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Abstract

We present MedCATTrainer1 an interface
for building, improving and customising a
given Named Entity Recognition and Linking
(NER+L) model for biomedical domain text.
NER+L is often used as a first step in deriving
value from clinical text. Collecting labelled
data for training models is difficult due to the
need for specialist domain knowledge. Med-
CATTrainer offers an interactive web-interface
to inspect and improve recognised entities
from an underlying NER+L model via active
learning. Secondary use of data for clinical re-
search often has task and context specific crite-
ria. MedCATTrainer provides a further inter-
face to define and collect supervised learning
training data for researcher specific use cases.
Initial results suggest our approach allows for
efficient and accurate collection of research
use case specific training data.

1 Introduction

We present a flexible web-based open-source
use-case configurable interface and workflow for
biomedical text concept annotation - MedCAT-
Trainer2.

Murdoch and Detsky (2013) estimates that 80%
of biomedical data is stored in unstructured text
such as Electronic health records (EHRs). Al-
though EHRs have seen widespread global adop-
tion, effective secondary use of the data remains
difficult (Elkin et al., 2010). However, sig-
nificant progress has been made on agreement
and usage of standardised terminologies such
as the Systematized Nomenclature of Medical
Clinical Terms (SNOMED-CT) (Stearns et al.,
2001) and the Unified Medical Language System
(UMLS)(Bodenreider, 2004). Annotating EHR
text with these concept databases is often seen as

1https://www.youtube.com/watch?v=lM914DQjvSo
2https://github.com/CogStack/MedCATtrainer

a first step in delivering data driven applications
such as precision medicine, clinical decision sup-
port or real time disease surveillance (Assale et al.,
2019).

EHR text annotation is challenging due to the
use of domain specific terms, abbreviations, mis-
spellings and terseness. Text can also be ‘copy-
pasted’ from prior notes, structured tables entered
into unstructured form, content with varying tem-
porality and scanned images of physical docu-
ments (Botsis et al., 2010). Annotation is further
complicated as researchers have task and context
specific parameters. For example, whether fam-
ily history or suspected diagnoses are considered
relevant to the task.

MedCAT3, manuscript in preparation (Zeljko
and Lucasz, 2019), is a Medical Concept
Annotation Tool that uses unsupervised machine
learning to recognise and link medical concepts
with clinical terminologies such as UMLS. Med-
CAT, like similar tools, uses a concept database to
find and link concept mentions inside of biomedi-
cal documents. In addition it has disambiguation,
spell-checking and the option for supervised learn-
ing for improved disambiguation.

We introduce a novel web based application that
supplements usage of a biomedical NER+L mod-
els, such as MedCAT. Our contributions are as fol-
lows:

1. Concept Inspection and Addition: an in-
terface that to inspect the identified concepts
from free text, and add missing concepts to an
existing NER+L model. This interface aligns
with MedCAT, but could also be used with
other models that have similar capabilities.

2. Active Learning: an interface for active
learning, enabling users to provide minimal

3https://github.com/CogStack/MedCAT



140

training data to assist in improving and cor-
recting the NER+L. This interface requires
that the backing NER+L system supports ac-
tive learning.

3. Clinical Research Question Specific Anno-
tation: a further interface for configurable
use case specific annotation of identified con-
cepts. Allowing for the collection of research
question specific training data. For exam-
ple, annotating specific temporal features of
a concept.

2 Related Work

Outside of the biomedical domain general pur-
pose annotation interfaces have been developed
for most popular NLP tasks such as NER, NEL,
relation extraction, entity normalisation, depen-
dency parsing, chunking etc. Popular choices in-
clude open-source tools such as BRAT (Stenetorp
et al., 2012) that also allows for managing the dis-
tribution, monitoring and collection of annotated
corpora. General purpose tools with active learn-
ing include the commercial product Prodigy4. Al-
though these tools are mature and offer advanced
features they can be complex to setup and do not
offer integration with existing biomedical domain
NER+L systems.

