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A B S T R A C T

Deep brain stimulation (DBS) can be a very efficient treatment option for movement disorders and psychiatric
diseases. To better understand DBS mechanisms, brain activity can be recorded using magnetoencephalography
(MEG) with the stimulator turned on. However, DBS produces large artefacts compromising MEG data quality due
to both the applied current and the movement of wires connecting the stimulator with the electrode. To filter out
these artefacts, several methods to suppress the DBS artefact have been proposed in the literature. A comparative
study evaluating each method’s effectiveness, however, is missing so far.

In this study, we evaluate the performance of four artefact rejection methods on MEG data from phantom
recordings with DBS acquired with an Elekta Neuromag and a CTF system: (i) Hampel-filter, (ii) spectral signal
space projection (S3P), (iii) independent component analysis with mutual information (ICA-MI), and (iv) tem-
poral signal space separation (tSSS). In the sensor space, the largest increase in signal-to-noise (SNR) ratio was
achieved by ICA-MI, while the best correspondence in terms of source activations was obtained by tSSS. LCMV
beamforming alone was not sufficient to suppress the DBS-induced artefacts.
1. Introduction

Deep Brain Stimulation (DBS) is an invasive treatment option for
neurological and psychiatric disorders (Wichmann and DeLong, 2006),
which can improve the patient’s quality of life substantially. Despite its
clinically established use for movement disorders in particular (Lozano
and Lipsman, 2013), its underlying mechanisms still remain elusive
(Harmsen et al., 2018; Udupa and Chen, 2015). To better understand the
mechanisms of DBS, magnetoencephalography (MEG) is potentially a
powerful tool due to its high temporal and relatively good spatial reso-
lution (Harmsen et al., 2018). MEG is a noninvasive and passive tech-
nique which does not pose any risk to subjects but is highly susceptible to
interference of magnetic fields caused by DBS. Employing MEG in com-
bination with DBS therefore requires suitable cleaning algorithms to
remove DBS artefacts.

There are two types of artefact with different characteristics that need
to be removed when recording patients with a DBS system implanted in
the MEG. The first type of artefact produced by DBS systems is directly
due to the stimulation with electric pulses. Electrical stimulation used for
clinically-effective DBS consists of narrow pulses (60 μs - 200 μs)
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delivered at frequencies larger than 70 Hz to targeted brain areas (Lio
et al., 2018). DBS pulses are square waves and therefore have infinite odd
harmonics of the fundamental frequency (Oppenheim et al., 1997).
Consequently, to completely digitize the stimulation pulses requires an
infinite sampling rate. In practice, actual MEG systems sample at a few
kHz at most, which - in combination with the aforementioned DBS
characteristics - results in missed or under-sampled DBS pulses (Lio et al.,
2018). Inconsistently sampled DBS pulses in turn give rise to peaks all
over the frequency spectrum (Jech et al., 2006; Sun et al., 2014), which
can also not be taken care of by the hardware low-pass filter.

The second type of artefacts is induced by movement of the hardware
of the DBS system, i.e. the extension wires, connectors placed on the
skull, and the DBS generator itself. Ferromagnetic percutaneous wires
and connectors, which move due to arterial pulsation, can create strong
artefacts in multiple overlying channels (Litvak et al., 2010). Accord-
ingly, MEG recordings of DBS-implanted patients have the strongest ar-
tefacts on channels closest to the wires and connector (Airaksinen et al.,
2011). Consequently, the combination of these different types of
DBS-related artefacts is complex and they cannot be easily eliminated
using conventional filters.
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Methods to remove the DBS-related artefact exploit either spatial
(Airaksinen et al., 2012; Boring et al., 2019; Hirschmann et al., 2013;
Taulu and Simola, 2006) or spectral information (Allen et al., 2010;
Dagar et al., 2018; Lio et al., 2018; Ramírez et al., 2011) of the recording.
More recently, a new method based on temporal decomposition of the
MEG sensor data produced promising results (ICA-MI (Abbasi et al.,
2018, 2016)). However, a systematic evaluation and comparison of the
respective methods’ ability to remove the DBS artefact from the data is
still lacking.

In the present study we employ MEG phantom recordings with DBS to
fill this gap. This approach yields the unique opportunity to investigate
the effects of DBS artefacts onMEG data by comparing results to a ground
truth. We recorded MEG data once with an Elekta Neuromag system and
once with a CTF system from phantoms with physiological activity
mirrored by a dipolar source oscillating at 12 Hz and a DBS stimulation
setup that used movement mimicking the pulsation. An ideal cleaning
algorithm would remove all DBS-related artefacts while preserving the
dipole activity. With this goal in mind, we included four artefact rejection
methods which are applied at the sensor level: (i) Hampel-filter (Allen,
2009), (ii) spectral signal space projection (S3P) (Ramírez et al., 2011),
(iii) independent component analysis with mutual information (ICA-MI)
(Abbasi et al., 2016), and (iv) temporal signal space separation (tSSS)
(Taulu and Simola, 2006). These methods were systematically evaluated
at both sensor and source level. We restrict our analysis to sensor
level-based DBS artefact rejection methods as the goal is to obtain
artefact-free sensor level data that is amenable to a wide range of sub-
sequent analysis techniques. For this reason, our analysis does not
include approaches that can only remove artefacts at the predefined DBS
stimulation frequency and its harmonics but not e.g. movement artefacts.

2. Materials and methods

2.1. Data acquisition

To evaluate the effectiveness of different artefact rejection methods,
we recorded from DBS phantoms with two major MEG systems: a 275-
Channel VSM/CTF and a 306 Channel Elekta Neuromag (Vectorview)
MEG system. All data are available at https://openneuro.org/datasets/ds
002885.

2.1.1. CTF recordings
For the present study, 273 of the 275 channels could be recorded. The

experimental setup was similar to the one described in Oswal et al.
(2016): Within the phantom, a dipole and a DBS electrode were placed.
Additionally, a reference electrode was inside the phantom to record the
electrical activity. An inflatable, non-magnetic tube was placed under the
phantom to mimic arterial pulsations. An in-house pneumatic controller,
which was placed outside the shielded room, inflated the tube every 2.5 s
for ~40 ms. The deflation lasted between 500 and 1000 ms, causing the
phantom to move ~3 mm vertically. We used a Medtronic (Medtronic
Neurological Division, Minneapolis, MN) external stimulator (type 3628)
to administer DBS through a Medtronic DBS electrode (model 3389).
Abbott DBS wires (Abbott Laboratories, Abbott Park, Illinois) were taped
to the phantom to make the measurements as realistic as possible. DBS
stimulation parameters mimicked clinically relevant settings for Parkin-
son’s patients (Groiss et al., 2009): 130 Hz in bipolar mode with 140 μs
pulse width and 3.1 V amplitude. The recordings were made with an
electric dipole oscillating at 12 Hz. The power of the dipole was adjusted
to achieve a ratio of DBS peak power to dipole peak power that is similar
to the ratio of DBS peak to alpha peak power in a patient recording with
similar DBS stimulation settings (~1.75 in logarithmic power scale). The
sampling rate for the MEG data was 19.2 kHz in order to reduce aliasing
effects.

