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ABSTRACT

The next decade will see the advent of unprecedentedly large cosmological surveys, optimised to

provide data about the gravitational lensing of galaxies. This opens up the possibility of exploring

methods and statistics which are out of reach of current surveys. In this spirit, this thesis focuses on

exploiting three-point and higher-order weak lensing statistics.

First we consider the deflection of three-point correlation functions by weak lensing, a small,

subtle signal which is not accessible with current surveys. We derive a general expression for the

lensing deflection but show that its detection must await even larger and deeper surveys.

We next consider the information content of the weak lensing bispectrum. We confirm that using

the bispectrum as well the power spectrum can help to reduce statistical errors on cosmological

parameters. Moreover we show that the bispectrum can help mitigate two major systematic

uncertainties, the intrinsic alignment of galaxies and redshift errors. We find that these affect

the power spectrum and bispectrum differently, and that using the bispectrum can facilitate self-

calibration. This is a promising finding which could be extended to other systematics.

Future surveys will probe small, non-linear scales so in a Bayesian weak lensing analysis it may

not be valid to approximate the likelihood as Gaussian. We discuss theoretical alternatives in Fourier

space and show that the real space weak lensing likelihood is also theoretically non-Gaussian. In

practice if a Gaussian likelihood is assumed then the covariance matrix should be calculated at a

fixed point in parameter space. Working to the accuracy required by future surveys, it is important

to choose this point optimally. We develop an emulator for the weak lensing power spectrum

covariance and demonstrate an iterative method to determine this fixed cosmology in a principled

way.
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IMPACT STATEMENT

This thesis is part of a body of work currently being undertaken across the cosmology community to

prepare for the next generation of galaxy surveys, including Euclid, the Dark Energy Spectroscopic

Instrument and the Rubin Observatory Legacy Survey of Space and Time. The science goals of

these surveys focus on some profound mysteries about the Universe, in particular the nature and

properties of dark matter and dark energy. To this end the surveys will look deeper into the Universe,

and hence farther back in time, than current surveys do, gathering an unprecedented wealth of

highly accurate and detailed data about tens of billions of galaxies. This exquisitely accurate data

will transform weak gravitational lensing, the subject of this thesis, into one of a handful of truly

precision cosmological probes.

These next-generation surveys are financed by public investment of hundreds of millions

of dollars from countries across the globe; their data is an extremely valuable resource which

cosmologists have an obligation to exploit fully. This thesis focuses on ways to get more out of the

new data. We may be able to detect signals which cannot be measured in current surveys. Equally

it may become practicable to obtain new information from higher-order statistics which at present

are not viable. These statistics do not require additional data, just more complex analysis of data

which will be collected anyway for conventional analysis. Even more fruitfully, as this thesis shows,

higher-order statistics provide a promising new way of handling systematic uncertainties in weak

lensing, again without the need for extra data. This is important because controlling systematics

will become more pressing as abundant data reduces statistical errors. Finally, new insights can

be gained by taking into account fine details which were previously inaccessible or by relaxing

simplifying assumptions.

This thesis considers examples of all these possibilities for extracting extra value from future

weak lensing surveys and paves the way for three-point statistics to become a standard tool for

analysing weak lensing data. Similar methods may also be feasible for other cosmological probes.
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THESIS ROADMAP

The first chapter of this thesis is a three-part overview of necessary background to the rest of the

work. The first part outlines fundamental topics in modern cosmology, including some aspects of its

historical development. The second introduces the main cosmological probes which are referred to

in subsequent chapters, in particular weak gravitational lensing. The third part summarises methods

and techniques which are used later in the thesis.

In Chapter 2 we discuss the weak lensing deflection of three-point correlation functions. This is

a potential source of information which is not accessible through current surveys. This chapter is

based on Pyne, S., Joachimi, B. and Peiris, H.V. (2017), ’Weak lensing deflection of three-point

correlation functions’, Journal of Cosmology and Astroparticle Physics 2017(12), 043.

Chapter 3 investigates the information content of the weak lensing bispectrum. This is again in

three parts. The first is a theoretical account of the composition of the weak lensing bispectrum

covariance matrix. In the second part we investigate the information content of the weak lensing

bispectrum using Fisher matrix analysis. Finally we explore whether the bispectrum can help to

mitigate two major sources of systematic uncertainty in weak lensing, intrinsic alignments and

redshift errors.

Chapter 4 covers several slightly eclectic topics related to likelihoods and covariance matrices

used in Bayesian estimation of cosmological parameters. First we look theoretically at the

Gaussianity of power spectrum likelihoods and review alternative non-Gaussian likelihoods. We

also investigate a hierarchical model of weak lensing two-point correlation function likelihoods.

Finally we discuss the parameter-dependence of the power spectrum covariance matrix and the

cosmology at which the covariance matrix should be calculated.

The final chapter draws together conclusions from the whole thesis and discusses the potential

impact of the work for next-generation surveys.
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1 Introduction

1.1 Cosmology

1.1.1 Historical perspective

Cosmology is the study of the evolution, structure and contents of the Universe on the largest

scales. Humans have speculated about the origin and nature of the Universe since the dawn of

civilisation, but it is only since the scientific revolution of the past few hundred years that we have

been able to propose consistent theories about the Universe as a whole, culminating in Einstein’s

development of general relativity in the early twentieth century. And it is only in the past 30 years

or so that we have had plentiful accurate data with which to test these theories. This has led to

spectacular breakthroughs in our understanding of cosmology and the development of a generally

agreed ‘concordance’model – the Lambda Cold Dark Matter (ΛCDM) model. Remarkably this

model contains only a handful of free parameters but can nevertheless explain most of the observed

features of the Universe.

Despite these achievements there are many glaring gaps in our understanding. In particular we

do not understand either dark matter – which appears to make up 85% of the matter in the Universe

but interacts with ‘normal’ matter only through gravity – or so-called dark energy, which is causing

the expansion of the Universe to accelerate. Solving these mysteries requires ever greater ingenuity

in analysis and inference. This is the rationale for the next generation of cosmological probes

which will yield unprecedented volumes of high-precision data and demand equally sophisticated

analytical tools.

1.1.2 General relativity and the Friedmann equations

It is now over a hundred years since Einstein first formulated general relativity (Einstein 1915b)

but this theory still underpins our understanding of the Universe. Over the years its predictions

have been substantiated by numerous observations, from Einstein’s own explanation of Mercury’s

apparently anomalous orbit (Einstein 1915a), through Eddington’s measurements of the deflection

of starlight during the 1919 solar eclipse (Eddington 1919), down to the first observation of

extragalactic gravitational lensing in 1979 (Walsh et al. 1979) and the detection of gravitational
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waves a century after Einstein’s ground-breaking paper (Abbott et al. 2016). The key insight of

general relativity is that the gravitational field is not caused by a classical Newtonian gravitational

force but by the geometrical properties of spacetime. The theory relates the curvature of spacetime

to the matter and energy content of the Universe via Einstein’s field equations (Einstein 1915c):

Gµν =
8πG

c4
Tµν . (1.1)

G is Newton’s gravitational constant and c is the speed of light in a vacuum.

The left-hand side of Equation 1.1 describes the curvature of spacetime through the Einstein

tensor Gµν . Associated with this is the metric which describes how coordinate distances are related

to physical distances, or in other words what the geometry of the Universe is,

ds2 = gµνdxµdxν , (1.2)

where gµν is the metric tensor and we use the Einstein summation convention to sum over repeated

indices.

The right-hand side of Equation 1.1 describes the constituents of the Universe through the

energy–momentum tensor Tµν . Fundamentally the equation as a whole says that the gravitational

field is sourced by the energy and matter content of the Universe, and in turn the geometry of

spacetime determines the dynamics of matter and energy (Ford and Wheeler 1998).

Equation 1.1 is a very general set of 10 coupled non-linear second-order partial differential

equations which could describe many universes. In the most general case it is difficult or impossible

to find solutions and Einstein initially did not apply his results to the Universe as a whole. However,

soon after the seminal 1915 paper, others realised that the equations could be solved in specific cases

which assumed various symmetries. In 1916 Schwarzchild published a solution for the case of a

spherically symmetric spacetime surrounding a massive object (Schwarzschild 1916). Then in 1922

Friedmann found a solution for a spatially symmetric system which evolved in time (Friedmann

1922), and in 1927 Lemaı̂tre also published a solution for an expanding universe (Lemaı̂tre 1927).

Similar solutions were also found independently by Robertson (Robertson 1935) and by Walker

(Walker 1937).

Einstein embraced these ideas for simplifying his equations and applying them to the observed

Universe. In particular he readily accepted the spatial symmetries which Friedmann had explored

because observational evidence suggested that on large scales the Universe is homogeneous (there

is no preferred observing position) and isotropic (it looks the same in all directions). This is now
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known as the Cosmological Principle. (Clearly this principle does not apply on smaller scales, for

example of individual galaxies, and on those scales we need to introduce additional assumptions

and complexity). However, like many other scientists of the time, Einstein believed (without strong

evidence) that the Universe had to be static and eternal. He therefore viewed evolving solutions as

of only theoretical interest, and to describe a static universe he included an arbitrary ‘cosmological

constant’, Λ, in his equations, to give

Gµν + Λgµν =
8πG

c4
Tµν . (1.3)

Einstein inserted this on the left-hand side although he did not give strong reasons for this choice,

apart from floating the idea that it is effectively a constant of integration (O’Raifeartaigh et al.

2017). The term can equivalently be considered to represent vacuum energy, the energy density of

empty space, and subtracted from the right-hand side.

Unknown to Einstein, by 1915 Slipher had measured the spectra of a sample of galaxies and

observed that in most cases their spectral lines were redshifted so the galaxies were apparently

moving away from us (Slipher 1915). This was confirmed by other observers, leading to gradual

acceptance that the Universe is in fact expanding (O’Raifeartaigh 2013). Subsequently Lemaı̂tre

noted that in an expanding universe recession velocities would be proportional to distance from

the observer, and estimated the constant of proportionality (Lemaı̂tre 1927). A little later Hubble

independently produced an improved estimate of this parameter using his own more accurate

observations, especially of distances (Hubble 1929; Hubble and Humason 1931). The relationship

between distance and recession velocity is now known as the Hubble–Lemaı̂tre Law.

Thus by the early 1930s there was increasing evidence that we live in an expanding universe.

At this stage Einstein dropped the cosmological constant, which he is said to have described as his

‘biggest blunder’, although this may be apocryphal (O’Raifeartaigh, Cormac and Mitton, Simon

2018). Since then attention has focused on time-dependent solutions to the field equations.

To parameterise the time evolution of the spatial part of the metric we can introduce the scale

factor a(t), and we can also parameterise the (unknown) curvature of spacetime. This leads to the

metric which describes a homogeneous, isotropic and evolving universe, the Friedmann–Lemaı̂tre–

Robertson–Walker (FLRW) metric:

ds2 = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, (1.4)

25



where t is coordinate time, r, θ, φ are spherical polar coordinates with dΩ2 = dθ2 + sin2 θdφ2,

and K quantifies the curvature (K = −1, 0,+1 according to whether the Universe is open, flat

or closed). It is easy to see that this metric is in fact isotropic since the time and space parts are

separated, and also homogeneous because it has translational symmetry: it is the same at every

point.

It is often convenient to separate the spatial part of the metric into radial and angular parts,

using the comoving coordinate χ defined by

dχ =
dr√

1−Kr2
. (1.5)

Integrating this gives

r = fK(χ) , (1.6)

where fK(χ) is the comoving angular distance which depends on the curvature:

fK(χ) =


(−K)−1/2 sinh((−K)−1/2χ), if K < 0

χ, if K = 0

K−1/2 sin(K−1/2χ), if K > 0 .

(1.7)

The FLRW metric can then be written as

ds2 = c2dt2 − a2(t)[dχ2 + f2
K(χ)dΩ2] . (1.8)

Returning to Equation 1.1, the right-hand side can be interpreted by assuming that the individual

components of the Universe act like perfect fluids. This is a reasonable assumption given what we

know about the constituents of the Universe. With this interpretation, T 0
0 quantifies the density, ρ,

T 0
i is the momentum density and T ij is the pressure P for i = j, (i, j = 1, 2, 3) and zero if i 6= j.
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Thus the energy–momentum tensor takes the form

Tµν =


ρc2 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (1.9)

If we now substitute Equation 1.9 into Equation 1.1, together with the FLRW metric, we obtain

the Friedmann equations. The time-time component produces the first Friedmann equation:

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
, (1.10)

where the overdot denotes differentiation with respect to time. The space-space component of

Equation 1.1 gives us the second Friedmann equation :

ä

a
= −4πG

3

(
ρ+

3P

c2

)
. (1.11)

The quantity ȧ/a is the Hubble parameter H(t). This is a crucial parameter for modern cosmology.

Its value is known very much more accurately than in Hubble’s day, but this greater accuracy has

led to tension between measurements of its present-day value H0 based on local (recent) data and

predictions based on distant (past) data. Figure 1.1, taken from Verde et al. (2019), shows recent

estimates of H0 based on multiple, mainly independent, methods. The approximately 5σ tension

suggests that there may be a genuine discrepancy between the early and late values which is not

due to unknown systematic errors. Notably, inferences from Planck data rely on the assumed

cosmological model whereas the late-Universe estimates are direct measurements. This could point

to the need to revise the model.

The existence of uncertainty in the measurement ofH0 is often expressed through the parameter

h with H0 = 100h km s−1Mpc−1.

The second Friedmann equation tells us about the rate of change of the Universe’s expansion.

Until the late 1990s it was assumed that the expansion would decelerate under the influence of

gravity. However two ground-breaking experiments by Riess et al. (1998) and Perlmutter et al.

(1999) measured the distances to Type1a supernovae and provided persuasive, but unexpected,

evidence that the Universe is not only expanding, but accelerating. For this reason cosmologists
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Figure 1.1: Recent estimates of H0, the present-day value of the Hubble parameter. From top to
bottom: two independent early-Universe predictions, multiple late-Universe measurements using a
variety of methods, and selected combinations of the late-Universe estimates. From Verde et al.
(2019) which provides full details of sources and methods.

re-introduced the cosmological constant, but now by convention added it to the right-hand side of

the Einstein equation, consistent with expansion caused by the vacuum energy density. In practice

the cause of the expansion is unknown, and we reflect this ignorance by the term ‘dark energy’.

If dark energy is indeed equivalent to the vacuum energy, it can be described by a cosmological

constant and has equation of state

w ≡ P

ρc2
(1.12)

= −1 .
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However it is also possible that dark energy evolves with time and it is common to parameterise the

dark energy equation of state in terms of a linear model:

w = w0 + (1− a)wa , (1.13)

where w0 is the value of w at z = 0 and a is the scale factor. Determining the dark energy equation

of state is a major goal of current cosmological experiments.

With the introduction of a cosmological constant the Friedmann equations become:

(
ȧ

a

)2

=
8πG

3
ρ− κc2

a2
+

Λc2

3
, (1.14)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
. (1.15)

1.1.3 Cosmological redshift

From Slipher and Hubble onwards it has been observed that features in the spectra of more distant

objects are shifted to longer wavelengths compared to their restframe positions. These shifts arise

because the wavelength of light is stretched by the expansion of the Universe. So instead of using

the scale factor to parameterise the expansion of the Universe it is common to use the redshift z,

defined as

z =
λobs − λem

λem
, (1.16)

which is more directly related to observable quantities. Now consider a photon emitted from the

source at time tem and observed at time tobs and construct the coordinate system so the observer is

at the origin. The photon travels along a null geodesic so that ds2 = 0 and Equation 1.7 gives us

c2dt2 − a2(t)dχ2 = 0 . (1.17)

Thus the comoving distance χ between the source and observer is

χ =

∫ tobs

tem

c dt

a(t)
. (1.18)
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By definition this is constant, so

dtobs

dtem
=
aobs

aem
. (1.19)

The time intervals are inversely proportional to the frequency of the light and hence proportional to

the wavelength. So we have

λobs

λem
=
aobs

aem
. (1.20)

If we take the scale factor today to be equal to 1 this leads to the relationship between scale factor

and redshift

aem =
1

1 + zem
. (1.21)

1.1.4 Components of the Universe

The components of the Universe can be categorised as:

• relativistic species, mainly radiation but also neutrinos;

• non-relativistic matter;

• dark energy;

• spatial curvature component.

To understand how the total density of all components changes as the scale factor changes we

can use the energy-momentum tensor Tµν (Equation 1.9). Energy conservation requires that the

covariant time derivative of Tµν is zero. Thus we obtain the continuity equation

∂ρ

∂t
+ 3

ȧ

a

(
ρ+

P

c2

)
= 0 . (1.22)

This equation can be decomposed into separate equations for each component. For pressureless

matter P = 0 by definition and we get ρm ∝ a−3. Radiation has P = ρc2/3 which leads to

ρr ∝ a−4. Finally, the density of dark energy does not evolve with time and so is independent of

the scale factor.

We can thus see that the composition of the total energy density has changed significantly over

the history of the Universe as in Figure 1.2. At early times the Universe was radiation-dominated
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Figure 1.2: Schematic diagram of the evolution of radiation, matter and dark energy densities.

Epoch Density ρ(a) Scale factor a(t) Hubble parameter H(t) ≡ ȧ/a
Radiation domination ∝ a−4 ∝ t1/2 = 1

2t

Matter domination ∝ a−3 ∝ t2/3 = 2
3t

Dark energy domination constant ∝ exp(H0t) H0 =
√

Λ
3

Table 1.1: The evolution of the density, scale factor and Hubble parameter at different epochs.

but because the energy density of radiation fell away faster than that of matter, the matter and

radiation densities subsequently equalised. As the Universe expanded even more, the energy density

of non-relativistic matter fell further. Eventually it will be less than the density of dark energy.

Intriguingly, at the present epoch the energy densities of matter and of dark energy are similar. This

is known as the coincidence problem – why should we happen to exist at a time when the Universe

is changing from matter domination to dark energy domination?

It is also useful to see how the scale factor evolves in a spatially flat Universe. For w 6= −1 the

scale factor satisfies

a(t) = a0t
2/(3(w+1)) , (1.23)

where w is given by the relevant equation of state (Equation 1.13) which relates pressure and

density. For radiation w = 1/3; for pressureless matter w = 0; and for vacuum energy w = −1.

Thus during the radiation-dominated era a(t) ∝ t1/2, when matter dominates a(t) ∝ t2/3, and

when dark energy dominates a(t) grows exponentially.

Table 1.1 summarises the evolution of the Universe at each epoch.
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The total density of the Universe can alternatively be quantified as

Ω =
8πG

3H2
ρ =

ρ

ρc
. (1.24)

The quantity ρc = 3H2/8πG is called the critical density. This density was originally defined to

help investigate the curvature of a universe with no dark energy. If the total density is smaller than

ρc such a universe is open, whereas if the density is greater than ρc the universe will be closed. If

the total density exactly equals the critical density then the universe is flat. Observational evidence

from the cosmic microwave background (CMB) (Akrami et al. 2018) suggests that the Universe

today is very nearly flat (see Section 1.2.1). This in turn implies that at early times the total density

must have been even closer to the critical density. This is known as the ‘flatness’ problem. We do

not understand how or why the initial density could be so finely tuned to the critical value.

Density parameters for individual components satisfy:

Ωm =
8πG

3H2
ρm , (1.25)

Ωr =
8πG

3H2
ρr , (1.26)

ΩΛ =
Λc2

3H2
, (1.27)

ΩK =
−Kc2
H2

. (1.28)

Determining the current values of these parameters is another important concern of modern

cosmology.

The first Friedmann equation, Equation 1.10, can be re-written in terms of the density parameters

as

H2

H2
0

= Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + ΩK,0(1 + z)2 + ΩΛ , (1.29)

where the subscript 0 indicates the value of a parameter at the present time.

1.1.5 Evolution of the Universe

The expansion of the Universe implies that it was originally smaller and also hotter. So the evolution

of the Universe is broadly a story of expansion and cooling. Important events which contributed to

the growth of large-scale structure are:
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• There was an early period of exponential expansion known as inflation.

• As the Universe cooled, protons and neutrons formed, together with electrons and neutrinos.

Following this nucleosynthesis occurred, creating heavier nuclei – mainly helium but also

some lithium – from protons and neutrons. This process ended when the Universe became

too cool for fusion to take place. The Universe then existed as an opaque plasma of photons,

nuclei and electrons, plus neutrinos.

• The energy density of radiation fell faster than the energy density of matter as the universe

cooled, and at z ≈ 3400 the two densities became equal. After this the Universe was

matter-dominated, which allowed the eventual development of large-scale structure.

• The Universe cooled further so that atoms were able to form. This is known as recombination

(even though no previous combination had taken place).

• Hydrogen atoms generally formed in excited states but quickly fell to the ground state,

emitting photons. This is known as decoupling and occurred at a redshift z ≈ 1100. The

decoupled photons were able to stream away from the neutral hydrogen.

• Once photons no longer scattered off electrons they could travel freely through the Universe.

