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Abstract—The aim of this research is to implement a precise Wi-Fi indoor positioning system (IPS) or localization system based 

upon the IEEE 802.11mc Fine-Timing Measurement (FTM) scheme also known as the Wi-Fi Round Trip Time (RTT) ranging 

technique, where ranging refers to a sub-process of positioning that determines the distance between a transmitter and receiver. 

Our system and its algorithms were implemented using a COTS (Commercial-Off-The-Shelf) smartphone and Wi-Fi access points. 

Experiments were conducted in several real-life indoor environments. This paper presents the detailed Wi-Fi RTT ranging 

performance of these devices in different system configurations and characterizes the systematic biases and noise model to 

improve the ranging accuracy. A novel three-step-positioning method is proposed to overcome the issues of no or multiple intersect 

points in trilateration due to ranging errors to improve positioning accuracy. This consists of first, systematic bias determination 

and removal; second, Clustering-based Trilateration (CbT) supported by Weighted Concentric Circle Generation (WCCG), namely 

CbT & WCCG; third, positioning result and trajectory optimization using a Kalman filter. As a result, the evaluation experiments 

gave a position accuracy of ±1.2 m in 2D static positioning and ±1.3 m for dynamic motion tracking. Also, our CbT & WCCG 

method demonstrate good tolerance against ranging errors. Moreover, the computational cost and positioning accuracy of CbT & 

WCCG methods are compared with Least Square (LS) and Recursive Least Square (RLS) methods and the accuracy standard 

deviation of our algorithm is the closest to the Cramer–Rao bound (CRB). 

Index Terms—Indoor Positioning System (IPS), Indoor localization, Wi-Fi-based positioning system (WPS), trilateration, 

tracking, Wi-Fi Fine-Timing Measurements (FTM), Wi-Fi Round-Trip Time (RTT). 

——————————   ◆   —————————— 

1 INTRODUCTION

ndoor Positioning Systems (IPS) are increasingly needed 
as we spend more time indoors (at least in urban areas) 
and as indoor spaces become far more complex. IPS ap-

plications include navigating to find a physical asset in un-
familiar spaces such as a book, a shopping item, a person 
or exit. 

There is no standard positioning system for indoors un-
like for outdoors (Global Positioning System, GPS). There 
are further challenges for IPS, compared to outdoors, as we 
need a better accuracy, e.g., 1.7 m (a typical adult arm span) 
to enable us to find and reach to get things in indoor spaces 
that are more densely cluttered than outdoor spaces. There 
are no global maps, indoor spaces also often tend to be 
more 3D rather than 2D and furniture and objects are often 
moved around changing the free path for navigation. 

A common infrastructure found in most indoor envi-
ronments, IEEE 802.11, that is used for local area network 

communication can also be used for positioning – a Wi-Fi-
based positioning system (WPS), which is the focus of this 
paper. Classic WPSs are based on three methods. The first 
is the traditional path loss model-based method. This uses 
the Received Signal Strength Indicator (RSSI) to calculate 
distances between an Access Point (AP) and a Mobile Ter-
minal (MT). Then, trilateration is applied to estimate the 
terminal’s location [1]. However, this method suffers from 
the issue of instability of RSSI, caused by path interference, 
small scale fading and shadowing, which are easily af-
fected by different surroundings [2]. The second method is 
known as a fingerprinting-based technique [3][4] which is 
generally considered to be more accurate than the path loss 
model based method [5]. This method typically includes 
two phases. The first phase, called the offline survey phase, 
is to build a fingerprint database or a radio map consisting 
of RSSI information from multiple APs collected at known 
locations. The second online localization phase determines 
user positions via matching radio knowledge of their cur-
rent position with the pre-established radio map. The third 
method makes use of Wi-Fi Channel State Information (CSI) 
(e.g. amplitude and phase) to realize localization [6]. Com-
pared to RSSI which only provides signal strength level, 
the CSI of each channel is a multi-dimensional vector con-
taining the information from all subcarriers (usually over 
30 subcarriers in each channel), which has many more fea-
tures [7]. CSI-based positioning methods include CSI fin-
gerprinting, Angle of Arrival (AOA) and Time of Flight 
(ToF) or Roundtrip Time of Flight (RToF). They are all 
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sensitive to environmental changes and surrounding 
movements, which influence the positioning accuracy. 
Also, ToF requires highly accurate synchronization be-
tween all parts of the system while RToF is free of such a 
requirement. CSI fingerprinting also faces the problem of 
intensive computational workload for building and main-
taining the fingerprint database as well as the challenge of 
managing substantial amounts of storage securely. These 
three WPS methods have been researched and developed 
extensively [8],[9],[10],[11],[12]. The second of these three 
methods based upon fingerprinting seems to be the most 
accurate and widely used. However, fingerprinting is not 
scalable because it requires a radio-map to be built in each 
new scenario and even its location accuracy is affected by 
dynamic object occlusion such as people moving in that 
space.  

In this paper, we focus on one of the latest techniques 
called the Fine-Timing Measurement (FTM) [13] scheme 
based ranging and localization. The FTM scheme has been 
supported by the IEEE 802.11mc standard since 2016 [13], 
[14]. FTM can be understood as a RToF measurement ap-
proach, also called Wi-Fi Round-Trip Time (RTT), which 
allows a MT to determine its distance from an AP by meas-
uring the duration of a radio wave transmission time frame 
traveling back and forth between the transmitter and re-
ceiver, which are generally called the initiator and re-
sponder. This method can give even more accurate meas-
urements by including the timestamp recorded at both the 
initiator and responder with nanosecond resolution [14]. 

Fig. 1 shows the RTT measurement approach overview 
(Detailed descriptions of the initiator, Google Pixel 2 [15], 
and responder, WILD fit2 [16], are given in section 3.1). The 
process begins when an Initial FTM Request is broadcast 
from the initiator. The system records the timepoint,  𝑡1 , 
when the Fine-Timing Measurement, FTM signal is emit-
ted from the responder and the timepoint,  𝑡2, when the 
signal arrives at the initiator. After the internal processing 
at the initiator, an acknowledgement (ACK) is sent at 
timepoint,  𝑡3 , from the initiator which reaches the re-
sponder at timepoint,  𝑡4. To improve the measurement ac-
curacy, the round-trip time, RTT is determined by an aver-
age of, n, round trips [14].  

𝑅𝑇𝑇 =
1

𝑛
(∑ 𝑡4(𝐾)

𝑛

𝐾=1
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) −
1
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𝑛

𝐾=1
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𝑛

𝐾=1
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Then, the distance between the initiator and the 

responder, 𝑑, can be calculated using 𝑑 = 𝑅𝑇𝑇 ∙ 𝑐/2, where, 
𝑐, is the speed of electromagnetic wave propagation. The 
initiator and responder clocks do not need to be synchro-
nized as time differences between readings taken by the 
same clock are calculated. However, if the clocks are not 
stable and are subject to drift, reference [13] describes a cor-
rection including clock offset, eq. (2), to further reduce the 
ranging errors. 

𝑣(𝑡𝑖) =  𝑣(𝑡𝑖−1) + �̇� ∙ (𝑡𝑖 −  𝑡𝑖−1) (2) 
where 𝑣(𝑡𝑖) is the clock offset relative to the true signal ar-
rival time at current timepoint, 𝑡𝑖. �̇� is the clock skew or the 
rate of change of the clock offset. In this paper, we do not 
apply this time offset cancelation as we analyzed the raw 
data characteristics from the initiator (mobile phone). We 
will consider this in future work. 

FTM is considered to be the next generation of Wi-Fi 
based IPS [17]. The  FTM protocol is supported by state-of-
the-art Wi-Fi chipsets [18] and all Android OSs later than 
Android Pie (version 9.0) also support Wi-Fi RTT signal 
processing functions. It means that commercial off-the-
shelf (COTS) MTs can be used in a Wi-Fi RTT based posi-
tioning system without any extra hardware (on the re-
ceiver side). Although the fundamental principle of Wi-Fi 
RTT measurement has been deeply investigated [19], as far 
as we are aware, there has been little research focusing on 
applying this technology to realize a positioning system.  

Investigation of the performance of Wi-Fi RTT devices 
in real-life environments is extremely helpful to gain a bet-
ter understanding of this technology and to motivate a va-
riety of potential applications. Hence, in this research, our 
main contributions are: 

1. Quantifying the detailed Wi-Fi RTT ranging perfor-
mance in a variety of working modes and environ-
ments, which includes determination of Systematic 
Bias, the Minimum Ranging Interval Limitation 
and Maximum Stable Working Range. Note such 
RTT performance data is not currently part of (AP 
and smartphone) device manufacturer’s data 
sheets; we recommend that it will be useful to in-
clude these in future. (see section 3.3)  

2. Proposing, demonstrating and proving the benefits 
of a new systematic bias removal process by apply-
ing it with existing least-square positioning meth-
ods (see section 3.4).  

