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A bstract

The main objectives of the present Thesis were to develop a method and computer code 
for calculating the properties of point defects in insulators, and to study defects and the 
mechanisms of defect processes in the bulk and at surfaces of ionic crystals.

We develop an embedded cluster method and a computer code, which allows us to 
treat a defect in a crystal quantum mechanically in the effective potential of the rest of 
the polarisable crystal. This method has several advantages with respect to existing meth­
ods: i) it can be applied to bulk and surface defects; ii) it allows application of several 
quantum-mechanical methods, including the Hartree-Fock method and different configu­
ration interaction techniques, and methods based on the Density Functional Theory; iii) 
it allows one to calculate the spectroscopic properties of point defects, such as optical 
absorption, vibrational spectra and hyperhne interactions, taking into account the defect 
interaction with the rest of the crystal; iv) the atomic structure of the defect can be op­
timised self-consistently using an effective procedure. The new method and the computer 
code have been tested on a number of well-established systems.

The method has been applied to study the electronic structure and properties of several 
defects, and to model the mechanisms of various surface processes, i) We have calculated 
the position of the top of the (001) MgO surface valence band with respect to the vacuum 
level and the energy levels of neutral and charged oxygen vacancies with respect to the 
top of the valence band and the vacuum level, ii) The study of the electronic structure of 
excitons at low coordinated oxygen sites of the MgO surface has demonstrated a significant 
dependence of the excitation energies on oxygen coordination, iii) A variety of geometric 
configurations of the [FeCl„(CN)6 -n]^~ and [FeCl„(CN)6 -n]^~ impurities in the bulk of 
NaCl were studied and the most stable configurations identified, iv) It was dem onstrated 
that the accurate account of lattice polarisation is crucial for quantitative agreement of the 
optical absorption and luminescence energies with the experimentally observed properties 
of the Ce^“*“ centres in LiBaFg. v) Modelling of the interaction of a silicon tip with the 
NaCl (001) surface has demonstrated that the tip-surface interaction can lead to transfer 
of surface ions to the tip and allowed us to establish the charge state of the transferred Cl 
ions, vi) The analysis of the mechanism of laser-induced desorption of positive Mg ions 
from the (001) MgO surface allowed us to elucidate the atomistic stages of the desorption 
process. The results of this Thesis have demonstrated the applicability of the method 
developed to a wide range of defect properties in ionic materials.
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There is something fascinating about science. One gets such wholesale 
returns of conjecture out of such a trifling investment of fact.

Mark Twain. Life on the Mississippi.

To err is human but to really foul things up requires a computer. 
Anonymous.

In tro d u ctio n

It has long been recognised that the understanding of crystal properties requires the study 
and atomistic modelling of crystal defects and defect processes. Characterisation of neutral 
and charged defect species in the bulk and at surfaces of solids requires a quantitative 
description of the defect local atomic structure, their optical and vibrational properties 
and their ability to trap electrons, holes and bond other species. Modelling of defect 
processes involves the description of diffusion of defect species in the bulk or at surfaces, 
adsorption and dissociation of molecules at surfaces or desorption of the surface material. 
To our opinion, in spite of a great deal of previous research, there is still no reliable 
computational method which would allow one to achieve these goals. Therefore, the main 
objectives of the present Thesis are to develop a method and computer code for calculations 
of properties of point defects in insulators, and to test its applicability and accuracy on a 
number of defects and defect processes in the bulk and at surfaces of ionic crystals.

M ethods available. There are two major groups of methods available for defect calcu­
lations. The first group is based on a periodic model, in which the defect is periodically 
repeated. The second group of methods treats a single defect embedded in the crystal and 
accounts for the presence of the rest of the crystal.

A number of computer codes are implementing both periodic and embedded cluster 
approaches. Computer codes for periodic calculations at the DFT level using plane-waves 
(CASTEP, CETEP, VASP) or DFT and HF levels using localised basis sets (CRYSTAL98) 
are long available. The two most widely used codes designed for embedded cluster calcula­
tions are the EMBED code implementing a “perturbed-cluster” approach and the ICECAP 
code combining quantum mechanical treatment of a cluster with a classical treatm ent of 
its environment. Computer codes like Gaussian98, GAMESS, etc., which were developed 
for calculations of molecules, may be also used for embedded cluster calculations. In this 
case, however, the host lattice is unpolarisable.

W hy not sim ply use these m ethods? This question is discussed in detail below. 
Briefly, most of the existing methods have severe limitations either in terms of their effi­
ciency or in terms of their applicability to different defect properties. In particular, most 
of them cannot sufficiently accurately treat the lattice polarisation by point defects which
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is necessary to study electronic levels and excited states in real crystals. Although we are 
still far from creating a universal technique, useful progress can be made for certain types 
of crystals and defect states, such as point defects in insulators or semiconductors.

A im s o f th is T hesis. The aim of the present work is to develop a methodology which 
would enable us to predict models of defects and mechanisms of defect processes in insu­
lators. We are aiming to develop a method and a computer code for embedded cluster 
calculations of point defects in the bulk and at surfaces of ionic crystals. The main features 
we want to achieve include:

• Flexibility with respect to quantum mechanical methods.

• Effectiveness with respect to geometry optimisation and calculation speed.

• Calculation of charged defects.

• Calculation of spectroscopic defect properties.

• Calculation of both bulk and surface defects.

We will need to validate the method and to find the range of its applicability. For this 
purpose we are aiming to apply the method to several systems and obtain new results. The 
range of problems and particular systems considered are outlined in the next paragraph.

P lan  o f the T hesis. This Thesis falls into two parts. The first part, which includes 
Chapters 1  and 2 , is concerned with different embedded cluster approaches to studies of 
defects in ionic compounds. In Chapter 1 we describe which properties of defects are 
im portant for their characterisation, which models may be used to study these properties, 
and discuss several levels of complexity of embedded cluster calculations. At the end 
of Chapter 1 we outline the Group Function approach for weakly interacting molecules 
as developed by McWeeny and its application for the embedded cluster studies of point 
defects in ionic crystals. At the beginning of Chapter 2  we describe which mathematical 
simplification of the Group Function formalism may be done and how they correspond to 
physical approximation. In the rest of this Chapter we describe the details of the method 
and its computer implementation and tests which were performed for their validation. 
The applications of the method and the computer code to studies of defects and processes 
involving defects are described in Chapters 3, 4, and 5. Three types of problems were 
considered. In Chapter 3 we apply the method to a traditional area of solid state modelling: 
study of point defects in the bulk of ionic crystals. We consider the structure and properties 
of iron the cyanide complexes in NaCl and Cê """ impurity defects in LiBaFs crystal. In 
Chapter 4 the method is applied to study the electronic properties of low-coordinated sites 
at the MgO (0 0 1 ) surface and neutral and charged oxygen vacancies associated with these 
sites. In Chapter 5 we demonstrate that our method can be used to model the mechanisms
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of processes at interfaces and photo-induced reactions. In particular, we consider: i) the 
interaction of an Atomic Force Microscope tip with the NaCl (001) surface, and ii) the 
mechanism of photo-induced desorption of positive ions from the defective MgO (001) 
surface. The Summary contains final remarks regarding the method and the code and a 
summary of our results.

13



1 E m b ed d ed  C lu ster approach to  ion ic so lid s

The tremendous increase of interest in the chemistry and physics of solids and their 
surfaces is connected with recent progress in advanced technologies, such as micro- and 
opto-electronics, selective catalysts and sensors, to mention a few. It has become clear 
tha t numerous im portant phenomena are caused by deviations from the infinite periodic 
structure of ideal solids due to doping and structural defects, formation of dislocations, 
metal-semiconductor or metal-insulator interfaces, amorphisation and formation of alloys. 
Complex systems can exhibit properties such as size quantisation and electronic Coulomb 
blockade which are of importance for nano-technology and micro-electronics. This The­
sis is concerned with properties of defects in the bulk and at surfaces of ionic crystals. 
In section 1.1 of this Chapter we describe typical problems which are of interest to the 
physics of insulators and the existing theoretical models and methods that aim to deal 
with these problems. In section 1.2 we concentrate on a particular type of methodology 
known as embedded molecular cluster methods and outline its ideas and the evolution of 
approximations used over the last decades. We also outline the factors, which stimulated 
the development of the methodology described in the following Chapters. In section 1.3 
the ideas of a more rigorous approach to the embedding problem based on the group func­
tion theory are discussed, which is followed by a description of the approximations which 
lead to a simpler but consistent model of a point defect in an ionic crystal.

1.1 General Introduction

1.1.1 P roperties o f point defects: Typical problem s

Traditionally interesting problems concerning the physics of insulators are associated with 
point defects incorporated in the bulk of crystals. However, recent advances in exper­
imental techniques, have made it possible to detect and study defects at surfaces and 
other low-coordinated sites. A range of problems include defect characterisation via an 
understanding of their properties and their role in processes involving interactions with 
photons, lattice vibrations, electrons and holes, magnetic field etc. Common examples 
include formation of localised excitons, other (self)-trapped quasi-particles in solids and 
quenching of optical luminescence via non-radiative processes. Surface defects can be char­
acterised by their specific reactivity, i.e. ability to interact with atoms and molecules with 
the formation of new molecules, which involves bond-breaking and bond-making. Most of 
these processes can be understood and characterised in terms of those properties of defects 
which are outlined below.

Local atom ic structure. The defect structure varies from relatively simple, as in 
the case of cation and anion vacancies or interstitials in alkali halides, to more complex 
as in the case of the F centre associated with a substitutional molecular ion, e.g. 0H ~. 
In the latter case, a population of possible relative arrangements of the pair of defects
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depends on the relative and absolute concentrations of defects and temperature, which, it 
turn, significantly affects other properties of the crystal.

E lectronic properties. The electronic structure of an atom or ion incorporated into 
crystalline lattice may be significantly influenced by the crystal field. The latter splits the 
energy levels which were degenerate in the case of free species, affecting optical absorption 
spectra. The ability of the defect to trap or donate electrons to other defects is of both 
fundamental and technological interest. For example, shallow electron trapping centres in 
AgCl are of particular importance for the photo-processing industry [74]. The positions of 
energy levels of defect states with respect to the valence and conduction bands determine 
the contribution of these states to the processes of electronic and hole conductivity and 
recombination.

O ptical properties. Understanding of optical absorption and luminescence associ­
ated with point defects is important not only for their characterisation but also in search 
for new scintillation materials and for applications in optical devices. These properties are 
usually greatly affected by the local defect environment and, therefore, the structure of 
the absorption spectra of a particular defect can be used to generate a model of its local 
atomic and electronic structures.

V ibrational properties. Vibrational spectra associated with defects, along with 
the absorption spectra, may be used to characterise the local defect structure. Local 
vibrational modes are important for understanding of the mechanisms of non-radiative 
de-excitation of optically excited defects [122]. For example, quenching of the Yb^"^ lumi­
nescence, also known as E-V transfer, due to the stretching modes of neighbouring CN“ 
ions has been observed in reference [52].

Over a the few decades, a large number of physical models and methods aiming to deal 
with these properties have been developed. Each has its advantages and disadvantages.

1.1.2 M odels and m ethods

There are two main types of models which are used to describe point defects theoretically: 
the periodic model and the model of a single defect in crystal.

P eriodic m odel. This approach stems from the band theory used to study the electronic 
structure of ideal crystals. An extended unit cell of a crystal with a defect is periodically 
translated producing essentially a new ideal crystal. Consequently, theoretical methods 
developed for periodic systems can be used to study such a crystal. In the case of charged 
defects, the effect of the Coulomb interaction of defects in different cells has to be compen­
sated [129], [135], [110], [180]. Excited states can be studied using the periodic model only 
in certain cases. The quality of periodic simulations also suffers if the defect generates
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large distortions of the lattice which are not taken into account outside the unit cell. In 
some cases, when the dipole moment in each super-cell is large, the artificial Coulomb 
interaction between the super-cells is large even if they are electrically neutral.

Computer codes, which may be used to calculate point defects in periodic models, 
have been originally developed for the calculation of band structures of ideal crystals. The 
widely used codes are: VASP [123], [124], CASTEP [156], CETEP [32], and CRYSTAL 
[164], [54], [55]. The first three perform DFT calculations using plane-waves basis sets, 
while CRYSTAL performs both HF and DFT calculations using localised Gaussian-type 
basis set. Computer codes implementing the periodic model within the semi-empirical 
INDO [107] and tight-binding [212] levels are also available.

A single defect in a crystal. The obvious advantage of this model is tha t it can 
deal with an isolated defect and, consequently, defects charged with respect to the crystal 
lattice may be considered. On the other hand, the crystal symmetry is broken by the 
defect and only local symmetry can be used. A proper account of the interaction of the 
defect with the infinite but not periodic host crystal creates the major difficulty. Two 
major groups of methods, which are based on this model, divide the infinite crystal into a 
finite cluster, which includes the defect site, and the infinite environment. These methods 
are briefly described below.

Form al em bedding m ethods. These methods aim to calculate an embedding po­
tential without prior knowledge of the crystal electronic structure. In other word, the 
theoretical grounds of these methods are the same for ionic crystals and metals. The 
formal embedding methods may be divided into two approaches:

• A perturbed  cluster approach. In this approach the Green function of the 
crystal with a defect is calculated iteratively. The calculation starts from the Green 
function of the ideal crystal and then the change due to the presence of the defect 
is computed. There are several versions of this approach known as i) the matrix 
embedding potential] ii) the real-space embedding potential] iii) the Green functions 
matching technique. In the first two methods the embedding potential is calculated 
in matrix form (in the space of basis set functions) and in the real space respectively 
[69]. In the third method the embedding potential is defined on a surface separating 
the cluster and the environment [101]. This potential is calculated so as to match 
the Green functions of the environment and of the cluster on the surface separating 
these regions. The embedding potentials obtained using these methods are energy 
dependent which makes their practical calculation a rather complicated task. These 
methods are formally correct if the perturbation is rigorously confined within the 
cluster region and, therefore, particularly useful for neutral defects and for systems 
with short screening length such as metals. If the defect potential extends outside 
the cluster, the embedding potential, which is still formally correct, becomes very
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difficult to calculate because the dimension of algebraic equations becomes very large 
or infinite. The EMBED code, implementing the perturbed cluster approach [162], 
[163] is the most widely used and, perhaps, the most developed program for these 
calculations.

• ii) A corrective poten tia l approach aims to find an energy independent, and 
therefore, more easy to calculate embedding potential. However, even in the case 
of a highly localised defect, there will be an error inherent in the calculation of the 
correction.

E m bedded m olecular cluster m ethod. In this group of methods the cluster is 
considered as an isolated molecule in the external field of the environment and electrons 
are confined within the molecule. This approach assumes that the electronic structure 
of the ions outside the cluster is not strongly modified by the presence of the defect. 
Calculation of the electronic structure of the cluster may be performed using any of the 
computer programs developed for molecular calculations, e.g. Gaussian98 [77], MOLCAS 
[5], GAMESS [179], [89] and others. The distortion and polarisation of the environment 
and their effect on the wave function of the cluster can then be modelled at different levels 
of accuracy. Since this approach has at present a far greater degree of versatility and 
applicability, it was employed in the work reported in this thesis. A description of the 
existing schemes and discussion of their advantages and disadvantages is the subject of 
this Chapter.

1.1.3 D efin itions

The concept of the cluster and the environment was introduced above. In this section 
we will be more specific in defining these terms. The cluster is treated as a molecule 
usually using a quantum mechanical method originally developed for the calculation of 
molecules. For this reason it is often called a molecular cluster or quantum mechanical 
(QM) cluster. We will also refer to it as a “region of interest” for we need as accurate 
as possible description of processes which occur in the part of the crystal containing the 
defect while we account, approximately, for the presence and influence of the rest of the 
crystal.

A im s o f th e  em bedding. A commonly used approximation in cluster calculations is to 
ignore the interaction of the QM cluster with the rest of the crystal. This approximation 
can be particularly crude for ionic materials or materials with small screening constants 
in which the long range interaction and dielectric response of the environment can be 
significant or for metals (due to diffuse valence orbitals). To account for these and other 
interactions of the QM cluster with the environment, the former should be embedded into 
a potential representing the remaining crystal, which is called an embedding potential. The 
main objective of the embedded cluster approach is to find this potential, i.e. to include in
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a balanced and accurate way the effects of the surrounding solid on the electronic structure 
of the cluster which is considered to be responsible for the local properties under study.

Q uantum  C luster. A QM cluster will be defined as a collection of one or more atoms, 
ions, or molecules which are treated quantum mechanically. The size of the QM cluster 
should be chosen so tha t the region of substantial redistribution of the electron density 
due to the perturbation by a defect is entirely within the cluster. In other words, an 
embedded cluster approach cannot be properly used to study electronic properties which 
have a spatial extent greater than that of the cluster. A more accurate definition of the 
QM cluster is difficult. The details of the cluster structure and conditions imposed on its 
boundaries are left to the discretion of a person studying the problem.

E nvironm ent. The rest of the crystal outside the region of interest is assumed to be 
free of any defects. Its electronic and geometric structures are assumed to be only slightly 
distorted. In particular, there is no bond breaking or bond making (in the case of ion- 
covalent crystals) and no other processes connected with charge density redistribution 
either in the ground or excited state. It is also assumed that there is no charge transfer 
from the QM cluster to the environment or vice versa. (Other, more sophisticated schemes 
where this assumption is not required have been mentioned above [1 0 1 ] and [162].)

Self-consistent calculation. Even neutral defects, e.g an anion-cation divacancy in an 
ionic crystal, can cause a substantial electronic and ionic polarisation of the environment. 
The potential at the defect site due to the polarised host lattice differs from tha t of the 
ideal crystal and, therefore, affects the electron density in the QM cluster, which, in turn, 
causes re-polarisation of the host lattice. We will call a calculation self-consistent in the 
m utual re-polarisation of the QM cluster and the environment is taken into account.

1.1.4 R equirem ents for cluster m odels

Finally we would like to outline some of the general requirements which a cluster model 
should meet. Since there is no general embedded cluster theory applicable to all types of 
chemical bonding, most such criteria are based on author’s experience. In particular, the 
criteria formulated in [131] can be summarised as follows.

1. The cluster should give correctly the stoichiometry of the crystal being modelled.

2 . Atoms equivalent to one another in the crystal should remain equivalent in the 
cluster irrespective of whether they are “inside” or at the boundary of the cluster.

3. The cluster modelling the bulk of a solid should be uncharged, reflecting the fact 
that the crystal is electrically neutral.^

^This condition is similar to the condition 1. Essentially it means that if the cluster is charged, it is not 
stoichiometric. Consequently, there is a question as to the number of electrons which should be attributed
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4. The cluster should reflect correctly the electron density distribution in the crystal.

5. The energy levels of the cluster should reflect correctly the band structure of the 
crystal.

6 . It is highly desirable that the quantum chemical methods applicable to the calcu­
lation of molecules should be applicable to the calculation of cluster without any 
significant modification and, in particular, without additional fitting parameters.

7. The model should be suitable for the largest possible number of types of crystal 
structures.

8 . It should be suitable for modelling active centres at the surfaces

9. As the size of the cluster increases, the results should converge sufficiently rapidly 
to a limit which reflects the characteristics of the solid being studied.

As we will try  to demonstrate in the next section, a number of different embedded cluster 
schemes have been developed which meet some of these conditions. However, in practical 
calculations, some of these schemes imply crude approximations; others are difficult to 
apply.

1.2 Exam ples of em bedding

1.2.1 Isolated  QM cluster

The basis of the ab initio solid state quantum chemistry of local properties of solids 
started to emerge in the sixties. By then, the calculations on solid KNiFg by Sugano 
and Shulman [201] promoted the central ideas of the cluster approximation. Having in 
mind the local character of some magnetic and spectroscopic properties of transition metal 
ions in crystals, they proposed to restrict the LCAO method to a small cluster of atoms 
formed by the transition element and its nearest neighbours. W ithin this unit they solved 
approximate forms of the Hartree-Fock-Roothaan equations. On the basis of the flatness 
of the electrostatic potential created by a point charge lattice within the cluster volume, 
they justified the complete neglect of the interactions between the cluster and the lattice. 
This isolated-cluster model, although approximate, pointed to the possibility of applying 
regular molecular quantum mechanical methods to the study of local properties of solids 
and very rapidly showed the necessity of solving the boundary problems associated with 
the finite size of the cluster.

It was demonstrated that the application of quantum chemistry methods to solid state 
problems is rather straightforward in the case of the isolated cluster approximation. How­
ever, it was left beyond doubt that this approximation can be very crude. In general, to 
provide an adequate description of even local properties of defects one has to account for 
presence of the infinite host lattice.

to the cluster. However, in the case of highly ionic crystal this question may be easy resolved. (PS)
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1.2.2 QM  cluster in th e M adelung field

Many attem pts have been made and are being made to improve the free cluster model 
by including corrections for the external long-range potential into the calculation. The 
fixed external potential Vext can be defined [94] as a superposition of contributions Vi{r) 
centred at the host crystal atom sites R% of the cluster environment^:

Vext(r) =  ^ F i ( r - R i ) ,
i

where each V^(r) is given by a multipole expansion:

= E  ( ^ )
LM ^ '

In this expression Qîlm  are multipole moments and Yl m (^) are spherical harmonics. It 
is, however, very common to restrict the multipole expansion by monopole terms only or, 
at most, to monopoles and dipoles. Embedding schemes differ by the way the multipoles 
Q iLM are determined and one-electron integrals (/i(r, R ^)| Vext{^) R^)) are evaluated, 
where /i and v are basis functions centred at R^ and R^, respectively. One of the procedures 
(see [8 6 ]) is based on the calculation of the difference between the potential due to an 
infinite periodic crystal, obtained using the CRYSTAL code for example, and tha t due to 
the cluster. The difference is least-square fitted to the classical electrostatic potential of 
a finite number of point charges %, located, e.g., at host lattice ion positions outside the 
QM cluster

Qi
Yext{^) — Ycrystali^) (l") — ^  ^ Ir -  R,

The best fit is obtained by varying the values of the charges, keeping their positions fixed. 
Another example of the procedure, where results of the CRYSTAL slab calculation were 
used to fit the Madelung potential at the (001) LiF surface can be found in [28] and 
[168]. Other “potential-derived” multipoles representing long-range electrostatic potential 
of the cluster environment as applied to studies of polar and covalent crystals and large 
organic molecules have been used in [10], [19], [21], [31], [39], [176], [194]. In another 
scheme, suggested by Teunissen et al. [207], the charge density of the crystal and cluster 
is partitioned according to a generalised Mulliken scheme which allows expression of the 
electrostatic potentials in terms of the atomic multipole contributions

crystal ^  cluster ^

V e . M =  E  E % ^ % M ( r - R . ) -  E
i L M  j L M

^For the sake of brevity we will use notation of summation even if it is over infinite number of lattice 
sites, although Ewald summation should be used instead.
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i.e., no fitting is involved. In the scheme by Lewandowski and Wilson [130] the Madelung 
potential at the QM cluster site is represented by Gaussian distributions of the charges 
centred at each ion of the environment. Parameters of the Gaussian distribution were 
fitted so that forces due to the environment at the QM atoms cancel those calculated for 
the free QM cluster.

Simpler schemes start from the Madelung potential for the bulk crystal using charges 
estimated from population analyses or from chemical considerations. For example, formal 
ion charges may be used for NaCl, while half ionic charges may be chosen for ion-covalent 
solids like SiOs. There are two ways to include point charges into the Fock operator; as 
an Ewald sum [64], consisting from a direct space term  and reciprocal space term, and as 
a finite number of point charges. The latter approach is based on an observation made 
by Evjen [63] for crystals with simple cubic structures that the net Coulomb potential 
converges very quickly if the summation is done by electrically neutral subgroups. A 
recent paper [219] extends this observation to a general case. The charge value and/or 
positions of some of these charges may be adjusted to reproduce the exact Madelung 
potential. The Ewald summation needs evaluation of special one-electron integrals while 
the representation of the potential using point charges is straightforward and requires only 
a trivial modification of the existing programs. In practical calculations of ionic systems 
the Madelung potential is often represented by a finite set of ionic charges [7], [13], [100], 
[140], [174]. It is worthwhile emphasising that the representation of the Madelung potential 
by a finite set of point charges is not a clearly defined procedure and depends on the choice 
of an investigator. It is well known [211] that the potential inside the finite sample depends 
on the surface of the sample. However, if the finite sample was built by extensions of a 
crystal unit cell with zero dipole moment, the electrostatic potential inside that sample 
calculated using direct summation differs from tha t obtained using the Ewald summation 
only by a constant [116].

If processes involving the change of the cluster charge state are considered, the model 
of an unpolarisable environment becomes unsatisfactory. It was realised th a t corrections 
to the ionisation potentials of surface defects due to the lattice response could be of the 
order of an electron-volt or more. Appreciable lattice relaxation was also expected for 
systems with large dipole moments like non-isovalent impurities compensated by nearby 
host crystal ion vacancies. In fact, calculated formation energies of point defects in the bulk 
of MgO [87] and of the excitation energies for and Se^“ doped MgO [152] show quite 
conclusively tha t the lattice response needs to be consistently incorporated in calculations 
of the defect electronic structure.

1.2.3 QM  cluster in th e  polarisable environm ent

Perhaps the easiest and the most straightforward way to account for the lattice dielectric 
response and include its effect in the electronic structure of the QM cluster is to combine a 
quantum-mechanical treatm ent of the cluster with a classical treatm ent of the polarisable
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environment. This approach was implemented in the ICECAP code and is known as 
the ICECAP methodology [90]. The same approach was developed independently and 
reported in reference [189] and used in semi-empirical study of [Li]® centre in MgO. The 
relevant key features of the ICECAP methodology can be summarised as follows, i) The 
cluster environment is treated using the M ott-Littleton approach [142] and its ions are 
described using the shell model [47]. ii) The environment is polarised so as to accommodate 
changes of the charge density of the QM cluster due to the presence of a defect, iii) A self- 
consistency procedure is employed so that the charge density of the cluster is be consistent 
with the polarisation of the environment. Below we briefly describe the shell model, the 
self-consistency procedure and other models of a polarisable crystal lattice related to that 
implemented in the ICECAP code.

Shell m odel. The shell model, which is widely used to represent polarisability in solids, 
was proposed by Dick and Overhauser [47]. The main feature of the model is tha t the 
short range inter-ionic interactions change as a consequence of the polarisation of the ions. 
In practice, each ion i is described by two point charges and which are the charges 
of the core and shell respectively. The core and shell interact via a harmonic potential 

where Tic,is is the distance between them. Cores and shells of different ions 
interact electrostatically and shells interact via short-range interatomic potentials which 
are used to parametrise all non-electrostatic interactions. The overall interaction energy, 
e, is given by:

e =  2  ^  (yij +  ) I , (1 )
Î V /

where ViJ and ViJ are the long range and short range inter-ionic potentials (see also a 
footnote on page 2 0 ).

  Q i c Q j c  Q i c Q j s  Q i s Q j c  Q i s Q j s  2̂ ^
 ̂ H c jc  H c ja  '^is.jc

ViJ = Aij e x p (-r » jg /p ij)  -  (3)
is , js

where r ’s are the distances between cores and shells of ions i and j ,  and pij, Cij are 
parameters of the short range, in this case the Buckingham, potential. Other types of 
interatomic and many-body potentials are also often used. The derivation of the parame­
ters of the interatomic potentials is beyond the scope of the present work. The derivation
of the shell model parameters and its application to problems of solid state physics and
chemistry have been described in details in many papers and reviews (see e.g. [27], [23]).

IC E C A P  self-consistent procedure. The method implemented in the ICECAP code 
allowed for the relaxation of the classical environment in the field of charge density of the 
cluster and included the effect of the the lattice response on the cluster wave function.
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The following scheme was used [91]:

1. Estimate charge distribution in the embedded QM cluster (e.g. ionic charges)

2 . Compute distortion and polarisation of the cluster environment

3. i) Perform quantum mechanical calculation of the embedded cluster in the field of
the environment, ii) Compute charge density in the cluster, iii) If the charge density
has not converged, return to 2 .

4. i) Relax atomic positions in the QM cluster, ii) If total energy minimum is not 
reached, return to 2 .

Thus there are three nested self-consistency loops. The innermost loop is performed by a 
quantum mechanical method, e.g. HF method. The next one is in step 2 above: this is 
referred to as the multipole consistency loop, as it ensures that the electrostatic multipole 
moments of the QM cluster are the same as those which determine polarisation of the 
cluster environment. The outer-most loop of the program adjusts the positions of the 
atoms in the embedded cluster to minimise the total energy of the system. To remain 
within the “spirit” of the shell model, the charge density of the cluster at the step 2  is 
represented by dipole moments associated with each cluster atom. A similar model has 
been discussed in reference [189].

O ther m odels o f a cluster in polarisable lattice. There are several works which 
suggested other approaches to the problems of a QM cluster in the polarisable host lat­
tice. A computational approach capable of modelling chemical reactions at solid-liquid 
interfaces was proposed in reference [197]. The main idea is to combine the embedded 
cluster molecular orbital or density functional methods for describing interactions at the 
surface of a solid with the dielectric continuum. Positions and magnitudes of point charges 
representing the electrostatic potential due to the dielectric continuum are recalculated at 
each cycle so that to compensate the electrostatic field due to the cluster. Similar schemes 
have been developed earlier for studies of zeolite-substrate interactions calculations [8 6 ] 
and for calculations of molecules in solutions [70], [1 2 1 ]. Approaches very similar to the 
ICECAP methodology were recently implemented in studies by Pascual and Seijo [154] 
and Donnerberg et al. [53]. A simpler version of this scheme was used by Eichler et al. 
[59] for the study of SiOg polymorphs and zeolites. In this scheme a quantum mechanical 
calculation of the cluster electronic structure was carried out without accounting for the 
Madelung potential due to the rest of the crystal. We were not able to use these methods 
and computer codes because they did not meet the criteria summarised in the Introduc­
tion. In particular, a limited range of ab initio methods was available and inefficient 
procedures for the energy minimisation were implemented.
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1.2.4 D escription  o f the quantum  effects o f surrounding lattice

So far we in our discussion the lattice surrounding of the QM cluster was described by 
classical ions. It has been shown that the results of embedded cluster calculations strongly 
depend on the cluster termination. For example, the effect of the cluster surroundings 
on the calculated ionisation potentials of F centres at the (001) MgO surface and on 
interaction of oxygen molecules with these centres is discussed in reference [67]. The 
results presented there suggest that the inclusion of the effective core pseudo-potentials of 
the surrounding cations reduces the ionisation potential of the surface F+ centre (F+) by 
almost 50% (from 7.0 eV to 3.7 eV), reduces the dissociation limit O2 /F 5 —>■ O2  +  Fj"by 
more than 25% (from 8.49 eV to 6.27 eV), and increases the adsorption energy of O2  

molecule on the surface F centre (Fg) by 0.9 eV. Other examples of MgO studies in which 
an anion terminated cluster have been used can be found in [7] and [165]. It has been noted 
that termination schemes can cause artificial polarisation of ions at the cluster boundary, 
in particular anions, resulting in incorrect behaviour of the electrostatic potential [6 6 ]. 
In the case of cation terminated QM clusters the effect of artificial polarisation of the 
boundary ions is small and does not affect results of the calculations drastically. This may 
be explained by i) much smaller polarisability of cations as compared to the polarisability 
of anions and ii) by the fact that cations of the first coordination sphere already provide 
good confinement of the anion’s charge density [75], [76].