The expansion of the Universe has caused the wavelength of photons from the last scattering

surface to increase so we now observe them at microwave frequencies: the cosmic microwave

background.

• Throughout this time dark matter, which feels only gravitational effects, had gathered into

halos and filaments. After recombination baryonic matter fell into the dark matter potential

wells and eventually the first stars and galaxies began to form.

• As the Universe expanded and cooled further galaxies, clusters and superclusters formed,

leading to the local Universe we see today.

• The dark energy density is becoming increasingly dominant, so expansion will continue

exponentially and structures which are not gravitationally bound will be increasingly isolated

from each other.

1.1.6 Structure formation and perturbation theory

Study of the CMB tells us that after recombination the Universe was very homogeneous and

isotropic, and the dark matter density field had the statistical properties of a Gaussian random
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field. On scales of several hundred megaparsecs the Universe is still statistically homogeneous and

isotropic. However on smaller scales galaxy surveys reveal a rich nonlinear structure of galaxies,

clusters and superclusters, filaments and voids. To understand how these nonlinear structures arose

we need to explore how gravitational instability acts in an expanding universe. There are many

excellent expositions of the development of nonlinear structure and its description by perturbation

theory; this section draws in particular on Mukhanov et al. (1992), Jain and Bertschinger (1993)

and Bernardeau et al. (2002).

After recombination the Universe was dominated by dark matter which interacted gravitationally

with baryons. The scales of cosmological interest are much larger than the Jeans length so that

gravitational collapse dominates over pressure. Thus in a simplified model the combined dark

matter-baryon fluid can be treated as a non-relativistic, pressureless ideal fluid with zero vorticity.

Moreover we are interested only in scales much smaller than the Hubble distance ct where t is the

age of the Universe. In these circumstances Newtonian theory is an adequate description of gravity.

In a static universe the equations of motion for the fluid can be expressed in terms of physical

coordinates r as

∂ρ

∂t
+∇r · (ρv) = 0 , (1.30)

∂v

∂t
+ (v · ∇r)v +∇rΦ = −∇rP

ρc2
, (1.31)

∇2
rΦ = 4πGρ , (1.32)

where ρ is the density, v = dr/dt is the velocity of the fluid, P is the pressure, and Φ is the

gravitational potential. These three equations are respectively the continuity equation which

expresses conservation of mass, the Euler equation which encapsulates momentum conservation,

and the Poisson equation which describes the relationship between the gravitational potential and

the matter density. We can assume that on large scales P � ρc2 for the dominant dark matter, so

the right-hand side of Equation 1.31 can be set to zero.

If we now consider an expanding universe, it is helpful to change to comoving coordinates

x = r/a(t). The velocity of the fluid is now the sum of its peculiar velocity u and the velocity due

to the Hubble flow

v(x, t) = a(t)H(t)x + u(x, t) . (1.33)
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The spatial gradients with respect to r and x are related by

∇r =
1

a
∇x . (1.34)

We also change to conformal time τ = t/a. Finally, we are interested in the fate of small fluctuations

in the density field so we define the density contrast δ(x, τ) by ρ(x, τ) = ρ̄(τ)(1 + δ(x, τ)) where

ρ̄ is the mean (background) density.

With these changes, and keeping only first order terms in δ, Equations 1.30 to 1.32 become

∂δ(x, τ)

∂τ
+∇x · u(x, τ) = 0 , (1.35)

∂u(x, τ)

∂τ
+H(τ)u(x, τ) +∇xΦ(x, τ) = 0 , (1.36)

∇2
xΦ(x, τ) = 4πa2(τ)Gρ̄δ(x, τ) , (1.37)

whereH = aH is the conformal expansion rate.

We now change to work in Fourier space. While fluctuations remain small different Fourier

modes evolve independently but eventually perturbations grow sufficiently for coupling to occur

between modes. Following Bernardeau et al. (2002) we take the divergence of Equation 1.36,

arriving at

∂δ̃(k, τ)

∂τ
+ θ̃(k, τ) = −

∫
d3k1d3k2δD(k− k12)α(k1,k2)θ̃(k1, τ)δ̃(k2, τ) , (1.38)

∂θ̃(k, τ)

∂τ
+H(τ)θ̃(k, τ) +

3

2
H2(τ)δ̃(k, τ) = −

∫
d3k1d3k2δD(k− k12)

× β(k1,k2)θ̃(k1, τ)θ̃(k2, τ) , (1.39)

where θ ≡ ∇x · u, k12 = k1 + k2 and δD is the Dirac delta function. At large scales we can

linearise these equations, retaining only terms of order δ. However this is not valid at small scales,

and here the functions

α(k1,k2) =
k12 · k1

k2
1

, (1.40)

β(k1,k2) =
k2

12(k1 · k2)

2k2
1k

2
2

(1.41)
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encode the coupling between separate Fourier modes. Thus the nonlinear evolution of δ̃(k, τ) and

θ̃(k, τ) depends on all pairs of wavevectors k1 and k2 whose sum is k, consistent with translational

invariance in a spatially homogeneous Universe (Goroff et al. 1986; Fry 1984).

For an Einstein-de Sitter Universe in which Ωm = 1 and ΩΛ = 0 it is possible to find

perturbative solutions to Equations 1.38 and 1.39 which separate the scale- and time-dependencies

(Bernardeau et al. 2002):

δ̃(k, τ) =
∞∑
n=1

an(τ)δn(k) , (1.42)

θ̃(k, τ) = −H(τ)

∞∑
n=1

an(τ)θn(k) . (1.43)

These perturbative expansions are not valid for a general universe in which Ωm 6= 1 or ΩΛ 6= 0.

However Scoccimarro et al. (1998) showed that, even in the general case, with reasonable

assumptions it is possible to find a separable solution to any order which is valid at the percent

level.

When a(τ) is small the first terms of Equations 1.42 and 1.43 are dominant. Also from the

continuity equation θ1(k) = δ1(k) so in the linear regime the growth of fluctuations depends only

on δ1(k).

Inserting Equations 1.42 and 1.43 into Equations 1.38 and 1.39 gives:

δn(k) =

∫
d3q1 . . .

∫
d3qnδD(k− q1...n)Fn(q1, . . . ,qn)δ1(q1) . . . δ1(qn) , (1.44)

θn(k) =

∫
d3q1 . . .

∫
d3qnδD(k− q1...n)Gn(q1, . . . ,qn)δ1(q1) . . . δ1(qn) , (1.45)

where Fn and Gn are constructed from the mode-coupling functions α(k1,k2) and β(k1,k2). For

n ≥ 2 these functions obey the recursion relations (Goroff et al. 1986; Jain and Bertschinger 1993):
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Fn(q1 . . .qn) =
n−1∑
m=1

Gm(q1 . . .qn)

(2n+ 3)(n− 1)

[
(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . ,qn)

+ 2β(k1,k2)Gn−m(qm+1, . . . ,qn)

]
,

(1.46)

Gn(q1 . . .qn) =
n−1∑
m=1

Gm(q1, . . . ,qn)

(2n+ 3)(n− 1)

[
3α(k1,k2)Fn−m(qm+1, . . . ,qn)

+ 2nβ(k1,k2)Gn−m(qm+1, . . . ,qn)

]
,

(1.47)

where k1 ≡ q1 + . . .+ qm and k2 ≡ qm+1 + . . .+ qn.

To explore nonlinear structure formation we need at least n = 2. It is often convenient to use

versions of the kernels Fn and Gn which are symmetric in k1 and k2. The symmetrised kernels are

obtained by summing over all possible permutations of the set π = {1 . . . n} to give (Pielorz et al.

2010)

F (s)
n (q1, . . . ,qn) =

1

n!

∑
π

Fn(qπ(1), . . . ,qπ(n)) , (1.48)

G(s)
n (q1, . . . ,qn) =

1

n!

∑
π

Gn(qπ(1), . . . ,qπ(n)) , (1.49)

The symmetrised kernels for n = 2 are:

F
(s)
2 (q1,q2) =

5

7
+

1

2

q1 · q2(q2
1 + q2

2)

q2
1q

2
2

+
2

7

(q1 · q2)2

q2
1q

2
2

, (1.50)

G
(s)
2 (q1,q2) =

3

7
+

1

2

q1 · q2(q2
1 + q2

2)

q2
1q

2
2

+
4

7

(q1 · q2)2

q2
1q

2
2

, (1.51)

and for n = 3:

F
(s)
3 (q1,q2,q3) (1.52)

=
7

54
[α(q1,q23)F

(s)
2 (q2,q3) + α(q2,q13)F

(s)
2 (q1,q3) + α(q3,q12)F

(s)
2 (q1,q2)]

+
4

54
[β(q1,q23)G

(s)
2 (q2,q3) + β(q2,q13)G

(s)
2 (q1,q3) + β(q3,q12)G

(s)
2 (q1,q2)]

+
7

54
[α(q12,q3)G

(s)
2 (q1,q2) + α(q13,q2)G

(s)
2 (q1,q3) + α(q23,q1)G

(s)
2 (q2,q3)] .
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1.1.7 The matter power spectrum

The matter power spectrum is a key theoretical and observational quantity which describes the

distribution of matter as a function of scale. Figure 1.3 shows the inferred linear matter power

spectrum at z = 0 based on several independent probes together with the predictions of the ΛCDM

model. The observation-based estimates are very consistent especially at intermediate scales and

the fit between model and observations is extremely good.

Figure 1.3: The linear matter power spectrum at z = 0 inferred from different cosmological probes.
The black line is the prediction from the ΛCDM model. From Figure 19 of Akrami et al. (2018).

The broad shape of the linear power spectrum shown in Figure 1.3 can be explained by

considering the evolution of density fluctuations in the early Universe. Inflationary theory predicts

that the primordial power spectrum is given by a power law P (k) ∝ kns . (Observation tells us that

ns, the scalar spectral index, is very close to one.) Subsequent evolution depends on the fate of

individual perturbations which grow independently in the linear regime.

At all stages fluctuations on scales greater than the comoving Hubble horizon, c/(a(t)H(t)),

grow by gravitational collapse. However, as the Universe expands and this horizon grows,

fluctuations may enter the horizon. This affects their growth. During the radiation-dominated

era, radiation pressure dominates over gravitational effects. Fluctuations which enter the horizon
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during this epoch undergo acoustic oscillations and their growth is inhibited. Once matter-radiation

equality is reached, overdensities on all scales grow by gravitational collapse. Thus the power

spectrum turns over at the wavenumber kh equivalent to the horizon size at matter-radiation equality.

Very approximately P (k) ∝ k if k ≤ kh and P (k) ∝ k−3 if k > kh. In practice the power

spectrum has a smooth shape rather than a sharp peak because the transition from radiation- to

matter-dominance is gradual.

The discussion above is a simplification. There are also other processes which affect the growth

of perturbations, for example dissipative effects. Also baryonic perturbations, which are coupled

to photons, evolve differently to dark matter. It is normal to consolidate all the transitions which

convert the primordial power spectrum to the late-time power spectrum into a single function, the

transfer function T (k). Then the evolved power spectrum can be expressed as

P (k) ∝ T 2(k)D2(a)kns , (1.53)

where D(a) is the growth function which describes the growth of structure as a function of the

scale factor. Various fitting functions for the transfer function have been developed, for example

Bardeen et al. (1985) and Eisenstein and Hu (1998).

The amplitude of the matter power spectrum is not predicted by theory and must be measured

observationally. It is generally expressed in terms of σ8, the root mean square amplitude of

fluctuations on a length scale 8 h−1Mpc, evolved to the present day.

In the linear regime fluctuations remain small, the density field is Gaussian, and the growth

of structure can be described by perturbation theory. However as perturbations continue to grow,

eventually in some regions the overdensity becomes greater than the mean density of the Universe

and nonlinearities arise. Individual Fourier modes become coupled and linear theory no longer

applies. This happens first at small scales where gravitational potentials are large. The end result

is that the nonlinear power spectrum is enhanced at high wavenumbers compared with the linear

case. The density field on these scales ceases to be Gaussian and cannot be described by the power

spectrum alone: higher-order statistics are also needed. The nonlinear power spectrum cannot be

calculated analytically and must be estimated using simulations. However several fitting functions

have been developed, including early work by Peacock and Dodds (1996), the Halofit method

described in Smith et al. (2003) and its later development by Takahashi et al. (2012). Another

possibility is to use emulation to interpolate the power spectrum between simulated points, for

example Heitmann et al. (2010).
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1.2 Cosmological probes

Many different probes are used to investigate cosmology but this section discusses only those which

are relevant to the work in Chapters 2 to 4. The section begins with an overview of the cosmic

microwave background since this provides much of the evidence for the ΛCDM model and the

tightest constraints on cosmological parameters. Next comes an account of the evolution of baryon

acoustic oscillations which are relevant to Chapter 2. Finally the bulk of this section discusses the

theory behind weak gravitational lensing which is relevant to all the later chapters.

1.2.1 Cosmic microwave background

As explained in Section 1.1.5 our best understanding of the history of the Universe predicts that

at a redshift z ≈ 1100 photons were for the first time able to free-stream across the Universe.

Furthermore the expansion of the Universe has redshifted these ‘last-scattering’ photons into

microwave frequencies, so the radiation is known as the cosmic microwave background or CMB.

Good general reviews of what we know about the CMB are Samtleben et al. (2007) and Staggs

et al. (2018).

The existence of this microwave radiation was first predicted by early cosmological models

designed to explain Big Bang nucleosynthesis, for example Alpher and Herman (1948); Gamow

(1948). At that stage no deliberate attempts were made to detect the CMB, although in fact several

measurements of the ‘background’ temperature were made in the 1940s and 1950s including by

McKellar (1941) who estimated a temperature of 2.3K, remarkably close to the current best estimate

of 2.73K. However the cosmological implications of these measurements were not understood or

followed up. The CMB was eventually rediscovered by Penzias and Wilson (1965) and correctly

identified by Dicke et al. (1965).

It was immediately realised that the CMB was an unrivalled source of information about the

evolution of the Universe, because it carries evidence both of the history of the photons up to

the time of last scattering and of their subsequent travel through the inhomogeneous Universe.

The theoretical understanding of the statistical properties of CMB temperature and polarisation

anistropies was worked out in the 1970s and 1980s (Sachs and Wolfe 1967; Rees and Sciama

1968; Silk 1968; Peebles and Yu 1970; Sunyaev and Zel’dovich 1972; Bond and Efstathiou 1987).

This body of work predicted the form of the CMB temperature power spectrum and elucidated the

information which could be extracted from CMB data once suitable probes were available.
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There have been three major space-based missions to study the CMB: the Cosmic Background

Explorer1 (COBE), the Wilkinson Microwave Anisotropy Probe2 (WMAP) and Planck3 (as well as

numerous smaller mainly ground-based experiments). As a result the CMB has yielded a wealth

of high-precision cosmological data and provides the best current constraints on cosmological

parameters, culminating in the most recent definitive measurements of the angular power spectrum

of temperature anisotropies shown in Figure 1.4. This illustrates both the high precision of the latest

Planck measurements across all scales, and also impressive agreement with the ΛCDM model.

Planck Collaboration: The cosmological legacy of Planck

Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left) and the lensing
potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from Planck,
and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance, rather than
by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially exhausted
within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE spectrum still
has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection of CMB lensing
to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at ` = 30), but are
plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `.

15

Figure 1.4: Angular power spectrum of CMB temperature anisotropies. Red dots and error bars are
the latest Planck foreground-subtracted, frequency-averaged measurements. Blue lines show the
best-fitting ΛCDM model. From Figure 9 of Akrami et al. (2018).

1http://science.nasa.gov/missions/cobe
2https://map.gsfc.nasa.gov
3sci.esa.int/planck/
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Scientific results which are supported by CMB data include

• confirmation of the Big Bang theory of the origin of the Universe;

• confirmation of the theoretical prediction that the CMB has an almost perfect blackbody

spectrum;

• confirmation that to the limits of current measurement the CMB is homogeneous, isotropic

and Gaussian, which supports inflationary theory;

• evidence that primordial curvature fluctuations are adiabatic (which rules out certain forms

of inflation), Gaussian and nearly scale-invariant;

• evidence that the Universe is very close to being flat;

• support for the existence of dark matter and dark energy;

• tight constraints on the values of cosmological parameters. The most recent results from the

Planck satellite are shown in Table 1.2.

Parameter 68% confidence limits from Planck 2018 results
Baryon density Ωbh

2 0.02237± 0.00015

Dark matter density Ωch
2 0.1200± 0.0012

Angular acoustic scale 100θMC 1.04092± 0.00031

Optical depth τ 0.0544± 0.0073

Perturbation amplitude ln(1010As) 3.044± 0.014

Scalar spectral index ns 0.9649± 0.0042

Table 1.2: 68% parameter confidence limits from Planck CMB temperature and polarisation
power spectra (including lensing reconstruction). These are the parameters which are most readily
measured from the CMB. Other commonly-used parameters can be derived from them. From Table
7 in Akrami et al. (2018).

Because there are degeneracies in parameter estimates from the CMB only (for example

between ΩK and Ωm), even better estimates can be obtained by combining CMB data with other

tracers such as baryon acoustic oscillations or weak lensing. Future CMB research will focus on

synergies between probes and on exploiting additional information from CMB polarisation (Staggs

et al. 2018).

1.2.2 Baryon acoustic oscillations

Baryon acoustic oscillations are features discernible in both the CMB and large-scale structure

which can be used as standard rulers to investigate dark energy and the growth of structure.
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After inflation, but before recombination, the Universe contained relativistic species (photons

and neutrinos), non-relativistic baryons (mainly electrons and ionised hydrogen and helium nuclei),

dark matter, and dark energy. The evolution of these components, in particular the matter

components, forms the basis of later structure formation. Each component can be treated as

a separate ideal fluid, but it is possible to simplify the model further, first by ignoring dark energy

which simply provides a background to the evolution of the other species, and secondly by invoking

the tight-coupling approximation which treats the electrons and photons (and nuclei) as a single

fluid. This is justified because the electrons and photons are coupled by Thomson scattering

and the electrons are coupled to the nuclei. Thus we can consider a universe with three fluid

components: a baryon-photon plasma, dark matter, and neutrinos. In the following discussion we

neglect the neutrinos for simplicity. In reality neutrinos do affect the background expansion rate in

the radiation-dominated era and would be included in a more complete explanation.

We can then investigate the evolution of a perturbation to the baryon-photon density field with

characteristic scale λ. This was first explored by Peebles and Yu (1970). They considered four

regimes:

• While λ� ct perturbations are adiabatic and grow with time.

• Once ct� λ, but before recombination, each perturbation oscillates like an acoustic wave.

• After recombination starts photons are much less likely to collide with baryonic matter

particles so the wave becomes attenuated.

• Once recombination is sufficiently complete the photons can free-stream away. Baryonic

matter can now collapse under gravity to form bound systems, the seeds of galaxies and

clusters. Crucially the baryonic matter field retains residual features created by the acoustic

oscillations.

The interesting part of this sequence is the second regime where perturbations in the baryonic

matter density field feel the influence of outward radiation pressure from the relativistic species

and are also affected by the gravitational potential of the non-relativistic species including dark

matter. We can consider a perturbation δb in the baryonic matter density which forms a plane wave

with wavenumber k. The evolution of a single Fourier mode of the perturbation has been derived as

(Peebles and Yu 1970; Hu and White 1996; Eisenstein et al. 2007)

d

dτ

[
(1 +R)δ̇b

]
+
c2k2

3
δb = −k2(1 +R)Ψ− d

dτ

[
3(1 +R)

c2
Φ̇

]
, (1.54)
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where τ =
∫

dt/a is the conformal time, R = 3ρb/4ρr is the ratio of the baryon and photon

densities, Ψ is the perturbation to the spatial curvature and Φ is the Newtonian potential. Overdots

denote derivatives with respect τ . If there is no anisotropic stress Ψ = Φ.

This is the equation of a driven oscillator with frequency csk where cs is the speed of sound

which in this case is c/
√

3(1 +R). Thus the baryon-photon perturbation undergoes oscillations,

known as baryon acoustic oscillations or BAOs. Meanwhile the dark matter simply collapses

under gravity to form a higher density region around the site of the original perturbation. At first

the oscillations are dominated by the photon pressure but as the Universe expands R increases,

decreasing the sound speed. Eventually the photons decouple from the baryons and are able to

free-stream away. Slightly later baryons cease to feel any effect of photons and the oscillations

cease. The baryon density perturbation stalls in a shell at a distance from the central dark matter

peak equal to the sound horizon at this time which is rs(τ) =
∫ τ
o dτ ′cs(τ ′) .

This is most easily pictured in configuration space. Figure 1.5, taken from Eisenstein et al.

(2007), shows snapshots of the sequence of events. The top row shows an initial delta-function

pulse of photons and baryons travelling outwards, which also creates a wake in the central dark

matter overdensity. The second row shows the situation at recombination. The photons start to leak

away, leaving a shell of baryons at the sound horizon distance from the central peak. Finally in

the bottom row the photons play no further part and both the dark matter and baryons fall into the

pre-existing overdensities. There is an increased probability that at later times galaxies will form

within these residual overdensities.