Prior work on biomedical NER+L includes
MetaMAP (Aronson, 2001) and CTakes (Savova
et al., 2010). Both have provided interfaces to in-
spect recognised entities but they have not pro-
vided means to correct and amend concepts or
specify further annotations for specific research
questions.

Another tool for biomedical NER+L, SemEHR
Wu et al. (2018), offers features to add custom pre
and post processing steps and research specific use
cases, but does not directly improve the NER+L
model via an interface. Instead it treats the pro-
vided NER+L model as a black-box model.

3 MedCATTrainer

MedCATTrainer is a web-based interface for
inspecting, adding and correcting biomedical
NER+L models through active learning. An ad-
ditional interface allows for research specific an-
notations to be defined and collected for training
of supervised learning models.

4https://explosion.ai/blog/prodigy-annotation-tool-active-
learning

The interfaces are built with Vue.js5 for
the front-end and the python6 web framework
Django7 for the web API and integration with
NER+L models such as MedCAT. We use the
Django admin features to allow administrators
to configure research question specific supervised
learning tasks.

MedCATTrainer is deployed via a Docker8 con-
tainer. This ensures users can build, deploy
and run MedCATTrainer cross-platform without
lengthy build and run processes, advanced infras-
tructure knowledge or root access to systems. This
is especially important in health informatics as
hospital infrastructure is often restrictive. Med-
CATTrainer allows researchers to build on top
of existing biomedical domain ontologies, such
as UMLS, for two use cases. Firstly, improv-
ing the underlying NER+L model by adding syn-
onyms, abbreviations, multi-token concepts and
misspellings directly from the interface. Secondly,
by allowing research use case specific annotations
to be defined and collected for training of super-
vised learning models.

3.1 Concept Inspection and Addition

Figure 1a shows the ‘Train Annotations’ interface.
Users can inspect and correct the concepts iden-
tified by the underlying NER+L model. Entities
that have not been recognised can also be added
to the NER+L model concept database. This al-
lows researchers to test the learnt entity recogni-
tion/linking capabilities of the model whilst tai-
loring it to recognise sub-domain specific lexicon.
This can include abbreviations or misspellings
common to specific corpora. Figure 1b shows
the form entry to add new concepts to the un-
derlying concept database. Semantically equiva-
lent texts can be added under the same Concept
Unique Identifier along with synonyms. Advanced
NER+L tools (e.g. MedCAT) learn from the con-
textual embeddings of words to disambiguate fu-
ture occurrences. MedCATTrainer provides a text-
box for entering the surrounding context tokens to
assist with concept disambiguation.

3.2 Active Learning

Annotating biomedical domain text for NER+L
requires expert knowledge and therefore cannot be

5https://vuejs.org/
6https://www.python.org/
7https://www.djangoproject.com/
8https://www.docker.com
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(a) The MedCATTrainer interface for viewing identified con-
cepts by the underlying NER+L model of a publicly availablea

neurological consultation summary showing the concept meta-
data and active learning feedback input controls.

ahttps://bit.ly/2RLcdJx (b) Side panel for the addition of new concepts.

Figure 1: The interfaces for inspecting annotations and the addition of concepts.

easily crowd sourced. Active learning is a com-
mon approach to provide a minimal set of high
value training examples for manual annotation.
Examples are valued with respect to expected im-
provement in classification performance once la-
belled and the model retrained (Settles, 2009).

We use a simple strategy of certainty based se-
lective sampling (Lewis and Catlett, 1994) to dis-
play low confidence examples. Concretely, given
a trained model M, and the total set of annota-
tions predicted on a new document d by model M
is L = {l1, l2, . . . ln} where the model labelled
the document with n annotations. An annotation
li has an associated confidence cli probability in
the annotation. An annotation manager defines δ,
a confidence cutoff score. The set of annotations
A shown to an annotator is therefore Φ(L) where
Φ(li) = cli > δ.

Each human annotator is instructed to review
each identified concept and provide feedback on
correctness. Feedback is provided through the ac-
tion of clicking the ‘tick’ for correct or ‘cross’ for
incorrect as shown in the top right of Figure 1a.