It is now a well established feature of any embedded cluster calculation that the finite 
size of the ions of the cluster-environment interface, in general both cations and anions, 
should be taken into account. This is equivalent to adding a localising potential to the 
cluster Hamiltonian or Fock operators. Three methods which enable us to account for 
the finite size effect have been and are used in practical calculations. The simplest is to 
term inate the quantum cluster by cations which are described using a large core effective 
core pseudo potential developed, for example, by Hay and Wadt in [216], [92]. This 
approach works well for compounds containing light cations like Na or Mg but requires 
additional corrections in the case of heavier cations (see examples of “perfect lattice” 
tests in Chapter 2). However, a more systematic approach requires a significantly deeper 
analysis.

A dam s-G ilbert approach. The localising potential based on the Adams-Gilbert equa­
tion was suggested by Kunz and Klein in [126] and developed by Kunz and Vail in [127]. 
In this approach the Fock equation for the crystal:

FLpi{r) ^  % =  1,2,..., A  (4)

is to be reduced to that for a finite cluster A  within the crystal. The manifold of occupied 
states k could be unitarily transformed so that N a electrons of the cluster A  occupy states 
k{A) localised in the cluster vicinity. The rest N b = N  — N a crystal electrons occupy
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States k{B) which are orthogonal to the states k{A). Thus, the Fock equation for the 
cluster becomes

{FA-hVA)'ipk = k = 1,2 , . . . ,N a , (5)

where Fa is that part of the crystal Fock operator, which is associated with A, and 
potential Va is the residue, which depends on the states k{B): F  = Fa F  Va - Part of the 
potential Va may be associated with the Madelung potential of the cluster environment 
and the rest with a short-range potential arising from the quantum mechanical nature of 
the electrons: Va = V ^  +  V^- We shall use the fact that if =  Z) K) (^| is a projection 
operator onto the manifold of occupied states k{A) and W  is an arbitrary one-particle 
operator, then

^  /  PAW\k)  if I A;) is occupied
Pa W pA\k) =  < -r | , \  • . 1[ 0 if I ft) IS unoccupied

Therefore, modification of the cluster equation (5)

(Fa + V ^  + V ^  + PAWpA)\k)=-Ki,\k), k = 1,2,..., NA

will leave the total energy and the charge density unchanged. Kunz and Klein [126] have 
chosen W  = —Pa V ^ pa and argued that in the limit of self consistency it would cancel the 

term, yielding
(Fa + V ^ )  \k) =  7T, |fc)

The term W  =  —p a Va Pa was called the Kunz-Klein localising potential (KKLP). Prac­
tical calculations of the KKLP may be carried out using the following procedure:

1. Electron density of the cluster environment is written as a sum over lattice ion sites

j ( 2 )
PB =  E  PB Pj =  (r),

i ( B )  k ' ( j )

where k' (j) labels orbitals on site j.

2. The V ^  is calculated using an iterative procedure [127].

3. The value of V ^  obtained is fitted to a set of Gaussian type functions to make its 
application in the quantum mechanical calculations straightforward.

The KKLP has been implemented in the ICECAP program. It has been tested on a 
number of cases, but has not received wide applications due to limitations of the ICECAP 
code itself.

A b in i tio  m odel poten tia l (A IM P ). Another approach based on an ab initio model 
potential for the ions of the cluster environment has been developed by Barandiaran and 
Seijo in [13] and [14] and later by Pascual and Seijo [154]. The potential is a practical
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implementation of the group function theory developed by McWeeny [137] (in the context 
of intermolecular interactions) and Huzinaga et al. [99], [97] (in the context of frozen core 
molecular calculations). The potential, associated with each atom outside the QM cluster 
has long range (electrostatic) and short range components V  — The long range
potential of the %th ion is, in general, represented by the Coulomb potential due to two 
point charges corresponding to core (g%c) and shell (qig) of the shell model (1.2.3)

=  % (r )  +  K/;(r) =  +
|r -  n d  | r - r z s |

The corresponding short range potential is localised at the shell site and has the form:

Æ  e x p ( - a U r - r^ ,) ^ )

+  IZ  I ]  (6)
I m ——l Q,T 

t=i

The first term  in (6 ) is the short range Coulomb potential of the environment ion i due 
to non-point nature of its charge density. Its parameters Ap and ap are calculated by a 
least-square fitting to the true Coulomb potential {çic +  Qis — Z J / r  +  J%(r), where Ji is 
the one-electron Coulomb operator associated with the many electron wave function 0^ 
of the ion i. The second term is the exchange model operator of the ion i\ functions 
1%^; i) define a set of primitive Gaussian type functions for each ion i and are used in 
the expansion of its occupied orbitals ip\\ the parameters are elements of the matrix 
A* =  (S*)“ ^K*(S^)“ ,̂ where and K* are the overlap matrix and m atrix of the exchange 
operator Ki  in the basis of the |%^; i) functions respectively. Finally, the third term  is the 
projection operator of the ion i which appears due to the restricted variational treatment 
[99], [97] and prevents the collapse of the cluster wave function onto the environmental 
ion i. Coefficients B\ = 2e\, where e\ are the one electron energies of the functions ip\ 
and Nocc is the number of occupied orbitals associated with the ion i. It is im portant to 
stress that all three terms in (6 ) are calculated directly from the set once the latter 
is known.

Practical calculation of the AIMP involves a set of embedded ion calculations, one 
per crystal component, which are iteratively repeated up to convergence in the orbitals. 
The procedure has been illustrated for the example of CaP 2  [154]. i) The Ca^’*’ ion is 
embedded into a perfect lattice and its one-electron orbitals are calculated; the same is 
done for the F “ ion. ii) The orbitals obtained in the first step are used to generate short 
range potentials and . iii) The potentials and are used to calculate
new orbitals for the Ca^+ and F “ ions as in i). The calculations are repeated until the 
convergence is achieved. The calculated potentials are then stored in a database and may
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be used for calculations of any point defects in the CaF2 lattice.

1.2.5 Towards ion-covalent (polar) crystals

In crystals with covalent bonds the valence electrons cannot be assigned to specific atoms, 
but rather belong to bonds. To have a meaningful cluster model, one has to cut the bonds 
which extend outside the cluster. The “dangling bonds” created result in artificial states 
appearing in the forbidden gap of the crystals. Saturation of these bonds may be achieved 
using i) mono-valent (hydrogen) atoms, ii) modified hydrogen atoms or pseudoatoms and 
iii) special pseudopotentials. These cluster models will be discussed in this section for the 
example of Si0 2  and AIPO 4 crystals.

M ono-valent atom s. The easiest and chemically best defined procedure for terminating 
such a cluster is to saturate the dangling bonds with monovalent, usually hydrogen, atoms. 
The electronegativity of the hydrogen atom is intermediate between tha t of oxygen and 
silicon and it can be used to saturate both Si- and 0-term inated bonds [175], [177]. It 
was, however, noted that the embedding potential is better if hydrogen is used to saturate 
oxygen terminated bonds, i.e. it is considered as one quarter of a silicon ion. Recently, this 
approach was used, for instance, in cluster studies of the properties of defects in Si0 2  [148], 
[149], [150]. Fluorine atoms can also serve as saturating atoms as was shown in [41] and 
[42] in the context of zeolite models. Saturation of dangling bonds with H or F atoms has 
the following problems: i) because of the electronegativity mismatch, the Si-H and H -0 
bonds will be polarised with respect to the Si-0 bond; ii) in the case of organic molecules 
the interaction of two hydrogen atoms may result in formation of spurious H-bonds; iii) 
problems arise when attem pts are made to embed a H-saturated cluster into an array of 
point charges to reproduce the Madelung potential [119].

P seudoatom s. Another possibility is to saturate a dangling bond by a pseudo-atom. 
This should be again a mono-electron atom but somehow modified with respect to hy­
drogen. This is useful when the pseudo-atom is used to represent a “quarter” of or 
Al“ ions in an AIPO 4  crystal; the nuclear charge of the pseudo-atom should be modified 
to I  and I  respectively. Another way to modify the hydrogen atom is to “correct” its 
electronegativity. This can be easily achieved by variation of the exponential factor of its 
single Slater- or Gaussian-type basis function [166]. Pseudoatoms term inating QM clus­
ters are an essential feature of the developing area of Quantum Mechanics /  Molecular 
Mechanics (QM/MM) studies of large organic molecules. The terminology “link atom ” is 
also often used in these studies to indicate that the pseudo atom is used to link the QM 
cluster to the classical representation of the remaining molecule. Different models of link 
atoms were described in reviews [175], [177].
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P seudopoten tia ls. Less intuitive but more systematic approaches to the term inating 
atoms employ a specially defined potential centred at the pseudo-atom. In the method 
of the orbit ally stoichiometric cluster [132], a complete set of valence orbitals for the 
border atoms is defined. Then, orbitals which form bonds with other atoms inside the 
QM cluster are included into the model basis set and corresponding electrons - into the 
quantum chemical calculation. Electrons, which are associated with the remaining orbitals 
are replaced by an angle dependent pseudo-potential. A similar approach has been used in 
studies of large molecular systems at the semi-empirical level [208]. Another approach was 
suggested by Abarenkov [2]. He has shown that for any one-electron function (p and its 
energy e, it is possible to find a non-local correction W  to the Hamiltonian operator H  of 
the hydrogen atom so that the function p  will be the ground state function of the operator 
H  4 - W.  The correction term W  is called the separable embedding potential. Using this 
potential one can construct a mono-valent atom which will have a predefined ground state 
function and energy. In particular, this ground state function can be chosen as a hybrid 
orbital originating from a polar bond. This approach is currently being implemented for 
calculations of molecules [1 ]

Reviews [175] and [177] provide numerous examples of the application of embedded 
cluster approach to crystals with ion-covalent and covalent bonds.

1.3 E m b ed d in g  ap p roach  b ased  on  group  fu n ctio n s  th e o r y

So far we have described different approaches to the embedding problem where the inter­
action of the cluster with its environment was described using semi-intuitive approaches. 
Most of the methods described above aim at “improvement” of an intuitive cluster model, 
rather than at its development from the first principles. However, there has been a number 
of more rigorous theoretical approaches to the problem of embedding as applied to solid 
state problems and large molecules. For example, an exact treatm ent of the electronic 
structure of embedded molecules is discussed by Adams in [3]. A related question of the 
derivation of the proper effective equations for embedded molecules, fragments and clus­
ters was raised by Huzinaga et al. [98], Seijo and Barandiaran [183] and Mehler [139]. In 
the next section we outline the main ideas of the Group Function (GF) Theory developed 
by McWeeny [138] which provides a basis for rigorous calculations of the cluster wave 
function in the field of the rest of the crystal. Then, in section 1.3.2, we discuss how the 
GF formalism can be simplified to obtain a less computationally demanding method for 
embedded cluster calculations.

1.3.1 Group function theory

G eneral wave function. Two non-interacting systems A  and B  of Na  and N b  electrons 
can be described by wave-functions and 0 ^  respectively. These functions are called 
group functions (GF). We shall assume that the interaction between the groups A  and B
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is weak in the sense tha t they retain their individuality at least to a good approximation. 
To describe a system of N a +  N b electrons, one can use a function

$ (x i,X 2 ,...) =  M i  0-^(xi,...,X;v^)0^(xAr^ + i,...,XAr^+Arg) , (7)

where A  is the antisymmetrisation operator. Functions of this type are known as gener­
alised products. More generally, each of the system A, B,.. can be in one of their states 
a, b,.. Therefore corresponding group functions should have two indexes, one for the sub­
system and one for its electronic state, - Consequently, the wave function of the
system of N a  T N b  +  ... electrons is

=  Mfci ...] (k = Aa,Bb,. . .) ,  (8 )

where k is the generalised index used to describe the electronic states of all subsystems. A 
refinement of the wave function of the system of N a +  N b +  ... can be achieved by mixing 
different which corresponds to the Configuration Interaction (Cl) expansion;

$ = (9)
k

Strong orthogonality. Generalised products 0^ can be handled in the same way as 
products of one-electron functions (spin-orbitals) if the strong-orthogonality condition is 
imposed on the group functions

/ $^(x i,X i,X j, ...)*$f(xi,XA;,x/, ...)ofxi =  0 [ f o r R ^ S ) .  (10)

This condition is much stronger than the usual orthogonality condition:

0 ^ ( x i ,  X 2 , X jV ^ )* 0 ^  ( x i ,  X 2 , X ^ ^ )d x i( fX 2 .. .( fx ;V jz  =  ( H )/
which is normally assumed for wave functions of different states allowed within each group. 
The strong orthogonality condition (10) is satisfied, if many-electron functions 0 ^  and 

are built from, for example, different sets of orthogonal spin-orbitals. Thus the Cl 
expansion (9) disregards the possibility of “electron transfer” between the different groups. 
This approximation is, however, not a significant one. Indeed, if the effect of the electron 
transfer between two groups is large, the individuality of the two groups is lost and the 
group-function description would be physically inappropriate.

V ariational principle. The total energy of the system composed from the subsystems 
A, S ,.. being in their electronic states a, 6 ,... is then expressed by

E  = Y ^  H ’̂ (rr) + Y ,  ss) -  ss)] , ( 1 2 )
R  R < S
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where H ^ [ r \ r 2 ) is the usual matrix element of a Hamiltonian for N r  electrons of the 
group R  alone, taken between the states 0 ^  and Integrals {r\r2 , 8 1 8 2 ) and

ir ir 2 , s \S 2 ) are generalisations of the usual two-electron Coulomb and exchange inte­
grals:

J ^ ^ ( r \ r 2 , s iS 2 ) = j  ̂ (I,2)p/î(rir2lxi)p5(sis2 |x2)dxidx2, (13)

K^^{r iT 2 , S1 S2 ) =  J  g{l, 2 )p ij(n r 2 |x 2 ; X i)p5(si52|xi; X2 )dx idx 2 , (14)

where function g{i, j)  =  ^  is inverse distance between two electrons and Pi?(rir2 |x) and 
Pr(^i'^2 |x i; X2 ) are one- and two-electron transition density m atrix for the states described 
by 0 ^  and 0 ^ .  We require that E  is stationary with respect to first order variations of 
all Since each variation makes its own first order change to E  let us consider only one 

4- 60^. Then, the energy of the group R  in the field of other groups is:

= H ^(rr )  +  ^  ss) -  ss)] . (15)
S(jtR)

where the first term corresponds to the “self-energy” of the group R  and terms in brackets 
represent interaction of the group R  with all other groups. The wave function of the 
system of IV =  N a +  N r +  ••• electrons may be optimised by considering only one group 
at a time, replacing an IV-electron calculation by a succession of smaller calculations on 
systems of N a , N r ,-- electrons. The interaction terms in (15) can be expressed as m atrix 
elements of one-electron operators describing the potential due to an electron outside the 
group R. We introduce the following operators for any group S  acting on any one-electron 
function (p{x):

J^{ l) ip {x i)=  [ /^ /(I , 2 )p5 (ss |x 2 ;x 2 )dx 2 ]¥?(xi) 1

iV‘̂ (l)(^(xi) = I  p(l, 2)pg(gg|xi; X2)y?(x2)dx2 J

These operators are the “Coulomb” and “Exchange” operators in the effective field due 
to the electrons of the group S. The interaction terms in (15) can now be expressed in 
the form of the expectation values of the interaction with electrons of the group S:

J^^{rr ,ss )  =

{rr,ss) = (<E*̂
(17)

The electrons of the group R  thus behave as if they were alone but each is in the field 
described by the one-electron Hamiltonian

= h ’̂ +  E  (18)
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instead of h^.  The effective energy of the group R  can then be written as

, (19)

where
1 Nr

= /{'>') + 9  (20)2

The stationary value condition for E^ff  becomes:

=  stationary value (2 1 )

In this expression all groups other than R  have been formally eliminated but their 
presence has been absorbed into the effective one-electron Hamiltonian (18). Consequently, 
calculation of the wave function of the system of iV =  Na + Ng  -f ... electrons has been 
reduced to a set of calculations of a smaller system of N r  electrons, where index R  runs 
through all groups This result has far reaching consequences and might be directly
applicable to ionic and ion-covalent crystals. In these crystals the electron density is 
mostly localised on ions or bonds. One may then associate group functions with each ion 
or bond and reduce the problem of the quantum mechanical calculation of a crystal to the 
problem of a much smaller calculations of ions and bonds.

1.3.2 A tom istic representation  of the Environm ent

M odel o f central m olecule. One of the first HF schemes applied to studies of localised 
properties of point defects in ionic solids was proposed by Petrashen et al. in 1973 [160]. 
The idea of the scheme was similar to that of the group function theory but formulated 
independently of McWeeny.

These authors considered optical properties of F-centres in alkali halides. In this case, 
the defect is electrically neutral and the perturbation introduced by the defect decreases 
relatively fast with the distance from it. Consequently, the electronic structure of the 
ions of the host crystal remains essentially unchanged and one can, therefore, say that 
properties of the system associated with the defect are determined by a molecule which: 
i) contains the defect itself and ions of the host crystal close to it and ii) is in the potential 
of the remaining crystal. The size of this molecule, which was called the Central Molecule 
(CM), is determined by the perturbation due to the defect. The wave function of the 
crystal with the defect ^  was written in the form (7):

^ (X |R ) =  ^ (X ', X", R) =  % (X %  R)(/p(X", R )j, (22)

where X ', X", R  are coordinates of electrons of the CM, coordinates of electrons of the rest 
of the host crystal and coordinates of all nuclei respectively, and ?/>(X',R) and y)(X'% R)
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are the single determinant wave functions of the CM and the rest of the crystal. In the 
adiabatic approximation the electronic problem can be separated from the motion of the 
nuclei. Then, the operator of the electron energy of the system can be written as

% ( X \X " ,R )  -  ^ i ( X ',R )  + ^ 2 (X ",R ) + ^ 3 (X ',X " ,R ),

where each of the Hamiltonians includes terms that depend on the corresponding coordi­
nates only and equations for the functions V^(X',R) and (/?(X",R) become:

[^ i(X ',R )  +  Hi(X',R)]V^(X',R) =  ITi(R)V’(X ',R ), (23)

[^ 2 (X ",R ) +  H2 (X ",R )](^(X ",R ) =  W 2 ( R M X . ' \ H ) .  (24)

In the expressions above Wi  and W 2 are adiabatic potentials of the CM and its environment 
respectively, and yet undefined operators Vi and V2 account for potential due to one 
system acting on the other. It is clear that the operators in brackets correspond to 
of equation (20). Although the condition of the strong orthogonality (10) has not been 
explicitly specified, it was assumed that functions ■0(X',R) and </?(X",R) are localised in 
different regions of space and effects of their overlap may be neglected. This assumption 
allowed Petrashen et al. to write an expression for operator Vi as a sum of operators 
which represent a potential energy of an electron from the CM in the potential of the rest 
of the crystal and V2  has the same meaning but for electrons of the environment:

H i(X ',R ) =  /< ^* (X " ,R )^ 3 (X ',X ",R )(^(R ",R )dX "
% ( X \R )  =  /V ’* (X ',R )^ 3 (X ',X ",R )V ^(X ',R )dX '

Finally, the expression for the adiabatic potential of the whole “defect in crystal” system 
becomes:

W"(R) = Wi(R) + Wj (̂R)

where = f  ‘p*È2 ipdx". Again, as in (1.3.1) we arrived a t an expression for the adiabatic 
potential of the “crystal with defect” system where the wave-function of the environment 
is formally eliminated.^

Further simplifications of the model have been based on the relation of Mollwo-Ivey 
for absorption energy A B  of F-centres in alkali halides

AB a^  = c

where a is a crystal lattice constant and n and c are constants. This relation suggests tha t 
the absorption energy hardly depends on the nature of the host lattice ions and justifies 
the representation of the host lattice using locations of the ions and their charges only.

*The wave-function of the environment does not disappear of course. It is still present in potential Vi.
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which constitutes the model of the unpolarisable lattice (see (1.2.2)). The polarisation of 
the lattice was also introduced for the CM ions using correction terms

2 . I Rj' — R a ;  -  R ;

l" =  5 E  |R. - R j l -  Wrev |R' -  R'|}

IT.

for the long range and short range interactions of ions and deformations of their electronic 
clouds respectively. In the expressions above ai is polarisability of the ion i and is the 
value of electrostatic field at the ion site. Results of these calculations could be found in 
[158] and [159].

E xpression  o f the to ta l energy via m ultipole m om ents o f ions o f th e  environ­
m ent. In this section we rewrite the expression for the total energy of the crystal with 
the defect in an alternative form using a multipole representation of the electron density. 
This form allows us to make further mathematical simplifications in a way which has a 
clear physical interpretation.

The approach proposed by Kantorovich in [108] and [109] is based on the GF method 
(see above) and earlier ideas by Tolpygo [210] of the two-step variation of the total energy. 
The idea of the method is to express the total energy of the system E  in terms of multipole 
moments induced on the ions of the cluster environment. The expression for the total 
energy then allows a simple and straightforward interpretation. Most of the mathematical 
details of this method are omitted and only its main ideas and final results are outlined.

The wave functions of ions in the crystal 0% are expanded over the functions of free 
ions with coefficients cf ; =  c%o$̂  +  Then, the multipole moments on
each ion induced with respect to the free ion density are:

Q lm  =  ~ ^ i  (^0| +  C '.C.), (25)

where

{iO\lm\i^i) = J  5'zm (r)/pi(r;r|/iO)dr, (26)

where Pi{r] rĵ uO) is a transition density matrix between the states 0  ̂ and 0 ^ for a free ion 
i. At the first step, variation of E  with respect to coefficients is undertaken subject 
to the condition that the induced multipole moments remain constant on each ion.
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Thus, the functional to vary is no longer E  but

E =  E  (Qîm +  Q/i (^0| N/̂ ) +  C .c)j ) (27)
ilm

where are Lagrangian multipliers. As a result of the variational procedure we obtain 
expressions for the coefficients Ci^ which include multipliers X}^:

e-in — (28)

These solutions for are then substituted into equation (25) to obtain multipliers X\^ as 
functions of the multipole moments Q\^.  Consequently, coefficients Ci^ can be expressed 
as functions of Q\^  using (28). Thus, the total energy E  is expressed in terms of 
which completes the first step of the variational procedure.

The total energy of the crystal with the defect is a sum of three contributions:

— ^clus T ^env T ent;-

The energy of the QM cluster remains unaffected by the previous discussion, i.e E^ius = 
^^dus  but in the two other terms, multipole moments of the ions of the
environment appear:

E e n v  =  2 Ç  2 Ç  %  ~  +  2 ^  + g ^  ^ i j k  (29)
i j  i j  i j  i j  i jk

Ucius-env = ~ [  p{r)V(v)dr -  ^  Q+Gi +  (30)
I

In expression (29), the first three terms describe the electrostatic interaction of the ions of 
the environment: - is the interaction of the unperturbed densities and p® of ions i
and j ,  Q ^ Y > i j Q j  - the interaction of induced multipole moments, Q ^ G i j  - the interaction 
of induced multipoles with the charge density distributions of the unperturbed ions 
j  and the last two terms, Wÿ and uJijk, account for the two- and three-body short range 
interactions. The terms in (30) have a similar meaning: V (r) - is the electrostatic potential 
at the cluster site due to densities p^ of all ions of the environment and p(r) is the density 
of the cluster, is the interaction of induced multipoles of ion i with the cluster and
f7c-e is the exchange interaction of the cluster and environment. Note that, owing to the 
strong orthogonality condition (10), short range many-body interactions of order higher 
than three do not appear in (29). The variation of the total energy E  with respect to the 
multipoles Q should be undertaken to find its minimum.

Expressions (29) and (30) provide a theory that is simple but still, within the group 
function approach, a rigorous form of the energy of the environment and cluster-environment 
interaction. This form is particularly suitable for making further approximations and re­
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placing terms in (29) and (30) by their classical counterparts.

1 .4  S u m m a ry

The brief analysis given above demonstrates that existing schemes of embedded cluster 
calculations are not free of disadvantages, some of which can be summarised as follows: i) 
the electrostatic potential due to the environment at the QM cluster site is neglected; ii) 
the quantum mechanical calculation of the forces on the QM cluster atoms is unavailable; 
iii) the charge density of the QM cluster is fitted by a distribution of monopoles and 
dipoles; iv) the effect of the polarised environment on the electron density of the QM 
cluster is neglected; v) only a limited number of ab initio methods is available for defect 
calculations; vi) no effective schemes are available for the calculation of excited states with 
proper account of lattice polarisation.

Therefore there is a need for a new embedded cluster code, which would be based on 
a high quality package for the ab initio calculations and provide consistent treatm ent of 
localised charged defect states taking into account the polarisation of the environment. 
The requirements for this code are summarised at the beginning of the next Chapter. In 
the remaining part of the next Chapter the theoretical background, details of the practical 
implementation, and tests of the new code for embedded calculations are given.
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2 G U E SS: m eth od o logy  and te s ts

The aim of the present Chapter is to describe a methodology which would enable us to 
predict models of defects and mechanisms of defect processes in insulators. The method 
was implemented in a computer code named GUESS (Gaussian Used for Embedded System 
Studies) which is also described in this Chapter. The main features we wanted to achieve 
include:

• flexibility with respect to the QM methodologies to allow us to use several ah initio 
methods including those which account for electron correlation;

• effectiveness with respect to geometry optimisation and calculation speed to enable 
calculation of large QM clusters and complex defects and processes;

• calculation of charged defects and processes associated with charge transfer and 
change of defect charge state;

• calculation of spectroscopic defect properties with account of lattice polarisation;

• calculation of both bulk and surface defects including low-coordinated and charged 
features at surfaces;

Using these criteria at the first stage of the method development we decided to employ the 
Gaussian98 code, which has the following advantages: i) it is a well developed and tested 
package; ii) it includes several quantum-mechanical methods including Hartree-Fock and 
Density Functional approaches, perturbation theory, coupled-clusters, and other methods 
for high quality ab initio calculations; iii) it is well documented and open to further 
development. It also has the prototype features, which are only present in a rudimentary 
form in most other codes. These include point charge arrays. N atural Population Analysis, 
and availability to implement several DFT functionals. We believe that the experience 
acquired with this code will allow us to apply successfully the same approach to other 
quantum-chemical packages.

To treat lattice polarisation, in this work we employ the shell model. This model has 
been used for calculations of properties of ionic crystals and defects for many years and 
is well parametrised. However, we should note tha t our approach can be generalised to 
other techniques, such as the model of polarisable ions.

In this Chapter we describe our model and program for embedded cluster calculations. 
The shell model description of the cluster environment will be derived from the expression 
for the total energy of the environment (see equation (29) of Chapter 1 ) in section 2.1. 
Section 2.2 deals with details of the practical realisation of the shell model for the purposes 
of the embedded cluster scheme and the description of the implementation of the computer 
code. The tests of the computer code are described in section 2.3. The embedding scheme 
will be applied to a number of well established systems to provide a general test of the 
model in section 2.4.
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2 .1  Q u a n tu m  c lu ster  in  th e  p o la r isa b le  en v iro n m en t

In Chapter 1, we outlined the main ideas of the group function theory and its application 
to calculation of the total energy of a system of weakly interacting sub-systems. In this 
section we apply the GF approach particularly to a system of an ionic crystal with a point 
defect. The total energy for this system was re-written in sub-section 1.3.2 in an alternative 
form (29) which makes use of multipole moments of the ions of the environment. This 
forms enables us to make further, physically transparent, approximations regarding the 
electronic structure of the environment.

We assume that among all multipoles associated with an ion i of the environment 
only the monopole % and dipole significantly contribute to the total energy and all 
higher multipoles can be neglected. Consequently, one has to decide how to represent 
the charges qi and dipoles in practical calculations. Two widely applied models may 
be used i) a model of polarisable ions and ii) the shell model. The former model deals 
w ith the monopoles and point dipoles located at the centres of ions. The shell model has 
been briefiy described above in section 1.2.3. In this work we favour the shell model the 
advantages of which were summarised on page 36.

The two- and three body short range interactions which appear in equation (29) can 
be well reproduced by classical many-body potentials. In the case of cubic systems, three 
body terms may often be neglected and the remaining two-body interaction is usually 
parametrised using Buckingham or Morse potentials. The change of the internal energy 
of an ion due to its polarisation (diagonal part of the second term in equation (29)) 
is described by ^di{a~^)ndi^ where is an inverse polarisability tensor. The dipole 
moment of a shell model ion is represented by a vector pointing from the ion’s core to its 
shell in a coordinate system associated with the core. Consequently, the dipole moment 
is di =  qi,sheii{^i,shell ~ î,core)- If the polarisability of a crystal is isotropic, then the 

corresponding term reduces to ^ d ^  =  shell ~  T̂ i,core)̂ - The coefficient
defines the force constant ki of the spring which connects the % core and qi ŝhell- It can 
be shown that first, third, and non-diagonal parts of the second terms of expression (29) 
may be written in the form of Coulomb interaction of cores and shells of different ions 
(see equation (2)). The overall interaction energy of the ions of the environment reduces, 
therefore, to expression (1) on page 22. It is im portant to stress tha t this result was not 
postulated but obtained from general GF formulation.