3. Proposing a novel Weighted Concentric Circle Gen-

eration (WCCG) method to overcome issues of no 

or multiple intersect points in trilateration when us-

ing Wi-Fi RTT to implement an IPS. (see section 4.2) 

4. Developing a new Clustering-based Trilateration 
(CbT) method for the Wi-Fi RTT based IPS to im-
prove its accuracy and reproducibility. This method 
can be applied for static positioning for the case 
when enough ranging measurements exist. It can 
also be applied along with WCCG for dynamic mo-
tion tracking. (see section 4.3) 

5. Implementing and demonstrating an IPS based on 

Wi-Fi RTT using commercial devices (APs and 

smartphones) with the above new techniques. (See 

section 5) 

Fig.1. RTT measurement illustration [13] 
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This paper is structured as follows: Section 2 surveys 
ranging technologies, positioning methods and issues in 
traditional IPSs. Section 3 presents our first main contribu-
tion which is the detailed Wi-Fi RTT ranging performance 
in an indoor office-type room and the systematic bias re-
moval process. Section 4 introduces our new WCCG & CbT 
positioning algorithms. Section 5 presents the results of 
static positioning and dynamic motion tracking to demon-
strate the performance of our design of Wi-Fi RTT-based 
IPS and compares these with the best existing positioning 
methods and with Cramer-Rao Bound (CRB). Finally, the 
last section 6 gives the conclusions and future work. 

2 RELATED WORK 

Position determination or localization involves several 
sub-processes. Ranging is the process that determines the 
distance between two things, e.g., a transmitter and re-
ceiver. There are different ranging methods but two of the 
most common are RSSI (e.g., traditional Wi-Fi and Blue-
tooth Low Energy, BLE) and Time of Flight (ToF) or Round-
trip Time of Flight (RToF) (e.g., Global Positioning System, 
GPS, Wi-Fi Round-Trip Time, RTT). To determine the 2D 
or 3D position in space usually requires comparing dis-
tance measurements from 1 receiver with respect to 3 or 
more transmitters. Trilateration often uses 3 transmitters to 
calculate a position in a 2D space (the focus of this paper). 
Multilateration can be regarded as a more general case of 
trilateration. A further distinction can be made between 
these terms, when the ToF is multiplied by the propagation 
speed, it is termed a pseudo-range [20] (as used by multi-
lateration) in contrast to the true range (as used in trilater-
ation). 

2.1 Types of IPS 

Many indoor positioning systems have been developed 
based on different technologies such as Wi-Fi [21], Blue-
tooth Low Energy (BLE) [22], Magnetic Field (MF) [23], Pe-
destrian Dead Reckoning (PDR) [3], Radio Frequency 
Identification (RFID), Ultra-wideband (UWB), Light Detec-
tion and Ranging (Lidar) [24],[25],[26],[27],[28], visible 
light [29], computer vision [30], acoustic base systems [31] 
and Li-Fi [32], etc. Visible light and Lidar technology have 
a particularly high ranging accuracy (millimeter level). 
However, they are not suitable for an IPS when the sur-
roundings are changing often or with crowds of moving 
people. The main reason is that the ranging process re-
quires a Line-of-sight (LOS) between transmitter and re-
ceiver. MF and PDR based IPS, are both based on micro-
electromechanical systems (MEMSs). The MF IPS faces the 
same issue as fingerprinting system requiring the estab-
lishment of a radio map, while PDR has the problem of er-
ror accumulation over time due to a drift in the accuracy of 
the sensors. The acoustic IPS, gives accurate positioning, 
but the short range of acoustic signals and the effect of 
background sound noise make it unsuitable for a ubiqui-
tous localization system. Thus, we will discuss other radio 
frequency (RF) based IPSs (Wi-Fi, RFID, BLE and UWB) in 
detail, which are more practical.  

When implementing an IPS, positioning accuracy, 

applicable environments, and hardware costs are three 
principal factors to be considered. So, we present in Table 
I, a review and comparison of the most popular IPSs based 
on different technologies.  

TABLE I 
IPSS BASED ON DIFFERENT TECHNOLOGIES 

 IPS accuracy 
(plus and mi-

nus) 

Signal range 
(Indoor, LOS) 

Hardware 
cost (minimum 
requirement) 

Wi-Fi [33][31] 1.8 - 6 m 100 m £30 - 50 

RFID [31] < 10 cm 1 - 2 m £10 - 30 

BLE4.0 [31] 1 m -2.5 m 70-100 m £20 - 40 

UWB [31] < 10 cm 10 m £40 - 60 

In Table I, each of these technologies has different 
strengths and weaknesses. An important point is that for 
almost all of these technologies additional hardware has to 
be installed in the environment with additional costs, ex-
cept for Wi-Fi for which access points are already widely 
installed in most buildings for local wireless network ser-
vices. As for the user side, BLE and Wi-Fi are integrated 
into smartphones whereas RFID and UWB are currently 
not but will need to be if they are to be used for positioning. 
Due to the small signal ranges indoors, RFID and UWB are 
not suitable for large indoor spaces although they have 
much higher accuracy. Consequently, Wi-Fi RTT as the lat-
est technology in Wi-Fi devices seems to be a promising 
choice for more accurate IPS without additional hardware 
installation costs.  

2.2 Position Estimation  

2.2.1 Trilateration 

Trilateration positioning [34] uses three distance meas-
urements to transponders whose positions are known, to 
determine the two-dimensional (𝑥, 𝑦)  coordinates of an 
unknown position. It is necessary to obtain the distances 
between the Access Points, APs and the Mobile Terminal, 
MT (carried by a user) to determine the location of users. 

Fig. 2.  Trilateration principle  

Fig. 2, shows the two-dimensional (𝑥, 𝑦) plane. The po-
sitions, 𝑂𝑖  at (𝑥𝑖 , 𝑦𝑖) are the locations of the AP𝑖𝑠,  where 𝑖 is 
the AP index. 𝑃 is the position of the MT at the intersection 
of three ranging circles with radii, 𝑟1, 𝑟2 , 𝑟3  being the re-
spective distances to the three APs calculated according to 
eq. (3). The position of 𝑃(𝑥, 𝑦) can be calculated by eq. (4). 

𝑟1 = √(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 

𝑟2 = √(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 

𝑟3 = √(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 

  (3) 
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[
𝑟1

2 − 𝑟2
2 + 𝑥2

2 − 𝑥1
2 + 𝑦2

2 − 𝑦1
2

𝑟1
2 − 𝑟3

2 + 𝑥3
2 − 𝑥1

2 + 𝑦3
2 − 𝑦1

2] = 2 [
𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥3 − 𝑥1 𝑦3 − 𝑦1
] [

𝑥
𝑦] (4) 

Trilateration [35] can be based on different ranging princi-
ples, e.g. RSSI, ToF and RToF.  

The free-space path-loss model is widely used to esti-
mate the distance between a receiver and a transmitter, 
which is known as the log-distance path loss model [12]. 
The RSSI-based positioning system is popular in wireless 
sensor network (WSN) node localization research [36]. 
However, in Wi-Fi RSSI based applications, due to the 
complexity of 3D surroundings, the value of RSSI can be 
affected easily by nearby static or moving objects made 
from different materials, shadowing effects and multipath 
effects [2]. All these lead to inaccurate ranging results and 
poor positioning accuracy. Consequently, RSSI based WPS 
tends to be fingerprinting-based positioning systems. 

Time of Flight, ToF means the time taken for a signal to 
travel from a transmitter to a receiver. In the ToF and RToF 
methods 𝑟1, 𝑟2 and 𝑟3 are measured and eq. (4) is used to 
find the (𝑥, 𝑦) coordinates. The distance is calculated by 
multiplying the speed of light by the time difference be-
tween the time when a signal transmitted arrives at a re-
ceiver. Wi-Fi device based ToF [19] requires special hard-
ware calibration and synchronization to give accurate 
range measurements, which makes it costly. Wi-Fi RTT in-
troduced in section 1, directly obtains ranges, and can be 
easily implemented in standard commercial Wi-Fi APs.  

2.2.2 Trilateration Issues 

In ideal trilateration, all ranging circles should intersect 
at a single point. However, because of ranging errors, they 
can either have more than one intersection point or no in-
tersection point. In practical use, there can be more than 
three APs to obtain multiple ranging circles which will re-
sult in more complicated intersection cases. Many methods 
[10, 37-41] have been proposed to calculate the optimal es-
timate of position from three ranging circles. In the case 
when multiple intersection points are calculated, statistical 
models can be used to quantify the uncertainty of the po-
sition estimation [37]. If an area intersected by multiple cir-
cles can be calculated, the most common way is to calculate 
the centroid as an estimation of the position [10].  

For some special situations with multiple intersecting 
points, [38], [39], [40] proposed specific solutions. [38] pro-
posed a method called a Line Intersection Algorithm. It 
deals with a situation where three lines determined by 
three pairs of circles can intersect at a single point and this 
point is considered to be the estimated result. [39] directly 
took the middle point of the shortest line formed by each 
pair of intersection points as the estimation result. The 
Closest Point Algorithm proposed in [40] chose a point 
from the smallest circle as the estimation result. [41] rec-
ommended to use a circular annulus ( radius = r𝑟𝑎𝑤 ±

𝑒𝑟𝑟𝑜𝑟) based on a raw ranging measurement and its posi-
tive and negative error. Three circular annuli are more 
likely to have an intersection area. Then, the centroid of all 
points intersected by six circles (each circular ring has two 
circles) is viewed as the estimation value. 

