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Abstract 

Background: Depression has been associated with metabolic alterations, which adversely impact 

cardiometabolic health. Here, a comprehensive set of metabolic markers, predominantly lipids, was 

compared between depressed and non-depressed persons. 

Methods: Nine Dutch cohorts were included, comprising 10,145 controls and 5,283 persons with 

depression, established with diagnostic interviews or questionnaires. A proton nuclear magnetic 

resonance metabolomics platform provided 230 metabolite measures: 51 lipids, fatty acids and low-

molecular-weight metabolites, 98 lipid composition and particle concentration measures of lipoprotein 

subclasses and 81 lipid and fatty acids ratios. For each metabolite measure logistic regression analyses 

adjusted for sex, age, smoking, fasting status and lipid-modifying medication were performed within 

cohort, followed by random-effects meta-analyses.  

Results: Twenty-one of the 51 lipids, fatty acids and low-molecular-weight metabolites were significantly 

related to depression (false discovery rate q<0.05). Higher levels of apolipoprotein B, Very Low Density 

Lipoprotein (VLDL)-cholesterol, triglycerides, diglycerides, total and mono-unsaturated fatty acids, fatty 

acid chain length, glycoprotein acetyls, tyrosine, and isoleucine, and lower levels of High Density 

Lipoprotein (HDL)-cholesterol, acetate, and apolipoprotein A1 were associated with increased odds of 

depression. Analyses of lipid composition indicators confirmed a shift towards less HDL and more VLDL 

and triglycerides particles in depression. Associations appeared generally consistent across sex, age and 

body mass index strata, and across cohorts with depressive diagnoses vs. symptoms.  

Conclusions: This large-scale meta-analysis indicates a clear distinctive profile of circulating lipid 

metabolites associated with depression, potentially opening new prevention or treatment avenues for 

depression and its associated cardiometabolic comorbidity. 
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Introduction 

 

Depression imposes a huge burden on individuals and society.(1) With a high annual (6%) and 

lifetime (19%) prevalence, depression is among the leading contributors to global disease burden.(1, 2), It 

has been associated with an increased risk of somatic disease, including cardiometabolic conditions such 

as metabolic syndrome (3), obesity (4), diabetes mellitus (5), stroke (6), and cardiovascular disease (7), as 

well as an increased risk of all-cause mortality (8).   

Depression is correlated with metabolic alterations in peripheral bodily systems.(1) A systematic 

review(9) summarizing metabolomics analyses of urine, CSF, and blood samples of depressed patients 

highlighted a set of altered metabolites implicated in energy metabolism, neuronal integrity and 

transmission. Meta-analyses showed that depression was associated with increased blood levels of total 

cholesterol(10) and triglycerides (TG),(3) and decreased low density lipoprotein (LDL) cholesterol,(11) 

high density lipoprotein (HDL) cholesterol,(3) and omega-3 polyunsaturated fatty acids.(12) However, 

large heterogeneity was noted between studies, which was partly explained by differential lipid 

classifications.(11)  

Alterations in circulating lipid concentrations may be linked to pathophysiological pathways related 

to depression, such as chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis or chronic 

low-grade inflammation (1). Glucocorticoid-induced hypercortisolemia is known to result in lipolysis, the 

release of fatty acids and synthesis of Very Low Density Lipoprotein (VLDL)(13). Similarly, activation 

of the pro-inflammatory response leads to a reduction in HDL cholesterol and phospholipids, and an 

increase in TG, caused by the compensatory production and accumulation of phospholipid-rich VLDL 

(14). In addition, omega-3 fatty acids have anti-inflammatory properties, impact HPA-axis functioning, 

promote cell membrane fluidity, and are involved in the regulation of dopaminergic and serotonergic 

neurotransmission, which can be altered in depression.(15) Alterations of circulating concentrations of 

lipids may also represent a consequence of depression. Patients with depression are more likely to engage 

in unhealthy behaviors, such as sedentariness, excessive alcohol use and poor nutrition (with preference 
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for high palatable food rich in saturated fats), which may lead to dyslipidemia (16), that can result in 

metabolic syndrome and cardiovascular disease.  