The expression for the cluster-environment interaction energy (equation (30) on page 
34) can also be simplified. If the multipole expansion Qj is restricted to the monopole 
and dipole contribution, the first two terms of equation (30) can be incorporated into 
f  PciusMyext(i‘)dr, where pdusM  is the charge density of the QM cluster and VextM is 
the electrostatic potential produced by the distribution of the pairs of point charges (shell 
model ions) representing the ions of the environment. The third term of (30) may be 
parametrised using either classical potentials or quantum mechanical operators of general
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type:
u = Y , m u i j ( v ) { < p j \ ,

ij
where Uij, ijji and (pj are known functions, or a combination of both.

Results of this section will be used below in the formulation of the expression for the 
total energy of a QM cluster in the field of a polarisable environment.

2 .2  T h e  em b ed d ed  c lu ster  ca lcu la tion : p ra ctica l r ea lisa tio n

2.2.1 M odel for th e em bedded cluster calculations

The model for the embedded cluster calculations will be described in this sub-section. Its 
relation to the M ott-Littleton model [142] of a crystal with a point defect is shown in Fig. 
1. Firstly, we outline features, which are similar for both models, and then emphasise the 
differences. In both models, ions of polarisable region I are represented using the shell 
model [47] (see also Chapter 1 ). If the defect site is charged with respect to the host 
lattice, polarisation correction to the energy of region II and energy of its interaction with 
region I are also taken into account. Ions in finite region Ila  are represented using the 
shell model, while infinite region Ilb is treated in the continuum approximation. The two 
models differ in i) the treatment of the defect site and ii) the calculation of the Madelung 
potential in region I. Following the very idea of an embedded cluster approach, the defect 
site and a few nearest host crystal ions are included in the QM cluster. Calculation of the 
Madelung potential in the Mott-Littleton model is carried out using summation over the 
infinite crystal. In the present model, this summation is replaced by the calculation of the 
electrostatic potential from a large finite region.'^ This finite region, which from now on we 
refer to as a nano-cluster, incorporates region I (Fig. 1(b)). The purpose of the external 
part of the nano-cluster (outside region I) is to ensure the correct electrostatic potential and 
its derivatives inside region I. Atoms in that region are represented by rigid point charges 
fixed at the ideal crystal sites. Relative sizes of region I and the nano-cluster are defined 
so that the electrostatic potential in region I calculated via summation over all centres of 
the nano-cluster was equal (up the a constant) to the Madelung potential calculated using 
the Ewald summation over the infinite lattice. It is convenient, although not necessary, 
to keep the spherical region I at the centre of the nano-cluster. The generation of the 
nano-cluster and the calculation of the electrostatic potential inside the nano-cluster are 
discussed below.

C alculation of the M adelung potential. In practice, calculation of the Madelung 
potential due to the infinite crystal is cumbersome and in some cases unnecessary. Usually, 
the Madelung potential is calculated using Ewald summation [64]. Calculation of the 
matrix elements of the Ewald sum over the basis functions of the QM cluster has, however.

'̂ As we discuss below, the finite nano-cluster representation of the crystal provides a Madelung potential 
which is not less accurate but more straightforward to calculate.
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Figure 1: Crystal with a point defect: relation of the conventional two-region model (a) to the 
model for embedded cluster calculations (b).

two obvious disadvantages: i) it is time consuming and ii) the computer code for these 
calculations, if available, needs to be incorporated in existing packages for an ab initio 
calculations. Another, simpler, approach is to represent the Madelung potential inside 
the region of interest via a finite distribution of point charges, which can be calculated 
using, for example, methods outlined in section 1.2.2. In the present model, the Madelung 
potential is calculated as a sum of contributions from all centres of a nano-cluster. The 
nano-cluster is constructed by translation of a building-block, which usually coincides 
with one of possible choices of a crystal unit cell. If this building-block possesses no 
dipole moment, then the electrostatic potential inside the nano-cluster converges (up to a 
constant) to the potential inside the infinite crystal as the size of the nano-cluster increases. 
The magnitude of this constant was derived analytically (see [116] and references therein). 
For cubic crystals the analytical expression for the constant shift has a very simple form. 
In the case of the LiBaFs nano-cluster which is discussed below in this Chapter, the 
electrostatic potential inside the finite nano-cluster agrees up to a constant with the result 
of the Ewald summation in a region which is two unit cells away from the surface of the 
nano-cluster. The magnitude of the constant shift of the potential in this case is close 
to 4.0 V. In the case of rock-salt crystals, the electrostatic potential in region I becomes 
very close to the potential calculated using Ewald summation even for a nano-cluster of 
a relatively modest size. For example, in the case of a cubic nano-cluster of the size of 
2 0 x 2 0 x 2 0  ions the deviation of the electrostatic potential in the inner cubic 1 2 x 1 2 x 1 2  

region from the exact Madelung potential was less than 6T0“  ̂ V at the boundary of the 
inner region and less than I-IO~'^ V at its centre. Similarly, the electrostatic field at ions 
calculated for an inner region of the nano-cluster and for an infinite crystal differs by 1 0 “ ^̂ 
V/Â.
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2.2.2 C alculation o f the to ta l energy and forces

Calculation of the total energy of the QM cluster embedded in the classical environment 
is carried out in a similar way to that described in references [186], [185] and [214]. In the 
case of the neutral defect one can neglect polarisation of the host lattice beyond region 
I or, in other words, neglect the contribution from the polarisation of region II to the 
system’s total energy, which then becomes:

E  =  (0 | H q +  Vjqc 1^) +  Ej^c  +  Uq m - I i

where H q is the Hamiltonian of a free QM cluster and 0  is the wave-function of the cluster 
in the external potential Vj^c\ Vnc  is the electrostatic potential due to point charges 
of the cores and shells of the nano-cluster; E ^ c  is the interaction energy of the classical 
atoms of the nano-cluster polarised in the presence of the defect; Uq m - i  is the short 
range interaction of the atoms of the QM cluster with their classical neighbours in region
I. These terms can be expanded as follows:

N C  Q M  / ^ M a d  A^C Q M  ^ M a d y

v ™ - Ç Ç ^ * Ç Ç i f c 4 [ .

-, N C   ̂ N C  -, I

' J ' IJ X

I  Q M

Uq m - i  =  ^  ^  Wij, 
i  j

where refers to the coordinates of electrons in the QM cluster, Ri - the coordinates of 
the nuclei in the QM cluster and cores and shells in the nano-cluster, Zi - the charge of the 
nuclei in the QM cluster, - the charge of the classical centre (core or shell), Wij - the 
short range interaction of ions i and j] ki and pi are the spring constant and the core-shell 
separation for polarisable ion i in the region I. Note tha t there are two sets of charges for 
classical ions. Set is used to calculated Madelung potential in the region I while

is a part of a larger set of parameters used in the classical simulation of crystal 

properties. The difference between and and methods of calculation of

the are described in more details in section 2.2.4. The term  Uq m - i  is due to
quantum mechanical (non-Coulomb) interactions of host lattice ions inside and outside the 
QM cluster. These interactions are parametrised using classical short-range interatomic 
potentials.

If the defect is charged, polarisation of the host lattice cannot be neglected. The 
polarisation energy of region II and the correction term due to the interaction of the

40



polarised infinite region II with region I are calculated using the M ott-Littleton approach 
[142]. The interaction of the polarised region II with atoms of the QM cluster is also 
calculated classically using Uh - qm  = where (pi is the electrostatic potential
due to the defect induced polarisation of region II calculated at the position of the nucleus 
of the ïth  QM ion and are point charges fitted to reproduce the electrostatic potential 
due to the density of the QM cluster in the classical environment.

The vector of total force acting on centre z, either an atom in the QM cluster or a 
core or shell in the classical environment, is calculated as the negative derivative of the 
system’s total energy with respect to the coordinates of the centre: F% =  — For  the 
sake of brevity we do not write out the expanded expression for the force F%.

2.2.3 O rganisation o f the to ta l energy m inim isation o f th e  system

First, we describe the energy minimisation procedure for a defect in the bulk of an infinite 
3D crystal and finite nano-cluster, then highlight the advantages of the present scheme 
and, finally, outline the main features of its computer code implementation.

T he energy m inim isation schem e. It is easier to start with the case of the neutral 
defect in the bulk crystal; the extension of the scheme to the case of the charged defect and 
the case of low-coordinated systems will be given at the end of this section. The block- 
scheme of the energy minimisation procedure for the neutral defect in the bulk crystal is 
shown in Fig 2(a). The minimisation starts with the calculation of the system total energy 
Eq and of total forces {F}q acting on each centre for the initial configuration {R}q of the 
system. The initial direction of relaxation (h jg  is chosen along the vector of forces {F}q. 
Each minimisation cycle consists of four steps, which are described on an example of step 
i  -t- 1 :

1 . Choose the length of the displacement along the direction of relaxation
and calculate the new geometric configuration according to =  {R}^ +

t i + i

2. Calculate the total energy If is lower than Ei - adopt the new geometry
(R}̂ _l_]̂ , otherwise repeat the step 1. with smaller f^+i-

3. Calculate the vector of the total forces {F}̂ _|_j for the adopted configuration {R}^^^.

4. Check whether the calculation is converged; if not, calculate the new direction of the 
relaxation according to the standard BFGS method [44] and return to step
1 .

The calculation is completed when typical convergence criteria are satisfied: the change 
in the total energy of the system is less than  10~^ eV; the displacement of any centre is
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In itia l Geom etry {R}

C alculate Total Energy Eg

C alculate Total Forces {F}g

Calculate d irection o f relaxation  {h}

N ew  Geometry

New Total Energy E.i+1

New Total Forces (F)1+1

I I < sm a ll

No
E . - E J I < small

Yes

New d irection  o f relaxation Exit

b)

Initial cycle

Correction due to  region  11

Converge region  1

No Check convergence
Yes

Exit

Figure 2: Organisation of the energy minimisation procedure, 
a) model of the finite nano-cluster; b) model of the infinite crystal.
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smaller than 3 10  ̂ Â, and the total force acting on any centre is smaller than 3 10  ̂
eV/A.

In the case of charged defects, polarisation of the infinite host lattice should be taken 
into account. To do so, after the calculation of the total energy (step 2) the charge 
density of the QM cluster is represented by a finite set of point charges (see previous 
paragraph), which then is used in the standard M ott-Littleton scheme to calculate the 
defect induced polarisation energy of the infinite region, the correction to the interaction 
of the regions I and II, the correction to the electrostatic potential and forces at all centres 
in region I due to the infinite region II. The corresponding block-scheme is shown in Fig. 
2(b). These corrections are calculated at the initial geometry and then recalculated each 
time after the convergence criteria for region I are satisfied.

In the current realisation of the embedded cluster calculation scheme, the presence of 
the infinite crystal can be taken into account only in the case of the 3D infinite crystal. 
In the case of the surface or other systems with broken 3D translational symmetry the 
crystal is modelled by a finite nano-cluster and corrections due to infinite region II are 
unavailable.

A dvantages o f the present schem e. In previous programs for embedded cluster cal­
culations the total forces acting on atoms in the QM cluster were not calculated. Therefore, 
the search for the optimal configuration of the QM cluster was done “by hand” , i.e. the 
classical environment was relaxed for each particular configuration of atoms in the QM 
cluster using the following “self-consistent” procedure. After the electronic structure of the 
QM cluster is calculated, the cores and shells of the classical environment were allowed 
to adjust their positions in response to the charge distribution within the QM cluster. 
Then the electronic structure of the QM cluster was recalculated to accommodate the 
changes of the embedding potential and this cycle was repeated until the change of the 
total energy became smaller than a specified threshold. Naturally, as only a finite number 
of configurations could be “probed” in this way, high quality geometry optimisation for 
large clusters was a very cumbersome and sometimes impossible task.

In the present scheme the forces are calculated on both QM and classical ions. This 
allow us to minimise the total energy of the system simultaneously with respect to elec­
tronic and nuclear coordinates of atoms of quantum mechanical and classical sub-systems 
and avoid the time-consuming “self-consistency” procedure.

C om puter im plem entation . The energy minimisation is performed using an inter­
face program which combines computer codes for ab initio calculations of molecules and 
classical calculations of crystals. In the present studies, the electronic structure of the 
embedded QM cluster - terms Eqm  = {^\Hq + Vnc  |$ ) and — ̂ E q m  (see section 2.2.2) - 
have been calculated using the Gaussian98 package [77] and corrections to the total energy 
and forces due to the polarised region II - using the GULP package [79]. These packages
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“interact” via an interface program, which performs all other necessary computations (see 
section 2.2.3).

2.2.4 R eference charges

As already mentioned in section 2.2.3, the complete scheme of embedded cluster calcu­
lations implies two sets of charges to reproduce the ionic character of the classical ions. 
The set is a part of a larger set of parameters for the shell model calculations of
the crystal. These charges are fitted together with parameters of classical short range 
potentials, e.g. Buckingham or Morse, and spring constants for the shell model ions to 
reproduce known properties of ideal crystals. Usually these charges have formal values 
corresponding to the number of valence electrons, e.g. + 1  for Ag and - 1  for Cl ions re­
spectively in AgCl or 4-2 for Mg and -2 for O ions in MgO. In general, embedding of 
the QM cluster in the electrostatic field of formal charges will lead to an overestimated 
Madelung potential. The error is negligible for highly ionic crystals like NaCl, but might 
be significant for less ionic and polar crystals like AgCl and Si0 2 - To avoid this problem 
the QM cluster is embedded into an electrostatic potential of charges which are,

in general, different from

One can think about several possible ways to determine j. We describe two
approaches used in the present study. In both cases, atoms of the QM cluster and classical 
environment are kept at their ideal crystal lattice sites. Then the following iterative 
procedure is applied:

1. The charge density of a QM cluster embedded into an initial is calculated.

2. The charge density is analysed; an ionic charge is assigned to each atom in the QM 
cluster and the charge of each sub-lattice of the crystal is determined as the average 
of the charges of all corresponding ions.

3. New set is built from the charges obtained at the step 2. The next iteration
starts with the step 1 .

The calculation is completed when the charges j  and j  obtained in two
consequent iterations are the same within the required accuracy. One can assign an ionic 
charge to each atom of the QM cluster either on the basis of population analysis, i.e. 
Mulliken, Bader or Natural population analysis, or by fitting the electrostatic potential 
due to QM cluster at the ions of the environment. The charges obtained using
the latter fitting procedure and the NBA population analysis are very close at least for 
the case of almost completely ionic crystals.

2.2.5 Q uantum  m echanical clusters

Structure o f the QM clusters. As discussed earlier (see section 1.2.4), the results of 
embedded cluster calculations can be dramatically affected by the boundary conditions.
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Following th a t discussion we build up a QM cluster so that every anion is fully coordinated 
by cations (unless low-coordinated anion sites are studied). Boundary cations are treated 
using effective core pseudo-potentials replacing all but valence electrons (“large core” 
pseudo-potentials) and a very contracted, usually minimal, basis set. Anions and non­
boundary cations are usually treated as all-electron atoms. The QM clusters used in the 
present work will be described in more detail in the following Chapters.

C orrections to  the QM cluster energy. Ionic compounds of metals when there are 
no valence nd  or (n -|-l)s  electrons formally present, e.g. Ca^"  ̂ in CaO, cannot be properly 
described using large effective core pseudo-potentials (ECP). In these cases the electrons 
and nucleus of the other atom begin to penetrate the charge cloud of ns  and np  shells and

^e//^e//
the expression for the core-core interaction Vcore-core =  ^Rab down, a dramatic
example of which is given in [92] for the CaO molecule where use of the ECP to replace 
all but 4g electrons led to a strictly attractive interaction of the atoms with the adiabatic 
potential exhibiting no minimum. Similar features of large core ECPs have been noticed 
in [88]. However, from the point of view of computational cost, it is very desirable to 
use as large an ECP as possible for boundary cations of the QM cluster. To achieve 
this one can make a correction to the interaction energy of two large core atoms of the 
form; W  = A exp where r  - is the distance between the two atoms and A  and
Pq are parameters. This approach have been used previously in reference [187]. Current 
implementation of this correction allows a more general expression for the correction

W  = A exp ^ — ■?.

The latter term  could be important, as the van der Waals interaction inside the QM cluster 
is usually poorly reproduced unless very high quality ab initio calculations are performed. 
We demonstrate the use of this option later, for the example of the LiBaFg perfect lattice 
test.

N ano-cluster: exam ple o f LiBaFg. To generate a nano-cluster one has to choose an 
electrically neutral unit cell and replicate it in all three dimensions, which is demonstrated 
for the example of the LiBaFg crystal. This crystal has a simple cubic structure (Fig. 3). 
One of the possible choices of the unit cell is with the Ba atom at the centre of the cube 
with fractional coordinates (0.0 0.0 0.0), eight Li atoms at the corners of the cube with 
coordinates equivalent to (0.5 0.5 0.5) and twelve F atoms at the middle points of the cube 
edges with coordinates symmetry equivalent to (0.5 0.5 0.0). Following the ideas of Evjen 
[63] we associate with each corner Li atom and edge F atom only |  and |  of their ionic 
charges respectively and define it as a cluster B ai(^Li)g(^F)i2 . Replication of the unit 
cell in the x  direction forms a cluster where (Fig. 3), four Li atoms appear at the edges 
and carry |  of the Li ionic charge and one F atom is now at the surface and carries ^ of
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Figure 3: Generation of the nano-cluster from electrically neutral unit cell. Example of LiBaFg 
crystal.

its ionic charge. Further replication of the unit cell produces a nano-cluster where fully 
coordinated atoms in its bulk have total ionic charges and atoms at the surfaces, edges 
and corners have fractional charges.

2.2.6 A b  ini t io  m ethods, calculation o f defect properties

Ab in i t io  m ethods. Throughout this work we have used several ab initio methods im­
plemented in the Gaussian98 package. Ground state properties were studied using both 
restricted (RHF) and unrestricted (UHF) Hartree-Fock (HF) [138], and Density Func­
tional (DF) [153] methods. Most of the DF calculations have been done using hybrid 
three parametrical functional with gradient corrections (B3LYP) developed by Becke (see 
references [15] and [16]). Optical absorption energies have been calculated using a single 
excitation configuration interaction (CIS) method in which a wave function of the ex­
cited state is calculated as a linear combination of all single excitations from the reference 
RHF or UHF single determinant wave function of the ground state [72]. More advanced, 
post Hartree-Fock, methods have also been used to improve the quality of results. These 
methods included the Configurational Interaction technique with Single and Double ex­
citations from the reference single determinant HF wave function (CISD) and Complete 
Active Space Self Consistent Field (CASSCF) method [184]. In the latter case the wave 
function is built as a linear combination of all possible excitations from the reference single 
determinant HF wave function within a given active space. We do not explain details of 
these methods for their complete description can be found in the references given above.

C alculation  o f ionisation potentials. To calculate “vertical” ionisation potentials we 
adopted the following scheme. First, the ground state of the system was completely re­
laxed, i.e. we found the geometrical configuration of the quantum mechanical and classical 
centres (both cores and shells) corresponding to the minimum of the to tal energy, Egr- 
Then one electron was removed from the system and the total energy of the system was re­
calculated including electronic relaxation only in the QM cluster. This energy is referred 
to as Ejp^Qy Then, according to the Frank-Condon approximation, both shells of the
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classical environment and the electronic structure of the QM cluster are allowed to relax 
to the energy Ejp^jy  Ionisation potentials corresponding to a model of the QM cluster 
embedded in unpolarisable and polarisable lattices are calculated as IP{0) = Eip{o) ~  Egr 
and IP{I )  = Ejp(^j^ ~  Egr respectively. The difference between -TP(O) and IP{I )  is mainly 
due to high frequency polarisability of the crystal lattice and can be as large as 1.0 eV.

C alculation o f vibrational frequencies. Vibrational frequencies and corresponding 
vectors are calculated using the harmonic approximation as eigenvalues and eigenvectors 
of the dynamical matrix D:

_  1 d^E
y/rf^ffTj dxiadxj^

where % and j  refer to the atoms (z, j  =  1 , .., AT) and a  and (3 refer to their Cartesian 
coordinates (o:, j3 = 1,2,3), rrii and rrij are the masses of the atoms and E  is the total 
energy of the system. Consequently, D is a square matrix of size 3iV x 3iV, where N  is the 
total number of atoms used in the calculation. The second derivative of the total energy E  
with respect to atomic coordinates is calculated numerically using the central differencing 
formula:

dxiadxjj3

where E^~^p, for example, is defined as

~  E{xia. +  h, Xjj  ̂ — h)

and h is the finite size step for numerical differentiation. The m atrix of second derivatives 
is symmetrical and requires |A r(3 AT +  1 ) entries to be calculated. In addition, every calcu­
lation of the second derivative requires 4 calculations of the total energy. Obviously, the 
calculation of the dynamic matrix is very time consuming and, at present, is feasible only 
for a small number of atoms. Usually, only a few characteristic modes of the vibrational 
spectrum are important. In that case the dynamic matrix is calculated using the frozen 
environment approximation, i.e. for the few atoms which are likely to participate in those 
modes.

2.3 Tests of the com puter code

In this subsection we describe the calculations undertaken to test the reliability of the 
computer code which implements the above embedded cluster scheme.

C alculation  o f th e  to ta l force. In the case of a crystal represented by a finite nano­
cluster only (with no polarisation contribution from the region II), an obvious condition 
is that the vector sum of forces acting on all centres of the nano-cluster should be strictly
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zero:
All

F  =  ^ F j  =  0.
%

If this condition does not hold, F  7  ̂0, the nano-cluster will un-physically accelerate in the 
free space. Due to numerical errors the above condition is not perfectly satisfied. In the 
case of small clusters of the size of 20-30 atoms a typical value of |F| is about 10“  ̂ eV/A; 
in the case of large nano-clusters including up to 4000 atoms value of |F| does not exceed 
10-^ eV/A.

A nalytica l and N um erical forces. For a geometry optimisation procedure to be valid, 
total forces and the total energy of the system should be consistent. This consistency can 
be checked by comparing analytical F “” and numerical forces acting at every centre
i. Disagreement between F f” and F "“"̂  shall indicate that the code is incorrect. The 
component a  of the force acting on a centre i is calculated analytically and numerically 
as:

and
TPnumf^ \ _  E{Xia + h) -  E{xia -  h)
“  W o ) -  2ft

respectively, where h - is a finite step for the numerical differentiation. For the step h 
=  0 . 0 1  Bohr the difference between and is typically as small as 1 0 “  ̂ eV/A
for systems containing several thousands of atoms. For smaller systems this difference 
decreases by one or two orders of magnitude.

D iatom ic m olecule. A diatomic molecule is the simplest example of the system where 
geometry optimisation could be thoroughly tested. Five out of six degrees of freedom of 
this molecule can be fixed to prevent small drift and rotation of the molecule as a whole 
(see other paragraphs of this section). The last degree of freedom defines the interatomic 
distance. Obvious tests are to check that the equilibrium distance and the to tal energy 
of the molecule do not depend on i) the orientation of the molecule in space, ii) an atom 
which is kept fixed. This molecule can be considered as an entirely quantum mechanical 
or classical system only or as a combined QM-Classical system where one of the atoms is 
embedded into the potential of the other. These tests have been performed for NaCl and 
MgO molecules. Results of the tests have been found to be consistent within the required 
accuracy as discussed below.
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Figure 4: QM clusters used for the perfect lattice test: NaCl.

2.4 Tests of the m odel

2.4.1 Perfect la ttice test: N aC l, LiBaPg

The aim of this test is to check the consistency of the shell model and the ab initio 
description of the crystal. To perform the test, a QM cluster, representing a part of the 
ideal crystal, is embedded into the rest of the ideal crystal, represented via the shell model. 
The system’s total energy is then minimised with respect to the coordinates of all ions. 
The test is considered as successful if the ideal lattice remains unperturbed as a result of 
embedding. The latter can be quantified in terms of i) magnitude of the displacements of 
the ions from their ideal lattice sites, ii) the change in the total energy of the system in the 
energy minimisation, and iii) the asymmetry of the adiabatic potential profile for small 
displacements of the boundary QM atoms in and out of the QM cluster. Two examples 
of the perfect lattice test are given below.

N aC l crystal. To simplify the analysis we consider only rectangular clusters of the 
size of 2 x 2 x n  ions where n was varied from 2 to 4 as shown in Fig. 4. The shell model 
parameters for NaCl were taken from reference [26] and slightly modified: i) the cation was 
taken as unpolarisable and ii) the spring constant for the anion was modified in order to 
obtain correct dielectric constant of the crystal. This new shell model results in the cation- 
anion separation equal to 2.778 Â, which is slightly smaller than  tha t for the original shell 
model (2.789 Â) and about 2% smaller than the experimentally observed separation (2.815 
Â). Elastic properties of the crystal and its polarisabilities were reproduced reasonably 
well. QM clusters have been embedded into a cubic nano-cluster 25x25x25 ions. Ions 
in region I, both quantum mechanical and classical (cores and shells), have been relaxed. 
The deviation of the interionic distances inside the QM cluster from those outside is taken 
as a measure of the mismatch.

The calculated distances between ions inside the embedded and free QM clusters and 
between ions at the interface of the QM cluster and the classical environment are sum­
marised in Table 1. It is clear that in the case of the embedded cluster the cation-anion 
separations show much smaller variations than those in the case of the free cluster. 
Also, the former are very close to the shell model anion-cation separation. The magnitude
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Table 1 : Comparison of interatomic distances in the case of free and embedded QM clusters (see 
Fig. 4)

Na+-Cl“ separation,Â
Cluster Relaxation energy, eV 

Total per QM atom
inside QM cluster 

embedded free
at the interface

Na4Cl4 0.222 0.028 d\ 2.795 2.711 2.808 2.872
NagClg 0.302 0.025 d\ 2.789 2.685 2.799 - 2.822 2.863 - 2.871

dl 2.787 2.741
NagClg 0.386 0.024 4 2J%3 2.735 2.799 - 2.820 2.868 - 2.875

4 2^%2 2.716
4 2.790 2.693

of the mismatch at the interface is small for Nag^-Cl^^ pairs; in this case the cation-anion 
separation differs from the shell model lattice constant by 1% at most. The mismatch is 
about 3% for Na^^-Clg^ pairs. This, relatively small mismatch can be made smaller by 
optimising parameters of short-range potentials for classical boundary cations. All in all, 
results of the perfect lattice test are satisfactory.

LiBaFs crystal. We also give an example of a perfect lattice test for another, more 
complex, system, LiBaFg which also has a cubic structure (see Fig. 3). The QM cluster 
used for the perfect lattice test is shown in Fig 5(a). The cluster was embedded in a large 
cubic nano-cluster. Each of the boundary Ba ions of the QM cluster has been represented 
by an effective core pseudo-potential (ECP) replacing 54 core electrons. The complication 
stems from the incorrect interaction of the larger core Ba ECP with other atoms of the 
quantum mechanical cluster (see previous discussion in 2.2.5). This incorrect interaction 
resulted in un-physically large, up to 1.5 A, displacements of the Ba ions. Following the 
ideas outlined in section 2.2.5 a classical repulsion correction term W  — A exp was
added to the interaction between the Ba and nearest F ions. The param eter A  was kept 
as optimised by Jackson et al. in [102] and the parameter po was varied to minimise 
the forces acting on the Ba ions in the smaller QM cluster (Fig. 5(b)). The latter was 
embedded in the same nano-cluster with all atoms fixed at their lattice sites in the ideal 
crystal. The perfect lattice test was then repeated for the large QM cluster (Fig 5(a)) 
with the correction term included into the expression for the total energy and total forces. 
The displacements of the QM atoms from their ideal lattice sites were less than 0 . 0 2  A 
(about 0.5% of the lattice constant) which demonstrates the importance of the correction 
term  for atoms with a “large core” . An alternative approach - the use of a smaller core 
or a full-electron calculation - is almost always not-feasible. The results of this test are 
described in more detail in section 3.2.4.
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b)

F igu re 5: Clusters used for the perfect lattice test: LlBaFg. 
a) cluster used for the test; b) cluster used to fit the classical correction to the Ba-F interaction.

2.4.2 S cho ttky  and  Frenkel defects in N aC l

The Frenkel and Schottky defects in alkali halides have been studied both theoretically 
and experimentally for a long time (see, for example, [24] and references therein). At 
present, these defects hold a considerable interest as examples of well established systems, 
which may be used for testing new methods.

D etails  of calcu lations. The formation energy of the Schottky defect was calculated 
as a sum of the formation energies of non-interacting anion and cation vacancies less the 
lattice energy. The lattice energy, 8.0 eV, was taken from purely classical calculations. 
Similarly, the formation energy of the Frenkel defect was calculated as a sum of the 
formation energies of infinitely separated vacancy and interstitial defects. The calculations 
have been done with a spherical nano-cluster containing only 800 atoms. The quantum 
mechanically treated region included the stoichiometric Na^C^ cluster where all anions 
liave been additionally coordinated with 12 bare, ECP represented, cations. The restricted 
HF method and 6-31G basis set were used in the ab initio part of the calculation. We 
stress that the charged vacancies and interstitials strongly polarise the host lattice. This 
polarisation is taken into account in these calculations.

R esu lts  of calcu lations. The results of the calculations and comparison with previous 
experimental data and theoretical calculations are summarised in Table 2 . Positive and 
negative signs of the displacement correspond to motion towards and from the defect 
respectively.

It is seen that formation energy of the Schottky defect is in good agreement with both 
experimental studies and Mott-Littleton calculations. The same can be said about the 
cation Frenkel defect formation energy. However, formation energy of the anion Frenkel
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Table 2: Schottky and Frenkel defects in the NaCl bulk: formation energies and displacements of 
ions in vicinity of defects.

Type of Cation displacement Anion displacement
the defect Â % direction A % direction

Na+ vacancy -0 . 1 1 0 -3.9 [1 1 0 ] 0.173 6 . 2 [1 0 0 ]
Cl~ vacancy 0.270 9.7 [1 0 0 ] -0.098 -3.5 [1 1 0 ]
Na+ interstitial 0.419 15.0 [1 1 1 ] 0.118 4.2 [1 1 1 ]
Cl“ interstitial 0.042 1.5 [1 1 1 ] 0.497 17.8 [1 1 1 ]

Formation energy, eV This work Mott-Littleton [24]'d Exp. [173] Exp. [181]
Schottky 2.47 2.32 2.54 2.58 2.26

Frenkel (cation) 3.59 3.21 3.50 3.32 2 . 8 8

Frenkel (anion) 5.97 3.85 4.33 5.48 4.60
These energies were calculated using two different sets of interatomic potentials.

defect is somewhat larger than that predicted in previous studies. This is because the 
anion is much larger than the cation and the repulsive interaction of its electrons with 
the electrons of the host lattice ions cannot be accurately calculated within Hartree-Fock 
approach. It is expected that a proper account of the electron correlation, which should be 
significant in the case of the interstitial defect, would result in a lower formation energy.

