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Abstract: This paper discusses the limitations, practicalities and possible technologies for
accomplishing high-capacity broadband transmission systems beyond C+L EDFA band-
width. It also provides a theoretical understanding of the contribution of different noise
source limiting the overall system throughput. © 2020 The Author(s)
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Several milestones of record data throughput using sin-

gle mode fibre (SMF) [1-12] have been reported over
the last few years. Fig. 1, illustrates records data through over distance achieved using different amplification

technologies. Aside of [1], where a capacity of 74 Tbit/s over 6300km was achieved using hybrid distributed
Raman/EDFA (HRE) amplification scheme, all trans-Atlantic and trans-Pacific record data throughput to date
was achieved by using C+L band EDFAs. Despite HREs having a lower noise figure compared with EDFAs, this
amplification technology is not as power efficient as EDFA systems, which makes it less attractive for long-haul
submarine systems that are electrical power feed constrained. C+L band EDFAs systems, empowered by the
combination of coded modulation, nonlinearity compensation and per-channel adaptive-rate decoding combined
with advanced high speed electronics, large-effective area / low-loss transmission fibres, demonstrated a record
capacity of 70.46 Tbit/s over a trans-Atlantic distance of 7,600 km [2] and record capacity of 51.5 Tbit/s over a
trans-Pacific distance of 17,107 km [4].

On a different approach, the records capacities in short, metropolitan and long-haul transmission distances
have been achieved mainly by using amplification technologies that goes beyond C+L band EDFAs. In [6], a
continuous-band 100 nm semiconductor optical amplifier (SOA) enabled a potential SMF capacity of 115.9 Tbit/s
over 100 km. Although the bandwidth is notable, SOAs have a relatively high noise figure compared with EDFAs
and distributed Raman amplifiers, so the system performance decreases rapidly with distance. Through the com-
bination of SOA and distributed backward Raman amplifier, 107 Tbit/s transmitted over 300km (3x100km) was
demonstrated in [9]. Higher data throughput of 120 Tbit/s over 630 km (9x70km) was achieved by using continu-
ous 91 nm hybrid distributed Raman-EDFA amplifier [10] [11]. Can be noted that by using hybrid Raman/EDFA
amplifier, the data throughput and distance are both increased over SOA/Raman amplification scheme, with an ex-
tra 13 Tbit/s capacity over more than 3 times longer transmission distance, whistle using 12 nm less transmission
bandwidth. However, the single model fibre world record capacity of 150.3 Tbit/s transmitted over 40 km [12] was



empowered by extending the transmission bandwidth to S-band wavelengths. It used distributed backward Raman
amplification scheme for S-band wavelengths and EDFA for C and L-band wavelengths; with the transmitted
signal occupying a total bandwidth of approx. 109 nm.

3. Transmission system noise source and their relative contributions
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To study and quantify the impact of each channel i noise source contribution to the received SNRrq,,, Fig. 2
shows the variation of SNR after 630 km with channel wavelength. The experimental transmission system under
investigation is a 312x35 GBd dual polarization 256-ary quadrature amplitude modulation (DP-256QAM) wave-
length division multiplexed (WDM) channels over 9 x70 km single mode fibre spans. The amplification scheme is
hybrid distributed Raman-EDFA (HRE) amplifiers with a continuous gain bandwidth of 91 nm. A data throughput
of 120 Tbit/s over a transmission distance of 630 km is reported in [10, 11] for this transmission system under
investigation. To estimate the nonlinear noise power per channel i, the Gaussian noise model in the presence of
inter-channel stimulated Raman scattering [17] was used; details of the system under investigation and modelling
can be found in [11]. In Fig. 2 the black line is the SNR calculated assuming the presence of linear noise power
only (HRE amplifier noise), the green line shows the SNRy;nx;, which takes into account the linear noise power
of the in line HRE amplifier and nonlinear noise power from the optical fibre. The brown line shows the received
SNRrTy; taking into account all noise contributions (linear, nonlinear and transceiver). The square blue markers
illustrates the experimentally measured SNRry; after 630 km. A penalty in the mean SNR due to nonlinear in-
terference noise was found to be only 2.6 dB, providing a mean link SNR of 24.8 dB. By adding the transceiver
noise, the received SNR further decreases to 19.8 dB; a 5 dB penalty on the SNRyq, due to the transceiver noise
only.

For this specific system and distance, the transceiver constrained-SNR is the major noise source contribu-
tion in limiting the signal quality and therefore the data throughput. In order to investigating the implications
of transceiver noise on the overall system performance for a range of transmission distances, Fig. 3, shows the
ISRS GN-model prediction [17] of the average received SNRy, of the 312 channels as a function of distance



and different transceiver noise contribution. The black line illustrates the model prediction of the mean receiver
SNRTota1 When the transceiver subsystem is ideal (SNRrx = o). The other lines illustrate the transmission system
performance for a range of transceiver noise. This results indicates that, for short, medium and long-haul distance
range (up to 1,000 km) the transceiver noise is the predominant noise source on this transmission system under
investigation. However for ultra-long haul distances, the system performance becomes dominated by the amplifier
and fibre nonlinearity noise.

In order to maximise the transceiver constrained-SNR, it is paramount to understand and quantify it’s limitation
and noise contributions. Several papers [14, 16] have shown that transceiver SNR decreases with the increase of
the channel symbol rate. Mainly due to the clock jitter, the ENOB is a function of frequency and is reduced at
high frequencies, which consequently diminishes the SNR as the channel symbol rate is increased. Therefore,
lower transceiver symbol rates could enable a significant increase in overall data throughput. However, this gain
in achievable information rate per wavelength comes with an increase in the number of transceivers required to
maximise the use of any given transmission bandwidth, which consequently may impact on the overall cost per
bit.
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