To identify the noise patterns introduced by DBS, the attached
wires, and the movement of the phantom, we performed separate
2

measurements of 4 min length. The first measurement (termed DMW)
was with the dipole turned on, tube movement and the wires attached.
This type of recording mimics a patient recording with the DBS stim-
ulator implanted, but not yet turned on. The second combination,
termed DSMW (Dipole, Stimulation, Movement, Wires), mimics a pa-
tient recording with DBS turned on. It included the dipole activity and
all of the described noise sources. To evaluate the cleaning effectiveness
of the different algorithms, we also recorded the phantom with only the
dipole turned on, while all artefact sources were turned off. This
recording serves as our reference recording, termed Reference in the
following. In an ideal scenario, the noise-contaminated recording
should be the same after cleaning as the reference recording. Finally, in
order to capture sensor and environmental noise, we recorded empty
room data.

2.1.2. Elekta Neuromag recordings
For the Elekta Neuromag recordings, we utilized a pneumatic

movement mechanism which applied a repeated, regular motion to the
DBS phantom as in CTF recordings. The movement mechanism basically
consisted of a nylon-covered box which acted as a diaphragm when air
was pumped inside. The phantom was placed on top of the box and air
was pumped inside the box every 2.5 s for ~40 ms. Total displacement of
the phantom was ~3 mm. We used a magnetic dipole oscillating at 12 Hz
to mimic the brain activity and an Abbot St. Jude’s DBS system (Abbott
Laboratories, Abbott Park, Illinois) was employed to administer DBS. In
order to obtain a similar dipole power/DBS power ratio as for the CTF
recordings, we set the parameters of the DBS system to 5 mA current and
60 μs pulse length. Although DBS frequency was set to 130 Hz, frequency
analysis revealed the peak at 127.75 Hz. We performed three measure-
ments of 2 min each: DSMW condition, reference, and empty room. The
sampling rate for the MEG data was 3000 Hz.

2.2. Signal processing

All analyses were done in MATLAB (R2017a, The Mathworks Inc.,
Natick, MA) using Brainstorm (Tadel et al., 2011). Fieldtrip (Oostenveld
et al., 2011) and SPM12 (Litvak et al., 2011) were also utilized as
auxiliary toolboxes for ICA-MI and tSSS implementations, respectively.
The customized Matlab code is available at https://gitlab.com/lka
ndemir/dbs-artefact-rejection. In both MEG systems, prior to any anal-
ysis, we used device-specific noise suppression techniques. For CTF data,
the 3rd order gradient compensation was applied to reduce magnetic
disturbances originating from outside the MEG helmet. For Elekta Neu-
romag data, we applied the system’s predefined SSPs to suppress mag-
netic interference originating from outside the MEG chamber. In both
systems, notch filter with default settings of Brainstorm was used to
attenuate power line noise at 50 Hz and its harmonics (up to 300 Hz in
CTF and 500 Hz in Elekta Neuromag recordings). As DBS artefact
removal was the main aim of the present study, band-pass or low-pass
filtering was not considered. To reduce the computational cost for the
CTF data, the data were down-sampled from 19.2 kHz to a sampling
frequency of 2400 Hz. This is also a commonly used sampling rate in
MEG studies (Florin and Baillet, 2015; Hirschmann et al., 2020; Oswal
et al., 2016). Down-sampling was not necessary for Elekta Neuromag
data, because it was sampled with only 3000 Hz at acquisition. All re-
cordings were visually inspected to detect and reject artefactual segments
caused by SQUID jumps or transient effects of the notch filter. For
comparability, we removed the same time segments for all recordings
within each data set. This resulted in a total data length of 216 out of 240
s for CTF and 117 out of 120 s for Elekta Neuromag recordings. Similarly,
the frequency spectra were visually inspected to detect channels which
were flat or showed substantially higher or lower noise levels than the
average channels. None of the channels of the CTF recordings had to be
excluded. However, 13 channels had to be excluded from Elekta Neu-
romag recordings.

https://openneuro.org/datasets/ds002885
https://openneuro.org/datasets/ds002885
https://gitlab.com/lkandemir/dbs-artefact-rejection
https://gitlab.com/lkandemir/dbs-artefact-rejection
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2.3. DBS artefact rejection methods

2.3.1. Hampel filter
The Hampel filter aims to reject narrow frequency peaks caused by

DBS (Allen, 2009). Narrow frequency peaks are considered outliers from
the frequency domain perspective. Sensor data was transformed to fre-
quency domain using the Fast Fourier Transform (FFT). Then a so-called
Hampel identifier was used on sliding windows of frequency-domain
sensor data to detect such outliers both in the real and imaginary part
of the frequency spectrum. Detected outliers are replaced with the me-
dian of the current window. The spectra filtered this way are transformed
back to the time domain via inverse FFT (IFFT). FFT and IFFT operations
were applied without windowing with default parameters in MATLAB.
The sensitivity of the Hampel identifier is fine-tuned by changing the
threshold parameter C, which determines the number of standard de-
viations the spectrum needs to be above the median of the spectrum
within a frequency window to be classified as an outlier. Higher values
indicate a lower sensitivity.

The size of the sliding window is chosen based on the width of the
artefact, which was 0.2 Hz for the DBS peak. In order to achieve sufficient
artefact suppression, at least twice the size of the artefact should be used.
Overall, a larger window size increases the computational costs. Thus, we
evaluated window sizes of 0.5 Hz, 6 Hz, and 10 Hz respectively (see
Supplementary Fig. 1) for the CTF recordings. 6 and 10 Hz windows led
to better results than a 0.5 Hz window, but results did not differ between
the 6 and 10 Hz window. Therefore, a 6 Hz window was used for the
further analysis. Previous EEG studies suggest a threshold parameter C
~5 (Allen, 2009; Davies and Gather, 1993), while in an EEG study the
DBS-related artefacts were removed with C¼ 6 (Allen et al., 2010). In the
present study, we varied the threshold parameter C between 1 and 8 to
evaluate the outcome depending on C.