The radius of the baryon shell depends on the sound speed and the propagation time of the

wave, which in turn depend on cosmological parameters. The sound speed depends on the ratio of

baryons to photons and hence on Ωbh
2. The propagation time depends on the expansion rate at the

relevant epoch. This in turn depends partly on the redshift of matter-radiation equality which is

a function of Ωmh
2 only (Eisenstein et al. 2007). Using CMB constraints on Ωbh

2 and Ωmh
2 at

decoupling (Bassett and Hlozek 2010), together with the CMB temperature, a value rs ≈ 150 Mpc

has been obtained for the present day (comoving) value of the sound horizon.

As an aside, in the absence of dark matter the oscillations would still occur but the excess

density would be seen only in the spherical shell. So we would expect to see an excess of galaxies

at all distances up to 2rs apart, with the correlation function falling away at larger distances. We do

not in fact observe this, which substantiates the existence of dark matter.

The upshot is that we can expect the galaxy power spectrum or two-point correlation function

to reveal an excess of galaxies a distance rs apart. In practice statistical methods must be used to
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Fig. 1.—Snapshots of evolution of the radial mass profile vs. comoving radius of an initially pointlike overdensity located at the origin. All perturbations are fractional
for that species; moreover, the relativistic species have had their energy density perturbation divided by 4/3 to put them on the same scale. The black, blue, red, and green
lines are the dark matter, baryons, photons, and neutrinos, respectively. The redshift and time after the big bang are given in each panel. The units of the mass pro-
file are arbitrary but are correctly scaled between the panels for the synchronous gauge. Top left: Near the initial time, the photons and baryons travel outward as a pulse.
Top right: Approaching recombination, one can see the wake in the cold dark matter raised by the outward-going pulse of baryons and relativistic species.Middle left: At
recombination, the photons leak away from the baryonic perturbation.Middle right: With recombination complete, we are left with a CDM perturbation toward the center
and a baryonic perturbation in a shell.Bottom left: Gravitational instability now takes over, and new baryons and darkmatter are attracted to the overdensities.Bottom right:
At late times, the baryonic fraction of the perturbation is near the cosmic value, because all of the newmaterial was at the cosmicmean. These figures weremade by suitable
transforms of the transfer functions created by CMBFAST (Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak 2000).

Figure 1.5: Snapshots of the radial mass profiles of dark matter, baryons, photons and neutrinos as
an initially point-like overdensity evolves. The plots show fractional perturbations for each species,
and the perturbations for relativistic species have been rescaled to match those of non-relativistic
species. At first the photons and baryons travel outwards in unison, leaving a wake of dark matter.
At recombination the photons leak away from the baryonic pulse. Two overdensities remain: dark
matter close to the origin of the perturbation, and baryons in an outer shell. Subsequently both dark
matter and baryons fall into the overdensities. From Figure 1.2 of Eisenstein et al. (2007)

.
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disentangle the signal because we do not have just a single perturbation but many perturbations

emanating from all points. Despite this complication the BAO signal forms a very robust standard

ruler, which can be used to infer the expansion history of the Universe and to constrain ΩΛ and

the Hubble parameter (Eisenstein et al. 1998; Seo and Eisenstein 2003). It is independent of and

complementary to other distance measurement methods such as those using supernovae (Blake and

Glazebrook 2003).

The first detections of the BAO signal were made by in 2005 using data from the Sloan Digital

Sky Survey4 (SDSS) (Eisenstein et al. 2005) and from the 2dF Galaxy Redshift Survey (Cole et al.

2005). The Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the SDSS, produced

the first BAO measurements with more than 1% precision (Anderson et al. 2012) and has continued

to yield increasingly precise data (Alam et al. 2017). BAO measurements are now a standard part

of the cosmological toolkit. Figure 1.6 shows illustrative recent results from BOSS, indicating the

shape and scale of the BAO feature in the galaxy two-point correlation function. The key result is

the monopole measurement, shown in blue.

4sdss.org
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BOSS galaxy correlation functions and BAO Measurements 17

Figure 11. The measured post-reconstruction ⇠0 and ⇠2 and corresponding
best-fit BAO models for BOSS galaxies. These best-fit models encode the
BAO distance measurements determined in this work and are displayed for
the range of scales that have been fit (50 < s < 150h�1Mpc).

7.2 Results from data

Results for BAO fits on BOSS data, using both the QPM and the
MD-P covariance matrices, are displayed in Table 5. The results
are similar using the two covariance matrices, but there are no-
table differences. In general, the uncertainties are smaller when
the QPM covariance matrices are used, matching the results on
the mocks. Correspondingly, the �2 values are consistently higher
for the QPM mocks (in five of the six cases to compare). None
of the six QPM cases recover a �2/dof that is less than 1, while
this is the case for two of the MD-P cases. Considering the total
�2 for the two independent redshift bins, the �2/dof for QPM is
75/60 pre-reconstruction and 81/60 post-reconstruction. This can
be compared to 65/60 and 71/60 for MD-P. This is suggestive that
the MD-P covariance matrix is doing the better job of characteriz-
ing the noise in the BOSS combined sample ⇠0,2 measurements.

Pre-reconstruction, the ↵|| results are consistently greater for
the QPM covariance matrix compared to the MD-P covariance ma-
trix. The difference varies between 0.017 and 0.010 and is a 0.5�
shift in the most extreme case (the 0.2 < z < 0.5 redshift bin);
given the same data is used and only the covariance matrix is al-
tered this is a fairly large change. The differences are much smaller
for ↵?, where it is at most 0.006 (0.3�) in the 0.4 < z < 0.6
redshift bin.

Post-reconstruction, the BAO measurements are robust to
the choice of covariance matrix. The biggest difference is 0.003

Table 5. BAO fits on the BOSS combined sample data, using both the Mul-
tidark PATCHY (MD-P) and QPM covariance matrices.

z bin ↵|| ↵? �2/dof

pre-reconstruction:
QPM

0.2 < z < 0.5 1.068±0.035 0.982±0.020 45/30
0.4 < z < 0.6 1.037±0.038 1.014±0.021 46/30
0.5 < z < 0.75 0.963±0.035 0.999±0.024 30/30

MD-P
0.2 < z < 0.5 1.051±0.036 0.983±0.022 37/30
0.4 < z < 0.6 1.024±0.042 1.008±0.022 42/30
0.5 < z < 0.75 0.953±0.034 1.001±0.024 28/30

post-reconstruction:
QPM

0.2 < z < 0.5 1.024±0.024 0.986±0.013 48/30
0.4 < z < 0.6 0.989±0.020 0.993±0.012 27/30
0.5 < z < 0.75 0.962±0.024 0.991±0.015 33/30

MD-P
0.2 < z < 0.5 1.025±0.027 0.988±0.015 39/30
0.4 < z < 0.6 0.986±0.024 0.994±0.014 23/30
0.5 < z < 0.75 0.962±0.023 0.991±0.015 32/30

(0.15�) in ↵|| for the data in the 0.4 < z < 0.6 redshift bin; the
difference in the uncertainty between the results in this bin is the
same. The level of agreement is consistent with the results found
from the mock realizations and suggests that the choice of covari-
ance matrix is not a major systematic uncertainty in our analysis.
Given the slightly larger uncertainties for the data using the MD-P
covariance matrix, we believe they represent the more conservative
choice and are what we use for our final results. We use the MD-P
results in all comparisons that follow unless otherwise noted.

Fig. 11 displays the measured post-reconstruction ⇠0,2 and the
associated best-fit BAO model, using the MD-P covariance matrix.
At each redshift, one can observe the strong BAO feature in the
monopole, which has been enhanced by the reconstruction process,
compared to previous plots. For the quadrupole, reconstruction re-
moves most of the large-scale RSD effects and the overall ampli-
tude is thus decreased. BAO features appear in the quadrupole to
the right and left of the peak in the monopole. Such BAO features
appear in the quadrupole when ↵|| 6= ↵? (and thus do not present
themselves in the mocks as the two ↵ parameters are expected to be
nearly equal in our mock analysis). The feature appears to the right
in the 0.5 < z < 0.75 redshift bin, which yields a measurement of
↵|| that is lower than ↵?; the reverse is true for the 0.2 < z < 0.5
bin. See Alam et al. (2016) for further exploration and visualization
of these features in the same data.

The uncertainties we obtain are significantly smaller than the
mean uncertainties recovered from the mock realizations, by ⇠ 25
per cent in each redshift bin. This implies more pronounced BAO
features in the data than are present in the typical mock. In order
to determine how unusual this is, we combine the results from the
0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, as they are
independent and the expected ↵ values are nearly identical. Fig. 12
displays the uncertainty in ↵? (�?) vs. the uncertainty in ↵|| (�||)
recovered for each mock realization when combining the results of
the two redshift bins (blue circles) and the DR12 data (orange star).
One can see that the DR12 result is within the locus of points, but
at the lower edge. We can quantify the results further by comparing
the area of the 1� confidence region in the data to the ensemble of

MNRAS 000, 1–25 (2014)

Figure 1.6: The measured BAO signal in the monopole (blue) and quadrupole (orange) of the
two-point correlation function of BOSS galaxies plotted against the redshift-space separation, s of
pairs of galaxies. Points and error bars are from measurements. Lines indicate bestfit models. The
upper and lower panels show results for two different redshift ranges. From Figure 11 in Ross et al.
(2016).
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1.2.3 Weak gravitational lensing

One prediction of general relativity is that massive objects deflect the paths of light rays. As a

result the images we observe of sources such as distant galaxies are distorted. By analogy with

optical lensing this effect is known as gravitational lensing. In this section we discuss mainly weak

gravitational lensing and in particular cosmic shear – the lensing which results from the passage of

light through the large-scale inhomogeneous matter distribution. This can be contrasted with strong

lensing which is caused by very large gravitational potentials along the line of sight, resulting in

arcs and multiple images.

Weak lensing is a very subtle effect which cannot be detected for any individual source. However

it can be measured statistically by observing many sources. It is invaluable for cosmology because

it is a direct probe of the matter distribution and can also be used to study dark energy.

There are many comprehensive reviews of weak lensing. This section draws in particular

on Bartelmann and Schneider (2001), Kilbinger (2015) and Bartelmann and Maturi (2016). We

derive the equations governing the deflection of light by large-scale structure, introduce the key

concepts of convergence and shear and their statistical properties, and discuss some issues related

to measurement.

To understand lensing we need to revisit the metric (Equation 1.4) in the presence of a

gravitational field which alters the spacetime curvature and hence the paths of photons. We

assume isotropy and introduce the Newtonian gravitational potential Φ with |Φ| /c2 � 1. Locally

(that is, for a small region) we can use the perturbed Minkowski metric

ds2 = c2

(
1 +

2Φ

c2

)
dt2 −

(
1− 2Φ

c2

)
dr2 . (1.55)

Light travels along null geodesics (ds2 = 0) so, using a Taylor expansion in |Φ| /c2, the effective

light speed is

∣∣∣∣drdt

∣∣∣∣ = c

(
1 +

2Φ

c2

)
, (1.56)

and the refractive index, which quantifies the change in direction of the light path, is 1−2Φ/c2. We

can now apply Fermat’s principle that light takes the path of least time between any two points and

obtain an equation for the (vector) deflection angle α̂, the difference in angle between the emitted

and observed light rays. To do this we take the gradient of the potential perpendicular to the ray
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and integrate along the ray, so that

α̂ = − 2

c2

∫
∇⊥Φ dr . (1.57)

This is twice the prediction obtained from Newtonian physics (assuming photons have mass) (von

Soldner 1804), because the metric has equal perturbations in the time and the space parts.

Figure 1.7 shows the basic geometry of gravitational lensing. This simplified depiction is based

on the thin lens approximation which assumes that the lens is thin compared with the overall extent

of the lensing system. This is clearly not valid for lensing by large-scale structure but serves to

illustrate the basic set-up. In particular we can see that

β = θ −α , (1.58)

where β is the angle between the source and the optical axis and θ is the angle between the image

and the optical axis, α is the reduced deflection angle measured by the observer.

Figure 1.7: Sketch of a gravitational lens system. The observer, source and image are denoted by
O, S and I respectively. DL, DLS and DS are respectively the distances from the observer to the
lens, from the lens to the source, and from the observer to the source. The lens is at position ξ and
the source is at position η. A light ray from the source is deflected by the angle α̂, measured at the
lens. The observer measures the reduced deflection angle α. β is the angle between the source
and the optical axis and θ is the angle between the image and the optical axis. From Figure 1 in
Bartelmann and Maturi (2016).
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In the weak lensing regime we are interested in very small deflections of light rays as they travel

through the large-scale structure. Consider two light rays on neighbouring geodesics with transverse

comoving separation x(χ) travelling towards an observer. If there were no deflectors along the

light paths the observer would see an angular separation β which depends on the geometry of the

Universe and satisfies

x(χ) = fK(χ)β , (1.59)

where fK(χ) is given by Equation 1.7.

Suppose now that there are deflectors along the light paths and consider a single deflector on

one light path at a distance χ′ from the observer (χ′ < χ). From Equation 1.57, this deflects the

ray by dα = −(2/c2)∇⊥Φ(x,χ′)dχ′. To obtain the total separation induced by all deflectors we

integrate along the path of the ray. The same applies to the second ray. If the observed angular

separation caused by the combined effect of all deflections along the paths of both light rays is θ,

we have

x(χ) = fK(χ)θ − 2

c2

∫ χ

0
dχ′fK(χ− χ′)(∇⊥Φ(x, χ′)−∇⊥Φ(0)(χ′)) , (1.60)

where ∇⊥Φ(0) is the gradient of the potential along the second light ray. Comparing with the

no-deflection situation, we again obtain the lens equation

β = θ −α , (1.61)

where

α =
2

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

[∇⊥Φ(x, χ′)−∇⊥Φ(0)(χ′)] . (1.62)

The reduced deflection angle can be expressed as the gradient of a two-dimensional potential,

the lensing potential ψ, so that

β = θ −∇ψ . (1.63)

We observe the angle θ and want to infer β. In weak lensing the deflections and angles are

small which means there are several valid approximations which make this inference easier.

50



First, because the deflections are small we can take the light paths to be unperturbed, which

simplifies the integration. This is the Born approximation. We can also ignore any coupling between

deflections at different redshifts. Finally, the separation of the rays is small so we can treat both

rays as coincident. With these approximations we can find the total deflection simply by integrating

along a single ray. This leads to

ψ(θ, χ) =
2

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)

Φ(fK(χ′)θ, χ′) . (1.64)

We can linearise this to define a matrix A, the Jacobian matrix of the lens mapping

∂β

∂θ
= A . (1.65)

The Jacobian describes how the lensed image is mapped onto the source. Its components are

Aij =
∂βi
∂θj

(1.66)

= δij −
∂2ψ

∂θi∂θj
. (1.67)

Another way of writing this is

A =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (1.68)

This introduces the convergence κ and shear γ = γ1 + iγ2 which are second derivatives of the

lensing potential:

κ =
1

2

(
∂2ψ

∂θ2
1

+
∂2ψ

∂θ2
2

)
(1.69)

γ1 =
1

2

(
∂2ψ

∂θ2
1

− ∂2ψ

∂θ2
2

)
(1.70)

γ2 =
∂2ψ

∂θ1∂θ2
. (1.71)

The convergence quantifies the isotropic increase or decrease in the image size. In contrast the

shear quantifies anisotropic stretching which changes circular sources into ellipses.

In practice we need to know how sources are mapped onto images (rather than the other way

round) which is given by the inverse of the Jacobian matrix. For weak lensing we can assume the

51



Jacobian is always invertible because both κ and γ are very small so that detA ≡ (1− κ2)− γ2,

where γ2 = γ2
1 + γ2

2 , is close to one. The inverse Jacobian is

A−1 =
1

detA

1− κ+ γ1 γ2

γ2 1− κ− γ1

 . (1.72)

The prefactor is referred to as the magnification µ. It is equal to the ratio of the image flux to the

source flux and can be approximated as

µ =
1

(1− κ2)− γ2
(1.73)

≈ 1 + 2κ .

The change in flux is a consequence of the fact that lensing conserves surface brightness. Since

the apparent size of a source changes it follows that its flux must also change. This means that

magnification affects the number density of sources. In a flux-limited galaxy survey lensing may

push sources above the flux limit, increasing the number density. However lensing also stretches

the region of sky behind the lens, reducing the number density. The net effect depends on the slope

of the cumulative flux distribution: the steeper the slope, the greater the increase in number density.

The convergence is related to the underlying density contrast δ. To see this we invoke the

Poisson equation

∇2Φ = 4πGa2ρ̄δ , (1.74)

where ρ̄ = a−3ρc is the mean density of the Universe and ρc = 3H2
0/8πG is the critical density.

We can then relate the two-dimensional Laplacian of ψ to the three-dimensional Laplacian of Φ,

relate the mean matter density to the critical density, and arrive at (Kilbinger 2015; Bartelmann and

Maturi 2016)

κ(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

dχ′

a(χ′)
fK(χ− χ′)
fK(χ)

fK(χ′)δ(fK(χ′)θ, χ′) . (1.75)

When applied to a galaxy survey the mean convergence κ(θ) is obtained by weighting by the

probability distribution of galaxies p(χ) and integrating to the maximum comoving distance of the
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survey χlim:

κ(θ) =

∫ χlim

0
dχ p(χ)κ(θ, χ) (1.76)

=
3H2

0 Ωm

2c2

∫ χlim

0

dχ

a(χ)
g(χ) fK(χ)δ(fK(χ)θ, χ) (1.77)

=

∫ χlim

0
dχ q(χ)δ(fK(χ)θ, χ) , (1.78)

where we have introduced the lensing efficiency

g(χ) =

∫ χlim

χ
dχ′ p(χ′)

fK(χ′ − χ)

fK(χ′)
, (1.79)

and, for convenience later, the weight function (Joachimi and Bridle 2010)

q(χ) =
3H2

0 Ωm

2c2

fK(χ)

a(χ)
g(χ) . (1.80)

This shows that the convergence is a projection of the matter density along the line of sight which

depends on the geometry of the Universe and the source galaxy distribution. This is why it is such

a useful probe of both dark energy and dark matter. In practice the convergence is only accessible

through the magnification, which is difficult to measure. The shear is more readily observable and

is the quantity which is normally measured in weak lensing surveys. (Equations 1.69–1.71 can be

used to derive the convergence from the shear).

For a flat Universe fK(χ) = χ and the lensing efficiency is

g(χ) =

∫ χlim

χ
dχ′ p(χ′)

χ′ − χ
χ′

. (1.81)

Moreover if the Universe is flat the expression in Equation 1.75 has a maximum when χ′ ≈ χ/2 so

that structures about half the distance to the source have the greatest lensing effect.

Weak lensing power spectrum

By definition the convergence and shear both have zero mean, 〈κ〉 = 〈γ〉 = 0, so to describe the

lensing field we need at least second-order statistics – either the two-point correlation function or

the power spectrum. There are several different ways to represent the weak lensing power spectrum

(Kitching et al. 2017). Firstly, since we observe on the celestial sphere, we can expand the shear in

terms of spherical harmonics in the angular dimension and spherical Bessel functions in the radial
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dimension. It is also possible to make use of the redshift of each galaxy separately by expanding

in spherical harmonics on the sky and also expanding along the line of sight, an approach known

as three-dimensional cosmic shear (Heavens 2003). These formalisms yield multi-dimensional

oscillating integrals and it is common to make simplifying assumptions. In particular most cosmic

shear studies make use of two specific simplifications, the Limber and flat-sky approximations, and

also employ tomography which divides the three-dimensional field into two-dimensional slices, as

originally suggested by Hu (1999).

The Limber approximation (Limber 1953; Kaiser 1992; LoVerde and Afshordi 2008) relates

the power spectrum of a three-dimensional isotropic random field to its two-dimensional projection.

It states that if a quantity x(θ) is a two-dimensional projection of a three-dimensional quantity

y(fK(χ)θ, χ) with weight function w(χ), so that

x(θ) =

∫ χH

0
dχ w(χ)y(fK(χ)θ, χ) , (1.82)

then the power spectrum can be approximated as

Px(`) =

∫ χH

0
dχ

w2(χ)

f2
K(χ)

Py

(
k =

`

fK(χ)
, χ

)
. (1.83)

This approximation is justified when the weight function w varies on length scales much greater

than those of the quantity y.

The expression for the convergence is just such a weighted projection with weight function

q(χ) defined by Equation 1.80.

Thus so long as the condition on q(χ) is satisfied, we can approximate the power spectrum as

Pκ(`) =

∫ χH

0
dχ q2(χ′)Pδ

(
`

fK(χ)
, χ

)
. (1.84)

The flat-sky approximation treats a small angular region on the sky as a plane perpendicular to

the line of sight. This is often a valid assumption for current lensing studies. It means that instead

of using spherical harmonics we can expand the convergence (or shear) in Fourier modes to give

κ(θ) =

∫
d2`

(2π)2
κ̃(`)ei`·θ . (1.85)

Both these approximations have been widely used in lensing studies. However their validity cannot

be taken for granted, especially in the context of the next generation of wide-field surveys. For
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example Kitching et al. (2017) and Kilbinger et al. (2017) both report careful investigations of the

validity of these and other common approximations.

