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Abstract

The evolutionary radiation of birds has produced incredible morphological variation, includ-

ing a huge range of skull form and function. Investigating how this variation arose with

respect to non-avian dinosaurs is key to understanding how birds achieved their remarkable

success after the Cretaceous–Paleogene extinction event. Using a high-dimensional geo-

metric morphometric approach, we quantified the shape of the skull in unprecedented detail

across 354 extant and 37 extinct avian and non-avian dinosaurs. Comparative analyses

reveal fundamental differences in how skull shape evolved in birds and non-avian dinosaurs.

We find that the overall skull shape evolved faster in non-avian dinosaurs than in birds

across all regions of the cranium. In birds, the anterior rostrum is the most rapidly evolving

skull region, whereas more posterior regions—such as the parietal, squamosal, and quad-

rate—exhibited high rates in non-avian dinosaurs. These fast-evolving elements in dino-

saurs are strongly associated with feeding biomechanics, forming the jaw joint and

supporting the jaw adductor muscles. Rapid pulses of skull evolution coincide with changes

to food acquisition strategies and diets, as well as the proliferation of bony skull ornaments.

In contrast to the appendicular skeleton, which has been shown to evolve more rapidly in

birds, avian cranial morphology is characterised by a striking deceleration in morphological

evolution relative to non-avian dinosaurs. These results may be due to the reorganisation of

skull structure in birds—including loss of a separate postorbital bone in adults and the emer-

gence of new trade-offs with development and neurosensory demands. Taken together, the

remarkable cranial shape diversity in birds was not a product of accelerated evolution from

their non-avian relatives, despite their frequent portrayal as an icon of adaptive radiations.
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Introduction

Among tetrapods, extant birds exhibit incredible taxonomic and ecomorphological diversity,

comprising over 10,000 extant species that occupy myriad niches on 7 continents [1–3]. They

possess a number of specialised traits that have been proposed as key innovations that facili-

tated their radiation, including the keeled pectoral girdle and flight stroke [4,5]; a hindlimb

capable of perching [6]; a short, fused caudal axial skeleton [7]; an air-sac–based respiratory

system [8]; an edentulous beak [9]; and highly encephalised brains [10,11] among other traits.

Did this broad suite of phenotypic changes result in enhanced disparity and rates of pheno-

typic evolution in birds compared to their non-avian relatives? The rich fossil record shows

that the stem group of birds, the non-avian dinosaurs, also exhibit remarkable variation in

body plan, body size, and trophic ecology [12,13]. As such, understanding the context of avian

diversification requires an in-depth investigation of the dynamics of tempo and mode of phe-

notypic evolution across Dinosauria as a whole [9,14–21].

Previous research comparing macroevolutionary patterns between avian and non-avian

dinosaurs has focused on the post-cranial skeleton and/or body size [16–18,20,22–24]. Many

of these studies have shown significant heterogeneity in disparity and evolutionary rates across

dinosaur clades and across regions of the body. However, there remains some debate whether

the radiation of crown birds represents a shift in tempo and mode of evolution or a continua-

tion of existing trends. For example, some studies quantifying rates of phenotypic evolution

across the origin of birds have recovered sustained high evolutionary rates across the entire

avian stem lineage [18], while others have suggested that birds indeed evolve under different

rates or adaptive regimes compared to non-avian dinosaurs [16,24]. Still others have found an

isolated acceleration of evolutionary rate before the origin of birds, at the root of Paraves [17].

Despite this uncertainty about the timing of rate shifts in dinosaur macroevolution, there is an

emerging consensus that there is heterogeneity in the tempo and mode of evolution across

body regions [15,20] and across lineages [16–18,22].

Fewer studies have focused on the tempo and mode of craniofacial evolution specifically,

despite many of the key ‘avian’ features being localised to the skull (e.g., edentulous beak,

kinetic palate, encephalised brain). These studies have primarily been limited to the use of lin-

ear or two-dimensional (2D) morphometric data. These analyses support the idea that avian

cranial diversity is aligned along a similar axis of variation as in non-avian dinosaurs, with sim-

ilar trends in braincase to face proportions [25]. However, these efforts have largely been

restricted to Theropoda [21,26–28], excluding much of total non-avian dinosaur diversity.

Analysis of avian cranial skeletal evolution using three-dimensional (3D) morphometric

data has revealed a mosaic pattern of evolution [29]. The components of the skull evolve at dif-

ferent tempo and mode, with high rate variability among lineages [29,30]. Rate and disparity

are positively correlated, with the anterior face evolving fastest and achieving the highest dis-

parity. In contrast, the posterior and ventral braincase evolves relatively slowly and has low

variance. This heterogeneity in rate and disparity across skull regions supports the hypothesis

that the mosaic assembly of the avian skull has contributed to the vast phenotypic and ecologi-

cal disparity within the clade [29,31]. Birds and non-avian dinosaurs exhibit some similarities

in cranial integration patterns, further suggesting that avian cranial variation forms a contin-

uum with other members of Dinosauria. For example, the regions that are strongly integrated

in birds, such as the occiput, are also highly integrated in non-avian dinosaurs [32]. However,

it is currently unknown whether these common integration patterns across Dinosauria reflect

similar patterns of mosaicism in avian and non-avian dinosaurs.

Here, we test whether the origin of birds is marked with a distinct shift in cranial evolution-

ary dynamics. Specifically, we assess how the macroevolutionary patterns generating avian
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cranial diversity compares to those giving rise to the diversity of cranial morphology across

Dinosauria as a whole. We address 2 main questions. First, did the same regions of the skull

evolve at high rates and exhibit high disparity in non-avian dinosaurs as in birds? We hypothe-

sise that because of the major differences in cranial anatomy, function, development, and phe-

notypic integration, non-avian and avian dinosaurs exhibit distinct patterns of regionalisation

of variability within the skull. Second, do birds and non-avian dinosaurs evolve at different

rates? Previous studies quantifying cranial form across dinosaurs and birds have relied on lim-

ited length measurements or a small set of 2D landmarks because of limited points of clear

homology [21,26–28]. To comprehensively represent the complex morphology and diversity

of the dinosaur skull, we used a high-dimensional 3D geometric morphometric approach to

quantify shape morphology across the entire surface of the skull in both extant birds (n = 354)

and non-avialan dinosaurs (n = 36), as well as the Cretaceous ornithuran bird Hesperornis.
Using semiautomated placement of surface semi-landmarks [33], we projected a total of 775

surface semi-landmarks onto each specimen (S1 Fig), allowing for the disparate morphology

of non-avian and avian dinosaurs to be compared in a single unified Procrustes space [33].

