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Abstract  23 

Background & Aims: Change in hydration is common in children with severe acute 24 

malnutrition (SAM) including during treatment, but is difficult to assess. We investigated the 25 

utility of bio-electrical impedance vector analysis (BIVA), a quick non-invasive method, for 26 

indexing hydration during treatment. 27 

Methods: We studied 350 children 0·5-14 years of age with SAM (mid-upper arm circumference 28 

<11·0 cm or weight-for-height <70% of median, and/or nutritional oedema) admitted to a 29 

hospital nutrition unit, but excluded medically unstable patients. Weight, height (H), resistance 30 

(R), reactance (Xc) and phase angle (PA) were measured and oedema assessed. Similar data 31 

were collected from 120 healthy infants and preschool/school children for comparison. Means of 32 

height-adjusted vectors (R/H, Xc/H) from SAM children were interpreted using tolerance and 33 

confidence ellipses of corresponding parameters from the healthy children.  34 

Results: SAM children with oedema were less wasted than those without (p< 0·001), but had 35 

BIVA parameters that differed more from those of healthy children (P<0·05) than those non-36 

oedematous. Initially, both oedematous and non-oedematous SAM children had mean vectors 37 

outside the reference 95% tolerance ellipse. During treatment, mean vectors migrated differently 38 

in the two SAM groups, indicating fluid loss in oedematous patients, and tissue accretion in non-39 

oedematous patients. At admission, R/H was lower (oedematous) or higher (non-oedematous) 40 

among children who died than those who exited the hospital alive.  41 

 42 
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Conclusions: BIVA can be used in children with SAM to distinguish tissue- vs. hydration-43 

related weight changes during treatment, and also identify children at high risk of death enabling 44 

early clinical interventions.  45 

 46 

Keywords: bio-electrical, impedance, BIVA, severe acute malnutrition, hydration  47 
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Introduction 48 

Mortality from severe acute malnutrition (SAM) is still high, especially among children with 49 

oedema.(1) Most deaths occur during the early phase of in-patient treatment and are associated 50 

with complications, mainly infections and fluid and electrolyte abnormalities.(2) It is crucial 51 

therefore to monitor treatment intensively with reliable and preferably technically simple 52 

methods to improve outcome. The challenge however is that SAM-related physical and 53 

physiological changes compromise the application and accuracy of most of the available 54 

techniques.  55 

It is well established that altered hydration can confound the assessment of malnutrition(3), as 56 

excess fluid retention inflates both body weight and other routinely sampled somatic traits, such 57 

as mid-upper arm circumference.  However, before this issue can be addressed, it is also critical 58 

to identify improved ways for assessing hydration status, and its variability during treatment.  59 

For instance, change in the degree of clinically detectable oedema is used to distinguish between 60 

tissue- and fluid-related weight changes .(2) Though both oedema and weight measurements are 61 

simple, in routine clinical practice both are prone to significant error due to a combination of 62 

factors including unstandardized procedures, poor clinical skills, faulty equipment or recording 63 

errors. Moreover, peripheral oedema is undetectable until interstitial fluid volume is significantly 64 

elevated(4) and hence is insensitive for early detection of fluid retention.(5) Conversely, children 65 

with SAM can develop dehydration with minimal clinical signs.(6) Also, the validity of other 66 

clinical indicators including irritability, poor skin turgor or enlarged liver is poor as they are 67 

associated with non-oedematous SAM as well.(7)  68 

 69 
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There are other more valid and operator-independent methods for clinical use including plasma 70 

osmolality, urine osmolality and bio-electrical impedance (BI) methods.(8) BI has the advantage 71 

over other methods of being rapid, inexpensive, non-invasive, and a safe bedside procedure .(9) 72 

The conventional BI approach involves the prediction of total body water from the impedance 73 

(Z) index (calculated as the square of height divided by Z). However, this approach requires 74 

population-specific equations, furthermore the method assumes normal physiological 75 

state,(10,11)  hence conventional BI is often invalid in disease states where physiological state is 76 

disturbed, (12) including SAM.(9) To circumvent these challenges, a semi-qualitative approach 77 

called BI vector analysis (BIVA) has been found useful for differentiating between tissue- and 78 

fluid-related weight changes in various clinical conditions. (13,14) With fewer assumptions, 79 

