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Abstract

This thesis investigates the problems of discimination and regression using Bayesian 

methods with emphasis on their asymptotic properties when p, the number of 

variables that can be observed, is unlimited. For the problem of discriminating 

between two multivariate normal populations the conjugate prior is found to lead 

to asymptotically perfect discrimination, under certain conditions on the param

eters. Similarly, in a problem of discrimination between two populations with bi

nary variables, using a Dirichlet process prior, necessary and sufficient conditions 

for asymptotically perfect discrimination are found. To investigate this deter

minism a comparison is made between the Bayesian discriminant function and a 

sample-based discriminant function which fits the data exactly when p is large. It 

is shown that their performances are asymptotically equivalent. Similarly, for the 

regression of normal variables with a conjugate prior the Bayes predictor, which 

implies asymptotic deterministic predictability, is asymptotically equivalent to a 

classical least squares predictor which exacly fits the sample data for large p. Thus 

the conjugate Bayesian approach neglects the problem of bias due to overfitting. 

In contrast, it is shown that a certain nonconjugate prior does not imply asymp

totic determinism for the Bayes predictor, and renders the behaviours of Bayes 

and least squares predictors different. This reveals the importance of the choice 

of prior distribution for Bayesian analysis.
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Chapter 1

INTRODUCTION

1.1 The Problem s of D iscrim ination and R e

gression

In this thesis two major problems in multivariate analysis, discrimination and 

regression, are investigated using Bayesian methods.

The basic problem of discrimination is to assign an observation to one of two 

or more populations on the basis of its value. Statistical decision theory gives solu

tions minimizing the probability or expected cost of misclassification. A criterion 

maximizing a function of the distance between the mean value of two samples leads 

to Fisher’s linear discriminant function (Fisher 1936). Under the assumption of 

normal distributions, Anderson (1958) suggested a likelihood ratio criterion. The 

problem of discrimination was studied from the Bayesian point of view by Geisser 

and Cornfield (1963), Geisser (1964), among others. They obtained the posterior 

probabilities that an observation with a finite number of variables belongs to one 

of k multivariate normal distributions, under the assumption of prior ignorance.

In the regression problem parameters of a model are estimated from a set of



data. The least squares criterion is widely used. In normal linear models the least 

squares estimator is the maximum likelihood estimator (Anderson 1958). It has 

other optimal properties such as MRE (mimimum risk equivariance) and UMVU 

(uniformly minimum variance unbiased) (Lehmann, 1983, pp. 156,187,77). The 

regression problem was studied from the Bayesian point of view by Geisser (1965), 

Tiao and Zellner (1964), again using noninformative priors (Berger 1980 p.88).

Usually it is assumed that the number of observations is greater than the num

ber of observable variables. In practice it is possible that more and more variables 

of the population are observed to enable the investigator to use more information 

on each population. Brown (1980) considered the problem of discrimination be

tween two multinomial populations with the number of cells of each multinomial 

being unlimited. This is the case when more symptoms are introduced in medical 

diagnosis. The prior expectation of the probability of correct classification, pn, is 

given by
1 "

Pn = % l]^m ax(6),, <̂ )̂,
 ̂ 1=1

where {(j)i) are the probabilities for the first and second populations respec

tively (1 < 2 < n, Y^Oi = = \). The asymptotic behaviour of as n ^  oo

was studied. In particular, it was shown that pn 1 under the assumption that 

the prior distributions for 0, </> are independent identically distributed Dirichlet 

D (ai, •••,«„) for equal a{. The problem of regression on an unlimited number 

of explanatory variables was studied by Dawid (1988). Under the assumption 

that the sampling distribution is normal, it was shown that the conjugate inverse 

Wishart prior implies degenerate prediction under certain conditions, that is, the 

response variable can be predicted arbitrarily closely by using a sufficiently large 

number of predictors.

This thesis extends these investigations to more general case, concentrating on 

the assymptotic properties of the Bayes approach to discrimination and regression 

problems when the number of observable variables tends to infinity. In Chapter 2 

the problems of discrimination between two multivariate normal populations with 

common dispersion matrix are considered. Under the natural congugate normal



inverted Wishart prior, necessary and sufficient conditions exist for asymptotically 

perfect discrimination in the sense that the ratio of the posterior probability of 

the second population to that of the first population tends to 0 or oo according 

as the observation arises from the first or second population. Chapter 3 studies 

the asymptotic properties of discrimination between two populations with binary 

variables, using a Dirichlet process prior. Necessary and sufficient condition for 

asymptotically perfect discrimination between the two populations are found. To 

understand the phenomenon of determinism. Chapter 4 compares a Bayes discrim

inant function with Fisher’s discriminant function in discrimination between two 

normal populations. The performance of a linear discriminant function is defined 

as the squared difference between its expectation in the two populations, normal

ized by its variance. The Bayes discriminant function maximizes the performance 

conditional on the training data, with the maximum tending to infinity under a 

condition on the hyper-parameters of the prior, allowing perfect discrimination 

also in the sense indicated in Chapter 2. When the number of observable variables 

is large, Fisher’s discriminant function fits the data exactly. It is shown that the 

performances of these two discriminant functions are asymptotically equivalent. 

Chapter 5 and 6 are devoted to regression of normal variables, comparing the 

Bayes estimator with the classical least squares estimator, which exactly fits the 

data for a sufficiently large number of variables. Chapter 5 shows that, under a 

conjugate prior, the Bayes estimator, which implies asymptotic determinism under 

a certain condition on the prior hyper-parameters, is asymptotically equivalent to 

this least squares estimator. This conclusion in conjunction with Chapter 3 shows 

that the conjugate Bayes approach neglects the problem of bias in these problems. 

Chapter 6 shows that, in contrast to the conjugate prior, a certain non-conjugate 

prior does not imply asymptotic determinism of the Bayes predictor, and makes 

the Bayes and the above least squares estimator different.



1.2 Selection Bias

Our investigation shows that the usual assumptions of conjugate priors imply 

asymptotic determinism in the discrimination and regression problems. This may 

be reasonable in certain areas such as pattern recognition. However, in many 

statistical problems it is unreasonable to believe that inference will be deterministic 

if only sufficiently many variables can be observed. Hence the choice of prior must 

be made according to the problems considered. This undesirable determinism 

property induced by the use of conjugate prior was related to paradoxes of inference 

under selection and optimisation in Dawid, 1994, as follows.

In some optimisation problems, bias is introduced because selection is related 

to the variables to be studied. Suppose the distribution for the data X  has a 

parameter 0, and we wish to make inference on (f)x̂  a function of 0, for X E C, a. 

set of indexes. Each (f>x is estimated by Xx- Suppose our interest is the optimised 

parameter (j)** =  sup{^A?^ G £}, which is achieved at A**. It is not possible 

to identify this value A** without fully knowing the parameters. A two-stage 

approach is as follows. At the first stage the data are used to select A*, at which Xx 

achieves its maximum, and a parameter (j>* = (f)\* is thus identified. At the second 

stage inference is made about the selected parameter (/)*. Since A* is random, 

<f)* is a “data-dependent parameter” . Let X* = X\*.  It can be shown that 

E$X* >  (f)** > (typically the strict inequalities hold). Thus X* is positively 

biased for and The classical approach then demands that allowance be 

made for the bias either by explicit modelling of the whole two-stage process or by 

some general de-biasing technique. In contrast, the Bayesian approach requires 

no adjustment for selection, since the posterior distribution of any quantity is 

unchanged by selection using data. Let Yx — E{(j)x | %), ¥** =  | X),

Y* = E((f>* I X ), F'*' =  suplFx} = Y**, F"*" and F* can be used as the

Bayesian estimates of (f>'̂  ^a+ &nd cj)* respectively. In particular, when a

proper prior is used, in the joint distribution of (X, 0), E{Y* — (j)*) =  0 so that 

E qY* > (j)* does not hold for all 6. Thus the Bayes estimate Y* is not positively 

biased for </>*, at least for some values of 9. The same analysis applies to Y** and

10



If the number of variables that can be observed is allowed to tend to infin

ity, the investigation of this thesis reveals that in some important multivariate 

statistical problems such as discrimination and regression, the use of the usual 

conjugate priors leads to asymptotic equivalence of the Bayesian inference and the 

unadjusted classical one, which suggests determinism in these problems implied 

by the conjugate priors may be inadequate. However, if such priors are taken 

seriously, the biasing effects of the determinism can be ignored. Moreover, the 

Bayesian inference by using a nonconjugate prior in a regression problem does 

not imply asymptotic determinism and is different from the unajusted classical 

inference, providing a possible solution of the conflict between determinism and 

selection bias, if we do not believe determinism in the problem considered.

Since the result of a Bayesian analysis depends on the prior assumption made, 

the choice of a suitable prior is a very important issue for Bayesian analysis. If a 

result appears unreasonable, the prior assumption is inappropriate and must be 

reconsidered.

1.3 M atrix D istributions

The models considered in this thesis involve certain spherical and rotatable distri

butions, including the matrix-variate normal, t, F, beta, the Wishart and inverse 

W ishart distributions. We shall use the notation and properties for these distri

butions developed in Dawid (1981). The notation may differ from other common 

conventions. It has the property of consistency under marginalization of the dis

tribution, and hence is convenient when dealing with the distributions of infinite 

matrices. In this section we shall give a brief review of their definitions and prop

erties and develop some properties which will be used in subsequent chapters.

L eft-spherical, R ight-spherical, Spherical and R otatable distribu

tions. Let y  be a random n x p matrix. Y  is called left-spherical if, for any

11



fixed n X n orthogonal matrix P, P Y  has the same distribution as Y. Y  is called 

right-spherical if YQ  has the same distribution as Y,  for any fixed p x p orthog

onal Q. Y  is called spherical if it is simultaneously left- and right-spherical. A 

random p x  p nonnegative-definite symmetric matrix S  is called rotatable if Q'SQ 

has the same distribution as S', for any fixed p x p orthogonal Q (Dawid, 1977, 

1978, 1981).

M atrix normal. The n x p random matrix Z  with independent standard 

normal elements is denoted by Z ~  A"(/n, Ip). For nonrandom A, B, M  such that 

A A ’ =  A, B 'B  =  S, the distribution of M  + A Z B  is denoted by M  +  A/"(A, E). 

This is denoted by N{M ,A  (g) E) in Muirhead (1982).

W ishart. The p x p random matrix ^  having a Wishart distribution with 

u degrees of freedom and scale matrix E is denoted by ~  W{u] E), (E > 0 is 

p X p). For p =  1, W{i/; 1) is equal to xl- If ^  ^  Af{In, E), then Z 'Z  ~  W{n; E).

Inverse W ishart. The p x p random matrix $  having a standard inverse 

Wishart distribution with parameter S is denoted by $  ~  IW{6] 7p), (6 > 0), 

for which ^  W{i>; Ip) with = 6 p — I. The parameter S is chosen so that 

it does not change for any leading submatrix of 0. The distribution I W { 6 ’,Ip) is 

denoted by 4- 2p; Ip) in Muirhead (1982).

M atrix-/. The n x p  random matrix T  having a standard matrix-/ distribution 

with parameter 6 is denoted by T ~  T{6; In, Ip). It is denoted by T{In, Ip, 0, +

n -f p — 1) in Dickey (1967). For p = 1, n > 1, T(S]In,l)  =  where

tg is multivariate / distribution with 6 degrees of freedom (Cornish 1954). The 

matrix-/ distribution has a stochastic representation as T | ~  Af{In ,^)  with

0  ~  IW{6', 7p) or T I A ~  W(A, Ip) with A ~  IW(S, In).

M atrix-variate F.  The p x p random matrix U having a standard matrix- 

variate F  distribution with parameters i>,S is denoted hy U ^  F{i',S-,Ip), [S > 

0, > p — 1 or f/ integral). It is denoted by B//{p; If/, I(p  +  6 — 1)} in Tan (1969),

G{u, p 8 — I; Ip) in Dempster (1969), (see also Olkin & Rubin, 1964). For p =  1, 

F(u, 8', Ip) = {ul8)Fy^s> It has a stochastic representation as F  | 0  ^  W(f/; 0) with

12



0  ~  IW{6\Ip)  or t/ I A ~  IW{8\K)  with A ~  VK(i/;7p). If T ~  T{6] In, Ip), then 

T 'T  ~  F{n, 6] Ip). If C/ ~  F{i', 6; Ip), then U~^ ~  F{6 +  p — l,z/ — p +  1; 7p), {u >

p - 1 ) .

M atrix-variate beta. The p x p random matrix V  having a matrix-variate 

beta distribution with degrees of freedom and scale matrix S is denoted

by y  ^  B{ui,U2’,E).  The standard B{ui,U2; Ip), (z/i +  f/g > P — 1) is denoted 

by J5/(p; |i /2) in Tan (1969), Bp{^i/i,^i'2) in Mitra (1970). See also Olkin

& Rubin (1964), Khatri (1970). For p = I, B{ui,U2",l) = |i^2), the beta

distribution. If Si ~  W(ui;^),  i = 1,2, independently, with 0  positive-definite, 

and S  =  51+52, then the conditional distribution of 5i given 5  =  S is B{i/i, V2', E). 

It also has a stochastic represantation as D~^3\{D~^y ~  B[v\,  V2’, Ip), where 5, ~  

kF(f/(, E), i =  1,2, independently with +  1/2 > p — 1 , T) is such that 5 

5i +  52 =  7)77', and D is independent of 5i given 5. If 7/ ~  F{v,6’,Ip), then 

(7p +  U)  ̂ ~  B{8 +  p — 1, z/; Ip). If y  ~  B{^u\, U2\ 7p), then Ip — V  ^  B[i/2,1'l', Ip).

The parameters of the random matrix distributions considered above have 

a consistency property that the leading submatrices have the same degrees of 

freedom. Hence we can introduce corresponding distributions for infinite arrays 

5̂00,00 ~  A (for A = N ,  T; or W, IW, F, if n =  p) such that all leading 

submatrices of order n x p ,  Yn,p ~  An,p, (Dawid 1981, Section 3). Furthermore, 

for an 00 X p matrix Y{p < 00) having a left-spherical distribution A or, equiv

alently, a consistent family {A ,̂} of left-spherical distribution for Yn, the first 

n rows of Y,  we have a scale-modified left-spherical distribution A (77) defined 

as that of {AYn : A A' =  H,Yn ~  An}. Similarly we have scale-modified right- 

spherical distributions. For an infinite spherical distribution A for y »,00 corre

sponding to the consistent family {A„,p : n ,p  > 1} we have a doubly scaled 

distribution A { H ,K )  defined as that of {AYn,pB,AA' = H , B 'B  = K] .  For a 

rotatable distribution H for 5oo,oo we have H(7f) as the distribution of B'Sp^pB. 

Thus the standard matrix distribution discussed above have scale-modified infinite 

versions Af{H, K),  W{i/-,K), IW{8',K), T{8', H ,K ) ,  F(u,8', K )  h,nà B[ui,U2\K)^ 

(see Dawid 1981, Section 6).

13



The distribution of the submatrices of the matrix distribution can be found in 

the literature, e.g. Dawid 1988, Lemma 1 for normal distribution (or Muirhead 

1982 p .12, Theorem 1.2.11), Lemma 2 for inverse Wishart distribution (or Demp

ster 1969, Theorem 13.4.2), Lemma 4 for matrix-t distribution (or Dickey 1967), 

Muirhead (1982, Theorem 3.2.10) for Wishart distribution, Mitra (1970) and Tan 

(1969) for matrix-variate F  and beta distribution. Some properties on the mo

ments, asymptotics and mixtures of the above distributions are summarized in the 

following lemmas.

Lem m a 1.1.

(a) For ^  ~  VF(i/, L), the Wishart distribution, = uTi.

(b) For 0  ~  IW[8\ G), the inverse Wishart distribution, E 0  =  (7/(6 — 2), (6 >

2).

(c) For F  ~  F(u^8\ 7T), the matrix-variate F , E F  =  (6 > 2).

(d) For B  ~  7p), the matrix-variate Beta distribution, E B  = Ip.

P roof. For the proof of (a) and (b), see e.g. Muirhead (1982, p.90, p .113). 

Then (c) follows by the definition of F(i/, 6; K)  as a mixture of Wishart W(u; ^ )  

and inverse Wishart IW{8; K). For the proof of (d), note that Va E a 'B a  ~  

F(f/i, U2'i ct'a) which is /?(i/i/2,1/2/ 2) • a 'a  in the conventional notation of the uni

variate beta distribution with parameters i/i/2, 1/2/ 2. Thus a '{EB)a  = E{a 'Ba)  = 

' aVpO, Va G which establishes (d). □

Lem m a 1.2. Suppose T  : {n x p )  has matrix-^ distribution T  ~  T{8] K, G), 

where 6 > 0, F  > 0, (7 > 0. Then

E T  =  0, Var(Vec(T)) =  0  K,  {S > 2).
0 —  2

Moreover, if G = /p, then

E T T  =  7ptr(F/(6 -  2)).

14



Proof. Since T  =  AT(S; ln,Ip) B,  where AA'  =  K, B 'B  = G, and 

Vec(J’) =  (B'  ® A)\ec(T(6\  we only need to prove the case in which

K  = In, G = Ip. Then T  has a stochastic representation

Hence

E T  = E[E{T I $)] =  0 

Var(Vec(T)) =  E[Var(Vec(T)) | $)] = E{Ip 0  0) =  7̂  ® 7^/(6 -  2), {8 > 2).

li G = Ip, let T  be represented as T | A ~  A/’(A, Ip), with A ~  IW{8, K) ,  and let 

ti be the zth column of T. Then E{t[tj | A) =  0, if i /  j , trA, if i =  j.  Hence

E T T  = E[E{rT I A)] = E[diag{trA}] =  diag{tr7T/(6 -  2)},

completing the proof. □

Lem m a 1.3.

(a) For ^  ^  W{u; S), the Wishart distribution, ^ / i /  S as z/ —» oo.

(b) For the p x p random matrix 0  ~  IW{8; G), the inverse Wishart distribu

tion, 6$ G às 8 oo.

(c) For T  ~  T{8; L, M),  the matrix-f distribution, T  —̂  M {L,A)  as 6 ^  oo, 

with L fixed and M/8  —> A.

(d) For F  ~  F[v,8-,K), the matrix-variate F, F  0 as 6 —» oo, F / v  —̂  

IW{8 ',K)  as 1/ —̂ oo.

(e) For B  ~  B{ui,i '2', Ip), the matrix-variate beta distribution, B  Ip as 

Ui —> oo, B  0 as t/2 —̂ oo.

Proof. Assertion (a) can be established by SLLN (Strong law of large numbers, 

see, e.g. Rao, 1987 p. 14) and the additive property of the Wishart distribution. 

Assertion (b) follows from (a) and the fact that =  Wp{8 -f- p — 1; G~^). Then 

assertion (c) follows from (b) and the representation of T as a mixture of a normal 

distribution with an inverse Wishart distribution (or Dickey 1967, p.513). The

15



representation of F  as a mixture of a Wishart distribution and an inverse Wishart 

distribution, and (a) , (b), establish (d). Finally, the first part of (e) follows from

(d) and the relation B = [ I (Dawid 1981, Thorem 4), and 

the second part follows from the relation that B{ui, U2] Ip) = Ip — ^ ( ^ 2, \ Ip)- ^

Lem m a 1.4. Let denote the left-spherical distribution of an order n x r  

matrix. Suppose Zp, Ap, A are random matrices with

Zp\ A p ^  Am(v4pv4p, p = 1,2, • • •

Suppose Ap —̂  A as p —> 00. Then Zp —̂  a random matrix Z, with distribution 

given by Z I A ~  An(AA'), as p —+ 00 (Similar results hold for right-spherical, 

spherical and rotatable distributions.)

P roo f. Let A, {Ap,p = 1,2---}, and Y  be independent matrices with

Y  ~  A„(7). The (z, j )  element of ApY — A Y  is a sum of finite products of the 

corresponding elements of Ap -  A and T, HÏ=i(Ap(z,fc) — A{i^k))Y{k ,j) .  Hence 

(Ap — A )Y  0, i.e. ApY AY.  Since Zp \ Ap = Ap • Y  \ Ap where

Y  is independent of Ap, we have Zp =  ApY with Ap_L_Ly (i.e. Ap and Y  are 

independent). Let Z =  AY.  The same argument shows that Z | A ~  A^(AA'). 

This completes the proof. □

Lem m a 1.5. Suppose U ~  T{S]In,Ip)> Then the following hold:

f / ( / '- F ( p ,6 ;7 ,) ,

(7n +  F ( / ') - ' ~F(<^ + n - l , p ; / „ ) ,

{UU')  ̂ ~  F{S + n — l ,p  — n T 1; 7„), (p > n), 

FV -F(T% ,6,7p),

{IpFU'U)-^ ^ B { 6  F p - Y n ;  Ip).

Proof. The results follow from the definitions and properties of the matrix 

distributions given in this Chapter (cf. Dawid 1981, p.266, p.272, p.271). □

16



1.4 M atrix Algebra

In this section we shall give some formulae of matrix theory needed to investigate 

the distributions of statistics derived from random matrices.

Lem m a 1.6. Suppose A : p x p, B : q x q and all the other matrices below 

are of suitable orders, and the inverse matrices concerned exist. Then the following 

hold.

{A +  CBD)-^  = -  A-^CB{B  4- B D A - ^ C B ) - ^ B D A ~ \  (1.1)

BD{A  +  CBD)-^ = B{B  + BD A-^CB)-^BDA~^  (1.2)

(A + f ) - '  =  A - '  -  A~^F{I + (1.3)

( /  +  F ) - ' =  /  -  F{I + F ) - ' = / - ( /  +  F)-^F,  (1.4)

( 4  + D'D)-^ = I p -  D '(/, +  DD'Y^D,  (1.5)

D(If + D’D)-'  = (/, +  DD'Y^D,  (1.6)

P roo f. The first identity is from Theorem A 5.1 of Muirhead, 1982. It follows 

that

BD{A->y CBD)-^

= BDA~^ -  BDA~^CB{B  +  BD A-^CB)-^BD A~^

= [{B +  BD A-^CB)  -  BDA~^CB]{B  +  BDA~^CB)~^BDA~^

= B{B  ^  B D A -^ C B )- ^ B D A ~ \  

yielding (1.2). The rest can be derived from (1.1) and (1.2). □

Suppose A is m  X m  positive-definite. Then there exists an m x m matrix 

B, such that A = B'B.  We can define B as the square root of A, written as As, 

satisfying (A^ )'A^ =  A. A symmetric square root can be taken as follows: find 

an orthogonal matrix P  such that

A = Pdiag(ai,- • • ,a„^)P',
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where the a /s  are the latent roots of A. Then let f  diag(ai , - ' ", \

If v4 > 0, A~^ = ( y f i c a n  be defined. Then [A~^yA~^  =  A~^. We have the 

following Lemma on the property of the symmetric square root of the nonnegative- 

definite matrix.

Lem m a 1.7. If /I, B are nonnegative-definite matrices of order m x m  and 

A B  =  BA,  then

(AB)^ = A^B^ = 

where denotes the symmetric square root of a matrix C.

P roof. By the assumption, we can obtain simultaneous orthogonal diago- 

nalization (c.f. Press, 1982, p.40), i.e. there is an orthogonal matrix P: m x m ,  

such that

P'AP  = diag(ai, • • • ,a,n), P 'B P  =  diag(6i, • • •, 6^), 

where u*, hi are the latent roots oi A, B  respectively. Hence we can define

A^ = Pdiag(o^, • • •, aV}P',

= Pdiag(6f,

{A B )-2 = fdiag((o6)f,. • •, {ab)i)P',

which satisfy the Lemma. □
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Chapter 2

CONJUGATE BAYES

CONTINUOUS

DISCRIMINATION

2.1 Introduction

In this chapter we shall investigate the problem of discrimination between two 

multivariate normal populations with common dispersion matrix. Fuller details 

are given in Dawid and Fang (1992), which is submitted as part of this thesis 

and is attached as Appendix A. For this problem Geisser (1964) obtained pos

terior probabilities that an observation belongs to one of k multivariate normal 

distributions under the assumption of the prior reflecting ignorance, the number 

of variables being finite. We consider the case when the number of variables is 

unlimited. Along the lines of Dawid (1988), we assume a natural conjugate normal 

inverted Wishart distribution and study the asymptotic properties of the ratio of 

the posterior probabilities of the populations. In particular, we derive necessary 

and sufficient conditions for asymptotically degenerate discrimination, whether or 

not the parameters are known. Thus a conjugate prior implies asymptotic deter
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minism in discrimination under certain condition, a phenomenon similar to that in 

regression (Dawid, 1988). However, in many contexts this belief is unreasonable. 