2.3.2. Spectral signal space projection algorithm (S3P)
S3P spatially projects the traces of the artefact out of the spectrum

(Ramírez et al., 2011). In order to achieve this, cross-spectrum-density
(CSD) matrices of sensors at each frequency are obtained from
time-frequency (TF) decomposed MEG recordings. The choice of window
length for S3P should depend on the frequency width of the artefact. If a
frequency resolution lower than the actual width of the artefact is chosen,
unnecessary suppression in adjacent frequencies would be observed. This
is due to the fact that the CSD in each frequency bin is evaluated indi-
vidually. DBS artefacts are usually narrow peaks of 0.2 Hz width, sug-
gesting that the choice of a 0.25 Hz frequency resolution adopted in the
present study is adequate. Therefore, also following the original paper of
Ramírez et al. (2011), we Fourier transformed 4 s windowed sensor data
with 50% overlap using a Kaiser window.

For each CSD matrix, the eigenvectors were obtained. In a second
step, at every frequency f, frequency-specific spatial projectors P(f) were
calculated based on a predefined number k(f) > 0 of eigenvectors:

Pðf Þ¼ I � Ukðf ÞUkðf Þ
H :

Ukðf Þ is a matrix containing the first k frequency-specific eigenvectors that
span the noise subspace at frequency f. I denotes the identity matrix and
H the Hermitian transpose.

These spatial projectors were then multiplied with TF data at each
frequency. Finally, the cleaned data are obtained by taking the inverse
Fourier transform of this TF data. Importantly, the spatial projector P(f)
should be calculated from data segments in which the artefact to be
removed is strong. This can be problematic for DBS artefact rejection
because signals are always mixed with intrinsic brain activity. In the
original paper it was proposed that frequency bands containing artefacts
should be defined and the S3P algorithm should be applied only on those
bands. However, this can be impractical because DBS artefacts are usu-
ally evident across the entire frequency spectrum, including physiologi-
cally relevant frequencies (Lio et al., 2018). In order to give the algorithm
3

a fair chance of removing all artefacts in our controlled setting we applied
S3P once to the DBS frequencies only and once to the complete spectrum
(denoted wide band (WB) subsequently). We varied the number of ei-
genvectors between 1 and 9 to obtain the best-performing algorithm
setting. This is also the range evaluated within the original paper
(Ramírez et al., 2011).

2.3.3. ICA-MI
ICA-MI exploits independent component analysis (ICA; Comon

(1994)) in order to decompose the MEG recording into its components
(Abbasi et al., 2016). The components of the artefact are later distin-
guished from the intrinsic activity by calculatingmutual information (MI;
Hudson, 2006) between the independent components and a simulta-
neous reference signal of the DBS. In actual patient measurements, such a
reference signal is acquired using surface electrodes placed on the
implanted stimulator or the extension wires and should mainly contain
information about artefacts like the stimulation signal, movement, and
cardio-ballistic impulses. In order to obtain the reference signal of the
DBS artefact in CTF recordings, we recorded from the reference electrode
inside the phantom. In case of Elekta Neuromag recordings, we used the
MEG channel showing the largest peak at the DBS frequency as a refer-
ence signal (MEG 2413). We then applied a notch filter at 12 Hz to the
reference signal, yielding an actual reference signal without dipole ac-
tivity. For the removal of potential artefactual ICs a threshold is selected
based on the mutual information (MI) between ICs and the reference
signal. The idea is that ICs sharing a lot of information with the reference
signal are likely representing the artefact in the MEG recording.
Non-rejected ICs are transferred back to the sensor level to obtain
artefact-free recordings. The crucial part of ICA-MI is to select an
appropriate threshold for IC removal. The literature proposes to select
the threshold based on visual inspection because no objective criterion
has yet been developed. However, this may not be operational as it re-
quires a lot of user experience. In order to evaluate the effect of the
threshold, we evaluated a range of 5%–40%, covering also the range
reported in previous studies (Abbasi et al., 2018, 2016).

ICA decomposition was achieved using the extended Infomax algo-
rithm (Bell and Sejnowski, 1995). For the recordings of both MEG sys-
tems, the initial full ICA did not converge due to rank deficiency caused
by the low number of signal sources compared to the high number of
MEG channels. Therefore, before ICA, the data was reduced to ~75% of
its first principal components. PCA reduction yielded 200 principal
components for CTF recordings (99.9% of data variance explained) and
216 principal components (71 magnetometers - 99.9% data variance
explained, 145 gradiometers – 98.3% data variance explained) for Elekta
Neuromag recordings.

2.3.4. Temporal signal space separation (tSSS)
tSSS (Taulu and Simola, 2006) is an extension of signal space sepa-

ration (SSS; Taulu and Kajola, 2005) whereby the data are segmented
temporally and each segment is analyzed separately. The length of the
data segments has to be specified by the user. For each segment the
sensor data are separated into three parts using the geometrical infor-
mation of the sensor array and Maxwell equations: an internal part cor-
responding to source locations inside the sensor array, an external part
corresponding to sources outside the MEG helmet, and an intermediate
part lying in between. The intermediate part should be free of magnetic
sources. But that would not be the case if there is a very strong source
whose activity leaks either from the internal or the external part to the
intermediate part (Taulu and Hari, 2009). Such a source would be
considered noise. tSSS now assumes that intrinsic brain activity is un-
correlated with artefacts. Therefore, any temporal correlation between
the intermediate and internal parts needs to occur as a result of noise
mixture and is detectable by a subspace intersection method (Golub and
Van Loan, 1996). Signals showing higher correlation values between
intermediate and internal parts than a pre-defined correlation limit (CL)
are projected out of the internal parts.
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tSSS was first developed for Elekta Neuromag MEG systems and
delivered to end users embedded in a noise suppression software named
MaxFilter. For CTF system, however, a MATLAB implementation was also
adapted by Samu Taulu and made available by MEGIN Oy (Helsinki,
Finland) as a toolbox for SPM12. In order to process CTF data, we used
the MATLAB implementation with default parameters for the decompo-
sition of sensor data: spherical harmonics of order 8 and 3 for the inner
and outer component, respectively. The segment length was chosen to be
10 s without overlap. In case of Elekta Neuromag, we used the MaxFilter
software with the same settings. In accordance with Medvedovsky et al.
(2009), the correlation limit (CL) was varied between 0.95–0.60.
2.4. Evaluation of the results

We evaluated the results both at the sensor and source level in the
frequency domain. The power spectrum was calculated in Brainstorm
with 4 s Hamming windows and 50% overlap using Welch’s method
(Welch, 1967).