BIVA allows indexing and visualization of relative hydration status and assessment of body cell 80 

mass (BCM) reflecting cellular function.  81 

 82 

To date, most BIVA studies of disease states have addressed adults, for example with renal 83 

diseases (15) or anorexia nervosa, (16) and few are from low-income countries.  The use of BI or 84 

BIVA methods to study children with SAM remains rare.(17–19) In this study, we investigated 85 

the utility of BIVA and primary BI parameters among children with SAM treated with standard 86 

protocols at a hospital in a low-income setting. 87 

 88 

 89 

 90 

  91 
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Materials and Methods 92 

Study setting and subjects 93 

The study was conducted in the Nutrition Rehabilitation Unit (NRU) of Jimma University 94 

Specialized Hospital, Ethiopia, from November 2009 to September 2011. Eligible children were 95 

those 0·5-14 years of age with SAM, defined as MUAC <11·0 cm or weight-for-height (WFH) 96 

<70 % of the median of the NCHS growth reference and/ or nutritional oedema. Children with 97 

life threatening illness such as shock or who were readmitted with SAM were excluded.  98 

Children below 6 months of age were excluded as the diagnosis and treatment of SAM in this 99 

age group is still not well standardized. Children were treated according to WHO-based 100 

guidelines.(20) 101 

 102 

Data collection 103 

Children were weighed naked or with minimal clothing using a pediatric scale (Tanita BD 815 104 

MA, Tokyo, Japan) and the weight recorded to the nearest 10g. For children less than 2 years of 105 

age or not able to stand, length was measured supine using a length board (SECA 416, Hamburg, 106 

Germany) and recorded to the nearest 0·1 cm. When length was measured in children older than 107 

2 years of age, 0·5 cm was subtracted from the length. In older children, height was measured 108 

using a free-standing stadiometer (SECA 214, Hamburg, Germany) and recorded to the nearest 109 

0·1 cm. MUAC was measured using a paper strip (SECA 2012, Hamburg, Germany) and 110 

recorded to the nearest 0·1 cm. Pitting oedema was checked by gentle pressure with the thumb 111 

on the feet for 3-5 seconds. Information on infections diagnosed at admission were copied from 112 

the child’s clinical record. 113 

 114 
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 115 

BI measurement was performed in all children. The protocol has been described previously 116 

(9,21) but in brief it measures the opposition or impedance (Z) of the body to an alternating 117 

electric current. Impedance has two components: resistance (R) and reactance (Xc). R is the 118 

decrease in voltage reflecting conductivity through ionic solutions and Xc is the delay in the flow 119 

of current measured as a phase-shift, indicating mainly dielectric properties of cell membranes. 120 

The phase angle (PA) is the angle the impedance vector forms relative to the R vector 121 

(atan(Xc R⁄ ) × 180 π⁄ ).  122 

 123 

Though the exact determinants of electrical properties of the normal human body remain poorly 124 

understood, BI method is based on the assumption that the body is a network of resistors 125 

(physiological fluids) and capacitors (cell membranes)(3). In brief, R represents opposition of 126 

alternate electrical current that flows through physiologic fluids by the movement of ions, while 127 

Xc reflects the charging of cell membranes and other interfaces (22). Resistance is inversely 128 

related to the amount of total body water and thus fat-free mass, whereas Xc is directly related to 129 

BCM.  130 

 131 

BI parameters (R, Xc and PA) were measured at 50kHz using a Quadscan 4000 analyser 132 

(Bodystat, UK), multi-frequency and phase-sensitive, that emitted 200 Micro Amps root mean 133 

square alternating current. In addition to measuring the raw impedance values at four frequencies 134 

(5, 50,100 and 200), the machine generated estimated values of including volume and 135 

distribution of body water, nutrition indices and prognostic health indictors. Using protocols 136 

described previously (23), self-adhesive disposable electrodes were attached at the right hand 137 
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and foot, injecting leads were connected to the electrodes just behind the fingers and toes and the 138 

measuring leads were then connected to the electrodes on the right wrist and right ankle. 139 