Hence the assumption of a conjugate prior in Bayesian analysis must be considered 

according to the problems being investigated.

2.2 A ssum ptions

Let y  be a binary indicator variable with Y  = i denoting membership of H*. 

Suppose that associated with each individual is a countable collection of variables 

X  =  (Xi, X2, with normal distribution,

X \ Y  = i -  /i,.+ A /'(l,S ), 2 =  1,2, (2.1)

where /i,- =  ••• ,) ' is 00 x 1, E = (<J,j),-,j=i,2,... is 00 x 00. Denote by Xp,

/Xjp, Ep the submatrices of X, /i-, E restricted to the first p variables, and similarly 

for other matrices.

Suppose the prior for the parameters (//, E) is the conjugate normal inverted 

Wishart distribution AfXW{m, H', 6, K),

/z I E -  m + E), E -  IW{6; K),  (2.2)

/  , ^ f  rr.' \ /
where p = 1 and m = 1 ^ are 2 x 00, H  =

K ^2 ) \ ^2  / \

0

0
, 6 > 0, and

=•2
K  is 00 X 00. (cf. eqs. (3.1), (3.2) in Dawid and Fang, 1992).

2.3 M ain Results

We consider in several cases the asymptotic behaviour of the ratio of the predictive 

probabilities.
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2.3.1 Known Param eters

Suppose all parameters are known. Then the ratio of the conditional probabilities 

of y  — i given Xp is

P ( r  =  2 |X p;/z ,E ) ^  f ( y  =  2 ) / ( X p |y  =  2 ;/i,E )
P ( r  =  1 |X p;//,E ) P ( F = l ) / ( X p  | y  =  l ; / / ,E ) ’  ̂ ^

where /(X p | Y  = z;//,E) is the density of 7V(^,p,Ep), (cf. eqs. (2.2), (2.1) in 

Dawid and Fang, 1992). Let

Ap = (/^ip — /̂ 2p) (Plp ~  P2p)î

the Mahalanobis distance between the populations IIi and IÏ2 based on Xp. The 

limit of Ap as p —̂ 00 exists and is denoted by Aqo- If X  arises from IÏ1, (2.3) 

converges a.s. to a random variable distributed as (7T2/7ri) exp{A^( —Aqo/2, Aqo)} if 

Aoo <  00, 0 if Aoo =  00, (cf. eq. (2.3) in Dawid and Fang, 1992). A parallel result 

holds if X  arises from II2, ( with A (̂—Aqo/2 , Aqo), 0  replaced by A^(Aoo/2 , Aqo), 00 

respectively, cf. eq.(2.4) in Dawid and Fang, 1992). Hence the condition Aqo =  00 

is necessary and sufficient for asymptotically degenerate discrimination between 

the two populations.

2.3.2 W ith  Prior D istribution

Suppose that the parameters are assigned the prior distribution (2.2). Then Ap 

00 as p —> 00. Hence by result 2.3.1 we expect the parameters to be such as to 

permit asymptotically degenerate discrimination, were their values to be known.

2.3.3 Unknown Param eters

Suppose that the parameters are unknown, but are assigned the conjugate prior 

distribution (2.2). Then the ratio of the conditional probabilities of F  = i given 

Xp (with the parameters p, E integrated out) is

P { ¥  = 2\  Xp) P{Y  = 2 ) /(X p  I y  =  2)
p(y = 11 Xp) p{Y = i ) f {x , \Y = iy  

21
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where /(X p | F  =  z) is the density of m,- +  T{S;K,ki), k{ = I (cf. eqs.

(4.3), (4.1) in Dawid and Fang, 1992). Let

7p = (mip -  ni2p)7Fp %mip -  mgp)

be the analogue of Ap as the function of the hyper-parameters in the prior dis

tribution for (//, S). The limit of 7p as p —> oo exists and is denoted by 7oo. 

If X arises from IIi, (2.4) converges a.s. to a random variable distributed as 

(^2/^ i)(^ 2/^ i)^  exp D, where the distribution of fl is the mixture, over the distri

bution (x?)"^ for A, of A^(-(fciA)~^7oo/2, (^iA)~^7oo), if 7oo < oo, 0, if 7oo =  oo, 

(cf. eq. (4.8) in Dawid and Fang, 1992). A parallel result holds if X  arises 

from Hg. Thus a necessary and sufficient condition for asymptotically degenerate 

discrimination between the two populations in the absence of knowledge of the 

parameters is that 7̂ 0 = 00.

2.3.4 Using Training Data

Suppose the parameters are unknown and assigned the prior (2.2) . Suppose also 

we have training data of Y  and X for a random sample of n individuals

 ̂ yn  ̂ 72

1 00

where, without loss of generality, we suppose the first rii components of are 1, 

the next ri2 components are 2, and partition x'  ̂ as

\ ni

ri2^(2) /

m  U2 = n. Now on a further individual we observe the values x° of the first 

p variables and wish to predict By result 2.3.2, in the posterior distribution 

of the parameters given (Y”,X ”), Aqo = 00 with probability 1 and thus with 

probability 1 the parameters will be such as to support asymptotically degenerate 

discrimination, were they to be known. Moreover, if 700 =  00, by result 2.3.3, 

with probability 1, the predictive distribution of (y °,X °) given (Y ”̂ ,X”) allows
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asymptotically almost sure identification of on the basis of X j, even when the 

parameters are unknown. Let

where

m-(æ”) =  (uixf + himi)/(hi +  n,),

= ^^p i^p —^n^pYQnni^p ~ ^n ^ p )^

= {^{i)ï'^nilni, l'„. =  (1,-• •, 1) is 1 X n*-, % =  1,2,

Ln =
! . .  o ' '

\   ̂ /
, Qnn =  /n +  TnHT'^.

Then the predictive odds are

P{Y^  =  2 I Xg,T",y") _  P{Y^ = 2 )/(X ° | Y  = 2;T",y")
(2.5)

P(FO = 1 I X ;,T ",y") f (y o  =  1)/(X0 I Y  = l ; T \ y " ) '

where /(X °  | Y  =  i;a;^,y”) is the density of m^(a;") +  T(6*’ K*{x^)^ k*), with 

S* = 6 n, k* = I P (rii + h ,)" \  (cf. eqs.(5.14), (5.12) in Dawid and Fang, 1992).

If 7oo < oo, then 7p(X”) converges a.s. to a limit

7^(X ”) = 7oo + nth'^{ni + hi)~  ̂ + ri2h2 (̂n2 + h2)~̂  =  7^ ,

(cf. eq.(5.17) in Dawid and Fang, 1992). Hence by result 2.3.3, if X° arises from 

Hi
f ( y o  =  2 |X g ,X \ y ' ')
P (y o =  1 |X g ,X \y ^ )

(cf. eq.(5.18) in Dawid and Fang, 1992) converges a.s. (under the distribution of 

(X°, X" )̂ given y ” and F® = 1 ), as p —> oo, to a limit whose distribution is the 

mixture of
8*12

7T2 f  /̂ 2 
7Ti 0  exp {JV ( - ! ( * •  A * )- '7 i, { k l A T h l )  }

over the distribution (x«.) '  for A*, (cf. eq.(5.19) in Dawid and Fang, 1992). A 

parallel result holds if X® arises from fig. Furthermore, the predictive odds

^ (^ 0  =  2 |X 5 ,X " ,Y ") 
P(F0 =  1 |X 5 ,X " ,Y ")
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(cf. eq.(5.20) in Dawid and Fang, 1992). is finite a.s. (under =  1 or F® = 2 ) 

as p —̂ oo (7oo < oo).

In the case when n is also large, the double limit lim(,i.p)_(oo,oo) and the repeated 

limits linip^oo finin-^oo, lini„^oo limp^oo, of (2.6) are the same and equal oo if F ° = 

2, 0 if =  1. Thus perfect discrimination is possible using extensive training 

data. More analysis will be made in Chapter 4 for this normal discrimination 

problem.
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Chapter 3

CONJUGATE BAYES 

DISCRETE DISCRIMINATION

3.1 Introduction

In this chapter, we investigate a problem of discrimination between two popula

tions with binary variables. Fuller details are given in Fang and Dawid (1993), 

which is submitted as part of this thesis as Appendix B. As in Chapter 2, we study 

the asymptotic property of the ratio of the probabilities of the populations con

ditioned on an observation as the number of variables tends to infinity. We show 

that the conjugate Dirichlet process prior (Ferguson, 1973) implies asymptotically 

perfect discrimination under certain conditions on the parameters. This extends 

the result obtained by Brown (1980) that, under the assumption of “uniform re

finement”, the prior expectation of the probability of correct classification tends 

to 1 as the number of predictors tends to infinity.

25



3.2 Assum ptions

Let TTi = P(IIj), the probability of population Ili, i = 1,2. Suppose we observe 

where X{ takes value 0 or 1. Let

Let 0 [resp. denote the joint distribution of X  in Hi [resp. IÏ2]: these are

measures over the Borel cr-field B°° of {0,1}°°. By Kolmogorov’s consistency 

theorem, 0 is determined by its restriction, 6^ say, to each we write =

P(X"^ =  I III), etc.

Suppose the parameters B are assigned Dirichlet process prior D (a), i.e. for 

each n, has the Dirichlet distribution with parameter the restriction

of a  to 5" ,̂ where a  is a finite measure over 5°°, with total mass |a |, (cf. Ferguson,

1973). We similarly take 0 ~  D(/9), and 0JJL^, thus specifying the joint prior 

distribution of {9̂ (j)).

Let A(x’̂ ) =  ^’̂ (x”) /^ ”(x’̂ ), the likelihood ratio in favour of Hi as against IÏ2, 

based on data X ” =  x", when B and (j) are given; and let An =  An(X”), a function 

of 0, (j) and X. We shall study the asymptotic behaviour of as n 00.

3.3 M ain Results

We consider in several cases the asymptotic behaviour of the likelihood ratio as 

n 00.

3.3.1 Known Param eters

Suppose the probability of B ,̂ tTj, z = 1,2 are known. Theorem 1 and Theorem 

3 below give the conditions for asymptotically perfect discrimination between Hi 

and IÏ2. Theorem 2 provides the basis for Theorem 3.
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Theorem  1. Suppose that a and (3 are both non-atomic measures. Then, 

as n ^  oo,

oo if n  =  Hi,

^  0 if n  =  ÏÏ2. (3.1)

Theorem  2. Suppose that a has decomposition a  =  A +  //, where A is 

continuous and /i is discrete. Arrange the atoms {xj} of ^  in descending order 

of rrij = /i(xj). If n  = Hi, then as n —> oo, the asymptotic distribution of 

0* is nondegenerate with p.d.f.
oo

|A|(1 -  +  £  y”“ (l -  |a | -  m*),
A:=l

0 <   ̂ < 1.

Theorem  3. Perfect discrimination property (3.1) holds if and only if

a  and f3 do not have common atoms. (3.2)

Now suppose we get training data from IIi and II2 and a new observation X  

which is to be classified as belonging to one of the 11*. If a  and (3 do not have 

common atoms, the parameters of 0 and (f> conditioned on the training data also 

do not (with probability 1) have common atoms. Hence (3.2) is necessary and 

sufficient for asymptotically perfect discrimination between the two populations 

using training data.

3.3.2 Unknown Parameters.

If 9 and </> are unknown, then the likelihood ratio relevant for classification is

7„(x") = «„"(x")/Æ(x"),
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where Qq = A/I^l is the marginal distribution for X  in Hi, when 0 ~  D[a)\ and 

similarly fo /?q. Let =  7„ (̂X”). Theorem 4 below gives the asymptotic property 

of r„  as n ^  oo.

Theorem  4.
oo if X  ~  «0 

0 if X  -  /?o

if and only if a  and /9 are mutually singular; while is almost surely bounded 

away from 0 and oo, under both Oq &nd if and only if a  and ^  are mutually 

absolutely continuous.

In particular, perfect discrimination in the absence of knowledge of the param

eters will not be almost certain unless a  and f3 are mutually singular—a much 

stronger condition than that of Theorem 3.

If we have N{ training cases from flj- {i = 1,2). Then asymptotically perfect 

discrimination (n —> oo) is still possible if a  and /? are mutually singular or a  

and (3 are mutually absolutely continuous but the number of traning data tends 

to infinity —> oo,i =  1,2).

3.3.3 Unknown Prior Probabilities

Suppose the prior probilities tt̂  are unknown. Let F  be a variable, taking values 

1 and 2, indicating the correct population, and jointly distributed with X, with 

P{Y  =  z) =  TTi. The parameter for the distribution of (F, X) is now (0, ÿ, tti), with 

prior distribution given by

0 ~  D (a), (j) ~  D{0 ):

7Ti ~  Beta{\a\, \/3\),

all independently.
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In this case the asymptotic discrimination behaviour will be the same as for 

the case of known tti.
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Chapter 4

COMPARISON IN 

DISCRIMINATION

4.1 Introduction

In this Chapter we investigate the connection between the Bayesian approach and 

the classical approach in the problem of discrimination between two homoscedas- 

tic multivariate normal populations when the number of variables that can be 

observed is allowed to tend to infinity. Geisser (1964) considered the problem of 

discrimination between k multivariate populations using Bayesian methods. In 

Chapter 2 (cf. Dawid and Fang, 1992) we consider the case of discrimination 

between two normal populations with infinitely many variables, and showed that 

under certain conditions the conjugate prior will imply asymptotically degenerate 

discrimination, i.e. the ratio of the probability of the second population to that of 

the first population conditioned on the data will tend to zero or infinity according 

as the observation comes from the first or second population. In this Chapter 

we shall investigate this problem more deeply. We shall study a Bayes linear dis

criminant, the coefficient of which is obtained by maximizing the performance of 

the linear function of the observation to be classified conditioned on the training
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data. We shall show that under certain conditions the performance of this Bayes 

discriminant tends to infinity and the probability of its correct classification tends 

to one as the number of the variables tends to infinity. Thus this Bayes crite

rion implies degenerate discrimination. In the classical approach, if the number 

of variables is unlimited, we can always find a best linear discriminant function 

maximizing the ratio of between-class sample variance to the within-class sample 

variance by taking the denominator as zero, which means it will classify the data 

exactly. If for uniqueness we choose one which maximizes the performance condi

tioned on the data, then we obtain a mixture solution. In another word, we define 

the Bayes criterion a maximizing the performance conditioned on the data and 

consider two estimators, of which one is unrestricted optimal, while the other is 

restricted optimal, subject to the condition that its within-class sample variance 

be zero. We shall show that the performance of this solution is asymptotically 

equivalent to that of the full Bayes solution using a conjugate prior. Thus the 

Bayes discriminant is very close to the sample-based discriminant, and so neglects 

the problem of selection bias (Dawid, 1994).

4.2 Assum ptions

Suppose that, for each population 11%, Xp =  (Xi, • • • ,Xp)' has a multivariate nor

mal distribution Ep), 2 = 1,2, where =  {fin, • • •, flip)' is ap-dimensional

vector, i = 1,2, Sp =  j  = 1, • • • ,p, is a p x p matrix. Discrimination may

be based on a linear function Vkp a^Xp. The performance of Vkp is defined as 

the squared difference of its expectations in the two populations normalized by its 

variance, i.e.

K  =  -  £^2(KaJlVVar(ya,) =  ~  (41)

Suppose we have training data on n, cases from II;, and on each we observe 

potentially infinitely many variables X =  (X i,X 2, • * -)% thus obtaining a n x 00
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matrix (ni -i- n2 = n). Without loss of generality we suppose its first Ui rows 

arise from population fli, the next U2 rows from II2. We then have

where

1 — ( f ^ i l  1 f ^ t 2 i * — 1-5 2 ,

V ^2 /
(cTj-j), i^j =  1 ,2 , '- ',

\
, n = n i + U 2,

■-ni 

0 1

(4.2)

(4.3)
ri2 /

and 1„. is a Uj-dimensional vector with all components being 1.

Suppose the prior distribution of the parameters (//, E) is the conjugate inverse 

Wishart distribution A/*JW(m, 6, Q):

/ i |E  -  m -fW '(/f,E ), S -/W (< 5 ;Q ), 

where H (2 x 2), m (2 x 00),6 > 0, (J (00 x 00) > 0 are given,

(4.4)

m =
m

V "^2 y

Thus the marginal distribution of X ” is

Ar' 0 

0 A7*
(4.5)

where

G = /n + THY'.

(4.6)

(4.7)

In what follows we write Xp, X ”, Ep for the submatrices of X , X ”, E restricted 

to the first p variables, and similarly for other matrices.
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4.3 Posterior D istribution

To make Bayesian inference we need the posterior distribution of the parameters 

(/z, E) given the data Under the assumptions (4.2)-(4.5), the result is well 

known (see, for example, Press, 1982). The following lemma gives a somewhat 

more general form for r populations.

Lem m a 4.1. Suppose the distribution of and the prior distribution of 

the parameters are given by (4.2) and (4.4), where X'^ is n x oo, P is n x r, // is 

r X oo, E > 0 is oo X oo, m is r X oo, jEf is r X r, Q > 0 is oo X oo, and 6 > 0. Then 

the posterior distribution of (//p, Ep) conditioned on the data X ” is given by

I V )  ~  +

Z p lX "  ~  (4.8)

where

H* = {T'T

m; = ^ T ' ( x ;  -  Pmp) +  mp,

S* = 6 + n,

%  = Qp + ( x ; - r m p ) 'G - X % ;- r m p ) ,

with G given by (4.7).

Proof. We first note, by Lemma 1 of Dawid and Fang (1992), that the 

conditional distribution of //p, Ep given the full data matrix is the same as 

that given X^ ,  the data on the first p A"’s only. The density of (^p, Ep) | X ^  

is proportional to that of (/ip, Ep, X ”), the product of the three densities of 

Xp I (/ip, Ep), /ip I Ep and Ep. It can be checked that for m*, Q* defined in the 

Lemma, the following equations hold:

m;  =  {TT + + H - 'm , ) ,
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q ; - Q p = ( x ; ) ' x ;  +  m'^H-'^m^-(T'x; +  H-'^m^)'

x ( rT  +  +  Æ '-'m ,).

Using the above equations to rearrange the terms in etr(-) of the density of 

(^p, Sp, Xp ), we establish the Lemma. □

Now suppose (4.3) and (4.5) hold. Let X ” be partitioned as X"̂  =  *

with X^^ being (n* x oo) and

y n
^(2)

n \/'•■n, / :

I = ( rT )- 'r '(A ',"  -  rm p) +X . =  ( r T ) - 'r 'x "  =

■s.> =  ( % ) ' ( / . ,

s„ = (x;)'(/„-r(rT)-'r')x;
= { x ;  -  r m , ) V n  -  r(rT)-‘r')(x; -  V m ,)

— ^iP' 
i=l

Then (4.8) holds with

H* =
h f '  0 ,

\ f — n* T
y 0 /^r

m; = ^ T ' ( x ;  -  Lmp) + mp = (mîp m y ' ,

nijp = (n,Xip T /itiriip),

S* = <5 T 7Î1 + 712,

o ;  =  Qp +  ( x ;- rm p ) '(7 n  + r ^ r r ' ( x ; - r m p )
2   __

=  Qp +  5p + -  m%p)(X,p -  niip)'.
t=l
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4.4 Discrim ination

We shall be interested in finding a linear function a^Xp which can be used to 

discriminate best between the two populations according to some criterion, on the 

basis of the training data X'^. When a new observation Xp, the value of the first p 

X's  of a new individual, is obtained, we then use a^Xp to decide which population 

it comes from.

4.4.1 Bayesian Approach

One Bayesian approach is to choose ap such that £̂ (<̂ ap | X ") attains its maximum, 

with <̂ ap given by (4.1).

P ro p o sitio n  4.1. Under the assumptions (4.2)-(4.5), the posterior expec

tation of (f>ap given data X" is

(a 'm '&pf
E(<I>b,  I X")  = a 'H - a  +  S'

^pQp^p
where H*, m*, 6*, Q* are given by the equations following Lemma 4.1, ot = 

(1, -1 )'-

P ro o f. By Lemma 4.1, ct'fipSip | S p ,X ” ~  a 'm ja p -f  a^Spap).

Hence

E[{a'i,^3L^y I Ep,X "] =  ( a ' / f a ) ( a ; S p a p )  +  {a 'm ;a , ) \

and so

£(<4ap I S p ,^ ”) =  a ' H ' a  +  (a ;S p a ,)-‘ (a'm ;ap)^

Since Ep I X" ~  IW{S'-Q;),  (a^Epap)'* | X " ~  W{S';(a'j,Q*a^)-^). Hence

^[(a^Epap)-' I X"] = «♦(a;Q 'ap)-'.
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Substituting the above two expectations into

we get the desired result. □

Corollary 4.1. The Bayesian solution, achieving maxap ^(<^ap | X"), is 

ap <x ^  Q ;“ m ;'a /7 p (X ’‘)5 =  -  m ;p)/7p(X")è

and the corresponding maximum is

max£(«Sap I X ")  =  a 'H * a  +  <5*7p(X"),ftp

where if*, m*, 6*, Q* are given by the equations following Lemma 4.1, a  

(1, -1 ) ',  and

7p(X“) =  a 'm * Q l ' 'm ’̂ a  = (mjp -  m y 'Ç ;" '(m ;p  -  m^p).

Corollary 4.1 shows that the coefficient of the Bayes discriminant function 

is proportional to the difference of the posterior means (transformed by Q*  ̂) 

between the two populations.

4.4.2 C lassical Approach

A classical approach is to choose to maximise the sample analogue of ÿap :

2ap '*= '[< (X ip-X 2p)]7a;5pap,

where Sp, X{p are given in Section 3. If p < n — 2, S'p > 0 with probability 

one, and the solution to max&p Zap is oc S~^{Xip — %2p), i.e. the coefficient 

of the discriminant function is proportional to the difference of the sample means
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between the two populations (transformed by S~^). However, if p > n — 2, 5p 

is singular. Then Zap attains its maximum value, viz. oo, at any a.p such that 

SpSLp = 0 and 2Î^{Xip — %2p) 0. For definiteness we shall choose such that

it also maximizes FJ(<̂ ap | subject to these conditions, and make comparison 

with the full Bayes solution .

Lem m a 4.2. Suppose (  G R^, A  and S  are symmetric, p x p, A is 

positive-definite, rank (S') = r < p. Then the solution of

(a' f)2
max — —  subject to Sa^ =  0 

ap a^Aap

IS

and the corresponding maximum is

max = i 'A -^P {J \ f (A -^SA -^ ) )A -^^ ,
ap:Sap=o a'^Aap ^  ̂ ^

where A^ is the symmetric square root of A, P{V) denotes the orthogonal projec

tion onto a space V, and Af{U) denotes the null space of a matrix U.

Proof. Let A^ be the symmetric square root of A, (o =  A "^(, S'o =  

A~^SA~^,  b =  A^ap. Then maximizing (a'p^Y/ a!pAa.p subject to Sa.p =  0 is 

equivalent to maximizing (b'^o)^/b'b subject to Sob =  0. Let fo =  P{Af(So))^o. 

If b G Af{So), fgb =  fob. Hence

((ob)' =  ( W < & & b ^ b

with equality holding iff b oc fo, completing the proof (cf. (lc.6.3) in Rao, 1973 

p.50, for alternative proof). □

A direct consequence of Lemma 4.2 is the “mixture” solution, denoted by a^ 

in the following Corollary.
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C o ro lla ry  4.2. The mixture solution, achieving maxa^ E[(j)g,  ̂ | X ^)  subject 

to SpSLp = 0, p > n — 2, is

apoca^ =' P0m 'J a /y ^ { X " ) i

= P„*(mîp -  m y /7 p ^(X ’‘)î

and the corresponding maximum is

max £(<^ap I %") =  cc'H'a  +SLt} U

where H*, m*, 6*, Q*, are given by the equations following Lemma 4.1, ot = 

(1 ,-1 ) ',  and

Recall that the coefficient of the full Bayes discriminant function (transformed 

by Q*^ ) is proportional to the difference of the posterior means (transformed 

by Q*  ̂) between the two populations. Adding the restriction of least squares 

{Sp3.p = 0) requires the transformed coefficient to be such that it is proportional 

to the projection of the above difference onto the null space of Q*  ̂SpQ*p ^.