2.4.1. Sensor level comparison
To determine the effectiveness of the four different cleaning algo-

rithms we calculated the root mean squared error (RMSE) of the loga-
rithmic power between the reference recording and the cleaned version
of the DSMW recording over the various channels. This measures how far
the resulting cleaned sensor-level data on average deviates from the
ground truth (under a quadratic loss function). We compute the RMSE
separately for the average power in three different frequency ranges: the
dipole frequency (11.5–12.5 Hz), the DBS frequency (peak � 1Hz; peak
CTF: 130.5 Hz, peak Elekta Neuromag: 127.75 Hz), and in the low-
frequency movement-related range (1–15 Hz, excluding 11.5–12.5 Hz).
Formally:

RMSE ðbandÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

�
πDSMWcleaned
i ðbandÞ � πref

i ðbandÞ
πref
i ðbandÞ

�2
vuut

Where N denotes the number of artefact-free channels (273 in CTF, 293
in Elekta Neuromag recordings), π(band) denotes the averaged log power
in the respective frequency band2{[1–11.5 12.5–15], [11.5–12.5],
[129.5–131.5] for CTF and [126.75–128.75] for Elekta Neuromag} and
the superscripts ref and DSMWcleaned denote the reference condition and
the cleaned DSMW condition, respectively.

2.4.2. Source level comparison
A forward model for the phantom was created using available func-

tions in Brainstorm. The source space was defined with a 5 mm spaced
grid inside the phantom model leading to 10,039 voxels for the CTF
phantom and 16,430 for the Elekta Neuromag phantom. The lead field
for CTF was calculated using the overlapping spheres method (Huang
et al., 1999) in Brainstorm. A forwardmodel for magnetic dipoles was not
available in Brainstorm. Therefore, for Elekta Neuromag recordings, we
used a single-shell realistic head model (Nolte, 2003) in Fieldtrip. We
used Linearly Constrained Minimum Variance (LCMV) beamforming
with default settings in Brainstorm to obtain source time series (Van Veen
et al., 1997). The data covariance matrix was obtained from the sensor
data of each recording as well as the cleaned data separately and regu-
larized by replacing its smaller eigenvalues with the median value
through available Brainstorm functions. We used the empty room
recording to calculate the noise covariance matrix.

We evaluated the active sources of the reference recording and
compared them to those of DSMW and cleaned recordings at 12 Hz.
Active sources for each dataset were determined using a threshold value
based on bootstrapping (Efron, 1979). Bootstrapping was applied on the
windowed power estimates used previously to calculate Welch’s power
spectrum. We averaged randomly chosen windows (104 in CTF, 54 in
Elekta Neuromag recordings) with replacement for each source,
4

excluding the sources which were active in the reference recording. This
process was repeated 1000 times for each dataset. The 95th percentile of
power values across all source locations and all iterations was defined as
the significance threshold. To determine the spatial overlap between the
reference recording and the (cleaned) DSMW version we used the D
measure (Mesmoudi et al., 2013):

DðReference; DSMWÞ¼Reference \ DSMW
Reference [ DSMW

:

The overlap is calculated across all sources. If there is a perfect spatial
overlap between the Reference and DSMW, D will be 1.

2.4.3. Optimal parameter choice for the different artefact rejection
algorithms

Each artefact rejection algorithm has one parameter that governs the
strength of cleaning. At the sensor level, we selected the optimal
parameter based on the lowest average RMSE across dipole, movement,
and DBS frequencies. In case of source level, starting from the respective
initial values reported above, we increased each parameter as long as
there was still an improvement larger than 0.01 in D.

3. Results

3.1. Sensor level

We first examined the spectral features of the recordings (see Fig. 1).
We separated the spectrum into two parts. In the left panel, we consider
the 0–15 Hz range because a lot of physiologically-relevant brain activity
is found in this low-frequency range that is most affected by movement
and wire artefacts. The right panel focuses on the range of 125–135 Hz.
That range should exhibit a clear DBS artefact while potentially also
containing physiologically relevant signals (Florin and Baillet, 2015;
Ross et al., 2020).

Figs. 2–4 show the root mean squared error (RMSE) between the
reference recording and the cleaned versions of the DSMW after the
artefact-rejection methods have been applied for dipole (11.5–12.5 Hz),
movement (1–15 Hz, excluding 11.5–12.5 Hz), and DBS frequencies
(129.5–131.5 Hz for CTF, 126.75–128.75 Hz for Elekta Neuromag),
respectively. In each figure, the left panel reports the results for the CTF
data and the right panel the results for the Elekta Neuromag recordings.
Each subgraph groups the different parameterizations of the respective
artefact-rejection methods.

Fig. 5 illustrates the effect in the frequency domain for each method
with its best parameter setting.

3.1.1. CTF results
The empty room recording (black dashed line) captures the overall

noise level of the system (see Fig. 1A). The ‘Reference’ condition (red
dotted line), which simply is an empty room recording with the dipole at
12 Hz turned on, showed very similar activity, but with the expected
clear peak at 12 Hz. This reference recording is taken as the ground truth
for all further comparisons. The DMW recording (green line) adds
phantommovement to this as well as an attached wire. This introduced a
clear increase in power below 15 Hz compared to the reference
recording, with the strongest increase below 5 Hz. Finally, the figure
depicts the DSMW recording with all noise sources (DBS stimulator,
movement, and wires) present simultaneously in addition to the dipole
being activated. As expected, the DSMW power spectrum (blue dashed
line) combines the individual effects: wide-band noise in particular
below 5 Hz and a peak at 12 Hz. In addition to the DBS frequency, the
DSMW recording showed peaks at aliased frequencies (Supplementary
Fig. 2).

There are threemain takeaways from the RMSE results. First, focusing
only on the dipole frequency in Fig. 2 (left panel), it becomes apparent
that none of the methods achieved a better RMSE than the DSMW, i.e. the



Fig. 1. Power spectra of the phantom measurements.
A: CTF recordings; B: Elekta Neuromag recordings.
The power spectra of each measurement are averaged
across channels and reported for the range of [0
Hz,15 Hz] in the left panel and for [125Hz, 135 Hz] in
the right panel. Movement and wire add wide-band
noise below 15 Hz and 10 Hz in CTF and Elekta
Neuromag recordings, respectively. DBS stimulation
introduces an artefact around the stimulation fre-
quency of 130 Hz. In an ideal scenario, a cleaning
algorithm would remove both types of artefact while
preserving the dipole activity at 12 Hz, i.e. correspond
to the reference recording.