Measurements were taken in triplicate, each spaced 5 minutes apart, while children were supine 140 

on a stretcher with limbs abducted from the body. The technical error of the mean, calculated on 141 

baseline data using the formula of Ulijaszek and Kerr (24), was as follows: Resistance 9.4 ohms; 142 

Reactance 2.0 ohms; Phase angle 0.18 degrees. These values are very small relative to both the 143 

standard deviation of the same variables at baseline (Resistance 254.1 ohms; Reactance 16.5 144 

ohms; Phase angle1.12 degrees) and their longitudinal changes during treatment. 145 

 146 

Children (0·5-14 years of age) with WFH or body mass index-for-age (BMI, kg/m2) and height-147 

for-age (HFA) within ± 2SD of WHO growth standard were assessed using the same BI analyser 148 

and similar procedures. These apparently healthy children were recruited from vaccination 149 

attendees, children in day-care centres, and primary schools.  150 

 151 

Caretakers were given verbal and written information about the study before consenting on 152 

behalf of their child. The Research Ethical Review Committee of Jimma University approved the 153 

study. Two research nurses collected the data.  154 

 155 

Statistics and data handling 156 

 157 

Descriptive statistics  158 

Data were double-entered into EpiData version 3·1 (EpiData Association, Odense, Denmark) 159 

and analyzed with Stata/IC 12·1 (StataCorp, Texas, USA). Anthropometric z-scores were based 160 
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on WHO child growth standards and were calculated in Stata and WHO Anthro Plus v 1·0·3 161 

(WHO, Geneva, Switzerland). (25) Data were stratified by the presence of oedema at admission 162 

and patient hospital exit status (recovery, self-discharge or death). R and Xc were indexed to 163 

height by division, giving R/H and Xc/H. Continuous data were presented as mean ± standard 164 

deviation, median (IQR); categorical data were presented as n (%). Two-sample t-tests and chi-165 

squares test were used to compare healthy children with children having SAM.  166 

 167 

Regression analysis  168 

Height-adjusted values of BI parameters were the dependent variables. Covariates associated 169 

with changes in the BI parameters over time were identified using linear mixed-effects 170 

regression analysis. The covariates considered were age, sex, presence of nutritional oedema at 171 

admission, co-diagnosis, and days of hospitalization before enrolment (stabilization period). 172 

None of these were time-dependent. Both linear and quadratic trends were included in the model. 173 

To investigate whether changes in BI parameters during treatment depended on oedema at 174 

admission, time-oedema interactions were evaluated. Correlation between measurements on the 175 

same subject was described by means of subject-specific random effects. Simple linear 176 

regression was used to evaluate the association of baseline BI parameters with patients’ exit 177 

status; the model included all the above covariates. All final models were established using 178 

forward selection. 179 

  180 

Vector analysis  181 

BIVA was performed  by RXc graph method  (13) using a customized Excel program. (26) 182 

Vectors of children with SAM were compared with vectors of healthy children using the “RXc 183 
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mean graph”; the relationship of R/H, Xc/H, and PA. We plotted vectors over time on “RXc 184 

graph tolerance ellipses” and interpreted their trajectory. Generally the 75% tolerance ellipse 185 

represent bioelectrical thresholds or normal tissue impedance; displacements along the major 186 

axis of the ellipse show changes in tissue hydration whereas vectors following the minor axis 187 

(above or below the major axis) indicate soft tissue or BCM. (27) Vectors of group-means were 188 

compared by Hotelling's T-squared (T2) generalized means test. Changes during treatment in 189 

BMI-for-age z-score and the BI parameters were shown by mean and 95% confidence interval 190 

plots over five time points during treatment:0, 7th, 14th & 21st days. 191 

 192 

  193 
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Results  194 

During the study period, 527 children with SAM (0·5 to 14 years of age) were admitted to the 195 

paediatric ward at the study site. We excluded 176 (33·4%) children since they were medically 196 

unstable. One child was omitted from analysis due to incomplete BI data. The studied and 197 

excluded children had comparable mean age (1·6 months, 95 % CI, -4·2, 7·4), sex distributions 198 