Emerging technologies allow high-throughput profiling of lipids and other metabolites, which has 

led to efforts of determining metabolic signatures of various diseases.(17),(18) A few studies have applied 

this to depression,(19, 20) but their results remain inconsistent,(21, 22) partly due to different 

methodologies used and different metabolites (lipids, amino acids and other small molecules) 

analyzed.(23) 

This study aims to identify plasma lipids, fatty acids and low-molecular-weight metabolites 

associated with depression by analyzing data from nine Dutch clinical- and population-based studies, and 

to assess consistency of findings across studies. A strength of the study is that all metabolites were 

measured around the same time with the same targeted 1H-NMR platform that quantifies lipids, fatty 

acids and low-molecular-weight metabolites, including those that have been related to consequences of 

depression (e.g. insulin resistance (24), onset of cardiovascular events (25), and mortality (26)). 
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Methods and Materials 

Sample description 

Eleven datasets from nine cohorts participating in the Biobanking and BioMolecular resources Research 

Infrastructure-The Netherlands (BBMRI-NL) were included: Cohort on Diabetes and Atherosclerosis 

Maastricht (CODAM),(27) The Maastricht Study,(28) Erasmus Rotterdam Family study (ERF),(29) 

Leiden University Migraine Neuro-Analysis (LUMINA),(30) Netherlands Epidemiology of Obesity study 

(NEO), Netherlands Study of Depression and Anxiety (NESDA), Netherlands Twin Register (NTR),(31) 

the Rotterdam Study (RS), and Lifelines-DEEP (LLD).(32–34) Both CODAM and The Maastricht Study 

contributed two datasets stratified by diabetes mellitus status. In total, we included 5,283 persons with 

depression and 10,145 controls (see Supplement 1 for detailed cohort descriptions). All participants 

provided written informed consent. Studies were approved by local ethics committees.  

 

Measurements 

Depression 

The presence of depression was measured either before blood sampling or to a maximum of one 

month after blood sampling. Subjects were defined as cases when meeting all the criteria required for a 

diagnosis of major depressive disorder (MDD) in clinical structured interviews in four cohorts, or when 

scoring above validated clinical cut-off score in depression questionnaires in five cohorts (Supplement 2 

for all instruments and definitions). In the main analyses, cases included subjects with any history of 

depression in lifetime.  

 

 Metabolites 

Supplement 1 shows details on blood collection (for each cohort), measurement and processing of 

metabolite measurements. A total of 230 metabolites or metabolite ratios were reliably quantified from 

EDTA plasma samples using targeted high-throughput proton Nuclear Magnetic Resonance (1H-NMR) 

metabolomics (Nightingale Health Ltd, Helsinki, Finland).(35). This metabolomics platform has been 



7 
 

used in large-scaled epidemiological studies in the field of diabetes(24), cardiovascular disease(25), 

mortality(26) and alcohol intake.(36). In order to enhance interpretation, metabolites were classified into 

three clusters curated by Nightingale Health(37): 1) lipids, fatty acids and low-molecular-weight 

metabolites (N=51); 2) lipid composition and particle concentration measures of lipoprotein subclasses 

(N=98);  3) metabolite ratios (N=81). Data were processed according  to a shared protocol applied also in 

other studies of BBMRI-NL.(38) In each cohort, values of metabolites that could not be quantified (5 

metabolites per cohort) were set as missing for all subjects. Furthermore, metabolites values in subjects 

with outlying concentrations (±5SDs) were additionally set as missing. A value of 1 was added to all 

metabolite values (Supplement 1 includes extensive analyses indicating that the degree of bias potentially 

introduced by this transformation is likely negligible) that were subsequently (natural)log-transformed to 

approximate normality. The obtained values were scaled to standard deviations units in each cohort to 

enable comparison.  

 

Statistical analyses 

Per-metabolite logistic regression analyses were initially performed in each dataset. The dependent 

variable was depression, independent variables were the 230 metabolite measurements. For the NTR 

cohort, logistic regression using generalized estimating equations were conducted, accounting for family-

relatedness. All models were adjusted for age, sex, fasting status, use of lipid-modifying drugs listed 

under ATC (Anatomical Therapeutic Chemical Classification System) code C10 and smoking 

(Supplement 1 for measurements). All analyses were based on available data per metabolite (pair-wise 

deletion). Dataset-specific estimates were combined using random-effects meta-analyses (restricted 

maximum-likelihood estimator) to obtain pooled odds ratios (ORs). Heterogeneity of results between 

datasets was quantified by I2(39) along with 95% confidence intervals (CI) as recommended.(40),(41)  