Fig. 2. RMSE for the dipole frequency
(11.5–12.5 Hz) relative to reference
recording for the different cleaning algo-
rithms. Left panel: CTF recordings; right
panel: Elekta Neuromag recordings. The first
bar represents the RMSE of the uncleaned
DSMW recording compared to the reference
recording. The other bar groups show the
RMSE of the respective artefact cleaning
technique with different parameterizations.
None of the methods improved the results at
dipole frequency (R: Rejection rate, NS: Noise
subspace, C: Constant, CL: Correlation limit;
WB: wide band; BL: baseline corrected).
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DBS artefact rejection methods were unable to improve the signal-to-
noise ratio in this frequency range compared to the untreated data.
Second, when comparing Fig. 2 with Figs. 3 and 4 there is a trade-off for
all methods between preserving the dipole activity and removing most of
both the DBS artefact at 130 Hz and the movement-related artefact.
Removing more of the artefacts typically also involves removing some
signal. Third, the performance of cleaning algorithms was relatively
5

insensitive to the respective parameter settings. Generally, once a certain
level of artefact rejection was reached, stronger settings yielded no
further improvement.

In addition to only applying S3P and a Hampel filter to the DBS
artefact, we also applied S3P and Hampel filter to the whole spectrum.
The rationale is that an application only to the DBS frequency would not
affect the movement-related artefact at all and we wanted to know



Fig. 3. RMSE at movement frequency (1–15 Hz, excluding 11.5–12.5Hz) relative to reference recording for the different cleaning algorithms. Left panel: CTF re-
cordings; right panel: Elekta Neuromag recordings. ICA-MI performed the best in CTF recordings while the lowest RMSE in Elekta Neuromag recordings was achieved
with WB S3P (R: Rejection rate, NS: Noise subspace, C: Constant, CL: Correlation limit; WB: wide band; BL: baseline corrected).
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whether the two techniques could also be used to alleviate this artefact.
Figs. 2 and 3 illustrate the wide-band (WB) versions of Hampel filter and
S3P. As shown in Fig. 3 both filters are indeed able to partially remove
the movement-related artefact. But this comes at the cost of also
removing most of the actual dipole activity (see Fig. 2). Fig. 4 shows that
S3P performs best across methods in removing the artefact at the DBS
frequency.

In terms of overall performance, ICA-MI with a 20% rejection rate had
the lowest average RMSE across all three frequency bands (movement,
dipole, and DBS). When removing the DBS artefact, its performance was
almost on par with the one of S3P, while at the same time removing the
movement-related artefact quite well and simultaneously preserving the
dipole activity. The low RMSE of ICA-MI is also reflected in the power
spectrum (see Fig. 5A). In contrast, tSSS did not provide a satisfactory
removal of the DBS and movement artefact. It only performed well in
preserving the dipole activity. The reason for this is a pronounced up-
ward shift of baseline power levels. This can be clearly seen from the
6

power spectra of the data after artefact removal (Fig. 5A). In order to also
provide results that correct for this baseline shift, we first calculated for
each channel the difference in average logarithmic power between the
cleaned and reference recording from 15 to 125 Hz (excluding the line
noise at 50 and 100 Hz). This value was then subtracted from the cleaned
data on a channel by channel basis. After this correction, the results of
tSSS are more comparable to the other methods (see Fig. 5B). The RMSE
improved for the movement-related artefact removal and the DBS arte-
fact removal, while at the same time increasing for the dipole activity
range.

3.1.2. Elekta Neuromag results
The phantom recording with the Elekta Neuromag system exhibited

properties similar to the CTF system, i.e. movement added low-frequency
components to the reference recording (see Fig. 1B) while the 12 Hz
dipole activity was preserved. Interestingly, no aliased frequencies were
found for the Elekta Neuromag recording (see Supplementary Fig. 3).



Fig. 4. RMSE for DBS frequency relative to reference recording for the different cleaning algorithms. Left panel: CTF recordings with frequency range 129.5–131.5 Hz;
right panel: Elekta Neuromag recordings with frequency range 126.75–128.75 Hz. ICA-MI and the Hampel filter performed well in both MEG systems (R: Rejection
rate, NS: Noise subspace, C: Constant, CL: Correlation limit; WB: wide band; BL: baseline corrected).
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Similar to the CTF cleaning results, none of the methods achieved a
better RMSE than the DSMW at the dipole frequency (see Fig. 2 right
panel). DBS noise suppression for the Elekta Neuromag recordings at DBS
frequency was not as high as for the CTF recordings (see Fig. 4). This
difference is due to the fact that for the Elekta Neuromag system around
50% of the channels were affected by the stimulation artefact, whereas
~95% of channels showed a clear peak at the DBS frequency in CTF
recordings (see Supplementary Fig. 4). Overall, ICA-MI (R ¼ 10) per-
formed better than the other methods in suppressing movement and DBS
artefacts while preserving the dipole. This is also seen in the frequency
spectrum (see Fig. 5C). The performance of the baseline-corrected
version of tSSS was comparable to ICA-MI (see Fig. 5D). As expected,
when applied to the whole spectrum the Hampel filter and S3P sup-
pressed the dipole activity along with DBS and movement artefacts.
Contrary to the CTF results, tSSS shifted the average power spectrum
downward. However, this downward shift is not evident in every indi-
vidual channel (see Supplementary Fig. 5). tSSS introduces high
7

between-channel variability: Some of the channels display an extensive
power drop, while power remained the same in the other channels.
Although dipole power was increased after cleaning with tSSS, the DBS
artefact was still clearly visible in the power spectrum.

3.1.3. Robustness of methods to parametrization
In case of real data recordings, the ground truth is unknown. There-

fore, wrong parametrization may lead to either insufficient noise sup-
pression or removal of intrinsic brain activity. For this reason, robustness
of a noise suppression method is essential. We evaluated the robustness
of the methods to parametrization based on RMSE variation in the
applied parameter range (see Table 1). For CTF recordings, ICA-MI and
S3P showed similarly low variation and therefore robustness to subop-
timal parameter choices, followed by the Hampel filter. tSSS displayed
the largest performance variation within the tested parameter range. For
Elekta Neuromag recordings, however, tSSS and the Hampel filter
showed the lowest variation followed by S3P and ICA-MI.



Fig. 5. Power spectra for the different artefact rejec-
tion methods under optimal parameter settings. A, B:
CTF recordings; C, D: Elekta Neuromag recordings.
The power spectra of each measurement after artefact
removal were averaged across channels and are re-
ported for the range of [0 Hz, 15 Hz] and [125Hz,
135 Hz]. Power spectra of the cleaning algorithms
using their originally recommended setting are pro-
vided in the top panel. Note the shift in baseline level
for tSSS (upward in CTF, downward in Elekta Neu-
romag recordings, respectively). Power spectra of the
cleaning algorithms after changing them from the
originally recommended usage are provided in the
bottom panel. For tSSS the removal of movement-
related artefacts improves, the Hampel filter and S3P
now remove parts of the movement-related artefact,
but also the dipole activity.