Because this study concerns 3D shape of the entire skull, we selected only highly complete,

articulated, and undeformed fossil specimens. We also included several specimens that were

digitally reconstructed, restored, or retrodeformed [34–37]. Although these requirements

reduced the total number of extinct taxa in the dataset, it also maximised the quality of the

data and minimised missing data. This dataset contains representatives of all major groups,

including 4 sauropodomorphs, 4 thyreophorans, 4 hadrosaurs, 3 pachycephalosaurs, 5 cera-

topsians, and 15 non-avian theropods S2 Table). Although the total sampling in this study rep-

resents only a fraction of the overall diversity of dinosaurs, the sampling is proportionate for

avian and non-avian dinosaurs, representing approximately 3% of known species. We sample

over 80% of extant avian families, with non-avian sampling covering most major clades and

the breadth of cranial variation. Moreover, the total number of specimens in the present analy-

sis is similar to or exceeds the taxonomic sampling of other analyses of cranial shape in dino-

saurs or birds, all of which use a much less detailed characterisation of morphology with 2D

geometric morphometrics (e.g., n = 22 [21], n = 36 [27], n = 41 [28], n = 108 [26]). We addi-

tionally carried out post hoc analyses, detailed below, to test for statistical artefacts related to

sampling.

Because of the variable completeness of the fossil specimens, we conducted all analyses con-

cerning rate and disparity of a region (e.g., a whole bone or phenotypic module composed of

multiple bones) using all specimens that preserve that region or element. For analyses con-

cerning rate and disparity across the entire skull, we performed tests using 2 subsets of the

total sample: one consisting of those taxa that preserve the dorsal and lateral sides of the skull

(n = 28) and composed of 9 anatomical modules (S2 Table) and the other consisting of those

taxa preserving the occiput and quadrate as well (11 anatomical modules, n = 19). We then

used modern comparative methods to estimate phenotypic rates of evolution across time, taxa,

and cranial regions.

Results

Under a variable-rates Brownian Motion (BM) model [38], all cranial regions evolved more

slowly in birds than in either non-avian theropods, non-theropod dinosaurs (sauropodo-

morphs and ornithischians), or both (Fig 1 and S2–S22 Figs). The distribution of rates is highly

variable across cranial regions and across taxa, but the highest rates are consistently observed

on branches within non-avian dinosaurs rather than those within birds. These results are

robust to the choice of phylogenetic topology and tree dating approach. Comparing per-

PLOS BIOLOGY Decelerated dinosaur skull evolution with the origin of birds

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000801 August 18, 2020 3 / 25

https://doi.org/10.1371/journal.pbio.3000801


branch evolutionary rate scalars demonstrates that birds evolved significantly more slowly

than non-avian theropods and non-theropod dinosaurs in all cranial regions (Fig 2). These

results are robust to taxonomic subsampling (S37 Fig) and changes in Procrustes alignment

(S38 Fig) and are further supported by rate comparisons using the multivariate K (σmult) rate

statistic [39] that assumes equal-rates BM (S39–S42 Figs, S1 Table)

For each skull region, variable-rates evolutionary models illustrate which subclades are

driving the differences in rates between non-avian dinosaurs and birds (Fig 1). In the rostrum

(premaxilla, maxilla, nasal, jugal), rapid evolution is particularly evident in Diplodocus and

Lambeosaurus, which convergently have distinct cranial configurations with posterodorsally

positioned nasals and elongate premaxillae compared to their closest relatives in this analysis

(Fig 1A and S2–S4 Figs). Among non-avian theropods, the oviraptorosaurs Citipati and Incisi-
vosaurus have relatively high rates of rostrum evolution. Although they represent sister taxa in

our sampling, these 2 genera exhibit widely divergent cranial morphotypes (e.g., Citipati has

an edentulous premaxilla, unlike Incisivosaurus). Along the early avialan lineages (including

Hesperornis), rates of rostrum evolution are slightly higher, but the rates along the branch lead-

ing to crown Aves and basal branches within the crown group are relatively slow compared to

non-avian dinosaurs.

Within non-avian dinosaurs, evolutionary pulses in the cranial vault are associated with

cranial ornaments. Ornithischian dinosaurs, such as horned and crested ceratopsians and

dome-headed pachycephalosaurs, exhibit elevated rates for this region (Fig 1B and S5–S7

Figs). Similarly, high rates are seen within non-avian Theropoda, where parietal crests are

present in taxa such as Tyrannosaurus and Allosaurus, although these structures are related to

Fig 1. Estimation of rates of cranial evolution on a time-calibrated phylogeny of Dinosauria using a variable-rates BM model of evolution. (A) In

the rostrum, ornithischians evolved faster than avian and non-avian theropods. (B) The cranial vault evolves fastest in non-avian dinosaurs with bony

cranial ornaments. (C) Rates of evolution are generally conserved and low in the occipital region, with slightly elevated rates in Passeriformes and in

pachycephalosaurs. Black triangle indicates the origin of Aves. See S2–S36 Figs for estimated rates for all cranial regions and phylogenetic hypotheses and

detailed tip labels. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls. BM, Brownian Motion.

https://doi.org/10.1371/journal.pbio.3000801.g001
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muscle attachment rather than display [40]. These bony elaborations of the skull roof are rela-

tively rare in birds [41]. However, per-bone analyses limited to non-avian dinosaurs indicate

that rate heterogeneity in the vault is driven not only by ornamentation. Indeed, several unor-

namented theropods also exhibit high rates of vault evolution on terminal branches, including

those leading to Ornithomimus, Struthiomimus, and Incisivosaurus (S5–S7 Figs). In the frontal,

non-avian theropods underwent faster evolution compared to ornithischians (S23 Fig),

although the ceratopsids Triceratops, Chasmosaurus, and Diabloceratops also exhibit high evo-

lutionary rates in the frontal, presumably reflecting the reorganisation of the skull roof to sup-

port the postorbital horns present in these species. In contrast, the parietal evolved faster in

ornithischians than in saurischians (S24 Fig). The slowest-evolving ornithischians are rela-

tively unornamented (e.g., Stegosaurus, Thescelosaurus, and Pinacosaurus), and theropods

with fast-evolving parietals are tyrannosaurids with parietal (nuchal) crests (e.g., Tyrannosau-
rus, Teratophoneus, and Alioramus). As with the parietal, the squamosal generally evolved fast-

est in ornithischians and slowly in saurischians (S25 Fig).

The quadrate and pterygoid form a strongly integrated unit with relatively slow evolution-

ary rates in crown birds [29]. In contrast, the quadrate exhibits high rates across non-avian

dinosaurs in the 11-module analyses (Fig 3C). However, when analysed separately from other

skull elements, such that only shape—rather than both shape and relative position—is repre-

sented, the quadrate exhibits apparently low evolutionary rates in non-avian dinosaurs than in

crown birds (S14–S16 Figs). Indeed, quadrate shape evolution is slow among non-avian

Fig 2. Comparison of per-group evolutionary rate scalars. Birds do not have the highest rates of evolution in any cranial region. For each group, mean rate scalar is

the mean of the rate scalars in the post-burn-in posterior distribution under the variable-rates evolutionary model estimated using BayesTraits under the traditional

Dinosaur phylogenetic hypothesis (Saurischia and Ornithischia as sister clades). Mean rates were scaled to the sum of the branch lengths in the corresponding

subtree. Mean rate scalars were compared between groups using non-parametric t tests; significantly different distributions are indicated with ����p< 0.00005. These

results are robust to subsampling of taxa (S1 Fig 37), Procrustes superimposition (S1 Fig 38) and alternative methods for comparing evolutionary rates (S39–S42 Figs).

Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

https://doi.org/10.1371/journal.pbio.3000801.g002
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dinosaurs, except in ornithomimosaurs and Plateosaurus (S14–S16 Figs). This difference

reflects the effects of Procrustes alignment with other components of the skull, which preserves

information about relative positions of elements, compared to separate Procrustes alignments

for each element that characterises only the shape of the region of interest. When σmult rate

comparison tests are carried out on the quadrate landmarks from the global Procrustes align-

ment, non-avian dinosaurs exhibit significantly faster evolution than birds (S42 Fig). The

aspect of the quadrate that evolves rapidly in non-avian dinosaurs, therefore, seems to be the

relative position of the articular surface of the quadrate relative to the rest of the skull, rather

than its shape. In contrast, the pterygoid shows a high rate of evolution along the branch lead-

ing to Avialae (S17–S19 Figs). This suggests that the derived, strut-like pterygoid of birds and

concomitant loss of the ectopterygoid evolved rapidly immediately preceding the origin of the

Fig 3. Per-landmark evolutionary rates (under single-rate BM model) and Procrustes variance. Landmarks and

sliding semi-landmarks represented in the 9-module dataset (A, B) and 11-module dataset (C, D), illustrated on the

skull of Erlikosaurus andrewsi (IGM 100/111). Landmarks are coloured according to evolutionary rate (A, C) and

Procrustes variance (B, D), where a warmer colour indicates greater value. Data and code archived at www.github.

com/rnfelice/Dinosaur_Skulls. BM, Brownian Motion; IGM, Paleontological Center, Mongolian Academy of Sciences.

https://doi.org/10.1371/journal.pbio.3000801.g003
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crown group. Among non-avian dinosaurs, there is an increase in evolutionary rate of the

pterygoid at the origin of each of the major clades (Theropoda, Sauropodomorpha, and

Ornithischia) and Ornithomimosauria.

The occiput shows slow rates of evolution in both birds [29] and non-avian dinosaurs (S8–

S10 Figs), a feature that may be conserved across tetrapods [42,43]. Nonetheless, ornithomi-

mosaurs show bursts of rapid evolution in the occiput, driving its evolution to be higher in

non-avian theropods than crown birds (Figs 1C and 2, S8–S10 Figs). High rates of occipital

evolution are also present in pachycephalosaurs, reflecting their derived occipital morphology

which has been interpreted as supporting increased epaxial cervical musculature, hypothesised

as an adaptation for their inferred headbutting behaviour [44,45].

Examining patterns of disparity and evolutionary rates across the skull demonstrates major

differences in how the skull evolved in in non-avian and avian dinosaurs. Non-avian dinosaurs

show high rates of evolution predominantly in the posterodorsal parts of the skull. This pattern

contrasts with birds, which have the highest rates of evolution in the anterior-most parts of the

face [46]. In the 9-module dataset, per-landmark evolutionary rates show that the fastest evolv-

ing region—the parietal (S43 Fig, σmult = 4.53 × 10−7)—evolves approximately 2.7 times faster

than the slowest-evolving modules: the frontal and the lacrimal (frontal: σmult = 1.64 × 10−7;

lacrimal: σmult = 1.69 × 10−7). This difference reflects the inclusion of a larger sample of cera-

topsians in that dataset, which possess elaborate frills formed by the parietal and squamosal

(Fig 3A). The squamosal and the quadratojugal show moderately high rates, and the remainder

of the skull evolves relatively slowly (Fig 3A).

Skull shape disparity, as calculated by Procrustes variance, exhibits similar patterns to rates

across the skull, where regions that evolved rapidly are also the most disparate. The fast-evolv-

ing parietal and quadratojugal exhibit the highest variance, whereas the frontal and lacrimal

+ prefrontal have the lowest variance across avian and non-avian dinosaurs (Fig 3). In all

regions except the quadrate, birds have significantly lower disparity than non-avian dinosaur

groups (S44 Fig, S2 Table and S3 Table), which is congruent with the pattern observed with

evolutionary rates.

In the 11-module dataset with fewer specimens represented (notably, excluding ceratop-

sians) the parietal and quadratojugal retain high evolutionary rates (Fig 3C and S43 Fig), as

observed in the 9-module dataset. The other parts of the skull exhibit greater variation in rates

compared to the 9-module dataset. The quadrate underwent the highest rate of evolution, and

the frontal, nasal, premaxilla, palatal surface of the maxilla, and prefrontal also evolved rapidly.

In contrast, the occiput, postorbital, squamosal, ventral lacrimal, and dorsal maxilla evolved

slowly (Fig 3C and S43 Fig).

To further illustrate the evolutionary mosaicism across the cranial regions and taxa, we cal-

culated the distance from the mean skull shape for each specimen in the 11-module dataset for

each landmark (Fig 4). In non-avian theropods, the region of highest phenotypic change is typ-

ically the rostrum (Fig 4). In some theropods (Citipati, Tyrannosaurus, Allosaurus, and Majun-
gasaurus), the quadrate and quadratojugal are also very different from the average non-avian

dinosaur skull shape. In ornithischians, the largest amount of phenotypic change is typically

localised to the circumorbital bones and the cranial vault (Fig 4). Notably, ankylosaurs (Paw-
pawsaurus and Panoplosaurus) and Stegosaurus, like non-avian theropods, exhibit a large

amount of phenotypic change in the premaxilla. Unlike theropods, however, the maxilla has

low Procrustes distance from the mean in these taxa. Due to its prominent frill, the region with

the highest magnitude of change in Protoceratops is the posterior parietal. Unexpectedly, the

prosauropod Plateosaurus most closely resembles the pattern of cranial variation typical of

Theropoda, with the greatest deviations from the average dinosaur skull observed in the

face and jaw joint. Sauropods, in contrast, exhibit a different pattern. Camarasaurus is
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characterised by a large amount of phenotypic change in the vault, lacrimal, and ventrolateral

margin of the skull. In contrast, Diplodocus, with its distinctive anteroposteriorly elongate face,

has the ventral margin of the premaxilla, maxilla, and jugal as regions of greatest change.