If an identified concept is incorrect human an-
notators are asked to provide feedback, rerun the
NER+L model (top left ‘Rerun the Annotator’),
and then confirm if the misidentified concept has
been corrected. More feedback can be provided
if needed. Our pilot test users found this quickly
resulted in the correctly identified and linked con-
cept as text spans often only have one or two alter-
native concepts.

3.3 Clinical Research Question Specific
Annotation

It would be infeasible to have a clinical terminol-
ogy to define every possible contextual represen-
tation of a concept. For example, disambiguation
of ‘seizure’ for a symptom of epilepsy and ‘first
seizure clinic’ for a clinic that provides epilepsy
care or ’history of seizures’ for a historical case of
epilepsy.

Our second interface solves this problem by al-
lowing clinical researchers to define use case ori-
entated tasks and associated annotations for pre-
viously identified and linked concepts. Custom
classifiers are then trained and layered over the ex-
isting NER+L model for context specific concept
disambiguation. An example configured screen
for ’Temporality’ and ’Phenotyping’ tasks for an
ongoing clinical research project is shown in Fig-
ure 2 - using replacement publicly available data.
The top bar lists the overall task name followed by
the number of documents to be annotated. The top
right corner opens the current task help document,
listing annotation guidelines for this use-case.

The left panel itemises each text span, the asso-
ciated Concept Unique Identifier (CUI) - that the
NER+L model has identified and linked with the
text, and the current value of each task specific an-
notation. The value ‘n/a’ indicates the task has not
been completed for that span. Users can choose
any order of the text spans to annotate. The cur-
rently selected text span is highlighted in the ta-
ble and within the central text area showing the
entirety of the document. Clinical notes can be
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Figure 2: Task and context specific annotation interface configured for ‘Temporality’ and ‘Phenotype’ tasks

long in length. Clicking a text span from the side-
bar scrolls the central text area to the correspond-
ing span assisting human annotators in locating
the span to annotate. The text area also highlights
each spans current annotated value for the current
task.

The bottom bottom bar lists the current task and
the possible annotation values. Figure 2 shows the
‘Temporality’ task and the associated annotation
values ‘Is Historical’ and ‘Not Historical‘. The
values are in context to a seizure care pathway use
case and are defined as any currently experienced
mention of seizure symptoms in present clinical
encounter. Use cases and associated tasks values
are configurable via the admin interface.

The bottom right corner provides navigation be-
tween text spans and tasks via the arrow buttons.
Navigating between spans highlights the current
span to be annotated in the main left sidebar and
auto scrolls to the next span in the main text area.
The navigation controls here, the sidebar and the
main text area allow human annotators to com-
plete the task in any order they are comfortable.

The ‘Incomplete’ button marks the current doc-
ument to be revisited at a later date. Samples
are marked incomplete if the NER+L model has
misidentified the concept or there is a genuine am-
biguity. The ‘Submit’ button marks the document
as complete. Both actions store and retrieve the
next document if there is one available. If there
are no more files to annotate a dialog prompts the
user to return to the home screen.

Corpora are currently directly uploaded via a
use case management screen. Future deploy-
ments will directly ingest documents via an elas-

ticsearch9 connector to hospital EHR deployments
of CogStack (Jackson et al., 2018) an EHR in-
gestion, transformation and search service de-
ployed at King’s College Hospital (KCH) and
South London and Maudsley(SLaM) NHS Foun-
dation Trusts, UK.

4 Results

We ran an initial small scale pilot experiment to
test the suitability of our use case specific tool
to quickly and accurately collect training data la-
belling the temporal features of seizure symptoms.
This is similar to the task shown in Figure 2.
We used MIMIC3 (Johnson et al., 2016), a de-
identified publicly available database of ICU ad-
mission data that includes observations, consulta-
tion and discharge summary reports. We randomly
sampled 127 discharge summaries that contained
one or more token occurrences that match the
regular expression ‘seizure|seizre|seizur|siezure’,
where | is an OR operator between the text tested
to be present. We intentionally rely on a rule-based
NER mode (i.e. the regex) here to demonstrate
our tools flexibility to use possible alternatives to
MedCAT if desired.