Weak lensing tomography

Although weak lensing observations are essentially two-dimensional because they are projections

onto the sky, it is possible to obtain information about the third dimension. This is highly desirable

because in two dimensions effects such as the growth of structure and the time evolution of dark

energy are integrated over. In principle the method of three-dimensional cosmic shear could be

used, exploiting redshifts for individual galaxies, but it is more common to use tomography in

which source galaxies are binned into redshift ranges – essentially a form of data compression.

Each redshift bin has a separate lensing efficiency and a separate shear. This approach gives us

a practical way to investigate the third dimension and is used in most weak lensing studies, for

example Köhlinger et al. (2015); Hildebrandt et al. (2016); Abbott et al. (2018); Hildebrandt et al.

(2020).

However tomography has some drawbacks. In particular the tomographic bins are generally

correlated, mainly because components of the large-scale structure contribute to more than one bin

and also because generally only photometric redshifts are available, introducing extra uncertainty

into the binning.

Nevertheless tomographic weak lensing can now produce tight constraints on cosmological

parameters which are complementary to other probes. This is illustrated in Figure 1.8 which shows

constraints on Ωm and σ8 from four tomographic weak lensing studies together with the latest CMB

analysis. (This figure in fact shows some tension between the lensing and CMB results. It is not yet

clear whether this due to unrecognised systematic errors or has a deeper explanation.)

Weak lensing two-point correlation functions

In practice the most readily observable quantity is not the power spectrum but the two-point

correlation function. Commonly the shear two point correlation functions are expressed in terms of

tangential and cross-components of the shear, γt and γ×. These are transformations of the shear

components in Equations 1.70 and 1.71. In these equations the real and imaginary parts of the

shear are defined relative to a Cartesian coordinate frame. The tangential and cross components are
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Figure 1.8: Parameter constraints from tomographic weak lensing surveys. Marginalised posterior
contours (68% and 95% confidence levels) in the Ωm–σ8 plane for four tomographic weak lensing
surveys (blue, green, purple and orange contours) and the most recent Planck CMB analysis (red
contours). From Figure 4 in Hildebrandt et al. (2020) which gives full details of all the underlying
surveys.

defined in a reference frame rotated by an angle φ relative to the original frame (Schneider 2006):

γt = −Re[γe−2iφ] , (1.86)

γ× = −Im[γe−2iφ] . (1.87)

The factor of 2 in the exponentials arises from the fact that the shear is a polar quantity. From

these components two non-vanishing two-point correlators can be formed, 〈γtγt〉 and 〈γ×γ×〉 (the

cross-correlator is zero for parity reasons). It is normal to combine these into two components of

the two-point correlation function:

ξ+(θ) = 〈γtγt〉+ 〈γ×γ×〉 (1.88)

ξ−(θ) = 〈γtγt〉 − 〈γ×γ×〉 . (1.89)

Observationally these functions are often more convenient to use than the power spectrum partly

because they are not affected by the survey mask. They can be expressed as Hankel transforms of
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the convergence (or shear) power spectrum:

ξ+(θ) =
1

2π

∫
d``J0(`θ)Pκ(`) , (1.90)

ξ−(θ) =
1

2π

∫
d``J4(`θ)Pκ(`) . (1.91)

These functions mix the gradient (E) and curl (B) modes of the lensing signal. Filtered versions

of the correlation functions have been developed to separate the E-and B-modes (Schneider 1996;

Schneider et al. 2010). Since the pure lensing signal is curl-free, detection of B-modes may point

to the presence of uncorrected systematics.

1.2.3.1 Weak lensing surveys

Weak lensing analysis requires extremely high image quality with a small point spread function,

supplemented by accurate redshift measurements to aid tomographic analysis. In practice it is

generally not feasible to obtain spectroscopic redshifts for each of the tens of millions of observed

galaxies but ideally surveys should be designed so that photometric measurements can be calibrated

against spectroscopic counterparts. Obviously a wide survey footprint and large redshift range are

also advantageous. Past surveys were not necessarily optimised for weak lensing but current and

planned surveys have been developed specifically to exploit the technique.

Later chapters refer in particular to one current survey, the Kilo-Degree Survey (KiDS) (de Jong

et al. 2013; Kuijken et al. 2015), and one planned survey, the European Space Agency Euclid

mission (Laureijs et al. 2011).

KiDS5 is a 1500 square degrees optical survey using the Very Large Telescope (VLT) Survey

Telescope. It observes the southern sky in four filters (u, g, r, i), and is optimised to produce high

quality cosmic shear measurements. Observations began in 2011 and the first science results, based

on the initial survey of 450 square degrees, were published in 2015 (Viola et al. 2015). Eventually

the survey area will extend over two 750 square degree areas. KiDS fully overlaps with the VISTA

Kilo-Degree Infrared Galaxy Survey6 (VIKING) (Edge et al. 2013). Using infrared data from

VIKING improves photometric redshifts, especially at high redshift (Hildebrandt et al. 2020).

Euclid7 is a space-based mission due to be launched in 2021 and to continue observations until

2027. It will survey 15,000 square degrees of the sky at optical and near-infrared wavelengths. Like

KiDS, the Euclid survey is optimised for weak lensing and will produce around 107 spectroscopic

5http://kids.strw.leidenuniv.nl/index.php
6https://www.eso.org/sci/observing/PublicSurveys/sciencePublicSurveys.html
7http://sci.esa.int/euclid/
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redshifts as well as measuring galaxy shapes and photometric redshifts of over 109 galaxies. Euclid

will be highly complementary to other next-generation surveys such as the ground-based Dark

Energy Spectroscopic Instrument8 and Rubin Observatory Legacy Survey of Space and Time

(LSST) 9, and NASA’s space-based Wide Field Infrared Survey Telescope10.

1.2.3.2 Systematics in weak lensing

In any weak lensing analysis numerous systematic uncertainties need to be controlled. Some are

caused by observational limitations, for example measured galaxy shapes can be distorted by the

atmosphere, by detector or camera effects or by inaccuracies in the modelling of the point spread

function (Massey et al. 2012; Cropper et al. 2013). Another practical obstacle is the unavoidable

use of photometric redshift measurements which introduces errors and biases into the redshift

distributions of source galaxies. Other systematics stem from lack of knowledge. For example

we only partially understand how galaxies form, especially the impact of baryonic physics on

the shape and orientation of observed galaxies at non-linear scales. However perhaps the most

important systematic uncertainty is the intrinsic alignment of galaxies which affects all lensing

measurements made from a galaxy survey. During their formation galaxies become aligned with

the local tidal gravitational field which is also the source of the lensing signal. This distorts the

measured ellipticities of galaxies. We discuss this further in Chapter 3.

1.3 Methods and techniques

In this section we present some techniques and models which are referred to in later chapters. First

we discuss summary statistics which quantify clustering and which are used throughout this thesis,

then we outline the halo model which is particularly relevant to Chapter 3, and finally we explain

methods of inference and the importance of covariance matrices which underpin the research

described in Chapters 3 and 4.

1.3.1 Clustering statistics

In cosmology we are particularly interested in clustering statistics which can describe, for example,

the distribution of large-scale over- and underdensities, or of CMB anistropies.

8www.desi.lbl.gov
9lsst.org

10www.nasa.gov/wfirst
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A standard way to measure clustering is through correlation functions in real space. For example

the two-point correlation function measures the excess clustering between pairs of points compared

to a random distribution. However it is often simpler to work in Fourier space, for example because

convolutions in real space become multiplications. For a statistically isotropic field the power

spectrum is defined as the Fourier transform of the two-point correlation function, and similarly

the bispectrum and three-point correlation function are a Fourier-transform pair (Bernardeau et al.

2002). So for observables A,B,C . . . in n dimensions we have

〈A(k1)B(k2)〉 = (2π)nδ(k1 + k2)PAB(k1) (1.92)

〈A(k1)B(k2)C(k3)〉 = (2π)nδ(k1 + k2 + k3)BABC(k1,k2,k3) (1.93)

〈A(k1)B(k2)C(k3)D(k4)〉c = (2π)nδ(k1 + k2 + k3 + k4)TABCD(k1,k2,k3,k4)

(1.94)

where PAB ,BABC , and TABCD are the power spectrum, bispectrum and trispectrum. The subscript

‘c’ indicates the connected part of the four-point correlation function: the part represented by a

connected graph which cannot be decomposed into the product of lower-order correlation functions.

In two dimensions the two-point correlation function ξ(r) and power spectrum P (k) are related by

ξ2D(r) =
1

(2π)2

∫
d2k eik·rP (k) (1.95)

=
1

2π

∫
k dk J0(kr)P (k) , (1.96)

where J0 is a Bessel function of the first kind (resulting from cylindrical symmetry).

Similarly in three dimensions

ξ3D(r) =
1

(2π)3

∫
d3k eik·rP (k) (1.97)

=
1

2π2

∫
k2 dk j0(kr)P (k) , (1.98)

where j0 is a spherical Bessel function (resulting from spherical symmetry).

Since surveys measure angles on the sky it is often most natural to consider angular correlation

functions. The 2D angular correlation function is

ω(θ) =
1

(2π)2

∫
d2` ei`·θC` , (1.99)
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where C` is the angular power spectrum.

In the case of a field which is projected onto the celestial sphere (such as the CMB) we can use

the angular all-sky correlation function

ξall−sky(θ) =
∞∑
`=0

2`+ 1

4π
P`(cos(θ))C` , (1.100)

where P` are Legendre polynomials.

If a field is Gaussian (for example CMB temperature fluctuations) then two-point statistics

encapsulate all the information in the field. So in this case there is nothing to be gained from

studying higher-order statistics and the two-point correlation function or power spectrum provides

an effective means of compressing all the information in the underlying data. However, many fields

of interest to cosmology are highly non-Gaussian, including the matter density contrast at small

scales and the weak lensing field. In these cases higher-order statistics can be expected to provide

additional information, in particular extra constraints on cosmological parameters.

While two-point statistics can easily be visualised in two or three dimensions, even three-

point statistics involve many more configurations and are difficult to handle theoretically or

observationally. Often three-point results are presented for only a subset of possible triangle

configurations, for example only equilateral triangles or only those triangles which make the

greatest contribution to the bispectrum in question. Alternatively, computation can be reduced by

efficient data compression (Tegmark et al. 1997).

When considering higher-order statistics of a Gaussian field it is often useful to employ Wick’s

theorem (Wick 1950), also known as Isserlis’ theorem. This states that if a field δ is Gaussian then

(in Fourier space)

〈δ(k1) . . . δ(k2p+1)〉 = 0 (1.101)

〈δ(k1) . . . δ(k2p) =
∑

all pairs

∏
p pairs
i,j,i6=j

〈δ(ki)δ(kj)〉 .

Weak lensing clustering statistics

In the remainder of this thesis we make repeated use of weak lensing clustering statistics. These

can all be expressed as integrals over their matter counterparts. Using the Limber and flat-sky
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approximations and assuming a flat Universe, the convergence power spectrum can be written as

Pκ(`) =

∫
dχ q2(χ)χ−2Pδ(k;χ) , (1.102)

where k = `/χ(z) from the Limber approximation and q(χ) is the lensing weight function defined

by Equation 1.80.

The convergence bispectrum and trispectrum for a flat Universe can be expressed in a similar

way as (Kayo and Takada 2013)

Bκ(`1, `2, `3) =

∫
dχ q3(χ)χ−4Bδ(k1,k2,k3;χ) (1.103)

Tκ(`1, `2, `3, `4) =

∫
dχ q4(χ)χ−6Tδ(k1,k2,k3,k4;χ) , (1.104)

where again ki = `i/χ(z).

This can be generalised to spectra of any order (Kayo and Takada 2013):

Pn,κ(`1, `2 . . . `n) =

∫
dχ qn(χ)χ−2(n−1)Pn,δ(k1,k2 . . .kn) . (1.105)

1.3.2 Halo model

The halo model (Cooray and Sheth 2002) is an analytical model which can be used to estimate

power spectra and higher-order clustering statistics. It is widely used to avoid running large numbers

of costly simulations and also as an alternative, or adjunct, to other analytical methods such as

perturbation theory.

The model starts from the assumption that all mass in the Universe is in discrete virialised

halos and that the density field can be described as a superposition of spherically symmetric halos

(Mead et al. 2015). With these assumptions the distribution of matter can be modelled through

the spatial distribution of halos and the distribution of matter within each halo. This means that

we need expressions for the number density of halos of different mass, and for the distribution

of matter within a halo (of a given mass at a given redshift). To estimate clustering statistics we

also need assumptions about how points which are being correlated are related. The halo model

assumes that points in two different halos are mediated through the linear matter power spectrum

and perturbation theory. Points within a single halo are mediated by the distribution of matter in the

halo. For points in different halos (but not those in a single halo) we need to take account of halo

bias which arises because the distribution of halos does not exactly match the underlying matter
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distribution: halos are more likely to form, or to form early, at the peaks of the matter density field.

A comprehensive review of all aspects of bias is given in Desjacques et al. (2018).

Because this model involves convolutions of distributions it is defined in Fourier space so that

the convolutions become multiplications. So we start with the Fourier transform of the matter

density contrast at wavenumber k. This can be expressed as an integral of the matter distributions

of all contributing halos (Cooray and Hu 2001)

Iβµ (k1, k2, ...., kµ) ≡
∫

dM
dn

dM

(
M

ρ̄

)µ
bβũM (k1)ũM (k2) . . . ũM (kµ) . (1.106)

Here M is halo mass, n(M, z) is the number density of halos of mass M at redshift z, ũM (k) is

the Fourier transform of the halo density profile, µ is the number of points being correlated (two for

the power spectrum, three for the bispectrum and so on), and bβ is the halo bias. dn/dM is known

as the halo mass function. Usually we assume linear bias so that b0 = 1 , b1 = b(M), and bβ = 0

for β > 1. The bias can then be normalised so that it satisfies

∫
dM

dn

dM

(
M

ρ̄

)
b(M) = 1 . (1.107)

The components of the halo model have been modelled in a variety of ways to suit different

purposes:

• Average halo mass This is generally defined as the mass of a sphere at a fixed radius, often

the virial radius rvir.

• Halo mass function The halo mass function describes the number density of halos per unit

mass. Most formulations build on the seminal paper by Press and Schechter (1974) who

considered the number density of fluctuations which were dense enough to collapse at a

given time, in other words those above a defined cut-off density. This can be understood

from Figure 1.9 which exemplifies the so-called peak–background split in which the density

field is regarded as the sum of a long-wavelength, low amplitude mode and a high amplitude,

short-wavelength, noisy component (Kaiser 1984; Bardeen et al. 1985; Mo and White

1996). Halos are most likely to form at the peaks above the horizontal line in Figure 1.9.

The Press–Schechter model defines the cutoff for halo formation through the peak height

ν = δ2
c (z)/σ2(M) where δc(z) is the critical overdensity for collapse at redshift z and

σ2(M) is the variance of the initial density fluctuations smoothed by a suitable top-hat

filter. The value of the critical density has conventionally been estimated from the ‘top-hat
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Figure 1.9: The concept of peak–background split. In this view, background long-wavelength
modes of the density field are overlaid by noisy short-wavelength modes. Halos are most likely
to form at peaks which are above a defined threshold (represented by the horizontal line) which
depends on the critical density.

spherical collapse’ model which considers the collapse of an idealised spherical overdensity.

For an Einstein–de Sitter Universe δc(z) ≈ 1.686. This value is only weakly dependent on

cosmology and so is often adopted.

The mass function is then

νf(ν)
dν

ν
=

√
ν

2π
e−ν/2

dν

ν
. (1.108)

This relatively simple formula was subsequently refined by Sheth and Tormen (1999) who

used a more sophisticated definition of the peak–background split, and introduced additional

free parameters to obtain a better fit with simulations. More recently Tinker et al. (2008)

proposed:

dn

dM
= f(σ)

ρ̄m

M

d lnσ−1

dM
, (1.109)

where f(σ) has the parameterised form

f(σ) = A

[(
σ

b

)−a
+ 1

]
e−c/σ

2
, (1.110)

σ =

∫
P (k)W̃ (kR)k2dk , (1.111)

and W̃ is the Fourier transform of a top-hat window function of radius R.
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• Halo density profile The profile of the halo density is typically taken to be the Navarro–Frenk–

White (NFW) profile which was first described in the very influential paper by Navarro et al.

(1997) which first studied halo profiles in simulations. The NFW profile is

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (1.112)

where ρ0 is a characteristic density and rs is a characteristic scale radius. The NFW profile

has been found to be almost universal for different halo masses, redshifts and cosmologies.

• Halo concentration The NFW profile can alternatively be expressed in terms of the halo mass

and the concentration which is defined as c = r∆/rs where r∆ is some defined radius, often

taken to be rvir. Since the seminal early work it has been found that the relationships between

mass, concentration, redshift and cosmology are more complex and less universal than the

original models suggested. For example it appears that concentration is a decreasing function

of halo mass, but also the mass-concentration relationship becomes shallower at higher

redshift (Okoli 2017). A comprehensive summary of approaches to modelling concentration

is given in the introduction to Diemer and Joyce (2019) who identify two prevalent categories

of model: those linked to the assembly history of the halo, and those which model the

mass–concentration relationship for a given redshift and cosmology as a power law or other

simple function. The original work by Navarro et al. (1996) falls into the former category.

An example of the fitting function approach is given in Duffy et al. (2008) who suggest

c = A

(
M

Mpivot

)B
(1 + z)C , (1.113)

where A,B and C are free parameters and Mpivot is the median halo mass. The two

categories of model both have advantages, but neither approach has been entirely successful

in explaining concentration at all masses and redshifts, and this continues to be an active area

of research.

Clustering statistics are obtained by summing all possible configurations of points in different

halos which contribute to the statistic. The power spectrum correlates two points which may both

be in the same halo or in two different halos. Thus two terms contribute, a one-halo term and a

two-halo term:

P (k) = P 1h + P 2h . (1.114)
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The integral for the first term involves only one halo but two points (µ = 2) related by the

matter distribution within the halo. Bias is not relevant, so

P 1h = I0
2 (k, k) . (1.115)

In contrast the second term of Equation 1.114 involves two separate halos, each containing one

point. Bias needs to be taken into account and the points (halos) are related through the linear

power spectrum. So this part of the power spectrum is

P 2h = [I1
1 (k)]2PL(k) . (1.116)

Similarly the bispectrum is the sum of terms involving all possible configurations of three

points: three points in one halo, two points in one halo and one in another, and three points in

separate halos. A pair of halos is related through the linear power spectrum PL and three separate

halos are related through BPT , the bispectrum given by tree-level perturbation theory (Bernardeau

et al. 2002).

B(k1,k2,k3) = B1h +B2h +B3h

B1h(k1,k2,k3) = I0
3 (k1, k2, k3)

B2h(k1,k2,k3) = I1
1 (k1)I1

2 (k2, k3)PL(k1) + 2 perms.

B3h(k1,k2,k3) = I1
1 (k1)I1

1 (k2)I1
1 (k3)BPT(k1,k2,k3) .

(1.117)

The trispectrum has contributions from four points in a single halo, two points in each of two

halos and so on (Cooray 2001; Cooray and Sheth 2002):

T (k1,k2,k3,k4) = T 1h + T 2h
22 + T 2h

13 + T 3h + T 4h

T 1h(k1,k2,k3,k4) = I0
4 (k1, k2, k3, k4)

T 2h
22 (k1,k2,k3,k4) = I1

2 (k1, k2)I1
2 (k3, k4)PL(k12) + 2 perms.

T 2h
13 (k1,k2,k3,k4) = I1

1 (k1)I1
3 (k2, k3, k4)PL(k1) + 3 perms.

T 3h(k1,k2,k3,k4) = I1
1 (k1)I1

1 (k2)I1
2 (k3, k4)BPT(k1,k2,k34) + 5 perms.

T 4h(k1,k2,k3,k4) = I1
1 (k1)I1

1 (k2)I1
1 (k3)I1

1 (k4)TPT(k1,k2,k3,k4) .

(1.118)

where TPT is the tree-level perturbation theory trispectrum.
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1.3.3 Bayesian inference and the importance of covariance matrices

Much of current cosmological research involves making inferences from data. This data may

come from surveys, simulations or other analytical calculations and is almost inevitably subject to

statistical and systematic uncertainties, and (for surveys) is limited by cosmic variance: the fact

that we have only one Universe to sample from.

Common reasons for making statistical inferences in cosmology are

• estimating constraints on cosmological parameters from survey data, in other words determining

the best fit values of the parameters and their errors, given the data and a cosmological model;

• choosing between alternative models;

• forecasting the precision with which a given data set (for example from a future survey) can

estimate parameters, and determining the best statistics to use for this.