Although all these methods proposed solutions to 

improve the trilateration performance, they can only deal 
with specific intersection situations. A more general inter-
section method is required. Thus, we propose a novel 
method called Clustering-based Trilateration (CbT) to deal 
with the trilateration intersection issues to improve the po-
sitioning accuracy.  

2.2.3 Least Square Estimation 

The traditional positioning estimation method for trilat-
eration is a Least Squares (LS) [42] estimation, which min-
imizes the sum of the squares of the residuals of each cal-
culation. The aim of the LS method is to estimate, 𝚯, de-
pending on 𝚿 = 𝚽𝚯. The matrix form can be expressed as, 

      [
𝜓1

⋮
𝜓𝑘

] = [
𝜙1

𝑇

⋮
𝜙𝑘

𝑇
] [

𝜃1

⋮
𝜃𝑛

] (5) 

where 𝚯 is the parameter vector to be estimated, represent-
ing coordinates in the positioning (can be 2D or 3D).  𝜙𝑖

𝑇 =
[𝛼1

𝑖 … 𝛼𝑛
𝑖 ] is the i-th coefficient of 𝚯,  𝜓𝑖 is the i-th corre-

sponding result. Eq. (4) is an example of eq. (5), e.g. 𝜃1 = 𝑥, 
𝜃2 = 𝑦 and 𝚿 is the left side of eq. (4). According to LS, the 
estimation of 𝚯 (noted by �̂�) has a solution: 

      �̂� = (𝚽𝑇𝚽)−1𝚽𝑇𝚿 (6) 

The above solution is applied when 𝚽𝑇𝚽 is not singular. 
If not, singular value decomposition (SVD) should be used 
to calculate �̂� [43].  

2.2.4 Recursive Least Square Estimation  

Other than research focused on finding the intersections 
of ranging circles, an efficient and well-known method to 
estimate the MT location is called Recursive Least Square 
(RLS) estimation [44]. RLS is a popular and practical algo-
rithm used extensively in signal processing, communica-
tions, and automatic control systems [45][46]. Compared to 
the LS method, the RLS algorithm minimizes the sum of 
the squares of the residuals in an online and efficient man-
ner without repeating the least squares estimation at each 
step.  

Based on eq. (5) and (6), let, �̂�𝑘 be the position estima-
tion at current step, 𝑘. As the RLS method recursively esti-
mates the parameter, �̂�𝑘 is deduced from the previous step, 
𝑘 − 1 , �̂�𝑘−1 , namely, �̂�𝑘 = 𝑓(�̂�𝑘−1) . The recursive equa-
tions for RLS are: 

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘ϵ𝑘 (7) 

ϵ𝑘 = 𝜓𝑘 − 𝜙𝑘
𝑇�̂�𝑘−1 (8) 

𝐾𝑘 = 𝑃𝑘𝜙𝑘 (9) 

𝑃𝑘 = 𝑃𝑘−1 −
𝑃𝑘−1𝜙𝑘𝜙𝑘

𝑇𝑃𝑘−1

1 + 𝜙𝑘
𝑇𝑃𝑘−1𝜙𝑘

 (10) 

𝑃𝑘−1 = (𝚽𝑘−1
𝑇 𝚽𝑘−1)−1 (11) 

Here, �̂�0, 𝚽0 should be given.  
Numerous publications on the solution of the trilatera-

tion range equations have been published. [45] presented 
a good example of RLS for trilateration positioning with 
low computational complexity. The algorithm is applied to 
real measurement data of a UWB indoor positioning sys-
tem in 3D space.  

2.3 Geometry Impact on Positioning Accuracy 

Geometry impact is the deployment of AP nodes at 
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known locations impacts the localization performance [47]. 
The positions of AP nodes are also known as landmarks. 
Two main factors influence the positioning performance 
namely, the deployment geometry and the number of land-
marks. An optimized placement design can efficiently 
minimize the localization error. It is better to avoid the er-
ror caused by geometry impact, rather than try to compen-
sate for this later. 

According to [47], it claims that for landmark deploy-
ment, a square shape (4 landmarks) plus one node at the 
center of the mass has been found to be an optimal deploy-
ment. As regards the quantity of nodes, a small number of 
nodes can achieve a good positioning result when there is 
enough coverage of the environment. In [48], optimal 3D 
landmark placement research is presented using the Fisher 
information matrix to find the best positions to place sen-
sors to give the best localization result.  

2.4 System Performance Evaluation 

We assessed the performance of our new algorithm in 
terms of average error, standard deviation, statistical anal-
ysis and compared our performance with the best existing 
well-known methods and with the Cramer-Rao Bound 
(CRB) [36] also known as Cramer-Rao lower Bound 
(CRLB).  

To calculate the CRB, let A be the estimation parameter; 
𝑥, 𝜎 be the estimation and standard deviation of unbiased 
methods. As multiple unbiased estimators are employed, 
the likelihood function is the product of individual proba-
bility distribution functions, pdfs as shown in equation (12) 

p(𝑥; A) = ∏
1

√2𝜋𝜎𝑖

𝑒𝑥𝑝 [−
1

2𝜎𝑖
2 (𝑥 − 𝐴)2]

𝑛

𝑖=0

 (12) 

Where, 𝑛, is the number of unbiased estimators. 𝜎𝑖  is the 
standard deviation of the i-th estimator. According to the 
CRB definition, for any unbiased estimators, the variance 
of A should satisfy the condition, 

var(A)≥
1

𝐼(A)
=

1

−𝐸[
𝜕2 ln p(𝑥; A)

𝜕𝐴2 ]
=

1

∑
1

𝜎𝑖
2

𝑛
𝑖=0

 
(13) 

where 𝐼(A) is the Fisher information criterion [49]. When 
the variance of an unbiased estimator equals var(A), it has 
the lowest mean squared error among all unbiased meth-
ods [50].  

CRB is widely used in wireless sensor network (WSN) 
node localization performance evaluation [51][52]. In an 
application of a RSSI based ranging measurement localiza-
tion system [36], the authors proposed a novel iterative tree 
search algorithm (I-TSA) in comparison with the maxi-
mum likelihood estimator (MLE) and multidimensional 
scaling (MDS) and proposed CRB as a performance refer-
ence to show the advantages and limitations of proposed 
new algorithms and systems. Similarly, [52] introduced a 
Quantized Cramer Rao Bound (Q-CRB) method to adapt 
the CRB, to characterize the behavior of location errors of 
the LS position estimation for various system parameters, 
e.g. granularity levels, measurement accuracies, and local-
ization boundaries. 

 

1 https://www.compulab.com/ 

3 WI-FI RTT RANGING PERFORMANCE ANALYSIS 

AND RANGING CORRECTION 

3.1 Wi-Fi RTT Initiators and Responders  

RTT ranging technology requires an initiator, also called 
a sender, to initiate RTT ranging callbacks and a responder 
to act as ranging target (Fig. 1). A MT with a RTT sup-
ported wireless card was programmed as an initiator and 
a Wi-Fi AP that supports the IEEE 802.11mc protocol was 
configured as a responder. In our experiments, the Google 
Pixel 2 [15] smartphone was chosen as the testbed for the 
initiator and the Wi-Fi Indoor Location Device (WILD) fit2 
[16] was chosen as the responder, because they fully sup-
port the RTT technique.  

If an Android smartphone is programmed as an initia-
tor, the Android Operating System (OS) has currently a 
minimum requirement of version 9.0 (Android Pie) of the 
OS together with a SDK version greater than 28. Note that 
for all OSs later than Android Pie, Google has currently 
limited the scanning rate for Wi-Fi APs broadcasting probe 
requests to 4 times every 2 minutes in active scanning 
mode and only 1 time every 30 minutes in passive scanning 
mode, which is called ‘scan throttling’ [53][54]. Due to this 
limitation on scanning frequency, it is difficult to realize a 
precise IPS using Wi-Fi RSSI based IPSs. Fortunately, the 
RTT ranging approach is an independent callback between 
the MT and AP, which has no such limitation.  

WILD fit2 [16] is a ready-to-use Wi-Fi RTT gateway re-
leased by Compulab1, supporting the IEEE 802.11mc pro-
tocol. A WILD fit2 AP can be configured as a responder to 
work in both 2.4 GHz and 5 GHz bands with three different 
channel bandwidths (20 MHz, 40 MHz, and 80 MHz). Our 
experiments show that the RTT ranging result and signal 
characteristics can be quite different for different channel 
bandwidths. If multiple responders set up ranging 
callbacks with the same initiator simultaneously, the initi-
ator can only process ranging callbacks in a serial manner. 
It means that it will take at least m times the callback pro-
cessing interval to obtain all ranges, where m is the number 
of connected responders. Also, it is important to assign re-
sponders different channel numbers to avoid RTT pro-
cessing conflicts. In this paper, we used four WILD fit2 APs 
(with knowledge of their position coordinates) to imple-
ment our positioning system which could be extended to 
higher numbers of APs to investigate if the system perfor-
mance can be improved in future work.  