(38·6 % v. 43·3 % girls, p=0·30) and proportions with oedema (66·1 % v. 61·1 %, p=0·26). Out 199 

of those excluded children, 105 (60·6%) had exit-status data, which showed that they had lower 200 

recovery rate (69·5% vs. 85·9%, p<0.01) and higher mortality (20·0% vs. 3·4%, p<0·001) 201 

compared to those studied.  202 

 203 

Table 1 shows that non-oedematous children were younger than non-oedematous children 204 

(median age, 26 vs. 36 months, p=0·04), needed more stabilization time (mean days, 8 vs. 5, 205 

p<0·001) and also had a higher proportion with clinical infection (51% vs. 43%, p<0·001). But, 206 

stunting was comparable between the two groups (mean HAZ, -3.3 vs. -3.2, p=0·70). Table 2 207 

compares the BIVA values between healthy children and children with SAM at enrollment and 208 

also within SAM by presence of oedema. Variability of parameters was higher among children 209 

with SAM than healthy children. SAM children had higher R/H than healthy children (-204, 210 

95%CI -277 to -131) while their Xc/H (19, 95%CI 15-23) and PA (1·5, 95%CI 1·3-1·7) were 211 

lower. The oedematous SAM group had the lowest R and Xc as also displayed in Figure 1B by 212 

the shortest vector with the least slope.    213 

 214 

The four graphs in Figure 2 show trends in both BMI and BIVA parameters during treatment. It 215 

is evident that though BMI and BIVA parameters have improved significantly over the four 216 
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weeks of treatment, they did not normalize. Interestingly, the change in resistance was divergent 217 

by oedema status whereas, expect for slope, the trends in reactance and phase angle did not differ 218 

by oedema status. Children with oedema had weight loss in the first two follow-up weeks, 219 

followed by weight catch-up. The regression results in Table 3 further demonstrate the temporal 220 

relationship between oedema and BI parameters within and between SAM groups during the 221 

course of nutritional therapy. Weight losses were accompanied by significant increases in both 222 

R/H (B = 19, 95%CI 13, 25) and Xc/H (B = 0·71, 95%CI 0·26-1·2) However, both of these 223 

changes slowed in rate during the catch-up period. In children without oedema, weight increased 224 

linearly throughout treatment and this was accompanied by steady but insignificant reduction in 225 

R/H (B = -2·8 95%CI -6·4 to 0·87) and increase in Xc/H (B = 0·13, 95%CI -0·16 to 0·41) over 226 

time.    227 

The changes in BI parameters are better visualized in their vector trajectories (Figure 3). Of note, 228 

vectors of both oedematous and non-oedematous children were notably outside the reference 229 

95% tolerance ellipse (Figure 3A). Subsequently, the vector of oedematous children migrated 230 

towards the centre along the major axis of ellipses, demonstrating increased R/H and Xc/H. As 231 

noted in Figure 3B the trajectory had faster pace initially. The vector migration in non-232 

oedematous children was also in a central direction, but unlike in the oedematous children it 233 

followed the minor axis, showing a reduction in R/H and an increase in Xc/H. Additionally, 234 

compared with the oedematous children, the pace of migration was slower and more uniform in 235 

non-oedematous children throughout the treatment period.  236 

On one hand, children who had no clinical infection had higher mean PA than children who had 237 

at least one recorded infection (mean PA, 2.52 vs. 2.38, 95%CI: 0.12-0.16). On the other hand, 238 

PA was 0.036 higher by each additional day of stabilization (95%CI:0.02-0.05, p<0.001). 239 
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Finally, though this study excluded medically unstable children, twelve deaths were recorded, 240 

nine of them among children who had oedema at enrollment. Most of these deaths occurred 241 

before the second BI measurement (data not shown). As shown in Table 4 and Figure 4, 242 

extremely low and extremely high baseline resistance predicted death in oedematous and non-243 

oedematous children, respectively.  244 

  245 
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Discussion 246 

This study described changes in BIVA parameters of children with SAM during in-patient 247 

treatment using two main analytical approaches. The first one, BIVA showed that children with 248 