Since body mass index (BMI) has been shown to be associated with depression(4) and metabolites 

,(42) we re-run the main analyses adjusting for BMI. Furthermore, to investigate whether metabolic 

profiles were dependent on recent presence of depression, additional analyses were conducted comparing 
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current depressed cases (depression present ±1 month around blood sampling) and controls. We 

conducted sensitivity analyses in which we excluded antidepressant medication (ATC code N06A) users, 

in order to study the impact of depression apart from its treatment. Here, we a priori expected to find a 

less distinctive metabolomics profile, given that antidepressant medication prescriptions are more likely 

in depressed individuals with higher depression severity. Correlations between estimates obtained from 

these sensitivity analyses and those obtained in the main analyses were computed in order to measure the 

impact of the factors considered.   

Four additional sets of stratified analysis were performed to explore whether associations between 

metabolites and depression were different as a function of (1) depression assessment (diagnosis vs. self-

report instrument), (2) sex (men vs. women), (3) age (<50 years vs. ≥50 years) and (4) BMI (normal 

(18.50-24.9) vs. overweight (25.0-29.9) and vs. obesity (≥30)). A Wald-test was performed to test 

differences in effect sizes across these strata,(43) and correlations between estimates obtained across 

strata were estimated.  

The False Discovery Rate (FDR) method(44) was applied to address multiple testing at the meta-

analysis level for 230 metabolites. Meta-analyses were conducted with the ‘metafor’ package (version 

2.0.0) in R v3.4.2-3.4.3 (R Project for Statistical Computing). 
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Results 

 

Overview of cohorts  

The study population comprised 15,428 adults from 11 datasets of 9 cohorts. There were 10,145 controls, 

and 5,283 participants with depression. Table 1 shows the characteristics of the 11 datasets. Across the 

cohorts, the average age ranged from 40.4-64.8 years, the proportion of women from 32-70%, and the 

median prevalence of depression was 29.5%. 

 

Associations of the 51 lipids, fatty acids and low-molecular-weight metabolites with depression 

Figure 1 shows a polar plot with ORs of meta-analyses investigating associations between depression and 

the 51 metabolites, after adjustment for sex, age, smoking, lipid modifying drugs, and fasting status. Of 

these, 21 were associated with depression at FDR-q<0.05 (Table 2; Supplement 4). Metabolites 

associated with a higher odds for depression were apolipoprotein B, remnant (non-HDL and non-LDL) 

cholesterol, VLDL cholesterol, mean diameter of VLDL, the glycerides and phospholipid markers 

diglycerides, TG in LDL, serum TG, TG in HDL, TG in VLDL, the fatty acid measures total fatty acids, 

monounsaturated fatty acid, and estimated fatty acid chain length, the inflammation marker glycoprotein 

acetyls, and the amino acids tyrosine and isoleucine. Higher levels of metabolites that were associated 

with a lower odds for depression were apolipoprotein A1, cholesterol content for HDL (in particular 

HDL2- and HDL3- cholesterol),  mean diameter of HDL, and ketone body acetate.  

Heterogeneity was small (I2<25% for 15 out of 21 metabolites) and statistically non-significant in almost 

all (19 out of 21) analyses. As shown in the related forest plots (Supplement 4) association estimates were 

quite consistent across the different datasets, including those enriched for cardiometabolic risk. To 

confirm this,   

we re-run the analyses after removing two datasets (CODAM-DM and TMS-DM) including ~900 

participants with established diabetes and elevated cardiovascular risk factors. Association estimates were 

highly concordant with those of the original analyses (r=0.99); all the 21 metabolites detected in the 

original analyses were associated at nominal level with depression (17 at FDR-q<0.05; Supplement 16).   
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Additional adjustment for BMI partially reduce the strength of the association of these 21 metabolites 

with depression (regression slope of the 21 beta’s before versus after BMI-adjustment=0.65, whereas a 

value of 1 would indicate similar average association sizes; correlation r=0.98): of the 21 metabolites 

associated with depression, 16 remained significantly related to depression at p<0.05 and 13 at FDR 

q<0.05 (Table 2). Supplement 3 shows the pooled ORs and heterogeneity findings for all metabolites.  