As the system relaxes, ions of both the QM cluster and the classical host lattice are 
displaced from their ideal positions. The direction and magnitude of displacements are in 
agreement with those, calculated using shell model and are consistent with the calculated 
characteristics of similar defects in other alkali halides, e.g see calculations on KBr [193] 
using the ICECAP code.

A natural population analysis of the electron density redistribution suggests tha t all 
ionic charges remain essentially unchanged apart from the case of cation interstitial ion 
where ionic charges of anion decreased by 0.03e due to the charge density flow to the 
interstitial. In all other cases, the changes of the ionic charges were less than O.Ole which 
is in accord with the highly ionic character of NaCl.

We conclude that the embedded cluster calculations of both the Schottky and Frenkel 
defects produce results which are close to those obtained both experimentally and theo­
retically.

2.4.3 O xygen vacancies in the bulk o f MgO

Optical absorption of the oxygen vacancies, both the neutral F centre and the charged F+ 
centre, have been extensively studied both experimentally and theoretically. Although, it 
has long been established that both these centres absorb 4.98 eV and 5.02 eV light respec­
tively [29], [117], [172], [202], we are not aware of any ab initio calculations which could 
reproduce this experimental result. Vail [213], using a very simple embedding scheme and 
HF method, found absorption and emission energies for the F+ centre to be in extremely 
good agreement with experiment (4.95 eV and 3.27 eV respectively). But when he im-
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a)

F igu re 6: QM clusters used to study oxygen vacancy in bulk MgO.

])roved the ernbeddiiig potential, the agreement with experiment was completely destroyed. 
In the most recent calculation [196] an advanced MR Cl technique has been used to obtain 
absorption energies of 6.00 eV and 5.75 eV for the bulk F and F"*" centre respectively. We 
are aiming to check i) how closely we can reproduce the optical absorption energies using 
available methods and ii) how the nature of the excited state depends on the size of the 
QM cluster and the flexibility of the basis set.

D eta ils  o f th e  calcu lations. The wave function of the excited state of the F+ centre 
is thought to be localised in a relatively small region of space which suggest that it should 
be well described in cluster model using a QM cluster of moderate size.

QM clusters of two sizes have been used: the small cluster includes the oxygen vacancy 
surrounded by six nearest cations only (Fig. 6 (a)); the large cluster additionally includes 
twelve anions centred at [110] sites, eight cations at [111] sites and 24 cations at [012] sites 
(Fig. 6 (b)). The QM clusters have been embedded into cubic 20x20x20 ions nano-cluster. 
The geometry of the system was relaxed at the HF level using a standard 6-31G basis set 
for all anions and six cations at [1 0 0 ] lattice sites in the case of large cluster; for all other 
cations an effective core pseudo-potential replacing Is, 2 s and 2 p core electrons [216] and a 
single s-type basis function contracted from two primitive Gaussian s-type functions have 
been used. A standard 6-31(4 oxygen basis set was also centred in the oxygen vacancy. 
The excited states were calculated for the fixed geometry using the GIS method and basis 
sets as indicated in Tables 4 and 5 below.

R esu lts  o f calcu la tions. The formation energy of the neutral F centre and the displace­
ments of the host lattice ions in the vicinity of the F, F+ and F^+ centres are shown in the
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Table 3; Oxygen vacancies in the bulk MgO: formation energies and displacements of the sur­
rounding lattice ions.

Cluster Defect Formation Displacements,Â “) Mg 3s occ. )̂
energy, eV Mg [100] 0  [1 1 0 ] Mg [111] a-spin

MgeOi F 11.053 -0.033 -0 . 0 2 0 -0 . 0 0 1 0.248
MgssOis F 8.809 0.015 0.008 0 . 0 0 0 0.348
MgeOi F+ 0.089 -0.058 0 . 0 0 0 0.099

MgssOis F+ 0.107 -0.031 0.013 0.247
MgeOi p 2 +

0 . 2 2 2 -0 . 1 0 1 -0 . 0 0 1 0 . 0 0 0

M g 3 8 Ü l 3
p 2 + 0.207 -0.073 0.019 0.174

Other authors
[182], HF F 8.651 (9.960)") 0 . 0 0 0 0 . 0 0 0

[113], DFT F 10.547
[147], HF F 8.593
[182], HF F+ 0.090 -0.050
[182], HF p 2 + 0.178 -0.113

Negative values correspond to inwards displacement.
Mg 3s occ. shows occupations of 3s orbitals (in a-spin) of the nearest cations calculated using 

NPA.
The formation energy including polarisation and correlation corrections.

upper part of Table 3. The lower part of the table contains results of other calculations 
performed using computer codes and methods as indicated in the table. In general, all 
the calculations give similar displacements of the lattice ions near the vacancies. The dif­
ferences between the energies of the neutral F centres can be attributed to the differences 
in the models, methods of the calculations, and basis sets. For example, the results of 
references [182] and [147] obtained using the same HF method agree rather well. However, 
polarisation and correlation corrections produce difference as large as 1.4 eV (corrected 
energy is given in brackets).

Optical absorption energies corresponding to singlet-singlet transitions of the F and 
F ’*’ centres are summarised in Tables 4 and 5 respectively. The oscillator strength of these 
transitions is also given in these tables. The transition energies for both  centres behave 
similarly as the basis set increases. We discuss this behaviour for the case of the the small 
cluster first. As the basis set increases, the transition energies and the corresponding 
oscillator strength tends to decrease: the energies drop by 0.9 eV and 0.8 eV for the F and 
F"*" centres respectively (from 8.3 eV to 7.4 eV and from 7.3 eV to 6.5 eV) and the oscillator 
strengths change from 1.06 to 0.84 for the F centre and from 0.37 to 0.34 for the F+ centre. 
We note tha t the slight decrease of the F centre transition oscillator strength indicates that 
the relative localisation of the ground and excited states tends to change. On the contrary, 
the almost constant oscillator strength for the F+ centre transitions suggests that both 
ground and excited states remain localised in the same region of space. Further extension 
of the basis set (with one s and one p basis functions added to the Mg ions at the [100]
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Table 4: Excitation energies of F centre in bulk MgO: CIS singlet-singlet transitions.

Site and Basis set
vacancy and all 0 Mg [100] Mg [111] Mg [012] Energies oscillator

s P d s p s P s eV strengths
Small Cluster (Fig. 6 (a))

6,3,1 3,1 2 8.2753 1.0571
6 ,3,1 ,1 , 1 3,1,1,1 2 7.1048 0.9427
6 ,3,1 ,1 , 1 3,1,1,1 1 2 7.1048 0.9427
6,3,1,1,1 3,1,1,1 2  2 7.3861 0.8376
6,3,1,1,1 3,1,1,1 2 , 1  2 , 1 3.6005 0.0491
6,3,1,1,1 3,1,1,1 2 ,1 , 1  2 ,1 , 1 3.5711 0.0443
6,3,1,1,1 3,1,1,1 2 ,1 ,1 , 1  2 ,1 ,1 , 1 3.4865 0.0496

Large Cluster (Fig. 6 (b))
6,3,1 3,1 2 2 2 7.9701 0.7909

6,3,1,1,1 3,1,1,1 2 2 2 7.4280 0.7258
6 ,3,1,1, 1 3,1,1,1 2 , 1  2 , 1 2 2 7.1361 0.7304
6,3,1,1,1 3,1,1,1 2 , 1  2 , 1 2 , 1 2 , 1 2 4.2737 0.0056

Table 5: Excitation energies of F+ centre in bulk MgO: CIS singlet-singlet transitions.

Site and Basis set
vacancy and all 0 Mg [100] Mg [111] Mg [0 1 2 ] Energies oscillator

s P d s P s p s eV strengths
Small Cluster (Fig. 6 (a))

6,3,1 3,1 2 7.3109 0.3702
6 ,3,1 ,1 , 1 3,1,1,1 2 6.4107 0.3578
6,3,1,1,1 3,1,1,1 1 2 6.4107 0.3379
6,3,1,1,1 3,1,1,1 2 2 6.4787 0.3379
6,3,1,1,1 3,1,1,1 2 , 1 2 , 1 5.1059 0.0320
6,3,1,1,1 3,1,1,1 2 ,1 , 1 2 ,1 , 1 5.0747 0.0317
6,3,1,1,1 3,1,1,1 2 ,1 ,1 , 1 2 ,1 ,1 , 1 4.9865 0.0336
6,3,1,1,1 3,1,1,1 2 ,1 ,1 , 1 2 ,1 ,1 , 1 0 5.9523 0.0396
6,3,1,1,1 3,1,1,1 2 ,1 ,1 , 1 2 ,1 ,1 , 1 0 0 6.4610 0 . 0 0 0 1

Large Cluster (Fig. 6 (b))
6,3,1 3,1 2 2 2 7.5035 0 .&M8

6,3,1,1,1 3,1,1,1 2 2 2 6.6089 0.3500
6,3,1,1,1 3,1,1,1 2 , 1 2 , 1 2 2 6.3631 0.3472
6,3,1,1,1 3,1,1,1 2 , 1 2 , 1 2 , 1  2 , 1 2 5.6874 0.0114
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lattice sites) leads to a dramatic decrease of the transition energies and is accompanied 
by a decrease of the oscillator strength to almost zero. This indicates that the excited 
state délocalisés outside the QM cluster and, consequently, becomes meaningless. Plots 
of the density maps for the excited state support this view. The same observation has 
been made by Vail in reference [213]. In the case of the larger cluster, the behaviour of 
the transition energies and oscillator strengths is essentially the same. The delocalisation 
occurs after one s and two p functions have been added to the Mg ions at the [111] lattice 
sites. These observations suggest that the sudden decrease of the transition energies and 
oscillator strengths is due to the finite size of the QM cluster: if the extension of the basis 
set becomes larger than the extension of the QM cluster, the formal CIS solution localises 
outside the QM cluster.

Based on the results discussed above we can conclude that: i) the higher the localisation 
of the excited state the better it can be reproduced in the cluster model, ii) the energies 
and wave functions of excited states are very sensitive to the flexibility of the basis set, 
iii) the CIS method overestimates the excitation energies by as much as 1.5 eV for the 
F'*' centre and 2.0 eV for the neutral F centre. We should emphasise tha t the properties 
of the excited states strongly depend on the extension of the basis set and the size of the 
QM cluster: it may happen that calculated transition energy is close to the experimental 
result but the corresponding wave function of the excited state is delocalised outside the 
QM cluster and, therefore, is unrealistic.

2.5 Summ ary

In this Chapter we have formally derived the model for the QM cluster embedded into the 
polarisable shell model environment from the general expression for the total energy of two 
interacting sub-systems. Then, the detailed description of the practical realisation of the 
model was given followed by the description of its tests. Generally, the good performance 
of the computer code and the agreement of the properties of well known systems with the 
experimental results and previous calculations suggest that the present realisation of the 
model can be used to study properties of point defects in ionic crystals. The following 
Chapters of this Thesis deal with further applications of the model and of the computer 
code.
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3 P ro p ertie s  o f d efects in th e  bulk  o f ion ic crysta ls

A metal ion embedded into an ionic crystal lattice is an example of a typical substitutional 
defect for these crystals. If the charge of the substitutional ion differs from the charge 
of a substituted host lattice cation, it may be compensated, for example, by a cation 
vacancy or an electronic hole localised nearby. A variety of crystal lattices, substitutional 
ions and possible mechanisms of the charge compensation give rise to a large number of 
defect centres, which exhibit various properties. The diversity of these defect centres and, 
consequently, the variety of properties they exhibit substantially increases if substitution of 
a host lattice cation by a metal ion is accompanied by substitution of one or several nearest 
host lattice anions by molecular ions, e.g. 0 H “ or CN", or by vacancies with formation 
of F centres. Defects of this kind have been intensively studied for their fundamental 
as well as technological importance, (see, for instance, studies of alkaline-earth cations 
[25] and ions of transition metal elements [13], [169] in alkali halides). Metal cyanide 
and nitrosyl dopant complexes in silver halide crystals [57], [8 ], [18], [17] are examples 
of shallow electron centres and are crucial for the photo-pro cessing. The nature of the 
electronic-vibrational (E-V) energy transfer process between electronically excited states 
of a substitutional metal ion and vibrationally excited states of a molecular ion have been 
also intensively investigated (see [50], [52], [51] and references therein). Finally, optical 
properties of defect centres and their application to, for example, scintillation materials 
are topics of numerous experimental and theoretical studies.

In this Chapter we apply our embedded cluster method to study two typical defect 
centres in the bulk of ionic crystals. In section 3.1 the embedded cluster method is used 
to determine structural, electronic, and vibrational properties of the [FeCl5 _n(CN)„]^~ 
and [FeCl5 _n(CN)„]'^~ ions incorporated into the NaCl host lattice. Configurations cor­
responding to n =  0, 1, and 6  have been considered. In section 3.2 we consider a typical 
scintillation material formed by doping of small concentrations of Ce^+ into LiBaFa and 
discuss the effect of the model of the host lattice environment on the calculated values of 
optical transition energies for this material. It is shown that in order to achieve quan­
titative agreement between the calculated and experimental excitation and luminescence 
energies, one should properly take into account the lattice polarisation.

3.1 P r o p e r tie s  o f  th e  iron  cyan id e  ion s tra p p ed  in  N a C l h o st la t t ic e

3.1.1 Introduction

Metal complex impurities play an important role in photo-processing [73], [74]. In fee 
lattices, such as alkali halides, they substitute for the host lattice cation and a few nearest 
anions and may be described by a general formula {[MLnA6 _n]’̂ ~*(Vcat)5 -m}^~, where 
M and L stand for the metal ion and its ligands, A is the lattice anion and Ycat is 
cation vacancy, respectively. Cation vacancies are normally present in these systems to 
compensate an excessive charge of the impurity. Typical examples of these impurity
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defects are Co(CN)0 ~ in NaCl [103] or [OsCl5 (NO)]^“ in AgCl [57]. Depending on the 
preparation, the metal ion may be coordinated by a different number of ligands and charge 
compensating cation vacancies. The molecular ligands, such as CN“ or N O", can have 
two average orientations. There can be also a significant number of different configurations 
of the compensating cation vacancies. Therefore the total number of possible structural 
configurations of a metal complex impurity centre in some cases can reach several hundred. 
Optical, infrared and Raman spectroscopies as well as magnetic resonance based methods 
are often used to determine the structure and properties of these systems. However, 
the interpretation of experimental spectra is not always straightforward and requires the 
knowledge of defect structural configurations which are likely to be present in significant 
concentrations. These configurations can be determined theoretically, together with the 
general trends in optical absorption energies and vibrational frequencies as a function of 
the defect structural parameters. However, the huge number of possible configurations 
makes this an immense task for quantum-mechanical methods. How to establish reliable 
defect models? A way forward could be to use the classical, M ott-Littleton (ML) based 
methods to determine the relative energies of different structural configurations and then 
to study their spectroscopic properties. However, can we trust classical calculations in 
the case of such complex defects? To address this question one needs to have a more 
accurate, quantum-mechanical method capable of predicting not only the relative stability 
of different defect structures but also spectroscopic properties.

To address some of these issues, in this paper we discuss the results of our calculations 
of the {[FeCl6 -n(CN)„]’̂ ~- (V;va+)5 -m}^~ impurity complex incorporated into the NaCl 
crystal lattice. This defect has a range of features characteristic of complex defects men­
tioned above: molecular ligands, an open d-shell of the 3d metal ion, many configurations 
of the charge compensating cation vacancies, different charge states. Our approach is 
to calculate a number of characteristic defect configurations quantum-mechanically using 
a recently developed embedded cluster method, and to compare the predicted relative 
energies with the results of the M ott-Littleton (ML) calculations of the same configura­
tions. Then we investigate the dependence of a number of subtle defect properties, such as 
the orientation of CN" ligands, and the dependence of vibrational frequencies of the CN 
stretching mode on this orientation, charge of the impurity, and the relative position of the 
ligand and the charge compensating vacancies, and compare them with the experimental 
data. The analysis of these results demonstrates the ability of ML calculations to predict 
the relative stability of different configurations of this particular family of defects, and 
gives a more general perspective on this approach. Comparison of the ML and embedded 
cluster calculations reveals the important contributions to the defect energy and stability. 
We formulate the criteria of applicability of this approach to similar defects.
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Figure 7: Possible configurations of the two cation vacancies in the vicinity of a [FeCl„(CN)6 _n]  ̂
complex in bulk NaCl.

3.1.2 E xperim ental and theoretical background

As discussed above, dependent on preparation conditions and temperature, a Fe^”*” ion 
substituting for Na+ ion in the NaCl lattice can be surrounded by different number of 
CN~ ligands and cation vacancies. The Fe(CN)g“ ion in NaCl, for example, occupies seven 
lattice sites with six CN- ions replacing six Cl- ions, so that the octahedral Fe(CN)g“ ion 
replaces the NaClg“ group in the host lattice. To keep the crystal electrically neutral, the 
defect is associated with two cation vacancies. The electrostatic considerations suggest 
that most of the vacancies occupy the nearest (n) or next- nearest (nn) positions to the 
impurity ion centres. An alternative mechanism of charge compensation could be by 
Cl" interstitial ions in the vicinity of the complex. However, as the formation energy 
of Schottky defects in NaCl is lower than tha t of Frenkel defects (see [173] or [181]), the 
charge compensation by the interstitial anions is less probable. Nine possible configuration 
of the two cation vacancies at the (n) and (nn) sites are shown in Fig. 7.

The Fe(CN)g" ion is a typical covalent complex with a electronic configurations. 
It has a very large octahedral splitting (about 35000 cm"^ [106]) due to the CN" ligand 
field. Consequently, it is a low-spin t^g complex (see in Fig. 8 ). The fact th a t iron 
cyanides are diamagnetic in the case of an even number of electrons, as in Fe(CN)g" ion 
and have the magnetic susceptibilities of the order of magnitude corresponding to one free 
spin, i.e. S = l, as in the case of Fe(CN)g" ion, has long been recognised and discussed 
by Pauling [155] and Van Vleck [215]. The three low-lying t 2g orbitals are split by the 
low symmetry field due to different possible configurations of the charge compensating 
vacancies. The perturbing influence brought by the vacancies depends on their relative 
position with respect to the complex.

The paramagnetic Fe(CN)g" ion in NaCl and KCl has been studied by Wang et al. 
[218] using EFR and ENDOR at 4.2 K. Another extensive set of experiments was under-
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Figure 8 : The T 2 p-E  ̂ splitting of the central Fe^+ ion d-levels in the octahedral field of its ligands.

taken by Jain et al. [103], [104] who have studied the electronic and vibrational spectra 
of hexacyanides in NaCl and KCl at liquid air tem perature (113K). These studies, how­
ever, arrived to contradictory conclusions regarding the local atomic structure of the defect 
centre in NaCl. According to [218] and [217], the most populated centre has the configura­
tion 4 in Fig. 7, and the two other less populated configurations resolved by paramagnetic 
resonance were assigned to the configurations 3 and 6 . On the contrary, the analysis of 
electronic and vibrational spectra of ferricyanide ions in NaCl reported in [104] suggested 
that the most probable structure corresponds to the configuration 5. It should be noted 
that different temperature in these experiments is unlikely to cause such a disagreement 
in the results. A recent attem pt to resolve this contradiction theoretically [8 ] has been 
only partly successful. In this embedded cluster study the configurations 4 and 3 were 
found to have the lowest and the second lowest total energies, while the th ird  lowest 
defect centre structure corresponded to the configuration 2. Even more surprisingly, it 
appeared that the apparently unfavourable configuration 1  has a much lower energy than 
both configurations 5 and 6 .

An im portant conclusion concerning the influence of cation vacancies on the energy of 
d-orbitals was made in ref. [218]. To analyse this effect, the authors classified the positions 
of the vacancies with respect to the d-orbitals. The vacancy at the nearest cation site (the 
[1 1 0 ] site with respect to the iron ion) occupies either a position in the orbital plane along 
a lobe direction or a position that is 45° off the orbital plane. If the former position is 
denoted as a subscript and the latter by a superscript E* then the energies of the àxy 
and dxz orbitals for configuration 4 may be denoted as E".. and E**, respectively. It has 
been observed that the relations 2(E* — =  2{E** — E l)  =  E** —E^» are nearly exactly
obeyed in both NaCl and KCl. The deviation is less than 2.5% for NaCl and 0.5% for KCl. 
These relations demonstrate that the perturbations due to the vacancies are additive. A 
second interesting feature is that all three values E** — £?,,, E** — E l ,  E l  — in KCl 
are between 92% and 94% of those in NaCl. These two percentage values are close to the 
ratio of the two lattice constants, which is 0.90. Such a good correlation indicates tha t the
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Figure 9: Qualitative splitting of the Fe^+ d-levels in the field of ligands and cation vacancies, 
a) splitting for configuration 3 (see Fig. 7); b) splitting for configuration 6  (see Fig. 7). A 
indicates the Tgg-Eg splitting due to the octahedral ligand field; 5 indicates the splitting due to 
low symmetry field of the cation vacancies. Levels corresponding to bonding (alpha) orbitals are 
considered here. Ordering of the anti-bonding (beta) orbitals of the T 2 3  subspace is the reverse; 
for example for the configuration 6 , the dxz level will be the highest and the corresponding orbital 
will be unoccupied.

interaction between the Fê "*" and the vacancy has predominantly Coulombic character.
The effect of x irradiation on the NaCl and KCl crystal doped with Fe(CN)g~ ions has 

also been investigated in [104]. On the basis of the changes in the vibrational spectrum 
(splitting of the CN stretching mode) with the time of irradiation, it has been suggested 
that electrons, released by the crystal anions are preferentially captured by Fê "*" and Fe^+ 
ions, which are converted to Fê "*" and Fe""" respectively. The change in the valence state of 
Fe^“*“ to Fe "̂  ̂ and Fe+ results in the formation of Fe(CN)g” and Fe(CN)g“ respectively. For 
longer irradiation times, additional lines appeared, which were due to some unidentified 
species.

We are aiming to calculate the relative stability of different defect configurations and 
to investigate the nature of the interactions within the defect complex.

3.1.3 D etails o f calculations

The cubic nano-cluster, used to model the bulk of the NaCl included 25x25x25 ionic 
centres. Formal ionic charges have been used for all fully coordinated ions; charges of 
ions at the surface, edge and corner sites of the nano-cluster have been chosen as 
and I  of their formal values respectively. A spherical region I of the radius of 16.7 Â, 
containing more than 900 atoms, was situated at the centre of the nano-cluster. Most of 
the calculations were performed using the QM cluster which is equivalent to the NaigCle 
cluster of the host crystal (see Fig. 10(a)). One or several anions of this cluster have 
then been replaced by CN ligands (Fig. 10(b)). Due to technical limitations we consider 
defects with only 0, 1, and 6  CN~ ligands. In all cases, a full electron basis set was 
used for the central cation and its six ligands, while other cations have been described
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ClNa

F igu re 10: Clusters used in the study of iron cyanides, 
a) the cluster used to represent a fragments of defect free bulk NaCl; b) a cluster representing 
[FeCl3 (C N )3 ]^" centre corresponding to configuration 4 in Fig. 7.

using an Effective Core Pseudo-potential [216] and one s-type basis function. To check the 
dependence of the results on the quality of the basis set, in several cases we have employed 
several full electron basis sets listed in Table 6 . The B3LYP density functional has been 
employed in all calculations. The electronic structure of ions with closed electronic shells, 
for example [FeClg]'^^ in NaCl, with T‘2 y orbitals of the Fe^"'' ion completely filled and 
Ef, orbitals - empty, can, in principle, be studied using the HF method. However, in the 
present study, HF calculations of the [FeClr,]'^“ complex in NaCl resulted in an incorrect 
electronic structure, in which Eg orbitals rather than T 2 g orbitals were populated. We do 
not therefore discuss the HF results in any detail.

It is important to emphasise the difference between the present calculations and an 
earlier study [8 ]. Both calculations have been performed using similar embedded cluster 
approaches and comparable clusters and basis sets. The methods differ in the calculation 
of the total energy and the geometry optimisation procedure. In [8 ] a two step calcula­
tion of the total energy is used: i) atoms of only the QM cluster are relaxed quantum 
mechanically and then fixed, ii) atoms of the classical environment are relaxed classically 
and the corresponding polarisation correction is added to the total energy. This approach 
effectively divides the space of all atomic coordinates into two sub-spaces and therefore 
hampers the complete geometry relaxations and also does not account for the effect of the 
host lattice relaxation on the electronic structure of the QM cluster. These shortcomings 
are removed in the present scheme, where we calculated the total force acting on each 
atom and the atoms of the QM cluster and of the environment are relaxed simultaneously.

3.1.4 R esu lts  of calcu lations

R ela tive  energies of defect configurations. Fe^+ ions in NaCl can trap electrons 
creating stable closed shell centres, such as Fe(CN)g~, which require only one cation
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Table 6: Basis sets used in the present study of iron cyanides.

Basis Fe C, N Cl 
Â 6-31G 6-31G 6-31G
B 6-311G 6-31IG 6-311G
C 6-311G 6-311G* 6-311G
D 6-311G 6-311G* 6-311G

vacancy for the charge compensation. Study of these simpler centres allows us to get some 
initial insight into the interplay between the metal, ligand and vacancy interactions in the 
crystalline matrix. The results of the calculations of the [FeClg]^", [FeCl5 (CN)]'^“ , and 
[Fe(CN)6 ]'̂ “ ions compensated by one cation vacancy are summarised in Tables 7 and 8 . 
They present the relative energies of different configurations of the complex with vacancies 
at the nearest (n) and next-nearest (nn) neighbour sites. These results allow us to make 
the following conclusions, i) If there is no CN“ ligand present, the vacancy occupies a 
(nn) site. Even though the electrostatic interaction of the negative vacancy with the 
positive ion is larger if the vacancy is at the (n) site, this is compensated by a larger 
repulsive interaction of the vacancy at the (n) site with electrons of the t 2g orbitals and a 
larger lattice polarisation energy for the vacancy at the (nn) site, ii) If the CN~ ligand is 
present, its size plays an im portant role in the local structure of the complex. In the case 
when the ligand is between the Fê "  ̂ ion and the vacancy, a negatively charged N atom 
is closer to the vacancy site than the Cl~ ion in the case of [FeCle]^', consequently, the 
repulsive vacancy-ligand interaction is much stronger. In addition, the Fe-CN distance is 
smaller than the Fe-Cl distance in [FeCle]^” , which leads to an additional energy increase 
according to the Pauli repulsion, iii) For the case where all six Cl~ ions are replaced by 
CN“ ligands, the relative energy for the vacancy to occupy (n) site becomes only slightly 
larger than in the case of one ligand, iv) Flipping of the CN“ ligand so that its ”N end” 
is oriented towards the central Fe ion has no effect on the (n) vs (nn) relative stability, 
v) Finally, the relative energies are almost independent of the basis set although the total 
energies (not reported here) change significantly.

It is well established that the CN" ligand is oriented by its ”C end” towards the metal 
ion. However, one cannot exclude a possibility that the ligand may flip due to thermal 
fluctuations or the interaction of the crystal with light. One may draw an analogy with 
the OH" molecular ion in alkali halides, which has a large reorientation rate even at low 
(10 K) temperatures [85], [118]. Two factors regulate the ability of the ligand to flip: i) 
the character of the metal-ligand bond, and ii) the size of the ligand as compared to the 
lattice constant. It is common for the ligand to be bonded to the rest of the complex 
via TT-bonds. The energy, required to break these bonds, is relatively small. Moreover, 
the CN" molecular ion is small (the C-N distance varies in our calculations in the range 
1.16-1.18 Â) as compared to the inter-ionic distance in the NaCl lattice (about 2 . 8  A). The 
calculated relative energies of the Fe-CN and Fe-NC configurations are given in Table 8 .
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Table 7: Relative energies (eV) of local structures with the cation vacancy at the (200) site with 
respect to that at the (1 1 0 ) site for several metal complexes.
Negative sign corresponds to the configuration with the cation vacancy at the (200) site being 
more stable than that at the (1 1 0 ) site.

4 -Basis [FeCle]^- “)[FeCl5 (CN)] 
HF DFT Fe-CN Fe-NC

[Fe(CN)e]4- 
Fe-CN Fe-NC

A
B
C
D

2.93 -1.02
3.15 -1.22

0.37
0.33
0.26
0.27

0.37
0.29
0.24
0.25

0.55
0.52

0.56
0.47

In this configuration the CN" ligand occupied the (100) lattice site, which corresponds to the 
smallest possible distance between the ligand and the vacancy. It is expected that for configurations 
with larger ligand-vacancy distances, e.g. with the vacancy at the ( 2 0 0 ) site and (ÏÏO) site 
respectively, the vacancy is more likely to occupy the (nn) site rather than (n) site.

Table 8 : Relative energies (eV) of configurations corresponding to different orientations of the 
CN" ligand.
X corresponds to the CN" ligand at (100) site to be in Fe-CN or Fe-NC orientations. The Fe-CN 
orientation is energetically more favourable.

Basis
set

[FeCls(X)]4"
Vacjva+ at (1 1 0 ) Vac/va+ at (2 0 0 )

[Fe(CN)s(X)]4-
Vac7Va+ at (1 1 0 ) Vacjva+ at (2 0 0 )

A 0.56 0.57 0.60 0.61
B 0.53 0.49 0.58 0.52
C 0.60 0.57
D 0.60 0.58

The results of our calculations confirm that the Fe-CN orientation of the ligands is more 
favourable independent on the position of the vacancy and the basis set.