Note that we have normalized so that

l|af ll<3; =  llapllo; =  1. 

where || • ||g* is the norm associated with the inner product (ap,bp)g. =  a^Ç^bp.
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4.5 Comparison

The performances of the full Bayes discriminant and the mixed discriminant ob

tained by combination of Bayesian and classical criteria can be compared through 

investigation of the corresponding values of -É̂ (̂ ap | achieved, from the Bayes 

point of view, and for Z»p, the sample analogue of 0ap? from the classical point 

of view, and also through their performance on a future observation X®. We first 

give two Lemmas needed in the investigation of the asymptotic behaviour of the 

statistics concerned in this section.

Lem m a 4.3. Let Pi = P{C{Q*  ̂SpQ*  ̂)) be the orthogonal projection 

onto C{Q*  ̂SpQ*p ^), the range of Q*  ̂SpQ^ and P£ =  Q*  ̂PiQ*p ^ . The 

following hold:

P ro o f. The results follow from the definitions of P£, Pq (cf. Corollary 4.2) 

and the property of the orthogonal projection (cf. lc.4 in Rao, 1973, p.46). □

Lem m a 4.4. Let

Pi = p(V(r)) = /„-r(rT)-'r',
7p =  a'mpQp*mJ,a,

and G, Pq, P£ be defined in (4.7), Corollary 4.2 and Lem m a4.3 respectively. The 

following hold as p —> oo:

(a) ( x ;  -  rm ,)Q ;- ‘ { x ;  -  rm ,y  g .

(b) G - i ( X ;  -  r m ^ ) Q ' / m ; a h l  = O p(p-‘ ).
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(c) a'mpQ* 'm'^alip  1.

(d) ( x ; - r m p ) P £ ( x ; - r m p ) ' - ^ P i .

(e) {X;  -  Vmp)Plm'^ocl4 = P,G'^Op(p-^) + (p" '),

(f) a ' m p P l m ' p O t j ' i p  =  Op(p"^).

Proof. Define a random matrix U by

Then by (4.6), U ~  T{6;In,Ip). The following hold by Lemmas 1.1, 1.3, 1.5, 1.6;

+  - g ( 6  +  » - l , p ; / . ) ,  (4.9)

E ( L  +  U U r ^  =  /„ =  0 (p - ') ,  (p ^  oo), (4.10)
0 n p — L

u(ip + u 'u y 'u '  = I p -  (/„ + £/[/')-'

~  B(p,(5+ n -  l ; / „ ) ( p -► oo), (4.11)

(/p +  t / '( 7 ) - '~ B ( 6  +  p - l , n ; / p ) ,  (4.12)

( /( / ,  +  ( /V ) - ' =  ( 4  +  (71/')-'(/ (4.13)

By Lemma 4.1,

Q; = Q k h  + U'U)Qh  (4.14)

Hence by (4.14), (4.11),

( x ;  -  P m p ) Q ; \ x ;  -  rm ^)'

=  G5[/(/p +  U'Uy^U'G^ G, as p ^  oo,

_ i i
yielding (a). Since UQp^m'j,al'fp ~  T(<5;/„, 1) is bounded in probability, by 

(4.14), (4.13), (4.10),

g -'h x ;  -  rmp)Q;-'m'pCc/4

= U(Ip + U'U)-^Q;^m'^a/ 4

= (Ip + UU')-' ■ U Q ; ^ m ' a h l  =  O f(p - ') ,  (4.15)
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yielding (b). By (4.14), (4.12) and Lemma 1.3 (e),

= a'mpQp 2(/p + C/'t/)“^Qp ^m pa/7p

~  B {8 + p -  l ,n ;7p)/7p = B{8 -\-p -  l ,n ;  1) 1.

This establishes (c). By Lemma 4.1,

Since £(g;"^S 'pQ ;"^) =  C{QI~'^qIu'G"2P^) (cf. lb.6 in Rao, 1973 p.27),

X (fiG & (/(7p +  U ' U ) - ^ U ' G ' ^ P i Ÿ P ^ G ' ^ U Q I Q ; \  (4 .1 6 )

where denotes the Moore-Penrose inverse of a matrix A (cf. lb .5 in Rao, 1973 

p.26). Also, by (4.11),

Pi{PiGiU{Ip + U'U)-^U'GiPi)+Pi Pi. (4.17)

Hence by (4.14), (4.16), (4.11), (4.17),

{x ; -  rmp)Pi(x; -  Tm^y 

= G^U{Ip + U'U)~WGiPi{PiG'W{Ip + U'U)-^U'GiPi)*Pi 

xG5f/(/p +  7 /'tl)-'t/'(?5  

GPiG = Pi,

yielding (d). By (4.14), (4.16), (4.13), (4.11), (4.17), (4.15),

( X ;  -  rm p)P lm '^ah^

= G'W{Ip + U'U)-^U'G^Pi{PiG^U(Ip +  U'U)-^U'GiPi)+Pi

xG'^U{Ip + U'U)- 'Q; '^m'^ahl

= G'^U(Ip + U'U)-^U'G'^Pi{PiG'W{Ip +  U'U)-^U'G'^Pi )+Pi

xGî(/„ + UU')-^UQ;'^m’p(xl4  

— G î(/„  +  op{l))G^{Pi + op(l))G 20p(p”*)

=  (G f, +  op(l))G »Op(p"')

=  P iG ^O p(p"') +  op(p"'),
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yielding (e). By (4.14), (4.16), (4.13), (4.15), (4.17),

a'mpPlmj,a/^p

= ot 'mpQ^^Ip  +  U'U)-'^U'G'2P^(P^g 'w {Ip +  U'U)~W'G^ Pi)+Pi

= ot'm pQ ;h '{In  +  UU')-^G'2P^(PiG'W{Ip +  U'U)-^U'G'2P^)+P, 

xG&(7n +

= Op(p~^),

yielding (f). □

4.5.1 Posterior Perform ance

T h e o rem  4.1. Under the assumptions (4.2)-(4.5)

P ro o f. Let Ap(X^) = 7p(X") — jp (X ^) .  The left side of (4.18) is, by 

Corollaries 4.1 and 4.2,

 ̂ _  S*Ap(X^) ^   ̂ _  S*Ap{X^)hp
ol'H *ol +  6*^p[X^)  ( a ' H * a  +  6*^p{X^) )  /  ̂ p

Since 7p is nondecreasing, it tends to a limit G [0, oo]. It was shown in Dawid 

and Fang (1992) that

7p(A”) c +  7oo, as p oo, if 7oo < oo. (4.19)

where

c = fij/ij ^(rii +  hi) '  T 7%2̂ 2 (̂ 2̂ “H ^2) ^, (4.20)

(also proved below for convergence in probability). Now suppose m i ^  m 2, then

7oo > 0. We shall show that

1, as p —> 00, if 7oo =  00, (4.21)
7p
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and

P.O . (4.22)
I p

Then (4.19), (4.21), (4.22) lead to the desired conclusion. By Corollary 4.1 and 

Lemma 4.1,

7,(X ") =  a 'm ;Q ;- ( m p 'a

=  a ' [ H T { X ;  -  rm p) +  m,]Q;-' \{X;  -  Tm,)'TH'  +  m ;] a  

=  Ji +  J 2 + (/s, say,

where

p V'-p

J 2 =  2 (% '.g T % x ;-rm p )Q ;-m ;« ,

J3 = a'lJipQl 'm j,a.

By the definitions of G and H* (cf. (4.7) and Lemma 4.1),

H*r'GTH* = 77"r'(4 +  THr')TH*

=  + rT)HT'TH* =  HT'TH*

= H{T'r + = H(I -  =  H -  H \

Hence by Lemma 4.4 (a), (b), (c), as p 00,

J i a ' H ' T ' G T H ' a ^ a ' i H - H ’ ) a  =  c,

J2 =  2 a ’H ' r ' G ^ 0 p { j l p - ' ) ,

J3 P 1.
Iv

Since

7p(^p ) — Ji +  J 2 +  «/s,

(4.21) follows, as does the “in probability” version of (4.19).

By Corollary 4.1, Corollary 4.2, Lemma 4.3, Lemma 4.1,

Ap(%") =

=  ol'[H-V'(X; -  Trrip) +  m jP £ [(X ; -  TmpYTH* +  m'^]ot 

= Zi Z2 Z3, say,
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where

Zi =  o c 'H ^ V \X ; -V m , )P l{X ; -T m , ) 'V H * O L ,  

Z2 =  2 a '/ /T '( X ;  -  rm p)P£m ;a,

%3 =  a'lripPlrripa.

By (d), (e), (f) of Lemma 4.4, as p ^  00,

Z2 =  2a'H '^ ' (P^GWp{p-^)  + op{p-^)h^,

Z3 =  Op('ypP~‘‘).

Thus

0, as p —̂ 00,
I p  I p

establishing (4.22). If rtii = m 2, from the proof of Lemma 4.4 and the proof above 

Ap{Xp)  0, (4.19) remains true. Hence (4.18) holds. This completes the proof. 

□

Note by (4.19), (4.21), (4.22),

Since |^ 2/ 7p| < (Zi + ^ s)/7p, we have that (4.18) is 1 — 0^(7^^), if 7  ̂ =  o(p^) 

(in particular, if 700 < 00), 1 — Op(p“^), otherwise. In the former case, moreover, 

Zs 0, so that maxap J5(<̂ ap | X^) -  maXap:gpap=o ^(<^ap | X ^)  0 .

4.5.2 D iscrim inant Functions
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Now suppose a new observation X j is obtained and we wish to classify from 

which population it arises. We may use a discriminant function with coefficient

a.p.

m;, Q;) 2a;(X “ -  (4.24)

Since Wap(mîp, mj, QJ) > 0, Wap(m^p, mj, QJ) < 0 if or a^, we use

the corresponding sign to classify X°. Note that the value of ^ap will not 

be affected by any scalar by which ap is multiplied. We shall show that the two 

coefficients a^ and a^ lead to the same asymptotic behaviour for (4.24).

T h e o rem  4.2. Under the assumptions (4.2)-(4.5), as p —> oo,

(a) If Xp arises from IIi, then

. i f 7oo =  oo,

 ̂ _ £ , l+ 2 ( c  +  7 ^ )-5 -r(< 5 *;l,i,*) i f 7oo<oo.

(b) If Xp arises from II2, then

M"as(X,,m,,<3^){ _ ^ _ ^ _ ^ 2(c +  7^ ) - è . r ( 6*;l,fcî) if 7»  < oo.

In the above, k* = 1 h* \  and c is given by (4.20).

(c)

w ^b {x I; m ; , q ;) -  fy ..(x g ; m;, q ;) o. (4.25)

P ro o f. If Xp arises from Hi, then by (5.12) of Dawid and Fang (1992)

X» IX " ~  + r (6 ';  q ;, k;).

Hence

W^b {XI; m;,  Q;) I X" ~  1 +  T{S'; l , k ; ) -  27,(X ")-& ,

which combined with (4.19), (4.21) establishes (a). Then (b) can be proved simi

larly.
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For the proof of (c), without loss of generality we suppose X j ~  IIi. By Lemma

4 .3 ,

Hence by Corollary 4.1, Corollary 4.2,

( a f  -  a ^ ) 'm ; 'a

OT ^
” V7p( ^ p")^

A p(% ")+7^(% '')(1 -  7p(X ")V 7^(X ")^) 
7p(A ")î

(4.26)

=  a ' m l  I ------- :— !------- :— =— -  I m~ a

(4.27)

which divided by 7p(X '‘)2 converges to 0 in probability by (4.23). Similarly, by

(4.26),

( a f  -  a p ^ ) 'Q ;(a f  -  a ^ )

a 'm ;P £ m ;'g  a'm ^Pom ^'g /  _  7p(A ’*)^

7p(%;) 7p(A?) V 7 ^ (X ")V

7  +  <“ *’

Ap(X'
7 p(%

Then the left hand side of (4.25), given X ”, is distributed as

( a f -  O ' m ;  «  ^  T ( 6"; ( a f  -  a ^ ) 'Q ; ( a f  -  ^ ) ,  t^ )  • 27 p ( A " ) - ^
7p(A^)2

and thus tends to zero in probability, both conditionally on X'^ and uncondition

ally. □

From (4.28) we know that

( a f ) 'Q ; a ^  l ( ( a f ) 'Q ; a f  +  ( a ^ ) 'Q ;a ^ )  =  1 .

Thus the angle between the unit vectors Q*^ a.p and tends to 0, so that the

two coefficients are asymptotically identical.
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In Section 4 in order to maximize Zap we let the denominator a'pSpSip be zero 

and obtained the mixture solution a^. But we also require that the numerator 

of Zap not be zero. For any finite p, it is positive with probability one. We shall 

show that its limit is also positive.

Theorem  4.3. Under the assumptions (4.2)-(4.5),
/ j O L ' H O C + ^ ^ f  .r

[ ( « « ) ' ( % : , ’ P - O C ,  (4.29)
I OO if 7 oo = c)o,

, (q-//a+7ooF if ̂
’ p - o o ,  (4.30)

I OO if 7 oo =  oo,

where c is given by (4.20).

Proof. By Corollary 4.1 and Lemma 4.1,

(a f  )'(X.p - X 2,) = a 'm ; Q r ‘( ÿ p ) '« /7p(V")^. (4.31)

To prove (4.29), write

cc'm ;Q ';\% )'oL  

=  a '[H'V '{X;  -  rmp) +  m JQ ;- ' {{X; -  rm ^ )T ( rT ) - ‘ +  m ;]a

=  J\ J2 ~\' J31 say, (4.32)

where

J i =  cx> H * v \x ; -T m p )Q ; - \x ; -V m p ) 'T {rT ) -^ o c ,  

J 2 =  a '[^ *  + ( r T ) - '] r ( x ; - r m p ) Q ; - ^ m ; a ,

J 3 =  a'nipQl 

By Lemma 4.4 (a), (b) and (c), as p —> 00,

a'H'V'GT(V'V)-^a = a 'H a ,

4  = a '[i/*  +  (r 'r)-* ]r 'G 5  0 p (p - ')  - ^ 0 ,
1Î
J3 p 1.
I p
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If 7 oo < oo, by (4 .1 9 ), J2I 1V ' (7p/7p(^""))^ 0. Hence (4 .3 1 ) is equal to

J \  J z  J 2  (  7 p P csl' H o l  +  7 oo
r  H— r ' I / I —   rr~5 as p ^  00.

where

7p (^“ )5 7^ \7 (-^ " ) /  (c +  7oo)5

If 7oo =  00, (Ji + J2)hp  0. Hence (4.31) is equal to

This completes the proof of (4.29).

By Corollary 4.2, Lemma 4.1,

(a^W iP  -  %2p) = a'm;Po*(Xp)'a/7^'(X")î (4.33)

To prove (4.30), by Lemma 4.3, write

a'm;P*(Xp)'a = (Xp)'a -  a'm;Pl{%ya.  (4.34)

Now

a'm;Pl(X,ya = Z, + Z2 + %, (4.35)

Zi =  c t 'i /T '( A '; - rm p ) P £ (A :; - rm p ) T ( r T ) -* a ,

%2 = + (rT)-i]r'(x; -  rmp)P£m;«,

Z3 =  a'mpPlrripa.

By Lemma 4.4 (d), (e), (f), as p —> oo,

Zi a ' i / * r 'P i r ( r T ) - 'a  =  0,

Z 2 =  a '[ i? *  +  ( r T ) - ' ] r ' ( P i G î O p ( 7 | p - ‘ ) +  o p ( 7 p V ‘ ))

= Op(7pp“*), since r 'P i  = 0,

Zs = Op(7pP”^).

If 7oo < oo, by (4.31), (4.34), (4.35), we can write (4.33) as

T   ̂ Z 1 + Z 2 +  Z 3
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which combined with (4.29) establishes the first part of (4.30). If 7oo =  oo, since

J\ J2 ~  (^1 +  ^2 +  ^ 3) p
Ip

by (4.32), (4.34), (4.35), we can write (4.33) as

0 ,

( J3 , J \ J 2 — -\-Z2 -{■ Zz) \  (  Ip \
k  +

yielding the second part of (4.30). □

We are also interested to know the performance of from the classical point 

of view, i.e. its From Theorem 4.3 we know that its numerator (4.29) has 

the same limit as that of Zai, (4.30). We shall show that its denominator tends 

to zero in probability, so that Zas -4 00.

Theorem  4.4. Under the assumptions (4.2)-(4.5),

(Up )'5'pa^ 0, as p -> 00.

Proof. By Lemma 4.1 we have

(a«)'5paf =  <x'm;Q;-'(X; -  Tm,) 'P ,(X"  -  r m , ) Q ; 'm ; 'a / 7p(X").

Now

a'm ;Q -;\x ; -  Vm.yp, 

= a'H-T'(X; -  Vm ,)Q';\x; -  rm,)'Pi + a'm ^Q ;'\x; -  Tm„)'Pr.

By Lemma 4.4 (a), (b), the first term tends to

ol'H*V'GPi = =  0

in probability. The second term is

7#G&PiOp(p-').
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Hence by (4.19), (4.21),

a ' m ; Q ; \ X ; - T m , y P ^  (  7,

0, a.s p 00,

completing the proof. □

4.6 D iscussion

We have shown that, the conjugate prior implies a determinism that, if 700 = 

00, the predictive odds of Hi to ÏÏ2 are asymptotically degenerate (cf. Chapter 

2); the posterior performance of the Bayes estimator , E((j)ĝ B | %" )̂, tends 

to infinity (cf. Corollary 4.1 and (4.21) in the proof of Theorem 4.1); and for a 

future observation, the probability of correct discrimination of tends to one (cf. 

Theorem 4.2). To consider the possible selection bias in estimating the optimised 

value of the parameter <̂ ap, defined in (4.1), let

(f) =  SUp{(/>ap} =  {fJ'ip ~~ fJ>2p) (Mip ~  A*2p) — 4̂ 0**)

with

®p — ^p (â ip ~  Â 2p)-

Zap (defined in Section 4.4.2) can be used as the estimate for ^ap- By (4.2) and 

Lemma 4.1,

T ip  -  % 2p =  (X;)T(rT)-'a -  + A^(Ep, a'(TT)-'a) (4.36)

and

= (x ;) 'f i% ; (4.37)
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is a noncentral Wishart distribution with covariance matrix Sp, rank(P i)=  tr(P i)=  

n —2 degrees of freedom, and a matrix of noncentality parameters ( F P\ (F//) =  0, 

i.e.

Sp ~  ]^p{n — 2; Sp). (4.38)

Now suppose n — 2 >  p. By the independence of Xp and Sp, we have

=  [(«Vpap)^ +  ( a ' ( r T ) - ‘a )(a ;S p a p )](a ;E p a p )-V (n  -  4)

=  (<̂ ap +  Ml  ̂ ^)/(n — 4).

Let

^ap = (n — 4)Zap —  ̂ +  Mg ^).

Then is an unbiased estimate of ^ap-

=  sup{Zap} = (X^p -  X 2p ) ' S ; \ X i p  -  X 2p)
ap

and

X *  =  supjXap} = (n -  4)Z* -  (nj )== %a;,
ap

where a* =  S~^{Xip -  X 2p). By (4.36) and (4.37),

(»[' + ')-x%ip -  -  %2p) -  %;(6),

the noncentral distribution with noncentrality parameter

b  =  i t ^ i p  -  -  M2p )/(» r ‘ +  ” 2’ ) =  'A*7 («r^ +  " 2 ') ,

{Xi p — X2p)'I^~'{Xip — X2p) 2

( X , p - X 2p ) ' S ; ^ ( X i p - X 2p )  ^  

independently. Thus 

( x ^ p - X 2p ) ' S ; \ x ^ p - X 2p )

-  I T  - T  v r - r T  - T  J ( X i p - X , p Y ^ - ^ ( X , p - X , p ) \
-  ( X ^ p  X 2p ) S p ( X , p  j

(n r‘ + n j ') p  
~  n - p - 1
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the univariate noncentral F  distribution (cf.Muirhead 1982 p.216). We have

_  (nr* +  n j ') (p  +  6) _  (nr* +  n j ‘)p +  4>"
'  ' n - p - 1 - 2  n - p - 3

E{X*) = ( n - 4 ) £ ( Z * ) - ( n i - '+ n j ' )
_  (n — 4)^** +  (jii  ̂+  U2 *)(p — l)(n  — 3) 

n — p — 3

Let <l)* = <j)\* with A+ = , A* =  a^. If p > 1, E{X*) > (f>**{>

is positively biased.

If n — 2 < p, we can find a*, (e.g. a* =  a^ ), such that =  oo, which fits the

data exactly. In the Bayesian approach, we have

Fap =  ^(<^ap I Xp)  (cf. Proposition 4.1),

=  supjy^p} =  ol'H*ol + <5’"7p(X”) with A"̂  =  a^ ( cf. Corollary 4.1), 

y  =  E{(t>̂ L I X^)  = a 'H *a  + 6*-f^{X^) (cf. Corollary 4.2).

By Lemma 4.1,

( a 'f f a E p ) - i p ; a  | X ; ,  ~  1).

Hence

( a ' f f ' a r W M p E ; ^ / ^ a  | X ; , E ,  ~  

the univariate noncentral distibution, with the noncentrality parameter

c =  (a '/f* a )"^ a 'm JS p ^ (m p 'a ,

Also

Hence

E (a ' f^ ,E ;^ /^a  | X ; )

= E (E (a 'M ,E , f c ' ^ a lX ; ,E , ) IX ; )

=  E (a 'E 'a (p  + c) I x p  

=  p a 'H 'a  +  oc'm;E{Ep | X;)(m;)'a

=  p{(hi) * +  (^2) ')  +  (^*+P  ~ ~  (™îp — ™2p)'
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This shows that

y  =  E{4," I x ; )  =  p ( ( A t ) - '+ ( f t ; ) - ') + ( r + p - i ) ( m ;^ - m y '( 5 ; - * ( m ;^ - m y .

If p > 1, Y** > Y'^ > Y*. y**, Y* can be used as the Bayes estimates for 

4>̂. For any finite p, these estimates are finite and thus adjust X*  =  Xĝ L = oo 

in the right direction. However, if p —> oo, we have shown that T'*' converges a.s. 

to a limit, which is finite if 700 < oo or oo if 700 =  oo (cf. eqs. (4.19), (4.21) in 

the proof of Theorem 4.1). Also by Theorem 4.1, Y*jY '^  —̂  1. Hence under 

the condition 700 =  00, bias can not be corrected by using Y*^ Y'^ or Y** for 

large p. In fact we have shown that the Bayes estimator and the sample-based 

esimator have similar asymptotic properties. From the Bayes point of view, 

their posterior performances are asymptotically equivalent (cf. Theorem 4.1). 

From the classical point of view, their sample performances are asymptotically 

identical (cf. Theorems 4.3, 4.4), When used on a future case, they give the 

same asymptotic discrimination between the populations (cf. Theorem 4.2). Thus 

the determinism in the discrimination problem considered in this chapter implied 

by the use of the conjugate prior might be misleading and should be considered 

according to context.
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Chapter 5

REGRESSION WITH 

CONJUGATE PRIOR

5.1 Introduction

Dawid (1988) considered a response variable Aq, and a potentially infinite sequence 

(%i, ' ' ') of explanatory variables. The joint distribution for (%o, A i, - - -) is

supposed to be multivariate normal, A (0^,E), where E is a oo x oo dispersion 

matrix. Let Tp =  Var(Ao — E{Xq | , Ap)), the residual variance. Then

as p —> oo, Fp tends a limit, Var(Ao — E{X q | A i, ' * *)) *= Fco- If Too =  0 , 

the sampling model is called deterministic, otherwise non-deterministic. In the 

former case it is expected that X q can be predicted arbitrarily closely by using 

sufficiently large number of predictors. If the parameter E is assigned a natural 

conjugate inverse Wishart distribution, IW{6;Q),  the resulting overall marginal 

distribution for the data matrix will be the matrix-^ distribution. Let the data 

matrix be

Z =
Xto X,t p  /
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where (Xto Xtp) is the training set of n independent observations on (Xq, X i, • • •, Xp), 

X f p i s  a, new forecast set of m observations on the explanatory variables ( X \ , • • •, Xp), 

and Xjo  is the set of the associated m response vectors to be predicted (now sup

pose Xq = (Yi,Y2, ” ■ ,Yr) are multiple response variables). The desired condi

tional distribution for predicting Xjo on the basis of X/p, X^o, Xtp is (cf. Dawid, 

1988 eq.(5.9))

X/o I (X/p, X^o, Xtp) ~  A -|- T(S Y  Ti -j- p", L , M),  

where the (r -|- p) x (r -f p) leading matrix of Q, is partitioned as

Qoo Qop

Qr+p y Qpo Qpp j 

r p

A — Xfp(QppYSpp) ^(QpoYSpo),

Spp = X^pXtp, SpQ = X^pXto,

and L , M  are functions of X/p, Xm, X<p. The distributions of L and M  are given

by

L ^  Im Y  F(p, 6 Yn \Im )  (matrix — variate F  distribution),

M  ~  Ap 4- F (n ,6 -k p; Ap),

where Ap =  Qoo.p. We have X/o — A 0, if Ap —̂ 0 as p oo. Thus under 

this condition a perfect prediction from infinitely many explanatory variables is 

possible.