3.2 Wi-Fi RTT Ranging Data 

The RTT Ranging data package is used at the initiator 
and each package includes 7 parts in the Android OS. The 
data package structure is shown in Fig. 3.  

MAC  
Address 

Ranging 
Result 

Ranging Standard 
Deviation 

RSSI 
Number of Range 
Calculation Trials 

Number of  
Successful Range 

Calculations 

Time 
Stamp 

Fig. 3.  RTT data package structure  

The MAC address is the identity of the responder. The 
ranging result is the average distance between the initiator 
and responder in units of millimeters calculated by the MT 
OS. It is calculated from 7 successful ranging attempts and  
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the standard deviation is calculated from these results as 
well. The RSSI in units of dBm is the signal level of the 
ranging callbacks. The number of range calculation trials 
and the number of range calculations are recorded as well. 
Finally, the time stamp (generated from the Android OS) 
records the time at which the data package was generated, 
which is recorded with an accuracy of milliseconds. 

We conducted tests to find the basic RTT ranging accu-
racy and characteristics. Both initiator and responder were 
placed at fixed positions and there was a clear line-of-sight 
between them. The test environment was a normal office-
type indoor environment, where both MT and AP were 

placed at a 1.4 m height supported by plastic tripods.  
Fig. 4 shows typical examples of the basic characteristics 

of the RTT ranging results and RSSI obtained. Fig. 4 (a) is a 
histogram of the RTT ranging results, where 2700 data 
package were recorded over 180 seconds giving a normal 
distribution. Fig. 4 (b) shows the RTT ranging results 
chronologically during the 180 seconds of data collection, 
showing that the ranging results did not drift with time. A 
glitch appears after a few seconds which is caused by man-
ual operation of the MT. The corresponding RSSI results 
are shown in Fig. 4 (c) and Fig. 4 (d) showing that the signal 
level is very stable and with no interference or environ-
mental change. The noisy head and tail in Fig. 4 (d) are 
caused by manual operation of the initiator. It shows very 
stable RSSI values during the test, but it is sensitive to in-
terference for example slightly touching the screen of the 
MT.  

3.3 Wi-Fi RTT Ranging Performance for Different 
Channel Bandwidths 

In tests of ranging performance using different channel 
bandwidths, we defined and tested two important charac-
teristics of Wi-Fi RTT ranging: The Minimum Ranging In-
terval Limitation and the Maximum Stable Working Range. 
Firstly, the minimum ranging interval limitation is the 
shortest interval between RTT ranging requests that the in-
itiator can achieve in our testbed. ‘Ranging failed’ reports 
are automatically generated by the Android OS if the rang-
ing request is sent sooner than this limitation. Secondly, the 
maximum stable working range means that, within a cer-
tain distance, the callback link can be established and the 
rate of ‘ranging failed’ reports is less than 20% 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.  Example of basic characteristics of RTT ranging results and 
RSSI. (a) Ranging results histogram, (b) Chronological ranging re-
sults within 180 seconds testing time, (c) RSSI histogram, (d) 
Chronological RSSI within 180 seconds testing time 

(a) (b) (c) 
Fig. 5. RTT ranging test results in different bandwidths, (a) 20 MHz, (b) 40 MHz, (c) 80 MHz 
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(experimental based empirical value). If the initiator and 
responder are placed apart further than the stable working 
range, it is hard for the responder to be detected by the in-
itiator. When the callback link is established successfully 
and then the initiator and responder are moved further 
apart than the stable working range, the RTT responder is 
still capable of providing ranging results but ‘ranging 
failed’ is constantly reported. Both characteristics depend 
on the bandwidths used. Detailed test results are listed in 
Table II.  

A Wi-Fi AP can be configured to work in one of three 
channel bandwidths: 20, 40, 80 MHz. This is the same for 
RTT supported APs. The official document from Android 
gives a statement [55] about the ranging accuracy in differ-
ent channel bandwidths as “a range estimate is expected to 
have the following tolerances: 80 MHz: 2 meters, 40 MHz: 4 me-
ters, 20 MHz: 8 meters”. To investigate the ranging perfor-
mance, we designed experiments to place the initiator at 
fixed spacings every 0.5 meter from 0 to 20 meters along a 
straight line between the initiator and responder. Three 
groups of tests were conducted for 20, 40 and 80 MHz 
channel bandwidths, respectively. At each test position, the 
initiator collected data for 5 minutes with the maximum 
scanning frequency listed in Table II.  

Fig. 5 (a), (b) and (c) shows the ranging performance of 
the 20, 40 and 80 MHz channel bandwidths, respectively. 
The x-axis is the true distance and the y-axis shows the 
measurement results. In each of these figures, the red 
points are the average of ranging results at one test posi-
tion while the red shaded regions show the standard devi-
ations. The small purple dots are the raw ranging data. The 
dashed green line is the ground truth and the blue line is 
the linear fit to the average ranging results. All the lines of 
linear fit are almost parallel to the dashed lines of ground 
truth, which means that the differences between the blue 
line and dashed green line can be identified as a systematic 
bias. The equation of the linear fit is  

𝑟𝑚 = 𝑠 ∙ 𝑟𝑡 + 𝑒𝑠𝑦𝑠                     (14) 

where 𝑟𝑚 is the measured ranging result, 𝑟𝑡  is the ground 

truth, 𝑠 is the slope of the linear fit line and 𝑒𝑠𝑦𝑠 is the sys-

tematic bias. The calculated parameters in eq. 14: slope, 𝑠, 

and systematic bias, 𝑒𝑠𝑦𝑠, are listed in Table II. The system-

atic bias can be removed using eq. (15) derived from eq. (14) 

𝑟 = 𝑟𝑡 =
𝑟𝑚− 𝑒𝑠𝑦𝑠

𝑠
                       (15) 

where 𝑟𝑚 is the ranging result, and  𝑟 is the optimal esti-
mate of range without systematic bias. After removal of the 

systematic bias, the Root Mean Square (RMS) error of rang-
ing results, 𝑒𝑅𝑀𝑆, in different bandwidths has been calcu-
lated (as shown in Table II), which indicates the accuracy 
of the ranging without systematic bias.  

We also plotted histograms of the errors at all test points 
after removal of the systematic biases, then fit normal dis-
tributions to them as shown in Fig. 6 (a), (b) and (c) for 20, 
40 and 80 MHz bandwidths, respectively. All histogram 
bars are set to have the same width in meters. The fitted 
result, red dashed curve, gives a distribution of 
𝑛𝑚~𝑁(𝜇, 𝜎2), where 𝑛𝑚 is the error, 𝜇 is the mean, 𝜎 is the 
standard deviation. Detailed data for these three distribu-
tions is listed in Table II. In Fig.6, the fitted normal distri-
bution is the Gaussian noise model of ranging. So, eq. (14) 
can be rewritten as  

𝑟𝑚 = 𝑠 ∙ 𝑟𝑡 + 𝑒𝑠𝑦𝑠 +  𝑛𝑚                          (16) 

It can be concluded that the ranging performance for 
different channel bandwidths is quite different from each 
other. For different types of environment and conditions, 
the responders should be configured to have the most suit-
able channel bandwidth. For example, 20 MHz is best for 
large indoor open spaces because it has the largest stable 
working range; In the case of large numbers of responders 
in small environments, 80 MHz is more suitable because 
the small ranging interval limitation can give high ranging 
data collection rate. 40 MHz is best as a default setting. 
Therefore, the authors selected the 40 MHz channel band-
width as the configuration for all the following experi-
ments.  

TABLE II 

RTT RANGING PERFORMANCE INDICATOR IN DIFFERENT 

BANDWIDTHS 
Bandwidths  20 MHz 40 MHz 80 MHz 

Minimum Ranging Interval  
Limitation (Maximum Scanning 

Frequency) 

41 ms  
(24 Hz) 

38 ms  
(26 Hz) 

35 ms  
(29 Hz) 

Maximum Stable Working Range 25 m 20 m 14 m 

Linear Fitted Slope, 𝑠 1.007 0.976 1.079 

Systematic Bias, 𝑒𝑠𝑦𝑠 -1.949 m 1.776 m -4.501 m 

RMS Error of Ranging Results 
(without systematic bias), 𝑒𝑅𝑀𝑆  

1.018 m 0.821 m 0.517 m 

Error Probability  
Distribution Function 

(Ranging Noise 
Model) 𝑛𝑚 

Mean, μ -4.2e-16 m 1.7e-15 m 8.3e-17 m 

Standard 
Deviation, 

σ 
1.073 m 0.651 m 0.273 m 

(a) (b) (c) 
Fig. 6.  Error probability distribution function after removal of systematic biases in (a) 20 MHz, (b) 40 MHz, (c) 80 MHz bandwidths. 
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3.4 Systematic Bias Removal Test 

The systematic bias removal process was demonstrated 
and validated by applying it to a positioning system based 
on the trilateration principle of eq. (3) and (4). The position-
ing algorithms were chosen to be two well-known methods 
Least Square (LS) and the Recursive Least Square (RLS) as 
described in 2.2.3 and 2.2.4. We compared the positioning 
results estimated from the raw ranging data and the results 
estimated from ranging results after the systematic bias re-
moval process.  

