 and DARTEL often outperformed the other
methods, the estimated coefficients were small. When compared
to FSL the estimated coefficient was largest, and FSL was
also outperformed by the other packages by a smaller margin.
Therefore, these results do not indicate a preference for any of
the registration packages.

An important observation here is that non-linear
transformation did not improve the accuracy of tumor alignment
compared to linear transformation (Figure 6). These findings
indicate that non-linear transformation is not required for
summaries of patient populations in probability maps of tumor
segmentations. Additional advantages of omitting this step
would be a reduction of processing time and avoidance of
registration instability in the sense that non-linear registration is
more sensitive to parameters settings and variation in input.

Lesion overlap scores for lower-grade glioma described in this
study are comparable to those reported in Ou et al. (2014), who
also studied ANTs and FSL. The lesion was defined as the union
of the cavity and recurrent tumor. They used a similar approach,
but unfortunately did not specify the tumor type and specific
landmarks used. Landmark distances observed in this study are
slightly higher for ANTs (∼1 mm), and lower for FSL (∼2 mm)
than those reported in Ou et al. (2014), which could be a result
of different landmarks used, possible difference in pathology,
and difference in time-point of treatment. A similarity between
our findings is that we also found lower median Hausdorff
distances than median landmark distances, which is counter-
intuitive. The largest landmark registration errors in this study
arose from registering the frontal poles of the brain and the
posterior horns of the lateral ventricles, which could be explained
by possibly larger inherent differences between individuals for
these structures.

Often lesions are excluded from the registration process
through cost function masking to improve alignment (Brett et al.,
2001), which requires the creation of lesion masks in patient space

FIGURE 6 | Differences between linear and non-linear registration accuracy (non-linear minus linear). Left column shows differences in accuracy for glioblastoma,
and the right column for lower-grade glioma. For Dice score positive difference values indicate better non-linear performance, for Hausdorff and mean landmark
distance negative difference values indicate better non-linear performance. Each dot is a data point for an accuracy measure for a single patient. Dot transparency is
controlled by the volume of the tumor connected to that data point divided by the maximum tumor volume in that distribution (more transparent is smaller relative
volume). The whiskers extend to the most extreme data points not considered outliers, outliers are plotted individually using the ‘+’ symbol, boxes show the
interquartile range, and the contained red line shows the median of each respective distribution.
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prior to registration. To justify including the tumor in the brain
mask an analysis was performed for non-linear transformations
that either excluded or included the tumor in the brain mask.
Excluding the tumor from the registration cost function did not
improve tumor overlap, nor did it improve landmark alignment.
An alternative to lesion masking for improving registration
performance is to perform lesion filling (Popescu et al., 2014)
prior to registration.

The image data we collected was of a clinical nature,
and therefore had some variety in scanner models and field
strength. Previous work showed that variation in scanners
and acquisition parameters leads to volumetric variation in
segmentations, although registration based methods were less
susceptible to these differences by correcting for differences in
image geometry (Takao et al., 2011; Durand-Dubief et al., 2012).
The MRI acquisition differences in this study did not appear to
influence the landmark position or the tumor registration, and
no systematic differences in registration accuracy were observed
due to either the scanner model, or the field strength.

Recommended imaging practice for glioma patients is to
obtain a T1c (Thust et al., 2018), which is often the highest
resolution scan, making this the preferable scan for registration.
However, T1c images are different from the T1-weighted
ICBM2009a template, which does not contain contrast enhanced
elements such as the blood vessels. This difference between
the T1c and the ICBM2009a template adds to the challenge
of successful registration of a patient scan to ICBM2009a
space. Differences between patient anatomy and the ICBM2009a
template may further complicate the subject-to-atlas registration.
Obtaining deformation statistics of anatomical variability, and
incorporating this into the registration, could be beneficial to the
registration (Commowick et al., 2005).

Another challenge is the inherent difference between an image
of a brain with diffuse glioma and anatomical reference space,
which is often created from healthy individuals. A method for
dealing with the lack correspondence between patient image and
anatomical reference space is to perform tumor seeding in the
anatomical reference space. This will create a simulated tumor
in the anatomical reference space, making it more similar to the
patient image with tumor (Dawant et al., 2002; Mohamed et al.,
2006; Prastawa et al., 2009). However, the applicability of such
methods depends on how well the tumor growth model mimics
the actual tumor, and the required manual input that must be
provided. Furthermore, the implementations of the individual
tumor simulations require specific data input and are therefore
not easily generalizable.