In this chapter we shall investigate the Bayes estimator more deeply with the 

emphasis on comparison with the least squares estimator. We again assume a joint 

normal distribution for the response and explanatory variables. We shall show that 

in the case of a conjugate prior, the Bayes and the least squares estimators are 

essentially the same as the number of explanatory variables tends to infinity.

Consider a response variable Y  and a potentially infinite sequence X  =

(X i, X 2, • ' ')' of explanatory variables. Let Xp =  (Xi, •• •, Xp)'. Suppose for each
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p >  0,

E (y |X p )  =  x;/3p,

Suppose we have observed the values of Y  and all the X ’s for a random sample 

of n individuals, thus obtaining the training data {{Yi,Xii ,Xi2, • • -),z =  1, • • • ,n). 

Let

Y ” =  (Yi, • • •, Yn)', X" =  (X,j,z =  1, • • • ,n , j  =  1, 2 , • • •),

and let X ^  be the submatrix consisting of the first p columns of Suppose 

we now obtain the value of Xp, denoted by X°, on a new individual. We wish to 

predict Y° on the basis of X°, conditional on the training data Y"', X^.  In this 

chapter we assume a conjugate prior. The full Bayes linear predictor is (X°)'/3^, 

where the coefficient (3^ G minimizes the posterior expected squared error 

loss E[{Y^ — (Xp)'bp)^ I Y'^,X'"], bp G BP. A property of a conjugate prior for 

the parameters is that it implies a degenerate prediction such that the poste

rior expected squared error loss tends to zero under certain conditions on the 

parameters as p, the number of the observed variables, tends to infinity. We 

shall compare it with a sample-based estimator. In the classical approach a least 

squares estimator of /3p, denoted by /3p, is obtained by minimizing ||Y” — X^bp|p, 

bp G II • II being (,2 norm m B^. If p > n, the equation Y " =  X ”bp is con

sistent and has non-unique solution. We require /3p be such that it miminizes 

E[{Y^ -  (Xj)'bp)2 I Y^X""], bp G AP, subject to Y ” =  X^bp. We then show 

that this mixture solution is essentially the same as the full Bayes solution in that 

(Xp)'/3p — (Xp)'/3p tends to zero in probability as p tends to infinity.

The different models E{Y \ Xp) = Xp/3p are supposed to hold for every p simul

taneously. To achieve this we make the following assumptions on the distribution 

of Y, X  :

A ssum ptions

Sam pling distribution

Suppose

( K ,X ) |E ~ V ( 1,S ) , (5.1)
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(cf. Dawid 1981, or Chapter 1 of this thesis for notation), i.e. y, X ’s have a joint 

normal distribution with zero mean and covariances

Var(Y) =  (Too, Cov(y,X,) = aoi, C o v ( X i , X j )  = (T,j, { i j  = 1,2, -  •),

(7ij being the (z, j )  element of the oo x oo symmetric matrix E, i , j  = 0, 1, 2, • • •. 

The assumption (5.1) is equivalent to the models (Dawid 1988):

y lXp^x;/3p + AT(i,rp), p = i ,2, . . . .

where

Fp — Soo.p — Eoo — SopEpp^Epo, 

3p =  SppEpo

with Ei+p, the leading (1 + p ) X (1 + p ) submatrix of E, being partitioned as

\  ,Soo Sop 

y Epo Spp y 

1 p

Prior D istribution

Suppose the parameter E is assigned the conjugate inverse Wishart distribu

tion:

E-7W (6;Q),  (5.2)

where 6 > 0 is the degrees of freedom parameter, and Q > 0 an infinite dispersion 

matrix, i.e., for each q,

E, ~ Q , ) ,

where Eg, Qq are the leading q x q  submatrices of E, Q respectively. By Lemma 2 

of Dawid 1988, or Theorem 13.4.2 of Dempster 1969, the distribution for (/3p,Fp) 

is given by

Fp ~  f i y (6 -|- p; Qoo.p) 

/^p I Tp ~  Qpp Opo 4- vV(Opp , Fp),
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where Qi+p is partitioned in the same fashion as Si+p.

Let the full data matrix be

 ̂ yo (x°)' ^
y n  

1 OO

The overall marginal distribution of Z  is the m atrix-t distribution (see Dawid 

1981 or Chapter 1 of this thesis):

(5.3)

To make predictive inference of on the basis of X° and the training data 

(Y ” ,X ”), we can first condition on X° and (Y” ,X ”) and then let p —> oo. More

over it can be shown that if we have observed only the values of X i, • • •, Xp for our 

new case, then we can use Y^ and the first p columns of only in the training 

data (c.f. Lemma 4 of Dawid 1988 ). More precisely, the conditional distribution 

of (Y°,Xp) given the full training data (Y ” ,X ” ) is the same as that of (Y°, X°) 

given (Y ” ,Xp ) and Y° | X°, Y"", X" and Y° | X j, Y ” ,Xp are also identically dis

tributed. Hence in what follows we shall first constrain to the first p explanatory 

variables and condition on the subset Y ” ,̂ Xp of the full training data Y"', X ” .

The following Lemma on the predictive distribution of (Y°, Xp) given (Y^, X ”) 

and the distribution of the training data (Y” , Xp ) is from Lemma 4 of Dawid 1988.

L em m a 5.1. Let

Qi+p ~ Qi+p “t" (5.4)
(Y^)'Y" (Y ^)'X ;

\^ (x ;) 'Y "  ( x ; ) 'x ;

Partition Qi+p, Qi+p in the same fashion as Ei+p. Then under the assumptions 

(5.1) and (5.2),

(Y " :(X ° )3 |Y " ,X ;  -  T(6 -kf%;l,0 ;+p),
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(X«)' 1 Y" \rn -  r (6  +  n ; l ,% ) ,

(X “)' 1
1 -^p -  T(6 +  n ; l ,% ) ,

(Y" ! x ; ) ~  T{S'Jn,Ql+p) ,

11 ~  ^pQppQpo  +  T(<̂  +  p; /n +  X p Q p p { X p Y , Qoo.p),

~  T{6'Jn,Qpp).

□

By standard analysis,

Let

=  (5.5)

Then U ~  T{6’ In, Ip)- Lemma 1.5 gives the distributions of certain functions of 

[/, which will be used in this Chapter.

5.2 Bayes Estim ator

In this Section we deduce the Bayes estimator, denoted by /3p , which minimizes 

the posterior expected squared error loss £'[(y° —(Xp)'bp)^ | Y ”, X^] when used as 

the coefficients in the predictor {X.p)'(3p and investigate its asymptotic properties. 

Suppose n > 2 — 6. By Lemma 5.1 and Lemma 1.2, Var[(Y® : (X^)') | Y"', =

Qi+pl{^ d" ^ ~  2)' Thus

A(bp) ( i+ n -2 ) -£ : [(r » - (X “)'bp)  ̂ I Y",x;] = Q&)-2% bp+b;,% bp. (5.6)

Proposition 5.1. The Bayes solution, denoted by /3p , which minimizes the 

posterior expected squared error loss, or equivalently (5.6), is

E ( / 3 J Y \ X ; )  (5.7)
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~  Qpp Qpo (^-8)

=  Qp^Qpo + Q p ;(x ;y (A  + (5 .9)

=  Q^^^Qpo +  Q ;^ [/'( /n  +  C /[/')-X Y "  -  C/Q^p^Qpo). (5.10)

The corresponding minimum is R{^^)I{S  -f n — 2), where

— Qoo.p (^1 1 )

=  Qoo.p +  (Y" -  C/Q;p^Qpo)%A +  -  (/Q;p^Qpo). (5.12)

P ro o f. Write

B(bp) =  (bp -  Q;;'Q;o)'Q;p(bp -  +  Qm.p. (5 .13)

Observe that > 0, so R{hp) attains its minimum QSo.p bp =  Q*"^Qjo- The 

alternative expressions for (3^ and R{i3p) can be obtained from Lemma 1.6 or 

(3.3), (5.10) and (5.14) of Dawid 1988.

The distribution of the Bayes estimator /3p is a mixture of the m atrix-t distri

bution and the matrix-variate beta distribution, as stated in the following propo

sition.

Proposition  5.2. Under the assumptions (5.1) and (5.2), the Bayes esti

mator j3^ has a stochastic representation

— QppQpo +  T (6 4- p; y, Qoo.p), given f/.

where

y  =  -  B(n, 6 +  p - 1; Q;^).

Proof. Lemma 5.1 shows that

Y"̂  — UQpp Qpo ~  T(^ 4- p; /n +  UU\  Qoo.p), given C/,
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which combined with Proposition 5.1 gives the conditional distribution of (3  ̂ given 

U. By Lemma 1.6,

u '{ i„  + u u ' Y ^ u  = /p -  (/p + u ' u ) - \

_ i  _ 1
hence QppU'{In +  UU')~^UQpp has the stated distribution by Lemma 1.5. □

When using an estimator (3̂  of j3p to predict the response on the basis of 

the new observation X j, we are concerned with the predictive error — (Xp)'/3p. 

The distribution and asymptotic form of the predictive error for Bayes estimator 

are given in the following proposition.

P roposition  5.3. Under the assumptions (5.1) and (5.2), the conditional 

distribution of Y^ — (X j)'^p given the training data is

-  (X«)'/3^ I Y \  x ;  ^  T (6 +  n; 1, ;z(/3^)),

where R{/3p) is given in Proposition 5.1, and

R{f^p) ^  Qoo.p-^ p;Qoo,p)
P  . d ef . .  ^—  ̂ Aoo = limC^oo.p as p —> oo.

Moreover,

y O - i X l Y l S f - ^ T { S  + n- ,l ,A^) ,  as p ^  oo.

Proof. The distributions of Y° — (Xj)'/?® | (Y ",X p) and R(j3^) are ob- 

tained from Lemma 5.1 and Lemma 1.5 or (6.11) and (6.9) of Dawid 1988. Note 

that Qoo.p >  0 is decreasing in p, so lim^ Qoo.p exists and is finite. The asymptotic 

distribution follows from Lemma 1.3 (d) and Lemma 1.4 (letting Ap = ^i?(/3p )). 

□

From the theorem above the Bayes predictor has the property that, under the 

condition Qoo.p —̂ 0 (p —> oo), the difference between the response variable and

61



the predictor (Xp)'/3p converges in £2 to 0, when the number p of the observed 

predictive variables tends to infinity.

5.3 Bayes—Least Squares Estim ator

We have seen that the Bayes estimator, using a conjugate prior, implies a deter

ministic predictability. To investigate this property we shall compare it with the 

classical least squares estimator. The least squares estimator based on the training 

data Y ”, is obtained by minimizing

| |Y " - x ; b p i r ,  h . e R r

If n > p, (Xp)'Xp > 0 with probability one so that the normal equation (X ^y X ^b p  

= (Yp ) 'Y ” has a unique solution bp =  ((Xp )~^(Xp )'Y ’̂ . If n < p, the equa

tion Y ” =  Xphp  is consistent and has nonunique solution. For definiteness we 

require that bp also minimize the posterior expected error loss, or equivalently 

/?(bp) in (5.6), thus obtaining a mixture solution , denoted by (3  ̂ in the following 

proposition.

Proposition  5.4. Under the assumptions (5.1) and (5.2) with p > n, the 

mixture solution,which minimizes the posterior expected squared error loss, or 

equivalently i?(bp) in (5.6), subject to Y" = X ”bp, bp € is

/3p =  + (5.i4)

= Q;̂ Qpo + Q ;i{x;Y {x;Q ;^{x;)r\Y "-x;Q ;iQ ,o )  (5.i5)

= Q;iQpo + Q ; ) u ' ( u u ' ) - \ Y ’' - u Q ; ) Q ^ ) .  (5.16)

The corresponding minimum is R(p^)l(S  +  n — 2), where

=  Q'oo.p +  (Y" -  x ; q ; ; q '^Y{x ; q ;-; -  x ; Q ; ; 'Q '^ ) { b .n )

= Q00.P + {Y" -  x ; Q ; ^ Q ^ Y ( x ; Q ; ; { x ; Y ) - \ y "  -  x ; q ; ^ q , ^ )  (s .is)
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=  Qm.p +  (Y" -  U Q p p ^ Q ^ ) ' { U U ' ) - \ Y ’' -  U Q p / Q p o ) -  (5.19)

Proof. If p > n, then rank(Xp) =  n  with probability one so that 

{XpQ*p\Xp)')~^  exists and X^bp = Y ” is consistent. Minimizing the first term 

in R{hp) of (5.13), using (lf.1.5) in Rao (1973), p.60, we obtain (5.14) for /3p and 

(5.17) for R((3p), To obtain the expression of /3p, R{(ip) in terms of Qi+p instead 

of we note, by Lemma 1.6 and Lemma 5.1,

w y  =  /n -  ( /n +

Hence

By Proposition 5.1,

=  Y ” -  x ; [ q ; I q , ^  +  Q -'(x ;) '( /„  +  x ; Q ; l ( x ; ) r \ Y "  -  x ; q ; I Q p , ) \

= [/„ -  x ; Q ; ^ { x ; ) ' ( h  +  y ; q - ‘( x ; ) ') - ‘](Y" -  x;q;lQp<,)

= (/„ +  x ; Q ; l ( x ; ) r \ Y "  -  x ; q -^Qpo).

Substituting the above equations into (5.14) for , we obtain (5.15). The third 

expression (5.16) is from the definition of U in (5.5). By (5.6), Lemma 5.1 and 

the condition that X^jS^ = Y^,

=  Q ' o o - ‘̂ Q 0 p 0 p + { 0 i Y Q ' „ 0 i  (5.20)

=  <3oo — 2(5op/3p +  (/3pYQpp/3p-  (5.21)

Since R{^p)  as a function of Q* through (5.20) and (5.14) is (5.17), R((^p) as a

function of Q through (5.21) and (5.15) must be (5.17) with Q* replaced by Q,

which gives (5.18). □.

The following Proposition gives the distribution of the mixture solution /3p, 

which is of a more complex form than that of j3^.
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Proposition 5.5. Under the assumptions (5.1) and (5.2) with p > n, the 

mixture solution (3^ has a stochastic representation

=  Qpp Çpo 3-T(8 3-p\A,  Qoo.p), given f/,

where

A = Q~Ju'(UU')-\h + UU')(UU')-^UQpp\

with U ~  T{6; Ip).

Proof. The Proposition follows from Lemma 5.1 and Proposion 5.4. □

For the predictive error of the Bayes-least squares estimator the following 

Proposition holds:

Proposition 5.6. Under the assumptions (5.1) and (5.2) with p > n, the 

conditional distribution of — (Xp)'/3p given the training data is

-  (X»)'/3^ I -  T (f +  n; 1, A(,9^)),

where R{(3p) is given in Proposition 5.4, and

-R(/)p ) ~  Qoo.p + F(n, p — n + 1; Qoo.p) —  ̂ Aqo, as p —> oo.

Moreover,

y » - ( X ; ) ') 9 ^ - L r ( 6  4-T%;l,A_).

Proof. By Lemma 5.1, given Y ”,X p , the distribution of Y° — (Xp)'/3p is 

T[8 +  n; 1, (1 : (-/3p )')Qi+p(l • (“ /^p)')')- The right-scale parameter is R{(3^) by 

Proposition 5.4. To specify the distribution of R{l3p), let

A = (U t/')-^ (Y "-C /Q '^Q po).

Then by Lemma 5.1,

A ^  T{8 p;V, Qoo.p) given U,
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where

y  = (uu')~H^n  + uu')(uu')-"2  =  4  +  {uu ') -^ .

By Lemma 1.5, [UU')~^ ~  F{8 + n — l ,p  — n +  l;/n ), (p > n). Hence A  ~  

T(p — n + 1, /„; Qoo.p) (cL Lemma 5 in Dawid, 1988), so that R{/3p) = Qoo.p + A'A 

has the distribution stated in the Proposition. Its limit is obtained from Lemma 

1.3 (d). The convergence of the unconditional distribution of — (Xp)^/3p follows 

from Lemma 1.4. □

5.4 Comparison

We are now in a position to compare the performances of the Bayes estimator and 

the least squares estimator. We first investigate the difference between and

Theorem  5.1. Let R  =  R{I3^) — R(l3^). Then under the assumptions (5.1) 

and (5.2) with p > n,

R  =  {13̂  -  I 3 ^ ) ' Q ; M  -  (5.22)

=  (Y" -  u g ; ) Q p o y [ m ' r "  -  ( 4  +  c c ' ) - 'k y "  -  u q ~Jq ,^) (5.23)

= T 'F T  (5.24)

where T  ~  T{S + p; h,Qoo.p), F  ~  F{S + n - l , p - n  + l ; / „ ) ,  and T I L F .

Moreover,

f:(A) =  ■;r,Qoo.p ^ 0 ,  as p ^  <x>. (5.25)
[ p - n  -  l)(ô +  p -  2)

Proof. Letting bp = (3  ̂ in the decomposition formula (5.13) for the pos

terior expected squared error loss in Proposition 5.1, we obtain (5.22). From

(5.12) in proposition 5.1 and (5.19) in Proposition 5.4 we obtain (5.23). Let T = 

{InYUU^y^Çy^-UQpp^Qpo).  We have, by Lemma5.1, T \ U ^  T {63-P', In, Qoo.p),
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which does not depend on f/, so that T  ~  +  p; 7^, Qoo.p) unconditionally, and

T lL U .  Since

{In +  UU'){UU')-" = {U U ') - \ ln  +  UU'),

by Lemma 1.7,

{ in^uu 'ŸHUu')- '^

= [{UU')-Hln + UU')]i

= [ ({ /t / ') - '+ / „ ] i

Hence (5,24) holds with

F = (I„ + UU')i[{UU')-'-{In + UU')-'^]iI„ + UU'Ÿ2 

= (In + UU')HUU')'Hln + UU')i -  In 

= In + (U U ') -^ - In

= ( u u ' ) - \

The distribution of F  follows from Lemma 1.5. The expectation of R  is, by Lemma 

1.2, Lemma 1.1,

E(R)  =  I f  )] =  E [tr(F /(6  +  p -  2))]Qoo.p

which leads to (5.25). □

We note that apart from a constant {6-\-n —2), R  is the difference of posterior 

expected squared error loss between the estimators (Xp)'/3p and (Xp)'/3p . We 

have seen from Propositions 5.3 and 5.6 that R(/3p) and R{(3p) have the same 

limit (in probability) so that R  0 as p —̂ oo. Theorem 5.1 gives a stronger 

result that R  0 as p —> oo. The above theorem also shows that, when p 

is large, the distance between /3p and (3^ is negligible if we define the norm of 

z G by (z'QppZ)i. Next we shall give the distribution of the difference of the 

two predictors (Xp)'/3p and (Xp)'/3p .
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Theorem  5.2. Under the assumptions (5.1) and (5.2) with p > the con

ditional distribution of the difference of the two predictors (X°)^/3^ and (Xj)'/?® 

given the training data Y ^ ,X p  is

\ Y \ X ;  ~ T { S  + n ; l ,R ) ,  (5.26)

where R  is given in Theorem 5.1 so that

(X“)'/3^ -  (X“) ' / 3 f 0, a s p ^ œ .  (5.27)

P roo f. The distribution (5.26) follows from Lemma 5.1 and (5.22) in The

orem 5.1. Thus

£:[(X“)'(/3^ -  /)=)]' =  E{R)/(S  +  n -  2) ^  0, as p 00, 

by Theorem 5.1 and Lemma 1.2, which leads to (5.27). □

Theorem 5.2 shows that the two estimators /S^ and /3p are asymptotically 

equivalent in the sense that, when they are used to make prediction of a future 

response the difference of the two predictors, (Xp)'/3p — (Xp)')^^ , tends to 

zero in £ 2-

Finally, we shall investigate the error sum of the squares of the Bayes estimator

Theorem  5.3. Under the assumptions (5.1) and (5.2), the distribution of 

Y" -  is given by

~ r ( «  + p ;(/„  +  t/C')-\<3oo.p) given t/, (5.28)

with

(/„ +  t / t / ') ‘ ‘ ~ B ( i  +  n - l ; p , / „ ) .  (5.29)

Moreover,

E , Y - - x ; i> ;r  ■ P-  1) • <’ ■*”
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so that

Y" -  x ; i 3 f  - ^ 0 ,  p ^  oo. (5.31)

Proof. By Lemma 1.6,

- U  + UU'{I„ + UU')-'^U 

= -[I„-UU'{In  + UU')-']U 

= -(/„  +

Hence by Proposition 5.1,

Y " -  x ; i3 ^

= [/„ -  UU'{I„ + t/C/O-'lY" + [-U + UU'ih + UU')-'U]Qpphpo 

= (/„ +  f/C /')-'(Y "-C /Q ^^Q po),

which combined with Lemma 5.1 and Lemma 1.5 establishes (5.28) and (5.29). 

Thus by Lemma 1.1, Lemma 1.2,

E ||Y " -  =  E[E(||Y " -  x ; / 3 ^ f  1 U)]
r f \ - i i  Qoo.p , / 6 -\- n  — \  Qoo.p

=  +  u u y ^ ]  . =  tr(-r— ----------- • In)8-\-p — 2 6 +  7% +  p — 1 ^ +  p —2 ’

which leads to (5.30). □

We know that when p > n, the least squares estimator (3̂  satisfies ||Y ” — 

Xp/3p IP =  0, the error sum of squares being zero. Theorem 5.3 shows the full 

Bayes estimator, using a conjugate prior, has a similar property asymptotically.

5.5 D iscussion

Using the notation introduced in Section 1.2, let

ÿbp = Ei{y ~  Xpbp)^ =  Soo — 2Eopbp +  bpSppbp.
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Then the aim in regression is to minimise Let

= inf{(/>bp} = Soo.p = Lp, (equivalently , -(j)** = sup{-</>bp}, etc.)
"p bp

with

— Pp’

Let

5’oo Sop ^

*̂pO *̂ pp J

1

p . (5X%)

1 p

An unbiased estimate from the training data (Y ^ ,X p )  for ÿ*bp is

%bp = | |Y " - X ;b p |r /m  

If p < n, Spp is nonsingular, %bp achieves its minimum at

X* =  Xb* = Soo.p/n

at

bp = SppSpo.

Since S  ~  ITp+i(n; Sp+i), Soo.p ^  Wi{n -  p; Eoo.p), so

E{X')  =  ^ S o o . p  <  r ’-

Thus X* is negatively biased for (j)**. Now consider the case that p > n. Then a 

bp can be found such that Xb* = 0, e.g. b* = (3^. Let

0* =  = ^00 — 2Eop/3p +  (/)p)^Epp/3p

be the “data-dependent parameter”. For making Bayesian analysis consider

y[)p = ^(<^bp|Y\x;^).

Then by (5.6) in Section 5.2,

Ybp =  (Qoo “  2QSpbp +  bpQppbp) / (6 +  n — 2).
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Fbp achieves its minimum

+ n -  2) =  +  n -  2) F+
Dp

at

A+ =

(cf. Proposition 5.1). Since Si+p | Y ^ , X ^  ~  IW{6  +  ?^,Qî+p), Soo.p | ~

+  n +  p, QSo.p) Dawid, 1988, Lemma 2). Thus

r** I Y", x ; )  =  Qlo.p/i^ +  n +  P -  2) =  R{0^) /{S  + „ + p - 2 ) .

Also

F* £(,/.• I y " ,y ; )

=  E (2oo  I Y \ x ; )  -  2£(Sop I Y \ X ; ) / 3 ^  +  (/3^)'£(Spp | Y \ X ; ) 0 ^

= {Q'oo -  2QSp/3p + {0p)'Q;pl3i)/(S +  n -  2)

=  i?(/3^)/(6 +  n - 2 ) ,

(cf. Proposition 5.4). Y**, F* can be used as Bayesian estimates for (j)**, 

= <?̂>a+5 <I>* respectively. Since R{l3p) < R{(^p) a.s., (cf. Theorem 5.1),

F -  < y+  < Y*.