In this validation test, 4 APs were placed in a square pat-
tern in a 12 𝑚 × 8 𝑚  room and the test was repeated 48 
times at each of 12 different test positions. At each test po-
sition, the MT was oriented horizontally in each of four di-
rections for each of four individual tests. Fig. 7 shows the 
Cumulative Distribution Function, CDF of errors to com-
pare the effect of systematic bias removal with the LS and 
RLS methods, respectively. The blue thick curve and green 
‘×’ marked curve are the RLS positioning result without 
and with systematic bias, respectively. The orange ‘□’ 
marked curve and red ‘∆’ marked curve represent the LS 
result without and with systematic bias, respectively. The 
CDF curves directly show that our bias removal process is 
highly effective in reducing positioning error.  

We also calculated the average error, standard devia-
tion, 90% CDF and 60% CDF for each test, as shown in Ta-
ble III. With systematic bias removal, the average error is 
reduced from 1.744 m to 1.165 m for RLS; and is reduced 
from 2.284 m to 1.494 m for LS. The standard deviation for 
both methods decreases to 0.881 m. Also, the accuracy is 
improved for both algorithms at 60% CDF (RLS: by 0.509 
m, LS: by 0.795 m) and at 90% CDF (RLS: by 0.414 m, LS: 
by 1.015 m). 

Fig. 7. Error CDF comparison between with and without  

systematic bias  

 TABLE III 
EFFECT OF SYSTEMATIC BIAS REMOVAL  

 Average 
Error 

Standard 
Deviation 

90% CDF 60% CDF 

Recursive 
Least Square 1.165 m 0.881 m 1.975 m 1.113 m 

Recursive 
Least Square 

with bias 
1.744 m 1.302 m 2.389 m 1.622 m 

Least Square 1.494 m 0.881 m 2.436 m 1.600 m 

Least Square 
with bias 

2.284 m 1.238 m 3.451 m 2.395 m 

Consequently, we conclude that our new systematic 

bias removal process is highly effective in improving the 

positioning accuracy when it is applied with two existing 

well-known positioning methods. In the following section 

4, the ranging performance indicators, 𝑒𝑠𝑦𝑠 , 𝑒𝑅𝑀𝑆 , μ and σ 

in Table II will be used to compare with our new position-

ing WCCG and CbT algorithms. 

4 WI-FI RTT POSITIONING SYSTEM AND CORE 

ALGORITHMS 

4.1 System Framework 

Many characteristics of Wi-Fi RTT ranging were meas-
ured in real-life experiments in the last section. In this sec-
tion, the authors present a design for a new positioning 
system.  

 
Fig. 8. New positioning system flow chart  

 We designed a three-step positioning approach as 
shown in Fig. 8. Step one is a data collection and pre-pro-
cessing step, where raw data is recorded, and the system-
atic bias is removed. According to the data in Table II, the 
systematic bias can be removed if the working bandwidth 
of the APs are known to the initiator (the working band-
width information can be obtained from the normal broad-
casting Wi-Fi probe request package). Then, step two is the 
positioning approach. This step combines a process of 
Weighted Concentric Circle Generation (WCCG) to deal 
with the issue of no or insufficient intersection points with 
the following process of mean shift CbT. Step three is the 
process of positioning result optimization. A digital filter, 
for example, a Kalman filter, or another algorithm such as 
map matching is applied to improve the positioning re-
sults, especially for dynamic motion trajectory tracking.  

4.2 Weighted Concentric Circle Generation (WCCG) 

In a two-dimensional Euclidian geometry, the location 
can be found by using trilateration to calculate the inter-
section points of circles using the known positions of the 
circle centers with the corresponding measured ranges as 
radii. Two circles have three cases of intersection, which 
are: no actual intersection, one single degenerate point and 
two distinct points. Assuming we have 𝑀 number of rang-
ing results from different responders to one initiator, then 
the number of intersection points should be 2 𝑀𝐶2 =
𝑀(𝑀 − 1)  which includes both actual and imaginary 
points. In our case, as we have four responders, 𝑀 = 4, so 
twelve (six pairs of) intersection points can be determined 
from a single ranging data package. 

 In an ideal situation, when the range measurements are 
stable and sufficiently accurate, each pair of ranging circles 
give at least one actual intersection point. However, due to 
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ranging errors, the intersection points can be calculated ei-
ther at wrong positions or as no actual intersection point. 
In our case, the no intersection case can often happen after 
removal of the systematic bias (1.776 m in the 40 MHz 
bandwidth case), which leads to lack of intersection points 
for the following positioning process. Furthermore, in the 
20 and 80 MHz cases, the negative systematic biases (if 
there is no bias removal process) can make the ranging re-
sult always shorter than the true distance. This may lead to 
a problem that even with systematic bias removal, there is 
still no intersection that can be found. To deal with this is-
sue, we proposed the WCCG method to generate a group 
of concentric circles to increase the chance of finding inter-
section points. 

Assuming the ranging result without systematic bias is 
𝑟, and the ranging error is 𝜀𝑖, then the radius of a concentric 
circle should be 𝑟𝑖 = 𝑟 + 𝜀𝑖. In Fig. 6 and Table II, we have 
a known error probability distribution 𝑛𝑚~𝑁(𝜇, 𝜎2) which 
to determine the set of 𝜺 = [𝜀1, 𝜀2, ⋯ , 𝜀𝑖 , ⋯ , 𝜀𝑘].  

 
Fig. 9. Illustration of Weighted Concentric Circle Generation 

(WCCG) to solve the no intersection issue 
Fig. 9 shows how the concentric circle method can solve 

the problem of no intersection. Both thick circles are two 
ranging results and all dashed thin circles are concentric 
circles to the two blue circles. The two thick circles have no 
intersection, but the dashed thin circles can supply inter-
section points. In this way, the issue of no intersection 
points can be fixed. 

Hence, we need to generate a concentric circle group 
𝑪 = [𝐶1, 𝐶2, ⋯ , 𝐶𝑖 , ⋯ , 𝐶𝑘] to create intersections for the situ-
ation in Fig. 9. All circles in 𝑪 have the same center which 
is the coordinate of the responder and each of 𝐶𝑖  corre-
sponds to a radius, 𝑟𝑖 . Then we use importance sampling 
[56] to generate the set 𝜺 . According to the basic im-
portance sampling principle,  

𝐸𝑝(𝑓) =
1

𝑚
∑

𝑓(𝑋𝑖)𝑝(𝑋𝑖)

𝑞(𝑋𝑖)

𝑚

𝑖=1

 , 𝑋𝑖~𝑞 (17) 

where 𝐸𝑝(∙) denotes the expectation value for 𝑋𝑖~𝑞 , 𝑚 is 
the number of samples in 𝜺. 𝑓(∙) is a function of 𝑋𝑖 . 𝑝(∙) is a 
probability density function which is the desired distribu-
tion; 𝑞(∙) is the probability density function of the proposal 
distribution, 𝑛𝑚~𝑁(𝜇, 𝜎2), which we found in section 3.3. 
Here, 𝑤 = 𝑝/𝑞 is a weight of samples from 𝑞. This converts 
a uniformly distributed random sample distribution to the 
normal distribution fitting the error histogram. 

Fig. 10 is an example of an importance sampling result, 
where the (blue) dashed curve is the proposal distribution, 
the (purple) bars are the sampling result histogram. The 
(green) impulses are randomly generated uniformly 

distributed values. After the process of importance sam-
pling, the red curve, which is the sampling result fitted 
normal distribution, is matched with the distribution we 
wanted. With the methods of importance sampling, there 
should be no limitation to the shapes of proposal distribu-
tions that can be achieved. In future development of 𝜺 gen-
eration, the proposal distribution can be a more compli-
cated model or manually adjusted to get a better position-
ing result. 

 In this way, each single ranging result can generate a 
group of concentric circles, which can be considered as a 
simulation of multiple noisy measurements recorded at a 
fixed position. After the WCCG process, all intersection 
positions will be calculated for the next process of Mean 
shift clustering.  

4.3 Clustering Based Trilateration (CbT)  

 Trilateration requires at least three range measure-
ments corresponding to different circles to determine a lo-
cation. Theoretically, four intersection points can be calcu-
lated from two pairs of circles and two of them should ap-
pear at or congregate at the same location which should be 
the estimated result. Fig. 11 shows the intersections be-
tween three concentric circle groups (each group has 3 cir-
cles), where group A and B have two groups of intersection 
points and the same for groups B and C and; groups A and 
C. There is a total of 27 intersection points assembled in the 
dashed circled area where the optimal estimate of the po-
sition of the initiator should be.  

 

Fig. 11. Schematic diagram intersections of concentric circle 
groups 

In position estimation, the mobile terminal can be esti-
mated to be within the area with the highest point density. 
So, we propose a method to automatically cluster all 

Fig. 10. Example of importance sampling  
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calculated intersection points and find the highest density 
cluster area, as a practical solution to estimate the position 
of the initiator. 