Registration accuracy might also be improved by using
additional information from multiple MRI sequences or image
derived information such as the image gradient. This might
address, for example, the ventricular enlargement often seen
in glioblastoma patients. Access to different similarity metrics
for the different components or phases of the registration
could also increase accuracy by allowing the user to fine-
tune the registration on a step-wise basis. Furthermore, the
registration accuracy can be affected by the performance of the
pre-processing steps. Differences due to noise removal and bias
correction are expected to be minimal between different methods.
However, other pre-processing methods such as skull-stripping

and identifying tissue probabilities can yield larger differences
between methods and thereby have a more profound effect when
used for subsequent registration schemes.

Rater consistency of segmentations in the ICMB2009a space
was evaluated on a small sub-sample. It showed good agreement
pre-operatively in both enhancing and non-enhancing tumors.
GCI was comparable to inter-rater GCI of segmentations done
by experts in patient space (Visser et al., 2019). Post-operatively,
the overlap was much lower due to small tumor size, especially
in enhancing tumors, and thus creating a skewed perception of
reproducibility. Our earlier inter-rater study showed similar low
rates of GCI in these settings (Visser et al., 2019). Moreover,
modified Hausdorff distance was rather low showing good intra-
rater consistency despite low GCI and Dice scores of these small
ROIs. Overall, Dice scores were much higher for intra-rater
consistency than when comparing the manual and automatic
segmentations, and the modified Hausdorff distance was several
times lower. That and the fact that we have compared the
registration methods on a relative scale with the same ground-
truth lead us to the conclusion that the quality of segmentations
in the ICMB2009a space did not have a negative impact on
the results.

Defining a framework for registration success is a complex
task, due to the lack of a ground truth. Extensive manual
annotations provide the most rigorous framework (Rohlfing,
2012), but come at the cost of manual labor. Overlap or
distance measures alone do not provide a comprehensive
registration comparison, especially when high-degrees-
of-freedom algorithms are used. Therefore, we used the
combination of Dice overlap, Hausdorff distance, and landmark
distance to quantify our registration results. Labeling and
using specific tumor regions might offer an even more detailed
evaluation of the registration. However, this would require
more complex manual labeling of the tumor structure and
is out of the scope of the current work. Furthermore, our
approach is intrinsically different than approaches that involve
registrations with the ultimate aim of tumor segmentation such
as Prastawa et al. (2004); Stefanescu et al. (2004), and Parisot
et al. (2012), where performance can be tested with only a tumor
segmentation in patient space. Agreement between raters for
tumor segmentations in patient space was determined in Visser
et al. (2019), but the rater agreement for the estimated target
volume creation in ICBM2009a space is unknown. In this study
a single rater created all target volume estimates, for which we
showed that the rater was quite consistent in the creation of
pre- and post-operative target volumes in ICBM2009a space.
Perhaps using segmentations of multiple raters might yield more
generalizable results, although this would significantly increase
the workload of the study.

Accurate normalization to anatomical reference space is not
only relevant to the study of glioma, but also to fMRI studies,
and the study of other pathologies such as stroke which faces
similar challenges in registration as glioma (Crinion et al., 2007).
To incorporate registration uncertainty into summary maps
of a glioma patient population, the Hausdorff accuracy results
reported here can be used as an indication of the amount of
regularization needed. The uncertainty in registration accuracy
found here is not trivial since median Hausdorff distances range
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between 3.8 and 5.8 mm. The smoothing of small tumor objects,
particularly surgical residue, will increase the required amount of
data to perform reliable statistics.

CONCLUSION

Linear transformation suffices to summarize glioma locations
in anatomical reference space. The obtained summary maps
should be regularized to account for a registration uncertainty
of 3.8–5.8 mm. Registration is more accurate for lower-grade
glioma than for glioblastoma. Pre- and post-operative MR
scans were similarly accurate. No single registration software
package stands out.
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