Discussion

The patterns of cranial shape evolution exhibited by birds do not reflect those of the other

dinosaur groups. Despite their ecomorphological diversification, birds display slower rates of

evolution than non-avian dinosaurs in almost all cranial regions. The regions of the dinosaur

skull that have experienced the highest rates of evolution and achieved the highest disparity

differ across clades and largely reflect clade-specific anatomical specialisations, including elab-

orate skull ornamentations. Whereas the fastest evolving part of the avian skull is the anterior

rostrum [29,46], this is not the case for all dinosaurs. Collectively, non-avian dinosaurs have

high rates of evolution in the cranial vault and the relative position of the jaw joint.

We propose that these regions have experienced rapid evolutionary change in non-avian

dinosaurs, but not birds, for several reasons. First, rapid evolution in the parietal and squamo-

sal are attributed to the diverse cranial ornaments that occur across theropods and marginoce-

phalians. Bony ornamental structures are uncommon in extant birds, with most cranial

display in birds being achieved through soft tissue and feathers [41]. However, the few birds

with bony crests have previously been shown to exhibit rapid evolution in the skull roof [29].

Ornamental structures, whether they evolve through sexual selection, for species recognition,

or for some other function [47,48], are presumably under more intensive phenotypic selection

and are expected to show high rates of evolution and high variability. However, the presence

of display structures alone cannot explain high rates of vault evolution in non-avian dinosaurs,

as many unornamented taxa exhibit rapid phenotypic evolution in this region.

Another possible driver of phenotypic variation and rapid evolutionary change in the vault

in non-avian dinosaurs is the structure and function of the adductor chamber. The squamosal

and parietal contribute to the borders of the superior temporal fenestra, through which several

major jaw muscles pass. These include the m. adductor mandibulae externus profundus, media-
lis, and superficialis, jaw closing muscles that originate on the temporal fossa and temporal bar

[49]. The shape of these vault elements thus determines both the size of the jaw adductor appa-

ratus and therefore foraging performance and behaviour. Like the vault, the quadratojugal

shows high evolutionary rates and disparity (Fig 3). This element is also linked to food acquisi-

tion and processing; as in the squamosal, the dorsoventral length of the quadratojugal relates

to the total height of the adductor chamber and thus the length and functional properties of

the associated jaw adductor muscles. Furthermore, in some clades (tyrannosaurs, hadrosaurs),

the pterygoideus ventralis muscle attaches to the jugal, further emphasising the importance of

shape variation in this region for jaw function [49].

In non-avian dinosaurs, the quadrate exhibits the highest evolutionary rate in the 11-mod-

ule dataset (Fig 3) in contrast to birds, which show very low evolutionary rates for the quadrate

[29]. The position, orientation, and shape of the articular surface of the quadrate has important

implications for mechanical advantage and range of motion of the jaw joint proper and thus

jaw function. Similarly, snakes exhibit high disparity and rates in the quadrate, reflecting func-

tional variation in their highly kinetic skulls, especially in comparison to other members of

Fig 4. Phenotypic difference between each specimen for each landmark in the 11-module dataset and the mean skull shape.

For each specimen, the mean landmark configuration is plotted with points coloured relative to the Procrustes distance between

the position of that point in the mean shape and in that specimen. Warmer colours denote landmarks having higher displacement

from the mean, and cooler colours are more similar to the mean shape. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

https://doi.org/10.1371/journal.pbio.3000801.g004
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Squamata [42]. The rapid evolution of disparity in the quadrate in non-avian dinosaurs may

similarly reflect variation in jaw function. A variety of complex “chewing” mechanics indepen-

dently evolved across ornithischian clades, including ceratopsians, ankylosaurs, and hadro-

saurs, with a wide range of occlusal patterns and power strokes [50–54]. Likewise, feeding

mechanics are variable in Theropoda, with hyper-carnivorous, bone-crushing, edentulous,

and herbivorous forms [13,37,55,56]. There is much less biomechanical variation in jaw joint

function in extant birds, although there is variation in cranial kinesis mechanics within

Neoaves [57,58]. As such, the higher rates and disparity of both the adductor chamber region

and the jaw joint in non-avian dinosaurs are likely associated with their high variation in jaw

biomechanics and food processing strategies.

Variation in food acquisition and processing mechanisms may also have driven differences

in rate and disparity in the anterior face across Dinosauria. In birds, the anterior rostrum is

the most rapidly evolving and variable part of the skull [29]. However, the mean rate scalar in

non-theropod dinosaurs is more than 2 times higher than in avian and non-avian theropods.

This theropod/non-theropod split is partly due to high variation in the nasal bone, which is

ornamented in some ceratopsians and Lambeosaurus or contributes to unusually positioned

nares as in sauropods such as Diplodocus. However, rapid rostrum evolution in non-theropod

dinosaurs is primarily driven by the premaxilla, which evolves slowly in most non-avian thero-

pods but much faster in most ornithischians. The non-avian theropods that do achieve high

rates of premaxilla evolution are those with edentulous premaxillae and/or rhamphotheca,

including ornithomimosaurs and Citipati (S26 Fig and S27 Fig). Similarly, taxa with edentu-

lous premaxillae (hadrosaurs, ceratopsians) have high rates of evolution within Ornithischia.

In birds, the evolution of an edentulous beak is part of a suite of cranial traits, including

increased encephalisation and orbit size, that have been linked with the transition to a more

paedomorphic cranial phenotype [9,10,21,59–61]. The evolution of this derived neurocranial

morphology, emphasising brain size and visual acuity, could have then constrained the poten-

tial for variation related to other neurocranial functions, including jaw musculature and bony

ornaments. Conversely, non-avian dinosaurs with low encephalisation [62] would not experi-

ence this constraint and therefore would be able to rapidly evolve diverse neurocranial and jaw

joint phenotypes (although note that some non-avian dinosaurs, like birds, were relatively

highly emphasised, see [11]).

These observed differences in rates and disparity among dinosaur groups may be influ-

enced in part by the particular sampling strategy employed in this study. Some clades are

under-sampled due to lack of adequately preserved specimens, including Sauropoda and basal

members of Avialae. Including additional taxa in future analyses will surely improve our

understanding of the tempo and mode of trait evolution. However, our diagnostic analyses of

branch length heterogeneity and the relationship between branch length and evolutionary rate

suggests that the higher rates observed in non-avian dinosaurs are not an artefact due to gaps

in sampling but are in fact biological patterns.