SAM initially had grossly deranged BI values which improved during the course of treatment. 249 

The vector also easily identified the predominantly fluid-related weight changes in oedematous 250 

children whilst in non-oedematous children it showed tissue accretion. Second, comparison of 251 

the means (actual and adjusted for covariates) of individual raw parameters (R, Xc and PA) 252 

between healthy and SAM and within SAM has also provided the aforementioned information. 253 

Finally, extremes of R values at admission were found to be associated with death.  254 

  255 

The initial data points clearly show that BIVA parameters are severely affected in children with 256 

SAM, and also have increased variability. The increased variability by itself is useful clinical 257 

information. Among healthy individuals, BIVA variability can arise from normal variation in 258 

tissue structure and adipose tissue content. (22) However, in disease states, cellular changes due 259 

to morbidities and body composition abnormalities may increase this variability (28) , hence 260 

explaining the greater heterogeneity of  SAM children compared with healthy children. Change 261 

in variability could be when examining group data from epidemiologic studies. 262 

 263 

The most interesting observation in this study has come from the vector trajectories that 264 

accompanied the weight changes. Theoretically, changes in R and Xc represent changes in body 265 

fluid and tissue (BCM), respectively .12, 37 The trajectory of oedematous children indicates a 266 

combination of major loss of excess fluid and minor lean tissue accretion, a pattern found in 267 

nephrotic patients losing oedema .(13) The trajectory among non-oedematous children represents 268 
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gain in BCM with increasing hydration. Though less pronounced, this trajectory is similar to 269 

findings in HIV/AIDS patients. (13) Of note, the finding of weight gain accompanied by 270 

insignificant vector movement may indicate accelerated body-fat which often initially 271 

accompanies refeeding.(30)  272 

 273 

When examining the individual BIVA parameters, oedematous children had lower values despite 274 

having higher BMI even after loss of oedema. The lower R could be explained by the 275 

combination of larger muscle mass and excess fluid collection which is manifested as oedema. In 276 

addition for a given body water, individuals with more fluid in extremities will have lower R 277 

since the limbs contribute approximately to half of total body R. (31) (32) Cirrhotic patients with 278 

oedema have shorter impedance vectors than cirrhotic patients without oedema whereas 279 

impedance vectors between those with or without ascites did not differ. (33)  280 

 281 

In the oedematous children, consistent and significant increase in R was noted during treatment. 282 

This change was rapid during the period of weight loss and may show progressive increase in 283 

tissue specific resistivity (�), a constant that is inversely related to the concentration of free ions 284 

.(34) Further support for this explanation comes also from the simultaneous increase in the Xc 285 

which indicates an increase in BCM. Extreme alterations in the amount and composition of 286 

extracellular fluids in oedematous children (35) may modify � of the body. Considering the 287 

direct relationship between R and wasting, higher R in children without oedema indicates their 288 

extreme wasting. Xc and PA may reflect ‘cellular health’.(36) The significantly low Xc and PA 289 

values of children with SAM compared with the healthy children specially among oedematous 290 

children may show cellular and membrane dysfunctions described in SAM.(37)  291 
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 292 

PA has been shown as prognostic indicator in various clinical conditions among young age 293 

groups; lower PA indicates poor clinical outcome in critically ill children (38–41) and has been 294 

used to assess response to different nutritional therapies in young children with severe-acute 295 

malnutrition. In this study, we have found that SAM children with at least one type of infection 296 

had lower PA than those without. On the other hand, PA was directly related with the number of 297 

days SAM children required to stabilize before enrollment. The higher PA could be a proxy 298 

indicator for better clinical stabilization. However, as PA varies with age in children, age-299 

specific z-scores calculated from population-specific reference data may be the best way to 300 

approach this issue(42).   301 

 302 

The relationship between baseline R and patient outcome indicates a prognostic value of BIVA 303 

parameters, with oedema further influencing the direction of this relationship. The extremely low 304 

values of R in oedematous children might indicate severe tissue over-hydration (43) while 305 

extremely high R in children without oedema indicates extreme wasting compared within their 306 