Finally, we present the relative energies of the nine non-equivalent configurations of 
the [Fe(CN )g]^" ion compensated by two cation vacancies. This issue has been previously 
addressed by us in reference [206]. The results of our new calculations are summarised 
in Table 9. The first column in Table 9 refers to the number of configuration shown in 
Fig. 7. The relative energies in the second and third columns were calculated using the 
embedded cluster approach. These energies can be directly compared to the results of 
previous embedded cluster calculations [8 ]. The difference between these two approaches 
was discussed above. The energies presented in the fourth column were calculated using 
the M ott-Littleton approach using the parameters from ref. [8 ]. The meaning of the values 
presented in the fifth column is explained later. Finally, the two last columns present the 
results of experimental studies which were discussed in section 3.1.2.

Comparison of the diflferent theoretical and experimental results allows us to make the 
following observations: i) all theoretical calculations produce the same ordering of the sta­
bility, with the exception only of the M ott-Littleton calculation which found configuration 
3 to be more stable than configuration 4; ii) the relative energies calculated using basis
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Table 9; Relative energies (eV) of the nine non-equivalent configurations of the [Fe(CN)6 ]^~ in 
NaCl.
See Fig. 7 for keys for configurations. The energies are calculated with respect to the most stable 
configuration 4.

Config. Basis A Basis B
This work 

Mott-Littleton Estimate
Other 

calc. [8 ]
Experiment 
[104] [218]

1 0.323 0.326 0.236 1.833 0.339
2 0.185 0.180 0.148 0.759 0.298
3 0.051 0.052 -0.024 0.284 0.061 II
4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 I
5 0.644 0.621 0.253 3.028 0.370 *
6 0.728 0.710 0.302 3.505 0.438 III
7 0.973 0.486 5.054 0.640
8 1.284 0.568 5.905 0.750
9 1.362 0.581 6.442 0.790

The energies have been calculated for the Coulomb interaction of the two vacancies with the 
Fe^+ ion and with each other. See text for more details.

sets A and B are almost identical, iii) the embedded cluster calculations with the complete 
account of the lattice polarisation and the reaction field performed in this study and the 
earlier less accurate calculation [8 ] predict very close values for the relative energies of 
defect configurations. In other words, the details of the defect electronic structure missed 
in the M ott-Littleton calculation, and the effect of the reaction field on the wave function 
missed in ref. [8 ], are not essential for identifying the most stable configuration.

The present calculation supports the conclusion made in [218] that the most stable 
atomic structure of the Fe(CN)g“ corresponds to configuration 4 and the second most 
stable to configuration 3. The same conclusion has been reached in [8 ]. The local atomic 
structure of the most stable configuration obtained in reference [8 ] and in the present 
study agrees with that obtained using the ENDOR [218]. It is somewhat unexpected that 
configuration 1 , which was ruled out in both experimental studies, is more stable than the 
predicted configurations 5 and 6 . To understand this finding, we estimated the energies of 
the configurations taking into account only electrostatic interaction of the vacancies and 
the Fê "*" ion. The vacancies were represented by negative point charges Qvac =  —1; the 
Fê "*" ion was represented by a positive point charge Qfc = 4-3. All charges were fixed at 
the corresponding ideal lattice sites. The calculated energies (all energies have been shifted 
to obtain the relative values) are presented in the fifth column in Table 9. It may be seen 
that the relative energy of configuration 1 is smaller than those of configurations 5 or 6  

and, therefore, it should have been considered in the interpretation of the experimental 
results. The second factor, which could mislead the interpretation of the EPR experiments 
made in [218] is the assumption that the complex with vacancies remains octahedral, while 
deviation from this symmetry has been observed in the calculation.

Finally, the choice between centres of the D 2h and Cs symmetries, i.e. between con-
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Table 10: Comparison of the calculated and experimental values of the splitting of the t2g orbitals 
due to cation vacancies.
See section 3.1.2 for the key to the energies.

Centre Config. Splitted Splitting, cm~^ Relation 
[218] Fig. 7 t2g states [218] This work (see text)

I 4 Axy - <̂ yzi ẑx 403.2 4401.3 E** —15,,
II 3 àxyAyz - <̂zx 194.4 1494.5 El -  E ..
III 6  dxy - dyzAzx 63.0 609.8

figurations 4 and 5 respectively, was made [104] on the basis of i) the relatively small 
magnitude of the splitting of the CN stretching mode [i/q) and ii) the presence of the 
additional Raman active modes (i î and 1/3 ), which are inactive in the case of H 2 / 1  but 
become active in the case of lower symmetry. In fact, both of these observations may be 
interpreted in a different way. Indeed, if the cation vacancy is at the (nn) site, i.e. along 
the Fe-CN axis, its negative charge “pushes” the CN" ligand towards the Fe^”*" ion, which 
is likely to affect the vibrational energy of the stretching mode more than if the vacancy 
was at (n) site. Therefore, the relatively small magnitude of the stretching mode splitting 
should support the view that D 2h symmetry of the complex is more favourable. The pres­
ence of the modes and 1/3 , which are much less intense than the CN stretching mode, 
could be due to other configurations present in small concentrations. For example, these 
modes become Raman active if the symmetry of the complex is C2 , which corresponds to 
configuration 3. We should note that apart from ENDOR, experimental techniques used 
in [104] and [218] do not provide direct structural information and have to be confirmed 
by other studies.

P erturbation  o f the T 2 g states due to cation vacancies. In their EPR study Wang 
et al [218] have obtained valuable information regarding the splitting of the t 2g states 
due to the low-symmetry field of the cation vacancies (see the diagram in Fig. 9). The 
results of their analysis are compared with the splitting of t 2g states calculated using the 
NPA procedure in Table 10. We note that the calculated values of the splitting are about 
order of magnitude larger than those obtained from the experiment. This is partly due to 
underestimated lattice constant and partly due to intrinsic features of the NPA analysis. It 
is, however, encouraging that the calculated values show the same trend as those obtained 
from the experiment. This suggests that the relative effect of the cation vacancies on the 
electronic structure of the iron ion is correctly reproduced. We also note tha t the relations 
2{El — E^„) =  E** — E . .  for the centres I and II (configurations 4 and 3 respectively) are 
obeyed with less accuracy than it was found in the experimental study. In our calculations 
the deviation is more than 30%.
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Table 11: Electron affinities of the iron cyanides.

Electron affinity, eV Comments
Fe(CN)g“ 4.7 config. 4
Fe(CN)g“ 4.1 config. 4; frozen environment
Fe(CN)g“ 4.6 config. 3
Fe(CN)g~ 0.5 vacancy at (110)

E lectron  affinities o f th e  defect centres. Fe(CN)g“ and Fe(CN)g" centres are often 
considered as prototypes for more complex systems having a potential value for photo­
graphic industry. One of the major characteristics of these systems is their ability to trap 
photo-electrons.^ In this paragraph we report the calculation of electron affinities of the 
iron cyanides (see Table 11).

The results of our calculations suggest that the ferricyanide ion has a very large elec­
tron affinity (EA). This is due to its empty state which appears in the band gap of NaCl. 
The EA calculated with the frozen cluster environment is underestimated by more than 
0.5 eV. This is consistent with our previous results (see Chapter 4) that neglect of the po­
larisation of the host lattice leads to underestimated electron affinities. The ferrocyanide 
ion (Fe(CN)g^) has all its T 2g orbitals occupied and its Eg orbitals, although still in the 
band gap, lie close to the bottom of the conduction band. This makes the EA of the 
Fe(CN)g“ centre relatively small, and in our study it is only 0.5 eV. We should note that 
neglect of the host lattice polarisation may result in a negative EA for the Fe(CN)g~ cen­
tre. Overall, the calculated electron affinities are consistent with experimentally observed 
trapping of electrons by the Fe(CN)g~ and Fe(CN)g“ impurities in NaCl under x irradi­
ation. It is, however, important to stress that neither conduction band nor valence band 
states were present in our calculations, which introduces some uncertainty in the positions 
of the d-levels in the band gap and, consequently, in values on the electron affinities.

Effect o f the atom ic structure on the C -N  stretch ing m ode. The experimental 
studies show that the C-N stretching mode is very sensitive to the atomic and electronic 
structures of its local environment. We have already mentioned the study of the vibra­
tional spectra of NaCl and KCl crystals doped with iron hexacyanides reported by Jain 
et al. in references [103] and [104]. Before that, an extensive study of the C-N stretching 
fundamentals for [Fe(CN)6 ]^“ and [Fe(CN)g]^" complexes in several alkali halide hosts has 
been made by Duncan and Percival [56]. Their study revealed that i) the C-N stretching 
in alkali halides has a multiplet structure, and ii) the C-N stretching frequencies for the 
[Fe(CN)6 ]^“ ion in NaCl are about 70 cm"^ larger that those for the [Fe(CN)6 ]'̂ ~ ion. 
In the present study we checked whether our calculations can reproduce the shift of the 
vibrational frequencies with increase of the iron oxidation number, and whether flipping

^We do not describe the process of image formation in this work. Relevant details may be found, e.g. 
in reference [200].
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Table 12; Frequencies of C-N stretching vibrations for several iron cyanides.

Ion Configuration C-N stretching, cm“ ^
[Fe(CN)6]4- (CN)s-Fe-CN 2117.3
[Fe(CN)e]^- (CN)s-Fe-NC 2153.1
[Fe(CN)e]^“ configuration 4 in Fig. 7 2178.8

of the CN" ion affects its vibrational frequency.
The C-N stretching frequencies were calculated for three systems shown in Table 12 

for one of the CN" ions of the complex. The results of our calculations support the view 
tha t the CN stretching for the [Fe(CN)e]^" ion has higher frequency than for [Fe(CN)e]'^" 
ion. This is due to the stronger electrostatic interaction of the positive central ion with 
its negatively charged ligands. The magnitude of the frequency shift is close to the exper­
imentally observed value of 70 cm"^. However, this agreement is qualitative because the 
complete multiplet structure of the CN stretching mode was not calculated. It also follows 
from the data presented in Table 12 that the flipping of the CN" molecular ion should 
be associated with appreciable frequency shift, which may well be observed using existing 
experimental methods. This shift is expected to be larger for the [Fe(CN)6 ]^" ion.

3.1.5 Sum m ary

To summarise, our calculations suggest that the order of the relative energies of differ­
ent configurations of the [Fe(CN)e]^" ion associated with two cation vacancies is largely 
determined by the electrostatic interaction of ions composing the system and the lattice 
polarisation. The simple M ott-Littleton approach can be used to identify the most stable 
configurations providing suitable parameters for the classical interatomic potentials are 
found. It is expected that the same approach may be used to identify the most stable 
configurations of other similar complexes provided that electronic structure of these com­
plexes does not undergo drastic modifications with the change of the atomic structure 
of their surrounding. The most stable and the second most stable configurations of the 
Fe(CN)g" complex calculated in this work correspond to configurations 4 and 3 in Fig. 
7. This is in agreement with results of earlier EPR experiments and previous theoretical 
study. Our calculations suggest that the interaction of the complex with the cation va­
cancies is mainly electrostatic. Electron affinities of the Fe(CN)g" and Fe(CN)g" centres 
were calculated to be about 4.6 eV and 0.5 eV respectively. These values are consistent 
with the experimentally observed conversion of the Fe(CN)g" and Fe(CN)g~ ions to the 
Fe(CN)g" and Fe(CN)g" ions respectively under x-irradiation of the NaCl crystal doped 
with iron cyanides. It was shown that the dependence of the CN" ion stretching frequency 
on its local environment in correctly reproduced in our calculations. We also predict that 
the flipping of the CN" ligand will be associated with a shift of its stretching frequency 
by about 35 cm"^ to higher energies.
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3 .2  E ffect o f  th e  e m b ed d ed  c lu ster  m o d e l on  o p tic a l p r o p e r tie s  o f  Ce^^ 
d o p ed  L iB aF s

3.2.1 Introduction

In the present section we continue to investigate how the accuracy of the embedded clus­
ter calculations depends on the model of the cluster environment. A strategy, which we 
adopt in this study, is to calculate a range of physical properties of a localised defect 
centre employing several models for the environment (polarisable, partly polarisable, and 
unpolarisable) in otherwise identical embedded cluster models. This strategy was applied 
to a system which represents a methodological interest for scintillator research: crystalline 
LiBaFs doped with small amount of Ce^’*' ions. The optical properties of the LiBaFs:Ce^"^ 
system are well characterised experimentally, which provides an opportunity to compare 
the results of the different theoretical models against the experimental data. We demon­
strate that the local atomic structure of the defect centre, its spectroscopic properties, in 
particular its luminescence energy, and, consequently, Stokes shift are reproduced incor­
rectly if the relaxation of the rest of the crystal is neglected.

The remaining sections of this part cover relevant experimental and theoretical studies 
of the LiBaFg:Ce^'^ system (section 3.2.2), the details of the present embedded cluster 
calculations (section 3.2.3), and results of these calculations and general discussion (section 
3.2.4). The results of our studies are summarised in section 3.2.5.

3.2.2 E xperim ental and theoretical background

Combes et al. [37] have recently undertaken an experimental study of the spectroscopic 
properties of LiBaFs doped with Ce^’*'. They found that after doping the crystal with 
the Ce^+ ions, the absorption and luminescence spectra exhibit additional features as 
compared to spectra of the original crystal, i) Four distinctive bands at 204 nm, 218 
nm, 240 nm and 250 nm appear in the optical absorption spectrum.^ These bands were 
attributed to 4 /  5d transitions of the Cê "*” ions, ii) A broad luminescence band appears 
between 300 and 400 nm (4.14 and 3.10 eV respectively). These experimental results reveal 
two remarkable features of the doped crystal. Firstly, the set of Cê """ 4 /  -4- 5d transitions 
is fourfold, which is noteworthy because the cubic structure of LiBaFs should result in a 
twofold splitting. Secondly, LiBaFs :Ce^‘̂  shows a Stokes shift of approximately 9000 cm"^ 
(about 1.09 eV) between the absorption band at 250 nm and the maximum of emission 
band at 320 nm, which is unusually large compared, for example, to the 2000 cm“  ̂ Stokes 
shift in the BaF 2 :Cê "*" system. The results of recent theoretical studies [6 ], [136], which 
aimed to understand these properties of LiBaFs doped with Ce^"  ̂ are briefly discussed 
below.

W hen Ce^"  ̂ is incorporated in the LiBaFs (LiBaFs unit cell is shown in Fig. 3 on page 
46), it may occupy either the Ba or Li site. In any case, the excessive positive charge, -f l or

^These energies are converted to electron volts in Table 18 on page 76.
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+2 respectively, has to be compensated. As with the case of the Fe(CN)g“ impurity in the 
bulk NaCl, a variety of charge compensating mechanisms is available including vacancies 
or substitutional defects of the host lattice ions. In a recent study by Andriessen et al. [6 ], 
an embedded cluster approach at the Hartree-Fock level was used to investigate possible 
local defect structures. These authors assumed tha t the Ce^+ occupies a Ba lattice site and 
considered several associated charge compensating defects: i) substitutional 0 ^~ ion at 
the nearest F site, ii) interstitial F~ ion, iii) vacancy at a nearest Li site, iv) substitutional 
Li"  ̂ at a nearest Ba site. The two other investigated structures were: v) a Ba vacancy 
compensating for two Ce^+ substitutions at Ba sites and vi) Ce^+ on a Li site compensated 
by a vacancy at a Ba site. The splitting of the hd levels for all the structures studied was 
calculated using one-electron energies and then analysed and compared with experimental 
data. The results of this analysis led Andriessen et al. to conclude tha t the most likely 
structure of the LiBaFs :Ce '̂*' luminescence centre consists of the Ce '̂*’ ion at a Ba site and 
the Li“*“ substitutional ion at the nearest Ba site. This conclusion, however, was equivocal 
since the reliability of methods used in [6 ] was considered to be unsatisfactory. The Stokes 
shift calculated in [6 ] was underestimated by a factor of five.

Another study by Marsman et al. [136] attem pted to make a more accurate calculation 
of the lattice relaxation, absorption spectra and the Stokes shift for several structures of the 
LiBaFs-.Ce^”̂  luminescence centre. These authors have employed an embedded cluster and 
periodic calculations using HF and plane-wave DFT methods respectively. A super-cell 
consisting of 3x3x3  LiBaFs unit cells and containing a single Ce^+ ion and an associated 
charge compensating defect, which was used in the periodic calculations, allowed the 
authors to account for the lattice relaxation more accurately than in [6 ]. Comparison of 
the calculated splitting of the 5d levels and the experimental absorption energies supported 
the view tha t the luminescence centre consists of the Cê "*" at a Ba site compensated by a 
substitutional Li+ at a neighbouring Ba site. The calculated value of the Stokes shift of 
0.61 eV was much closer to the experimental result but still almost two times smaller than 
observed. Marsman et al. suggested that the inaccuracy of their calculations is due to the 
small size of the super-cell. In particular they noted that: i) the relaxation of the defect 
atomic structure was constrained within the super-cell; ii) the defect centre has a large 
dipole moment and therefore it interacts strongly with its images in other super-cells; iii) 
the polarisation of the host lattice is included only within the super-cell. In the present 
study we repeat the calculation of the lattice relaxation and of the optical properties for 
the LiBaFg:Ce^'^ luminescence centre using our embedded cluster approach, which is free 
of the above drawbacks.

3.2.3 D eta ils  o f calculations

M odel for defect calculations. The calculations were carried out using our embedded 
cluster approach (Chapter 2) and a finite nano-cluster model. A methodology for gener­
ation of the nano-cluster for LiBaFs crystal was discussed above (see Chapter 2, section
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Table 13: Basis sets used in the study of LiBaFarCe^"*' optical properties.

Ion Basis functions ECP") Reference
S P D F

Ba 3,4,1 3,2,1 [Kr]dio (46) [92]
Ce 3,1,1,1 3,1,1,1 2,1 7 [Krjdio (46) [199], [40]
F 4,3 4,1,1 - [96]
Li 6 ,1 , 1 - [96]

Ba )̂ 3 [Xe] (54) [216]
“^Core size and the number of core electrons replaced by an ECP are shown.

Basis for Ba ions at the QM cluster boundary.

2.1). To preserve the symmetry of the crystal, we have used a cubic nano-cluster with the 
cube edge close to 52 Â and with its centre at the Ba site. A spherical region I with a 
radius of 14.0 Â was centred at the same Ba site and included 843 ions. The calculations 
were based on a QM cluster shown in Fig. 5 on page 51. The cluster has a sphere-like 
shape and includes several shells of ions: i) the central Ba ion; ii) twelve F ions at the 
distance %2.8 Â from the centre; iii) eight Li ions at %3.5 Â from the centre; and iv) two 
shells of boundary Ba ions at «4.0 Â and «5.6 Â from the centre. In the defect calcula­
tions, the central Ba ion was replaced by the Cê "*” ion. Consequently, the boundary Ba 
ion in the (0 0 1 ) direction was substituted by Li'*' ion to satisfy the condition of charge 
neutrality.

In order to investigate the effect of polarisation of cluster surrounding on local atomic 
structure of the defect centre, we consider the magnitude of the atomic displacements as 
a function of the size of region I, i.e. of the region, in which both quantum mechanical 
and classical ions are allowed to relax. Three models for region I were considered. The 
first, denoted as A, corresponds to a completely polarisable lattice, the region tha t has 
been described in section 3.2.3. In model C, all classical ions of the environment were 
fixed at their ideal sites and their electronic polarisation has been neglected. In addition, 
all boundary Ba ions of the QM cluster were fixed. This corresponds to a commonly used 
model for an embedded cluster calculations in which all centres of the environment and all 
boundary atoms of a QM cluster are kept fixed and only inner part of the cluster is relaxed 
[67], [100], [140]. Model B is an intermediate between models A and C. In this model all 
atoms of the QM cluster, including boundary Ba ions, are relaxed but ionic and electronic 
contributions to the polarisation of the environment are neglected in a similar way to 
model C. It should be stressed that although the Li+ ion at the (001) Ba site formally 
belongs to the shell of boundary Ba ions, it was relaxed in the model C. Relaxation of this 
ion is so large that fixing it at the ideal crystalline position of the replaced Ba ion would 
obviously result in an incorrect atomic structure.

Following our previous discussion regarding the choice of the basis set, we employ 
an all-electron basis set for F and Li ions inside the QM cluster and use only one s 
basis function contracted from three primitive s function at the boundary Ba ions. Only
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valence electrons of the central Ba and Ce ions were included in the calculations; their core 
electrons were replaced by an effective core pseudo-potential. Other relevant details are 
summarised in Table 13. All quantum mechanical calculations were performed at the HF 
level. Interatomic potentials developed by Jackson et al. in [102] were used for classical 
calculations.

It is a well known problem that large core pseudopotentials may not be suitable for 
describing the interaction of atoms in molecules. If there are no nd  or (n + l) s  electrons for­
mally present, e.g. K+ in KF or Ca^’*' in CaO, the electrons and nucleus of the other atom 
begin to penetrate the charge cloud of the ns  and np  shell and, consequently, interaction of 
atomic cores can no longer be described by simple expression Vcore-core = / ^ ab

[92]. Boundary Ba ions in our QM cluster are examples of atoms for which the above 
expression for the core-core interaction with nearby QM fluoride ions does not work. We 
have introduced the correction to the Ba-F interaction in the form of a Born-Mayer po­
tential W  =  A exp~’'/^° as discussed in Chapter 2 , section 2.2.5. The parameters A  and 
ro of this correction term have been fitted using a smaller cluster (see Fig 5 on page 51) 
as described in section 2.4.1 on page 49. This correction term has been present in all our 
calculations for all pairs of boundary Ba and quantum mechanical F ions.

The energies of the 4d —> 5d optical transitions were calculated using a ASCF approach, 
in which the energy of an excited state was calculated using an approximation of a single 
determinant wave function constructed from a ground state determinant by substitution 
of the occupied 4 /  orbital by one of the unoccupied 5d orbitals and subsequent relaxation 
of the electronic structure.

3.2.4 R esu lts and discussion

Perfect la ttice test. The total displacements of the ions from their ideal positions 
corresponding to the lattice constant oq =  3.988 Â [141] are given in Table 14. In this Table 
we indicate the absolute magnitudes of the displacements and their magnitudes relative to 
the lattice constant for each type of symmetry equivalent ions. The number of equivalent 
ions and their site position with respect to the central Ba ion are also shown. All ions 
displace symmetrically with respect to the centre of the cluster. The adiabatic potential 
(not reported here) calculated for small displacements of a boundary Ba ions in and out 
of the QM cluster along the (110) axis is almost symmetrical. The small magnitude of the 
displacements, the negligible deviation of the displacements for equivalent ions, and the 
symmetrical potential well for the boundary ions suggest that the quantum mechanically 
and classically treated regions of the system are well balanced.

R elaxation  o f the defect ground sta te  (4 /) .  Local atomic structures of the Cê "*" 
defect centre were calculated for the three models of the polarisable region I. Differences 
in the atomic coordinates of atoms for the relaxed systems are summarised in Table 15. 
The largest difference between fully polarisable environment (model A) and partially po-
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Table 14; Perfect lattice test for LiBaFs crystal. Displacements of QM ions from their ideal 
positions.

Type and number Site Displacements
equivalent ions Â % of no

F 12 ( | |0 )  0.018 - 0.019 0.5
Li 8  0.014-0.015 0.4
Ba 6  (100) 0.004 0.1
Ba 12______ (110) 0.000 - 0.001 0.0

Table 15: Difference in local atomic structures of the Ce^+ dopant in the defect ground state (4/).

Type and number of Differences in atomic coordinates,Â
equivalent ions Site Models A-B Models A-C Models B-C

Ce 1 (0 0 0 ) 0.008 0 . 0 2 0 0 . 0 1 2

Li 4 ( H I ) 0.057 0.094 0.037
Li 4 0.024 0.028 0.008
F 4 0.016 0 . 0 2 1 0.005
F 4 0 . 0 2 0 0.024 0 . 0 1 0

F 4 0.023 0.033 0 . 0 1 0

Li 1 (0 0 1 ) 0.261 0.258 0.003

larisable environment (models B and C) appears for the Li"*" ion substituting Ba'*' host 
lattice ion. Relaxed position of this ion is substantially different from the position of the 
Ba+ in the perfect crystal. Therefore, it is essential to use larger region I in order to 
allow such relaxation. Differences in atomic coordinates for other ions is noticeable but 
less significant.

R elaxation  o f the defect excited  sta te  ( 5 d^2 )* The large value of the Stokes shift 
observed for the Ce^+ doped LiBaFs crystals suggests that the Ce^+ 5 d^ 2  excited state 
is strongly coupled with the host lattice. In other words, relaxation of the electronically 
excited [Xe]5 d^ 2  configuration of the Cê '*’ ion is associated with large displacements of 
nearby ions. The local atomic structures of the defect centre in its relaxed ground ([Xe]5/^ 
configuration) and excited ([Xe]5 d^ 2  configuration) states are shown in Fig. 11. Each 
fragment in Fig. 11 contains four unit cells: Ce^+ occupies the centre of the lower left 
unit cell; the associated with it charge compensating Li^ ion substitutes the Bâ "*” ion 
in the upper left unit cell; two unit cells on the right are structurally unchanged. It is 
immediately clear that in the relaxed excited state, the Cê """ ion is substantially displaced 
towards the substitutional Li"'" ion and that the surrounding fluoride ions are noticeably 
distorted.

The calculated displacements of ions due to relaxation of the excited state for all 
three models are summarised in Table 16. The first three columns in Table 16 show type of
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a) b)

F igu re 11: Local atomic structure of the Ce^+ ion in LiBaFg. 
a) relaxed ground state in [Xe]5/^ configuration; b) relaxed excited state in [Xe]5d|:2 configuration.

an ion, number of symmetry equivalent ions of this type, and its site position with respect 
to the centre of the cluster. The symmetry of the defect site is C4  with the symmetry 
axis parallel to the z axis; therefore only ions which are in the same xy  plane remain 
equivalent. Consequently, each row in Table 16 refers to ions with the same z coordinate. 
Comparison of the data in Table 16 shows that the displacements of ions in model A are 
about 0.1 Â larger than those in models B and C. This suggests that relaxation of atoms 
only inside the QM cluster is insufficient to achieve a fully optimised atomic structure for 
the defect centre. We expect that the approximation of the unpolarised environment may 
result in an incorrect prediction of other defect properties. It is important to note that 
the displacements of ions in models B and C are not very different, which means that 
relaxation of a just few additional atoms, as compared to the model C, in the vicinity of 
the QM cluster has insignificant effect on the local geometry of the system. Therefore, 
to achieve the correct atomic structure of tlie defect centre in botli ground and excited 
states, relaxation of many atoms beyond the QM cluster, should be considered.

O p tica l tra n s itio n  energies. Both the excitation energies corresponding to the four 
4/^ ~^5d} transitions and the luminescence energy of the defect centre depend on its local 
atomic structure. Therefore, it could be expected that models A, B, and C described 
above for the embedded cluster environment will result in different values of the optical 
transition energies. Results of our calculations are given in Tables 17 and 18.

It may be immediately noticed that the excitation energies only slightly depend on the 
accuracy with which the host lattice is treated. This corresponds to the relatively small
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Table 16: Displacements of host lattice ions near the Ce^+ dopant in the defect excited state 
(5d^2).

Type and number of Displacements,Â
equivalent ions Site Model A Model B Model C

Ce 1 (0 0 0 ) 0.621 0.500 0.487
Li 4 (lié) 0.185 0.116 0.105
Li 4 (ill) 0.113 0 . 1 1 2 0.108
F 4 ( |o | ) 0.230 0.176 0.187
F 4 ( l | 0 ) 0.333 0.242 0.241
F 4 (&0 Ï ) 0.328 0.225 0.196
Li 1 (0 0 1 ) 0.027 0 . 0 2 0 0.025
Ba 4 (1 0 0 ) 0.054 0.057
Ba 1 (0 0 1 ) 0.018 0.047
Ba 4 (1 0 1 ) 0.051 0.026
Ba 4 (1 1 0 ) 0.047 0.032
Ba 4 ( 1 0 1 ) 0.062 0.023

differences in defect local atomic structures for the ground state calculated using models 
A, B, and C. On the contrary, the calculated value of the luminescence energy gradually 
increases as the size of the polarisable region I decreases. In the limit of the unpolarisable 
environment (model C) the luminescence energy is by more than 0.3 eV larger than for the 
case of the fully polarisable environment (model A). As expected, the model of the partly 
polarisable environment (model B) results in an intermediate value of the luminescence 
energy. Similarly, the magnitude of the Stokes shift decreases as the size of the polarisable 
region decreases.

It is worthwhile emphasising that the luminescence energy does not show fast conver­
gence with respect to the size of the polarisable region. For example, relaxation of 17 more 
atoms in model B, as compared to the model C, results in the decrease of the luminescence 
energy by only 0.06 eV. Furthermore, our analysis shows, that relaxation of the excited 
state causes appreciable displacements of ions far from the defect site. For instance, ions 
at the boundary of the large region I (model A) are relaxed by as much as 0.002 Â, even 
though they are almost 14 Â away from the defect centre.

Following the work of Marsman et al. [136], we introduce a correction to the calcu­
lated optical transition energies. The correction arises from the fact tha t a finite Gaussian 
type basis set was used in the calculation. To calculate this correction, the authors have 
compared the ^F7 / 2 —>-̂ 0 5 / 2  transition energy for the free Ce^’*’ ion calculated using a fully 
relativistic Multi-Configurational Dirac-Fock (MCDF) code with a numerical representa­
tion of the wave function [46] and that calculated using the Gaussian94 [78], both at the 
Hartree-Fock level. The transition energy calculated using the Gaussian94 was about 0.8 
eV larger than that calculated using the MCDF code and therefore the correction due to 
the finite basis set was taken to be -0.8 eV. We should mention tha t this correction does
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Table 17: Optical transition energies for different models of the embedded cluster environment.

Transition energies, eV
Assignment Model A Model B Model C

Excitation 4 / —>• b d ^ 2 5.751 5.706 5.687
4 / h d y . 2 _ y 2 6.000 6.044 6.051
4 / —> ^dxy 6.512 6.452 6.448
4 / y ^dxzj^dyz 6.572 6.576 6.550

Luminescence 5d̂ 2 -4 4 / 4.547 4.815 4.875
Stokes shift 1.204 0.891 0.812

Table 18: Comparison of the calculated optical transition energies with results of earlier studies 
and experiment.
All calculated values are corrected for the effect of a finite Gaussian type basis set. See text for 
more details.