 
 

Associations of 98 detailed lipid composition and particle concentration measures of lipoprotein 

subclasses with depression 

Figure 2 shows the ORs of the meta-analyses for the 98 lipid measures of the 14 lipoprotein subclasses, 

ordered from large to small particle size. Generally, there appeared to be a shift in association with 

depression by lipoprotein classes: VLDL lipoprotein levels were positively related to depression, IDL and 

LDL lipid levels were not consistently associated, whereas HDL lipoprotein measures were inversely 

related to depression. Furthermore, depression was related to higher TG levels.  

 

Associations of 81 metabolite ratios with depression 

Supplement 5 shows the ORs of the meta-analyses for the 81 metabolite ratios, of which 27 were 

significant at FDR-q<0.05. In general, TG to total lipid ratios were significantly related to an increased 

odds of depression. Some of the VLDL, IDL, LDL, and HDL lipid measures as percentage of total lipids 

were positively related to depression, whereas others were inversely related. In general, associations of 

the metabolite ratios with depression were less pronounced compared to those with absolute metabolite 

values. 

 

Sensitivity analyses 

Current depression 
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The original 5,283 depressed cases included subjects with any history of depression in lifetime. In 62% of 

the cases (3,265 subjects) depression was present between one month before to one month after blood 

draw. We repeated analyses with only these 3,265 current cases with depression (vs. 10,145 controls). Of 

the 51 lipids, fatty acids and low-molecular weight metabolites, 22 were associated with current 

depression at FDR-q<0.05 (Supplement 6). Notably, the strength of the associations with the 51 

metabolites tended to be stronger for current depression than for the original definition (regression slope 

of beta’s for current versus broadly-defined depression=1.22, r=0.95) (Supplement 3). Supplements 3,7,8 

show associations of the 98 lipid measures of lipoprotein subclasses, and the 81 metabolite ratios with 

current depression, which were largely in line with those of original analyses.  

 

Antidepressant medication 

To study whether associations were independent of concurrent antidepressant medication use, we 

removed 1,597 subjects across cohorts who reported use of antidepressants. The majority were depressed 

cases (N=1,305), which was expected given that depression is the main indication for receiving 

antidepressant treatment. Additionally, one study (LLD) was removed because of model convergence 

issues. In the remaining 3,966 cases and 8,887 controls - representing a 21% drop in effective sample size 

as compared to the original analyses - associations with the 51 lipids, fatty acids and low-molecular-

weight metabolites were generally in the same direction, but the strength of the associations was 

attenuated (regression slope of betas before and after antidepressant users exclusion=0.60, r=0.88) 

(Supplement 9). Among the 21 significantly associated metabolites in the overall sample, 8 were still 

associated at p<0.05, of which 2 (HDL3- cholesterol, and acetate) at FDR-q<0.05 in the antidepressant-

free subsample.  

Subgroups  

Exploration of consistency of associations across subgroups showed that there were no significant 

differences (Wald-test, FDR-q>0.05) in the strength of the association between metabolites and 
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depression across subgroups with depression diagnoses vs. self-reported depression (r=0.75, Supplement 

10), across men vs. women (r=0.64, Supplement 11), across age <50y vs. >=50y (r=0.84, Supplement 12), 

and across BMI groups (normal vs. overweight r=0.68, normal vs. obese r=0.55, overweight vs. obese 

r=0.71, Supplements 13-15).  
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Discussion 

This meta-analysis of metabolomics and depression, is to our knowledge the largest of its kind. We 

analyzed data of over 15,000 subjects from nine Dutch clinical and population-based studies in the 

Netherlands to identify metabolites associated with depression. Our findings showed that depression is 

associated with a metabolic signature towards less HDL and more VLDL and triglycerides particles. 

More specifically, 21 plasma lipids, fatty acids and low-molecular-weight metabolites were significantly 

related to depression: higher levels of apolipoprotein B, VLDL cholesterol, triglycerides, diglycerides, 

total and mono-unsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, and 

isoleucine, and lower levels of HDL cholesterol, acetate, and apolipoprotein A1. Associations were 

generally consistent across sex, age and body mass index strata, and across cohorts using depression 

diagnoses vs. depressive symptoms. These metabolic alterations in depression could potentially explain 

part of the increased risk of cardiometabolic disease in depressed individuals. 