We used the clustering-based algorithm in two different 
types of positioning scenario. In a static positioning sce-
nario, both MT and APs are placed at fixed positions. In 
this case, all ranging results during a certain time are pro-
cessed together to calculate all intersection points and then 
mean shift clustering is used to determine the MT’s loca-
tion. In a dynamic positioning scenario, this method is 
used along with WCCG we proposed in section 4.2. The 
WCCG can supply enough ranging circles based on a sin-
gle range reading. It makes this process more like a simu-
lation of multiple measurements at fixed positions. 

4.3.1 The Principle of Mean Shift Clustering 

The mean shift clustering algorithm is a non-parametric 
iterative algorithm that is widely used in mode recogni-
tion, clustering, etc. [57]. Both the shape and the scale of a 
cluster can be identified based on different kernels, neigh-
borhood functions and mean shift clustering bandwidths. 
It also has an especially important feature that there is no 
requirement for the number of clusters and cluster centers 
to be known a priori, which suits our case as we do not 
know how many clusters we want and where they are. 

 Several parameters and functions should be known or 
pre-set before applying the mean shift clustering algo-
rithm. Firstly, a kernel 𝐾(∙) function which is normally set 
to be a Gaussian Kernel [58].  

𝐾(𝑑) =  
1

√2𝜋𝐵
𝑒−0.5(𝑑/𝐵)2

  (18) 

where 𝑑 is the distance determined by the neighborhood 

function, 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(∙). 𝐵 is called the mean shift clustering 

bandwidth which is a pre-set parameter to determine the 

scale of the cluster. Secondly, sample set 𝜫𝒊 includes all in-

tersection points, 𝒑, calculated from the ranging results. 

We have 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(∙) which is the neighborhood function 

to determine the neighbor points around a sample position 

𝒑, where 𝒑 ∈ 𝜫𝒊. Here, we define  𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(∙) to be the Eu-

clidean distance threshold to select nearby points, so that 

for 𝒑 = (𝑥, 𝑦) we have 

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝒑) = (𝒑−𝒑𝑖) = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)
2   (19) 

      For the first time of clustering, a sample point is ran-
domly selected. Then the mean 𝑚(𝒑), which is also called 
the mean shift, of the intersection points near the randomly 
selected intersection point, is calculated using [57] 

𝑚(𝒑𝑙) =
∑ 𝐾(𝒑𝑙 − 𝒑𝑖

𝑙)𝒑𝑖
𝑙

𝒑𝑖
𝑙∈𝑷𝑖

𝑙

∑ 𝐾(𝒑𝑙 − 𝒑𝑖
𝑙)𝒑𝑖

𝑙∈𝑷𝑖
𝑙

= �̂� = 𝒑𝑙+1   (20) 

The cluster center, 𝒑𝑙, at iteration, 𝑙, is moved to the newly 
calculated position, �̂�, and is used as the input position for 
the next iteration, 𝑚(𝒑𝑙+1). Iterations of, 𝒑, and updating 
continue until 𝒑 = �̂� when the position no longer moves, 
to finally find the cluster center, which is the end of the it-
erations for the first cluster.  

All points in found clusters are excluded from the fol-
lowing iterations to find the next cluster and a new first 
sample point is randomly selected from amongst the re-
maining points. This is repeated several times until all 

samples are classified to different clusters.  

4.3.2 Mean Shift Clustering-based Positioning 

After the clustering process, the cluster with the highest 
density of points is identified as the main cluster with the 
cluster center 𝐶𝑚 = (𝑥𝑚, 𝑦𝑚). However, due to the ranging 
errors, the intersection area we want can be broken into a 
few different clusters close to each other. Hence, we iden-
tified sub-clusters with cluster centers 𝐶𝑠𝑢𝑏

𝑖 = (𝑥𝑠𝑢𝑏
𝑖 , 𝑦𝑠𝑢𝑏

𝑖 ), 
where 𝑖 is the index number of the sub-cluster, which must 
also be considered as including points contributing to the 
optimal estimate. The distance between all clusters and the 
main cluster (center to center) is calculated and if the dis-
tance is shorter than a threshold, 𝑇𝑠𝑒𝑙𝑒𝑐𝑡 , the cluster will be 
named as a sub-cluster. 

The execution of sub-clusters selection requires two pa-
rameters to be specified, which are the mean shift band-
width, 𝐵, and the threshold, 𝑇𝑠𝑒𝑙𝑒𝑐𝑡 . Firstly, we set the mean 
shift bandwidth, 𝐵, to be the RMS Error of Ranging Results 
(without systematic bias), 𝑒𝑅𝑀𝑆, where 𝑒𝑅𝑀𝑆 is listed in Ta-
ble II. It is reasonable to believe that intersection points rep-
resenting the position of the initiator should be assembled 
within a circle cluster with a radius of 𝑒𝑅𝑀𝑆. Another option 
for 𝐵 is to use the standard deviation of the Error Probabil-
ity Distribution function, σ in Table II. However, in our 
case, the tests for 𝑒𝑅𝑀𝑆 and σ showed that 𝑒𝑅𝑀𝑆 gives a bet-
ter clustering result. Secondly, the threshold for sub-clus-
ter, choice 𝑇𝑠𝑒𝑙𝑒𝑐𝑡  is set to be twice the maximum error in 
the Error Probability Distribution function histogram from 
Fig. 6 (respectively for different working bandwidths). It 
means that if the detected cluster center is further than the 
maximum of the ranging error from the main cluster, then 
the points in these clusters are unlikely to represent the in-
itiator position.  

 
Fig. 12. Example of mean shift clustering  

Fig. 12 is an example of a mean shift clustering and po-
sitioning result. In this figure, the (green) square is the 
ground truth of the MT and the (red) ‘×’ symbol is the esti-
mated position by our method. The (blue) thick circle is the 
main cluster, the (red - green) dashed-line circles are the 
sub-clusters and the (green) thin dotted-line circles are the 
rest of the detected clusters which are all identified as false 
intersection point clusters.  

The final estimated position is the average coordinate of 
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all points included in main cluster and all sub-clusters. The 
reason we do not calculate the average position of cluster 
centers as the estimation is that the sub-cluster has fewer 
points than the main cluster. The inclusion of all selected 
points in the calculation means that the greater the number 
of points a cluster has, the greater contribution it has to the 
final estimation.  

4.3.3 Algorithm Pseudo-code 

In Step Two of our system shown in Fig. 8, CbT and 
WCCG are combined for a complete positioning approach. 
We called this combination CbT & WCCG. Fig. 13 shows 
the pseudo-code that implements the entire approach. 
Note that when there is enough ranging data for a static 
position, the WCCG part can be skipped and we can di-
rectly calculate the intersection point group P. 

input  ranging data (continually received or imported as an entire 

dataset); APs coordinates; Systematic bias, 𝑒𝑠𝑦𝑠, 𝑠 

output  MT_position coordinates 

[initialize]  Parameter initialization for WCCG and CbT. 

WCCG: number of circles 𝑘; proposal distribution 𝑛𝑚~𝑁(𝜇, 𝜎2);  

CbT: Mean shift clustering bandwidth 𝐵(𝑒𝑅𝑀𝑆), for sub-cluster se-

lection 𝑇𝑠𝑒𝑙𝑒𝑐𝑡; kernel identification (eq. (18)) 

loop until no import ranging data 

    [weighted concentric circles generation] 

    for each concentric circle 

        𝑤 = 𝑝/𝑞 calculate importance weight refers to eq. (17) 

    end for 

resampling according to weight set 𝒘  

get concentric circle group 𝑪 

    calculate all intersection points set 𝑷 

    [clustering] 

    loop until no points remain in 𝑷 

        randomly select a cluster center 𝒑  

        loop until 𝒑 = �̂� convergence 

            𝑁(𝒑𝑙) = (𝒑𝑙 − 𝒑𝑙−1) 

            𝒑𝑙+1 = 𝑚(𝒑𝑙) = �̂� mean shift refers to eq. (20) 

        loop end 

        saving 𝐶𝑗 and count number of points in it 

        exclude all points in this cluster from 𝑷 

    loop end 

    [main and sub-cluster selection] 

    sort clusters, the cluster with the largest number of points is the          

            main cluster 𝐶𝑚, saving 𝐶𝑚 = (𝑥𝑚, 𝑦𝑚). 
    for all j clusters 

        If  |𝐶𝑗 − 𝐶𝑚| < 𝑇𝑠𝑒𝑙𝑒𝑐𝑡  
            saving 𝐶𝑠𝑢𝑏

𝑖 = 𝐶𝑗 

    end for 

    calculate MT_position = mean (𝐶𝑚 + ∑𝐶𝑠𝑢𝑏
𝑖 ) 

    return MT_position  

end loop 

Fig. 13. Pseudo-code for the CbT & WCCG algorithm 

4.4 CbT and WCCG Configuration Test and 
Computational Cost Evaluation and Comparison 

Our Clustering-based Trilateration (CbT) method re-
quires enough data packages (ranging measurements) to 
find the main cluster clearly and accurately. On the other 

hand, the quantity of concentric circles is strongly associ-
ated with the computational cost in the combination of al-
gorithms CbT & WCCG. Thus, it is important to find an 
optimized quantity of concentric circles to achieve a relia-
ble result at a minimal computational cost. 