For any finite p, these estimators are greater than 0, and thus adjust bias in the 

right direction. However, if Aqo = 0, as p —> oo,

K+ A „/(«  +  n -  2) =  0, Y* A „/(«  +  n -  2) =  0

by Propositions 5.3 and 5.6. Hence asymptotically, F**, F"^, F* make no cor

rection for X * . In another word, asymptotically perfect prediction is possible by 

using the Bayes estimator (3^ and the Bayes-least estimator if Aoo =  0. This

property is undesirable if we regard /3p is a sample-based estimator with =  0

and compare the Bayes estimator /3^ with it. From the Bayes point of view. The

orem 5.1 shows that the difference of their posterior expected error losses tends 

to zero as p —> oo. From the classical point of view. Theorem 5.3 shows that the 

error sum of squares of the Bayes esimator /3p , equivalently tends to zero
^  p
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as p —> oo, compatible with the condition that Y"' =  ov X = 0. And on

a future case, the two predictors (Xp)'/3p , (Xp)'/3p are asymptotically identical 

as shown in Theorem 5.2. The above three theorems hold without condition that 

Aoo =  0. Hence as in the discrimination problems discussed in Chapters 2, 3 and 

4, the congjugate prior neglects the problem of overfitting in regression.
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Chapter 6

REGRESSION WITH 

NONCONJUGATE PRIOR

6.1 Introduction

Conjugate priors are frequently used in Bayesian analysis for the resulting ease in 

calculation and the possibility of reasonable approximation to the true prior, at 

least for initial analysis (Berger, 1985, Section 4.2.2). However, in the regression 

discussed in the last chapter, under the natural conjugate inverse Wishart prior, 

the Bayes predictor leads to deterministic predictivity under a condition on the 

hyperparameters (Aoo =  0), and appears to neglect the problems of overfitting. 

In many cases it is unreasonable to believe this determinism holds. This suggests 

that we should investigate non conjugate priors as alternatives. In this chapter 

we investigate regression under a certain nonconjugate prior. We shall show that, 

under this prior, the Bayes predictor will not lead to deterministic predictability, 

and is different from the sample-based Bayes-least squares predictor which fits 

the data exactly.
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P r io r  A ssum ption

To construct a nonconjugate prior, we suppose the response Y  is the sum of 

an unobservable variable t] and an error a , independent of each other; the joint 

distribution of t] and the explanatory variables Xi  is normal; a  is also normally 

distributed. We thus suppose:

Y  = rj a,

(«7, X) ~  V ( l ,  S), a  ~  V ( l ,  $ ), {n, X ) l l a ,  (6 .1)

where X  =  (Xi, S > 0 is oo x oo, 0  > 0. The assumption (6.1) is

equivalent to the following models:

r  + (6.2)

where

/̂ p — p̂p p̂O?

Fp = Soo.p = Soo — Flop Spp Spo,

(7̂  = Fp + 0 .

Suppose the prior distribution for the parameters S, 0  is

S -  IW{6; Q), 0 -  IW{iy; A ), S_LL0, (6.3)

where 6 > 0, Q > 0 is oo x oo, z/ > 0, K  > 0.

Now suppose we have obtained the n x oo training data (Y ”̂ ,X"^) on the 

response variable Y  and all the X ’s, where Y ” is represented by Y"̂  =  17 +  0 :. 

A further case for the response and the potentially infinitely many explanatory 

variables is obtained and denoted by (T° (X®)'), where Y° is represented by Y° =  

T]o ctQ. We wish to predict Y^ on the basis of the training data and X°, the 

observation on the first p variables, and shall investigate the asymptotic property 

of the predictor as p —> 00.

73



From the asumptions the overall marginal distribution of the full data matrix 

is a sum of two independent matrix-t distributions,

yo ( x “)'

Y" X "

where

—  Zi +  (Z2, 0),

Zi =

Zo =

/

770 (X«)'

rj

\ « /
and Z\ IJ Z2 •

(6.4)

Soo Sop I 1

Spo Spp j P
1 P

As in Chapter 5, we use Xp, to indicate the corresponding submatrices of 

X, X ” restricted to the first p variables, and Si+p, Qi+p the (1 +  p) x (1 +  p) 

leading submatrices of S, Q. Let Si+p be partitioned as

and let Qi^p be partitioned in the same fashion. Then by assumption (6.3),

~  Q-'<3,o +  V ((3 -;,rp ) ,

Fp ~  IW (6  + p;Qoo.p),

= Tp + $ , ^ILFp.

Note the assumptions that o_Ll(p,X) given the parameters, and 2_LL0, imply 

that 0 1 1 (7/ , X) in the marginal distribution of (7/, o, X). To make predictive 

inference for on the basis of X® and the training data (Y ”, X ”), we shall first 

condition on the training data (Y”, X ”) and X j, {p < ç), and then let ç —̂ 00, 

p —> 00. A detailed discussion of the reason is in Section 6.2. We here give a 

lemma on the posterior variance of (Y° (X^)') given (Y ”,X ”), which is the basis 

of the calculation of this chapter.
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L em m a 6.1. Let QU^{g) = Var[(r« (X“)')' | Y ", X,"] : ( 1 + p )  x (1 +  p).

(p ^  9 ^  oo). Then under the assumptions (6.1) and (6.3), the following hold:

£ [ (y “ ;(X “) ') |Y " ,Y ," l =  0, (6.5)

Q M  =  f i ( y ' I  y " ,x " ]  =  æ;(E(k, +  $  I Y ",x ,"), (6 .6)
_  000 + E{r,'r, | Y ",X ») , K  +  E { a 'a  | Y " ,X ")

S + n - 2  jz +  n - 2   ̂ ^
0 :0(9) =  E { X l Y \ Y ’' ,X " )  = E { E ^ \ Y \ X ; )  (6 .8)

0po +  (X ;) 'Æ (i7 |Y " ,X ;)
<5 +  n — 2

0po + (y;)'Y" -  {x;)'E{oc I Y",x«)
(6.9)

(6 .10)
6 +  77 — 2

Q 'Jq)  = E { X l { X i r \ Y \ X ; )  = E ( E , , \ Y ’' , X ; )  (6.11)

_  (0PP + y^p  ) def fg .n \
-  S + n ~ 2  -

where Qi+p and Qi+p{q) is partitioned as

/
^oo(^) Qop(^) I 1

V QloM QppM j  p

Q 00 Ç Op I 1

Qi+p =  Qpo Qpp j  p 5 Qi+pi^) —

I p 1 p

Moreover, liirig^oo Qi+p{ç) exists a.s. (6 > 2, u > 2) and is denoted by <5î+p(oo).

Proof. By the independence property of (y °,X °) and (Y ’̂ ,X”) given 

(E, 0 ), we have

E [ ( y ^ : ( x ; y ) |Y \ x ; ' ]

=  E{E[{po +  ao : (X^)') I Y \  X ; ,  S , 0 ] | Y \  X ^ }

= E{E[(7;o + a o : ( X « y ) | E , 0 ] | Y \ X ; }

=  0.

Similarly,

E(ao?7o I Y \X P )
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= £ [£ :(ao » /o lS ,$ ) |Y " ,X ,’‘]

= 0,

E(ao(X°)' I Y \ X ; )

=  0 ,

Hence

Var
/

= E

= E

+ E

( xj ) ( ''“ )

(X?)' )

L \  «  /

lo

CKo 0

By first conditioning on the parameters and the training data Y ” , X ” , we 

have, by (6 .1),

/
E

= E<

Vo

\ x :
»  (X»)' Y " ,x ;

E
%

% (X“)'vO
V \

= E (2 i+ p |Y " ,x ; ) ,

E (a l  I Y",x;)

= E [ E K | 0 ) | Y " , Y " ]  =  E ( $ |Y " ,Y " ) ,

yielding the first expressions for Q*Aq). Now

»  ( x y

V x : a
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implies that

( 7% (x ;y )
\

«0

a
( V A-r ),

and

ctolL
no (x“)'  ̂
V X," J

a .

Hence by Lemma 5.1,

E

= E

Vo

L \ % :

 ̂ Vo  ̂

\ /  
 ̂ no ^

no ( X») ' )  

no (x«)') 

no (x«)')

rt,cc,X;

r t , x ;

= E  '" ( fX«V 1

Qi+p + ( »; x ;  )'( n  x ;  )

and

<5 +  n — 2

I I a )  =
K  +  ot'ot

9 / - v - u . - /  y _ p n - 2

Thus by first conditioning on a ,  X ”, we have

Vo (X " )

Vo (X " )

\
Q i + p  +

E { r i ' v \ Y \ X ^ )  E{tj' \ Y \ X ^ ) X ;

(x ;) '£ ;( t7 |Y " ,X " )  ( x ; y x ;  J

8  - \-  71 —  2

and

E (a l  I Y \ X " )  =  E[E[al  | a )  | Y ",X ,”] =
K  + E{a'cx I Y",X ,")

U -\- 71 — 2

yielding the second expressions for Q*Aq)-

77



Since E,+p ~  IW(S-,Q^+;), $  ~  I W ( v ,K ) ,

u — z

are finite for fixed p, by the martingale convergence theorem, E{Hi+p | Y ’̂ ,X ”) 

and E { ^  | tend almost surely to E(Si+p | Y ’̂ ,A'”), E { ^  | Y"",

respectively as ç —> oo. This completes the proof. □.

Note that in the proof of Lemma 6.1 we use the independence property of 

the rows of Z  given the parameters and the conditional independence of certain 

subsets of Z  in the overall marginal distribution to obtain certain conditional 

expectations. These methods will be used in later sections.

6 .2  Bayes and Bayes—Least Squares E stim ators

For predicting the new response using the training data Y ” , X'^ and the observa

tion Xp on the explanatory variables {q > p), the Bayes rule /(X p ,Y ’̂ ,X ”) will 

mimimize the Bayes risk

E{Y° -  f { x l , Y ”, x ; ) ) \

which is equivalent to minimizing the posterior expected loss

E[{Y° -  /(X °, I X “, Y",X,"]. (6.13)

If the predictor is a linear function of Xp, (Xp)'bp(Y", X ”), where bp(Y” ,X ”) is 

a coefficient depending on Y"', X^, then the Bayes risk and the posterior expected 

loss conditional on the training data will be

E ( Y ° - ( x ° y b p ( Y \x ;^ ) r

and

E[(Y^ -  (X°)'bp(Y ",X ;))2 I Y " ,X ;]  (6.14)
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respectively. In the conjugate case case (i.e. under the assumptions (5.1), (5.2)), 

the two problems of minimizing (6.13) and (6.14) are equivalent since by Lemma 

3 and Lemma 4 in Dawid 1988,

I = E ( Y °  I x°, Y",x;)
=  (x °) '[Q ;;% o  + Q ; , \ x ; y { h  + x ;q ; ; ( X " ) ') - '( Y "  -  x ; q ;^^q , o)].

However, in the nonconjugate case of (6.1) and (6.3), this equivalence is not so 

obvious. To investigate this equivalence, we shall first give two lemmas on condi

tional independence under assumptions (6.1) and (6.3).

L em m a 6 .2 . Under the assumptions (6.1) and (6.3), (X°, Eg,) and 

(^g, Eoo.g, ^ ) are conditionally independent given (Y '^,X ”).

P roo f. Let / ,  tt denote the relevant density functions. Consider the sam

pling distribution. The assumption oc1L(tj,X ^ )  leads to rjlLct  | so that

Y» I x ; i  {r, + a ) \ x ;  A (n I X,") + a

with

fjlLoc I X^.

Thus, by properties of the normal distribution,

/ (Y " ,X ” |E i+ „ $ )  

=  / ( X » |S ,+ „ $ ) / ( Y " |X ," ,E i+ „ $ )

=  / ( X ; |S „ ) / ( Y " |X , " , ; 9 „ S o o . „ $ ) .

Also, for the inverse Wishart distribution,

7t(S i4-ç) ~  Loo.g)-

Hence

= / ( x » ,Y » ,x ;  I s .+ „ $ )7 r (E i+ „ $ ) / / (Y " ,x ;)

=  / ( x j  I s „ ) / ( x ;  I s „ ) x ( s „ )

x /(Y »  I X ;,/3 ,,E o o .„$ k (/3 „S o o .„ $ )//(Y " ,X ," ),
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which is the product of two factors depending on (X°, Egg, and (/3^, S 00.9, 

Y ” , X ”) respectively. Hence by (lb) of Dawid (1979), p.3, (X°, E„)_LL(/3^, Sqo.ç, ^) 
(Y ” ,X ”), completing the proof. □

L em m a 6.3. Under the assumptions (6.1) and (6.3), X° and rj are condi

tionally independent given (Y”,X ”).

P roo f. The assumptions (6.1) and (6.3) imply that (17, X j, X^)_LLa so 

that (?7,Xg)_LLo! | X^.  By properties of the m atrix-t distribution (cf. Dawid 

1988, Lemma 4), T7I IX J  | X ”. Hence _LL{?7, X°, a }  | X^, i.e. 17, X°, ol are 

independent given X ”. Since Y" =  T7 -j- a ,  (Y" ,̂ ?7)JJ_X° | X ”, which leads to 

?7_LLX° I (Y ^,X "), (cf. Lemma 4.2, Dawid, 1979). □

The solution minimizing (6.13) is

/(X“, Y",x;) "W E(Y°  I x«, Y",x;).

By using the same argument as in the proof of Lemma 6.1, we have

E(y°|x°,Y",x;') = £ [£ (r  |X“,E )|X “,Y",X,»]

= ( X » J £ ( ^ J X “,Y " ,X ;) ,  (6.15)

and

E ( Y ° \ x ° , Y " , x ; )

=  E[E(7,o I X“, r , , x ; )  +  E{ao | a )  | X“, Y", X;]

= E [ E ( % |x « , ^ , x ; ) | x « ,Y " , x ; ] .  (6.16)

Since by assumptions (6.1) and (6.3),

(X“)''l

U /
by Lemma 4 in Dawid, 1988,

In+l, Ql+q)^

E(T ;o |X ^,,7 ,% n =  ^ (^ o |X « ,,7 ,;^ ;)
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=  {x IY[q ; ;q^  +  Q;i{x;)'{h + x;Q;^{x;)')-\rt -  x ; q ;,̂ q ^)]

= ( x i y { Q „  + { x ; y x ; r ^ Q ^  + { x ; y v ) .

Hence by Lemma 6.3, Lemma 6.1, (6.16) is equal to

( x “ ) ' [ Q - ' Q p o  +  Q ; , \ x ; y ( h  +  x ; Q ; ^ \ x ; y ) - - ^

x { E ( r ,  I Y " ,X ;) -  y ;q ;;q ,o )1  (6.17)

=  ( x “)'(Qp, +  { x ; y x ; r ^ [ Q ^  + (x ;y E { r ,  \ \ \ %;)]

=  ( x “) 'q ; ; ’q ;„(9), (e .is)

The corresponding minimum of (6.13) is

Var(Y'> I X “, Y",J>C;) =  E ( { Y y  | X “,Y “ ,X,") -  [(X“)'£:(/3, | X ° ,Y " ,X ;) ]^

(6.19)

Let

A (b ,)  =  Qi,{q) -  2Qi^{q)h, +  b ,  e  A", (6 .20)

where Q* is given by Lemma 6.1. If bp is a function of Y ”, Y ” , then

A(bp) =  £ ( ( Y Y i Y " ,Y ; ) - 2 b ; Æ ; ( x « Y “ |Y " , Y ; )  +  b ;£ ;(x“( x “) ' | Y " , x ; ) b ,  

=  E K Y O -b^X »)^  Y",Y,"],

i.e. (6.14). The solution of (6.14) is given in the following proposition.

P ro p o sitio n  6 .1 . Under the assumptions (6.1), (6.3), the Bayes solution 

which minimizes (6.14) is

= QVp QU<i ) (6.21)

= (Qvp + { x ; y x ; y [ Q ^  + (x ;yE{r ,  \ y " ,x ; ) ]  (6 .22)

=  E(I3  ̂ 11,, x ; )  +  ((?,, + { x ; y x ; y { x ; y { a  -  E { a  \ y \ x ;)) ,  (6 .23)

p < q < 00, p < 00.

The corresponding minimum is

R(0p{q)) = Qlo.pii)’ (6.24)
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where Q* is given by Lemma 6.1, R  is defined by (6.20). Moreover,

^hm/3p(ç), Jirn i?(/3p (9)) exist a.s. (6 > 2, f/ > 2), (6.25)

and will be denoted by /3p (00), R[(3^[<x>)) respectively.

Proof. As in the proof of (5.8) and (5.11) in Proposition 5.1, we obtain 

(6.21) and (6.24) with Q*[q) given by Lemma 6.1. Then (6.22) follows by the 

expressions (6.9), (6.12) for (3*0(9) and Q*p. Note that in the conjugate case

(Chapter 5) we use Qi^p = Var(
/ yo \

vo
\ ^ P  /

Y \ X ;)(6  +  n - 2 ) ,  but (5.6) ((5.8),

(5.11) hold for R(hp) multiplied by a constant {S-^n — 2) L By (6.1), (6.3) 

and Proposition 5.1,

(Qpp +  (x ;) 'x ;)-X Q p o  +  (x;)'7?) =  E ^ p  | ,7,% ;) =  E(/3p 1 ?7, x ; ) .

Substituting the above equation and =  77 + a  into (6 .2 2 ), we obtain

/3^(9)

=  ((3 pp +  ( x ; ) 'x ; ) - '[ ( 3po +  ( % ;) 'Y " - (% ;) 'E ( «  I Y \% ;^)]

=  (Qp, + {x ; y x ; ) - ' ^ [ Q ^  + {x;Y{rj + o c ) - { x ; y E ( o c \ Y \ x " ) ] ,

which is equal to (6.23). The assertion (6.25) is obtained by Lemma 6.1 and (6.21),

(6.24). □.

By Proposition 6.1 and (6.18) we conclude that the two problems of minimizing

(6.13) and (6.14) are equivalent, i.e. /  =  (Xp)'/3p (9). In what follows we shall be 

mainly concerned with the predictor linear in X° given Y ”, X^ .  In the same line 

as the conjugate case (Chapter 5), we wish to investigate the property of the full 

Bayes estimator and make comparison with the Bayes-least squares estimator.

Proposition  6.2. Under the assumptions (6.1) and (6.3) with p > n, a least 

squares estimator based on the training data Y ”', Xp,  satisfying Y" =  X ” bp, p >
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n, which further minimizes the posterior expected squared error loss (6.14) is

/3^(î)
. - 1

= Q'pp QU<i) + Q'„ {x ; ) '{x ; q ;^ -  x ; q ';̂  % (g)),(6 .26)

p < Ç < oo, p < oo.

The corresponding minimum is

=  Q i o M

+{Y'' -  x ; Q ; ; 'Q '^ (q )Y { x ;Q ; ; {x ;y ) - \y ’' -  x;Q;-;Q-^{q)), (6 .27)

p < q < 00, p < 00.

Moreover,

=  ^(/^p(oo)) exist a.s. (6.28)

P ro o f. Replacing Q* defined in Lemma 5.1 by Q*{q) defined in Lemma 6.1 

in the proof of Proposition 5.4, we obtain the Proposition. □

From Propositions 6.1 and 6.2 we know, if we obtain a training data set X'^ 

for sufficiently large q, then the estimators /3p (ç), (3p(q) are very close to /3p (00), 

(00), the estimators based on the full training data set Y ” , X ^ .  Thus we shall 

first fix a Ç < 00 and take p < q. Then we study the properties of the estimators 

as Ç —> 00 and then p —> 00. The result will also hold as (p, q) —> (00, 00), (p < q).

6.3 A Property of the Bayes Estim ator

The distributions of the estimators /3^{q), 0p(q) are of more complex form in the 

nonconjugate case than that in the conjugate case. We shall give lower bounds for
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the posterior expected squared error loss conditioned on the observed explanatory 

variables X j and the training data Y ”, X ”, and conditioned on the training data 

Y ", x ; ,  ( p < q <  oo).

Proposition  6.3. Under the assumptions (6.1) and (6.3), the following hold 

for p < q < o o o i : p < q  = oo, i/ > 2, S > 2:

E[{Y° -  f { X l , Y \ X ; ) f  I X«, Y",X,"]

=  (X“)'Var(/3^ | X “, Y ", X ; ) X °  + E(2oo.p +  $  | X “, Y ", X,")

>  E ( $  I Y " ,x ; ) .  (6.29)

Rdip i l ) )  > A(/3=(g))

=  E (2  I Y",X")oo.p +  £ ( $  I Y",X,")

> £ ( 0 |  Y " ,X ;) , ( p > n ) .  (6.30)

£ ( $ | Y " , X ; ) > ^ ^ - | ^ .  (i/ +  n - 2 > 0 ) .  (6.31)

P ro o f. Since by (6.2),

E ( { Y y  I X % Y \ X ; )  = E [ E ( ( Y y  I X » ,S ,$ )  I X “, Y ",X ,'‘]

=  £:[(/3;x“)̂  +  a " |X “,Y ",X "],

we have by (6.19),

E [{Y ^  -  /(X“, Y",x;))= I x“, Y",x;i 
= (X“)'£:(/3,/3; I X», Y",x;)x“ + £(<t̂  I X«, Y",X,") 

-(X“)'£:(/3, I x “, Y",x;)£(/3; I X“, Y",X,")X“p’

which leads to (6.29) by Lemma 6.2.

By Proposition 6.1 and Lemma 6.1, 

fl(/3f («)) =  % . / , )
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=  £ (S o o  +  $  I Y " ,;c " ) -  £ (S op  I Y \ X ; ) E { E „  | Y " , E( S ^  | Y \ X ^ )  

=  £ (S o o  I Y \ X ^ )  -  £(Eop I Y \ X ; ) E { I ; , ,  | Y \ X ; ) - ^ E { E ^  | Y " ,X " )  

+£?($ I Y",A:,"),

yielding (6.30).

The assumptions (6.1), (6.3) imply that

SO t h a t

$ 1 1 (» Ï ,X ," ,E ,+ ,)  I a .

Hence

E ( $ |Y " ,X " )  =  E l E { ^ \ r , , a , X : ) \ Y \ X : ]

= E[E{<S'\a)\Y\X^] 
o l ' o l  +  K  
u n — 2

-  u + l - 2 '  if (" +  " - 2) > 0 ,

by the conjugate property of 0  ^  IW{u; K).

The above results hold for any q such that p < q < oo. Since ao ~  T(i/; 1, Â ),

7/0 ~  T (6; 1, Sqq), f3p ~  QppQpo T{S p; Qoo.p), Soo.p ~  IW{S  +  p; Qoo.p),

0  ~  IW(u', K) ,  the following hold for fixed p:

E\YO\ < E{\ao\ + M )  =  ^  ^

E { W  =  +  Q ; ,'Q poQ opQ ; , \  f in i te

^ ( ^ 00. )  =  < 00.

for 6 > 2, 7/ > 2 and the bounds do not depend on q. Hence, by the mar

tingale convergence theorem, /(X °, Y",% ^) =  E{Y^ \ X ° ,Y ” ,X ”), Var(/3p | 

X “, Y",X ,") =  £(/3,/3; I X »,Y ", Y») -  E(I3^ | X», Y " ,X ")£ (/3 ; | X “, Y»,X,"), 

E(Soo.p I X j ,Y ”,X ^), E (0  I Y ^ ,X ”) tend almost surely to certain limits as
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g —̂ oo. Also the existence of the a.s. limits of i?(/3p(ç)) were

shown in Propositions 6.1 and 6.2, so that by the equality in (6.30) the a.s. 

limit of E{T> | %^)oo.p exists. Letting g ^  oo in (6.29)-(6.31), these equa

tions also hold for g =  oo. Furthermore, these equations hold if taking limits 

liminfp^oo liniç^oo on both sides. □

From (6.31) in Proposition 6.3, we have

limF;($ I Y^,A:;) > 0, a.s. .

Hence by (6.30),

lim^inf i (̂y^p (oo)) > 0,

which shows that the Bayes estimator in the nonconjugate case, unlike in

the conjugate case, will not be expected to incorporate deterministic predictability 

of the response. The fact

lim E (0  I Y \X ;" )  > 0, a.s. f / > 2,

can be also deduced from the martingale argument as follows. Since 0"^ ~  

W{u\K~^)  with E (0"^) =  uK~^ G (0 ,oo), we can define a nonnegative mar

tingale {^q] with finite expectation by

Then //, tends to a r.v // < oo a.s. as g —> oo. By Jensen’s inequality,

E ( 0 - '  I Y " , x ; )  > E ( 0  I Y " , X ; ) - \  (i/ > 2 ).