Our findings that depression is related to higher VLDL, higher TG and lower VLDL are in line 

with previous research.(3)(11)-(45) In the present study, we predominantly found differences in absolute 

lipid measures of the VLDL subfractions, whereas findings with lipid measures to lipid ratios in VLDL 

were less consistently associated with depression. This suggests that the total amount of lipids, rather than 

the type of lipids, is the main contributor to associations of depression with VLDL. For other metabolites, 

previous studies indicated more mixed findings. We did not find associations for LDL cholesterol 

measures, which contrasts with a previous meta-analysis that showed associations between and increased 

LDL cholesterol.(11) For fatty acids measures, we observed that higher mono unsaturated fatty acids, 

total fatty acids and estimated fatty acids chain length were associated with an increased odds of 

depression. Most evidence for links with fatty acids in depression stems from research on omega-3 fatty 

acids,(12) for which we did not observe a consistent, significant association with depression in the present 

study. The pro-inflammatory glycoprotein acetyls being positively associated with depression is in line 

with the large body of evidence linking inflammation to depression.(46) The short chain fatty acid and 

ketone body acetate was lower in depression. It was hypothesized that a Western-style diet alters gut 
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microbiome composition, resulting in lower acetate levels, which could subsequently induce 

depression.(4) Furthermore, a smaller study found lower isoleucine levels in depression,(47) which 

contrasts our findings. Finally, a review concluded that there was no association between tyrosine and 

depression,(48) whereas we observed higher tyrosine in depression. Discrepancies could be explained by 

differences in study characteristics or variation in analyses approaches, such as selection of potentially 

confounding factors. 

We additionally evaluated the impact of the timeframe of depression assessment on the results. In 

secondary analyses including cases with current depression only, associations tended to become 

enhanced, suggesting that metabolomics alterations represent state markers reflecting current depression. 

Nevertheless, a similar profile of associations was found when analyzing depression cases defined in a 

broader timeframe. The metabolic signature identified may therefore also represent a persisting biological 

scar after depression remission, or a pre-existing underlying vulnerability factor for depression 

development.  

The impact of antidepressant medication use on the results was explored in secondary analyses, 

although this observational study precludes definitive conclusions, since depression severity most likely 

represents the clinical indication for antidepressant treatment (confounded by indication).(49) We 

reanalyzed data after excluding antidepressant users, and found that the strength of associations was 

attenuated. Furthermore, the reduction in effective sample size substantially impacted the power to find 

significant associations. Nevertheless, directions of associations were highly consistent with those 

obtained in the full sample. Furthermore, the literature shows that potential detrimental effects of 

antidepressants on dyslipidemia is evident mainly for tricyclic antidepressants (TCA).(50),(51) Data from 

the NESDA cohort,(51) including patients from mental health care institutions, with the highest 

prevalence of antidepressant users (27%, Table 1), showed that TCA were prescribed only in 3% of the 

participants. Since in other cohorts included in the present meta-analysis the overall prevalence of 

antidepressant use were lower than ~9%, it could be assumed that the number of TCA users may be 
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limited. This observation, combined with the results of our sensitivity analyses, suggests that 

antidepressant use is unlikely to be the major driver of the associations between metabolites and 

depression.   

Secondary analyses also indicated that results were generally attenuated when BMI was taken 

into account, suggesting that part of the differential metabolite levels in depression could be explained by 

BMI. However, interrelationships between BMI, metabolite, depression and antidepressants are 

particularly complex. A significant genetic correlation has been found between depression and BMI,(52) 

indicating that they may emerge from partially shared etiological mechanisms; at the same time BMI has 

been shown to influence metabolite concentrations.(42) The ability to disentangle different independent 

effects of this complex network in observational data is limited. Nevertheless, the majority of metabolites 

were associated with depression after taking into account BMI, indicating that this factor explains only a 

limited portion of the depression-metabolites link.  