group of those who were alive at exit. Considering that medically unstable children were 307 

excluded from this study, it is possible that BI could outperform clinical parameters in 308 

identifying SAM children at high risk of death. However, it is important to investigate the 309 

performance of BIVA as a triage tool compared with the standard appetite test and other clinical 310 

indicators. If proven to function well, its objectivity and simplicity could give it an edge over 311 

other methods.    312 

 313 
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In terms of additional practical application of BIVA parameters, combining anthropometric 314 

measurements and BIVA may broaden and optimize aspects of patient evaluation specially 315 

assuming that repeated BI measurements assess nutritional status, hydration, and “cellular 316 

health” simultaneously. As noted above, BIVA can clearly distinguish whether acute weight 317 

change is due to fluid change or tissue accretion. Even though accurate quantification is unlikely 318 

to be made, there is a potential for continuous tracking of relative changes. This, combined with 319 

other clinical parameters could guide clinical interventions. For instance, in a clinically 320 

deteriorating child a fall in R without detectable change in oedema status could signal excess 321 

fluid accumulation. At the same time, accompanying change in Xc or PA could be clues for 322 

underlying factors like infection which can affect ‘cellular health’.  323 

 324 

In both types of SAM, the BIVA values for R, Xc and PA were all well outside the reference 325 

range and did not normalize. Based on this finding BIVA should be considered as a tool for 326 

monitoring post-SAM children. Assuming that BIVA parameters will normalize if and when 327 

nutritional status and general health improve, vector and/or the individual parameters can be 328 

assessed regularly to monitor children who have been discharged from SAM treatment programs.   329 

 330 

This study has certain limitations. The exclusion of critically ill children from the study limited 331 

the assessment of BIVA approach in this group. It would have been of value to compare the 332 

BIVA data with another indicator of hydration (e.g. deuterium or bromide dilution or serum 333 

osmolality). A systematic clinical investigation (imaging, microbiologic, and blood chemistry) of 334 

the patients would have enhanced clinical interpretation of the BIVA data. Finally, as calibration 335 

device was not available for the BIA analyzer in this study, it was not possible to provide 336 
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calibration data. Strengths include the large sample size, the protocol of measuring BIVA 337 

parameters in triplicate and the inclusion of a healthy comparison group.  338 

  339 

In conclusion, our study demonstrates the utility of BIVA for indexing tissue- vs. fluid-related 340 

weight changes in children with SAM during in-patient treatment.  Moreover, BIVA may predict 341 

survival of children hospitalized for SAM. More studies should be done to understand the 342 

biological correlates of BI changes in conditions like SAM which are associated with 343 

multisystem and complex pathophysiological changes. Furthermore, future studies should 344 

identify BIVA patterns and its associated factors in medically unstable or critically sick children 345 

with SAM. This will contribute to evaluate the usefulness of BI in patient triage. Finally, it is 346 

important to investigate the timing for normalization of BI and the determinants.  347 

 348 
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  488 

Fig. 1 Scatter and RXc mean graph of baseline R/H and Xc/H of healthy children and children 489 

with severe acute malnutrition, where R is resistance, Xc reactance and H height.  490 

Fig 1A shows oedema-specific distribution of data points compared with the healthy children 491 

and fig 1B displays the position of vector means of the three groups. The oedematous children 492 

have the shortest vector with the least phase angle (slope) – related indirectly with relative 493 

volume of body water. The oedematous children have the shortest vector with the least 494 

slope.  Separate 95% confidence ellipses of two mean vectors is equivalent to a significant 495 

Hotelling’s T2 test, P<0.05. 496 

Fig. 2 Trends in body weight and bio-impedance during treatment in children with severe acute 497 

malnutrition  498 

The estimated means and 95%CI (error bars) of body mass index z score, height indexed 499 

resistance and reactance, and phase angle were generated using linear mixed-effects regression 500 

after adjusting for covariates including age. The horizontal dash lines indicate reference values.  501 