We ran evaluation tests in this section based on datasets 
collected from the real experiments. Each dataset has 300 
readings recorded in a 50 s collection time and each read-
ing has ranging results from 4 APs. All tests are offline run-
ning in MATLAB (CORE i7, 6 processors; 16 GB RAM), to 
find the relationship between critical parameters and cal-
culation time in our algorithms. Also, we ran LS and RLS 
algorithms for the same dataset to compare the computa-
tional cost. 

 
Fig. 14. Example of positioning error results versus data collec-

tion time  

 Fig. 14 is a typical example of the positioning error re-
sults as a function of data collection time. Each red average 
error distance data point is calculated by repeatedly apply-
ing our CbT method 50 times while the shaded region 
shows the standard deviation of the results. At first, due to 
the brief time for data collection (a small number of data 
packages), the positioning results are very unstable, but 
both the results and uncertainty reduce to a stable low level 
after a certain number of data collection packets. Through 
multiple tests, we found that it takes about 7 seconds, 
around 40 recordings, on average, to keep the standard de-
viation at a stable low level to give a stable positioning re-
sult. This fact shows that the positioning at a fixed position 
using mean shift clustering requires about 40 data readings 
to give an accurate and robust positioning result and a 
longer data collection duration contributes little to further 
improving the estimation result.  

 On the other hand, the computational cost of CbT & 
WCCG is strongly affected by the parameter settings in 
WCCG and the most important parameter affecting the 
computational cost is the number of concentric circles, 𝑘, 
in the initialization step of the pseudo-code in Fig. 13. Fig. 
15 shows the test results of the relationship between the 
number of concentric circles and the calculation time. The 
calculation time shows a linear increase with a very shal-
low slope when we increase the number of circles by 5 cir-
cles for each test. It means that even if 𝑘 was set as a large 
quantity, e.g. 100, circles for WCCG, the overall computa-
tional cost is still extremely low. 
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 We also compared the computational cost between our 
algorithm and existing well-known algorithms. We did not 
use the computational complexity (e.g. the number of mul-
tiplications) as a way to compare the computational costs 
because the clustering calculation is based on randomly se-
lecting an initial sample for finding each cluster, so that it 
is hard to know how many calculations will be executed 
and how many clusters will be found. Thus, we ran a test 
to compare the CbT, CbT & WCCG, LS, and RLS algo-
rithms on the same computational device to compare the 
time cost, and the results are shown in Table IV. We pro-
grammed the LS trilateration method in MATLAB to solve 
equation (4) and used publicly available MATLAB code for 
the RLS method [45]. We performed 48 different tests with 
each test using 300-readings and calculated the average 
and standard deviations of the ranges. The ranging time in 
this test was 0.16 s per reading. Also, the time required to 
calculate a single reading data point was recorded to find 
the minimum report interval which shows how long our 
algorithm should take to report the positioning result. The 
results are shown in Table IV. Note that this calculation 
time does not include the systematic bias removal process 
which can be used with any of these algorithms. 

TABLE IV 
CALCULATION TIME USING DIFFERENT ALGORITHMS 

 CbT  
CbT & 
WCCG LS RLS 

Average Time for 
300-reading  

Datasets 
0.107 s 1.503 s 102.335 s 0.273 s 

Standard  
Deviation 0.125 s 0.217 s 0.594 s 0.007 s 

Minimum Report  
Interval - 0.074 s 1.396 s 0.033 s 

In table IV, CbT takes the shortest time (0.107 s) to finish 
the estimation for the entire dataset being more than twice 
as fast as the second fastest algorithm RLS. However, a sin-
gle reading is not available to calculate a result for CbT as 
it requires multiple readings for clustering. The minimum 
time required for CbT should be determined by the rang-
ing frequency, which means that it requires time to collect 
around 40 ranging data to give a reliable result. To note, 
both CbT and CbT & WCCG have larger standard devia-
tions than RLS because the clustering process is based on 
randomly selecting the initial sample for cluster detection. 
It means that for each random choice of first sample, the 
calculation time will be different. An important point is 
that CbT & WCCG, LS and RLS have minimum report 

intervals which are less than the ranging frequency sam-
pling time of 0.16s for 4 APs, so all are complete before the 
next reading is taken and, therefore, none incur a penalty 
in speed which is limited by the ranging frequency sam-
pling time.  

4.5 Kalman Filter Implementation 

In step three of our designed system flow chart in Fig. 8, 
a digital filter is used to increase our position accuracy for 
dynamic motion estimation. In this work, we uses a Kal-
man filter [59]. The Kalman filter is recursive, using the 
present input measurements and the previously calculated 
state and its uncertainty matrix; no additional past infor-
mation is needed. Firstly, we define a state vector at time t 
to be:  

𝒔𝒕𝒂𝒕𝒆(𝑡) = [
𝒑(𝑡)

𝒗𝒆(𝑡)
] (21) 

Where the location 𝒑(𝑡) = [𝑥(𝑡) 𝑦(𝑡)]𝑇  and the velocity 
𝒗𝒆(𝑡) = [𝑣𝑥(𝑡) 𝑣𝑦(𝑡)]𝑇 in our 2D scenario which assumes 
that the object is moving at a constant speed. Thus, accord-
ing to [59], to predict the position and velocity, we must 
solve the five equations: 

                         𝒙𝑘
− = 𝑨𝒙𝑘−1 

                         𝑷𝑘
− = 𝑨𝑷𝑘−1𝑨𝑇 + 𝑸 

                         𝑲𝑘 = 𝑷𝑘
−𝑯𝑻(𝑯𝑷𝑘

−𝑯𝑻 + 𝑹)−1 
                         𝒙𝑘 = 𝒙𝑘

− + 𝐾𝑘(𝒛𝑘 − 𝑯𝒙𝑘
−) 

                         𝑷𝑘 = (𝟏 − 𝑲𝑘𝑯)𝑷𝑘
− 

(22) 

where, 𝒙𝑘
−  is the state estimation, and 𝒙𝑘  is the updated 

state estimation. 𝑨 is the transfer matrix between states at 
consecutive time steps, ∆𝑡, which can be expressed as 

𝑨 = [

1 0
0 1

∆𝑡 0
0 ∆𝑡

0 0
0 0

1 0
0 1

] (23) 

𝑩 is the control-input model which is applied to the control 
vector 𝒖𝑘, since we do not have a control-input, 𝒖𝑘 = 0. 𝑷𝒌

− 
is the estimated covariance matrix of the state vector at 
time step 𝑘 based on the output at time step 𝑘 − 1. 𝑸 is the 
covariance matrix of the Gaussian noise in finding the pri-
ori estimation from the transfer matrix 𝑨. 𝑹 is the covari-
ance matrix of the Gaussian noise in the measurements of 
the user’s states. 𝐾𝑘 is the Kalman gain which describes the 
influence of the measurement on the final posteriori esti-
mation. 𝒛𝑘 is the measurement of the user’s position from 
the Wi-Fi RTT positioning system. 𝑯 is the observation ma-
trix which can be set as  

𝑯 = [
1 0 0 0
0 1 0 0

] (24) 

5 EXPERIMENTAL RESULTS AND ANALYSIS  

5.1 Experimental Configuration  

In our experiments for both static and dynamic posi-
tioning accuracy tests, we used APs (WILD fit2) [48] at four 
known positions which all use the 40 MHz bandwidths 
and one MT (Google Pixel 2) [15]. The test environment is 
a 12 m × 8 m office room with 12 test positions as shown in 
Fig. 16 to test the static positioning accuracy. Wi-Fi APs (re-
sponders) are placed at fixed positions whose locations in 
x and y were measured using a laser rangefinder. To mini-
mize any error contributions due to geometry impact, our 

Fig. 15 Relationship between calculation time and number of con-
centric circles.  
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APs were deployed in a square shape [41].  
All experiments were conducted without any people be-

ing present (only two experimenters were in the room dur-
ing the experiment). Line-of-sight is guaranteed between 
all APs and the MT, and the MT is held horizontally on a 
plastic tripod for all static point positioning tests and car-
ried by a remotely controlled robot for the dynamic tests. 
Also, because we only present the positioning performance 
in a 2D plane, the MT and APs are placed at the same alti-
tude, 1.4 m from the floor. As the MT may have different 
performance in different directions, at each test point we 
placed the MT oriented horizontally in four directions and 
carried out four individual tests. 