The present findings may be explained by three, non-mutually exclusive, scenarios. First, 

alterations of lipids may be a consequence of depression. Depressed persons are more likely to engage in 

unhealthy behaviors such as sedentariness, excessive alcohol use and poor nutrition (e.g. saturated fats), 

which may lead to dyslipidemia.(16) Second, lipid dysregulations may be part of the pathophysiological 

pathways implicated in depression, such as chronic HPA-axis and inflammatory activity, resulting in 

lipolysis, release of fatty acids, synthesis of VLDL, hypertriglyceridemia and reduction in HDL 

cholesterol. Finally, metabolomic alterations in depression may represent epiphenomena stemming from 

the same root, such as a common genetic factor. A recent genome-wide association study (GWAS) of 

major depression involving >450,000 participants, reported a significant genetic correlation (rg=0.14, 

p=7.8x10-7) with high TG levels, but not with LDL or HDL.(53) Furthermore, no genetic correlations 

emerged with metabolites of the same panel that we found to be associated with depression, although the 

relatively smaller sample size (~25,000 ) of the metabolomics GWAS may substantially limit the ability 

to detect correlation; the only exception was a nominally significant correlation with glycoprotein acetyls 

(rg=0.15, p=0.03), with the same direction of the phenotypic association we identified. Further 
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experimental studies and genetic-informed designs such as Mendelian randomization may disentangle 

whether depression and lipid dysregulations emerge from shared etiology, and whether depression 

causally determines lipid alterations or vice versa.   

The study has some limitations. Due to limited availability or differences in assessment across 

datasets we cannot rule out confounding by other health-related or lifestyle factors, such as chronic 

cardiometabolic conditions, alcohol use or specific food intake prior to sample collection. Nevertheless, 

the associations between depression and metabolites were consistent across datasets, including those 

enriched for traits such as diabetes, cardiovascular risk factors and migraine. Furthermore, alcohol use 

may represent a mediating mechanism rather than a confounder in the metabolites-depression association, 

as recent evidence(54) showed that heavy-drinking is to quite some extent caused by depression. 

Analyses were adjusted for fasting status (>94% of subjects were fasting, Table 1), but both fasting and 

non-fasting samples can be reliably analyzed by the metabolomics platform utilized(26, 35). We could not 

examine whether the associations with metabolites detected vary as a function of specific depression 

clinical characteristics. Strengths of the study (large samples, metabolites data generated for all studies 

with the same platform) have enabled the identification of the most reliable metabolic signals associated 

with depression. These are worth further examination in relation to clinically-relevant phenotypes (e.g. 

age of onset, recurrence, duration, symptom profiles) in future studies based on psychiatrically well-

characterized samples.  

This large-scale meta-analysis including over 15,000 participants identified a metabolomics 

signature associated with depression. This biological signature is partially shared with other conditions 

such as diabetes, obesity and cardiovascular diseases(3)(5),(6),(7) that commonly co-occur with 

depression, heavily burdening public health resources. Alterations in the lipid spectrum identified in the 

present study may represent a substrate linking depression to cardiometabolic diseases and, therefore, a 

potential target for prevention and treatment of depression and its detrimental somatic sequelae. 
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Overview of tables and figures 

Table 1. Characteristics of the study populations  

Table 2. Overview of the 21 lipids, fatty acids and various low-molecular-weight metabolites that are significantly 
related to depression in the pooled analysis at FDR q<0.05 

Figure 1. Polar plot illustrating pooled odds ratio and 95% confidence intervals for the association of the 51 lipids, 
fatty acids and various low-molecular-weight metabolites with depression 
*significant at FDR q<0.05. 
Dotted circle indicates an OR of 1. 

 
 
Figure legend 
C=cholesterol, TG=triglycerides, VLDL=very-low-density lipoprotein,  LDL=low-density lipoprotein, IDL=intermediate-
density lipoprotein, HDL=high-density lipoprotein, FA=fatty acids 
ApoA1=apolipoprotein A-I, ApoB=apolipoprotein B, Est=esterified, Remnant=non-HDL, non-LDL –cholesterol, 
D=mean diameter, DAG=diglycerides, TotPG=total phosphoglycerides, TotCho=total cholines, PC= 
phosphatidylcholine and other cholines, SM=sphingomyelins, SFA=saturated FA, MUFA=monounsaturated FA 
(16:1,18:1), PUFA=polyunsaturated FA, FAw6=omega-6 FA, FAw3=omega-3 FA, LA=linoleic acid (18:2), 
CLA=conjugated linoleic acids, DHA=docosahexaenoic acid, TotFA=total FA, FALen=estimated FA chain length, 
UnsatDeg=estimated degree of unsaturation,  Alb=albumin, Crea=creatinine, Cit=citrate, Glc=glucose, Lac=lactate, 
Gp=glycoprotein acetyls, mainly a1-acid glycoprotein, bOHBut=3-hydroxybutyrate, Ace=acetate, 
AcAce=Acetoacetate, Ala=alanine, Gln=glutamine, His=histidine, Phe=phenylalanine, Tyr=tyrosine, Ile=isoleucine, 
Leu=leucine, Val=valine 
Density: HDL2 (1.063-1.125 g/mL) HDL3 (1.125-1.210 g/mL) 
 