Table 1
RMSE variation over the parameter space of the cleaning methods. Note that the
RMSE is for the DBS frequency only in case of the Hampel filter and S3P. For ICA-
MI and tSSS it is calculated for the movement, dipole, and DBS frequency ranges.

Cleaning Method CTF Recordings Elekta Neuromag Recordings

Hampel filter (C ¼ 2–8) 0.0108 � 0.0043 0.00375 � 0.00116
S3P (NS ¼ 1–9) 0.00689 � 0.00183 0.00662 � 0.00197
ICA-MI (R ¼ 10–40) 0.0134 � 0.0011 0.0145 � 0.0026
tSSS (CL ¼ 0.95–0.60) 0.0423 � 0.0049 0.0311 � 0.0008

Fig. 6. Significantly active sources at the frequency of the dipole (12 Hz), CTF
recordings. Sagittal slices covering more than 70% of total phantom volume are
used to visualize source activity. Slices outside the covered volume do not reveal
any activity. The first row with the reference recording displays the activation
one would expect after successful artefact removal. Activation of DBS introduces
spatial leakage at the frequency of interest. None of the methods completely
removed additional activation while preserving the dipole activation. The
activation pattern closest to the reference condition was achieved by tSSS. The
colorbar indicates the power values, thresholded at the 95% percentile.
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3.2. Source level

To evaluate the effectiveness of the artefact rejection methods in the
source space, we examined spatial activation patterns. To this end, we
obtained active sources by thresholding source maps at 12 Hz with
critical values at the 95th percentile of the bootstrapped source maps (see
methods).

3.2.1. CTF results
Significant sources are depicted in Fig. 6. For the reference recording

the active dipole is located in central frontal regions across the heights
from 10 to �10 mm. This activation pattern is subsequently taken as the
baseline to evaluate the performance of the cleaning algorithms in the
source space. Compared to the activations in the reference recording, the
DSMW condition presents additional active regions. None of the artefact-
rejection methods was completely successful in removing these spurious
activations completely without also removing parts of the dipole activity.
Based on D, tSSS (CL ¼ 0.95) cleaned and source-reconstructed data
revealed the highest overlap with the reference recording (Fig. 7). This
was followed by ICA-MI (R ¼ 5%), Hampel (C ¼ 1), and S3P (NS ¼ 1).
Note that only tSSS achieved a better correspondence with the reference
recording than the uncleaned DSMW data. Although all methods pre-
served the dipole’s original location, some reduced its spatial extent and
none of the methods removed the artefact-related additional spurious
sources (see Fig. 6).

In addition, we evaluated the activity at the frequencies mostly
affected (4, 5, 6 Hz) by movement and wire in a similar fashion. Signif-
icantly active sources color-coded according to the frequency are illus-
trated in Fig. 8. In case a source was active at 2 or all 3 frequencies we
color-coded these frequencies with a different color (see figure legend).
As we chose the 95th percentile as the threshold, there are still a few
active regions in the reference recording. However, these are most likely
8

due to false positives. When moving to the DSMW case, the overall power
level is increased by a factor of ~5 across these 3 frequencies. The most
prominent increases are in the posterior regions where the wire was
taped to the phantom. None of the cleaning algorithms was able to bring
the power level to the one of the reference recording, and therefore,
active sources are found throughout the source space.

3.2.2. Elekta Neuromag results
Compared to the CTF recordings, the source activity at 12 Hz was

more spread out for the DSMW obtained with the Elekta Neuromag
recording (see Fig. 9). Only tSSS was able to reduce this source spread to
a level similar to the reference recording. However, D indicates that the
correspondence with the reference recording was actually lower
(Fig. 10). Therefore, none of the cleaning algorithms increased the



Fig. 7. D for the different artefact rejection methods, CTF recordings. Corre-
spondence between active and non-active sources of the reference recording and
the cleaned recording conditions. A higher D denotes a better overlap. Note that
only tSSS improved the correspondence to the reference recording.

Fig. 9. Significantly active sources at the dipole frequency (12 Hz), Elekta
Neuromag recordings. Sagittal slices covering more than 70% of total phantom
volume are used to visualize source activity. Slices outside the covered volume
do not reveal any activity. The first row with the reference recording displays
the activation one would expect after successful artefact removal. Activation of
DBS introduces spreading of the activity at 12 Hz. None of the methods managed
to restore reference activity. The colorbar indicates the power values, thresh-
olded at the 95% percentile.
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amount of overlap between the reference recording and DSMW.
Similar to CTF recordings, movement induced false activations (see

Fig. 11). None of the methods suppressed this activation completely.
Nevertheless, compared to other methods, ICA-MI reduced the
movement-related activations at the source level.

4. Discussion

We performed a MEG phantom study under realistic DBS stimulation
conditions to identify artefacts introduced by DBS and to evaluate the
performance of different DBS artefact rejection methods previously
employed in the literature. At the sensor level, besides the expected DBS-
related artefact at 130 Hz, movement caused low-frequency artefacts due
to the extension wires. When moving to the source level, DBS stimulation
introduced false activations at the dipole frequency and lower fre-
quencies due to movement. Considering the different cleaning algorithms
ICA-MI outperformed the other methods at suppressing DBS and
movement-related artefacts at the sensor level while preserving the
“true” dipole activity. Conversely, tSSS revealed a better spatial source
Fig. 8. Significantly active sources related to movement of the wire at 4, 5, 6
Hz, CTF recordings. Sagittal slices covering more than 70% of total phantom
volume are used to visualize source activity. The color bar represents highest
power values at the relevant frequencies. None of the methods managed to
remove movement-related activations completely.
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map with more resemblance to that of the reference recording.
Although ICA-MI performed well at the sensor level, it did not yield

the best results at the source level, but tSSS. This contradiction could be
stemming from a disproportional signal rejection with ICA-MI from
sensor level data, i.e. in the case of source level data 5% of the data were
removed. Alternatively, the reference signal containing residual infor-
mation about the dipole activity could be causing an undesirable rejec-
tion of informative components. On the other hand, the poor
performance at the sensor level of tSSS is due to its baseline shift (up-
wards in CTF, downwards in Elekta Neuromag). Therefore, we also
evaluated a baseline-corrected version for tSSS. This adjustment
decreased overall RMSE in both CTF and Elekta Neuromag recordings,
bringing its performance to a level similar to ICA-MI.