Hence

E (0 | Y \ % ; ' ) > / / - \

Thus J5(0 I Y ^ , X ^ )  converges to a positive limit a.s. as g —> oo.
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6.4 Comparison

In this section we shall make comparison between the Bayes estimator /3p (ç) and 

the least squares estimator /3p(q) under the nonconjugate prior for the parameters. 

The difference between the conjugate and the nonconjugate prior is determined 

by the error a .  We shall first give a lemma on the properties of a .

L em m a 6.4. Under the assumptions (6.1) and (6.3), the following hold:

(a) If i/ > 1, then lim^^oo ^ ( a  | Y ”,X ”) =  E {a  | Y ”,X ’̂ ) exists a.s.

(b) Let Soo = If > 2, then

E { a \ Y \ X ^ ) - ^  ( ? - o o ) ,  (6.32)

(i.e. | |£ ;(a |

| |E ( « |Y " , X ; ) | r - ^  ( g-^oo) ,  (6.33)

^ lim E (||g (a  I Y " , Y " ) f )  =  E {S ^ )  < oo, (6.34)

P ro o f. (a) Since a,- ~  T{i/; l ,K ) ,  (z = 1, 2, • • •, n),

Elail"" DC J  \ai\'"{K +  a?)“ ^  da,-.

Thus E\ai\'^ exists iff —1 < r < 0, z/ > r  or z/ > r  > 0. For z/ > 1, {J5(a,-|Y’̂ ,X ”), 

q = 1, 2 , " - , }  is a £ i martingale so that //,- = liniç_oo E{ai | Y ” , X ^ )  exists a.s.

(b) Since a ' a  ^  F(n,z/; A )̂, E(a'a) = (u > 2) by Lemma 1.1. Also, by 

Jensen’s inequality,

\ \ E { a \ Y \ X ; ) f  < E{\\<x\nY\X;),

Thus { ||A (a  I Y ’̂ ,X ^)|p ,ç =  1,2, •••} is a submartingale closed by ||o:||^ and 

is u.i. (uniformly integrable). By Lemma 6.5 (b) below, {(A(a, | Y ^ , X ^ ) Y , q  =

1,2, • • •} is u.i. Hence by (a) and the Mean Convergence Theorem and its Corollary
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(Theorem 4.2.3 , Corollary 4.2.5, Chow and Teicher, 1978) E{ai  |

with E(E{ai  | > Efi], ç —> oo, (z =  l , - - - , n ) .  Thus (6.32) holds by

Lemma 6.5 (a). Since

E ( ||E («  I Y \ X ; | n  =  f ] E ( E ( a ,  | Y \ X ; ) ) \
1=1

(6.34) holds. Since \\E{a | Y"^,Y”)||^, \\fi\\  ̂ are nonnegative, by Corollary 4.2.4 

of Chow and Teicher (1978), we establish (6.33). □

The following lemma is on the relation of C2 convergence and u.i between a 

random vector sequence and its components.

L em m a 6.5 Let X , X„ , n  =  1,2, ••• be random vectors in R ^ .  Denote by 

X(j), their zth components.

(a) If X n ,  n = 1,2 • "  , are C2 random vectors ( L J | | X n | | ^  < 00), then X „  X  

iff Xn,{i) Xi,  (n 00).

( b ) { | | X n | p , n  =  1,2, "  } is u.i. iff =  1,2, -  } is u.i., (z =  l , ' - - , m ) .

P roo f. The Lemma is established by the following two equations.

m
£ | | X „ - X f  =

1 =  1
m

su p E (X ^ _ ( , )7 y i)  <  s u p L ; ( | | X n | | 2 / ^ )  <  ^ s u p E ( X ^  (,)7yi),
n n 1=1 "

for any measurable set A.

□

Next we shall investigate the behaviour of the error sum of squares of the Bayes 

estimator J3p{q).



T h e o rem  6 .1 . Under the assumptions (6.1) and (6.3) with p > n, the 

following hold:

(a) If z/ > 1, then

Y " -  X;/} f{oo)  n  = E { a \ Y " , X ’'), as p -> oo.

(b) If z/ > 2, then

Y " -  y ; / 3 ® ( o o )

||Y" -  x ; i 3 ^ i o o ) f  - ^ S ^  = \\E(a | Y \ X "  

£||Y " -  Y "/3f (cx>)||' ^  E(S„) ,  a s p - . 00.

(c) If (5 > 2, z/ > 2, then

^  QOO \ , mil i ^rn vn\u2E{Soo) = n{—  -  f ^ )  +  E\\Eirj | Y \ X

Proof. (a) Let q > p. By considering (z/,X) ~  A/’(1,H) with S ~  IW{S;  Q), 

we can apply the result in Section 1 of Chapter 5 to obtain E{/3p | rf, X ^ )  = E(f3p | 

?7,Xp).  By Proposition 6.1, we represent Y ” — Xp/3p{q) as follows:

Y " -  X ; ^ f { q )  (6.35)

= v  + a - x ; { E { i 3 ^  11/,x ; )  + [ Q , ,  +  ( x ; ) ' x ; \ - \ x ; ) ' ( c c - E ( a  \ y \ %;)} 

= I, -  x ; e {(3^ \ r , , x ; )  +  { h -  x ; i Q „  + { x ; y x ; ] - \ x ; y } a  

E x ; \ Q , ,  + ( x ; y x ; \ - \ x ; y E ( c c  \ y " , x ^)

=  [ n -  x ; e {i3^ I r,, x ; ) ]  +  {/„ -  x ; \ q ^  + ( x ; y x ; ] - \ x ; y } a  

+ ( x ; y x ; ] - \ x ; ) ' E ( o c  \ y ” , x ; )

=  M p )  + J2{p) + M p ,q ) .  (6.36)

Let q —> oo. By Proposition 6.1 and Lemma 6.4, (6.35) tends a.s. to

Y" -  x ; /3 f  (oo)
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and (6.36) tends a.s. to

Ji(p) 4- J2(p) +  J 3(p,oo),

where Js(p, oo) is obtained by J3{p,q) with E{ot | Y ^ , X q )  replaced by E { ol | 

y n  j^n) _  ^  Now let p O O . By Theorem 5.3, Ji{p) 0. By Lemma 1.3, 

Lemma 1.5 and Lemma 1.6,

~  B(<5 + n -  l , p ; / „ ) - ^  0.

Hence J2(p) 0 and Ja(p, oo) E(ot | Y"^,X"') = fi a.s p oo. This

completes the proof of (a).

(b) We have, by Theorem 5.3, E\\Ji{p)\\‘̂ —> 0, as p —> oo. Since supp ||J 2(p)|P < 

||a |p ,  E||c%||^ =  < oo (i/ > 2), by Lebesgue’s Dominated Convergence Theo

rem and the proof of (a),

lim E ||J2(p)ir =  ^ l im ||J 2(p)ir =  0.

Also IIJ3(p ,00)11'  < \\E{a I Y \X ^ ) | | '  < E ( ||c ,||' j Y \ X ^ ) .  Hence {||JsCp,oo)||', 

p = 1, - is u.i. By Mean Convergence Criterion and its Corollary (Theorem 

4.2.3, Corollary 4.2.5, Chow and Theicher, 1978) and Lemma 6.5,

M p  ̂°°)

lim £:||J3(p ,o o )f  =  £ ;iim ||J3(p,oo)|p =  ESoo-

Applying Holder’s Inequality, we obtain

£ ||Y »  -  X % ( o o )  -  ^  0

lim ^llY ’* -  Y ;/3 f(o o )||^=  E W ^ f  = E S ^ ,

and thus by Corollary 4.2.4 of Chow and Teicher (1978),

||Y" -  x ; /3 f  ( o o ) f 5 „ .
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(c) By assumption (6.1),

E{ot'rj) = E{ot')E[rj) — 0,

E{a  I Y \% " )  =  Y" -  E{Ti I Y^, Y ”).

Hence

ESaa = E\

E\

E { o t \ Y ^ , X ^ ) f

Y " f  -  2E{{Y^yE{rj | Y ”, Y^)] +  E\\E{rj | Y ",Y ")||^  

a | | 2  +  2 E oc'E tj +  E\\rj\\^ -  2E[(Y^yri] +  E\\E{rj | Y \  Y " ) | | "  

a||2  +  E M ^  -  2E\\ri\\^ +  E\\E{ri | Y \ Y " ) | r  

c x f  -  E \ \ r j f  E \\E ( tj \ Y \ X - ) \ \ \

Since ct 'a ~  F{n ,u;K) ,  rj'rj ~  E{n,S;Qoo), we have E||o!||^ =  ^  and =

which, combined with the above equation, establish (c). □

Theorem 6.1 shows that, unlike in the conjugate case (cf. Theorem 5.3), the 

Bayes estimator ^p{q)  is quite different from the Bayes-least squares estimator 

/3p{q) in the behaviour of the error sum of squares. In particular, if we

have limpE\\Y^ — Y^/Sp (oo)||^ > 0 in contrast to Y ” — Xp(3p[q) =  0, p < ç < oo. 

The condition that ^  may be interpreted as there being a sufficiently large

random error a ,  which makes our prior differ from the conjugate case considered in 

Chapter 5. The next theorem investigates the difference of the posterior expected 

squared error loss between the two estimators.

T h e o rem  6 .2 . Let R(p,q) = R{fip{q)) -  R{/3p(q)), (p < q < oo) with 

R(/3p(q)), R((3p{q)) defined in Propositions 6.1 and 6.2. Then under the assump

tions (6.1) and (6.3) with p > n,

7((p,g) =  ( ,3 ^ ( 9 ) - /3 ^ ( 9 ) ) 'W ; '( 9 ) - ;3 ^ ( 9 ) )  (6.37)

= (Y" -  Y ;/3^(g))'[Y ;Q ;;' (Y ;)T '( Y "  -  (9)). (6.38)
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Moreover, as p —> oo,

i?(p, oo) — > *S'oo/(<̂  “f ^ ~  2), (6.39)

E[A(p, oo)] E(5"oo)/(<̂  + n -  2) (f/ > 2), (6.40)

where Soo is defined in Lemma 6.4.

P roo f. Write R{hp) defined in (6.20) as

R{b,)  = (b , -  q ;;'Q%{q)yQ;,{b, -  q ; ; ' (?;„(<?)) +  (6.4i)

Letting bp =  /3p(ç), by (6.21) and (6.24) in Proposition 6.1, we establish (6.37). 

The next equation (6.38) follows from (6.24) and (6.27). Now consider q = oo. As 

in the proof of (a) of Theorem 6.1, we have

- A  I J { S  + n - 2 ) , p ^ o o ,  (6.42)

and

sup[x;(5;;‘(x;)']-‘ < h /(s  + n -  2). (6.43)

By (6.38) and (a) of Theorem 6.1, we have

R { p , o o ) S o o / ( ^  + n -  2), {u > 1). (6.44)

Note that, in the proof (b) of Theorem 6.1, we can further deduce that {||Y^ — 

(oo)lp, p = 1,2, - } is u.i., and thus, by (6.43), {R{p,oo),p = 1,2, •••} is 

u.i. By Corollary 4.2.4 of Chow and Teicher, 1978, (6.39) and (6.40) hold. □

T h eo rem  6.3. Under the assumptions (6.1) and (6.3) with p > n, the condi

tional distribution of the difference of the two predictors (Xp)'/3p (ç) — (Xp)'y^^(ç) 

p < q < 00 given the training data is

(X^)'/3p(g) -  (X“)'/3f (?) I Y ", x ;  ~  r ( ^  +  n; 1, R{p, q) .  [S + n - 2 ) ) ,  (6.45)
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where R(p^q) is given by Theorem 6.2. Moreover, as p —> oo, (Xp)'^p(oo) —

(Xp)'^p (oo) converges in probability to a random variable, say Z, with the dis

tribution given by

Z\Soo  ~  T((Ç +  n; l,S'oo),

5oc =  | | £ : ( a | Y ” , A : " ) | n i / > l ) .  (6.46)

P ro o f. The assumptions (6.1) and (6.3) imply (7/0, X°, X^)_U_a(, so that

X p l l a  I T},X^ and thus

Xg I î / , x ; , a  = x ;  I rj,x; = X I 117, x ;

-  T (6 +  n; +  (X ;) 'X ;, 1) =  T(<̂  +  /%; Q;p - (6 +  n -  2), 1)

by Lemma 5.1. By Propositions 6.1 and 6.2,

( x “)'/3,^(g) -  (x»)'/3f (9) =  { x l Y Q ; ; \ x ; y [ x ; Q ; ; ' { x ; Y ] - \ Y ’' -  x ; /3 f{q)) ,

whence

(X“)'(/3^̂ (9) -  /3f (9) ) \ r , , X ”, a ^ T ( 6  + n-,l,{S + n -  2)R{p, 9))

by Theorem 6 .2 . Since R{p^q) depend on rj^ot through Y ” =  t; +  a  only, (6.45) 

obtains. The asymptotic distribution is obtained by Lemma 1.4 and Theorem 6.2 

for V > \. □

We have

Var(Z) =  E[E{Z'^ | 5oo)] =  E{Soo)K^ +  n -  2).

If AV(^ — 2) — Qool{6 — 2) > 0, f/ > 2, 6 > 2, then Var(Z) > 0 so that Z is a 

nondegenerate random variable. Thus, unlike in the conjugate case (c.f. Theorem

5.2, eq.(5.27)), for large p, the two predictors (Xp)'/3p(oo) and (Xp)'/3p (oo) will 

not be always identical.
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We have investigated the case that p oo, q = oo. We shall show that these 

limits are identical to the corresponding double limits as (p, q) —> (oo, oo), (p < q).

That is to say, the asymptotic properties discussed do not depend on the way

how we increase the numbers of explanatory variables in the training data and 

observation to be predicted, p and ç, so long a,s p < q. Now consider (p, g) —> 

(oo, oo) with p < q. The following hold:

Y " - X X ( 9 ) - ^ M ( ! / > 1 ) ,  (6.47)

EWY" -  X ; ^ f { q )  -  n f  2), (6.48)

||Y" -  X ; ^ f ( q ) f  2), (6.49)

£ ||Y "  -  ( , ) f  ^  E S ^  (^ > 2), (6.50)

R { p , q ) - ^ S ^ / ( S  + n - 2 ) { i ^ > l ) ,  (6.51)

R{p, q) S ^ / (6  +  n -  2) (i/ > 2), (6.52)

ER {p ,q ) -^  ESoo/{6 + n - 2 )  (6.53)

(X“)'(/3p^(,) -  (9)) - ^ Z ( u >  1), (6.54)

where Z  is distributed as (6.46).

P roo f. To prove (6.47), consider the equality (6.35)=(6.36) in the proof of 

Theorem 6.1. Ja(p ,9) is the product of two factors, X^lQpp +  {X^)'Xp]~^{X^)'  

and E { a  | Y^ , X^ ) .  The first depends on p only and converges in probability 

to as p —)• 00 and hence as (p, g) 00. The second depends on q only and 

converges a.s. to ^  as ç —> 00 (cf. Lemma 6.4) and hence as (p, ç) —> 00. Thus 

Jg(p, g) fi as (p, ç) —> 00. Also Ji(p), J2(p) converges in probability to zero 

as p —> 00 and hence as (p, ç) —> (00, 00). Since the equation (6.35)=(6.36) holds 

for p < q, (6.47) holds.

To prove (6.48)-(6.50) , since

0 <  -b (% ;)'% ;]-'% ; <  A ,  (aii p),
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we have

sup E{\\J3{p,q)flA]
P,Q

< s i i p s n p E { \ \ E ( a \ Y \ X ; ) \ \ ^ h }q p

< s u p E { ||g (a  1 for any A.
9

Thus {\\E{a I Y ”,X^)| |^,ç =  1,2, •••} is u.i. (cf. Lemma 6.4) which implies 

that {\\J3{p-,q)\\^,p,q = 1, 2, ' } is u.i. , (replacing the one-dimensional index of 

a sequence of random variables by two dimensional index in the definition of u.i.). 

Since «/i(p), J2{p) depend on p only, their properties as p oo remains the same 

as (p^q) (oo,oo). The rest of the proof is similar to the proof of Theorem 6.1

(b) by replacing p —̂ oo, ç =  oo by (p, ç) —> oo (p < g) and substituting the 

identity of (6.35)=(6.36) (p < q) into

||Y" -  y;/3«(9) -  , \\Y''-x;0^{q)\\ \ E\\Y"-x;i3B(q)f.

(Remark. Furthermore, {||Y"  ̂ — Xp/3p (ç)||^,p,g =  1,2, - } is u.i. by Theorem 

4.2.3 (Chow and Teicher, 1978)).

By (6.47), Y"-X;^^(q) ^  as (p ,,)  oo, (p <  q). Also [Y ;(Q ;,) - '(Y ;) '] - '

-^/„/(<Ç -f n — 2) as p OO. By (6.38), R(p, ç) is the product of three factors 

which have limits in probability shown above. Hence

R(p, q) 4- n -  2) " ^  = SooK^ + n -  2), (p, q) (oo, oo), (p < q).

This establishes (6.51). By (6.43),

R ( p , q ) < \ \ Y ' ^ - X ; ^ ^ { q ) f ,

where the right hand side is u.i. by the remark above. Hence {R(p, ç),p, ç =

1,2, • ■ •} is u.i., which combined with (6.51) establishes (6.52) and (6.53) by The

orem 4.2.3 and Corollary 4.2.5 of Chow and Theicher (1978).

It is obvious that Lemma 1.4 holds for two dimensional index of the sequence 

Zp, y4p. Hence by (6.51) and (6.45) we obtain the desired asymptotic distribution 

as (p,g) (oo,oo), (p < q) in (6.54) for (X°)'(/3^(ç) -  ^p (g)). □
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6.5 D iscussion

In the nonconjugate case, the parameter to be minimised is

(j>hp =  ~  =  $  + Soo — 2Sopbp +  bpSppbp.

The minimum is then

(!>** =  = inf{<^bp} =  ^ +  Soo.p =  $  +  Fp

with

bp* =  ^pp'^po = /3p.

An unbiased estimate from the training data (Y ”,Xp ) for ^bp is

%bp = | | Y ^ - % ; b p | r / n .

If p <  n, the minimum of %bp is

A = Â b* — Soo^pffi^

where S  is given by (5.32),

"p — ^pp p̂O*

Now = T) ot, hence 

<S*oo.p — 5*00 5*0p5*pp Spo

= Wv -  v 'x ; { { x ; y x ; r \x ; y r , ]  + [2v'a -  2t , ' x ; a x ; y x ; ) - \ x ; y a ]  

+[a'a -  a 'x ;{{x ;yx ;) - ' {x ;ya ]

= Ji +  2̂ +  J3- 

Since {rj X^) ~ Af{In, F)i+p),

Ji ~  Wi{n -  p; Soo.p), E{Ji) = (n -  p)Soo.p = {n -  p)Fp.

By the independence property of a  and (77 , X"^),

E{J2)  =  0.
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Since a  ~  M(I„,  0 ), E ( a a ' )  =  $7„. Hence

E ( h )  =  E { i v [ o c ' ( h - x ; ( ( x ; ) ' x ; ) - \ x ; ) ' ) c c \ }

=  tr£[aa'(/„ -  x ; ( { x ; ) ' x ; ) - \ x ; ) ' ) \

= ^ t i E { h - x ; { { x ; ) ' x ; y \ x ; ) ' )

= o£:tr(/„ -  x ; { ( x ; y  x ; r \ x ; ) ' )

= (n — p)$.

The above calculation leads to

E( X ' )  =  +  Soo.p) =  <  çi",

which shows that X* is negatively biased for If p > n, we take

X -  =  =  IIY" -  =  0,

with bp =  (3p{q), which is negatively biased for achieving the lowest possible 

value. The “data-dependent parameter” (f)* is now

<l>* =  (f>h* =  ^  +  Soo — 2Sop/3p(ç) 4- {/3p{q)YT,pp(3p(q).

To conduct Bayesian analysis, let

— ( ^ 00(9) “  2Qop(ç)W "b bpQppbp)

=  /?(bp), { p < q <  00),

(cf. Lemma 6.1 and (6.20)). Then

Y* E{(f)* \ Y ^ , X ^ )

= E(Eoo +  $  I Y " ,  Y ,") -  2j5(Eop I Y " ,  X;)l3^(q) 

+ il3^(q )) 'E{^ :„ \Y \X;) l3^ (q )

=  Q M  -  2% p(g)/)p(g) +

= m i i i ) ) ,
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(cf. Proposition 6 .2).

— Voo.p —p
= g ( 2  I Y», Y,")oo., +  E { ^  I Y ", y ; )

with

(cf. Propositions 6.1, 6.3).

A+ =  /3f (î),

K "  1 ^ '  E { r  I  Y ", y ; )  =  +  S o o . p  I Y ", Y,").

Again F**, Y* can be used as Bayesian estimates for </>**, =  ^a+5 4̂*

respectively. Taking expectation conditional on Y ”, on both sides of (6.29) in 

Proposition 6.3, we have

R{l3f{q)) =  £ '{£[(K “ -  / (X “, Y ", Y,»))^ I X», Y», Y,"] | Y ", Y,"} 

=  £ [(X “)'Var(/3, | X“, Y", Y,")X“ | Y ", Y,"] +  £(Eoo.p +  $  | Y ", Y "),

which compared with (6.30) gives

£ (S  I  Y", Y,")oo.p >  £(Soo.p I  Y", Y,").

Hence

Y** < y+  < Y \

In this nonconjugate case, Y** has a positive lower bound K/ [ v  — 2 + n), which 

does not depend on p, q. Hence the Bayes estimates Y**, Y"*", Y* for (f>* do

not share the bias associated with X* for finite or infinite p, q. Also as the optimal 

estimator achieving the minimum of the posterior squared error loss, the Bayes 

estimator A"̂  =  /3p(q) does not imply deterministic predictability. Moreover the 

asymptotic behaviours of the Bayes estimator (q) and the Bayes-least squares 

estimator /3p{q) act quite differently. From the Bayes point of view. Theorem 6.2 

shows that the difference of their posterior expected error losses is nondegenerate 

as p —̂ oo. From the classical point of view. Theorem 6.1 shows that the error 

sum of squares of the Bayes esimator j3p{q), equivalently  ̂ is nondegenerate
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as p —> oo, in contrast to the condition that Y" =  Xpf3p(q) or =  0. Also

on a future case, the difference of the two predictors (Xp)'/3p (ç), (Xp)'/3p(ç) is 

nondegenerate as p —> oo (cf. Theorem 6.3). The above conclusions hold on 

condition that K/{i/  — 2) > QqqI(6 — 2) (cf. Theorem 6.1 (c)). Thus by assuming 

a nonconjugate prior such as studied in this chapter, one may avoid overfitting in 

regression when using a large number of explanatory variables.
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Chapter 7

CONCLUSION

Perhaps one of the main features of the Bayesian inference is the use of the non

sample information represented by the prior distribution of the parameters. This 

information is obtained from the prior belief of the statistician rather than his 

statistical investigation. Conjugate priors are often adopted because of their per

ceived richness and ease in calculation. Our investigation in this thesis has shown 

that, in some common multivariate problems the usual conjugate priors imply de

terminism of the inference if the number of variables that can be observed tends to 

infinity, i.e. if sufficiently many variables are observed, inference can be done per

fectly. We have considered the Dirichlet process prior in discrete discrimination, 

normal inverse Wishart prior in continuous discrimination and inverse Wishart 

prior in regression, which all lead to asymptotically perfect discrimination be

tween populations, and prediction of the response variable, respectively. In many 

contexts such determinism is unbelievable, because of the statistical nature of the 

problems considered. In such a case these conjugate priors seem inappropriate. 

We also considered a nonconjugate prior in continuous regression, which does not 

imply determinism and may be suitable for certain problems in which we do not 

believe in determinism.

We have connected our investigation of the determinism property to selection
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bias caused by the inference made for the data-dependent parameters following 

random noise in the data rather than signal. As the number of variables that can 

be observed tends to infinity, our Bayesian inference closely mimics the unadjusted 

classical one in the case of conjugate priors. Thus if we belive in determinism we 

might just ignore the biasing effects of selection. Then the selection bias causes 

no problem for the Bayesian. In the case of a nonconjugate prior the Bayesian 

inference is not deterministic and totally different from the unadjusted classical 

one, even asymptotically as the number of the observed variables tends to infinity.