5.2 Static Positioning Experimental Results  

The static positioning tests were carried out with both 
Wi-Fi APs (responders) and MT (initiator) placed at fixed 
positions. The overall test accuracy calculated by different 
processing approaches is shown in Fig. 17 as a Cumulative 
Distribution Function (CDF). In addition, statistical analy-
sis results e.g. average errors, Root Mean Square (RMS) 
[60] errors, standard deviations, 90 % CDF and 60 % CDF 
are listed in Table V. We also included LS and RLS for com-
parison with our algorithms. Note that the LS and RLS re-
sults in Fig. 17 and Table V have the systematic bias re-
moved which was already shown to be beneficial in Fig. 7 
and Table III. The positioning result of our new clustering-
based method, CbT, varies from one run to another using 
the same input data because the first point to initiate mean 
shift clustering is randomly selected as explained in section 

4.3.1. This results in the accuracy calculation having a 
slight variation so that the accuracy we used for statistical 
analysis was calculated from the average of three inde-
pendent runs of the CbT algorithm. 

 In Fig. 17, the (orange) curve with ‘∆’ symbol shows the 
CDF of the positioning results estimated by CbT and the 
result with systematic bias is shown by the (pink) curve 
with ‘+’ symbols. The (blue) curve with ‘o’ symbols shows 
the CbT & WCCG positioning results and the (red) curve 
with ‘×’ symbol shows the results with systematic bias. The 
(green) curve with ‘’ symbol shows the positioning results 
using the RLS method while the (light blue) curve with ‘.’ 
symbol shows the results using LS.  

From Table V, in terms of average error, the RLS algo-
rithm using our method for systematic bias removal has 
the best result giving a 1.165 m accuracy while CBT & 
WCCG with our method of bias removal gives a close sec-
ond best accuracy with 1.200 m accuracy differing by only 
35 mm. These results are better than all previous Wi-Fi 
based systems reported in [33][61].  

A particularly important advantage of our CbT & 
WCCG method we discovered is that when the systematic 
bias is not removed, we still achieve a 1.299 m accuracy 
which is only 99 mm worse than the accuracy with bias re-
moval. These results show that the CbT & WCCG method 
has a better tolerance for systematic error than all other 
methods. Our new systematic bias removal procedure im-
proves the CBT average error in Table V by 0.67 m and the 
CbT & WCCG average error by 99 mm. Looking back to 
table III our new systematic bias removal procedure im-
proves the LS average error by 0.790 m and the RLS aver-
age error by 0.579 m. 

In terms of the robustness of positioning methods, the 
CbT & WCCG method with systematic bias removal shows 
advantages compared to all other methods in terms of RMS 
error (1.372 m) and CbT with systematic bias removal 
shows advantages compared to all other methods for 
standard deviation (0.657m). The standard deviation val-
ues of CbT with systematic bias removal (0.657m) and CbT 
& WCCG with systematic bias removal (0.673m) are closest 
to that of the Cramer-Rao Bound, CRB (0.236 m), which 
proves that these two methods are the most robust 
amongst the six methods listed in Table V. Nevertheless, 
the standard deviation of all six methods is worse than that 
of CRB, showing that these methods still can be further im-
proved in terms of robustness. 

In the analysis of Fig.17 CDF plot, RLS with our system-
atic bias removal process performs the best for both the 
90% and 60% CDF errors. For the 90% CDF, the CbT with 
systematic bias removed gives 2.063 m and CbT & WCCG 
with systematic bias removed gives 2.012 m compared to 
RLS with systematic bias removed is 1.975 m, although all 
results are close to each other. For the 60% CDF, the CbT 
with systematic bias removed is 1.452 m and the CbT & 
WCCG with systematic bias removed is 1.326 m while RLS 
with systematic bias removed is 1.113 m, which is the best.  

 

Fig.16 Illustration of the experimental environment 

Fig. 17 CDF of static positioning error distance (system bias 

has been removed from all curves except where indicated.) 
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We conclude that if the systematic bias is stable over  
time and repeatable for particular models of smartphones 
and Wi-Fi APs, then they can be calibrated and stored as 
lookup tables for use in our systematic bias removal proce-
dure. In this case our method and the RLS method with our 
systematic bias removal both can achieve satisfactory posi-
tioning accuracy. However, if the systematic bias vary over 
time or with temperature and from model to model and 
manufacturer to manufacturer of smartphones and Wi-Fi 
APs then the best method to use is CbT & WCCG without 
bias removal as this method is very tolerant to systematic 
bias and the additional loss of accuracy compared to the 
RLS with our systematic bias removal is only 0.139 m. 

5.2 Dynamic Motion Tracking Experimental Results 

      In the dynamic motion test, a remotely controlled robot 
with a plastic shelf, shown in Fig. 18, is used to carry the 
initiator smartphone. Also, another camera phone was 
used to record all details such as the start/end time, posi-
tions and a second view of the trajectory to record the 
ground truth of the movement. 

When the smartphone is dy-
namically moved by the robot, 
the data recording position is 
different at each time. So, our 
new algorithms CbT & WCCG 
are used for each data record-
ing to find the ranging result 
and so give a positioning result.  

Since the dynamic motion 
tests are designed to be per-
formed in straight-line trajecto-
ries, a basic Kalman filter was 
used to improve the dynamic 

motion tracking result. Advanced filters such as Extended 
Kalman Filter (EKF) or particle filters can be applied when 
dealing with more complicated motion or motion in a 
three-dimensional space. The test results are presented in 
Table VI. 

Comparing Table VI, with the static positioning results 
of Table V, both RMS and average errors do not reach the 
accuracy level of the static situation but still give an aver-
age error of 1.45 m and a RMS error of 1.82 m. The Kalman 
filter improves the accuracy from 1.45 m to 1.31 m by 0.14 
m and gives an improvement both in RMS error and stand-
ard deviation showing that it can improve the results. 

TABLE VI 
DYNAMIC MOTION TEST RESULTS WITH CBT & WCCG  

(USING A 40 MHZ WORKING BANDWIDTH) 
 Average  

Error 
RMS Error 

Standard 
Deviation  

Dynamic tracking  
result  

1.45 m 1.82 m 1.09 m 

Dynamic result with 
Kalman filter 

1.31 m 1.59 m 0.90 m 

6 CONCLUSIONS AND FUTURE WORK 

This paper gave a detailed description of how to char-
acterize, design and implement the next generation of Wi-
Fi based positioning supporting infrastructure – Fine Time 
Measurement (FTM), also known as Wi-Fi RTT ranging 
and positioning technology. We proposed a ranging meas-
urement system using commercial-off-the-shelf (COTS) 
Wi-Fi RTT devices and smartphones. We also proposed a 
new systematic bias removal process and proved that it 
significantly improves the ranging accuracy and hence, the 
positioning accuracy when Wi-Fi RTT is implemented as 
an indoor positioning system. We also proposed a new po-
sitioning method of Clustering-based Trilateration (CbT) 
with Weighted Concentric Circles Generation (WCCG) to 
deal with the issues of no intersection points in trilateration. 
The accuracy of our method achieves the same level as the 
well-known RLS method if it is also combined with our 
new systematic bias removal process. Our new method of 
CbT & WCCG has a far better standard deviation and more 
closely approaching the CRB limit than any method we in-
vestigated. Also, it is an important discovery that CbT & 
WCCG performs well when there is an unknown or even 
time varying systematic bias so there is no need for prior 
calibration and removal of systematic bias. Finally, our Wi-
Fi RTT ranging based positioning system has an average 
accuracy of around 1.20 m in an office environment for 
static positioning and 1.31 m for dynamic motion using a 
Kalman filter. As a trilateration positioning method, com-
pared to a fingerprint-based system, it completely avoids 
the labor and time intensive initial survey (offline calibra-
tion) step. With knowledge of the position of the router’s 
positions, the entire system can be simply implemented 
and easily brought into successful operation. Furthermore, 
because all experiments and tests are based on COTS de-
vices, it means that it can be directly used in practical 

TABLE V 
STATIC POSITIONING ACCURACY EXPERIMENTAL RESULTS (USING A 40 MHZ WORKING BANDWIDTH) 

 CbT 
CbT  

with Bias 
CbT & WCCG 

CbT & WCCG 

with Bias 

RLS (with bias 

removal) 

LS (with bias  

removal) 
CRB 

Average 
Error 

1.246 m 1.916 m 1.200 m 1.299 m 1.165 m 1.494 m - 

RMS Error 1.405 m  2.149 m 1.372 m 1.491 m 1.455 m 1.730 m - 

Standard 
Deviation 0.657 m 0.983 m 0.673 m 0.741 m 0.881 m 0.881 m 0.236 m 

90% CDF 2.063 m 3.467 m 2.012 m 2.136 m 1.975 m 2.436 m - 

60% CDF 1.452 m 1.93 m 1.326 m 1.373 m 1.113 m 1.600 m - 

Fig. 18. Picture of an ini-
tiator carried by a robot 
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applications in our daily lives today.  
In this paper, we used four WILD fit2 APs (with 

knowledge of their position coordinates in a 2D plane) to 
implement our positioning system which can easily be ex-
tended to higher numbers of APs to investigate the effect 
of this on system performance. Considering the three plots 
in Fig. 5, this performance was obtained with a clear line-
of-sight so an investigation of how obstructions will affect 
the RTT ranging should also be carried out. With the meth-
ods of importance sampling, there should be no limitation 
to the shape of desired noise probability distributions. In 
future development, the desired noise probability distribu-
tion can be a more complex model to obtain a better posi-
tioning result.  
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