Modern cosmology generally uses a Bayesian framework for these tasks. In this framework

probability represents degree of belief in a proposition, in contrast to the frequentist concept of

probability as the long-run expected occurrence of an event. Central to Bayesian inference is Bayes’

theorem, often attributed to Bayes (1763), but in fact first explicitly derived by Laplace (1812).

This states

P (θ|d) =
P (d|θ)P (θ)

P (d)
, (1.119)

where d = (d1, d2, · · · , dn) is the data vector and θ = (θ1, θ2, · · · , θm) is the vector of parameters.

P (θ|d) is the posterior probability – the probability of the parameters given the data – which is what

we want to know. P (d|θ) is the likelihood, the probability distribution of the observed data given

the parameters, and is often written as L(θ) with the dependence on the data understood. P (θ) is

the prior probability which encapsulates what we already know or believe about the parameters

(for example upper and lower limits). Priors are often assumed to be constant or ‘flat’ so that the

posterior is proportional to the likelihood. The denominator of Equation 1.119, P (d), is called

the evidence. This is important for model selection but, since it is independent of the parameters,

for parameter estimation the evidence can be considered simply as a normalising factor. In what

follows we discuss only parameter estimation, mainly in the context of weak lensing.

To calculate the posterior we need to define and compute the likelihood. Often we can safely

assume that the data has a Gaussian distribution which simplifies the likelihood. However the
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assumption of Gaussianity should not be made without thought. This is discussed further in

Chapter 4.

As the simplest example of a Gaussian likelihood, consider a model which is Gaussian with

two parameters, the mean µ and standard deviation σ, so that θ = (µ, σ). The likelihood is then

L(θ) =
1√
2πσ

exp

[
− (d− µ)2

2σ2

]
. (1.120)

We can generalise this to a model with a multivariate Gaussian distribution, n data values and m

parameters:

L(θ) =
1√

(2π)ndet(C)
exp

[
− 1

2
(d− µ)TC−1(d− µ)

]
, (1.121)

where C is the data covariance matrix.

The covariance matrix is thus crucial to calculation of the likelihood and posterior. Computing

the covariance is not always straightforward and errors in the matrix can propagate into errors in

parameter estimation or model selection (Taylor et al. 2013).

Several methods of estimating the cosmic shear covariance matrix have been suggested and

used. These can be broadly classified into analytical models, estimation from the data itself, or

estimation from mock catalogues based on simulations. In their recent analysis of KiDS data

Hildebrandt et al. (2016) compared all three approaches. They concluded that in this case an

analytical method based on the halo model was most suitable, being reliable, quick, noise-free and

accurate at all scales. In other recent work Hikage et al. (2019) used a similar analytical model for

their analysis of lensing data from the Hyper Suprime-Cam Subaru Strategic Program11. In contrast

previous studies, such as the analysis of data from the Canada-France Hawaii Telescope Lensing

Survey12 by Kilbinger et al. (2013), used ray-tracing simulations (with some subtleties). The main

disadvantage of this is the cost of running many simulations.

Another possibility is to compress the data vector in order to reduce the size of the covariance

matrix. This allows the covariance to be estimated with fewer analytical calculations or simulations.

Data compression may be particularly desirable for three-point and higher-order statistics where the

dimension of the covariance matrix is large. A classic data compression method is the Karhunen-

Loève algorithm which is discussed in Tegmark et al. (1997). Alternative approaches using proxy

11hsc.mtk.nao.ac.jp
12http://www.cfhtlens.org
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measures to summarise the bispectrum (Byun et al. 2017) and cosmic shear power spectrum (Asgari

and Schneider 2015) have also been proposed.

Of course, reducing the covariance matrix is not justifiable if this throws away a lot of

information, but it has been shown that this is not necessarily the case. A practical demonstration

of the potential for data compression is given by Gualdi et al. (2018) who considered the redshift

space galaxy power spectrum and bispectrum. Their analysis showed that the dimension of the data

vector could be reduced from around 1000 down to the number of cosmological parameters with

negligible loss of information.

Evaluating the likelihood

Once the covariance matrix has been estimated the next step is to find the peak (maximum

likelihood) and spread of the posterior distribution. This may not be straightforward if there

are many parameters or the likelihood has a complicated shape. Several methods have been

developed to sample the likelihood efficiently and rapidly determine the maximum value and

variance. Here we restrict discussion to two methods which are commonly used in cosmology:

the very simple Metropolis-Hastings algorithm (Metropolis et al. 1953) which is a Monte Carlo

Markov Chain (MCMC) method, and nested sampling (Skilling et al. 2006; Mukherjee et al. 2006;

Feroz and Hobson 2008) which is more suitable for complex multi-modal likelihoods or if the

Bayesian evidence is required as well as the posterior.

The Metropolis-Hastings algorithm

The aim of this algorithm is to generate chains of points which sample parameter space and

converge on the maximum posterior and its surrounding credible regions (Heavens 2009).

The algorithm relies on two pre-defined functions

• a target density f(θ) which is proportional to the likelihood at any point;

• a proposal distribution g(θ) which is used to generate trial points (which may or may not be

accepted into the chain).

A random starting point θ in parameter space is chosen and the target density is calculated at

this point. A step in parameter space is then generated by sampling from the proposal distribution

g(θ), producing a new candidate point θ′. This point is accepted or rejected with a probability p
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which depends on the ratio of the target densities at the last and proposed points.

p(acceptance) = min

(
1,
f(θ′)g(θ′|θ)

f(θ)g(θ|θ′)

)
. (1.122)

The sequence of proposing and selecting steps is repeated until the chain has converged to a

stationary distribution. The proposal distribution is crucial. If the typical steps which it generates

are small the algorithm will be slow to explore the whole parameter space. If steps are too large

then the chain may have difficulty homing in on regions where the likelihood is high. It is important

to test that the chain has indeed converged, and not rely on the appearance of convergence. This is

most commonly done with the Gelman–Rubin convergence criterion (Gelman et al. 1992) which

compares the between-chain variance of several chains with the within-chain variance. In practice

the Metropolis-Hastings method is quite inefficient and is only suitable for very basic problems.

Nested sampling

An alternative approach is nested sampling which is mainly designed to estimate the Bayesian

evidence but as a by-product also estimates the posterior (Skilling et al. 2006). This algorithm is

more computationally efficient than the Metropolis-Hastings method and has been tuned to deal

effectively with complex multi-modal posteriors (Feroz and Hobson 2008).

The algorithm starts from the definition of the Bayesian evidence, Z,

Z =

∫
L(θ)π(θ) dmθ , (1.123)

where θ = (θ1, θ2, . . . , θm) is the vector of parameters, L(θ) is the likelihood and π(θ) is the prior.

The integral extends over the entire volume defined by the prior.

Next the normalised prior volume X is defined as

X =

∫
π(θ) dmθ ≡ 1 . (1.124)

More specifically the algorithm uses the prior volume within a likelihood contour λ, in other

words the volume in parameter space which encompasses all points at which the likelihood is

greater than λ:

X(λ) =

∫
L(θ)>λ

π(θ) dmθ . (1.125)
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By a change of variables Equation 1.123 can be transformed to

Z =

∫ 1

0
L(X)dX , (1.126)

where L(X(λ)) ≡ λ. Thus the multi-dimensional integral is changed to a one-dimensional one.

The nested sampling algorithm starts by sampling n points within an initial volume X0 defined

by the priors and an initial (arbitrary) likelihood limit λ0. The likelihoods at the n points are

evaluated and the point with the lowest likelihood, L0, is identified. The position of this point

in parameter space and its associated likelihood are recorded and it is then removed from the set

of sample points. The remaining points all have likelihoods greater than L0. MCMC or another

suitable method is used to generate a new trial point which is accepted into the sample if its

likelihood is greater than L0. Otherwise it is rejected and further trial points are generated until

an acceptable one is found. The point in the updated sample with the smallest likelihood, L1, is

then identified and removed from the sample as before. The ‘live’ prior volume, X1 = X(λ1) now

consists of the volume where the likelihood is greater than L1. The process is continued, at each

stage drawing from a smaller volume, until the evidence has been determined to a pre-specified

precision. The set of discarded points maps out the full likelihood. The prior volumesXi necessarily

decrease monotonically while the likelihoods Li increase.

Figure 1.10 shows the method schematically. The left panel shows a two-dimensional problem,

with contours demarcating increasing likelihoods and decreasing prior volumes. The right panel

plots the relationship between the likelihood and the prior volume.

Figure 1.10: Left: Decreasing likelihood contours. Right: Prior volumes Xi associated with
likelihoods Li. From Figure 1 in Feroz et al. (2013).
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1.3.4 Fisher matrix methods

Another common question is how well future experiments will be able to constrain cosmological

parameters. This might then inform survey design or suggest whether novel estimators will provide

additional information and thus reduce the error bars of the parameter estimates. The way to

forecast how informative an experiment will be was first worked out by Fisher (1935). Clear

derivations relevant to cosmology are given in Tegmark et al. (1997) and Heavens (2009).

Assume that d = (d1, d2, · · · , dn) is a set of future data which we plan to collect, for example

cosmic shear power spectra. We want to know how well this data can constrain the parameters

θ = (θ1, θ2, · · · , θm).

We use the data to produce estimates θ. For these to be ‘good’ estimates we would like them to

be unbiased so that

〈θ〉 = θ0 , (1.127)

where θ0 is the true (unknown) parameter vector.

We would also like the error bars on the estimates to be as small as possible. Thus we need to

minimise the standard deviations of the individual parameter estimates, (〈(θ2
i 〉 − 〈θi〉2)1/2. The

smaller the standard deviations, the more certain we are about the estimated parameter values, or

equivalently the more information the data provides about the parameters. The unbiased estimate

which has the minimum variance is (unimaginatively) called the Best Unbiased Estimator (BUE).

Another way of looking at this is that if the likelihood is sharply peaked around the maximum

then the data carries a lot of information about the parameters. If the likelihood is flat around the

maximum then the data is uninformative – we are uncertain what the true parameter values are. So

we need a formalism to explore the shape of the likelihood in parameter space.

We first define the negative log likelihood

L(θ) ≡ − lnL(θ) . (1.128)

Then the Fisher information matrix is defined by

Fij ≡
〈

∂2L
∂θi∂θj

〉∣∣∣∣
θML

, (1.129)
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where the expectation value is over all possible realisations of the data evaluated at θML, the

parameter vector which maximises the likelihood. The Fisher matrix describes the way the

likelihood varies with the parameters and is key to understanding how well the data constrains the

parameters. It has several very useful properties (Kenney and Keeping 1951; Kendall and Stuart

1966):

• For any unbiased estimator θi of an individual parameter the standard deviation of the

estimate is greater than F
−1/2
ii . This is the Cramér–Rao inequality. It places a lower limit

on the error on θi if all the other parameters are known. If the other parameters are also

estimated from the data then the minimum standard deviation is (F−1)
1/2
ii .

• If an unbiased estimator exists which attains the Cramér–Rao bound, then it is equal to θML.

• As the size of the data vector increases, θML is asymptotically the BUE with the lowest

variance – which is what we want to find.

Thus the Fisher matrix encodes the amount of information which the data can provide about

the parameters. Since the Fisher matrix depends on the covariance, this once again underlines the

importance of having an accurate covariance matrix.

To derive the Fisher matrix for multivariate Gaussian data with mean µ and standard deviation

C, we start from Equations 1.121 and 1.128. Using the identity ln detC = Tr lnC, where Tr

denotes the trace of the matrix, and defining the data matrix D ≡ (d− µ)(d− µ)T leads to

2L = Tr[lnC + C−1D] , (1.130)

ignoring the additive normalisation constant. Making use of the identity (C−1),i = −C−1C,iC
−1,

the first derivative with respect to the parameter θi is

2L,i = Tr[C−1C,i −C−1C,iC
−1D + C−1D,i] , (1.131)

and differentiating again gives

2L,ij = Tr[−C−1C,jC
−1C,i + C−1C,ij + C−1C,jC

−1C,iC
−1D (1.132)

−C−1C,ijC
−1D + C−1C,iC

−1C,jC
−1D

−C−1C,iC
−1D,j −C−1C,jC

−1D,i + C−1D,ij ] .
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The Fisher matrix is the expectation value of L,ij at the true parameter values. At these values we

have

〈D〉 = C , (1.133)

〈D,i〉 = 0 , (1.134)

〈D,ij〉 = µ,iµ
T
,j + µ,jµ

T
,i . (1.135)

Thus when we take the expectation value some terms are zero and others cancel, leaving

Fij ≡ 〈L,ij〉 (1.136)

=
1

2
Tr[C−1C,iC

−1C,j + C−1〈D,ij〉]

The two terms depend respectively on how the covariance and the mean vary with the parameters.

Often the first term is neglected on the grounds that the covariance matrix depends only weakly on

cosmology. This assumption is explored in Chapter 4.

The Fisher matrix can be used to plot confidence ellipses for any pair of parameters and thus to

visualise forecast errors (Coe 2009). The inverse Fisher matrix is the covariance matrix between

the parameters. If we consider two parameters θ1 and θ2 with uncertainties σ1 and σ2,

F−1 =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

where ρ is the correlation between the parameters. The ellipse representing a credible region has

axes a and b satisfying

a2 = α

(
σ2

1 + σ2
2

2
+

√
(σ2

1 − σ2
2)2

4
+ ρ2σ2

1σ
2
2

)
(1.137)

b2 = α

(
σ2

1 + σ2
2

2
−
√

(σ2
1 − σ2

2)2

4
+ ρ2σ2

1σ
2
2

)
, (1.138)

where α is a coefficient which depends on the confidence level being plotted (for example α ≈ 2.48

for a 95% credible region). The ellipse is at an angle φ to the θ1 axis, with

tan 2φ =
ρθ1θ2

θ2
1 − θ2

2

. (1.139)
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Removing the row and column of the Fisher matrix corresponding to a particular parameter is

equivalent to treating this parameter as fixed and certain. Alternatively a prior can be placed on

parameter θ, say ∆θ = σ, by adding 1/σ2 to the on-diagonal element corresponding to θ (Coe

2009).

Fisher matrices can also be used to assess the additional constraining power of a second

independent experiment. To do this we simply add Fisher matrices together and compare constraints

with and without the second experiment.

A Fisher matrix example

Figure 1.11, from Sato and Nishimichi (2013), is an example which uses Fisher matrix methods

to explore the impact of non-Gaussian terms of the weak lensing power spectrum covariance. The

weak lensing covariance matrix is not diagonal because of mode-coupling caused by non-linear

structure formation. In fact the covariance can be written as the sum of three terms: a Gaussian

term (which may include shape/shot noise), a non-Gaussian term which arises from mode-coupling

within the survey area, and a so-called supersample term which is due to coupling between in-survey

modes and long-wavelength modes larger than the survey area. These terms are derived in Takada

and Hu (2013) for the matter power spectrum, and extended to weak lensing in Sato and Nishimichi

(2013) (see also Barreira et al. (2018b)). Chapter 3 discusses these terms in more detail. Figure 1.11

uses Fisher matrix analysis to show that in the absence of shape noise the non-Gaussian terms from

the weak lensing power spectrum covariance are crucial for constraining cosmological parameters.
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FIG. 9 (color online). Cosmological parameter constraints from the lensing power spectrum tomography using the non-Gaussian
(red) and Gaussian (blue) covariance matrices. Top panel: without shape noise. Bottom panel: with shape noise. We use the power
spectrum information up to lmax ¼ 2000 assuming a survey area of 1500 deg2.

MASANORI SATO AND TAKAHIRO NISHIMICHI PHYSICAL REVIEW D 87, 123538 (2013)

123538-12

Figure 1.11: Illustrative Fisher matrix analysis of the weak lensing power spectrum covariance. The
ellipses show forecast constraints using only the Gaussian term of the weak lensing power spectrum
covariance (blue) and using Gaussian and non-Gaussian terms (red). Excluding the non-Gaussian
terms would under-estimate errors. From Figure 9 in Sato and Nishimichi (2013).
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2 Weak lensing deflection of three-point correlation functions

2.1 Introduction

On scales larger than galaxies the structure of the Universe depends only on properties of primordial

inhomogeneities and their subsequent evolution under gravity. The resulting matter distribution is

commonly quantified through clustering statistics such as the two-point correlation function (2PCF)

or, in Fourier space, the power spectrum. The primordial density distribution is determined by

inflation and is expected to be nearly Gaussian and therefore fully described by these two-point

statistics. However, later gravitational collapse of overdense regions causes coupling between

different Fourier modes and makes the matter distribution non-Gaussian. As a result information

is transferred into higher-order statistics, which are complementary to two-point statistics. For

example, the three-point correlation function (3PCF) or bispectrum has been used to investigate

primordial non-Gaussianity (Tasinato et al. 2014; Lazanu et al. 2016), to estimate galaxy bias (the

differential clustering of galaxies compared with dark matter) (Sefusatti and Scoccimarro 2005),

and to constrain cosmological parameters, in particular Ωm and σ8 (Sefusatti et al. 2006). Since

the 1970s two- and three-point correlation functions have been measured with increasing accuracy

in galaxy surveys such as the Two-degree-Field Galaxy Redshift Survey1 and the Sloan Digital

Sky Survey (SDSS).2 A recent aim has been the detection of baryon acoustic oscillations (BAOs)

in clustering statistics. The position of BAO peaks acts as a standard ruler which can provide

information about distances and hence about the expansion of the Universe. The first evidence for

BAO peaks in the 3PCF was reported in 2009 by Gaztanaga et al. (2009). Subsequently evidence at

the 2.8σ level was reported by Slepian et al. (2017b) using data from the SDSS Baryon Oscillation

Spectroscopic Survey (BOSS), and more recently the first high confidence detection (4.5σ) was

reported, also using SDSS data (Slepian et al. 2017a). Future surveys such as the Dark Energy

Spectroscopic Instrument3 (DESI) (Aghamousa et al. 2016), Euclid4 (Laureijs et al. 2011) and the

Rubin Observatory Legacy Survey of Space and Time5 (LSST) (Abell et al. 2009) will improve

upon these measurements, for example by halving the uncertainties in distance measurements at the

1http://www.2dfgrs.net/
2http://www.sdss.org/
3https://www.desi.lbl.gov
4http://sci.esa.int/euclid/
5https://www.lsst.org/about
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BAO scale (Aghamousa et al. 2016). Consequently there will be a need for increasingly accurate

modelling of the 2PCF and 3PCF.

Theoretical expressions for the matter 2PCF and 3PCF up to second order in the density contrast

can be derived using Newtonian perturbation theory (Bernardeau et al. 2002) and are sufficient for

comparison with current surveys. However other contributions to the correlation functions may also

be important for future surveys. For example in a detailed analysis of the effect of weak lensing

magnification on the galaxy 3PCF Schmidt et al. (2008) concluded that this effect was potentially

detectable in galaxy and quasar samples at z = 3 in future ‘ideal’ surveys. More recent work has

emphasised that future wide and deep surveys will require the inclusion of additional relativistic

terms in the power spectrum and bispectrum of galaxy number counts (Bonvin and Durrer 2011;

Bertacca et al. 2014; Yoo and Zaldarriaga 2014; Di Dio et al. 2016; Tansella et al. 2018; Bertacca

et al. 2018). These terms arise because at higher redshifts the quantities which we observe, such

as positions, volumes and densities, differ from their true source values due to the propagation of

light through the inhomogeneous matter distribution along the line of sight. Some effects which

are first order in the density and volume in perturbation theory are detectable in current surveys,

for example redshift-space distortions, weak lensing and the integrated Sachs-Wolfe effect. Many

second order effects have also been estimated but have not been shown to be detectable in current

or planned surveys (Di Dio et al. 2016).

One second order relativistic effect due to lensing is the alteration of the apparent distance

between two or more patches of the sky so that sources are not observed at their true positions

(Bonvin and Durrer 2011). For galaxy samples this is a much smaller effect than the more commonly

studied weak lensing magnification and shear. However it is potentially larger than other relativistic

contributions and its implications for two-point and higher-order statistics could be relevant for

future surveys. In this chapter we refer to this effect as lensing deflection; it should not be confused

with the deflection angle given by Equation 1.57.

Early studies of this deflection due to weak lensing mainly considered the effect on cosmic

microwave background (CMB) anisotropies (Blanchard and Schneider 1987; Seljak 1996). Since

then the effect of lensing deflection on the power spectrum of CMB temperature anisotropies has

been explored in detail in harmonic space (Bohm et al. 2016; Hanson et al. 2010; Hu 2000; Lewis

and Challinor 2006), demonstrating that lensing is a non-trivial contaminant of CMB temperature

and polarisation observations but also introduces valuable additional information. In a wider context

Dodelson et al. (2008) estimated the impact of deflection on the matter 2PCF, assuming two sources

at the same redshift. They concluded that the effect is small except where the correlation function
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is rapidly changing, for example near the BAO feature in galaxy surveys (Vallinotto et al. 2007),

where they estimated the effect to be around the percent level. Here lensing deflection tends to wash

out the details of the peaks and troughs. Importantly, this deflection does not affect the position of

the BAO peaks although it sets a limit on the accuracy with which the amplitudes of the peaks can

be measured (Vallinotto et al. 2007). Thus it has no implications for the use of the BAO scale as a

standard ruler. More recently Di Dio (2017) repeated this analysis in Fourier space and confirmed

the size of the smoothing effect on the matter power spectrum at the BAO scale, also showing that

at z = 4 this effect has approximately the same magnitude as smoothing due to non-linear structure.