 

Figure 2. Pooled odds ratio’s and 95% confidence intervals for the association of the 98 lipid measures of 
lipoprotein subclasses with depression  
*significant at FDR q<0.05. 
Dotted circle indicates an OR of 1. 
 
Figure legend 
XXL=extremely large, XL=very large, L=large, M=medium, S=small, XS=very small 
VLDL=very-low-density lipoprotein,  LDL=low-density lipoprotein, IDL=intermediate-density lipoprotein, HDL=high-
density lipoprotein 
CE=cholesterol ester, FC=free cholesterol, P=particle concentration, PL=phospholipids, C=total cholesterol, L=total 
lipids, TC=triglycerides 
Particle sizes: XXL.VLDL (>75nm), XL.VLDL (64nm), L.VLDL (53.6nm), M.VLDL (44.5nm), S.VLDL (36.8nm), XS.VLDL 
(31.3nm), IDL (28.6nm), L.LDL (25.5nm), M.LDL (23.0nm), S.LDL (18.7nm), XL.HDL (14.3nm), L.HDL (12.1nm), M.HDL 
(10.9nm), S.HDL (8.7 nm) 
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Table 1. Characteristics of the study populations (N=15,428) 

 

CODAM 

DM 

CODAM 

noDM 
TMS DM 

TMS 

noDM 
ERF LUMINA NEO NESDA NTR RS LLD 

Total N 139 416 775 723 346 231 6554 2509 1523 1188 1024 

Female, n (%) 46 (33.1) 168 (40.4) 248 (32.0) 455 (62.9) 198 (57.2) 136 (58.9) 3433 (52.4) 1680 (67.0) 1072 (70.4) 755 (63.6) 596 (58.2)           

Age (years), mean (SD) 61.2 (6.2) 59.0 (7.1) 62.7 (7.5) 58.8 (8.0) 48.0(14.0) 41.2 (12.2) 55.8 (6.0) 41.8 (13.0) 40.4 (13.2) 64.8 (5.8) 44.9 (13.2) 

Current smoker, n (%)  26 (18.7) 86 (20.7) 122 (15.7) 94 (13.0) 127 (36.7) 25 (10.8) 1071 (16.3) 978 (39.0) 74(4.9) 161 (13.6) 204 (19.9)           

Use of lipid-modifying 

medications n (%)  
35 (25.2) 69 (16.6) 578 (74.6) 162 (22.4) 31 (8.95) 2 (0.9) 1024 (15.6) 177 (7.0) 77 (5.1) 257 (21.6) 45 ( 4.4)                                    

Fasting, n (%)  139 (100) 416 (100) 775 (100) 723 (100) 344 (99.4) 230 (99.5) 6554 (100) 2403 (95.8) 1441 (94.6) 1113 (93.7) 1013 (98.9)          

BMI (kg/m2), mean (SD) 30.3 (4.7) 28.0 (4.1) 29.8 (4.9) 29.3 (3.6) 27.2 (4.5) 23.6 (2.4) 30.1 (4.8) 25.6 (5.0) 24.7 (4.1) 27.4 (4.3) 25.2 (4.1) 

No depression, n (%) 105 (75.5) 338 (81.3) 503 (64.9) 480 (66.4) 193 (55.8) 172 (74.5) 4620 (70.5) 634 (44.8) 1353 (88.8) 737 (62.0) 1010 (98.6) 

Depression, n (%) 34 (24.5) 78 (18.8) 272 (35.1) 243 (33.6) 153 (44.2) 59 (25.5) 1934 (29.5) 1875 (74.7) 170 (11.2) 451 (38.0) 14 (1.4) 