Transition energies, eV
Assignment This work Theory [136] Experiment [37]

Excitation 4f  —̂ 5d^2 4.949 4.886 4.960
4 / —> 5dx2_y2 5.198 5.241 5.166
4 / —> 5dxy 5.710 5.493 5.688
47  ̂^dxzi^dyz 5.770 5.879 6.078

Luminescence 5d_j2 —̂ 4/ 3.745 4.279 3.875
Stokes shift 1.204 0.607 1.085

not depend on the host material and, therefore, does not take into account the dependence 
of the Ce '̂*’ electronic structure on the host crystal and on the relaxation of the local crys­
tal environment. We did not consider a separate correction for a correlation energy due to 
the fact tha t its effect on the transition energies seems to be compensated, accidentally, 
by the effect of the host crystal. See reference [136] for a more extensive discussion in this 
matter.

The corrected energies for model A are compared with those calculated in [136] and 
with experimental data in Table 18. The comparison suggests that the excitation energies 
obtained in the present study are, generally, in better agreement with the experiment than 
those calculated in [136]. A much greater improvement is achieved for the luminescence 
energy and the Stokes shift.

3.2.5 Sum m ary

We have undertaken an embedded cluster study of the local atomic structure and optical 
properties of a luminescence centre formed by doping Cê """ ions into LiBaFg. In this study 
we considered different models of the cluster environment which correspond to polarisable, 
partly polarisable and unpolarisable crystal lattice and investigated effect of these models 
on the properties of the defect centre. It was found that the distortions of the host lattice
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near the defect in its ground state are very localised and that its atomic structure is similar 
for all three models of the environment. On the contrary, the relaxed atomic structure of 
the defect in its excited state differs for different models of the environment. In particular, 
the model of the unpolarisable lattice results in underestimation of the displacements of 
ions in the QM cluster. We have noticed that ions which are as far as 14 Â away from 
the defect centre were displaced by 0 . 0 0 2  Â, which suggests that relaxation of a large 
number of ions surrounding the defect site should be considered. The calculated values of 
the excitation and luminescence energies correlate with the geometry of the defect centre: 
excitation energies show almost no dependence on the relaxation of the cluster environment 
while the luminescence energy differs by more than 0.3 eV. Finally, we compared the results 
of our calculations with those of earlier theoretical [136] and experimental [37] studies of 
the optical properties of the LiBaFgiCe^"'" system. This comparison demonstrated that the 
present embedded cluster calculations provided a better agreement with the experimental 
data than a combined embedded cluster and periodical plane wave calculations reported 
in [136]. We, therefore, conclude that proper modelling of the polarisable host lattice is 
a vital part of embedded cluster studies. Neglect of the lattice polarisation may result in 
incorrect values of optical transition energies and Stokes shift for defect centres in which 
the electronic excitation is strongly coupled with the lattice displacements.

77



4 D efec ts  at th e  surface o f M gO

The MgO (001) surface has been extensively studied both experimentally and theoretically 
primarily due to its importance for technological applications in catalysis and as a substrate 
for growing many different systems. The latter include metal layers, superconductors and 
ferroelectrics. The simple crystal structure and ionic character of the interatomic bonding 
enable theoretical studies using relatively simple models. The (001) surface of MgO is 
often considered as a model system and used to examine new experimental or theoretical 
techniques. Although the MgO (001) surface has been well characterised, little attem pt 
has been made to address the issue of the position of the surface valence band and defect 
states relative to a common reference level. This is one of the key issues im portant for 
both the interpretation of experimental spectra and studies of surface processes involving 
point defects.

In this Chapter we present the results of our studies of the properties of the ideal MgO 
(001) surface and point defects on its terraces and at low-coordinated surface sites [205], 
[204], [192]. We aim to calculate the energy levels of the defect states and surface excitons 
with respect to the top of the surface valence band and the vacuum level. In section 4.1, the 
electronic properties of the ideal surface and surface defects are considered. The value of 
the ionisation potential which sets the position of the top of the valence band with respect 
to the vacuum is discussed in sub-section 4.1.4. The calculation of the surface electron 
affinity and of the position of the conduction band of the surface are discussed in 4.1.5. 
The electronic properties of the oxygen corner, and those of the oxygen vacancies and 
surface peroxide species are calculated in sub-sections 4.1.6, 4.1.7, and 4.1.8, respectively. 
Section 4.2 deals with the calculations of optically excited states at the low-coordinated 
MgO sites.

4.1  E le c tr o n ic  p ro p er tie s  o f  th e  id ea l an d  d e fe c tiv e  su rface

4.1.1 E xperim ental background

To bring energy levels of the ideal surface and surface defects to a single energy scheme, 
one has to determine their positions with respect to a common reference level. Usually 
the vacuum level is used for this purpose. We are aware of two experiments which aim to 
determine the position of the top of the surface valence band with respect to the vacuum 
level. The results reported by Tjeng et al. [209] were obtained using the angle-resolved ul­
traviolet photoelectron spectroscopy (ARUPS). In this experiment the surface is irradiated 
by a beam of photons (21.2 eV and 40.8 eV photons have been used) and the distribu­
tion of kinetic energies of emitted electrons provides insight into the electronic structure 
of the material. Analysis of the experimental data led the authors to conclude tha t the 
ionisation potential of MgO is about 9.1 eV with an uncertainty of a few tenth of an eV. 
Another set of experiments have been conducted by Kempter et al. [114] using M etastable 
Impact Electron Spectroscopy (MIES). In this experiment, excited He atoms (in electronic
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configuration ls^2s^) are scattered from the surface with thermal velocities. When a He* 
atom approaches the surface, an electron from the surface valence band tunnels into the 
unoccupied Is state of the atom and the 2s electron of the He* is simultaneously released 
carrying the difference in energy between the valence electron and the Is He* states. The 
electron tunnelling is effective predominantly from the top surface layer. The distribution 
of kinetic energies of the emitted electrons is measured and analysed using theoretical 
modelling [114], [115]. MIES suggests that the surface IP is in the range of 6.7 ±  0.4 eV.

It is im portant to stress that the MIES technique probes predominantly the surface 
states [1 2 0 ], whereas ARUPS probes the electron states in several surface layers and is, 
therefore, dominated by contributions due to the sub-surface layers. These experimental 
observations suggest that there is a considerable (about 2.4 eV) splitting between the 
bulk and surface states which has neither been observed experimentally nor appeared in 
theoretical simulations. To the best of our knowledge there are no other experimental 
data we could rely on in this discussion. To clarify this issue we have performed ah initio 
calculations of the ionisation potential of the ideal surface which are described below.

F centres, also known as colour centres, are defects typical to ionic crystals. They 
essentially consist of electrons trapped in anion vacancies and can be generated by exposure 
of a crystal to radiation of suitable wavelength (known as radiative colouring) or by metal 
addition at high temperatures (additive colouring). Investigation of these centres has been 
extensive, and more than 50 years ago Wood and Joy [220] nicely expressed this interest: 
’’This defect is one of the simplest which can occur in ionic crystals, and in the physics 
and chemistry of lattice defects it occupies a position of importance roughly comparable 
to that of the hydrogen atom in ordinary chemistry” .

For many years, the study of F centres remained firmly within the domain of physics 
until the late 1960s when the surface counterparts (Fg) of the bulk centres were discovered 
and explored for the first time (see [146] and references therein). These surface centres were 
predominantly generated on alkaline earth metal oxides by exposure of the oxide to gamma 
or UV irradiation under H 2 . Containing an abundance of surface stabilised electrons, the 
radiatively coloured materials soon attracted a great deal of interest from a wider chemical 
community since the formation of surface radical anions by electron transfer from centres 
to various adsorbates could be easily studied. Interest in both the chemical properties 
and magnetic features of the surface centres became intense and was actively pursued for 
many years. Some fundamental questions about the exact nature of the surface trapped 
electron centres have, however, remained unresolved (see, for example, recent extensive 
studies of trapped electron centres on alkali metal doped MgO by Giamello et al. [144], 
[145], [30], [143]).

Following Giamello et al. [30] we can outline areas of particular interest and directions 
for further research regarding the structure and properties of surface F centres. These 
concern: i) the nature, location and concentration of the surface anion vacancies capable 
of electron trapping; ii) the reactivity of the surface trapped electrons with adsorbed atoms
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and molecules; ill) the generation and exploration of not only ’’classical” F centres but also 
of new families of surface trapped electron species: these species have also been identified 
in zeolites [58] and [4], a surface F"*" centre which is fundamentally different from the 
classical surface F+ (H) centre was reported in a very recent study of MgO nano-particles 
[198]; iv) the coupling of experimental investigations with theoretical modelling which is 
a fruitful approach providing a deeper insight into the nature and the variety of surface F 
centres.

Although the properties of F centres in the bulk of crystals have been the subject of 
numerous investigations over several decades, few experimental data are available for F 
centres at surfaces and other low-coordinated sites. Experimental studies are hampered 
by much smaller concentrations of surface defects as compared to the bulk. Consequently, 
theoretical modelling of the processes involving surface defect sites becomes a useful tool 
for the understanding and interpretation of the experimental data. Among the most recent 
publications which combine experimental and theoretical studies of electron traps at the 
MgO (001) surface we should mention [151], [45], [114].

4.1.2 D eta ils  of calculations

To simulate the MgO surface we used a nano-cluster in the form of parallelepiped con­
taining 20x20x8 ions carrying formal ionic charges. The size of this nano-cluster was 40 
Â in the x  and y directions and 15 Â in the z direction. Region I (see Chapter 2) is 
also rectangular and contains 12x12x6 ions, as shown in Fig. 12(a). The calculations 
were made for a series of clusters of increasing surface area and number of layers (see Fig. 
13(a-e)) embedded into the nano-cluster. The choice of the cluster shape was determined 
by the following considerations. Electronic holes favour sites with lower electrostatic po­
tential. On the perfect surface, all anion sites are equivalent and the hole is expected to 
have equal probability to localise on any anion. To describe delocalised hole states, it is 
im portant to include in the cluster several equivalent sites. To study the dependence of 
the surface ionisation energy on the degree of the hole localisation, clusters including one, 
five, nine and thirteen surface oxygen ions were considered. We have also investigated the 
dependence of our results on the “thickness” of the QM cluster. For this purpose, the QM 
clusters including ions of two and three surface layers have been studied (compare clusters 
in Fig. 13(c) and Fig. 13(d)). The largest cluster considered in this study, included 25 
oxygen and 57 magnesium ions (Fig. 13(e)).

The calculations of the surface oxygen vacancies (neutral F centre, charged F+ centre 
and anion vacancies Y  a) and peroxide species have been performed using the nano-cluster 
shown in Fig. 12(a)) and the Mg2 gOi3  quantum cluster (Fig. 13(d)). For the studies of 
oxygen vacancies at the oxygen corner site the cubic 2 0 x 2 0 x 2 0  ion nano-cluster was used 
(part of it is shown in Fig. 12(b)). The shell model region I for this nano-cluster was also 
cubic; its size was varied from 4x4x4  to 10x10x10 to investigate the effect on the corner 
site relaxation. The QM clusters used in these calculations are shown in Fig. 13(f,g).
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Q uantum  C luster

•sw.-v. •

Fixed Ions (Region II) Shell model (Region I)
F igu re 12: The models for the surface (a) and corner (b) used in the em bedded cluster calculations. 
Large black and white spheres define a quantum cluster; grey spheres correspond to region I treated  
using the shell model; small points correspond to the fixed environment represented using point 
charges.

The quantum mechanical calculations have been made at the DFT level using the B3LYP 
density functional [15], [16]. Other details of the model and computational procedure have 
been described previously in Chapter 2 .

The general shape of the QM clusters and the flexibility of the basis set on different ions 
have been described earlier (Chapter 2 ). Here we note ordy that most of the calculations 
have been made using the standard 6-31G basis set for all oxygen ions and the magnesium 
ions coordinated by three or more QM oxygens. All other (boundary) magnesiums have 
been described using an effective core pseudo-potential replacing Is, 2 s and 2 p electrons 
[216] and a single s-type basis function contracted from two primitive s functions. In 
some of the calculations the basis set was extended up to a 6-311-t-G ((12s,6p)->(5s,4p) 
contraction) on oxygens and a 6-311G ((13s,9p)—)-(6s,5p) contraction) on magnesiums.

To investigate the role of polarisation functions on the defect properties, we have 
performed calculations of the formation energy of the surface F centre and its ionisation 
energy for different clusters (Fig. 13(a-c)) and different basis sets using the unpolarisable 
lattice model. The 6-31G basis set was used for the all-electron cations while the basis 
set for all anions was increased from a 6-31G to a 6-311G and then to a 6-311G* (the 
corresponding oxygen basis set was also centred on the oxygen vacancy). The formation 
energy of the surface F centres decreased by about 0.1 eV as the basis set was enlarged. 
The corresponding changes of the ionisation energy were about 0.05 eV, which led us to 
conclude that the polarisation functions introduce only a minor effect on the calculated 
properties although their effect on the total energy of the system could be large. Our other 
calculations (see Chapter 3) also suggest that extension of the basis set by the polarisation 
functions only slightly affects the calculated values but makes the calculations much more 
time-consuming. For this reason, d-functions have not been included in the calculations.
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a) b) c)

MggOi (1) (5) Mg2oOi3 (9)

^ês7^25 (13) MgigO,

g )

M g 2 5 Q i 3

F ig u r e  13: T h e quantum  m echanically treated clusters used in the em bedded cluster calculations 
of the surface and corner states.

4.1 .3  M gO (001) surface rum pling

The most stable (001) surfaces of cubic ionic crystals, such as alkali halides and alkaline 
earth oxides, experience a characteristic relaxation with respect to an ideal cleavage plane. 
Both experimental observations and theoretical calculations (see [170], [82] and references 
therein) suggest two features which are common for this relaxation: i) the surface plane 
moves as a whole towards the bulk decreasing the distance between the surface and the 
sub-surface layers, and ii) cations of the surface layer are displaced towards the bulk more 
than anions. The latter feature is known as rumpling. Although there is a considerable 
difference between the values of ionic displacements obtained in different studies, there 
seems to be a general consensus that both the relaxation and rumpling at the MgO (0 0 1 ) 
surface are small. The shift of the surface plane as a whole, quoted in many studies (see [82] 
and references therein), is about one percent of the anion-cation separation. The surface 
rumpling, defined as the difference between the mean vertical position of oxygen and 
magnesium ions, in most cases does not exceed four percent of the anion-cation separation. 
For instance, the rumpling predicted in recent periodic DFT calculations [113] was 0.04 
Â, which is about two percent of the anion-cation separation.

In our modelling of the MgO surface, we first relaxed the whole system classically using 
the pair potentials [191]. The ionic displacements obtained from the ideal surface plane 
positions were 0.004 Â for anions and -0.006 Â for cations, i.e. anions moved up and 
cations down towards the bulk in qualitative agreement with previous results. The surface 
ions outside region I were then fixed in these positions. The positions of ions within the 
QM cluster were determined self-consistently with the relaxation of the classical ions in
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Figure 14: Rumpling for the MgO (001) surface.
Displacements of ions in the Mg5 7  025 cluster with respect to the ideal unrelaxed surface; positive 
Z corresponds to displacements up from the ideal unrelaxed surface.

region I. The displacements of ions in the direction perpendicular to the surface depend 
on the size of the QM cluster and on the positions of the ions relative to the centre of the 
cluster. The character of the rumpling is different for two- and three-layer clusters. For the 
two-layer clusters, all anions, apart from the case of the smallest QM cluster (Fig. 13(a)), 
relax to positions 0.05-0.07 Â below the level of the ideal unrelaxed surface; at the same 
time cations, on average, relaxed to the positions only 0 .0 0 -0 . 0 2  Â below the same level. 
The expected displacement of the surface layer as a whole is therefore reproduced but the 
relative displacements of anions and cations are opposite to those predicted by experiment 
and by previous calculations [170]. Further extension of the quantum mechanically treated 
region to include the anions of the sub-surface layer and cations of the third layer changes 
the calculated rumpling parameters. Good agreement with results of slab DFT calculation 
[113] was achieved for the cluster Mg5y025 (Fig. 13(e)). The displacements of the surface 
ions for this cluster with respect to the ideal unrelaxed surface are shown in Fig. 14.

4.1 .4  P osition  o f th e  top  o f the valence band: Ionisation  p oten tia l o f  th e M gO  
(001) surface

The results of calculations are summarised in Table 19. The meaning of the ionisation 
potentials IP(0) and IP (I) has been defined above in Chapter 2. The difference between 
them  shows the effect of the electronic lattice polarisation due to the ionisation of the 
cluster. One can see that the lattice polarisation plays an im portant role both in reducing 
the value of the ionisation potential and in enhancing the convergence of the results with 
the cluster size to about 6.5 eV.

The electron is ionised from the highest occupied (HOMO) state which, in our cluster
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Table 19: Ionisation potential of the (001) MgO surface calculated using different QM clusters.

QM cluster N(oxygen) IP(0), eV IP (I), eV AIP, eV eV
MgsOi 1  (a) 9.75 7.64 2 . 1 1 0 . 6 8

MgirOs 5(b) 7.89 6 . 8 6 1.03 2 . 0 2

MggsOg 9(Q 7.25 6.48 0.77 2.25
Mg290i3 9(d) 7.18 6.47 0.71 2.82
Mg5y025 13 ^ ) 7.03 6.52 0.51 3.13

The number of surface oxygens in the cluster and the notation of a corresponding ball-stick 
model in Fig. 13.

The width of the surface valence band, W, was calculated as the energy difference between the 
highest and lowest occupied states of the valence band.

calculations, corresponds to the top of the valence band and is localised, primarily, within 
the top surface layer. The ionisation energy depends on the cluster size in several ways, i) 
As the number of surface ions increases, the degree of delocalisation of the hole state also 
increases. The latter reduces the polarisation energy of the environment defined as IP(0)- 
IP (I). The hole is almost exclusively localised in the top surface layer and homogeneously 
distributed over the surface anions, which is demonstrated in Table 20 where we sum­
marised the differential charges on the surface oxygens. The charges were calculated using 
the Natural Population Analysis (NPA) [167] as the difference between the ionic charges 
in the perfect and ionised clusters, ii) The energy of the HOMO state changes with the 
cluster size as the splitting of the cluster states modelling the valence band increases and 
the position of the middle of the band shifts to lower energies. The first of these effects is 
clearly seen in Table 19 where we present the valence band width for different clusters, iii) 
The polarisation contribution decreases with the cluster size not only due to hole délocali­
sation, but also due to the fact that more ions are treated quantum mechanically and that 
the polarisabilities of the quantum ions are much smaller with the basis sets used in this 
study (and indeed in much more extended basis sets [75]) than the experimental values. 
For the same reasons, one also expects the ionisation energy to depend on the basis set. 
To check this effect we increased the basis set on the oxygen ions to 6-31H-G and on 
the all-electron magnesium ions to 6-311G, and calculated the ionisation energy for the 
largest cluster using the positions of QM ions and classical cores and shells as optimised 
using the smaller basis set. The ionisation potential obtained in this calculation was 6.75 
eV, which demonstrates further convergence to the experimental value of 6.7 ±  0.4 eV. 
Thus the agreement between theory and experiment is within experimental error although 
the results do not demonstrate complete convergence. It is tempting to extrapolate the 
ionisation energy to the case of a larger cluster, but due to the complicated interplay of 
several factors, this extrapolation by four points is not justified. Nevertheless, we do not 
expect the calculated value of about 6.7 eV to change significantly with a further increase 
of the cluster size.

The localisation of the hole can be analysed by means of the spin density map or the
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F igu re 15: The spin density of the hole state at the MgO (001) surface.
Both plots show top layer of the (001) surface plane: a) two-dimensional projection; b) tree­
dimensional plot, similarity of peaks indicate approximately uniform distribution of the hole.
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Table 20: The distribution of the electron hole in the top surface layer of MgO clusters calculated 
as difference between NPA charges on oxygen ions for the perfect surface and ionised states.

QM cluster Fig. 13 [0 0 0 ]*) [1 1 0 ] [2 0 0 ] [2 2 0 ]
MgsOi (a) 0.907
MgiyOs (b) 0.146 0.0167-0.170
Mg250g (c) 0.072 0.083-0.090 0.095-0.103
Mg2gOi3 (d) 0.035 0.074-0.0110 0.083-0.086
Mg57 025 (e) 0.032 0.018-0.018 0.058-0.066 0.041-0.046

Numbers in square brackets refer to the position of symmetry equivalent oxygen ions relative to 
the cluster centre (see Fig. 13).

ionic charges obtained using a population analysis. The spin density in the surface plane 
for the cluster Mg2 9 0 i 3  in its ionised state is shown in Fig. 15. The two-dimensional 
plot (Fig. 15(a)) of the spin density demonstrates that the hole state has primarily a 
p-character in accord with the 2p nature of the valence band. It can also be seen (Fig. 
15(a) and (b)) that the hole is almost homogeneously delocalised over the anions of the 
surface layer. The NPA analysis [167] shows that ions which are equivalent with respect 
to the centre of the QM cluster have equal ionic charges in the ground state of the system. 
These charges, however, become different in the ionised state due to i) much more complex 
profile of the adiabatic surface and ii) the fact that the wave function of the ionised state 
may have symmetry lower than the symmetry of the Hamiltonian.

4.1.5 P osition  o f the b ottom  of the conduction  band: E lectron affinity o f the  
surface

We can now use the calculated value of the surface IP in order to predict other properties 
of the surface electronic structure. The consistency of our results may then be tested by 
direct calculation of the predicted properties. In particular, if the position of the top of 
the surface valence band and the surface exciton energy are known, one can estimate the 
position of the surface conduction band. Experimentally, the electron energy loss spectra 
[93] demonstrate a peak at about 6.2 eV, which is attributed to the surface exciton. Using 
this value and the experimentally determined position of the top of the valence band, 
we can position the exciton state at -6.7 +  6.2 =  -0.5 eV with respect to the vacuum 
level. Assuming, by analogy with MgO bulk and other materials, that the bottom  of the 
conduction band is located several tenth of an eV above the exciton state, the prediction 
for the bottom  of the conduction band would be about zero.

To study the energy and the nature of the electronic states at the bottom  of the 
surface conduction band, we performed calculations of the electron affinity (EA) of the 
embedded Mg5 7 0 2 s cluster using several extended basis sets. An electron was added to the 
cluster and its electronic structure was calculated self-consistently with the displacements 
of shells in region I as described in Chapter 2. The electron affinity was calculated as the
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difference between the total energy of the system with {E{n -t- 1 )) and without {E{n)) an 
additional electron: EA =  E{n) — E{n  +  1). As we increased the basis set on Mg ions 
from 6-31G to 6-311G on cations and that on oxygen ions from 6-31G to 6-311+G, the 
calculated value of EA gradually increased from -0.91 to -0.56 eV. In other words, in our 
calculations, the bottom of the (001) surface conduction band of MgO is at about 0.5 eV in 
the positive energy spectrum. This result agrees well with our other theoretical prediction 
of the bottom  of the CB based on the calculation of the excitation energy of the surface 
exciton (see section 4.2) but is higher than the value estimated from experimental data. 
The obvious contributions to this discrepancy come from the small number of cluster ions 
leading to a conduction band that is too narrow and an overestimate of the kinetic energy 
of the additional electron in the cluster confinement.

The unbound state of the additional electron does not allow us to elucidate the nature 
of the occupied electronic state at the bottom of the MgO conduction band. The spin 
density plots presented in Fig. 16 demonstrate two effects: i) the additional electron along 
the surface plane is localised within the QM cluster (Fig 16(a)), which shows that the 
embedding scheme does not allow the electron to escape the cluster due to the attraction 
of the positive point charges around the cluster; and ii) the additional electron occupies 
the most diffuse atomic orbitals which belong to Mg ions (Fig. 16(b)). Our calculations 
of the nature of excited states at the MgO (001) surface suggested tha t the bottom  of the 
conduction band has a mixed Mg and O character. The predominantly anion character 
of the MgO bulk conduction band was proposed in [43]. Although in the present work we 
can for the first time discuss the occupied states at the bottom  of the conduction band, 
both their nature and the position of the band edge with respect to the vacuum remain 
unclear.

4 .1 .6  O xygen  corner

We have applied the same approach to the study of the ionisation potential and electron 
affinity of an oxygen corner. An additional challenge of this calculation is presented by the 
atomic structure of the corner. The set-up used in these calculations is shown in Fig. 12(b) 
and the QM clusters in Fig. 13(f,g). Qualitatively, the relaxation of steps and corners 
tends to round them by displacing the low-coordinated ions inwards the surface. As we 
discovered, the actual geometry of the corner depends on the size of the region I, which is 
allowed to relax. In Table 21 we present the displacements of the corner oxygen ion from 
an ideal bulk termination (where its coordinates were (0 .0 , 0 .0 , 0 .0 )) as a function of the 
size of region I. We see that the absolute displacement of the corner ions increases with 
the size of region I. This results from small displacements of the many ions involved in 
the relaxation as region I is enlarged. It is clear from Table 21 that this process converges 
slowly and indeed we were unable to achieve full convergence. However, the ionisation 
energy of the corner, also presented in Table 21 converges much faster and reaches about
5.6 eV for our usual basis set. An additional expansion of the basis set on the corner
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F igu re 16: The spin density of the additional electron in the Mg5 7 0 2 5  cluster m odelling the (001) 
MgO surface.
a) top layer of the MgO (001) surface plane (top view);
b) section perpendicular to the MgO (001) surface plane, mushroom-like “hat” of the spin density 
in the free space above the (0 0 1 ) surface plane indicates delocalisation of the additional electron 
just above the top layer of the QM cluster.



Table 21: The relaxation and ionisation potential of the oxygen corner site as a function of the 
size of region I and the basis set.
Model for the oxygen corner is shown in Fig. 12(b). The third column contains the x = y = z 
components of the displacement of the corner oxygen along the (1 1 1 ) crystalline axis inside the 
cluster.

QM cluster Region I Aæ,A IP(0), eV IP(I), eV AIP, eV
MgigOy 4x4x4 0.284 6 . 1 1 5.81 0.30
MgisOy 6 x 6 x 6 0.344 6.15 5.70 0.45
MgisOy 8 x 8 x 8 0.395 6.17 5.65 0.52
MgisOy 1 0 x 1 0 x 1 0 0.431 6.18 5.62 0.56

MgisOy 6 x 6 x 6 0.342 6 . 2 0 5.75 0.45
Mg2sOi3 6 x 6 x 6 0.339 5.98 5.67 0.32

° )̂The basis set for the corner oxygen was extended by two diffuse sp functions.

oxygen ion by two diffuse sp functions increases the ionisation potential by about 0.05 
eV. The increase of the cluster size to Mg2 sO i3  (Fig. 13(g)) also changes the ionisation 
potential by only 0.05 eV. The calculated electron affinity of the oxygen corner is about 
-1.4 eV, i.e. due to reduction of the crystalline potential it is unlikely that an electron can 
be trapped near this site.

The hole state formed just after the electronic relaxation is already well localised at the 
corner as demonstrated in Fig. 17(a). One can clearly see the main p-like spin density peak 
on the corner oxygen with additional, much smaller, peaks on other surrounding oxygen 
ions in the cluster. Minimisation of the total energy with respect to all coordinates leads to 
significant displacements of the corner oxygen and surrounding ions and is accompanied by 
a stronger hole localisation on the corner ion (see Fig. 17(b)). The oxygen ion is displaced 
along the ( 1 1 1 ) crystalline axis further inside the cluster by about 0.03 A whereas the three 
neighbouring Mg ions are displaced inside the cluster, approximately along the corner 
edges, by about 0.13 A.

The calculated ionisation potential for the anion corner allows us to estimate tha t the 
expected separation of the corner states from the top of the surface valence band is about 
1 eV. The same value has been obtained in periodic DFT calculations of a corner system 
at the MgO surface [113].

4.1.7 Surface and corner F, F+ and Vg centres

The results of our calculations for the three charge states of the anion vacancy at the surface 
and at the anion corner are summarised in Tables 22 and 23. In Table 22, the defects are 
characterised by the F centre formation energy corrected for the basis set superposition 
error [20], the relaxation of the nearest neighbour cations, and the NPA occupations (spin 
density) of the 3s orbitals of the nearest neighbour Mg ions. To characterise the degree of 
electron localisation in the surface vacancy, we also use the value of the electron density 
integrated within a sphere of radius 1 . 6 8  A centred on the vacancy (see Fig. 18). The
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a) Corner oxygen

S u rface  oxygens

b)
(001

(0 1 0 )

(100)
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F igu re 17: The spin density of the hole state at the oxygen corner of the MgO.
Plots picture MgO (001) surface plane close to the term inating oxygen corner: a) schem atic diagram  
of the oxygen corner site (white circles are oxygens, black circles are magnesiums); b) the spin 
density after vertical ionisation; c) the spin density after full ion relaxation. Strong peak in plots 
b) and c) is associated with the corner oxygen.
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Table 22: Characteristics of the three charge states of the anion vacancy at the (001) surface and
the anion corner of MgO.
Az are the displacements of the nearest neighbour Mg ions along the surface axes. Mg 3s occ. are 
the NPA occupations of the Mg 3s orbitals and spin density in the case of the F+ centre.

Surface Corner
Defect Az,À Mg 3s occ. E^ormj gV A x,k Mg 3s occ. E/or-m, eV

F 0.07 0.595 9.07 0.08 0.752 7.24
F+ 0.16 0.455 0.117 0.17 0.525 0.207
Va 0.25 0.347 0.28 0.336

'■̂ Spin density.

radius of the sphere was chosen so that the total electron charge of a regular surface oxygen 
ion integrated within this sphere was ten electrons. Note that the density, integrated within 
the vacancy, and the NPA populations of cations (Table 22) complement each other only 
qualitatively.

The relaxation of the cations surrounding the vacancy essentially reflects the electron 
localisation which, for the case of vacancies at the surface, is shown in Fig. 18. For the 
neutral F centre, about 1.5e are localised within the vacancy and the displacements of 
the surrounding cations are relatively small; the displacements become much bigger for 
the F"  ̂ centre and the bare anion vacancy. The value of the displacements obtained in 
our calculations are close to those reported in recent publications [65], [182], [6 8 ]. The 
formation energy of the surface F centre which was calculated as the energy required to 
remove a surface oxygen atom to infinity, was close to the value of 9.35 eV obtained in 
[182] using a different embedding procedure, and to that of 9.02 eV obtained in a recent 
periodic DFT calculation [188].