We conclude that the choice of the prior distribution has a great impact on 

Byaesian inference and must be considered according to the problem investigated 

with great care.
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The problem considered is that of discrimination between two multivariate 
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of this is that, with prior probability 1, the parameters will be such as to allow 
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1. In t r o d u c t io n

DaWid [3 ]  considered the problem of predicting a continuous variable 
Y on the basis of a potentially infinite number of explanatory variables, 
assuming the joint distribution to be normal. Conditions on the parameters 
under which the predictive distribution would become degenerate as the 
number of explanatory variables increased were found, and it was shown 
that the usual conjugate prior distribution assigns probability 1 to this 
event. A necessary and sufficient condition was also given for asymptoti
cally degenerate prediction to be possible, for the conjugate Bayesian, even 
in the absence of knowledge of the parameters.
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28 DAWID AND FANG

The present paper extends the above programme to the problem of dis
crimination between two homoscedastic multivariate normal populations. 
Conjugate Bayes analysis in this problem, for a finite number of variables, 
has been considered by Geisser [5 ] . We develop theory for the case of 
infinitely many variables. We can again specify a “natural conjugate” form 
for the prior distribution of the normal parameters, the normal inverted 
Wishart distribution, which renders the Bayesian analysis particularly 
simple. However, since we are working in an infinite-dimensional 
parameter space, the choice of prior will not be unimportant, even when 
the data are extensive. Consequently, before automatically reaching for the 
natural conjugate prior, it is important to be aware of its implications 
and to be satisfied that these are acceptable; if they are not, then a more 
sophisticated Bayesian analysis will be required. With this end in mind, this 
paper develops some of the implications of the use of the conjugate prior, 
with particular attention to the possibilities for “asymptotically degenerate” 
discrimination, whether or not the parameters are known.

Section 2 shows that a necessary and sufficient condition for asymp
totically degenerate discrimination with known parameters is that the 
Mahalanobis distance between the two normal populations be infinite. 
Section 3 introduces the natural conjugate prior and shows that it assigns 
probability 1 to the above Condition. In Section 4 we take up the problem 
of discrimination when the parameters are unknown and find conditions on 
the hyper-parameters of the conjugate prior under which asymptotically 
degenerate discrimination is expected in this case also. Section 5 considers 
the use of training data, consisting of the values of all variables for a ran
dom sample of individuals, to learn about the unknown parameters: these 
training data are observed before classification of a new individual is 
required and are to be utilized in aiding that classification. We analyse the 
behaviour of the probabilities, for the new individual, of belonging to either 
population, conditional on the training data as well as on the explanatory 
variables for the new individual. When the training data are sufficiently 
extensive, any conjugate prior will imply asymptotically degenerate 
discrimination in this case.

1.1. Assumptions and Notation

Suppose that individuals each belong to one of two populations 77  ̂ and 
n ^ \  we introduce a binary indicator variable Y, with Y = i  denoting mem
bership of 77,. The probabilities Tti — F { Y = i )  ( i — 1 , 2 )  are supposed 
known. Also associated with each individual is a countable collection 
X =  (X j, ^ 2, ...)' of continuous variables. These are modelled as having a 
multivariate Normal distribution within either population, with

E(Xj\ Y =  i) =  p y  ( /=  1, 2;y =  1, 2 ,...),
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and

cov(Xy, X k \ Y =  i) =  <Jjk (f =  1, 2; 7, A: =  1, 2,...).

In particular, the dispersion structure is the same within both populations. 
We write for ( X i , X p ) \

Denote by the infinite column vector fi,2 , and by jU the 
(2 X 00 ) matrix whose (z, y)-entry is We write and for the 
sub-objects of these quantities obtained by restricting attention to the first 
p  variables. 27 will denote the ( 0 0 x 00 ) matrix with (7, Â:)-entry (Tĵ  
(7, A: =  1, 2,...) and 27̂  its restriction to 1 ^ 7, /c ^

We shall make extensive use, without further detailed description, of the 
notation and conventions for matrix distributions developed in Dawid [2 ]. 
The reader should be aware that these may differ from other common 
conventions; however, the use of this coherent notation is essential when 
distributions for infinite vectors and matrices are handled.

We shall also make some use, again without further detailed description, 
of the notation for and properties of conditional independence as developed 
in Dawid [1].

2. K n o w n  P aram eters

Suppose that all parameters are known. Then for any fixed p  the density 
of Xp given Y  is

f ( \ p  1 r  =  i; (1 , E)  =  [ 2 n ) \ E p \ e xp[ - - p, )̂' E ~ \ \ p  -

(2.1)

which leads to the ratio of the conditional probabilities of Y = i  given 
(when the parameters are known),

P ( F = 2 |X ,; / i ,  27)_ P ( r = 2 ) / ( X J T = 2 ; / i ,2 7 )  
P (F=l|X ^;jU ,27) P ( F = l) / ( X ^ |F = l; / j ,2 7 )

Til
=  — exp

7Ci

where Ŝ p =  (X  ̂-  p̂ )̂' 27̂  (̂X  ̂-  p, )̂.
In order to investigate the asymptotic behaviour of (2.2) as /? -► 00, let

Z ,  =  ^ ; ' / ' ( X , - p , , )  

a ; , -27-^ /2 (P i^-P2p)

K  =  K ^ P  = (PiP -  ^2pï  -  ]^2py
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Then, when X arises from population 77i,

^2p - ^ i p  =  +  K ^ p  ^  ^{^p^  4/1 )̂-

Now kp, being the Mahalanobis distance between the populations i7j 
3a

=  lim^^oo kp, with k^  ^  00. Thus, as p -► oo,

—> — exp  ̂ — k^ , k^  )  ̂ if <  GO

and II2  based on X„, is non-decreasing as p  increases. Hence there exists
def

P ( Y = l \ X - n , Z ) '  — -
■ n r \ \

0  if r̂ry ^  GO.
P ( r = l | X ^ ; / i , X - )  , ^

(2.3)

Similarly, when X arises from population / f j ,

^ e x p  A ^ ) | if 2 ^ < 0 0
P ( Y =  2IX^;m, Z-) 
P ( Y = 1 I X , ; , i,J:) , ,

(2 .4 )

00 i f  ^  m 00.

Also, since (F( Y  =  11X̂  ; p, £ )  : p =  1, 2,...) is a martingale, we have

P ( y  =  z IX^; //, 27) ^  P (  r  =  / 1X; /z, 27) as p  ^  00,

so that, in Eqs. (2.3) and (2.4), the left-hand side converges almost surely 
to a random variable with distribution given by the right-hand side. In par
ticular, when k ^  =  0 0 , this limit is almost surely 0  or 00, according to 
whether X arises from II  ̂ or II2 , whereas when k ^ < c o ,  the limit is almost 
surely finite in both populations. Thus, when the parameters (p, 27) are 
given, the condition k ^  =  00 is necessary and sufficient for there to be 
asymptotically degenerate discrimination between the two populations.

3. P rio r  D ist r ib u t io n

Now suppose that the parameters (p, 27) are assigned a conjugate normal 
inverted Wishart distribution iK(m, H; 0̂  K) (in the notation of Dawid
[2 ]), where p =  (||!) and zw =  (™î) are (2 x 00), ^̂ 1), ^ > 0 , and K
is ( 00 X 00 ). This means that, for any p,

, i P p , Z p ) - ^ J ^ J ^ i m p , H ; 3 , K p \
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where =  and Kp is the leading (/? x /?) submatrix of K
(required to be non-negative definite for all p). Thus

E p ^ ^ i T { 0 ' , K p )  (3.1)

(equivalent, if Kp is non-singular, to K ~ ^ ) \  and,
conditional on Ep,

}/i ,p\Sp~N(mtp,hr'-Zp),  (3.2)

independently for / =  1, 2 .
W e shall show that this prior distribution assigns probability 1 to the

event that the parameters {p, E )  are such as to yield co and thus are
such as to permit asymptotically degenerate discrimination (were they to 
be known).

To see this, we write =  «ip +  « 2̂ , H-« 3̂ , with

“ ip =  [(j»ip - -  (iHip -  ni2p)]' ' [(Hip -  H2p) -  (niip -  m^^)]

“2p =  2 (mi^ -  iHjp)' £ - '  [(nip - H2„) -  (iHip -  nijp)]

»3p =  (mip -  m2p)'  £ ~ ’(niip -  m;^).

Then

“3p~ (m ip- n i2p)' ^ 7 *(niip- « 2̂ )

—̂  00 as /? -► 00

since (m^  ̂—m 2̂ )' Kp^{m^p — m 2p) is non-decreasing with p.
Also, given 27,

«2^ -  M O ,  4 (/z  r  '  +  /Î2~ '  ) « 3 ^)

SO th a t  cc2p +  00.
Finally,

00.

We deduce that, under the given conjugate prior distribution, X p ~ ^  oo 
(and SO oo ) as /? -► oo, and thus we expect the parameters to be such as 
to permit asymptotically degenerate discrimination.
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4, D is c r im in a t io n  w it h  U n k n o w n  P a r a m e t e r s

We have seen that a normal inverted Wishart prior distribution for the 
parameters assigns probability 1 to the event that those parameters are 
such as to permit asymptotically degenerate discrimination between 
populations. However, this is generally of hmited direct practical interest, 
since the values of the parameters remain unknown, and so cannot be used 
to perform that discrimination. An exception to this occurs, however, when 
the prior distribution attaches probability 1 to a set of parameter values 
that all lead to the same asymptotic classification rule. In this case, 
asymptotically degenerate discrimination is to be expected even in the 
absence of knowledge of the parameters. In this section we investigate the 
behaviour of the classification probabilities when the parameters remain 
unknown, but are assigned a conjugate prior distribution. In particular, we 
characterize those conjugate priors that imply asymptotically degenerate 
discrimination in this case.

4.1. Classification Probabilities

We continue to suppose that the prior distribution is J/'JiV'(m, H; <5, K), 
Then the distribution of X given Y = i  and 27 only is # (m ,, k,27), where 
k i =  1 +  Thus marginalizing out further over 27, we obtain an infinite 
multivariate-f distribution for X given only Y: in the notation of Dawid  
[2],

X \ Y = i ^ m , - h T { 0 ; K , k f

That is, for any /?,

+  TiS; /c,), (4.1 )

with density

/ ( X f  I Y = i )  =  K ~ ' k f ^  +  +

(4.2)

where Kp =  +  p) )  (cf. Dickey [4 , Eq. (3 .2 )]). Thus

f ( y = 2 | x , ) _ E ( y - 2 ) / ( x , | y = 2 )
P(y=i|x^) /> (y= i) / (x , |y= i)

where now Sfp =  (X^ -  m. .̂)' K p \ X p  -  m,p).

(4.3)
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4.2. Expected Behaviour o f  Classification Probabilities

We shall now investigate the asymptotic behaviour of (4.3), conditional 
on y =  1, but unconditional with respect to the parameters. In this case we 
have X ^  mi +  T(d\ K, k^), which admits the synthetic representation

X =  (4.4)

where Z ~ iV (0 ,/^ o) and y l i n d e p e n d e n t l y ,  and D  is an infinite 
lower triangular matrix such that DD' =  K.

Working now from (4.4), define

T  =  Â : r ^ /2 Z ) - H X - m , )  =  ^ ' / 2 Z

and

A =  A:f ̂ ^̂ Z)“ ^(mi — m 2).

Then Sip/p =  k f l p T p / p  =  k]^VpA, where =  Z ^ Z ^ /p -^  1. Hence, as 
/7 - > o o ,  S ^ p j p - ^  k^A (this relation may be regarded as identifying A in
(4.4) as a function of X).

Also, S 2p =  k^(Tp +  A^)' (T^ +  A^). So

+  *S2/7\  _  ^2 +  ^ i (Tp  +  A^)' (Tp +  A^)
\&i +  ^i^y ^ i ( l + T p T ^ )

^ (T^ +  A^)' (T^ 4- A^)
t ; t ^

=  l +  C/p/A (4.5)

where

2a ;t^  +  a ; a„
TpTpIp

u ,  =  z  =  (2A -  ̂ /% Z , +  A -  ^^A'pAp)/Vp. (4.6)

Now define =  (m i^ -m 2̂ ) ' ^ ( m j ^ - m 2p) =  A:i A;,Aj,. Then jp is non
decreasing in p  and thus tends to a limit oo- Then, conditionally on A,

U , ^ N ( { k y A ) - ^ y ^ A { k , A ) - ^ y ^ )  if y ^ < o o ;
(4.7)

V p - ^  00 if Too =  CO.
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From (4.3), (4.5), and (4.7), we thus have the following representation of 
the asymptotic behaviour of P( F  =  2 1 X ^ )/f( 7  =  1 1X^) as ^  oo :

P ( 7 = 1 |X J
(4.8)

0  if =  00 ,

where A:, =  1 and the distribution of Q  is the mixture, over the
distribution for A, of N( — \{k iA)~^ {kiA)~^ y^).  Further, the
left-hand side of (4.8) converges almost surely, to a random variable whose 
distribution is represented by the right-hand side.

The above analysis is all conditional on 7 = 1 ;  a parallel result holds 
given 7 = 2 .  In particular, we see that a necessary and sufficient condition 
for asymptotically degenerate discrimination between the two populations 
in the absence of knowledge of the parameters is that =  oo. (More 
precisely, this is the condition under which, according to the prior distribu
tion being used, such discrimination is to be expected, with probability 1. 
This expectation could, however, be confounded by the data, if it in fact 
turned out that the posterior odds (4.8) did not converge to 0 or oo. In this 
case the inference must be that either the sampling model or the prior 
assumptions have been discredited.)

5. T r a in in g  D a t a

Suppose that we have observed the values of 7  and all the X ’s for a
random sample of n individuals, yielding the training data

((^/5 - f̂'2) '")) t 1, ..., M).

Let y" denote the vector (>»,, / = 1 , ...,«), and x" the semi-infinite matrix 
i^iji 1) •••? j  ~  Ij 2, ...).

We are now presented with a further individual, on which we observe the 
values =  ( x j , ..., x°)' of the first p  X's. We wish to make inference about 
the value of 7^ for this new individual, on the basis of all the data 
(y", x ”, X®). For this we require the predictive distribution (not conditioned 
on the parameters) of 7® given (y”, x", x®). In this section we shall
investigate this predictive distribution. »

We have already shown in Section 3 that, under the conjugate prior 
considered there, =  oo with probability 1. From this it readily follows 
that the overall distribution must attach probability 1 to the event that 
the training data (Y ”, X") will be such that, in the posterior distribution
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of the parameters given (Y", X ”), with probability 1 we shall have 
Aqo =  oo (and thus with probability 1 the parameters will be such as 
to support asymptotically degenerate discrimination, were they to be 
known). Similarly, under the further condition y^  =  co, we shall attach 
probability 1 to the event that the predictive distribution of X°) given 
(Y", X ”) will be such as to allow asymptotically (as p —►oo) almost sure 
identification of on the basis of X °, even when the parameters are 
unknown.

5.1. Irrelevance o f  Unobserved Variables

We now investigate more fully the nature and properties of the predictive 
distribution of given (y", x", x°). First, we show that it is enough to 
condition on (y", x", x°), where =  (x^: z=  1,..., n; j =  1,..., p ), so that 
there is no useful information in the values in the training data o f variables 
that have not been observed on the new individual for whom prediction is 
required.

We need the following result on conditional independence in the normal 
inverted Wishart distribution.

L e m m a  1. Suppose

E  ( q x q ) r ^ J i T { 0 , K )

and that, conditional on E,

p ( a x q )  M E ) .

Partition p, E, and M  as
=  /  ̂+ ) a

p  g - p

E  —
^p+  \ p  

^ + p  ^ + + )  Q ~ p

Define

p  q - p

M =  {Mp M + ) a 
P q - P

a =  H + - f j . p P

^  + p — ^  + + ~  ^ + p ^ p

Then (a, p, + + .„) I  (/i„, T . )
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Proof. Since i i p \ E M p  jV'iH, Zp),  we have

(5.1)

Also, by Lemma 2 of Dawid [3 ] , we have

(5.2)

From (5.1 ) and (5.2) we obtain

( f ! ^ ,2 : , ) i ( / i ,2 r + + „). (5.3)

Also, since

I +  { f i p  — M p ) P  +  A  ( / / ,  2 7 + +  . p) ,

we have

^  — ^ p P  ^ p ) i

whence we see that

a / i i i p , Z ^ ) \ { P , Z ^ ^ . p ) .  (5.4)

 ̂ The result now follows from (5.3) and (5.4). |

P r o p o s i t io n  1. For all q >  p,

P( y  “ =  (• I x “, y ", x p  =  P( F “ =  /■ I x«, y", xp .

Proof. Let x+  =  (x^: i — 1,..., «; y =  p +  1,..., q). Then

P ( y® =  i| x p  y", x p  =  F(y® =  Î 1 x p  y", x p  x" ,)

=  £ [ F (  y® =  1 1 x p  jUp, £p)  I x°, y", x p  x ^  ) ] .

The result will therefore follow if we can show that

i P p , Z p ) i ) r ^ \ ( x % Y \ x ; ) .  (5 .5 )

Now it may be seen that we can factorise the joint data density in the 
form

= / ( * P  y". x ^ l Pp ,  2 p ) f ( x l  Iy", x p  a, y  + + .p). (5 .6 )
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Applying Bayes’ theorem, and using (5.6) and Lemma 1, we obtain the 
posterior density factorisation

Tt{Hp, Ep, CL,P,E+ + .p\x“, y”, x"p, )
= y", x"p) n(a., y", x"p, x \ ),

from which the result follows. |

Letting  ̂ oo in Proposition 1, we see that

P( y® =  / 1X®, y", x«) =  P( yo  =  / 1 y”, x p .

Thus, if we have observed only the values x® of a set of p  predictor 
variables for our new case, then the only aspects of the training data that 
are relevant to the prediction of for this case are the responses y" and 
the values x ” of the same p  predictor variables in the training data.

5.2. Predictive Distribution

We now investigate the distribution, for the new case, of y °  given 
and the training data. As in the unconditional analysis of Section 4, we 
proceed by applying Bayes’ theorem to the distribution of X® given y°. 
W ithout loss of generality, we suppose that the cases in the training data 
set have been ordered so that the cases with y  ̂=  1 precede the «2 cases 
with y, =  2 .

Given y® =  1, y", and the parameters, we have the sampling distribution

/X ° ' \
( j  ^ + - ^ ( 4 + 1, ),

where

with Vi =  «1 +  1, V2 =  « 2-
If we now marginalize over the H\ ô, K)  prior distribution of

the parameters, we obtain the distribution conditional only on y °  =  1 
and y",

P ^ \ ~ r m  +  n ô - Q , K ) ,  (5.8)

where

Q = i+ r H r  = {^^ (5.9)
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with

; . (5.10)

( 1 + /* . -* ) /

By Lemma 4 of Dawid [3 ]  we have that, conditional on 7 ^ = 1 , y", 
and x",

+ T(5 + «; Goo n, U" -  r„my Qj(x" -  (5.11)

where we have used the partitions

2  =  „
G o o G  O k

G « o G k k
1 n

and /

'■’ O  « ■

In particular, r„  and Q„„ are given by Eqs. (5.7), (5.9), and (5.10), with 
and «2 ill place of Vi and V2.

Simplifying (5.11) and the parallel result for F° =  2, we obtain

X()|(y() =  i, x", y”) - m f(x") +  T(S*; Æ*(x"), k,*), (5.12)

where m f(x ”) =  (w,x" + /z,mJ/(/Zj +  «,) (x" being the average of the 
X-vectors associated with those training cases for which Y = i ) ,  =   ̂+  w,
K * { x ^ ) ^ K ^ ( x ^ - r „ m Y  Q - „ \ x ” - r „ m y  and /bf =  1 +  (/z, +  « ,)“  ̂ (All 
these quantities also depend on y", but as we shall only be considering 
behaviour conditional on fixed y" we omit this from the notation). 

Restricting (5.12) to the first p  predictor variables yields

X°|(r“ =  i,A;",y")~in5(x")+r(5*;/ï:;(x''),fef), ' (5.13)

with m,*(x") the initial p-segment of m f ( x " )  and

K ^ i x ”) =  K ,  +  (x;  -  r „ m , y  q - \ x;  -  r„m^).
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In particular, we note the dependence on x ” through x ” alone. This 
property will thus also hold for the predictive odds

P( F ° =  2 1 Xg, y") J»( =  2) / (X °  I y °  =  2, y")
P ( y " = i | x “, x ”,y '’) P ( y “ = i ) / ( x “ | y “ =  i ,x ' ’,y '’) ’ '

in agreement with Section 5.1.
Comparing (5.13) with (4.1), we see from (4.8) that the limiting 

behaviour, as p - * o o ,  of the predictive odds (5.14) is determined by 
V* (jc") - lim^^ oo 7*ix"), where

y*ix")  (m ^ x " )-m ^ % " ))' K * ( x " ) - '  (m fp (x " )-m 5 ,(ji:")).

The arguments at the beginning of this section demonstrate that, if 
=  00, then y*  (%") =  oo with probability 1 (unconditionally and hence 

also conditionally on y"); this may also be verified by direct calculation. 
We now investigate the behaviour of y%(X”) (conditionally on y") when
Too < 0 0 .

Define Up =  r„mp)  where we take the symmetric
square roots. From (5.8) we obtain T{ô\I„, Ip), Let

^ _ (  ( l ! , + n i ) - ‘ l„A  /  n
\ - ( h ,  +  n , ) - n J

Then we can express

y * ( i r )  =  (U'pQ]I^C +  K;^^^m'pay (Ip^U'pUp)-^ (U'pQ]!^C +  K;^/^m'pa)

=  CQii^Up(Ip^U'pUp)-^ U'pQii^C

^ 2 a ' m p K p ^ i \ l p ^ U ’pUp)-^ Ûp QU^C 

+  a 'mpK;^^\lp+U'pUp)-^

=  / i + / 2  +  -̂ 3» say. (5.15)

Since Ip — (Ip-\-UpUp)~'^ and /„ — Up(Ip +  Up Up)~  ̂ Up are non-negative
definite, we have =  ^(«i +  h^)~^ +  &nd

Also, by Cauchy-Schwartz, V 2/ 2 I ^  (Ji whence

( / 1/2 _ / } / 2)2 ^  ^  ( / V2 +  / } / 2)2. (5.16)

Hence y * (T " )  ^  ((y^o)^^^ +  (C ’'g„„C)^^^)^ <  00. In particular, since y * (A ^ ) is
increasing with p, y* (A^) =  lim^_, y*(A^) exists and is finite.

We now determine the behaviour of y* (%") through a closer analysis of 
the behaviour of y*(.Y") as p - ^  co. Consider first / j .  Applying Theorem 4
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of D aw id [ 2 ]  to UpUp,  which has the matrix ^-distribution F{p, d; I „ \  we 
obtain so that -h C / ; C / ;  =
In — Un +  UpU'p)~^ B(p, Ô I„). As /? -► 00 , this distribution
becom es concentrated at /„. Hence CQ„„C.

Similarly, we find B{d -f /? — 1, «; so that Jg y 
N ow  consider

J 2  =  2 C'ey„^[/„ -  C/̂  £/;(/„ +  -  m j .

We have

[ / „ -  U,U'J,I„ + U , U ' , ) - ^ - ] ~ B ( n  +  0 - V ,  p; / „ ) 0 .

Also,

U , K ; ‘/"(mi - m^) ~  r ( 6 ; I „ , y , ) ^  T{ô-, I „ , y ^ )

and is thus bounded in probability. W e deduce that J 2  0, and hence, 
finally, that

y i ( 2 ^ )  =  y». +  c ' e „ „ c  /

=  yoc + « l ^ r ' ( « l  + Â i ) " ‘ + n 2 ^ 2 " '(« 2  +  * 2 ) ” ‘- ( 5 . 1 7 )

Com paring with (4.8), we have thus shown that, if <  oo, then with
probability 1 under the distribution of (X^, A^) given y” and =  the
predictive odds

P (y "  =  2 | X : , 2r ,  y")
P ( r « = l |X « ,X " ,y ”)  ̂ ^

converges almost surely, as p —►oo, to a limit whose distribution is the
mixture of

exp ^y%,,{k*A*)  ‘ y* (5.19)
7Î1 \ k f

over the distribution {xï*)~^ for yl*, where =  (5 -f- =  1 -h (n, -h
and 7 * =>’oo +  — (^1 + — (^2 +  « 2)'^* Again, a parallel
result holds if we consider the behaviour of the predictive odds (5 .1 8 )  
conditional on y ” and F® =  2 .

W e can remove the conditioning on y" by further mixing over the 
binom ial distribution ^ (« ; t i i )  for rii =  n — n 2 . W e thus obtain the overall 
asym ptotic distribution, as / ? - ^ o o ,  of the predictive odds ( 5 .1 8 )  under 
either hypotheses F® =  1 or Y^ — 2. Since (for 7 ^ <  0 0 ) this is almost surely
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finite in either case, we shall not be in a position to perform asym ptotically  
degenerate classification as we observe more and more variables on our 
new case.