S3P is designed for applications to a pre-specified frequency range
and the Hampel filter for removing narrow frequency peaks. Therefore,
applying both filters to only the DBS frequency peak would be the natural
choice. However, if they are applied to only the DBS frequency range,
Fig. 10. D for the different artefact rejection methods, Elekta Neuromag re-
cordings. Correspondence between active and non-active sources of the refer-
ence recording and the cleaned recording conditions. A higher D denotes a
better overlap. None of the methods managed to increase the D.



Fig. 11. Significantly active sources related to movement of the wire at 4, 5, 6
Hz, Elekta Neuromag recordings. Sagittal slices covering more than 70% of total
phantom volume are used to visualize source activity. The color bar represents
highest power values at the relevant frequencies. None of the methods managed
to remove movement-related activations completely.
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they are unable to remove any of the movement-related artefact outside
of this range. On the other hand, when applying them to the wide-band
signal, they remove the movement-related artefact to a certain extent
while at the same time removing the dipole activity. In our phantom
recording, the dipole activity resembles a sharp frequency peak, whereas
intrinsic brain activity usually produces a smoother peak. Therefore, the
actual dipole peak was also classified as an outlier by the Hampel filter
and removed. But even if one considers this not to be a realistic scenario,
the Hampel filter was also not able to remove the movement-related
artefact in a satisfying way. The reason is that the movement-related
power increase is a smooth increase in power and no outlier is detec-
ted by the Hampel filter. In case of S3P, it is explicitly indicated by the
authors that the segments with high SNR should not be processed by the
method. This approach was impractical in case of our phantom recording
because the DBS artefact - in particular in the presence of movement -
contaminates most of the frequency spectrum. This issue would, how-
ever, also occur in most real recordings, because the DBS artefact and in
particular the movement-related artefacts, which mimicked human pul-
sation, are in the frequency range of interest of most studies.
4.1. Choice of parameters

In the following we will provide recommendations on how to choose
the optimal parameter range for each cleaning algorithm, because in real
data the ground truth is usually unknown. In case of the Hampel filter, it
is advisable to determine the optimal value visually from the spectrum of
the cleaned DBS signal. The most conservative cleaning with C ¼ 1 leads
to an overcompensation of the DBS artefact and is therefore not recom-
mended. Values larger than 1 lead to good cleaning with little variation
in case of misestimating in the range from 2 to 8. S3P is quite robust to
changes in NS, i.e. there is only little risk from overestimating the noise
subspace in a sensible range. However, aiming to remove as little signal
as possible from the data suggests to use low NS. If one only applies S3P
to the DBS frequency itself, one can confirm its performance also visually
based on the cleaned spectrum. In case of ICA-MI, there is a trade of
between the amount of noise suppression (movement or DBS) and brain
activity preservation. The best removal of the DBS artefact was achieved
with a rejection rate of 10–15%, while for the movement related artefact
even more components needed to be removed (30–40%). Of note here is
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that removing more components resulted only in minor cleaning
improvement of the movement related noise, while the RMSE increased
substantially at the dipole frequency. As deviations from the optimal
rejection rate do not cause quantitatively big performance losses, a low as
possible rejection rate should be used and confirmed by the cleaning of
the DBS-artefact from the spectrum. In the case of tSSS, the dipole acti-
vation is not affected greatly by the decrease in correlation limit. We
therefore recommend to aim for a good removal of the DBS related
artefact, which is straightforward to verify, because the movement
related artefacts were then suppressed as well. In the case of the phantom
measurements, an optimal DBS removal was achieved with a correlation
limit of 0.95 for the Elekta Neuromag recording and 0.7 for the CTF
recording.

4.2. Comparison to previous literature

A previous study with the same phantom investigated the coherence
between MEG and a reference channel in the presence of DBS artefacts
(Oswal et al., 2016). In that study, a copy of the sinusoidal signal driving
the dipolar source was recorded with an external amplifier system. Dy-
namic imaging of coherent sources (DICS; Gross et al., 2001) was used to
find the location of peak coherence between the recorded copy of the
dipole activity and MEG source level data. Later LCMV (Van Veen et al.,
1997) beamforming was used to extract time series of the peak coherence
location for a coherence analysis. The DBS ON and DBS OFF conditions
showed comparable coherence results and it was concluded that beam-
forming is effective in suppressing DBS-related artefacts at the source
level. However, the analysis was limited to coherence. Although the ef-
fect of the DBS artefact on peak coherence location is seemingly negli-
gible, this result is not transferable to other measures such as power. The
present study demonstrates that DBS-related artefacts induce false acti-
vations at the source level despite the utilization of LCMV beamforming.
This finding suggests that beamforming alone is insufficient to suppress
DBS artefacts and an artefact rejection method is required prior to
analysis.

Litvak et al. (2010) and Oswal et al. (2016) previously reported strong
artefacts caused by ferromagnetic extension wires used in externalized
patients in which the electrodes have been implanted, but the generator
is not yet implanted. They suggested that the artefacts stem from
percutaneous ferromagnetic wires which are replaced with
non-ferromagnetic wires once the DBS stimulator is implanted. In the
present study we used extension wires that are used for implantation and
should be non-ferromagnetic, because those are implanted in patients
with the complete DBS system. Nevertheless, in both DMW and DSMW
recordings the movement in combination with the wires had a clear ef-
fect on low frequencies. Therefore, artefacts arising solely from the
moving wires can contaminate MEG measurements even if DBS is turned
off.

To our knowledge, this paper presents the first systematic comparison
between available DBS artefact rejection methods for MEG. Previously,
Lio et al. (2018) conducted a systematic literature review of EEG studies
using various DBS artefact rejection methods. Discussed methods
included analog and digital filters as well as more advanced methods
operating in the frequency domain. Based on simulations where they
analyzed aliased frequencies the authors concluded that no single
approach could effectively remove DBS artefacts. However, a combina-
tion of filters was suggested as an effective alternative solution. Still, the
problematic issue of movement-related artefacts could not be addressed,
because with EEG a phantom study is hardly possible.

More recently, Boring et al. (2019) employed machine learning
techniques to quantitatively compare the amount of recovered informa-
tion from the recordings with DBS ON and DBS OFF in a visual search
task. Signal-space projection (SSP; Tesche et al., 1995; Uusitalo and
Ilmoniemi, 1997), 1–50 Hz band-pass filter, tSSS, and principal compo-
nent analysis (PCA) were applied in consecutive order. After each step,
multivariate pattern analysis was used on the preprocessed data to
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predict the category of the stimuli. DBS ON and DBS OFF conditions
showed comparable results in categorizing the stimuli and each
pre-processing step increased the classification accuracy. Based on this
result the authors concluded that tSSS sufficiently removed the DBS
artefact. It should be noted, however, that the main outcome measure of
this study was the classification accuracy in the visual search task. As
classification success only requires recovering some form of predictable
pattern underlying the binary outcome, it is not clear how well the
DBS-related artefacts were actually removed and how this finding gen-
eralizes to other analysis techniques and objects of interest.