Each cranial region evolves relatively slowly in birds, suggesting that birds, despite some

being considered an icon of adaptive radiations, did not achieve their extant cranial diversity

through extraordinarily high rates of evolutionary change. The higher rates and disparity of

cranial shape evolution in non-avian theropods, especially in the posterior skull (vault, occiput,

and pterygoid), starkly contrasts with previous studies comparing disparity and evolutionary

rates in the postcranial skeleton of birds and non-avian dinosaurs. Birds have significantly

greater disparity in limb proportions [15,19] and higher rates of limb evolution [15,18,22] than

non-avian theropods. Similarly, analysis of rates of evolution using discrete morphological

characters have demonstrated that the skeleton, as a whole, evolves faster in Avialae than in

other theropods [16]. Different conclusions about the relative evolutionary rates of birds in the
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present analysis and previous studies exemplify the mosaic evolution of birds [29]. The modu-

lar organisation of the avian skeleton allows different regions of the body to evolve at different

rates in response to different selective pressures, and different tempo of evolution between

regions of the theropod skeleton have been demonstrated previously [19,20,63]. While some

previous analyses of phenotypic evolution in theropods have included cranial traits and con-

cluded that birds evolve significantly faster than other theropods, these works did not partition

traits according to region (e.g., cranial versus forelimb versus hindlimb) [16,18]. As such, high

rates of evolution in the limbs may overwhelm low rates of evolution in the skull, generating

an overall pattern of rapid phenotypic change in birds.

As birds were experiencing high rates of evolution in the postcranial skeleton and using

their newfound variation in limb morphology to exploit a variety of habitats, their cranial evo-

lution had slowed down relative to other dinosaurs. Whether this is related to the biomechani-

cal demands of aerial locomotion or encephalisation, developmental factors caused by

reorganisation of the palate and vault, or phylogenetic inertia, birds failed to achieve the high

rates of cranial evolution observed in non-avian dinosaurs. While the wings [22,63], hindlimb

[64], and axial skeleton [65–67] rapidly achieved high disparity, cranial diversity decelerated

compared to the diversity that was once present across Dinosauria, reinforcing that avian mor-

phology and disparity are the product of mosaic evolution.

Methods

Taxonomic sampling

Sampled taxa include 354 extant birds, 1 extinct bird, and 36 extinct non-avian dinosaurs.

Extant taxa were selected to represent the breadth of cranial diversity and over 80% of extant

families. Fossil specimens were selected on the quality of their preservation, with a mostly

complete, articulated, and 3D skull. Repositories for each specimen, along with specimen ID

numbers, are listed in S4 Table.

Geometric morphometric data

Digital 3D models of specimens were generated via CT scanning and surface scanning. We

digitised anatomical landmarks and semi-landmark curves on the surface of each specimen

using IDAV Landmark [68], defining the boundaries of bones or clusters of adjacent bones

(S5 Table). Following established procedures [29,32,33], we digitised these same landmarks

and semi-landmarks on a generic hemisphere template, in addition to surface semi-landmarks

within each of the regions bordered by semi-landmark curves. In non-avian dinosaurs, we

identified the boundaries of 16 regions: the dorsolateral surface of the maxilla, the dorsolateral

surface of the premaxilla, the ventral surface of the maxilla, the ventral surface of the premax-

illa, nasal, frontal, parietal, squamosal, palatine, pterygoid, sphenoid, the articular surface of

the quadrate, the occiput, postorbital, lacrimal + prefrontal, and the jugal + quadratojugal.

When present, the rostral bone was included as part of the “premaxilla” module. Surface semi-

landmarks were then projected on to the surface of each specimen based on the correspon-

dences between the landmarks and semi-landmark curves on the template and target speci-

men, generating a high-dimensional landmark configuration for each specimen (S1 Fig).

Because of the fusion of cranial elements in birds, not all anatomical landmarks and semi-

landmark curves can be digitised in all taxa. For example, the parietal, frontal, and squamosal

are distinct elements in non-avian dinosaurs, but their borders are typically indistinguishable

in adult birds. To enable comparison between birds and non-avian dinosaurs, we projected

the same surface semi-landmarks onto birds and non-avian dinosaurs using two separate tem-

plates. The initial template with 16 anatomical regions was generated based on the bones and
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sutures present in non-avian dinosaurs (S4 Table). We then modified this template by deleting

the anatomical landmarks and curves and retaining the surface semi-landmarks, then digitis-

ing new anatomical landmarks and curves around clusters of points [33]. Birds and dinosaurs

were patched separately; then the curves and landmarks were removed from each, and the sur-

faces semi-landmarks were combined to form a complete dataset with corresponding

landmarks.

Even though we selected only the most complete fossil skulls, only 9 specimens preserved

every element of interest. We analysed 3 subsets in order to maximise taxonomic and anatomi-

cal breath:

1. The non-avian dinosaur specimens that adequately preserve lateral and dorsal sides of the

skull (n = 27); this dataset includes maxilla, premaxilla, nasal, frontal, parietal, squamosal,

jugal + quadratojugal, postorbital, and lacrimal + prefrontal and is referred to hereafter as

the “9-module dataset”

2. The non-avian dinosaur specimens that preserve all the regions in the 9-module dataset, as

well as the occipital region and the articular surface of the quadrate (n = 19), referred to

hereafter as the 11-module dataset

3. Birds and non-avian dinosaurs combined, with each cranial module analysed individually.

This allows for the greatest number of fossil specimens to be included for comparison with

modern birds. The non-avian dinosaur specimens not included in the 9-module dataset

were used in per-module analyses of non-avian dinosaurs only.

Our hypothesis of the modular organisation of the skull is based on the empirically sup-

ported hypothesis for extant birds and consists of 6 modules: the rostrum (dorsal maxilla, pre-

maxilla, nasal, jugal region), palate (ventral maxilla, premaxilla, palatine), cranial vault

(frontal, parietal, squamosal), occipital region, basisphenoid, and quadrate + pterygoid [29].

We also analysed the quadrate and pterygoid separately. Inclusion of non-avian dinosaurs in

each dataset is indicated in S4 Table.

Phylogenetic hypotheses

The major phylogenetic relationships among dinosaurs are currently debated. The traditional

view on dinosaur relationships has split the group into 2 major groups, Saurischia (Theropoda

and Sauropoda) and Ornithischia. However, some recent analyses have supported an alterna-

tive hypothesis, with Theropoda and Ornithischia forming a monophyletic clade (Ornithosce-

lida) that is sister to Saurischia + Herrerasauridae [69,70]. As such, we carried out all

phylogenetic comparative methods using 2 different topologies, one with the traditional Saur-

ischia + Ornithischia hypothesis and one with the Ornithoscelida hypothesis. To generate

these topologies, we utilised the procedure in [14] to time-calibrate a topology corresponding

to the “traditional” hypothesis to stratigraphy with the minimum branch lengths (MBL)

method. We then grafted the time-calibrated extant bird phylogeny from reference [3] onto

this tree. We then created an “Ornithoscelida hypothesis” tree by manually manipulating the

branching of the basal nodes of the traditional hypothesis tree using Mesquite version 3.6 [71].

Finally, we evaluated the effects of tip-dating methods on rate reconstructions by applying the

fossilised birth-death (FBD) model [72], implemented in MrBayes 3.2.7a [73], as an alternative

approach to calibrate the traditional topology. Using the “createMrBayesTipDatingNexus”

function in the R package “paleotree” [74], we generated a Nexus file for input into MrBayes.