Fig 3. Oedema-specific trajectories of weekly mean impedance vectors (R/H and Xc/H) of 502 

children with severe acute malnutrition treated at Jimma University Hospital, where R is 503 

resistance, Xc reactance and H height.  504 

 505 

Fig 3A shows tolerance ellipses based on data from age- matched healthy children. Fig 3B 506 

zooms-in the vectors shown in fig x1 which were measured weekly over the treatment period. 507 

The error bars represent 95%CI. Among oedematous children, the vector migrates to the center 508 

mainly along the major axis of ellipses starting outside the 95% tolerance ellipse and thus 509 
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indicates combined major loss of excess fluid and minor lean tissue accretion (i.e. increasing in 510 

both R and Xc, but mainly R). The migration pattern among non-oedematous children is to the 511 

center principally along the minor axis and hence represents gain in cell mas (lean tissue) with 512 

increasing hydration (i.e. reduction in R and increase in Xc). 513 

 514 

 515 

 516 

 517 

Fig 4. Oedema-specific trajectories of weekly mean impedance vectors (R/H and Xc/H) of 518 

children with severe acute malnutrition treated at Jimma University Hospital, where R is 519 

resistance, Xc reactance and H height.  520 

 521 

The border for “reference” children represents 95% tolerance ellipse and was based on data from 522 

age-matched healthy children. The data points outside the trajectories were from deaths in 523 

oedematous and non-oedematous groups. They were only baseline and hence are to be compared 524 

with similar data points of their respective groups.   525 

  526 

  527 

  528 
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Table 1. Selected characteristics of healthy children and children with severe acute malnutrition 529 

(SAM 530 

  531 

 Healthy SAM 

  Non-oedematous  Oedematous  P 

 n=120 n=136 n=214  

Age, month  38 (22 - 82) 29 (14 - 60) 36 (24 - 60) 0.04

Male sex 60 (50.0) 76 (56.0) 122 (57.0) 0.84

BMI-for-age z-sore  -0.1 ± 1.0 -3.6 ± 1.3 -1.7 ± 1.9 <0.001

Weight-for-age z-sore -0.3 ± 0.8 -4.3 ± 1.2 -3.2 ± 1.4 <0.001

Height-for-age z-sore -0.5 ± 1.0 -3.3 ± 1.7 -3.2 ± 1.6 0.70

Weight-for height z-sore a 0.1 ± 0.1 -3.6 ± 1.2 -1.7 ± 1.6 <0.001

Clinical Infections b  - 51 (37.5) 43 (20.1) <0.001

Days to stabilizationc  - 8 ± 8.2 5 ± 5.5 <0.001

Data are median (IQR) or number (%) or mean ± standard deviation; z-scores were calculated using WHO growth 

standard; aonly for children <5 years of age; b ≥1 clinically diagnosed infections during admission, c number of 

between hospital admission and enrolment into study  
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Table 2. Baseline bio-impedance values of children with severe acute malnutrition (SAM) and 532 

healthy control children 533 

 534 

 535 

 536 

 537 

 538 

  539 

 Healthy  SAM  SAM 

    Non-oedematous Oedematous 

 n=120 n = 350 Diff (95%CI) n=136 

Resistance (R), ohm 826 ± 109 888 ± 252 -62 (-109,-15) 1070 ± 203 767± 206

Reactance (Xc), ohm  62 ± 13 37 ± 16 25 (22, 28) 46 ± 15 31 ± 15

Phase angle, degree  4.3 ± 1.0 2.5 ± 1.1 1.8 (1.6,2.0) 2.8 ± 1.2 2.3 ± 1.0

R / height, ohm/m 878 ± 246 1082 ± 382 -204 (-277,-131) 1340 ± 369 921 ± 291

Xc / height, ohm/m 64 ± 8.0 45 ± 21 19 (15, 23) 57 ± 20 37 ± 18

Data are mean ± standard deviation of tetra-polar whole-body impedance measured at 50 kHz 
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Table 3. Estimated coefficients (95%CI) of changes in bio-impedance parameters among 350 540 