Even if the deflection effect is not important for two-point statistics, it could potentially make a

measurable, and interesting, contribution to three-point statistics. In harmonic space expressions

have been developed for the bispectrum induced by CMB lensing (Hu 2000; Lewis and Challinor

2006). In this work we instead extend the general real-space analysis of Dodelson et al. (2008) to

the 3PCF, now with three sources at the same redshift, and consider whether the effect could be

detected in forthcoming surveys.

This chapter is organised as follows: Section 2.2 derives general expressions for the lensed

3PCF and the associated lensing deflection; Section 2.3 applies our new derivations to the 3PCF of

the matter density field; Section 2.4 discusses the observability of the deflection effect; Section 2.5

contains our conclusions. Detailed derivations are given in appendices. Throughout we assume a

flat ΛCDM universe.

2.2 Lensed three-point correlation function

Suppose that a physical observable A(xa) is observed at position xa. The true position is not as

observed because photons are deflected as they travel to the observer. Thus the (lensed) quantity

Ã(xa) which is observed at xa is actually at a different position xa + λa, where λa is a deflection

vector:

Ã(xa) = A(xa + λa) . (2.1)

If we measure a correlation function of the observable we necessarily measure the correlation

between lensed variables, which is not the same as the true correlation function. Taking the 2PCF
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as an example,

〈Ã(xa)B̃(xa)〉 = 〈A(xa + λa)B(xb + λb)〉 (2.2)

6= 〈A(xa)B(xa)〉 . (2.3)

Our approach to deriving an expression for the lensed 3PCF is motivated by results showing

that in the two-point case the lensed 2PCF can be expressed as the sum of the unlensed 2PCF and

a lensing displacement term, 〈AB〉2 (Dodelson et al. 2008). (In the remainder of this chapter we

refer to this as lensing deflection, but this should not be confused with the deflection angle α̂ given

by Equation 1.57). Importantly, Dodelson et al. (2008) showed that the transverse deflection is

much greater than the deflection along the line of sight (which they describe as a lensing-induced

time delay) so in this work we consider only transverse displacements.

Assuming that the comoving distances to A and B are approximately the same and that the

deflection is small so a perturbative approach can be used, the lensed 2PCF is given by Dodelson

et al. (2008) as

〈ÃB̃〉 = 〈AB〉+ 〈AB〉2 (2.4)

≈ 〈AB〉+
1

r

(
T − D

2

)
d〈AB〉

dr
+

(
T +

D

2

)
d2〈AB〉

dr2
, (2.5)

where r is the distance between A and B. The functions T and D/2 both depend on the distance

between the background sources but T is similar along both transverse directions and D/2 differs

along the two directions. They define a distortion tensor with components Zij , where i and j denote

two orthogonal directions in the plane of the sky:

Z =

T + D
2 0

0 T − D
2

 . (2.6)

The components of the deflection vector can be expressed in terms of integrals of the gravitational

potential over the line of sight which arise as solutions of the geodesic equations (see for example

Lewis and Challinor (2006) for a derivation in conformal Newtonian gauge). In a flat ΛCDM

universe the two orthogonal transverse components of λa (denoted by the index l = 1, 2) are given

by (Bartelmann and Schneider 2001)

λla,⊥ =
2

c2

∫ χa

0
dχ(χa − χ)∇lΦ(χ) , (2.7)
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Figure 2.1: Choice of coordinates for the three points. Point A is at (rb1, rb2, 0) = (rb, 0, 0), point
B is at (ra1, ra2, 0) = (ra cosϕ, ra sinϕ, 0) and point C is at the origin.

where χa is the comoving distance to the source and Φ(χ) is the gravitational potential.

To obtain an expression for the lensed 3PCF, firstly we assume that all three sources are at

the same redshift. This is justified by the 2PCF finding that the dominant lensing effect is in the

transverse direction, which means that triangles oriented closer to the line of sight will be less

affected by lensing. Because of isotropy it is possible to choose coordinates with the x-axis along

xa−xc, the y-axis along the line of sight to xc, and all three points in the x− y plane. The triangle

formed from the three points can then be defined in terms of two sides, ra = (ra1, ra2, 0) and

rb = (rb1, rb2, 0), and the angle ϕ between them, as shown in Figure 2.1. Thus ra is the observed

distance between xb and xc, and rb is the observed distance between xa and xc.

As explained in Appendix 2A, using Equation 2.1 we can write the lensed 3PCF in the same

way as for the 2PCF as the sum of the unlensed correlation function and a lensing deflection term:

〈ÃB̃C̃〉 = 〈ABC〉+ 〈ABC〉2 . (2.8)

Following Dodelson et al. (2008), we define three distortion tensors, Zac, Zab and Zbc, each

quantifying the deflection along one side of the triangle, with elements

Zijαβ ≡
(〈λiαλjα〉+ 〈λiβλ

j
β〉)

2
− 〈λiαλjβ〉 , (2.9)

where αβ is ab, bc or ca. We assume that the lensing deflection is small so that terms above second

order can be neglected, and that the observables are not correlated with the lensing deflection field.
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Then by Taylor-expanding the expression for the lensed correlation function, Equation 2.8, we can

write the lensing deflection in terms of the deflection tensors. Appendix 2A gives fuller details.

The final result is

〈ABC〉2 =
∂2〈ABC〉
∂rbi∂rbj

Zijac

+
∂2〈ABC〉
∂rai∂raj

Zijbc

+
∂2〈ABC〉
∂rai∂rbj

[Zijac + Zijbc − Z
ij
ab] , (2.10)

where the indices i, j take the values 1 and 2, denoting the two transverse directions, and repeated

indices are summed over. In the chosen coordinates Z12
ab = Z21

ab = 0. Thus we only need to consider

the i = j = 1 and i = j = 2 terms and Equation 2.10 simplifies to

〈ABC〉2 =
∂2〈ABC〉
∂r2

b1

Z11
ac +

∂2〈ABC〉
∂r2

a1

Z11
bc +

∂2〈ABC〉
∂r2

a2

Z22
bc

+
∂2〈ABC〉
∂ra1∂rb1

[Z11
ac + Z11

bc − Z11
ab ] . (2.11)

As shown in Appendix 2A, this can be expressed in terms of derivatives of ra, rb and ϕ only:

〈ABC〉2 =
∂2〈ABC〉

∂r2
a

[
Z11
bc cos2 ϕ+ Z22

bc sin2 ϕ
]

+
∂2〈ABC〉

∂r2
b

Z11
ac

+
∂2〈ABC〉
∂ϕ2

[
Z11
bc sin2 ϕ+ Z22

bc cos2 ϕ

r2
a

]
+
∂2〈ABC〉
∂ra∂rb

cosϕ[Z11
ac + Z11

bc − Z11
ab ]

− ∂2〈ABC〉
∂ra∂ϕ

2 sinϕ cosϕ

ra

[
Z11
bc − Z22

bc

]
− ∂2〈ABC〉

∂rb∂ϕ

sinϕ

ra
[Z11
ac + Z11

bc − Z11
ab ]

+
∂〈ABC〉
∂ra

[
Z11
bc sin2 ϕ+ Z22

bc cos2 ϕ

ra

]
+
∂〈ABC〉
∂ϕ

2 sinϕ cosϕ

r2
a

[
Z11
bc − Z22

bc

]
. (2.12)

To determine Zijac, Z
ij
ab and Zijbc we follow the arguments of Dodelson et al. (2008) for the 2PCF.

Using Equation 2.6 each tensor Zαβ can be written in terms of its trace T ′αβ plus an off-diagonal

traceless part D′αβ/2. The functions T ′ and D′ are related to the functions T and D in Equation 2.5.

82



From Equations A17 and A18 of Dodelson et al. (2008) we have

〈λiαλjβ〉 = Tαβδij −
Dαβ

r2

[
rirj −

r2

2
δij

]
, (2.13)

where δij is the Kronecker delta. Now consider Z11
ac as an example. From Equation 2.9 this is

defined as

Z11
ac =

〈λ1
aλ

1
a〉+ 〈λ1

cλ
1
c〉

2
− 〈λ1

aλ
1
c〉 . (2.14)

Using Equation 2.13 and noting that Daa = Dcc = 0 (Dodelson et al. 2008), this can be written as

Z11
ac =

1

2
(Taa + Tcc)−

(
Tac −

D′ac
r2
b

(
r2
b1 −

r2
b

2

))
(2.15)

= T ′ac +
D′ac

2
. (2.16)

The i = j = 1 and i = j = 2 elements of the other tensors can be derived in a similar way. They

are:

Z11
bc = T ′bc +

D′bc
r2
a

[
r2
a1 −

r2
a

2

]
= T ′bc +D′bc

[
cos2 ϕ− 1

2

]
, (2.17)

Z22
bc = T ′bc +

D′bc
r2
a

[
r2
a2 −

r2
a

2

]
= T ′bc +D′bc

[
sin2 ϕ− 1

2

]
, (2.18)

Z11
ab = T ′ab +D′ab

[2r2
c1 − r2

c ]

2r2
c

= T ′ab +D′ab
[2(rb − ra cosϕ)2 − (r2

a + r2
b − 2rarb cosϕ)]

2(r2
a + r2

b − 2rarb cosϕ)
. (2.19)

The functions T ′αβ and D′αβ are derived in Dodelson et al. (2008) using Equation 2.13 together

with the Limber approximation, which is valid since the integration kernels are broad.
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T ′αβ(χ0, r) =
1

c2

∫ χ0

0
dχ(χ0 − χ)2

∫ ∞
0

k3dk

π
PΦ(k, χ)

[
1− J0(krχ/χ0)

]
, (2.20)

D′αβ(χ0, r) =
2

c2

∫ χ0

0
dχ(χ0 − χ)2

∫ ∞
0

k3dk

π
PΦ(k, χ)J2(krχ/χ0) , (2.21)

where χ0 is the comoving distance to the plane containing the three points, PΦ(k, χ) is the power

spectrum of the gravitational potential, and αβ = ac, bc or ba. PΦ(k, χ) is related to the matter

power spectrum, Pδ(k, χ), by

PΦ(χ, k) =
9

4

H4
0 Ω2

m

k4a2
Pδ(χ, k) , (2.22)

where a is the scale factor.

Equation 2.12 shows that the deflection effect depends on derivatives of the unlensed 3PCF.

This means it will be most significant if the correlation function is rapidly varying, for example

near the BAO feature in the matter 3PCF. The dependence on derivatives of the 3PCF also means

that the result is independent of galaxy bias so long as we can assume that bias is linear. Linear bias

would not be a valid assumption for precision modelling of the BAO since the BAO scale is well

within the weakly nonlinear regime. However it is a justifiable assumption for our more broadbrush

estimates.
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2.3 Results

2.3.1 Preliminaries

In this section we apply the results of Section 2.2 to the three-point correlation function, ζ(p,q, s),

of the matter density contrast δ(x), defined as

ζ(p,q, s) = 〈δ(x)δ(x + p)δ(x + q)〉x , (2.23)

where the subscript x indicates the average over all spatial positions, and p, q and s form the sides

of a triangle. We compute the unlensed 3PCF using second-order Eulerian perturbation theory

(Jing and Borner 1997). Details are given in Appendix 2B. All results are based on a flat ΛCDM

cosmology with Ωm = 0.3, Ωb = 0.05, h = 0.7 and σ8 = 0.9, and use the nonlinear matter power

spectrum from Smith et al. (2003).

In Section 2.3.2 we compare the unlensed 3PCF, ζ , with the lensed 3PCF, ζ̃ , defined by Equation

2.8, across a range of scales and at different redshifts. We present the lensing deflection |ζ − ζ̃|, and

also the relative deflection |ζ − ζ̃|/ζ. Again we stress that by deflection we mean the difference in

the 3PCF due to lensing. To exemplify the properties of the 3PCF and the lensing deflection we

give results only for triangles with two equal sides (r1 = r2) and focus on two illustrative triangle

shapes: equilateral triangles (r1 = r2 = r3) and a specific ‘squeezed’ shape with two equal sides

with angle ϕ = 5 degrees between them. Section 2.3.3 discusses the redshift dependence of the

lensing deflection, and in Section 2.3.4 we present results at the BAO scale 80 ≤ r ≤ 120 h−1

Mpc.

2.3.2 Comparison between lensed and unlensed 3PCF

Figure 2.2 compares the magnitudes of the lensed 3PCF and the lensing deflection at z = 1 for

equilateral and squeezed triangles. At this redshift, typical of current and planned galaxy surveys,

the absolute value of the lensing deflection is around 10−8. In general, the lensing effect is larger at

small scales because the photon paths are more highly correlated. However the relative contribution

is strongest near the BAO feature where the partial derivatives in Equation 2.12 are large.
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Figure 2.2: Unlensed three-point correlation function (red) and lensing deflection (blue) at z = 1.0.
Left: Equilateral triangles. Right: Squeezed triangles with r1 = r2 and ϕ = 5 degrees. Dashed
lines indicate negative values.

To explore the shape, rather than size, of the 3PCF it is convenient to define the reduced (or

normalised) 3PCF, Q (Hu 2000), which is essentially independent of redshift. It is defined as

Q =
ζ(p,q, s)

ξ(p,q) + ξ(q, s) + ξ(s,p)
, (2.24)

where ξ is the two-point correlation function. The reduced lensed 3PCF can be defined similarly,

with the lensed 3PCF in the numerator and lensed 2PCFs in the denominator. Figure 2.3 shows how

the reduced lensed 3PCF at z = 1 varies with angleϕ between two equal sides r1 = r2 = 20 h−1 Mpc.

The scale chosen is illustrative of a small scale away from the BAO feature; similar results apply at

other scales. The 3PCF attains a minimum for approximately equilateral triangles and increases as

the length of the third side decreases (squeezed triangles) or increases (flattened triangles). Lensing

has least effect on the 3PCF of equilateral triangles because the correlation function is relatively

smooth and lacking in detail; lensing has most effect when the 3PCF is rapidly changing.

2.3.3 Lensing deflection as a function of redshift

Figure 2.4 shows the lensing deflection and the relative deflection at different redshifts for equilateral

and squeezed triangles. This demonstrates the significant effect of redshift on the lensing deflection,

which has implications for the observability of the effect. The left panel of Figure 2.5 shows how

the absolute lensing deflection varies with z for equilateral triangles with sides of 10 h−1 Mpc

(chosen as illustrative of small scales, although in fact the relationship is similar at all scales). The

absolute size of the deflection initially increases as z increases up to about z = 2, then decreases.
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Figure 2.3: Reduced lensed three-point correlation function (red) and lensing deflection (blue) at
z = 1 for triangles with r1 = r2 = 20 h−1 Mpc as a function of angle ϕ between these sides. The
vertical line marks the position of equilateral triangles. Dashed lines indicate negative values.

This also occurs for the lensed 2PCF, also shown in Figure 2.5 for comparison, but in this case

the highest deflection is at z ∼ 3. The shapes of these curves are due to the interplay between

the lensing factors in Equations 2.5 and 2.12 and the shapes of the correlation functions, through

their derivatives. By contrast, as the right panel of Figure 2.5 shows, the lensing deflection as

a proportion of the unlensed 3PCF and 2PCF increases monotonically with redshift. Deflection

decreases at higher redshifts but the correlation functions fall more rapidly. This can also be seen in

Figure 2.4.

2.3.4 BAO scale

Figure 2.6 ‘zooms in’ on the unlensed 3PCF at the BAO scale at z = 1. At this scale the 3PCF

oscillates rapidly and vanishes at several points. This is particularly evident for squeezed triangles

which display more structure.

Figure 2.7 shows the lensing deflection and the relative deflection near the BAO feature at

different redshifts.

Lensing deflection is more prominent at the BAO scale because the partial derivatives in

Equation 2.12 can be large. Figures 2.6 and 2.7 show that the lensing deflection smooths out

oscillations. At extrema of the 3PCF its first derivatives vanish and the lensing deflection depends

on second derivatives. These are positive at local minima, which means that the lensing deflection

increases the 3PCF, and negative at local maxima, decreasing the 3PCF. At z = 1 the peak-to-trough

difference is smoothed by about 0.1 percent. This rises to around 2.3 percent at z = 10.

Since the unlensed 3PCF is zero at several values of r, the relative deflection becomes very

large in some regions. However, we caution that the observability of the modification due to lensing
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Figure 2.4: Lensing deflection of 3PCF (blue: z = 0.5, red: z = 1.0, black: z = 10.0). Top:
Lensed - unlensed 3PCF. Bottom: As proportion of unlensed 3PCF. Left: Equilateral triangles.
Right: Squeezed triangles. Dashed lines indicate negative values.
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Figure 2.5: Lensing deflection of the 2PCF (blue) and 3PCF (red) for equilateral triangles with sides
r = 10 h−1 Mpc as a function of redshift. Left: Absolute deflection. Right: Relative deflection.

depends on comparisons between the absolute (not relative) deflection and statistical uncertainty on

the 3PCF. We discuss this in the next section.
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Figure 2.6: Unlensed three-point correlation function (red) and lensing deflection (blue) near the
BAO feature at z = 1. Left: Equilateral triangles. Right: Squeezed triangles. Dashed lines indicate
negative values.
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Figure 2.7: Lensing deflection of 3PCF near the BAO feature for different redshifts (blue: z = 0.5,
red: z = 1.0, black: z = 10.0). Top: Lensed - unlensed 3PCF. Bottom: As proportion of unlensed
3PCF. Left: Equilateral triangles. Right: Squeezed triangles. Dashed lines indicate negative values.

2.4 Observability of the lensing deflection

The previous section shows that at the BAO scale the absolute value of the lensing deflection in

the matter 3PCF is around 10−8 at z = 1. To assess whether a signal of this magnitude could be
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detected in current or future galaxy surveys, we assume that the uncertainty in survey measurements

is entirely due to Poisson shot noise, ignoring cosmic variance and other Gaussian and non-Gaussian

errors which contribute to the full covariance. Thus our error estimates assume a minimum level of

statistical error.

To derive an estimate of the shot noise in the 3PCF we build on expressions for the shot noise

in measurements of the bispectrum, for 3D fields (Scoccimarro et al. 2004; Chan and Blot 2017)

and for projected fields (Joachimi et al. 2009).

Assuming the Gaussian limit, the shot noise σ2(B) in the Gaussian elements of the 3D

bispectrum covariance can be estimated as (Scoccimarro et al. 2004)

σ2(B) =
s123

VsVBn̄3
, (2.25)

where Vs is the survey volume, n̄ is the number density, s123 = 1, 2 or 6 for general, isosceles or

equilateral triangles respectively, and VB quantifies the number of Fourier modes satisfying the

triangle constraint k1 + k2 + k3 = 0. It is the integral over triangle side lengths k1, k2, k3 of three

spherical shells of width ∆k. An analytical expression exists for VB (Chan and Blot 2017):

VB =

∫
k1

d3p

∫
k2

d3q

∫
k3

d3s δD(p + q + s) (2.26)

= 8π2k1k2k3(∆k)3 . (2.27)

The quantity VB is a purely geometric measure, so similar reasoning applies to the 3PCF

covariance. In this case we count modes satisfying the triangle constraint r1 + r2 + r3 = 0 within

the bin width ∆r in real space to produce a quantity VZ , analogous to VB . Thus the shot noise in

the 3PCF covariance, σ2(ζ), is given by

σ2(ζ) =
(2π)3s123

VsVZ n̄3
(2.28)

=
6π

Vsr3(∆r)3n̄3
for equilateral triangles. (2.29)

For the Euclid spectroscopic survey Vs ≈ 100 h−3Gpc3 and the expected number density of Hα

galaxies at z = 1 is n̄ ≈ 1.7× 10−3 h3Mpc−3 (Amendola et al. 2013). We take r = 100 h−1Mpc

(approximately the BAO scale, which is the scale of most interest) and ∆r = 10 h−1Mpc. Inserting

these values into Equation 2.29 implies that σ2(ζ) is around 10−12 and σ(ζ) ∼ 10−6. These order
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of magnitude estimates are consistent with estimates for the uncertainty in the galaxy 3PCF in a

survey similar to SDSS DR12 (Slepian and Eisenstein 2015).

Thus, at the BAO scale and for equilateral triangles, the shot noise in a Euclid-like survey is

greater than the deflection effect. Since we have ignored several sources of error, in practice the

errors will exceed the deflection effect by an even greater amount than calculated here.