In addition to the methods evaluated in the present paper, several
other approaches for DBS artefact rejection were introduced over the last
years. Santill�an-Guzm�an et al. (2013) proposed a time-frequency domain
filter to suppress DBS artefacts at the frequency of stimulation and its
harmonics. The filter is based on estimating the phase, frequency, and
amplitude of the artefact. The estimated artefact is later subtracted from
the recordings in the time domain. Similarly, Sun et al. (2014) suggested
applying matched filters at the DBS frequency and its aliased frequencies.
More recently, another temporal domain-based approach revealed that
subtraction of DBS signal templates from the recordings produces satis-
fying results (Sun and Hinrichs, 2016). Although these methods are
proven to be effective in suppressing the artefacts arising from the
stimulation signal, artefacts at lower frequencies due to wires and
movement are not addressed. For that reason, these methods were not
tested in the present study. Moreover, we only evaluated methods which
suppress artefacts at the sensor level. The rationale for this choice was to
give the researcher flexibility in choosing between various analysis
methods by obtaining artefact-free sensor level data. Accordingly, we
also did not evaluate null-beamformer (Mohseni et al., 2010), which
successfully suppresses DBS artefacts around the burr holes by placing a
null at its location during source reconstruction.

More recently, a new algorithm exploiting sensitivity differences
between planar gradiometers and magnetometers was proposed by
Samuelsson et al. (2019). Although potentially useful, we could not
include this method in our study because the algorithm is
system-dependent and currently can only be applied to recordings con-
ducted with Elekta Neuromag. The effectiveness of this method should be
evaluated in future studies.

4.3. Methodological considerations and limitations

In the present study, RMSE is used to evaluate the success of the
cleaning algorithms. We applied 3rd order gradient noise compensation
for the CTF recordings and SSPs for the Elekta Neuromag recordings to
suppress environmental noise. tSSS is known to potentially reduce
environmental noise (Airaksinen et al., 2011; Gonzalez-Moreno et al.,
2014). If this caused the noise level to decrease below the one of the
empty room recording, the resulting RMSE could be misleading for
evaluating the performance of artefact removal. We did not find this to be
the case for CTF recordings, as seen in Fig. 5. However, for the Elekta
Neuromag recording the environmental noise was on average further
reduced across channels. This was associated with great variability in
baseline level at the single channel level (see Supplementary Fig. 5).
Therefore, it is not possible to ascertain a uniform noise reduction across
channels, resulting in incomparable power across sensors.

We generated movement-related artefacts by placing a pulsating
mechanism under the phantom. The movement mechanism had only one
degree of freedom, i.e., the phantom movement was limited to the ver-
tical axis. In patient recordings, although arterial pulsations have similar
movement patterns to the phantom movements in the present study,
head movements are likely to create more complex artefacts. The success
of the discussed methods in cleaning movement artefacts depends
heavily on the type and complexity of the movement. Therefore, our
results may not generalize to every type of movement artefact in patient
recordings. Moreover, the phantom did not contain a DBS generator,
which could generate further artefacts in patient recordings. The extent
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of artefacts introduced by the DBS generator highly depends on the
location of the implanted generator. In general, because the generator is
below the head (chest or abdomen), spatial artefact-removal techniques
should be able to clean those artefacts. For a more realistic setting, future
phantom investigations should include a generator placed at a similar
distance as in patients. Still, our results indicate that despite the presence
of a relatively simple movement, the current algorithms were not able to
remove the arising artefact.

In the present study, we used a single dipole oscillating at 12 Hz to
mimic brain activity. In patient recordings, multiple sources contribute to
the recorded signal at various frequencies. In such a scenario, the efficacy
of the methods discussed here could differ. For example, due to there
being a narrow peak in the current setup, the Hampel filter removes the
dipole activity if applied to the whole spectrum. In patient recordings,
source activity from multiple sources could spread to adjacent fre-
quencies and would prevent the occurrence of narrow peaks at lower
frequencies. Consequently, the dipole activity would potentially not be
detected by the Hampel identifier and therefore not be removed.
Furthermore, ICA and tSSS could actually benefit from being able to rely
on multiple brain signals to distinguish between noise and brain data.
Future studies should consider multiple dipole activations to investigate
this effect.

As stated above, in patient recordings the reference signal in ICA-MI is
measured using surface electrodes placed on the implanted stimulator. In
the present study, however, the reference signal was recorded from in-
side the phantom, which could have led to more signal information being
time-locked to the movement. In patient recordings the surface elec-
trodes might not pick up head movements. Therefore, the mutual infor-
mation between the reference signal and the MEG channels could be
more accurate in the present study than in patient recordings.

Although band-pass filtering was not considered in this study, it is
often a standard preprocessing step in many MEG studies. S3P and the
Hampel filter should not be affected by filtering because they operate in
the frequency domain. tSSS and ICA-MI are time domain operations and
for tSSS the guideline is to apply it before filtering. For ICA-MI, applying a
low-pass filter first led to a suboptimal identification of the movement
artefact, because the movement artefact was coupled to the DBS artefact
and low-pass filtering removed this information. Therefore, ICA-MI and
tSSS should be applied before filtering the data.

Lastly, we would like to point out that tSSS relies heavily on the
sensor position and their orientation. Due to different manufacturing
processes, the information about the sensor location for Elekta Neuromag
systems is more precise than for CTF systems. Still, tSSS did not yield
better cleaning results for the Elekta Neuromag recordings. While the
baseline shift on average does seem smaller for the Elekta Neuromag
system, the variance in the baseline shift between channels is larger. As a
result, the RMSE was similar for the Elekta Neuromag and CTF system.

In conclusion, DBS artefacts contaminate the power spectrum at
multiple frequencies and introduce spatial leakage at dipole frequency in
source space. LCMV beamforming was not sufficient to suppress false
activations introduced by DBS and none of the methods managed to
remove the artefacts perfectly. ICA-MI and tSSS showed good results at
the sensor level while tSSS performed better at the source level. There-
fore, at the moment these are the methods of choice when combining
MEG recordings with DBS. Future studies should invest into finding even
better cleaning algorithms.
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