5.3. Extensive Training Data

As the training data accumulate, so we expect to learn the parameters 
(ju, E )  more and more accurately. As shown in Section 3, we believe that, 
were the parameters to be known exactly, then asym ptotically, as the 
number o f variables observed tends to infinity, perfect classification would  
be possible. To what extent does this result continue to hold when we have 
to learn the parameters from data?

The question concerns the behaviour o f the repeated limit

Examining the behaviour of (5.19) as / z oo , noting that x \  + n ~ ^  oo , we 
find that, in probability, (5.20) is infinite if T® =  2 and zero if =  1.

An alternative argument, which shows these limits to be almost sure, 
is as follows. Since, under any distribution for (X°, Y ”), P (F °  =

Y") forms a two-parameter martingale (with partial order 
given by [n̂  p ) ^ ( n \  p ’) if both n<,n'  and /?< /? '), it follows that, with 
probability 1, this repeated limit is the same as the double limit as (n, p ) ^  
(o o , 00 ) or the alternative repeated limit lim^_  lim^^ -

N ow , since the parameters (/j^, Ep) are consistently estimable from  
extensive training data, as « —► oo

=  Y") a.s. P { Y ^ ^ 2 \ X l ; p p , E p )
P (Y ^  =  1 |X^, Y") ' P ( T « =  1 |X «; tip, E p ) ’

From the analysis o f Section 3, we know that the alm ost sure limit o f this 
as p oo will be infinity if T° =  2 and 0 if =  1. It follows that this is also 
the alm ost sure behaviour o f (5.20).

6. D is c u s s io n

It is important to distinguish our opinions about the world from its 
behaviour, which is in no way constrained by them. Even though prior 
assumptions may imply almost sure asym ptotically perfect discrimination, 
this expectation may turn out to be thwarted. Indeed, in many contexts it 
would, even before obtaining any data, be unreasonable to believe that 
knowledge of all the explanatory variables w ould be sufficient to determine
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population membership precisely. In such a case, the above analysis should 
be taken as warning against the use of a conjugate prior. If such a prior is 
nevertheless to be used, it would seem particularly unwise to choose one 
for which =  oo, since this corresponds to a belief that population is 
determined in an a priori known way by the explanatory variables. It is 
difficult to conceive of a realistic problem where this belief would not be 
ridiculous.
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1. I n t r o d u c t io n

• Dawid [3 ]  and Dawid and Fang [4 ]  considered, respectively, the 
problems of normal linear regression and of normal discrimination when 
the number of predictor variables is effectively infinite. In particular, it was 
shown how, in either case, a Bayesian approach using the usual conjugate 
prior distributions incorporates strong prior beliefs that the response is a 
deterministic function of the predictors—a property which it will often be 
inappropriate to assume.

In this paper we study the problem of discrimination using infinitely 
many binary predictors, again concentrating on the implications of the 
usual conjugate prior assumptions. For this problem. Brown [1 ]  showed 
that, on making a suitable assumption of “uniform refinement,” the prior 
expectation of the probability of correct classification tends to 1 as the 
number of predictors tends to infinity.

Here we shall find some more general conditions for asymptotically 
perfect discrimination. Our concern is the ratio of the probabilities of the
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populations conditioned on an observation. For a deeper study we shall 
make use of the Dirichlet process prior as developed by Ferguson [5 ] . We 
shall also make use of the notation for and properties of conditional 
independence as developed in Dawid [2 ] .

Section 2 shows that a sufficient condition for asymptotically perfect dis
crimination is that the maximum of the associated Dirichlet parameters for 
each of the populations tends to zero. Section 3 considers a more general 
case and shows that a necessary and sufficient condition for asymptotically 
perfect discrimination is that these parameters (as measures) do not have 
com m on atoms. Section 4 considers the case that training data are available 
and a new observation is to be assigned to one of the populations. The same 
rule as above holds for asymptotically perfect discrimination based on the 
ratio of the population probabilities conditional on the training data and 
the new observation. Section 5 investigates discrimination with unknown 
parameters and shows that for asymptotically perfect discrimination a 
stronger condition, mutual singularity of a and p, is needed. And Section 6 
gives an extension to the case with unknown prior probabilities.

Model Assumptions,

Suppose that we observe X 2 , w h e r e  A", takes value 0 or 1. In each 
of two populations, II  ̂ and II 2 , these have (different) point distributions. 
The probability of population / / , ,  7t, =  P(77,), i =  1, 2, is supposed known. 
Let

X =  (% 1,Z 2 ,.,.), X” =  (2Ti,..., X„). (1.1)

Let 6 [resp. denote the joint distribution of X in II  ̂ [resp. 7/ 2]  • these 
are measures over the Borel a-field of {0, I} '” . By K olm ogorov’s con
sistency theorem, 6 is determined by its restriction, 0” say, to each : we 
write 0"(x") =  F (X ” =  x" 1 ), etc. Then

r-"^(x", 0 ) - h ^ ” + '(x", 1) =  0"(x"),

and any collection {0"} with ^  0 ° =  1, and satisfying this consistency
relation is compatible with a unique 9,

1Î 6, (j> are known and we observe X ” =  x ”, then we obtain the ratio of 
the probabilities of the populations conditioned on the observation

■’’ ’ F (77i|X "='x") 7Ti 0"(x")

F(772 |X"  =  x " ) " ^ 2  "

We get asymptotically perfect discrimination if ^”(X")/^"(X") tends almost 
surely to 00 or 0 according as X arises from Hy or TJs, as n tends to 
infinity.
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N ow  suppose 6 and <j> are unknown. W e can specify a prior distribution  
for 0 by taking a ,fin ite measure a over with total mass |a | ,  and  
requiring that, for each n, 6” has the Dirichlet distribution Z)(a”), with 
parameter a", the restriction of a to Thus if A;,} is a partition
of {0, 1}", ( 0 " ( A i ) , 0 ”(Aj )̂) has the ordinary Dirichlet distribution with 
parameter ( a " ( v 4 i ) , a”(A;,)). That this specification consistently defines a 
unique distribution for the random probability measure 6 follows by 
analogy with the construction of the Dirichlet process by Ferguson [5 ] ,  
We write for this Dirichlet process distribution.

We similarly take and 0 A  thus specifying the joint prior
distribution o f (6, (j>).

Let A„(x") =  0"(x")/^”(x ”), the likelihood ratio in favour of II^ as 
against I I 2  ̂ based on data X" =  x", when 6 and ^ are given; and let 
^n =  '^n(X"), a function of 9, (j> and X. We shall b e  interested in the 
asymptotic behaviour of yl„, as « oo,  under the assumed probabilistic 
structure for X, 9 and ^ and population 77: that is, when

77 =  77; with probability tt, (i =  1, 2);

9 ^ D { ol)\

all the above being independent; and, given (77, 0, ^), -

X - 0 i f 7 7  =  7 7 i;

yi (p \ ï  n = n  2-

We shall show below that, under suitable conditions, A„ oo 
[resp. 0 ]  given 77 =  77i [resp. 772] «-► oo. That is to say, the assumed
prior structure attaches probability 1 to the set of distribution pairs (0 , <j>) 
allowing asym ptotically perfect discrimination between 77i and II 2—  
assuming that 9 and (j> were first to be revealed to the discriminator, thus 
making possible the calculation of A

2. S m o o t h  P a r a m e t e r s  f o r  th e  P r io r s

In Brown [1 ]  uniform refinement means that for every {^"(x")}, 
{^"(x")} have symmetric Dirichlet distributions. In this section we shall 
show that this condition can be replaced by a weaker condition. Our con
clusion will be that if the parameters a and p  for the prior distribution of 
9 and (j> are non-atom ic measures, then we can get asym ptotically perfect
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discrimination between populations IJi and II 2 - First we show two lemmas 
on the properties o f the "Beta distribution and gamma function.

L em m a 1. Suppose that Z  has a Beta distribution, Z ( b ,  B  — b). 
Then as a functon o f  b, P { Z ^ a )  decreases in b, 0 < b  < B ,  a > 0 .

P ro o f  For any 0 < b i < b 2 <  B, consider three independent gamma 
distributed random variables ^  G am m a (Z»i, 1 ), F2 Gamma (62  — 6 1 ,1 ) , 
Fg G am m a (B —6 2 , 1). Then we have

Hence

com pleting the proof. |

L em m a 2. Suppose {z , } is a sequence o f  positive numbers (which may  
depend on N )  satisfying

N  

1 =  1

and

Then

max Zi -^ 0 , as iV -> 00 ,

i - i  A z / )

^  . r ( b )
, _ i  r { b  — Zj)

P ro o f  Ve >  0, by the formula

a, as A^-> 00 , (6  ^  a).

- > + 0  1 /z
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and the continuity of r{z) at 6  ( >  0 ), we can find  ̂>  0 , such that for every 
z e { 0 , d) .

1
1 <  e and

r(b)
r ( z ) z

By the assumption, 3N q, for every N > N q,

r (b -z) 1 <  e.

max Zf <  3 and
N

Z
/  =  1

<  £.

Hence for every N > N q,

n ^ i )
a

N

< E
1 = 1

1

n z i )

and
N

Zi +

r(b)

N

E Z i - a
i= 1

N

completing the proof. |

T h e o r e m  1. Suppose that a  and p are both non-atomic' measures. Then, 
as n ^  oo.

. a.s.
 ► 00 if n —III, 

if 77 = 772.
(2.1)

Proof. Let â be the measure induced on [0, 1] from a by the map 
(x i, X2, ...) ^  Then dc is non-atomic, and hence has a con
tinuous, and thus uniformly continuous, c.d.f. on [0, 1]. Thus 
maxo^r< 2«â ( [r /2 ", (r-k 1 )/2 " ] ) - + 0  as M o o ,  whence

(2.2 )

and similarly

max j5"(x") 0 . (2.3)

Since the converse is clear, we thus see that (2.2) and (2.3) are equivalent 
to the condition of non-atomicity.
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N ow  suppose n = n ^ .  The numerator of A„ is =  where
0" ^  D{oĈ ) and, given 9”, This is thus the first component of the
size-biased permutation of 6 (cf. Patil and Taillie [6 ]) . Then for 0 < j <  1 
and small dy,

P { y < e * < y  +  dy)

=  ^  P(X" =  x"| y  <  d^ix”) < y  +  dy) P ( y  <  d"{x’' ) < y  +  dy)
x«

=  Z  3" • ( 1 -  y  ) ' “ ' “ ' d y lB {o i \x%  | a | -  a"(x”)). (2 .4 )

It follows from (2.2) and Lemma 2 that this expression tends to 
I#1(1 — dy n-^  oo. Since this is a density over [0, 1 ], by Scheffé
[7 ] ,  0* has a non-degenerate limiting distribution, with p.d.f.

I a 1(1- - j ,)^ ' - ! .  (2.5)

N ow  consider the denominator ^* =  ^"(X") of A„. Given =  we 
have (j>^D(P) independently of (X, 9). Thus [X" =  x ” '^Beta (jS”(x"), 
\ P \ — j?"(x")). From (2.3) and Lemma 1 we deduce that (j>* 0  (/i -> oo).
Taken together with the above result for 9*,  this implies A ^ - ^  oo, when 
n  =  U i .  Similarly A ^ - ^ Q  when 77 =  772. Let now be the a-field 
generated by (0, X"). Then, when 77 =  77̂  [resp. 773] , (A~^)  [resp. (A„)^
is a non-negative martingale adapted to (ja(,), and must therefore converge 
almost surely: hence the above probability convergence is in fact almost 
sure. I

3. A  M o r e  G e n e r a l  C a s e

In the last section we obtained a sufficient condition for asymptotically 
perfect discrimination. N ow  we consider a more general case in which 
the Dirichlet parameters a and p  are not necessarily continuous. As 
in the proof of Theorem 1, we first derive the asymptotic distribution 
of the numerator 9* of A„.

T h e o r e m  2. Suppose that # has decomposition a =  A +  ju, where A is con
tinuous and is discrete. Arrange the atoms {x^} o f  p  in descending order
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o f  mj =  I f  then as cô  the asymptotic distribution o f  0* is
nondegenerate with p.df .

=  1

0 < ) / <  1. (3.1)

P roof  The p.d.f. o f 0* is given by (2,4). V e> 0 , as can be seen from the 
proofs of Lemma 2 and Theorem 1 (2.5), we can find <5i > 0 , such that for 
any sequence {z, >  0 , z =  1, 2 , . . .} ,

Y^Z i<di  implies that

' n \ a \ )
< e ( l - y ) / 4 , (3,2)

and

max z, <  Z; <  I a I imply that

< e /4 . (3.3)

W ithout losing generality we suppose <  e /2 (l —y ) ’“' Choose M > 0  
such that

Let

Z  m j < è J 2 .
j > M

= {x,Xjif},  ^2= {0.

(3,4)

We have

m  — (%(^2)l — l|(3(| — lAf| — (|(%| — (%(v4i))| — ^  m j < b i j 2 .
j > M

(3.5)

Find <5, >  0 such that

\^k — ^ k \ < ^ 2  implies that 

y ^ * ( l - y ) ' “ ' - ^ * - ^ r ( | a | )  y " * ^ ( l ^  r ( | a | )

r ( Z k ) r ( \ ( x \ ~ Z k )  

£

r ( W f c ) r ( | a |  - m ^ )

4M ’
(3.6)
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Now a"(x'J) oc(Xk) (k =  1 , M),  max^« A”(x") ^  0 (« 
that, for n>nQ,

and

Hence

a"(x")- m k \ < S 2 , k = l , M ,  

max A"(x")<^i/2 .

max a"(x") ^  max 2 ”(x”) +  max
x'^eA2

00 ). So 3??o such 

(3.7)

x"e>4̂

^ m a x A ”(x")+  Y, n>nQ.

We can write Xx« (2.4) as

^  1 -  j ; )  I “ I -  “"(*") -  V 5 ( a ” ( x " ) , I a  I -  a " ( x " ) )
x"

= E + Z = * ^ i + * ^ 2 »  o < j < i .
Al Al

We have for n > n o ,  by (3.6), (3.7), (3.4), and (3.2), /

' *=1 B(mt,\oi\-m^)

^ r(a"(x"))r(|a|-a"(x"))

*“ l A l « l -» » * )

j h t  r(mj)r(\<x\-mj)

and, by (3.8), (3.3), and (3.5),

<  [ / . - « M z K l  +  k ( ^ 2 ) ( l  -  I  A i d  ~yy

( 1 • j < « / 2 .

(3.8)

« 1 - 1
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which shows that the limit of the p.d.f. of 9* is (3.1). Simple calculation 
shows that the integral of this limit from 0 to one equals one. Applying 
Scheffé’s Theorem, we deduce the desired conclusion. |

Now we are ready to prove the main theorem.

T h eo rem  3. The perfect discrimination property (2.1) holds i f  and only i f

a and p do not have common atoms. (3.9)

Proof  We first prove sufficiency. Suppose that 77 =  77i. Denote a r.v.
with p.d.f. (3.1) by 9*. V e> 0 , VÆ>0, find b > 0  such that

P ( 9 * ^ K b ) < e / S .  (3.10)

Let c =  (a /4)b \P\ ( < \ p \ ) .  Choose M  such that

Z  Pi^j)<c /2 ,  (3.11)
j > M

where tcjJ  =  1, 2,..., are atoms of p  with p(xj)  ^  j5(x^+1), J =  1, 2 ,.. . .  Let

=  { x i , A 2 = ^  {0, 1]°° 

v 4 7 = {x ;,..., x ^ } , ^ ” = { 0 , 1 }” - ^ Î .

Since a and p  do not have common atoms, «(x;^) =  0, A := l , ..., Af. Now
a"(x^)-► a(x;t)» k = l , . . . , M ,  max^„g^« jS”(x") ^ 0  (cf. (3.8)) as n-^co.  So
3«0î such that for n > n ^ ,

l«"(xï)l =  l« " (x * ) - “(Xfc)l<‘̂  =  k = \ , . . . , M ,  (3.12)

max j5"(x”) <  c, (3,13)

and

P(9*  <  Kb)  <  P(9* ^  Kb) +  e/8 . (3.14)

Then we have, by (3.12),

M

P(X"g ^ ”) = 1 - P ( X " 6 ^ Ï ) = 1 -  X  a”W ) > l - M J .  (3.15)
t = 1

Let ÎP be a r.v. such that

< P 1 (0 ,X ) and *P-Beta(c, l ^ l - c ) .
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Then

By an argument similar to the proof of Theorem 1 and (3.13),

P { A „ > K \ X ’' e A l ) > p ( ^ > K \ X ’' e A ”̂ .

Moreover, it is easy to prove that for any 0 <  Cq <  1/2,

P{B)  >  1 — Co implies that 

\ P { A \ B ) - P { A ) \ < 2 c o ,  sinyA,B.  (3.17)

Hence by (3.15), (3.10), (3.14), and (3.16), for n>riQ,

P{A„ > K ) > P ( A „ > K \ X ' ^ e A l ) -  I M d

> p { ^ > K \ X ' ' e A " A - 2 M d  

=  l - p { ^ < . K ,  'P< ,b \X ’' s A ^

- p ( ^ < ^ K ,  ' P > b \ X ’' s A i \ - 2 M d

' ^ \ . - P ( B * ^ K b ) - P ( * P > b ) - i , M d

>  1 — fi/4 — e/4 — e/2 =  1 — £.

This shows that A„-*^ co in probability and hence almost surely as « -► oo. 
If 7 7 = 772, the parallel result holds.

Next we prove necessity. Without losing generality, suppose 77 =  77 .̂ 
Denote a common atom of a and p  by Then lim„ a”(^") =  a(^) > 0 ,  
lim ,M ^ " ) =  jg(^)>0. Let

"-a""»' — - a
and let i =  1, 2 , be two random variables such that

!P ,~ B e ta (a (4 ) , |a |-a (4 ) ) ,  \ P \ - P m

Find c , >  0 such that

P { 'P 2 < c^ ) < cJ2.  (3.18)
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K  =  —
C.C1^3

Then

FW. a(E^
f  ( y ,  >  ^ <  C./2. (3.19)

A-C 3 I OCI AC 3

Since F{z)  is continuous at z >  0, by Scheffé’s Theorem,

as « -» o o . (3.20)

Hence we have

P ( A „ > K , X ’' =  '̂‘)

=  p { ^ > K ,  ^ * < C3, X ’' =  A  +  p (^ ^ > K , ^ •  > C3, X" =

< P m ^ " ) < c ^ )  +  P m % ”)> K c^ )

-+P(!f'2 <C 3) +  P (iP 'i> X c3) (a sn -* o o )

< C i/2  +  Ci/2 =  Ci. (3.21)

Also we have

P(X"V ^") =  1 -  P(X" =  4")

^  ,3.22)
|a| |«|

Thus for large n,

P{A„ > K )  =  P(A„ > K , X "  =  %”) +  P{A„ > X ,X " ^ 4 " )

<  P(^„ >  X, X" =  4") +  P(X" 4")

Recalling that K, C2 are independent of n, we conclude that A„ does not 
tend to infinity in probability as « -► 00. |

From the above theorem we see that under the condition that a and
p  do not have common atoms we shall have asymptotically perfect 
discrimination.
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4 . D is c r im in a t io n  U s in g  T r a in in g  D a t a

Suppose we get training data from TZj and II 2  and a new observation X 
which is to be classified as belonging to one of the /7,. By the conjugate 
property of the Dirichlet process, 0 and ^ conditional on the training data 
are still Dirichlet processes. Suppose arise from /Zj, then the
parameter for 6 given Z ^ , Z ^  is a +  X r=i^z/» where 5  ̂ denotes the 
measure giving mass one to the point z If a and p  do not have common 
atoms, the parameters of 6 and ^ conditioned on the training data also do 
not (with probability 1) have common atoms. To show this we can just 
study the case that the training data consist of only one observation Z 
arising from 77i. Then the parameter for the posterior of 9 is ct +  S^- Let 
A be the set of atoms of j5. Then P {Z  e A )  — ol{A)!\a | =  0. With probability 
one, Z is not at an atom of p. Conversely, if a and P have a common atom, 
it is easy to see that it remains as a common atom of the parameters of the 
posteriors of 0 and <t> conditioned on training data. Substituting the prior 
distributions of 9 and (j> with their posterior distributions given training 
data in Theorem 3, we see that ( 3 . 9 )  holds if and only if the ratio of 
probabilities of 11̂  and TI2 conditioned on training data and the new 
observation X tends to 00 or 0 in probability according as X arises from 
Z7i or II 2 , as « tends to infinity.

5. D is c r im in a t io n  w it h  U n k n o w n  P a r a m e t e r s

Our results so far refer to prior beliefs about the asymptotic behaviour of 
the likelihood ratio yl„ =  0"(X")/^"(X”) relevant for classification when the 
parameters 9 and as well as the data X", are known. In most applications 
9 and <j> will remain unknown. Then the relevant likelihood ratio becomes

y„(x”) =  ag(x”)/j?g(x"),

where ao =  a /|a l is the marginal distribution for X in 77i, when 0~Z )(a); 
and similarly for Pq, Letting /"„ =  y„(X"), standard martingale results for 
the likelihood ratio process now yields.

T h e o r e m  4.

i /  X -  ao 

if  X -)S o

i f  and only i f  a and p  are mutually singular; while is almost surely 
bounded away from  0  and 00 , under both ccq and Pq, i f  and only i f  a and P 
are mutually absolutely continuous.
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In particular, perfect discrimination in the absence of knowledge of the 
parameters will not be almost certain unless a and p  are mutually 
singular—a much stronger condition than that of Theorem 3. If, for 
example, both a and p  are multiples of Lebesgue measure on { 0 ,1 } “ , then 
perfect discrimination is (with prior probability 1 ) possible with the 
knowledge of 0 and but not so (again with prior probability 1 ) in the 
absence of such knowledge.

Clearly the mutual singularity property of a and p  is (with probability 1 ) 
preserved if they are replaced by the new parameters, posterior to training 
data. This is not so for mutual absolute continuity, since the posterior 
parameters will now possess distinct sets of atoms. In this case, if we have 
Ni training cases from /7, ( / = l ,  2), say (Z ^ ,..., and (W ^,...,
the relevant likelihood ratio is now based on the measures
(a +  Z / i i^ z j ) / ( l“ l+ -^ i)  and iP +  ^ f h ô y , j ) / ( \ p \ + N 2 ). It will tend to oo 
under 77i with posterior (and hence prior) probability 7Vi/(|a| +A^i), and
to 0  under II 2 with probability # 2/(1 f  I + ^ 2)- particular, as and
# 2  00, asymptotically perfect ( « - ^ 00 ) discrimination becomes possible,
since we effectively learn the parameters 0 and

6. U n k n o w n  P r io r  P r o ba bilities

We have thus far supposed that the prior probabilities 7c, =  P(T7,) are 
known. As a minor extension, we can introduce a variable 7, taking values 
1 and 2, indicating the correct population, and jointly distributed with X. 
Let ip denote this joint distribution of (7 , X), now supposed completely 
unknown. Then ij/ determines, and is determined by, (0, tcj). The con
jugate prior for ij/ is again Dirichlet, and may be described by the following 
properties: for some finite measures a and p  over

0 - D ( a )  (6 .1 )

^ ' - D i P )  (6.2)

and

7 r i-B e ta ( |a |, |^ |) , (6.3)

all independently.
Thus the only difference from our previous analysis is the distribution

(6.3) for 7Î1, previously considered known.
However, since under (6.3) 0 <  Tii <  1 with probability 1, it is clear that 

\h e  asymptotic discrimination behaviour will be the same as for the case 
of known tcj, so that our results above will continue to apply to this 
extension— and indeed to any modification in which (6.3) is replaced by an 
arbitrary distribution for which 0  <  <  1 almost surely.
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7. D is c u ssio n

We have shown that, in ordinary circumstances, the conjugate Bayes 
approach to discrete discrimination incorporates a prior belief that the 
classification will be essentially determined if only sufficiently many predic
tor variables can be observed. Whether this belief is reasonable must, of 
course, depend on context. In particular, such an assumption appears to 
express a world view prevalent among non-statistical workers in pattern 
recognition. However, it might seem unreasonable in many statistical 
problems to believe that all residual uncertainty will be eliminated by 
extensive observation of predictors. For such problems the conjugate 
Dirichlet analysis will thus be inappropriate, and more complex Bayesian 
approaches will need to be developed.
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