Beginning with the undated fossil tree from reference [14], we constrained the topology so that

only branch lengths, rather than topologies, were estimated by MrBayes. We applied a uniform
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prior for the root age from 247.1 to 257.1 million years, as well as uniform priors for taxon

dates using the same stratigraphic data used for the MBL method. Default settings were used

for all other model priors. The analysis was conducted for 2 runs of 4 chains each, with

100,000,000 generations and a burn-in of 50%. We summarised the results, generating a single

maximum clade credibility tree, using the “obtainDatedPosteriorTreesMrB” function in

“paleotree” [74]. Finally, we grafted the extant bird topology on to the FBD to create the final,

dated phylogeny. BayesTraits variable rates analyses with birds and non-avian dinosaurs were

carried out with all topologies. However, macroevolutionary patterns are nearly identical

under all approaches, therefore only the results of the traditional topology—dated using MBLs

—are included in the main text. Full results for all phylogenetic hypotheses are presented in

the S2–S22 Figs.

Data analysis

We generated morphospace plots (S47 Fig) to investigate the patterns of cranial variation

across birds and dinosaurs [75]. We conducted a single Procrustes alignment for all specimens

preserving the rostrum, vault, and occiput (22 non-avian dinosaurs and all birds). Birds and

non-avian dinosaurs occupy distinct but overlapping regions of morphospace in the first 4

principal component axes, which together account for 66% of the cumulative variance. Sur-

prisingly, on PC axes 1 and 2, Diplodocus occupies a region or morphospace closer to birds,

unlike theropod taxa that are more closely related to birds. This is a result of the elongate face

and more posteriorly positioned nares in Diplodocus superficially resembling birds. Similarly,

the highly domed cranial vault of pachycephalosaurs generates similarities to the highly ence-

phalised birds.

We quantified rates of skull shape evolution across Dinosauria using BayesTraitsV3 (http://

www.evolution.rdg.ac.uk/). Preliminary BayesTraits analyses confirmed that variable-rates

models [38] were favoured over single-rate modules for all modules and phylogenetic hypothe-

ses (Bayes factor> 100). As such, we present only the results of variable-rates models here. We

conducted separate Procrustes fits for each module and conducted phylogenetic principal

components analysis for each [76]. Because different fossil specimens preserve different subset

of the regions comprising the skull, this separate Procrustes fit approach allows us to maximise

the taxonomic sample for each region. We used the PC scores from the PC axes that account

for 95% of the cumulative variance for each module to reduce the dimensionality of the data

while still quantifying shape as a multidimensional trait. We carried out BayesTraits analyses

for birds and non-avian dinosaurs together for each of the 7 modules present in birds (ros-

trum, palate, cranial vault, occipital region, basisphenoid, quadrate, and pterygoid). In addi-

tion, we fit variable rates models for each of the modules present in non-avian dinosaurs. For

each module and for all phylogenetic hypotheses, we fit variable-rates BM with 100,000,000

iterations and a burn-in of 12,500,000. Traits were considered correlated for the purposes of

model construction in BayesTraits. Each analysis was carried out 3 times to confirm that the

Markov Chain reached convergence, which was confirmed using Gelman and Rubin’s conver-

gence diagnostic test statistic, implemented as the “gelman.diag” function in the R package

“coda” [77]. The run with the highest mean marginal likelihood was retained for

interpretation.

To compare evolutionary rates between birds and other dinosaur groups, we calculated the

mean rate scalar per branch for each group and each module (Fig 2). For each tree in the post-

burn-in posterior distribution of each analysis, we extracted the per-branch rate scalars using

the R package BTRTools (http://github.com/hferg/BTRTools). We then extracted the subtrees

for birds, non-avian theropods, and non-theropod dinosaurs and calculated the mean rate
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scalar for that subtree, then divided this value by total subtree height to produce time-cor-

rected mean rate scalar (Fig 2). To test whether these groups exhibit significantly different

rates, we compared the distribution of mean rate scalars for each group using nonparametric t
tests (Wilcoxon tests).

Because the number of bird species is much greater than the number of non-avian dino-

saurs, we performed a subsampling analysis to confirm that the rate of evolution in each group

was robust to sample size and to the effects of individual branches with extremely high or low

rates. We randomly selected one species per avian order and removed all other birds from the

dataset, resulting in 40 extant birds and up to 37 extinct dinosaurs. Using this subsampled dataset,

we generated a new phylogenetic principal components analysis and again modelled variable-rate

evolution using BayesTraits with the same parameters as with the full dataset. This procedure was

repeated for 100 iterations for each skull region. To summarise these results, we extracted the

mean branch rate scalars from the posterior distribution from each iteration (S37 Fig). Because

overall patterns were congruent among phylogenetic hypotheses, we carried out these subsam-

pling analyses only using the MBL-dated traditional Dinosauria phylogenetic hypothesis.

As noted earlier, separate Procrustes alignments for each module were applied so that every

specimen that preserved each structure could be used, regardless of the preservation of the rest

of the skull. Therefore, only the shape of each structure was considered and not its relative

position in the skull. However, for some structures (e.g., the quadrate), position was hypothe-

sised to be a significant aspect of variation. To quantify this, we also estimated variable-rates

models on the rostrum, vault, occipital region, and quadrate with a global Procrustes align-

ment for all of these regions (S38 Fig), thus calculating the same metrics while taking relative

position into account.

Whereas these evolutionary models were estimated using phylogenetic principal compo-

nents scores of shape, we also sought to analyses rates of evolution from the landmark configu-

rations directly. This is possible using the σmult metric implemented in the “geomorph” R

package [39,78]. This method quantifies the amount of shape change that has occurred along

the length of the phylogeny with a single value. In addition, this method can be used to com-

pare the relative rates of evolution among subsets or modules from a single landmark configu-

ration. However, this metric assumes an equal-rates BM model, whereas BayesTraits

modelling confirms that these traits evolve with variable rates. To confirm whether results of

σmult tests with these data are robust to this violation of the assumptions of the method, we cal-

culated per-group rates for each region using equal rates with σmult (S39 Fig) and compared

these results to the analogous BayesTraits test (Fig 2). Using the “compare.evol.rates” function

in the “geomorph” R package, we quantified the evolutionary rate of each group for each

region, using the MBL-dated traditional hypothesis and 999 simulations to assess significance

(S1 Table). As single-rate approaches may be particularly susceptible to outlier taxa (i.e., indi-

vidual branches with unusually fast or slow rates), we repeated this analysis using the same

subsampling procedure described earlier (Fig 2) for both the MBL-dated traditional topology

phylogenetic hypothesis (S39 Fig). We also carried out the σmult analyses with the FBD-dated

phylogenetic tree (S40 Fig) and global superimposition (S42 Fig). Again, the patterns are simi-

lar to those observed with the MBL-dated tree and with local superimpositions. Birds do not

have the highest σmult in any region of the skull. While absolute magnitudes of these rates vary

between analyses, the relative rates are the same (e.g., in the rostrum, non-theropod dinosaurs

are always fastest, birds second fastest, and non-avian theropods slowest). The relative branch

lengths in these topologies reveals that the MBL-dated tree reconstructs shorter branch lengths

at the root of Coelurosauria, Maniraptora, and Ornithomimosauria compared to the FBD-

dated tree, resulting in faster rates of evolution in non-avian theropods using the FBD-dated

tree than in the MBL-dated tree. Taken together, the consistency between the results of clade-
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wise comparisons of rates with σmult and BayesTraits variable-rates models demonstrates that

these findings are robust to model choice and method.