The calculated values of the ionisation energies and electron affinities are presented 
in Table 23. Their physical meaning is illustrated in Fig. 19. A “vertical” ionisation of 
a defect, which requires energy Eion(v), is followed by a lattice relaxation, which gives 
the energy gain E^g((i). The electron affinity was calculated for completely relaxed defect 
states: a “vertical” affinity, E a//(v), was calculated for the fixed positions of the nuclei 
of the quantum ions and classical cores; the electron affinity corresponding to complete 
lattice relaxation is denoted Ea/y(r). As one can see in Table 23, the values of ionisation 
energies and electron affinities depend significantly on the lattice polarisation. The typical 
difference between the two values is about 0.6 eV.

An anion vacancy at the corner is significantly different from one at the surface. Based 
on the much reduced Madelung potential at the corner site, one might assume tha t the 
electron in the oxygen vacancy would be much less tightly bound and, therefore, the 
ionisation potentials of the corner F and F+ centres would be smaller than those for their 
surface counterparts. However, with three Mg ions exposed, the corner can be considered 
as three Mg corners or kinks. Due to their low co-ordination, the corner Mg ions have a 
higher electron affinity and attract more electron density than ions in the bulk or at the

91



surface O ions

0.0 -

0=1.54 bulk O ions
( o

surface Mg ions ^
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F igu re  18: The electron density of oxygen vacancies at the MgO (001) surface.
P lots show section through surface F centres perpendicular to the MgO (001) surface plane: a) 
neutral F centre; b) F+ centre; c) anion vacancy (V^)- The circle shows the integration volume of 
the charge Q.
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Table 23: The ionisation potentials and electron affinities of anion vacancies at the MgO (001)
surface and at the anion corner of MgO.

Notation^) Process Surface, eV Corner, eV
Eion(v) F F -  e- 3.4 (4.1)'’) 3.4 (3.7)
Erelii) F - e- F+ 0.9 0 . 6

Eion (v) F+ F+ - e~ 5.6 (6.3) 6 . 6  (6.9)
Erelii) F+ - e~ Va 1 . 1 0 . 8

Ea//(v) Va Va + e- 3.4 (2.8) 5.0 (4.8)
Ea//(r) Va F+ 4.5 5.8
Ea//(v) F+ F+-f e" 1.7 (1.1) 2.3 (2.0)
Ea//(r) F+ F 2 . 6 2 . 8

*)See Fig. 19 for notations.
^^The energies in brackets omit the effect of the lattice polarisation.

\ Ionised state potential surface

re laxa tion  
Erel(i)

vertica l
io n isa tio n
Eion(v)

v er tica l
a ffin ity
Eaff(v)

re laxed
a ffin ity
Eaff(r)

Ground state potential surface

Figure 19: Schematic explanation of notations used to calculate the ionisation energies and elec­
tron affinities of different charge states of the anion vacancy at the surface and anion corner of 
MgO (see Table 23).

surface (see Table 22), which explains the seemingly counter-intuitive behaviour of the 
ionisation energy, which is almost the same for the surface and corner F centres and is 
larger for the corner F”'" centre.

4.1.8 Surface peroxy species

The adsorption of gas-phase oxygen at oxide surfaces plays an im portant part in many 
types of heterogeneous catalysis. Spin-resonance experiments have given firm evidence for 
adsorbed oxygen species such as 0 “ and O2  on some oxide surfaces [133], [198] but there 
is only rather weak evidence for other potentially im portant species such as the peroxide 
ion O 2 " . The geometry and electronic structure calculations of the peroxide species on 
the surfaces and in the bulk of the oxides have been studied previously (see, for instance.
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[112], [62], [161]). The questions we address here are i) what is the position of the peroxy 
energy level with respect to the surface valence band? and ii) where does the electron hole 
localise after the defect ionisation?

An oxygen atom adsorbed on the (001) MgO surface strongly interacts with the surface 
anion which leads to the formation of an 0 ^“ molecule aligned approximately along the 
(111) direction (see Fig. 20(a)) with the surface anion being slightly shifted from its ideal 
position. The local atomic structure of the surface peroxide (see Fig. 20(a)) found in 
our calculations can be characterised by: i) the distance between the ions of formed 
molecules, which is 1.5708 Â; ii) the distance between the ad-atom and each of the two 
nearest cations was calculated to be 2.1013 Â; iii) the distance between the ad-atom and 
the next surface anion, which is 2.7285 Â and the O 1 -O 2 -O 3  angle (see Fig. 20(a)) of 
51.01°. These geometrical parameters are in agreement with those reported in periodic 
D FT calculations [112].

The one-electron spectrum of the system has three states due to the bonding orbitals 
of the peroxy ion below the bottom of the valence band and two states due to anti­
bonding orbitals just above the top of the valence band. The highest occupied orbital is 
approximately 0.6 eV above the top of the valence band (as calculated using one-electron 
energies) and is associated with the peroxy ion and a neighbouring surface anion O 3  (see 
Fig. 20(a)) in the (110) direction. There is a clear indication of charge transfer from the 
surface anion O 2  to the ad-atom: results of the NPA analysis suggest that about 0.75e is 
associated with the ad-atom. A similar value of the charge has been obtained by fitting 
the electrostatic potential of the QM cluster at the ions of the environment. This charge 
distribution agrees well with previous calculations [1 1 2 ].

The calculated values of the ionisation potentials with (IP(I)) and without (IP(0)) 
contribution of the electronic polarisation of the environment are 6.3 eV and 7.0 eV re­
spectively. As in the case of oxygen vacancies, a large difference between the IP(0) and 
IP (I) suggests that polarisation of the host lattice can not be neglected if processes in­
volving change in the defect charge state are considered. Comparison of the IP (I) with 
the ionisation potential of the ideal surface (see 4.1) shows tha t the defect energy level 
is only 0 .2-0.4 eV above the top of the valence band. Such a small separation between 
the defect level and the surface valence band implies tha t the valence band states may be 
mixed with the defect states and, therefore, modelling of this defect on its own, without 
valence band states included, may be unreliable.

Plots of the spin density of the system after “vertical” ionisation (see Fig. 20(b,c)) 
dem onstrate that most of the hole is associated with the surface anion O3  (see Fig. 20(a)) 
rather than with the peroxide ion. Indeed, the peroxide molecule is tilted towards the 
anion bringing an additional negative contribution to the Madelung potential at tha t site 
and destabilising its electronic states. The plots also demonstrate tha t the hole is partly 
delocalised over other surface anions.
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[110]

Surface
anions

F igu re 20: Peroxy ion at the MgO (001) surface, 
a) local geometry; b) spin density after vertical ionisation (section perpendicular to the MgO (001) 
surface plane); c) spin density after vertical ionisation (MgO(OOl) surface plane, top view). The 
strong peak in plots b) and c) is associated with surface anion marked O 3  in plot a).
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Figure 21: Positions of the defect and excited states with respect to the vacuum level and to the 
top of the surface valence band.

4.1.9 D iscussion

The result of this section are suiiiinarised in Fig. 21. The calculated position of the surface 
valence band with respect to the vacuum level at about 6.7 eV is in good agreement with 
the MIES [114] predicting 6.7 ±  0.4 eV. Analysing the results of the UPS measurements 
on MgO crystals Tjeng et al. [209] obtained the value 9.1 eV for the position of the top of 
the valence band with res])ect to the vacuum level (see 4.1.1). Although the issue is still 
controversial, we consider that the value 9.1 eV suggested in [209] for the position of the 
top of the valence band is too large.

The results presented in Fig. 21 suggest that the energy of the neutral F centre at 
the top surface layer should be about 3 eV above the top of the valence band, which is 
in fair agreement with the results of periodic DFT calculations [113] which predict 2.3 
eV for this value. Our results also predict ionisation of the surface and corner F centres 
if the irradiation energy exceeds 4.0 eV. These centres represent two extreme cases with 
many other possibilities in between, such as F centres at surface steps and kinks, which 
can be expected to have similar properties, which can also be useful to bear in mind when 
analysing the results of laser induced processes at MgO surfaces. In particular, surface 
irradiation with 266 nm or 248 nm laser light can ionise these states leading to photo- 
emission and the formation of charged F+ centres. The predicted electron affinities are 
useful, for example, when analysing the results for thin MgO films on metal substrates, 
especially with an applied voltage. With the Fermi level of many metals at about 4-5 eV, 
some of these states can be filled in by metal electrons.

Finally, we stress the importance of having the right balance between the ionisation
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potential of adsorbed species and the surface or defect electron affinity. Many calculations 
of adsorption are based on a cluster model of a surface. In this case, the adsorbing 
species is always better described than the surface since the basis set, pseudopotentials 
and functionals are optimised to reproduce the ionisation potentials of atoms and molecules 
w ith respect to the vacuum (see, e.g. [15], [16]). However, if the crystalline potential and 
polarisation effects within the surface are not taken into account properly, this can lead to 
inaccurate surface ionisation potential and, hence, to unrealistic charge transfer between 
the two. The results of this section demonstrate one of the possible ways of achieving an 
accurate balance. They also provide quantitative parameters for the electronic structure 
of the perfect and defective MgO (001) surface, which can be useful in further studies of 
adsorption and photo-induced processes.

4.2 Electronic structure of excited  states at low -coordinated MgO sur­
face sites

In recent years, there have been many studies aimed at determining more precisely the 
nature and properties of oxide surfaces. There is growing evidence that chemical and 
spectroscopic properties of surface sites depend on their coordination. In particular, spec­
troscopic studies ([35], [80], [221]) demonstrated that highly dispersed alkaline earth oxides 
have optical absorption bands (5.7 - 2.6 eV) which are not present in the pure single crys­
tals. Different bands in the spectrum of each oxide have been associated with ions having 
different coordination at the surface. In this section we present the results of our studies 
of the electronic structure of optically excited states at low-coordinated sites of the MgO 
nano-cluster: oxygen corner, cluster edge and terrace, which confirm this assignment.

4.2.1 E xperim ental background

Coluccia et al. [34], [36], [33], [35] have studied optical properties of two MgO materials 
in which the relative proportion of ions having low coordination should be different. In 
particular, thermal decomposition of an hydroxide (or carbonate) yields MgO crystallites 
of a plate-like relic structure, which contains a number of high index planes and MgO 
smoke, formed by burning of Mg in the air, which contains nearly perfect small cubes. 
They have measured the reflectance and photoluminescence spectra and demonstrated a 
clear correlation between these spectra and abundance of particular surface features. The 
main feature of the photo-luminescent spectra relevant to the current discussion is the 
ratio between the intensities measured at the maxima of the emission spectra excited at 
4.52 eV and 5.40 eV: 1 4 .5 2 / 1 5 .4 0 - In the MgO prepared by thermal decomposition, values of 
I 4 . 5 2 / I 5 . 4 0  close to 1.6 were observed. In contrast, for MgO smoke in its original condition, 
the ratio was typically 0.3. After MgO smoke has been in contact with water and then 
out-gassed, the ratio I 4 . 5 2 / I 5 . 4 0  changed to 1.3, i.e. much nearer to the value found for 
MgO-ex carbonate. The reflectance spectrum of the MgO smoke after water treatm ent
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shows a broad shoulder at 275 nm (4.50 eV) which was absent in the spectrum of the 
original smoke but was present in the original spectrum of MgO-ex carbonate. Micro­
graphs taken at different prolongations of water attack on MgO smoke reveal tha t the 
eroded regions of the particles show a terraced structure with steps down to the size of 
2-3 unit cells. Based on these observations, Coluccia et al. concluded tha t the changes in 
optical behaviour of MgO smoke are due to the appearance of a larger number of ions of 
three- and four-fold coordination on the surface and assigned absorption bands at 5.75 eV 
to the step edges and at 4.62 eV to the kink and corner sites. Similar features have been 
observed in the excitation and emission spectra of other cubic oxides: CaO, SrO and BaO. 
Similar experiments have been performed by Zecchina et al. [80], [221]. These authors 
have studied the ultraviolet reflectance spectra of the micro-crystalline MgO and observed 
additional bands at 5.7 eV and 4.6 eV which have been attributed to the low-coordinated 
sites: step edges, kinks and corners.

4.2 .2  D eta ils o f calculations

We applied the embedded cluster method described above to study the optical properties 
of low-coordinated surface sites [192], [204]. This modelling is an example of a problem 
where the finite nano-cluster approach finds a straightforward application.

The characteristic size of the small MgO smoke cubes used in [36] was about 10-100 
nm. At the time we could not afford direct modelling of such large systems. Instead, we 
used a stoichiometric cubic nano-cluster of 6 x 6 x 6  ions (216 ions in total) with an edge 
length of about 1 nm. The geometry of the nano-cluster was calculated using the atomistic 
simulation technique and the GULP [79] code and then kept fixed in all calculations of 
this series. We employ a simple embedded cluster approach in which the QM cluster is 
embedded into a distribution of point charges representing ions of the finite nano-cluster. 
As usual, the interaction of the point charges with the QM cluster was included using the 
standard procedure [71] in which the matrix of potential energy, including both diagonal 
and non-diagonal elements, is added to the Fock matrix. Different QM clusters (Fig. 
22) have been used to simulate MgO terrace, step edge and corner sites as well as to 
check the dependence of the results on the size and form of the QM cluster. In order 
to prevent artificial delocalisation of the diflFuse electronic states, the nearest and next- 
nearest cations surrounding the QM cluster carried the Effective Core Pseudo-potential of 
W adt and Hay [216]. Two Gaussian type basis sets, defined as A and B, have been used. 
Basis A is a standard 6-311+G basis set from the Gaussian98 library. It includes 14s and 
lOp primitive functions contracted into 7s and 6 p basis functions for Mg ions and with 
similar (12s,7p)=>(5s,4p) contraction for O ions. Basis B was developed by Bagus et al. 
in [95] and [22] and used in calculations of the excited states of bulk MgO [9]. This, more 
contracted, basis consists of (10s,6p)+>(6s,4p) and (9s,5p)=>(4s,3p) functions for Mg and 
O ions respectively. The latter oxygen basis set was optimised for the 0 “ ion which might 
be beneficial for the calculation of the excited states.
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Figure 22: Schematic illustration of quantum mechanical clusters used in calculations of excitation 
energies of low-coordinated sites.
The clusters are embedded into a 6 x 6 x 6  (256 ions) nano-cluster; open circles are oxygen ions, 
filled circles are magnesium ions.

The energies of the ground states have been calculated using the Hartree-Fock method. 
The excitation energies have been calculated using two techniques: i) the configuration 
interaction method with single electron excitations (CIS) and ii) as a difference between 
the to tal energies of the singlet and the triplet states of the system calculated using the 
configuration interaction method with single and double electronic excitations (CISD) 
from the reference HF wave function.

4.2 .3  R esu lts  and D iscussion

The shape of the relaxed nano-cluster is slightly rounded with respect to the ideal one. 
The interatomic distances are smallest at the corner sites and largest in the middle of the 
nano-cluster. For comparison, the anion-cation distance is 1.91 Â at the anion corner and
2.05 Â in the middle of the cluster. For the same shell model, the anion-cation separation 
in the bulk of the ideal crystal is 2.105 Â.

The calculated excitation energies are summarised in Table 24. The CIS technique 
provides the whole spectrum of excitation energies, both for singlet to singlet (S—>-S) and 
singlet to triplet (S—>-T) transitions. The S-^S transitions in Table 24 have the largest 
oscillator strength. Corresponding S—)-T transitions and splitting between the S—>S and 
S—>T transitions are also given. The CISD technique provides only S—>T transitions from 
the ground singlet state to the lowest triplet state. The spin density distributions in these 
states are similar to those obtained for the CIS S-^T transitions quoted in Table 24, which 
justifies further comparison of these transition energies.

We can immediately see a trend: irrespective of the basis set, the excitation energies 
into the singlet and triplet states gradually decrease as the coordination of the oxygen 
ion decreases. At high coordinations, the excitation energies calculated using the basis
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Table 24: The excitation energies (eV) for different sites in the cubic (MgO)io8 nano-cluster 
calculated using CIS and CISD techniques.

N«)
QM cluster 

position
Number of 

atoms (Fig. 22)
Basis^)

set S S
CIS 

S ^  T A st

CISD 
S S S ^  T

6 bulk 8 A 8.9 8.9 0 . 0 7.5 7.5
5 terrace 8 A 7.1 7.8 0.7 6.4 7.1
4 edge 8 A 6 . 1 6 . 8 0.7 5.0 5.7

1 2 A 6 . 1 6.9 0 . 8

6 A 5.6 6 . 1 0.5
4 A 5.6 6.5 0.9

3 corner 8 A 5.3 5.8 0.5 4.0 4.5
6 bulk 8 B 11.3 12.3 1 . 0 10.7 11.7
5 terrace 8 B 7.9 8.7 0 . 8 7.1 7.9
4 edge 8 B 7.3 7.9 0 . 6

3 corner 8 B 5.5 6 . 1 0 . 6 4.3 4.9

- is the lowest oxygen atom coordination number. 
)̂See text for description of basis sets.

set B are much larger than those obtained using the basis A. The difference between the 
two basis sets becomes much smaller for the edge and corner, where the anion electronic 
configuration is closer to the 0 “ ion configuration used to optimise the basis set B. We 
can see that the singlet-triplet splitting for the excited states also depends on the basis set, 
coordination and the size of the cluster. Finally, the excitation energies of S-^T transitions 
calculated using the CISD method are much lower then their CIS counterparts revealing 
the importance of electron correlation.

In four cases, the QM cluster was a cubic Mg4 0 4  cluster embedded at different posi­
tions inside the nano-cluster. The disadvantage of this cluster is tha t its ions are treated 
differently when the position of the cluster changes from the lowest to the highest coor­
dination sites. For example, at the corner site the oxygen corner anion is coordinated 
by quantum-mechanically treated all-electron cations; while at the surface site, each of 
the two surface anions is surrounded by three all-electron cations and two bare pseudo­
potentials without basis functions. To check whether this factor can significantly affect 
the results we have considered two larger clusters, one at a terrace and the other at a 
step edge, in which each anion was coordinated with five and four full electron cations 
respectively. Excitation energies calculated for these clusters differ from those calculated 
for cubic QM clusters by only 0.1 eV. At the edge we have also considered two linear 
clusters comprising four and six ions. These produced excitation energies as much as 0.5 
eV different from those for cubic cluster.

To understand the character of the electron distribution after the vertical excitations, 
we analysed the total density and spin density maps calculated using different methods. It 
is im portant to note that the density maps obtained with UHF, CIS and CISD techniques
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are very similar. The sections of the spin density for the corner and edge are shown in 
Fig. 23. We see that in both cases, the unpaired electrons are mostly localised in the 
vicinity of the low-coordinated anion and in the free space outside the QM cluster. To 
provide a quantitative insight into the nature of the spin density distribution, these pictures 
should be supported by an additional analysis, which has been undertaken by means of 
integrating the spin density within spheres centred at different sites inside QM clusters. 
The accumulated charge as a function of radius for spheres centred on the corner and 
edge oxygens is shown in Fig. 24. Combined with similar curves for integration spheres 
centred at other QM atoms, it proves that for the corner, the hole is strongly localised on 
the corner oxygen and the excited electron is spread out of the corner around the hole. 
For the edge, again, the hole is mostly localised at the oxygen ion which has the lowest 
coordination whereas the excited electron is spread around the hole outside the cluster. To 
check how the localisation of the hole at the edge depends on the number of anions at the 
edge we calculated the spin density for the linear cluster Mg2 0 2  representing a "longer” 
edge. In this cluster both oxygen ions are equally coordinated and almost equivalent. 
Accordingly, there are two almost degenerate transitions and the spin density for each 
of them is close to that shown in Fig. 23(b). The fact tha t the two excited states are 
almost degenerate indicates that for a longer edge the hole and electron components of 
the exciton are expected to be delocalised over several oxygen ions. This is indeed the 
case for the terrace: the two oxygen ions in the quantum cluster are equivalent and the 
excited state is delocalised and equally associated with both of them. As for the cases of 
lower coordination, the excited electron extends perpendicular to the surface plane into 
free space. We should note that in all cases our analysis demonstrates no significant spin 
density near magnesium ions.

Finally, we should discuss the issue of the relative values of the total energies of the 
excited states at different low coordinated surface sites. These could be used as an indicator 
of whether the exciton, created for instance in the bulk or at the surface, would transfer 
to the less coordinated edge or corner. Calculation of these relative energies for different 
clusters requires a certain reference energy level to be determined. We take the vacuum 
level as the reference, and energy levels of quantum clusters at different surface sites with 
respect to the vacuum level are defined as their ionisation potentials. There is not much 
difference between the ionisation energies calculated for different clusters at the same 
location. For example, the ionisation potential of the eight atom cubic cluster at the edge 
site was found to be 8.06 eV whereas the IP  for the 12 ion edge cluster was 8.07 eV. 
However, we note that these ionisation energies are overestimated by 2.0-2.5 eV because 
the electron polarisation of the nano-cluster was not accounted for in the ionised state. 
The positions of the exciton levels with respect to the top of the valence band (see 4.1.4) 
are shown in Fig. 21.

Assuming that the vacuum level is common for all the systems considered, we place 
the ground state of each system at -IP, as shown in Fig. 25. Then the position of the

101



a) 4

3
0.5

2

0

1

•2

■3

■4

-4 ■3 ■2 ■1 0 2 3 4

( 1 10 )

I  I I  I I  I  I  I  I I  I  I  I  I  I  I I  I  I  I  I I  I  I I  I  I  1 1  I  I I I  i l “  I I

- 4 - 3 - 2 - 1 0  1 2 3 4

( 100)

F igu re 23: The spin density of excited triplet state of 3- and 4-coordinated anion sites at MgO 
(001) surface.
a) section of the spin density at the corner site (see Fig. 22); b) section of the spin density at the 
edge site (see Fig. 22).
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Figure 24: The spin density of the excited triplet state integrated inside a sphere, 
a) for the corner oxygen ion; b) for the edge oxygen ion. Note that one unpaired electron is located 
inside the sphere with radius «1.5 A, which approximately corresponds to the oxygen radius, 
whereas the second electron is spread over a much larger region.

energy level of a system in its excited state was defined with respect to the ground state 
energy level for each system. As one can see, the excited state in the bulk has much higher 
energy than that at the surface and the latter is higher than at the edge. The energy levels 
of the excited states at the edge and at the corner appear to be very close. These energy 
levels (shown with solid lines in Fig. 25) are too low because the polarisation response of 
the nano-cluster was not taken into account for both the ionised and excited states. Using 
the results of the previous section we can correct these energies for the polarisation of the 
environment for the terrace and the corner states. Ionisation potentials for the terrace 
and for the oxygen corner calculated including polarisation effects are 6.7 eV and 5.6 eV 
respectively. Corresponding excited state levels are shown with dashed lines in Fig. 25.

The strong dependence of the excitation energies on ion coordination is due to the 
combination of several interrelated factors. These include the reduction of the Madelung 
potential at low-coordinated sites and the consequent substantial atomic relaxation of the 
low-coordinated sites with respect to their ideal geometry and reduced ionicity. Moreover, 
as is partly demonstrated by our calculations, the excitation energy, degree of localisation 
and the nature of the excited state depend on the site location and details of its local 
environment.

We can now summarise the results of our calculations. First, irrespective of the basis 
set used, a consistent dependence of the excitation energies on the oxygen coordination, n
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Figure 25; The relative energies of the ground and excited states at different positions in the 
nano-cluster. The energies are calculated using the CISD method.

=  3, . . . 6 , was demonstrated. The excitation energies differ by ca. 1 eV for the sites with 
An =  1 , which is close to the experimental results [80]. If we assume that the singlet-triplet 
splitting is little affected by electron correlation, we can roughly estimate the energies of the 
correlated singlet-singlet transitions For this purpose we use the S-T splitting calculated 
using the CIS method and S—>T excitation energies calculated using the CISD method. 
Estimated energies of S—>-S transitions are then E {S  S) = E c is d {S -> T) -h A s t - The 
excitation energies obtained in this way are in agreement with the experimental data for 
the bulk [171] and for the surface [38], and also support the assignment of the peaks at 
about 5.7 and 4.6 eV to the four- and three-coordinated oxygen surface sites respectively 
[80]. Second, the analysis of the total and spin density distributions in the excited states 
demonstrates the strong contribution of the oxygen states to the excited state and the 
almost negligible contribution of magnesium states, which does not agree with the tradi­
tional point of view that the bottom of the conduction band in ionic insulators is mainly 
determined by cation states. This result, however, is supported by earlier calculations by 
Pandey et al. [152] who found a complete exciton localisation on the oxygen ion in the 
bulk of MgO (see also discussion at the end of 4.1.5). Third, the excited state appears 
to be more localised at the terminating three-coordinated oxygen sites than within the 
edge or at the terrace. The relative energies of the excited states corresponding to oxygen 
sites of diflPerent coordination suggest the possibility of the excitation to transfer from, for 
example, the surface to the terminating site with the lower energy. The reduction of the 
ion coordination in ionic materials leads to significant changes in the crystalline potential 
which has been related to the chemical and spectroscopic properties of the low-coordinated 
surface sites.
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5 P ro cesses  at th e  surfaces o f  ion ic crysta ls

So far, we have considered defects at surfaces and in the bulk of MgO and NaCl crystals 
and have attem pted to characterise these defects by studying their physical properties. 
The present Chapter is concerned with modelling of mechanisms of processes involving 
several of such defects.

Two types of processes have been studied. The first is directly related to the exten­
sively explored field of laser induced desorption of ions and molecules from surfaces. We 
will describe recent experiments, which have stimulated the present work, together with 
existing theoretical models as well as the results of our modelling. The second type of 
a process is related to scanning force microscopy (SFM) experiments. Interpretation of 
SFM images often relies on intuitive ideas about the structure of the probe tip and the 
surface. In fact, depending on the details of the experimental procedure, modification 
of both tip and the surface can occur, which affects the interaction and resulting image. 
We investigate the possibility of the tip contamination by the surface material with an 
example of the interaction of a silicon tip with the NaCl (001) surface. The question of 
charging of both tip and the surface as a result of the interaction is also considered.

5.1 Laser induced desorption of Mg+ ions from the (001) MgO surface

Laser induced ion desorption from insulators with excitation photon energies less than the 
band gap and fluences below the damage threshold is frequently observed [178], [49], [61]. 
Studies of laser induced ion emission from ionic materials demonstrate that the photon 
fluence dependence of the ion yield is a nonlinear function, which is often described by 
a power law, and tha t multiple photon processes as well as defects are involved in the 
excitation step [61], [48]. The mechanism of ion emission and the energy distribution of 
emitted ions are still subjects of debate and further investigation even for ionic crystals 
such as alkali halides or alkali earth oxides. In section 5.1.1 we outline the idea of the 
laser-induced ion desorption experiments and the experimental set up. Then we describe 
specific results of an experiment relevant to the present work (section 5.1.2) and a simple 
electrostatic model which was suggested to rationalise those results (section 5.1.3). Other 
theoretical models will be also outlined in that section. Details and results of our embedded 
cluster calculations, aiming to check whether assumptions made in the electrostatic model 
are correct, are described in sections 5.1.4 and 5.1.5 respectively, followed by the discussion 
and conclusions in 5.1.6.

5.1.1 T he process o f induced desorption and general experim ent

The process of laser induced ion desorption is schematically shown on Fig. 26. A specially 
prepared sample of MgO or LiF is irradiated by the laser beam at the energies lower than 
the band gap: usually standard 5 eV (248 nm) laser is used. Masses and velocities of des­
orbed ions are monitored using a mass spectrometer. A standard qualitative explanation
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Figure 26: Process of laser-induced desorption of Mg ion from a surface containing a neutral Fg 
centre (schematic representation).
Ionisation of the centre Fg “turns on“ repulsive electrostatic interaction and causes desorption of 
the cation.

of the ion emission is the following. If the sample contains large number of defects at the 
surface or in its vicinity, the 5 eV photons can ionise these defect centres. The emission 
of electrons leads to an increase of the Coulomb repulsion energy in the sample which, in 
turn, leads to desorption of positive surface ions. Measurements of the kinetic energies 
of the desorbed ions and their mass distribution or time of flight (TOF) can provide in­
formation about the structure and morphology of the surface and the mechanisms of the 
desorption process. Simultaneous analysis of the kinetic energies of the emitted electrons 
also gives additional information concerning the nature of the surface defects, in particular 
their ionisation energies.

The details of the experimental setup can vary. For this reason we mention only its 
most general features. Experiments are conducted in a UHV chamber. The electron 
emission is detected by an electron multiplier. Em itted electrons reach the multiplier in 
about 20 ns after the laser pulse and start to develop a characteristic peak. The area 
under the resulting electron peak is taken as the photoelectron yield from the surface. Ion 
TOF measurements are done using a quadrupole mass spectrometer (QMS). The region 
between the sample and entrance to the QMS (of the order of 15-20 cm) is kept field 
free so as to eliminate perturbation to the direct flight of ions to the QMS detector. The 
angular distributions of the desorbed ions can be determined by fitting the patterns on 
the phosphor screen with the ion trajectories. To prevent charging of the sample, its 
substrate is irradiated by electrons; to avoid the effects of modification of the sample 
surface, observations should be made within short period of time; then the laser beam 
should be moved to another spot of the sample’s surface.

5.1.2 E xperim ental and theoretical background

A recent series of experiments performed by Dickinson et al. [49] aimed to study photo­
desorption of positive ions from the surfaces of ionic crystals. Due to its relative simplicity, 
the MgO (001) surface has been extensively studied in those experiments. It was noted
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that different ions are desorbed depending on the surface pre-treatment. In particular, 
in addition to Mg'*" desorption, weaker contributions of Mg^+ and MgO^ and Mg2 0 "'" 
have been observed from the polished MgO (0 0 1 ), whereas only Mg“̂  were desorbed from 
the cleaved surface. The TOF distributions for both Mg+ and Mg^+ ions, desorbed from 
the polished surface, have a characteristic double peak shape suggesting tha t the emitted 
ions have two most probable energies for each ion type. To facilitate numerical analysis, 
the TOF curves were fitted assuming that the energy distribution could be empirically 
expressed as a sum of two Gaussian type functions. The TOF distribution has, therefore, 
the form:

where A î, N 2 , E i, E 2 , cri and (J2  are model parameters and E{t) is the ion kinetic energy 
{= m v^/2 = m ( f  /2t^) corresponding to the time of arrival t and flight path distance 
d. This empirical form provides very good representation of the experimental data. The 
most probable energies E \ and E 2 were 2 and 7.9 eV for Mg+ and 6.7 and 18 eV for Mg^+ 
with the error bars on these numbers being ± 1  eV. W ithin this uncertainty, the energy 
distributions displayed no shift with laser fluence over a range of 0.1 to 2 J/cm^.