    Of which current depression, 

n (%) 
34 (24.5) 78 (18.8) 46 (8.4) 24 (4.8) 25 (7.2) 14 (6.1) 1934 (29.5) 782 (55.2) N.A. 314 (26.4) 14 (1.4) 

Antidepressant use, n (%)  10 (7.2) 20 (4.8) 63 (8.1) 64 (8.9) 24(6.9) 3 (1.3) 534 (8.1) 683 (27.2) 73 (4.8) 77(6.5) 46 (4.5) 

Abbreviations: BMI = Body mass index, CODAM DM =Cohort on Diabetes and Atherosclerosis Maastricht, participants with type 2 diabetes mellitus, CODAM 

noDM =Cohort on Diabetes and Atherosclerosis Maastricht, participants without diabetes mellitus,  TMS DM = The Maastricht Study, participants with type 2 

diabetes mellitus, TMS noDM = The Maastricht Study, participants without diabetes mellitus, ERF = Erasmus Rucphen Family study,  LLD = Lifelines Deep, 

LUMINA = Leiden University Migraine Neuro-Analysis, NEO = The Netherlands Epidemiology of Obesity Study, NESDA = Netherlands Study of Depression and 

Anxiety, NTR = Netherlands Twin Register, RS = Rotterdam Study. N.A.=not available. 
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Table 2. Overview of the 21 lipids, fatty acids and various low-molecular-weight metabolites 

that are significantly related to depression in the pooled analysis at FDR q<0.05 

 Model 1 Model 2* 

Metabolite 
Pooled 

OR p-value 
FDR q-
value 

Pooled 
OR p-value 

FDR q-
value 

Apolipoproteins       

  Apolipoprotein A1 0.90 2.71×10-7 2.50×10-6 0.94 0.007 0.021 
  Apolipoprotein B 1.08 2.40×10-4 6.90×10-4 1.05 0.014 0.040 
Cholesterol       
  Remnant cholesterol 1.07 0.003 0.006 1.05 0.014 0.038 
  VLDL cholesterol 1.10 1.68×10-4 5.03×10-4 1.07 0.001 0.002 
  HDL cholesterol 0.86 1.24×10-12 9.47×10-11 0.91 2.03×10-5 2.59×10-4 
  HDL2 cholesterol 0.89 5.78×10-6 2.79×10-5 0.93 0.001 0.003 
  HDL3 cholesterol 0.90 2.18×10-5 8.37×10-5 0.93 4.91×10-4 0.002 
  Mean diameter of VLDL 1.13 1.30×10-6 8.82×10-6 1.08 2.39×10-4 0.001 
  Mean diameter of HDL  0.91 2.10×10-4 6.10×10-4 0.96 0.104 0.222 
Di- and triglycerides       
  Diglycerides 1.09 2.56×10-5 9.65×10-5 1.07 0.003 0.008 
  Serum total TG 1.11 3.29×10-5 1.15×10-4 1.08 1.92×10-4 0.001 
  VLDL TG 1.11 8.68×10-5 2.77×10-4 1.08 1.76×10-4 0.001 
  LDL TG 1.05 0.015 0.032 1.04 0.101 0.218 
  HDL TG 1.09 0.007 0.015 1.07 0.029 0.072 
Fatty acids       
  Mono Unsaturated FA 1.09 7.13×10-6 3.35×10-5 1.06 0.004 0.012 
  Total FA 1.05 0.013 0.027 1.03 0.102 0.219 
  Estimated FA chain 
length 

1.10 0.020 0.043 1.08 0.060 0.140 

Inflammation       
  Glycoprotein acetyls 1.13 0.003 0.007 1.09 0.028 0.071 
Ketone bodies       
  Acetate 0.91 0.003 0.006 0.93 0.038 0.092 
Amino acids       
  Tyrosine 1.07 0.013 0.028 1.02 0.552 0.760 
  Isoleucine 1.14 8.26×10-6 3.71×10-5 1.08 0.001 0.004 

Model 1: adjusted for sex, age, smoking, lipid modifying drugs, fasting status; Model 2: adjusted 
for model 1 and body mass index; Abbreviations: FDR=false discovery rate, FA=fatty acids, 
HDL=high-density lipoprotein, LDL=low-density lipoprotein, OR=odds ratio, TG=triglycerides, 
VLDL=very-low-density lipoprotein. 