The deflection is larger for squeezed triangles, but so too is the shot noise. Deflection peaks at

around z = 2 (Figure 2.5) but the number density of objects in Euclid-like surveys falls rapidly up

to and beyond this redshift. Other spectroscopic surveys, in particular DESI, will provide samples

with similar number densities at z < 2 and much sparser QSO samples beyond. Photometric

surveys like the LSST in principle observe deep tracer samples with high spatial densities, but the

large line-of-sight uncertainties due to broadband photometric redshifts wash out small features

like BAO signatures and the lensing deflection modification to the signal. Thus the deflection

effect is too small to be detected by forthcoming galaxy and quasar surveys. To put this into

context, Schmidt et al. (2008) investigated the effect on the 3PCF of lensing magnification in a

magnitude-limited survey. Lensing magnifies or demagnifies objects so that intrinsically faint

objects may be brought into the survey, and intrinsically bright objects may be excluded. This can

clearly affect measured correlation functions. Schmidt et al. (2008) found the uncertainty in lensing

magnification corrections to the 3PCF to be around 10−5 across a range of scales at z = 1. On the

basis of fairly optimistic assumptions they considered the effects to be just detectable in planned

surveys.

2.5 Conclusions

We have considered the displacement of sources due to weak gravitational lensing, which we refer

to as lensing deflection, and have derived an expression for the effect of lensing deflection on the

three-point correlation function for three sources at the same comoving distance. The derivation is

quite general: it could be applied to any physical observables and is based only on the assumptions

that terms above second order in the lensing deflection can be neglected and that the observables

are not correlated with the lensing deflection field.

The resulting expression, given by Equation 2.12, shows that the lensing deflection depends on

partial derivatives of the unlensed 3PCF. This causes the 3PCF to be smoothed by lensing, but also

makes the effect large when the 3PCF is rapidly varying. If the 3PCF is approximately a power law

(which will often be the case), each term of the lensing deflection in Equation 2.12 behaves like

91



〈ABC〉/r2. Thus as a proportion of the unlensed 3PCF, the deflection effect is highest for sources

which are close to each other and decreases as the source separation increases. At all scales the

relative effect increases monotonically with redshift.

We have calculated the size of this effect for the matter density contrast and show that lensing

deflection is around 10−8 at z = 1. We have confirmed that the effect is highest at small scales

(r < 20 h−1 Mpc), and is also especially noticeable around the BAO feature where it smooths

out the peaks and troughs, reducing the amplitude of the oscillations. This could potentially affect

the use of the 3PCF for cosmological parameter estimation. The deflection is greatest at around

z = 2 but as a proportion of the unlensed 3PCF the deflection increases with redshift, reaching

10−2 at z = 10. A similar results holds for the 2PCF. Here the peak deflection is greater but occurs

at higher redshift.

The effect on the 3PCF is too small to be detected in forthcoming surveys such as Euclid or

DESI. Detections would require much higher number densities of galaxies or quasars at redshifts

z ∼ 2 where the deflection is greatest. While we cannot directly compare our findings with results

obtained in Fourier space which were also considered undetectable (Di Dio et al. 2016), we expect

them to be of the same order of magnitude.

Although we found that the effect on the matter 3PCF will be undetectable by forthcoming

surveys, it remains possible that it is not negligible for other three-point statistics, for example

measures of primordial non-Gaussianity or of the CMB bispectrum induced by lensing.
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Appendices

2A Effect of lensing on the three-point correlation function

Consider three physical observables A(xa), B(xb) and C(xc) observed at points xa, xb and xc.

The corresponding observed (lensed) values are Ã(xa), B̃(xb) and C̃(xc). Then if λa is the lensing

deflection vector, Ã(xa) and A(xa + λa) are related by Equation (2.1), and similarly for B and C.

The unlensed 3PCF is

〈A(xa)B(xb)C(xc)〉 =

∫
d3k1

(2π)3
eik1·xa

∫
d3k2

(2π)3
eik2·xb

∫
d3k3

(2π)3
eik3·xc

× (2π)3BABC(k1,k2,k3)δD(k1 + k2 + k3) , (2.30)

and the lensed 3PCF is

〈Ã(xa)B̃(xb)C̃(xc)〉 = 〈A(xa + λa)B(xb + λb)C(xc + λc)〉 (2.31)

=

∫
d3k1

(2π)3
eik1·(xa+λa)

∫
d3k2

(2π)3
eik2·(xb+λb)

∫
d3k3

(2π)3
eik3·(xc+λc)

× (2π)3BABC(k1,k2,k3)δD(k1 + k2 + k3) , (2.32)

where δD is the Dirac delta function andBABC(k1,k2,k3) is the bispectrum of the three observables,

defined as 〈A(k1)B(k2)C(k3)〉 = (2π)3δD(k1 + k2 + k3)BABC(k1,k2,k3).

We now derive an expression for the lensed 3PCF in terms of the unlensed 3PCF and a lensing

deflection term which we denote 〈ABC〉2.

Dropping the arguments of Ã(xa) etc for simplicity and making use of the delta function in

Equation 2.32 leads to

〈ÃB̃C̃〉 =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
〈eik1·(xa+λa−xc−λc)eik2·(xb+λb−xc−λc)〉BABC(k1,k2,−k1 − k2)

(2.33)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3
BABC(k1,k2,−k1 − k2) (2.34)

× eik1·(xa−xc)eik2·(xb−xc)〈eik1·(λa−λc)eik2·(λb−λc)〉 ,

assuming the observables are not correlated with the lensing deflection field.
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We expand the exponential factors in the expectation value up to second order in k to get

〈ÃB̃C̃〉 ≈
∫

d3k1

(2π)3

∫
d3k2

(2π)3
BABC(k1,k2,−k1 − k2)eik1·(xa−xc)eik2·(xb−xc)

× 〈[1 + ik1 · (λa − λc)−
1

2
k1 · (λa − λc)k1 · (λa − λc)]

× [1 + ik2 · (λb − λc)−
1

2
k2 · (λb − λc)k2 · (λb − λc)]〉 .

(2.35)

The zeroth order term is the unlensed 3PCF, 〈ABC〉. The terms like ik2 · (λb − λc) are zero

because the expectation value of the deflection field is zero. So we have

〈ÃB̃C̃〉 ≈ 〈ABC〉+

∫
d3k1

(2π)3

∫
d3k2

(2π)3
BABC(k1,k2,−k1 − k2)eik1·(xa−xc)eik2·(xb−xc)

× 〈−1

2
k1 · (λa − λc)k1 · (λa − λc)−

1

2
k2 · (λb − λc)k2 · (λb − λc)

− k1 · (λa − λc)k2 · (λb − λc)〉 (2.36)

≡ 〈ABC〉+ 〈ABC〉2 . (2.37)

The expectation value in Equation 2.36 can be written

〈−1

2
k1 · (λa − λc)k1 · (λa − λc)−

1

2
k2 · (λb − λc)k2 · (λb − λc)− k1 · (λa − λc)k2 · (λb − λc)〉

= −1

2

[
k1ik1j [〈λiaλja〉 − 2〈λiaλjc〉+ 〈λicλjc〉] + k2ik2j [〈λibλjb〉 − 2〈λibλjc〉+ 〈λicλjc〉]

]
− k1ik2j [〈λiaλjb〉 − 〈λiaλjc〉 − 〈λibλjc〉+ 〈λicλjc〉] , (2.38)

where summation over i and j is implied. So the lensing deflection term in Equation 2.36 becomes

〈ABC〉2 ≈
∫

d3k1

(2π)3

∫
d3k2

(2π)3
BABC(k1,k2,−k1 − k2)eik1·(xa−xc)eik2·(xb−xc)

×
[
− 1

2

[
k1ik1j [〈λiaλja〉 − 2〈λiaλjc〉+ 〈λicλjc〉] + k2ik2j [〈λibλjb〉 − 2〈λibλjc〉+ 〈λicλjc〉]

]
− k1ik2j [〈λiaλjb〉 − 〈λiaλjc〉 − 〈λibλjc〉+ 〈λicλjc〉]

]
. (2.39)
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The deflection vectors do not depend on the integration variables and can be taken out of the

integrals to give

〈ABC〉2 ≈ −
1

2
[〈λiaλja〉 − 2〈λiaλjc〉+ 〈λicλjc〉]

∫
d3k1

(2π)3

∫
d3k2

(2π)3
k1ik1jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc)

− 1

2
[〈λibλjb〉 − 2〈λibλjc〉+ 〈λicλjc〉]

∫
d3k1

(2π)3

∫
d3k2

(2π)3
k2ik2jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc)

− [〈λiaλjb〉 − 〈λiaλjc〉 − 〈λibλjc〉+ 〈λicλjc〉]
∫

d3k1

(2π)3

∫
d3k2

(2π)3
k1ik2jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc) .

(2.40)

Now define the correlators as in Equation 2.9. Then the final correlator term in Equation 2.38 can

be written as

〈λiaλjb〉 − 〈λiaλjc〉 − 〈λibλjc〉+ 〈λicλjc〉 = −
(
〈λiaλja〉+ 〈λibλ

j
b〉

2
− 〈λiaλjb〉

)
+

(
〈λiaλja〉+ 〈λibλ

j
b〉

2

)

+

(
〈λiaλja〉+ 〈λicλjc〉

2
− 〈λiaλjc〉

)
−
(
〈λiaλja〉+ 〈λicλjc〉

2

)

+

(
〈λibλ

j
b〉+ 〈λicλjc〉

2
− 〈λibλjc〉

)
−
(
〈λibλ

j
b〉+ 〈λicλjc〉

2

)
+ 〈λicλjc〉

= Zijac + Zijbc − Z
ij
ab . (2.41)
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So the lensing deflection is given by

〈ABC〉2 ≈ −Zijac
∫

d3k1

(2π)3

∫
d3k2

(2π)3
k1ik1jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc)

− Zijbc
∫

d3k1

(2π)3

∫
d3k2

(2π)3
k2ik2jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc)

− [Zijac + Zijbc − Z
ij
ab]

∫
d3k1

(2π)3

∫
d3k2

(2π)3
k1ik2jBABC(k1,k2,−k1 − k2)

× eik1·(xa−xc)eik2·(xb−xc) .

(2.42)

We now define rb as the observed distance between xa and xc, and ra as the observed distance

between xb and xc, so that rb ≡ (xa − xc) and ra ≡ (xb − xc) (see Figure 2.1). Then from

Equation 2.30

〈A(xa)B(xb)C(xc)〉 =

∫
d3k1

(2π)3
eik1·(rb+xc)

∫
d3k2

(2π)3
eik2·(ra+xc)

∫
d3k3

(2π)3
eik3·xc

× (2π)3BABC(k1,k2,k3)δD(k1 + k2 + k3) , (2.43)

and so partial derivatives with respect to components of the triangle sides can be written as, for

example,

∂2〈ABC〉
∂rbi∂rbj

= −k1ik1j〈ABC〉 . (2.44)

It follows that the lensing deflection, 〈ABC〉2, can be expressed in terms of partial derivatives of

the unlensed 3PCF, 〈ABC〉:

〈ABC〉2 =
∂2〈ABC〉
∂rbi∂rbj

Zijac

+
∂2〈ABC〉
∂rai∂raj

Zijbc

+
∂2〈ABC〉
∂rai∂rbj

[Zijac + Zijbc − Z
ij
ab] . (2.45)
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Following Dodelson et al. (2008) we now make the simplifying assumption that all three sources

are at the same comoving distance. Without loss of generality coordinates can be chosen as in

Figure 2.1. This means that the only elements of the distortion correlators Zij which we need to

consider are those with i = j = 1 and i = j = 2. These represent deflections in two orthogonal

directions in the plane of the sky. With these coordinates Equation 2.45 becomes

〈ABC〉2 =
∂2〈ABC〉
∂r2

b1

Z11
ac +

∂2〈ABC〉
∂r2

b2

Z22
ac

+
∂2〈ABC〉
∂r2

a1

Z11
bc +

∂2〈ABC〉
∂r2

a2

Z22
bc

+
∂2〈ABC〉
∂ra1∂rb1

[Z11
ac + Z11

bc − Z11
ab ]

+
∂2〈ABC〉
∂ra2∂rb2

[Z22
ac + Z22

bc − Z22
ab ] (2.46)

=
∂2〈ABC〉
∂r2

b1

Z11
ac +

∂2〈ABC〉
∂r2

a1

Z11
bc +

∂2〈ABC〉
∂r2

a2

Z22
bc

+
∂2〈ABC〉
∂ra1∂rb1

[Z11
ac + Z11

bc − Z11
ab ] (2.47)

because all derivatives with respect to rb2 are zero through the choice of coordinates.

We next express these derivatives in terms of the distances ra and rb and the angle ϕ between

ra and rb. We have rb1 ≡ rb so partial derivatives with respect to rb1 are straightforward. We now

derive the other partial derivatives which appear in Equation 2.47. For brevity we write 〈ABC〉 as

f ≡ f(ra, rb, ϕ).

1. Partial derivative with respect to ra1.

∂f(ra, rb, ϕ)

∂ra1
=

∂f

∂ra

∂ra
∂ra1

+
∂f

∂rb

∂rb
∂ra1

+
∂f

∂ϕ

∂ϕ

∂ra1

= cosϕ
∂f

∂ra
− sinϕ

ra

∂f

∂ϕ
. (2.48)

This uses ra = (r2
a1 + r2

a2)1/2 which means ∂ra
∂ra1

= ra1
(r2a1+r2a2)1/2

= ra1/ra = cosϕ ,

andϕ = arctan (ra2/ra1) which means ∂ϕ
∂ra1

=
(

1
1+(ra2/ra1)2

)
(−ra2/r2a1) = (r2a1/r2a) (−ra2/r2a1) = − sinϕ/ra.
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2. Second partial derivative with respect to ra1.

∂2f(ra, rb, ϕ)

∂r2
a1

=

[
cosϕ

∂

∂ra
− sinϕ

ra

∂

∂ϕ

][
cosϕ

∂f

∂ra
− sinϕ

ra

∂f

∂ϕ

]
= cos2 ϕ

∂2f

∂r2
a

− 2 sinϕ cosϕ

ra

∂2f

∂ra∂ϕ
+

sin2 ϕ

r2
a

∂2f

∂ϕ2

+
sin2 ϕ

ra

∂f

∂ra
+

2 sinϕ cosϕ

r2
a

∂f

∂ϕ
. (2.49)

3. Second partial derivative with respect to ra1 and rb1.

∂2f(ra, rb, ϕ)

∂ra1∂rb1
=
∂2f(ra, rb, ϕ)

∂ra1∂rb

= cosϕ
∂2f

∂ra∂rb
− sinϕ

ra

∂2f

∂rb∂ϕ
. (2.50)

4. Partial derivative with respect to ra2.

∂f(ra, rb, ϕ)

∂ra2
=

∂f

∂ra

∂ra
∂ra2

+
∂f

∂rb

∂rb
∂ra2

+
∂f

∂ϕ

∂ϕ

∂ra2

= sinϕ
∂f

∂ra
+

cosϕ

ra

∂f

∂ϕ
. (2.51)

This uses ∂ra
∂ra2

= ra2
(r2a1+r2a2)1/2

= sinϕ, and ∂ϕ
∂ra2

=
(

1
1+(ra2/ra1)2

)(
1
ra1

)
= cosϕ

ra
.

5. Second partial derivative with respect to ra2.

∂2f(ra, rb, ϕ)

∂r2
a2

=

[
sinϕ

∂

∂ra
+

cosϕ

ra

∂

∂ϕ

][
sinϕ

∂f

∂ra
+

cosϕ

ra

∂f

∂ϕ

]
= sin2 ϕ

∂2f

∂r2
a

+
2 sinϕ cosϕ

ra

∂2f

∂ra∂ϕ
+

cos2 ϕ

r2
a

∂2f

∂ϕ2

+
cos2 ϕ

ra

∂f

∂ra
− 2 sinϕ cosϕ

r2
a

∂f

∂ϕ
. (2.52)
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Having assembled these ingredients we can substitute into Equation 2.47 to get

〈ABC〉2 = Z11
ac

∂2〈ABC〉
∂r2

b

+ Z11
bc

[
cos2 ϕ

∂2〈ABC〉
∂r2

a

− 2 sinϕ cosϕ

ra

∂2〈ABC〉
∂ra∂ϕ

+
sin2 ϕ

r2
a

∂2〈ABC〉
∂ϕ2

+
sin2 ϕ

ra

∂〈ABC〉
∂ra

+
2 sinϕ cosϕ

r2
a

∂〈ABC〉
∂ϕ

]
+ Z22

bc

[
sin2 ϕ

∂2〈ABC〉
∂r2

a

+
2 sinϕ cosϕ

ra

∂2〈ABC〉
∂ra∂ϕ

+
cos2 ϕ

r2
a

∂2〈ABC〉
∂ϕ2

+
cos2 ϕ

ra

∂〈ABC〉
∂ra

− 2 sinϕ cosϕ

r2
a

∂〈ABC〉
∂ϕ

]
+ [Z11

ac + Z11
bc − Z11

ab ]

[
cosϕ

∂2〈ABC〉
∂ra∂rb

− sinϕ

ra

∂2〈ABC〉
∂rb∂ϕ

]
. (2.53)

To finish we collect together terms in each partial derivative and obtain Equation 2.12, the final

result for the deflection contribution to the lensed 3PCF.

99



2B The unlensed matter three-point correlation function

The three-point correlation function ζ(r1, r2, r3) of the matter density field is defined as in Equation

2.30, with the matter bispectrum in place of the general bispectrum. The matter bispectrum can be

computed using Eulerian perturbation theory (Fry 1984; Bernardeau et al. 2002) as

BPT(k1,k2,k3) =

[
10

7
+

k1 · k2

k1k2

(
k2

1 + k2
2

k1k2

)
+

4

7

(
k1 · k2

k1k2

)2
]
Pδ(k1)Pδ(k2) + 2 perms. ,

(2.54)

where Pδ(k) is the matter power spectrum.

From this it is possible to derive the following expression for the three-point correlation function

(Jing and Borner 1997):

ζ(r1, r2, r3) =
10

7
ξ(r21)ξ(r31)−

[
η2(r21)η0(r31) + η0(r21)η2(r31)

]
r21 · r31

+
4

7

[
ε(r21)ε2(r31)(r21 · r31)2 + ε(r21)η2(r31)r2

21

+ η2(r21)ε(r31)r2
31 + 3η2(r21)η2(r31)

]
+ 2 perms. (2.55)

where rij = |ri − rj |.

The functions ξ(r), ηl(r) and ε(r) are given by

ξ(r) =
1

2π2

∫ ∞
0

dk k2Pδ(k)j0(kr) , (2.56)

ηl(r) = − 1

2π2

∫ ∞
0

dk k2Pδ(k)
k

klr
j1(kr) , (2.57)

ε(r) =
1

2π2

∫ ∞
0

dk k2Pδ(k)
k2

r2
j2(kr) . (2.58)

ξ(r) is the two-point correlation function. ηl(r) has two variants with l = 0 and l = 2.

These expressions can be problematic to integrate numerically because the Bessel functions are

oscillatory. However they can in fact be evaluated efficiently with Fast Fourier Transforms (FFT)

(Hamilton 2000; Simon 2005). To achieve this we can use the fact that it is possible to transform
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equations of the form

f(r) =

∫ ∞
0

dk rF (kr)f̂(k) , (2.59)

for some function F , with f(r) and f̂(k) a Hankel transform pair,

f̂(k) =

∫ ∞
0

dr kF (kr)f(r) , (2.60)

in a way that makes them readily integrable. To see this we make a change of variables r ≡ ex and

k ≡ ey and define g(x) ≡ f(ex) and ĝ(y) ≡ f̂(ey). Then Equation 2.59 becomes

g(x) =

∫ ∞
−∞

dy ex+yF (ex+y)ĝ(y) (2.61)

=

∫ ∞
−∞

dy G(x+ y)ĝ(y) , (2.62)

where G(z) is defined as ezF (ez).

The integral in Equation 2.62 is the cross-correlationG∗ ĝ(y) which is equivalent to the convolution

G ∗ ĝ∗(−y) where ĝ∗ is the complex conjugate of ĝ. We can thus avoid the need for integration by

transforming to Fourier space where convolutions become products.

To transform Equations 2.56 to 2.58 to the required form we change the spherical Bessel

functions to cylindrical Bessel functions using the identity

jµ(z) =

√
π

2z
Jµ+ 1

2
(z) . (2.63)

We can then write the equations as:

ξ(r) =

√
π

2

1

2π2
r−1

∫ ∞
0

dk k2Pδ(k)r(kr)−
1
2J 1

2
(kr) , (2.64)

η0(r) = −
√
π

2

1

2π2
r−3

∫ ∞
0

dk k2Pδ(k)r(kr)
1
2J 3

2
(kr) , (2.65)

η2(r) = −
√
π

2

1

2π2
r−1

∫ ∞
0

dk k2Pδ(k)r(kr)−
3
2J 3

2
(kr) , (2.66)

ε(r) =

√
π

2

1

2π2
r−3

∫ ∞
0

dk k2Pδ(k)r(kr)
1
2J 5

2
(kr) . (2.67)

These have the form of Equation 2.59.
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3 Information from the weak lensing bispectrum

3.1 Introduction

One of the primary aims of modern cosmology is to constrain the cosmological parameters. Weak

gravitational lensing is becoming an increasingly reliable tool for this purpose, with statistical and

systematic errors continually being reduced.