We asked 2 human non-clinical annotators to la-
bel temporal features of each occurrence in rela-
tion to a ‘present’, i.e. ‘chief complaint: seizure’
or ‘historical’, i.e. ‘family history of seizures’,
mention of the term. Both took approximately
35 minutes to review all 127 documents. We
achieve an percent agreement of 89% and a Co-
hen’s Kappa κ = 0.695, Table 1. Both annota-
tors marked some records as incomplete as they ei-
ther mostly referred to non symptomatic mentions

9https://www.elastic.co/
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R1* R2* R1 R2
# Documents 107 117 100 100
# Concepts 351 344 317 317
# Historical 67 80 79 65

# Not Historical 276 264 238 252

Table 1: Total labelled ‘seizure’ symptom concepts and
for each human annotator (R1, R2) for the ‘temporal-
ity’ task of labelling concepts that have occurred the
past relative to the hospital episode. * indicates raw
numbers before taking into account the intersection of
notes between annotators

of seizure, i.e. ‘anti-seizure meds prophylaxis’ or
the prevention of future seizures. This resulted in
each rater having differing total documents ‘sub-
mitted’ as there are some document with mixes of
the above occurrences. We took the intersection of
submitted documents from both raters to compute
the final agreement scores.

Using the collected data we fit a simple Sckit-
learn10 Random Forest (RF) classifier model
demonstrating the effectiveness of the data collec-
tion in being able to easily fit a well performing
model for the task of recognising temporality of
seizure symptoms. We took a random 70/30 train
test split, took 100 characters either side of the
labelled ‘seizure’ occurrence, tokenized the plain
text on whitespace then used a TF-IDF vectoriser
with the default English stop-words list. We ran a
grid search across TF-IDF and random forest clas-
sifier parameters, with a 3 fold cross validation and
found the best fitting parameters: TF-IDF features
500 (range:500, 1000, 10000), RF maximum num-
ber trees of 100 range(100, 300, 500, 1000) and
maximum tree depth 20 (range: 5, 20, 50, 75).
We achieve an accuracy of this binary classifica-
tion task of 92% and f1 score .79.

5 Discussion and Future Work

From our labelling exercise we demonstrate the
speed and accuracy of our configurable use case
specific interface. Strong scores across % agree-
ment, Cohen’s Kappa and trained model accuracy
indicate good agreement between annotators, in-
terpretations of the task and reasonable signal cap-
tured even with this small data set. Although, it is
likely the model is over-fitting due to the size of
the data set. Given the prior experiment - across
two raters - gathering enough accurate data to, for

10https://scikit-learn.org/stable/index.html

example, fine-tune a pretrained language model
based classifier would be of the order of hours of
manual labelling for approx 2k samples. We see
this rapid labelling ability as a key strength of our
interface.

We foresee that trained classifiers will likely
generalise to additional research questions. For
example language used to express temporality of
seizures is likely to be similar to temporality of
stroke or myocardial infarction.

Generally, training models across use cases will
likely capture shared semantics. This suggests
particular use cases would require less examples to
train as annotated data or the model itself could be
reused, therefore jump-starting clinical research.
If a model is not performing for a new use case,
further data could be collected to fine tune the
model to a specific task, context or sub-domain
corpora.

Clinically, domain experts in the neurology de-
partment of KCH, with varying levels of exper-
tise (medical student to practising consultant) are
scheduled to participate in the use case shown in
Figure 2 in the coming months.

Our initial testing, not shown above due to
space, of the active learning approach for improv-
ing the bound NER+L model suggests we can im-
prove performance with minimal training data.

6 Conclusions

We have presented a lightweight, flexible,
web-based, open-source annotation interface for
biomedical domain text. MedCATTrainer is inte-
grated with a biomedical NER+L model and al-
lows for addition of missing concepts, improve-
ments to the underlying NER+L model through
active learning, and a configurable interface for
clinical researchers to define annotations specific
for their research questions. Preliminary results
show promise for our interface and our approach
to biomedical NER+L, which is often seen as a
first step in deriving value from data sources such
as electronic health records.
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