We further visualised fine-scale regional variation in evolutionary rates by quantifying σmult

for each landmark in the 9-module and 11-module datasets using the functions “per_lm_rates”

and “per_lm_variance” in the R package “hot.dots” [79]. This is equivalent to using the “com-

pare.multi.evol.rates” function in “geomorph” and assigning every landmark to its own module

[39]. As with evolutionary rate, we measured disparity (Procrustes variance) for each module

and for each landmark in the 9-module and 11-module datasets. We illustrated regional varia-

tion in evolutionary rate and variance by plotting the landmarks as spheres on an example spec-

imen with the colour of each landmark associated with the log-transformed rate (Fig 3A and

3C) or log-transformed variance (Fig 3B and 3D). We illustrated which regions of the skull dif-

fer among taxa by calculating per-landmark Procrustes distance between each specimen and

the mean landmark configuration using the 11-module dataset, and then plotting this mean

shape with landmark colours proportional to these distances (Fig 4), using functions from the R

package “landvR” [80]. For each region present in birds, we compared Procrustes variance

among birds, non-avian theropods, and non-theropod dinosaurs using the “morphol.disparity”

function in “geomorph” to test for differences in disparity among groups.

Evaluating the influence of sampling and tip-dating approaches

To validate our results, we performed 2 post hoc tests to examine whether rate estimations is

strongly influenced by artefacts related to sampling and tip-dating strategies. First, we tested

whether the bird and non-avian dinosaurs show different distributions of branch lengths in

the time-calibrated phylogeny, as disproportionately long branches could artificially decrease

mean rates. With our interspecific sampling, birds indeed have shorter branch lengths than

non-avian dinosaurs (S45 Fig; two-sample t test: t = −4.3918, df = 73.732, p = 3.6 × 10−5). How-

ever, when the avian phylogeny is subsampled to include the same number of taxa as our sam-

pling of non-avian dinosaurs, the branch lengths are not significantly different between these

two groups (t = −0.54268, df = 72.032, p = 0.589). Because the results of σmult analyses with and

without subsampling are largely congruent, these findings imply that branch length distribu-

tions are not skewing rate calculations. To test whether the evolutionary rates estimated using

BayesTraits were biased by the estimated branch lengths, we regressed log-transformed mean

rate from variable-rates BM model onto the lengths of each branch in the 3 phylogenetic

hypotheses (S46 Fig). The slopes of these regressions are similar for all 3 trees, although overall

rates are lower in the FBD-dated tree, causing a lower intercept. There is not a significant cor-

relation between these parameters (R2 = 0.003, p = 0.07), further supporting the conclusion

that rate heterogeneity is not primarily driven by differences in branch lengths.

Supporting information

S1 Fig. High-dimension Geometric Morphometric Approach. Anatomical landmarks and

semi-landmark curves were digitised onto 3D surface meshes, and surface semi-landmarks were

projected onto the skull using the Morpho R package (A, lateral; B, dorsal; C, ventral). Landmark

configurations for dinosaurs were partitioned into a total of 16 anatomical regions (D, lateral; E,

dorsal; F, ventral). Non-avian dinosaurs were compared to non-avian dinosaurs by re-partitioning

landmarks into regions that can be distinguished in both birds and non-avian dinosaurs (G, lat-

eral; H, dorsal; I, ventral). Landmark configuration illustrated on Erlikosaurus andrewsi (IGM

100/111). Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)
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S2 Fig. Estimation of rates of rostrum evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S3 Fig. Estimation of rates of rostrum evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S4 Fig. Estimation of rates of rostrum evolution (FBD-dated tree). Modelled using a vari-

able-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S5 Fig. Estimation of rates of cranial vault evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S6 Fig. Estimation of rates of cranial vault evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S7 Fig. Estimation of rates of cranial vault evolution (FBD-dated tree). Modelled using a

variable-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S8 Fig. Estimation of rates of occiput evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S9 Fig. Estimation of rates of occiput evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S10 Fig. Estimation of rates of occiput evolution (FBD-dated tree). Modelled using a vari-

able-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S11 Fig. Estimation of rates of palate evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S12 Fig. Estimation of rates of palate evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)
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S13 Fig. Estimation of rates of palate evolution (FBD-dated tree). Modelled using a vari-

able-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S14 Fig. Estimation of rates of quadrate evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S15 Fig. Estimation of rates of quadrate evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S16 Fig. Estimation of rates of quadrate evolution (FBD-dated tree). Modelled using a vari-

able-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S17 Fig. Estimation of rates of pterygoid evolution (traditional phylogenetic hypothesis).

Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S18 Fig. Estimation of rates of pterygoid evolution (Ornithoscelida hypothesis). Modelled

using a variable-rates BM model of evolution. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S19 Fig. Estimation of rates of pterygoid evolution (FBD-dated tree). Modelled using a vari-

able-rates BM model of evolution. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S20 Fig. Estimation of rates of ventral sphenoid region evolution (traditional phylogenetic

hypothesis). Modelled using a variable-rates BM model of evolution. Data and code archived

at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S21 Fig. Estimation of rates of ventral sphenoid region evolution (Ornithoscelida hypothe-

sis). Modelled using a variable-rates BM model of evolution. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S22 Fig. Estimation of rates of ventral sphenoid region evolution (FBD-dated tree). Mod-

elled using a variable-rates BM model of evolution. Data and code archived at www.github.

com/rnfelice/Dinosaur_Skulls.

(PDF)

S23 Fig. Estimation of rates of frontal bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model
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of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S24 Fig. Estimation of rates of parietal bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model

of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S25 Fig. Estimation of rates of squamosal bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model

of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S26 Fig. Estimation of rates of dorsal premaxilla bone evolution. Modelled using the (A)

traditional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates

BM model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S27 Fig. Estimation of rates of ventral premaxilla bone evolution. Modelled using the (A)

traditional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates

BM model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S28 Fig. Estimation of rates of dorsal maxilla bone evolution. Modelled using the (A) tradi-

tional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM

model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S29 Fig. Estimation of rates of ventral maxilla bone evolution. Modelled using the (A) tradi-

tional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM

model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S30 Fig. Estimation of rates of dorsal nasal bone evolution. Modelled using the (A) tradi-

tional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM

model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S31 Fig. Estimation of rates of jugal and quadratojugal bone evolution. Modelled using the

(A) traditional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-

rates BM model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_

Skulls.