5.1.3 E lectrostatic m odel

On the basis of the relatively high kinetic energies and the substantial shift to higher 
energies for Mĝ "*" vs Mg"^, an electrostatic ejection mechanism triggered by the incident 
5 eV photons was suggested [49]. The proposed model was based on the assumption that 
the emission of Mg ions occurs from the positions above surface F g and F 5 + centres after 
ionisation of the latter. The two positively charged defects, Fg"'" and Fg^^ , serving as 
repulsive centres combined with the two ionic charges (Mg+ and Mg^^") could produce the 
four observed kinetic energy peaks. Simple electrostatic energy calculations of the binding 
energies for all four ad-ion/Fg centre combinations assuming bulk interionic distances 
have been performed in [134]. These calculations accounted for the additional negative 
image charge resulting from the polarisation of the MgO due to the charged defects. 
The calculated final kinetic energies were as follows: M g+/Fg“̂ = 4.4 eV, Mg+/Fg^"^ = 
11.2 eV, Mg^+/Fg+ =  6.0 eV and Mg^+/Fg^+ =  19.6 eV. It was also suggested that 
the ionisation of the initial Mg^+/Fg system might not occur directly but via one or 
several intermediate steps. The photo-induced charge exchange transition of the form 
Eg + M g^^{ad — ion) -f- hn = >  F+  -f Mg~^ may serve as an example of one of these steps. 
Ionisation from this excited state would generate the Fg^’*' repulsive centre acting on an 
Mg+ ion.

107



5.1 .4  T heoretical m odelling

A im  o f the m odelling. The model proposed by Dickinson et al. includes a number of 
arguments which we summarise as follows; i) a surface defect centre formed by an Mg^+ 
ad-ion positioned above a neutral surface F g with both electrons localised in the oxygen 
vacancy is stable; the distance between the vacancy and the Mg^+ ion sited above is close 
to the interionic distances in bulk MgO; ii) 5 eV photons can either ionise this centre 
from its ground state or excite and then ionise the centre from its excited state; iii) the 
resulting kinetic energy of the Mg+ ion electrostatically repelled by the surface Fg^+centre 
is as large as 11 eV. In this work we aim to check these assumptions. For this purpose we 
employ the embedding cluster approach and consider a three stage process: i) adsorption 
of a neutral Mg atom at the anion vacancy at the MgO (001) surface with the formation 
of a specific model centre, ii) ionisation of the centre, and iii) subsequent desorption of the 
Mg"^ ion from the surface. The issues we address are: i) what is the electronic structure 
of the surface centre formed? ii) what is the value of the ionisation energy of this centre 
and are one- or two-photon absorption processes required to remove the electron from the 
system? iii) is the energy acquired by the desorbed ion comparable with the experimental 
value? The results in this section should be considered as preliminary. The necessary 
future studies are outlined at the end of the section.

The generally low yield of the desorbed ions (about 100 ions per 10^  ̂ photons even for 
high concentrations of surface or near surface defects) suggests that multi-step and/or low 
probability processes, like ionisation from excited states, are involved in the desorption 
mechanisms. This issue has been left out of the scope of the present work.

D eta ils  o f the calculation. We employ a finite nano-cluster model (see Chapter 2) for 
the (001) MgO surface. The total size of the nano-cluster and the size of the shell model 
region have been 8x8x4  and 6x6x3  ionic centres respectively. The QM cluster was 
embedded at the centre of the surface. We used close to the smallest possible QM cluster, 
which included an anion vacancy surrounded by five cations treated using a full electron 
basis set and twenty cations with a bare Effective Core Potential (ECP). To increase the 
quality of the calculation, floating basis functions have been added to the anion vacancy. 
No charge compensating cation vacancy has been included in the present model. In total, 
the basis set included 7sp uncontracted basis functions for the anion vacancy, a standard 
6-3110 basis set for the Mg ad-atom, a 6-310 basis set for the surface cations nearest to 
the vacancy and an ECP developed by Wadt and Hay [216] for the other cations in the 
QM cluster.

5.1.5 R esults o f calculations

As mentioned above, there are three stages into which the process of adsorption and 
desorption can be separated. Each stage corresponds to one of the assumptions which we
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aim to check. We consider all these steps separately.

I) A dsorption o f the M g atom  on the surface anion vacancy. We have calculated 
the adiabatic potential of the Mg atom as it approaches the vacancy along the direction 
perpendicular to the surface. All ions of the inner region have been relaxed at every 
position of the ad-atom. The adiabatic potential has a minimum at 2.7 Â from the 
ideal surface plane which is ca. 0 . 6  Â larger than the anion-cation separation in the bulk 
MgO. The binding energy corresponding to this distance is 2.74 eV. It is an im portant and, 
perhaps, crucial fact that the structure of the centre formed is far from an intuitive picture 
of an Mg^+ ion being on the top of the neutral F g centre. In fact, according to Natural 
Population Analysis, only O.le can be associated with the anion vacancy. At the same 
time the charge of the Mg ad-atom is close to 4-0.15. This suggests tha t the two valence 
electrons of the Mg ad-atom are only polarised towards the anion vacancy, but there is 
no clearly manifested charge transfer from the ad-atom. These results are confirmed by 
periodic DPT calculations [114] in which the adsorption of the neutral Mg atom on the
(001) MgO surface in the vicinity of the anion vacancy was studied. It was found that:
i) the most stable configuration of the Mg atom is not on top of the anion vacancy but 
closer to a surface anion in (1 1 0 ) direction from the vacancy; the x, y , and z coordinates 
of the ad-atom with respect to the anion vacancy are 1.4 Â, 1.4 A, 2.4 A respectively;
ii) valence electrons of the adsorbed atom are only polarised towards the vacancy. We 
can conclude that the first assumption of the model (section 5.1.3) was not confirmed by 
either embedded cluster or periodic calculations: i) the adsorbed atom occupies a site tha t 
is not on top of the vacancy but is displaced towards the surface anion; ii) the optimal 
ad-atom - vacancy distance for the atop site was found to be 2.7 A which is 0 . 6  A larger 
than the distance assumed in the model; iii) the defect formed is not Fg/Mg^+ but rather 
Fg^“*“/Mg, i.e. there is no significant charge transfer between the adsorbed Mg atom and 
the anion vacancy.

II) Ion isation  o f the defect centre. The ionisation potential of the ad-atom - vacancy 
system was calculated as described in Chapter 2. NPA analysis of the electron density 
of the ionised state clearly indicates that the charge state of the ad-atom becomes Mg'*" 
while the anion vacancy remains unoccupied. The value of the ionisation potential was 
found to be 11.4 eV. In a view of our previous results concerning position of the top of 
the valence band with respect to the vacuum level (Chapter 4), this value for the IP is 
unexpectedly large and requires additional discussion. First, let us note that the ionisation 
potential of the free Mg atom is close to 7.6 eV. When the atom approaches the surface 
above the anion vacancy site, its IP should increase due to stabilisation of the electron 
states in the positive electrostatic potential of the vacancy. Consequently, one-electron 
states due to the ad-atom valence electrons are expected to be close to the top of the MgO 
valence band or appear as resonances. In the latter case, laser induced emission of an

109



electron should be associated with the states of the surface valence band rather than with 
defect states and should not exceed 6.5 eV. It is a drawback of our model tha t the valence 
band states were completely absent and it was the defect state from which an electron 
has been removed; these defect states have been strongly stabilised by the potential of 
anion vacancy which explains why so large value is calculated for the IP. Regarding the 
experiments described above, we believe that one 5 eV photon could, in principle, cause 
emission of an electron from either defect states lying in the band gap or even from the 
top of the valence band if the latter is strongly perturbed by therm al vibrations. However, 
due to limitations of the present model, we cannot support this view. We are planning to 
improve our model so that the valence band would be properly represented and to consider 
adsorption-desorption processes at both charged and neutral surface vacancy defects.

I l l )  E m ission  o f the Mg+ ion. After ionisation, the repulsive interaction between 
the ad-atom and the surface causes the ad-atom to escape. As the Mg+ ion moves away 
from the surface, the total energy of the system decreases monotonically. The energy gain 
reaches 1.5 eV at the distance of 8.0 Â between the Mg+ ion and the surface. At this 
distance the interaction of the surface and the Mg'"" ion can be considered as a Coulomb 
interaction of two point charges; the energy of this interaction is 3.6 eV. The overall energy 
gain in this model of the desorption process was found to be ca. 5.1 eV, which suggests 
tha t once the defect centre is ionised, the ad-ion acquires relatively large kinetic energy, 
comparable with those observed from the experimental data.

5.1.6 D iscussion  and sum m ary

The kinetic energy of the desorbed ad-ion obtained from the experimental data (7.9 eV) 
is quite close to that obtained in our calculation (5.1 eV). The difference may arise from 
several factors. First, the “on top” position for the ad-atom is not optimal and was 
considered only as a model; second, the mechanism of desorption may include more than 
one step. For example, as suggested in [49], ionisation of the defect centre formed by the 
Mg ad-atom and anion vacancy may occur after the centre is excited by the 5 eV light with 
formation of a Fs^/Mg"^ defect centre. Ionisation of the defect from its excited state might 
lead to higher kinetic energies of the desorbed ions. We should note here tha t irrespective 
of the initial state, before the excitation, of the defect - Fg/Mg^""", as suggested in [49], 
or Fg^"^/Mg, according to our calculations, - excitation accompanied by charge transfer 
would create the Fg+/Mg+ defect centre.

To summarise, we have undertaken preliminary modelling of induced desorption of an 
Mg+ ion from the (001) MgO surface containing anion vacancy aiming to check, from 
detailed calculations, the assumptions made in the previous studies. Our modelling sug­
gests tha t the adsorption of Mg atom on top of the anion vacancy is not accompanied 
by charge transfer of the type M g  -f ==  ̂ M g ‘̂ ^ -1- Fg as assumed previously. Once 
the Mg/Fg^"'' centre is ionised, the Mg"  ̂ ion desorbs with a kinetic energy close to 5 eV
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leaving an centre behind. This energy is close to the experimentally obtained kinetic 
energies of desorbed Mg+ ions from the polished (001) MgO surface (7.9 eV).

To clarify the model for the desorption of the Mg+ ions we still have to answer the 
following questions. First, what is the value of the ionisation potential of the defect 
centre if the surface valence band is properly represented? Second, how will it change 
if the excessive charge of the anion vacancy is compensated by the neighbouring cation 
vacancy? Third, what are the charge density distributions of the initial and ionised states 
of the system in this case? Fourth, how do they affect the kinetic energy of the desorbed 
ions species? Finally, what is the charge state of the desorbed species and what is the 
model for the desorption of the Mg^”*” ions? Studies aiming to answer these questions are 
currently being pursued.

5 .2  In te r a c tio n  o f  a  s ilico n  t ip  w ith  th e  (001 ) N a C l surface: p o ss ib ility  
o f  t ip  co n ta m in a tio n

Scanning force microscopy (SFM) is routinely used in many branches of science and tech­
nology. The range of applications includes phenomena from the micrometer down to the 
sub-nanometre scale: surface topography, control of film growth, measurements of ad­
hesion, friction, studies of lubrication, dielectric and magnetic properties, and contact 
charging. In particular, both ion and electron transfer due to contact formation and 
breaking is responsible for contact electrification and tribocharging; using these processes 
one could construct nano-structures from vacancies in different charge states or extract 
unwanted surface impurities by a tip.

Recent advances in scanning force microscopy based on dynamic-force methods, such 
as the non-contact mode of SFM operation [83], make it possible to achieve “true” atomic 
resolution on insulators [11], [12]. In this technique (see Fig. 27), the cantilever oscillates 
above the surface with large (of the order of 50 Â) amplitude with a minimum tip-surface 
distance of a fraction of nanometre. Information regarding the surface is generated from 
analysis of the frequency and amplitude changes due to the tip-surface interaction [83], [84], 
[125]. These developments are vital for a wide range of SFM applications including studies 
of point surface defects, and construction and modification of nano-structures at surfaces. 
However, existing uncertainty of the atomistic structure of the tip hampers both our 
understanding of SFM images and the possibility of controlled surface modification. The 
problem is complicated by the fact that even in the non-contact mode of SFM operation, 
where the tip is supposedly not touching the surface, the tip and surface modifications 
are impossible to avoid completely [12], [60]. These may be caused by avalanche adhesion 
which takes place for many metallic and ionic tips and surfaces at tip-surface distance 
less than 4-5 A [157], [195], [128], [191], [188] or by intrinsic modification of the tip due 
to rearrangement of tip atoms (Fig. 28(a)). Dependence of an SFM image on the tip 
structure is demonstrated in Fig. 28(b) for the example of the NaCl (001) surface. The 
image pattern  changes after a few scan lines as a result of such modification. Reverse
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F igu re 27: Non-contact SFM operation mode (schem atic representation).
Changes of the frequency (w) and amplitude (M) contain information regarding the tip-surface 
interaction.

modification occurs after a few more scan lines and restores the original image pattern.
Details of numerous experimental and theoretical studies of the non-contact SFM op­

eration mode can be found, for example, in recent review [190]. In the present work we 
focus on some of the issues related to the silicon tip structure in a typical SFM experiment; 
tip modification due to contact formation and breaking of ionic surfaces and possibility of 
charge transfer between the tip and the surface. The questions we would like to address 
in this section are i) what is the meclianism of contamination of the tip by the surface 
material? and ii) what are the charge states of the ions extracted by the tip from the ionic 
surfaces? We shall emphasise that it is essential to apply quantum-mechanical methods 
in order to reveal nature of charge transfer originating from the tip-surface interaction. 
These (question have been raised and partly resolved in our previous work [203].

5.2.1 E m bedded  c lu ste r m odelling

The model of the surface and the method of calculations are the same as previously 
described (Chapter 2 ), and are discussed only briefly. The model of the tip is discussed 
separately as it is an essential component of these studies.

D eta ils  of calcu la tions. We employ a finite nano-cluster model to study possible mod­
ifications of a silicon tip due to its interaction with the NaCl (001) surface. The total 
size of the nano-cluster and the size of the shell model region were 8x8x4 and 6x6x3 
ionic centres respectively. The quantum mechanically treated part included the silicon 
tip modelled by a cluster of 29 atoms (Si2 g) and a fragment of the surface modelled by 
one surface anion surrounded by five cations (Na^Cli). The QM cluster was treated at 
the HF level using double zeta (lanl2dz) basis set and an Effective Core Pseudo-potential
[216] replacing core electrons. When the adiabatic potential for the displacement of the
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Figure 28: Tip modification during the scanning process.
a) Possible mechanisms of the tip modification;
b) SFM  image of the NaCl (001) surface becomes brighter after the tip m odification. Presumably 
reverse modification restores the original pattern. (Courtesy of Dr. R .Bennewitz and members of 
his group.)

chlorine ion from the surface to the tip was calculated, the Cl basis set was added to the 
vacancy to retain the quality of the surface description. The geometry of the Si2 9  cluster 
was optimised separately in a free cluster approximation and then fixed in all calculations; 
only the surface atoms were allowed to relax.

M odel of th e  tip . Most of the commercial cantilevers are micro-fabricated from silicon 
and are covered by a native oxide layer. The surface is then cleaned by sputtering with 
Ar+ ions. However, the chemical structure and geometry of the tip are almost impossible 
to control. The factors which dominate the tip structure in real life experiments could be 
summarised as follows: i) the silicon nano-tip should have the characteristic features of 
the most stable S i( lll)  (7x7) surface; ii) the tip may have some residual oxide layer or 
oxygen adsorbed on it; iii) it may be contaminated by hydrogen or water residual in the 
vacuum chamber; iv) it may also be contaminated by the surface material.

These factors are too complex to be investigated and discussed in full. We limited 
our model of the tip by a finite silicon cluster without any impurities. To choose the 
cluster, we followed earlier work (see [81], [105] and references therein) where the physical 
characteristics of the silicon clusters containing different number of atoms have been in­
vestigated. In particular, it was found that clusters containing 33 and 29 atoms are among 
the most stable silicon nano-structures. For our modelling the cluster containing 29 atoms 
(Fig. 29(a)) was used. It is expected that those cluster atoms with the lowest coordina­
tion number will be the most chemically active and are the most likely to be the probe 
species. For this reason the cluster was oriented by the most outstanding atoms towards 
the surface. As mentioned above, in all tip-surface interactions, the calculated geometry
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F igu re 29: Silicon cluster used to model SFM tip: (a) free Si2 o; (b) Si2 9  with adsorbed Cl on it.

of the cluster was fixed and only its electronic structure was relaxed. The charge density 
of the Si2 9  cluster tends to be polarised towards its bulk-like centre. This observation is 
in agreement with that of [105].

5.2.2 R esu lts  and  discussion

A d iab a tic  po ten tia ls . We brought the quantum mechanically treated Si2 9  cluster to 
different distances above the chlorine ion on the NaCl (001) surface and calculated the 
adiabatic potential for the displacements of the ion towards the tip perpendicular to the 
surface. The calculated adiabatic potentials are shown in Fig. 30. When the surface-tip 
distance (D) is between 3.0 - 4.0 Â, the adiabatic potential exhibits only one minimum, 
which corresponds to the chlorine ion being between the tip and the surface at about
0.5-1.5 Â above the original surface site. As the tip-surface distance increases, the single 
well adiabatic potential transforms into the double well one (see Fig. 30) demonstrating 
an instability effect similar to that observed in [188]. The two wells of the double well 
potential correspond to the chlorine species being trapped at the surfaces (which appears 
for D larger than 4.5 Â) and at the tip (which becomes distinctively visible for D larger 
than b.O Â) respectively.

It is important to note that in these calculations the “surface end” of the calculated 
adiabatic potentials is represented better than the “tip end” . This unbalance stems from 
two technical limitations: i) the surface was relaxed for every position of the tip and the 
surface chlorine ion, while tip geometry was fixed; ii) the adiabatic potential was calculated 
along one of the surface symmetry axes which guarantees the lowest total energy at the 
“surface end” but not necessarily so at the “tip end” . Nevertheless, the transformation

114



Silicon tip

-4368.2

0.5  1 1.5 2 2.5  3 3.5

D isplacem ent of the Cl- ion (h)A
Anion vacancy at 
(001) surface NaCl

F igu re 30: Adiabatic potential for Cl ion for different surface-tip distances.

of the single-well into the double-well adiabatic potential with the increase of the surface- 
tip distance is established. The potential well at the “tip end” is expected to be more 
pronounced if the tip was treated more accurately. The chlorine atom can be trapped by 
the tip if the potential well on the tip is formed at the tip-surface distance of about 4-5 Â. 
We stress that the chlorine atom can be trapped by the tip even if the potential well at 
the surface is deeper than the potential well at the tip provided that the barrier between 
the two is large enough. Details of the tip contamination mechanisms are discussed in 
reference [188].

C harge s ta te  of th e  chloride species. We can employ the advantages of the ah initio 
over the classical approach to investigate the issue of the charge state of the chloride species 
if adsorbed by the tip. The charge states of the extracted ion and the surface vacancy have 
been analysed by means of the Natural Population Analysis. The dependence of the NPA 
chlorine charge on the distance from the surface for several tip-surface distances (D) is 
shown in Fig. 31. As the chlorine species approaches the tip at a distance of 2.5 Â or less 
it loses from 30 to 50% of its ionic charge which transfers to silicon cluster and délocalisés 
over the peripheral atoms. If the chlorine ion is trapped by the tip and removed to an 
infinite distance from the surface it loses 60% of its formal ionic charge. For tip-chlorine 
distances larger than 4.0 Â the tip potential well is not strong enough at the chlorine site 
and the Cl atom keeps the additional electron. It is important to note that the electron 
affinity of the Cl atom is seriously underestimated in these calculations. Its calculated 
value of 1.9 eV is only half of the experimental value of 3.62 eV.

The NPA charge of the ghost centre associated with surface vacancy was negligible in 
all our calculations which means that if the surface anion is adsorbed by the tip, it leaves 
the surface in its ionic rather than atomic charged state. This correlates with our previous 
observations that surface vacancies have relatively small electron affinities (Chapter 4).
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Figure 31: Dependence of the chlorine charge (NPA) on the distance from the surface for several 
tip-surface distances.
Bold dots indicate approximate position of the well associated with the tip.

Table 25: Possible processes for the tip contamination and corresponding affinities.

Initial state Final state Energy gain, eV
S Î 29 Si29 -p e 3.63
Si29 4- e Si2 9  + e -p Cl 2.40
S Î 29 Si29 + Cl 4.50
Si29 + Cl Si2 9  + Cl 4" e 1.52
Si29 Si2 9  4- Cl 4- e 4.14

For, example, the singly charged surface oxygen vacancy (F+ centre) on a (001) MgO 
surface has an electron affinity calculated at the HF level of only 1.7 eV. In the case of 
the (0 0 1 ) NaCl surface this value is expected to be even smaller.

R eactiv ity  o f the silicon tip . The possibility of contamination is higher for a more 
reactive tip. One can characterise the reactivity of the tip in terms of its affinity for 
electrons or atomic/ionic species. We have examined the affinity of the free Si^g cluster 
for an electron, atomic chlorine and negative chlorine ion. An electron transfer from the 
surface to the tip and contamination of the tip with atoms or ions can occur on very 
different time scales (depending on a number of inter-related factors). It is, therefore, 
convenient to distinguish the following different processes for tip contamination (see Table 
25): i) electron transfer followed by atomic Cl adsorption, ii) adsorption of atomic Cl 
followed by an electron transfer, and iii) adsorption of a negative chlorine ion. Due to 
its structure, the Si2 g cluster may have several sites with positive affinity for Cl or Cl" 
species. We have studied only one of these sites located near the Si atom closest to the 
surface (see Fig. 29(b)).

In all of these processes the final state always has a lower energy than the initial one, 
which indicates that the free tip is reactive enough to provide a potential well for the
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adsorbed species. The depth of the potential well and its location can be affected by the 
presence of the surface.

5.2.3 Sum m ary

Under-coordinated atoms of the silicon cluster demonstrate relatively high affinities for 
ionic and atomic species, which opens up the possibility of trapping some of the surface 
species by the tip to “saturate” its dangling bonds. The calculated adiabatic potentials 
for adsorption of a surface anion at the tip, support such a possibility. Chlorine species, 
if trapped by the tip, leave the surface with the ionic charge state Cl". In the resulting 
(tip-hCl)" system, about 40% of the negative charge is associated with chlorine, another 
40% - with its nearest two Si neighbours and the other 20% are delocalised over the rest 
of the cluster. We can, therefore, speculate that initial stages of the surface scanning may 
be relatively destructive for the surface and be accompanied by the generation of charged 
anion vacancies.

A number of limitations of the present modelling, which have been mentioned above, 
are not expected to affect our conclusions qualitatively. Nevertheless, to clarify them quan­
titatively, one has to investigate how a better representation of the surface and geometry 
relaxation of all centres affects the results; what are the formation energies of the neutral 
surface F centre and the charged anion vacancy and how these change in the presence of 
the silicon tip. Severe underestimation of the electron affinity for the Cl atom is inherent 
for the HF method and is expected to take place for the tip as well. However, it is difficult 
to make any statement regarding to the accuracy of the calculated EA of the tip. Our 
experience gained with hybrid density functional methods, such as B3LYP, suggests that 
this method, though more time consuming, is more reliable in modelling such complex 
systems.
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S um m ary and C onclusions

The results of the present Thesis can be divided into two major parts. In the first part, 
we summarise the results concerning the method, and the computer implementation of 
the embedded cluster approach. In the second part, we outline the results obtained using 
the method and the code developed in the present Thesis.

Em bedded cluster approach: m ethod and com puter im plem entation

M ethod . The effective scheme for calculation of point defect properties in the bulk 
and at surfaces of ionic materials was developed and implemented in the computer code. 
The code is able to undertake calculation of the following defect properties: i) local atomic 
structures of defects; ii) optical properties of defects including excitation and luminescence 
energies, ionisation potentials and electron affinities; iii) local vibrational properties of 
defects.

Accuracy. The accuracy of calculations depends on a number of factors, which originate 
from the assumptions inherited in the embedded cluster approach and from quantum 
mechanical method used to study defect properties. We highlight these factors below:

• crystal models: point ion and shell model ion description of the crystal lattice 
is a central approximation used in the present method. It follows from the results 
presented in this Thesis and from previous experience that this model works well 
and produces consistent results for MgO, NaCl, LiBaFg crystals. It is expected that 
the model will be not less accurate for other ionic crystals.

• defect space localisation: the present method is developed for localised defects, 
i.e. defects, which are confined within the quantum mechanically treated cluster; 
accuracy of this approximation is controlled by the size of the quantum cluster.

• defect sta te  localisation: the method works well if defect electronic sates are 
localised within the cluster; consequently, the accuracy of calculations for a priory 
delocalised states, e.g. band to band transitions, is uncontrolled.

• m ethods: accuracy of an embedded cluster calculation significantly depends on 
the accuracy and applicability of an ah initio method which is used to study the 
problem; the Gaussian98 package for quantum chemical calculations provides a range 
of methods which allows an investigator to undertake a comparative study using 
several ab initio techniques. We are currently working on implementation of this 
method with the GAMESS code.

A pplicability. The applicability of the method to a particular system is defined by 
the accuracy required. The method works well and produces consistent results for highly
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ionic crystals such as alkali-halides, alkali earth oxides and perovskites (subject to limita­
tions discussed in the previous paragraph). It may also be applied to ionic systems with 
molecular anion, such as Mg2 Si0 4 . Application of the method to systems which cannot be 
divided into ionic fragments, for example Si0 2 , will lead to less accurate results. However, 
even in this case the accuracy may be controlled by the size, shape, and composition of the 
quantum-mechanically treated region. The embedded cluster studies of Si0 2  polymorphs 
are currently in progress.

Further developm ents. The method was developed for highly ionic crystals. How­
ever, its extension to polar crystals can be achieved on the basis of the present code with 
some modifications, which would allow us to treat directed bonds. To achieve this we 
employ two approaches: i) the separable potential technique, outlined in section 1 .2 .5 , 
and ii) development of the Group Function formalism reported in reference [111].

R esults

The method and the computer code were applied to three types of problems. The first, 
the calculation of properties of point defects in the bulk of ionic crystals, is a traditional 
problem of solid state modelling. Most of the experimental techniques are developed for 
investigating this kind of defects, which allowed us to compare the results of our calcula­
tions with the experimental observations. The second type of problems is concerned with 
surface defect properties. Experimental observations of surface defect sites are hampered 
by their low concentrations. Therefore, only few defect characteristics can be measured di­
rectly and used as reference points for theoretical calculations. The third type of problems 
addressed in this Thesis concerns the mechanisms of processes at interfaces and photo­
induced desorption. This area is even more difficult for direct experimental studies not 
only because of relatively small concentration of defect sites involved in these processes 
but also because some of these processes occur on a very short time scale. These three 
types of problems cover a wide range of systems and processes, which can be studied using 
the methodology and computer code developed in this Thesis.

• P roperties o f point defects in the bulk o f ionic crystals. Two complex 
defects were considered: i) the [Fe(CN)6 ]^” ’̂ ~ defects incorporated into NaCl crystal 
matrix, and ii) the Ce^"  ̂ impurity defect in LiBaFg. Several atomic configurations of 
iron cyanides were studied and the most stable configurations were identified. The 
influence of the local environment on the electronic structure of the iron ion and on 
vibrational properties of cyanide ligands were discussed. The electron affinities for 
several complexes were calculated. The dependence of the local atomic structure and 
of the excitation and luminescence energies of the LiBaF3 :Cê "*" centre on the model 
of host lattice environment was studied. It was demonstrated tha t the accurate 
account for the lattice polarisation is crucial for quantitative agreement of the optical
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absorption and luminescence energies with the experimentally observed properties 
of the Cê "'" centres in LiBaFg.

P roperties o f point defects at surfaces o f ionic crystals. The electronic 
and spectroscopic properties of perfect and defective low-coordinated sites of MgO 
surface were studied. The ionisation potential of the ideal MgO (001) surface, which 
fixes position of the top of the surface valence band with respect to the vacuum level 
was calculated. The position of the bottom  of the conduction band was estimated 
using i) the calculated electron affinity of the ideal surface, and ii) the calculated 
value of the surface optical absorption energy. The agreement between these two 
estimates shows consistency of models and methods used in these calculations. The 
electronic structure of the oxygen corner and oxygen vacancies (neutral F centre, 
charged F+ centre and anion vacancy Va) at the surface and at the oxygen corner 
have been investigated. The positions of the energy levels of these defect states with 
respect to the vacuum level, and therefore with respect to the surface valence band, 
were calculated. The dependence of the optical absorption of oxygen ions on their 
coordination number was studied. We also discussed localisation of the electron hole 
and additional electron at the MgO (001) surface and at oxygen corner sites and 
localisation of excitons at differently coordinated oxygen sites.

M odelling o f processes at surfaces. Theoretical modelling of surface processes 
is relevant to currently developing experimental techniques of non-contact atomic 
force microscopy and laser-induced desorption of the surface ions, i) The interaction 
of the Si tip with NaCl surface and a possibility of the tip contamination by the 
surface material have been investigated. It was demonstrated tha t the Si tip is likely 
to adsorb surface Cl“ ion. ii) To check the validity of assumptions underlying one of 
the models used for interpretation of the laser-induced ion desorption experiments we 
have calculated the local atomic structure of the Mg atom adsorbed in the vicinity 
of the surface anion vacancy Y  a, the possibility of the system to be ionised by a 
5.0 eV photon, the energy gain due to consequent desorption of the Mg^+ ion from 
the surface. It was demonstrated that the system electronic configuration is Mg/Va 
rather than the previously thought M g^^/F. It is suggested that the local atomic 
structure of this system is different from the simplistic model used in the previous 
studies.

The calculation of a larger number of physical properties would greatly assist in direct 
comparison of the theoretical results and experiment. The recent release of the Gaussian98 
package includes features for the calculation of hyperfine anisotropic constants, which gives 
us an opportunity to improve our results.
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