children during treatment for severe acute malnutrition  541 

 Resistance /height   Reactance/height Phase angle 

Linear slopea    

Non-oedematous  -2.8 (-6.4, 0.87) 13 (-0.16, 0.41) 0.007 (-0.015,0 .028

Oedematous 19 (13, 25) 0.71 (0.26, 1.2) 0.009 (-0.025,0 .043

Quadratic slope    

Non-oedematous -0.01 (-0.11, 0.09) 0.002 (-0.006, 0.01) 0.0001 (-0.0005, 

Oedematous -0.30 (-0.46, -0.14) -0.016 (-0.03, -0.004) -0.004 (-0.001, 0.0006

Multiple mixed-effects models: interaction between oedema at admission and follow-up days adjusted for age, sex, days of 

hospital stay for stabilization before enrollment and co-diagnosis (≥1 infection diagnosed during admission);a Resistance 

and reactance are Ohm/meter and phase angle is in degree.   

 542 

  543 

  544 
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Table 4. Relationship between baseline bio-impedance and hospital exit status of children with 545 

severe acute malnutrition  546 

 Resistance/height Reactance/height Phase angle 

Recovered a Ref. Ref. Ref. 

Self-discharged  16 (-106, 137) 2.5 (-5.9, 10.9) 0.24 (-0.44, 0.92) 

Died 655 (345, 967) 4.2 (-17.1, 25.4) -0.34 (-2.5, 1.6) 

Interaction     

Died*oedematous  -801 (-1161, -

441) 

-16.2 (-40.8, 8.3) -0.22 (-3.1, 2.7) 

Self-discharge*oedematous  -26 (-210, 158) -2.1 (-14.8, 10.5) -0.11 (-1.0, 0.83) 

aCoefficient (95%CI) after adjustment for age, sex, days of hospital stay for stabilization before 

enrollment and co-diagnosis (≥1 infection diagnosed during admission). Recovered (n=296): 

medical discharge after attaining weight for height ≥ 85% of median and/or complete resolution of 

pitting pedal oedema, self-discharged (n=42): discharge against medical advice ‡ and died (n=12). 

Resistance and reactance are Ohm/meter and phase angle is in degree.   

 

 547 
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Fig. 1 Scatter and RXc mean graph of baseline R/H and Xc/H of healthy children and children

with severe acute malnutrition, where R is resistance, Xc reactance and H height. Fig 1A shows

oedema-specific distribution of data points compared withthe healthy children and fig 1B

displays the position of vector means of the three groups. The oedematous children have the

shortest vector with the least phase angle (slope) –related indirectly with relative volume of body

water. Separate 95% confidence ellipses of two mean vectors is equivalent to a significant

Hotelling’s T2 test, P<0.05.





Fig. 2 Trends in body weight and bio-impedance during treatment in children with severe acute

malnutrition. The estimated means and 95%CI (error bars) ofbody mass index z score, height indexed

resistance and reactance, and phase angle were generated using linear mixed-effects regression after

adjusting for covariates including age. The horizontal dashed lines indicate reference values.
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Fig 3. Oedema-specific trajectories of weekly mean impedance vectors (R/H and Xc/H) of

children with severe acute malnutrition treated at Jimma University Hospital, where R is

resistance, Xc reactance and H height. Fig 3A shows tolerance ellipses based on data from age-

matched healthy children. Fig 3B zooms-in the vectors shownin fig x1 which were measured

weekly over the treatment period. The error bars represent 95%CI. Among oedematous children,

the vector migrates to the centre mainly along the major axisof ellipses starting outside the 95%

tolerance ellipse and thus indicates combined major loss ofexcess fluid and minor lean tissue

accretion (i.e. increasing in both R and Xc, but mainly R). The migration pattern among non-

oedematous children is to the centre principally along the minor axis and hence represents gain in

cell mas (lean tissue) with increasing hydration (i.e. reduction in R and increase in Xc).





Fig 4. Oedema-specific trajectories of weekly mean impedance vectors (R/H and Xc/H) of

children with severe acute malnutrition treated at Jimma UniversityHospital, where R is

resistance, Xc reactance and H height. The border for “reference” children represents 95%

tolerance ellipse and was based on data from age-matched healthy children. The data points

outside the trajectories were from deaths in oedematous and non-oedematous groups. They were

only baseline and hence are to be compared with similar data points of their respective groups.