(PDF)

S32 Fig. Estimation of rates of occiput evolution. Modelled using the (A) traditional phylo-

genetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model of evo-

lution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S33 Fig. Estimation of rates of ventral sphenoid region evolution. Modelled using the (A)

traditional phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates

BM model of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)
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S34 Fig. Estimation of rates of quadrate bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model

of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S35 Fig. Estimation of rates of pterygoid bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model

of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S36 Fig. Estimation of rates of palatine bone evolution. Modelled using the (A) traditional

phylogenetic hypothesis and (B) Ornithoscelida hypothesis under a variable-rates BM model

of evolution. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S37 Fig. Comparison of per-group evolutionary rate scalars with subsampled data. Birds

were randomly subsampled to 1 species per extant order for 100 iterations. Subsampled data

were used to estimate variable-rates BM models, and then mean rate was calculated for each

group and for each iteration and scaled by dividing by the sum of the branch lengths in the

corresponding time-scaled subtree. Models used the traditional Dinosauria phylogenetic

topology (Saurischia and Ornithischia as sister clades). Mean rate scalars were compared

between groups modelled using nonparametric t tests; significantly different distributions are

indicated with ����p< 0.00005. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S38 Fig. Comparison of per-group evolutionary rate scalars with global Procrustes super-

imposition. Mean rate scalar was calculated from the mean of the rate scalars for the indicated

group in the post-burn-in posterior distribution of the variable-rates evolutionary model esti-

mated modelled using BayesTraits. Mean rates were scaled by dividing by the sum of the

branch lengths in the corresponding time-scaled subtree. Models used the traditional Dino-

sauria phylogenetic topology (Saurischia and Ornithischia as sister clades). Mean rate scalars

were compared between groups Modelled using nonparametric t tests; significantly different

distributions are indicated with ����p< 0.00005. Data and code archived at www.github.com/

rnfelice/Dinosaur_Skulls.

(PDF)

S39 Fig. Comparison of per-group evolutionary rates calculated using a phylogeny dated

with the MBL method. Birds do not have the highest rates of evolution in any cranial region.

Rate of evolution was calculated using the σmult metric [39]. Because overall sampling for birds

was higher than for non-avian dinosaurs, we subsampled the birds to 1 species per order for

100 iterations. Rates were compared between groups using nonparametric t tests; significantly

different distributions are indicated with ����p< 0.00005. Data and code archived at www.

github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S40 Fig. Comparison of per-group evolutionary rates calculated using a phylogeny dated

with the FBD model. Birds do not have the highest rates of evolution in any cranial region.

Rate of evolution was calculated using the σmult metric [39]. Because overall sampling for birds

was higher than for non-avian dinosaurs, we subsampled the birds to 1 species per order for

100 iterations. Rates were compared between groups using nonparametric t tests; significantly

different distributions are indicated with ����p< 0.00005). Data and code archived at www.
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github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S41 Fig. Evaluating the effects of influential taxa on per-group evolutionary rates. Rate of

evolution was calculated using the σmult metric [39]. In addition to birds being subsampled to

one species per order as in S38 Fig, one species was randomly removed from each dinosaur

group in each of the 100 iterations. Rates were compared between groups using nonparametric

t tests; significantly different distributions are indicated with ����p< 0.00005). Data and code

archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S42 Fig. Comparison of per-group evolutionary rates with global Procrustes superimposi-

tion. Rates calculated using the FBD-dated phylogenetic hypothesis. The high rates of evolu-

tion in the non-avian dinosaur quadrate observed in Fig 2 are likely a result of changes in the

relative position of the jaw joint relative to the rest of the skull. The results presented in S37 Fig

utilise separate Procrustes superimpositions for each region, and thus do not preserve differ-

ences in position among skull region. Here, under global Procrustes imposition, non-avian

dinosaurs have significantly higher rates of quadrate evolution compared to birds. Rates were

compared between groups using nonparametric t tests; significantly different distributions are

indicated with ����p< 0.00005. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S43 Fig. Rate, disparity, and integration. Bivariate plots of disparity (Procrustes variance),

mean evolutionary rate, and within-partition trait correlation (integration). Values were calcu-

lated for the 9-module dataset (A–C) and the 11-module dataset (D–F). Disparity is corrected

by the number of landmarks and sliding semi-landmarks in the region. Within-module corre-

lation values derived from ref [33]. Rates calculated using the traditional dinosaur phylogenetic

topology, dated with the MBL method. Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls.

(PDF)

S44 Fig. Phenotypic disparity across groups. Calculated using the morphol.disparity function

in the geomorph R package. Each cranial region except the quadrate is less disparate in birds

than in non-avian groups. Data and code archived at www.github.com/rnfelice/Dinosaur_

Skulls.

(PDF)

S45 Fig. Comparison of branch lengths among groups. The extant bird portion of the phy-

logeny has shorter branch lengths due to denser sampling, but this effect is removed by the

subsampling procedure. Data and code archived at www.github.com/rnfelice/Dinosaur_

Skulls.

(PDF)

S46 Fig. The relationship between branch length and log-transformed rate. Linear regres-

sion reveals that the relationship between rate and branch length is not significant (R2 = 0.003,

p = 0.07). Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls.

(PDF)

S47 Fig. Cranial morphospace for the rostrum, vault, and occipital regions. The first 4 prin-

cipal components axes explain a cumulative 66% of the total variance. Grey silhouettes repre-

sent the reconstructed shape at the corresponding region of morphospace. Birds and non-
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avian dinosaurs largely occupy distinct regions of morphospace. Diplodocus, with its elongate

rostrum and posteriorly positioned nares, is convergent with birds with high PC axis 1 and

moderate PC axis 2 scores. The domed skulls of pachycephalosaurs cause them to group with

birds with high negative PC 1 scores Data and code archived at www.github.com/rnfelice/

Dinosaur_Skulls. PC, principal component

(PDF)

S1 Table. Evolutionary rates for each cranial region compared across groups. Calculated

with the full dataset using the traditional dinosaur phylogenetic topology dated with the MBL

method. Shaded cells indicate significantly faster rate than birds.

(PDF)

S2 Table. Phenotypic disparity of each cranial region. Calculated using the morphol.dispar-

ity function in the geomorph R package.

(PDF)

S3 Table. Significance values for pairwise comparisons of disparity. Calculated using the

morphol.disparity function in the geomorph R package.

(PDF)

S4 Table. Taxonomic sampling. Specimen number and museum collection data for all sam-

pled taxa.

(XLSX)

S5 Table. Landmarking procedure. Anatomical descriptions of landmark locations.

(DOCX)
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