The next generation of galaxy surveys such as Euclid1 and LSST2 will represent a step change

in the quantity and precision of weak lensing data. It is important to plan how best to use this data

to estimate parameters, including investigating methods which are not feasible for current surveys.

In this chapter we consider the potential for using three-point weak lensing statistics to analyse this

new survey data.

Despite formidable observational and analytical challenges, there is no question that a Euclid-

like survey should be able to provide three-point measurements. A three-point weak lensing signal

was detected as early as 2003 (Bernardeau et al. 2003; Pen et al. 2003). Subsequently Semboloni

et al. (2010) used three-point aperture mass statistics from the Cosmic Evolution Survey3 to estimate

cosmological parameters. This work was an important proof of concept. Despite a small, less than

ideal survey, three-point statistics produced a modest improvement in parameter constraints. More

recently the usefulness of three-point measures was confirmed by Fu et al. (2014) using the larger

Canada France Hawaii Telescope Lensing Survey4.

With the advent of high-quality measurements from surveys specifically designed for weak

lensing, there are several reasons to believe that three-point statistics could help improve parameter

constraints. Most obviously, the shear field is non-Gaussian so two-point statistics do not capture

all potential information. Including three-point statistics should therefore help to reduce statistical

errors. Secondly, the matter bispectrum and power spectrum depend on cosmological parameters in

different ways, offering the prospect of breaking degeneracies such as those between Ωm and σ8.

For the weak lensing power spectrum and bispectrum this degeneracy-breaking may be strengthened

because they are differently-weighted projections of their matter counterparts. Finally, three-point

1http://sci.esa.int/euclid/
2lsst.org
3http://cosmos.astro.caltech.edu
4http://www.cfhtlens.org
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statistics may help to control systematic uncertainties: there is evidence that systematics affect the

bispectrum and power spectrum in different ways (Semboloni et al. 2008; Foreman et al. 2019).

To date most weak lensing studies have used two-point statistics. This is often a purely

pragmatic choice. The bispectrum is significantly more complicated than the power spectrum which

means that the (possibly modest) improvement in parameter constraints must be weighed against

increased observational, analytical and computational costs. In the first place, the data vector is

much larger for the bispectrum than for the power spectrum. The power spectrum is characterised by

a single wavenumber but the bispectrum depends on triangle configurations defined by three pieces

of information, for example the lengths of three wavevectors or two wavevectors and an angle. For

a Euclid-like survey with 10 tomographic bins there are ∼ 105 different triangle configurations,

compared with only ∼ 103 combinations of single wavevectors. Moreover to estimate parameter

values we need to evaluate the covariance matrix, which again is much larger for the bispectrum. It

is also more complex: if all Gaussian and non-Gaussian contributions are considered the bispectrum

covariance depends on up to a six-point function whereas the power spectrum covariance depends

only on a trispectrum. These problems of size and complexity affect observations, simulations and

numerical analysis alike.

On top of this, several poorly-understood systematic effects degrade the weak lensing signal.

Quantifying and controlling these systematics even for two-point statistics is difficult and their

effect on three-point statistics is not well understood. Principal amongst these systematics are

the intrinsic alignments of galaxies which can mimic the shear signal (Troxel and Ishak 2015),

uncertainty related to the use of photometric rather than spectroscopic redshifts, and the impact of

baryonic effects at the small non-linear scales which will be probed by future surveys. As statistical

uncertainties are reduced, control of systematic uncertainties will become an increasingly pressing

issue.

Several studies, in particular Kayo et al. (2012), Kayo and Takada (2013) and Rizzato et al.

(2019), have investigated the theoretical gain in information from using the weak lensing bispectrum

as well as the power spectrum. Importantly, these studies did not take account of systematic

uncertainties so their conclusions must be considered to be optimistic. In this chapter we first

confirm the main findings of these studies and then consider how systematic uncertainties affect the

bispectrum.

In Section 3.2 we review the matter bispectrum covariance matrix. We clarify the supersample

covariance and in Section 3.2.3 we use the halo model, perturbation theory and the so-called

‘integrated trispectrum’ to derive all the matter bispectrum supersample covariance terms for
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equilateral triangles. Other authors have reported similar derivations and we contrast our methods

and results with those of Adhikari et al. (2016) and Chan et al. (2018). Finally we extend the results

to the weak lensing supersample covariance. These are summarised in Appendix 3A.

In Section 3.3 we consider statistical errors in a next-generation survey. We present Fisher

matrix forecasts which confirm previous findings (Kayo et al. 2012; Rizzato et al. 2019) about the

benefit of tomography and the potential reduction in statistical errors from including the bispectrum.

Our Fisher matrix analysis was mostly complete before the publication of Rizzato et al. (2019).

In Section 3.4 we discuss two major sources of systematic error, intrinsic alignments and

uncertainty in redshift binning, and show that using the bispectrum as well as the power spectrum

can help to mitigate the effect of these systematics.

Section 3.5 concludes with a discussion of further work which would build on our results.

Throughout we consider a Euclid-like survey. Details of survey and modelling assumptions

and of fiducial parameter values are given in Section 3.3.1.

3.2 Matter power spectrum and bispectrum covariance

3.2.1 Power spectrum and bispectrum estimators

Before addressing the power spectrum and bispectrum covariance matrices we first define power

spectrum and bispectrum estimators. We initially discuss the matter density contrast δ(x) and later

extend this to the weak lensing field, since this is just a weighted projection of the matter field. We

assume a survey with volume VW and define a survey window function W (x) which is a binary

mask with W (x) = 1 within the survey volume and zero otherwise. Thus

VW ≡
∫

d3xW (x) . (3.1)

The observed field is then δW (x) ≡ δ(x)W (x).

We assume that observations are binned into concentric shells of width ∆k with ∆k � k and

that the volume of the shell labelled by k is VP (k). Then we can define the matter power spectrum

estimator P̂ (k) as (Scoccimarro et al. 1999; Sefusatti et al. 2006; Takada and Hu 2013)

P̂ (k) =
1

VWVP (k)

∫
k

d3q1

∫
k

d3q2 δ̃W (q1)δ̃W (−q2)δD(q12) , (3.2)
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where δ̃W (k) is the Fourier transform of the matter density contrast convolved with the survey

window function and δD(q12) ≡ δD(q1 + q2) is the Dirac delta function. The integrals are over all

modes which fall into the spherical shell defined by k, that is all modes with |qi| ∈ k. VP (k) is

given by (Sefusatti et al. 2006)

VP (k) =

∫
k

dq1

∫
k

dq2 δD(q12) (3.3)

≈ 4πk2∆k . (3.4)

For modes with wavenumber much larger than the length scale of the survey P̂ is an unbiased

estimator (Takada and Hu 2013).

We can use a similar approach to define a bispectrum estimator B̂(k1,k2,k3) (Sefusatti et al.

2006):

B̂(k1,k2,k3) =
1

VWVB(k1, k2, k3)

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δD(q123)

× δ̃W (q1)δ̃W (q2)δ̃W (q3) (3.5)

where δD(q123) ≡ δD(q1 + q2 + q3) imposes a triangle constraint on the wavevectors. Again

assuming ∆k � ki for all i, VB(k1, k2, k3) is given by (Scoccimarro et al. 2004)

VB(k1, k2, k3) =

∫
d3q1

∫
d3q2

∫
d3q3 δD(q123) (3.6)

≈ 8π2k1k2k3∆k3 . (3.7)

To extend these estimators to weak lensing we can use the Limber and flat-sky approximations

and integrate over the comoving distance χ. The Limber approximation relates the three-dimensional

wavevectors k to the two-dimensional angular multipoles ` by ` = kχ(z).

Assuming a flat Universe, for a tomographic survey the convergence field κ(i) for the ith

tomographic bin is then

κ(i)(θ) =

∫ χlim

0
dχ q(i)(χ)δ(χ, χθ) , (3.8)
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where θ is the angular position on the sky, χlim is the maximum comoving distance of the survey, δ

is the matter density contrast and q(i)(χ) is defined as (Joachimi and Bridle 2010)

q(i)(χ) =
3H2

0 Ωm

2c2

χ

a(χ)
g(i)(χ) . (3.9)

Here a(χ) is the scale factor and g(i)(χ) is the lensing efficiency:

g(i)(χ) =

∫ χlim

χ
dχ′ p(i)(χ

′)
(χ′ − χ)

χ′
, (3.10)

where p(i)(χ) is the distribution of galaxies in the ith tomographic bin. This leads to the tomographic

weak lensing power spectrum and bispectrum:

P κ(ij)(`) =

∫ χlim

0
dχ q(i)(χ)q(j)(χ)χ−2Pδ(k;χ) , (3.11)

and

Bκ
(ijk)(`1, `2, `3) =

∫ χlim

0
dχ q(i)(χ)q(j)(χ)q(k)(χ)χ−4Bδ(k1,k2,k3;χ) . (3.12)

3.2.2 Covariance matrices

We now derive the power spectrum and bispectrum auto-covariances and their cross-covariance.

Again we start with the matter power spectrum and bispectrum. We ignore shot noise which would

of course exist in any realistic situation. In what follows shot noise can generally be assumed to be

Gaussian and simply added to the power spectrum.

The covariances can be expressed as

Cov[P (ki), P (kj)] = 〈P̂ (ki)P̂ (kj)〉 − 〈P̂ (ki)〉〈P̂ (kj)〉 (3.13)

Cov[B(k1,k2,k3), B(k4,k5,k6)] = 〈B̂(k1,k2,k3)B̂(k4,k5,k6)〉 (3.14)

− 〈B̂(k1,k2,k3)〉〈B̂(k4,k5,k6)〉 .

These covariances both have the general form

Covfull = CovGauss + CovNG + CovSSC , (3.15)
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where the subscripts denote ‘Gaussian’, ‘non-Gaussian’ and ‘supersample covariance’. The power

spectrum–bispectrum cross-covariance takes a similar form but has no Gaussian term.

We can use Wick’s theorem to express the covariances in terms of correlators of δ̃, the Fourier

transform of the underlying density contrast. Thus the power spectrum covariance has a term

〈δ̃δ̃〉〈δ̃δ̃〉 which is the product of two power spectra and also a term involving the connected

4-point function or trispectrum 〈δ̃δ̃δ̃δ̃〉c. Similarly the bispectrum covariance has terms involving

〈δ̃δ̃〉〈δ̃δ̃〉〈δ̃δ̃〉, 〈δ̃δ̃δ̃〉c〈δ̃δ̃δ̃〉c, 〈δ̃δ̃δ̃δ̃〉c〈δ̃δ̃〉 and 〈δ̃δ̃δ̃δ̃δ̃δ̃〉c, and the power spectrum–bispectrum cross-

covariance involves 〈δ̃δ̃〉〈δ̃δ̃δ̃〉c and 〈δ̃δ̃δ̃δ̃δ̃〉c.The terms which depend only on the power spectrum

are referred to as Gaussian. If the underlying field is Gaussian then these are the only non-zero

parts of the covariance so the matrices are diagonal.

The remaining terms generate non-zero off-diagonal elements. These terms can be split into

‘standard’ non-Gaussian terms, which arise from coupling between small-scale modes within the

survey window, and supersample terms caused by coupling between in-survey modes and long-

wavelength modes longer than the survey window dimension (Rimes and Hamilton 2006; Hamilton

et al. 2006). This supersample covariance is generated by the 4-point correlator in the power

spectrum covariance and the 6-point correlator in the bispectrum covariance. It has been further

divided into ‘beat coupling’ (BC) at large scales, and ‘halo sample variance’ (HSV) at intermediate

to small scales. At large scales there is also another much smaller effect known as linear dilation

(Li et al. 2014a). This terminology has sometimes been used rather loosely. In particular the label

SSC has sometimes been used for only part of the full supersample covariance. Here we use SSC

to include all these terms: BC, HSV and dilation (but excluding additional tidal terms discussed for

example in Barreira et al. (2018b)). We use the label NG to refer to the ‘standard’ non-Gaussian

terms only.

Gaussian terms

The Gaussian terms of the covariance matrices are (Scoccimarro et al. 1999; Sefusatti et al. 2006;

Chan and Blot 2017)

CovPP
Gauss =

(2π)3

VW

2

VP (ki)
P (ki)P (kj)δ

K
kikj

, (3.16)
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where VW is the survey volume, VP (ki) is defined in Section 3.2.1 and δK
kikj

is the Kronecker delta.

CovBB
Gauss =

(2π)3

VW

1

VB(k1, k2, k3)
P (k1)P (k2)P (k3)δK

k1k4δ
K
k2k5δ

K
k3k6 + 5 perms. (3.17)

=
(2π)3

VW

sB
VB(k1, k2, k3)

P (k1)P (k2)P (k3) , (3.18)

where again VB(k1, k2, k3) is defined in Section 3.2.1, and sB = 1, 2, 6 for general, isosceles and

equilateral triangles respectively. The Kronecker deltas in Equation 3.17 show that Gaussian terms

of the bispectrum covariance are zero unless the two triangles of the bispectra coincide in shape,

size and orientation. Thus the Gaussian terms contribute only to the diagonals of the covariance

matrix.

Non-Gaussian terms

The ‘standard’ non-Gaussian terms are generated by higher-order polyspectra. In the case of the

power spectrum covariance the non-Gaussian term arises from the trispectrum, specifically from

parallelogram configurations because of the constraint k1 + k2 = 0, leading to (Scoccimarro et al.

1999)

CovPP
NG =

1

VW

∫
k1

d3q1

VP (k1)

∫
k2

d3q2

VP (k2)
T (q1,−q1,q2,−q2) . (3.19)

The non-Gaussian terms of the bispectrum covariance come from bispectrum-bispectrum and

trispectrum-power spectrum correlations and the six-point function or pentaspectrum, P6. Thus

CovBB
NG = CovBB

BB + CovBB
TP + CovBB

P6
. (3.20)
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The possible configurations are determined by triangle conditions, giving (Sefusatti et al. 2006)

CovBB
NG = δK

q3q4C123456

∫
1

∫
2

∫
3

∫
5

∫
6
δD(q123)δD(q356)

×B(q1,q2,q3)B(q3,q5,q6) + 8 perms.

+ δK
q3q4C123456

∫
1

∫
2

∫
3

∫
5

∫
6
δD(q123)δD(q356)

× T (q1,q2,q5,q6)P (q3) + 8 perms.

+ C123456

∫
1

∫
2

∫
3

∫
4

∫
5

∫
6
δD(q123)δD(q456)

× P6(q1,q2,q3,q4,q5,q6) , (3.21)

where
∫
i is shorthand for integration over ki, and

C123456 =
(2π)3

VWVB(q1, q2, q3)VB(q4, q5, q6)
. (3.22)

The permutations in the first (BB) and second (TP) terms arise from the different possible

combinations of two sides, one from each triangle (Kayo et al. 2012). The BB term is zero unless

the two triangles have one side in common. The TP term is zero unless the triangles have one side

of equal length but opposite direction.

The non-Gaussian part of the cross-covariance between the power spectrum and bispectrum can be

derived in a similar way as (Sefusatti et al. 2006; Kayo et al. 2012)

CovPB
NG = δK

q1q2

(2π)3

VW

2

VP (q1)VB(q2, q3, q4)
P (q1)B(q2,q3,q4) + 2 perms.

+
(2π)3

VW

2

VP (q1)VB(q2, q3, q4)

∫
1

∫
2

∫
3

∫
4
δD(q234)P5(q1,−q1,q2,q3,q4) ,

(3.23)

where P5 is the connected five-point power spectrum.

It is straightforward to extend these results to the weak lensing field using Equations 3.11 and

3.12. We state the results in Appendix 3A.

Supersample covariance

In this section we summarise the origin of supersample covariance and discuss its effect on the

power spectrum covariance as a prelude to deriving corresponding results for the bispectrum.
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Supersample covariance arises because Fourier modes within the survey volume interact with

modes longer than the survey window dimension. These long modes are essentially constant across

the survey window so their effect can be equated to a change in the mean density within the survey

region (Rimes and Hamilton 2006; Hamilton et al. 2006; Takada and Hu 2013; Li et al. 2014a,b;

Baldauf et al. 2016; Chan et al. 2018; Barreira et al. 2018b).

Looked at from this point of view a super-survey mode δb has three effects on the local growth

of structure which feed through into the power spectrum and bispectrum and their covariances.

First the local mean density is rescaled by a factor (1 + δb) compared to the global mean. As a

result within the survey window the power spectrum is rescaled by (1 + δb)
2 and the bispectrum is

rescaled by (1 + δb)
3.

Secondly an overdense region expands less quickly than the Universe as a whole does. The local

scale factor is reduced so that (Li et al. 2014a,b; Baldauf et al. 2016)

a3
local =

a3
global

1 + δb
. (3.24)

This rescales local wavenumbers as klocal = (1 + δb)
1
3kglobal.

Finally the supersample mode changes the intrinsic growth inside the survey window so that

the growth of small-scale structure is enhanced. From the perspective of the halo model this means

that the halo number density is enhanced within the survey region.

Supersample covariance shows up through the response of the power spectrum and bispectrum

to all these effects. It can equivalently be considered to be a result of the convolution of the

underlying density field with the survey window function which couples in-survey Fourier modes

with super-survey modes.

As background to deriving the bispectrum supersample covariance we first summarise the

derivation of the supersample contribution to the power spectrum covariance in Takada and Hu

(2013). Starting from Equation 3.19 these authors considered the convolution of the trispectrum

with the survey window function. This convolution means that the trispectrum takes the form

TW (k,k′) =
1

VW

∫
k

d3k1

VP (k)

∫
k′

d3k2

VP (k′)

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3

∫
d3q4

(2π)3

× (2π)3δD(q1234)T (k1 + q1,−k1 + q2,k2 + q3,−k2 + q4) , (3.25)

where qi are long-wavelength super-survey modes with |qi| � k and δD(q1234) is shorthand for

δD(q1 + q2 + q3 + q4). This trispectrum depends on only two wavevectors k and k′. This follows
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from the fact that the trispectrum in the in-survey non-Gaussian covariance involves a parallelogram

configuration. The presence of the background mode turns this into a configuration which is nearly

but not exactly a parallelogram.

To understand how this configuration gives rise to the supersample covariance we can make the

substitutions k1 + q1 → k1, q1 + q2 → q. Then, using the Dirac delta function in the trispectrum

definition we can write the trispectrum of Equation 3.25 as T (k1,−k1 + q,k2,−k2 − q).

This is a squeezed trispectrum with two very small equal and opposite sides. It can be seen

to represent the connection between two power spectra, P (k1) and P (k2), through a shared long-

wavelength mode q caused by the background density fluctuation δb. An alternative way to think of

this is that the squeezed trispectrum expresses the response of the power spectra to the background

mode so that

T (k1,−k1 + q,k2,−k2 − q) ≈ T (k1,−k1,k2,−k2) +
∂P (k1)

∂δb

∂P (k2)

∂δb
PL(q) , (3.26)

where PL is the linear power spectrum (because the long-wavelength mode is in the linear regime).

Inserting this into Equation 3.25 gives

TW (k,k′) =
1

VW

∫
k

d3k1

VP (k)

∫
k′

d3k2

VP (k′)

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3

∫
d3q4

(2π)3

× (2π)3δD(q1234)

[
T (k1,−k1,k2,−k2) +

∂P (k1)

∂δb

∂P (k2)

∂δb
PL(q)

]
(3.27)

= CovPP
NG + (σLW )2∂P (k)

∂δb

∂P (k′)
∂δb

where (σLW )2 is the variance of the background density field within the survey window.

(σLW )2 =
1

V 2
W

∫
d3q

(2π)3
|W̃ (q)|2PL(q) , (3.28)

where W̃ (q) is the Fourier transform of the window function defined by Equation 3.1.

Thus the supersample covariance is given by

CovPP
SSC = (σLW )2∂P (k)

∂δb

∂P (k′)
∂δb

. (3.29)
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Clearly long-wavelength super-survey modes also have analogous effects on the bispectrum

covariance. In fact for completely general estimators f̂ and ĝ which depend on the halo number count

Cov(f̂ , ĝ) ≈ Cov(f̂ , ĝ)G + Cov(f̂ , ĝ)NG + (σLW )2 ∂f

∂δb

∂g

∂δb
, (3.30)

(Schaan et al. 2014). Thus we can write the bispectrum supersample covariance as

CovBB
SSC = (σLW )2∂B(k1,k2,k3)

∂δb

∂B(k4,k5,k6)

∂δb
, (3.31)

and the power spectrum–bispectrum supersample cross-covariance as

CovPB
SSC = (σLW )2∂P (k1)

∂δb

∂B(k2,k3,k4)

∂δb
. (3.32)

The task now is to determine the response functions. To do this we use the halo model and

perturbation theory.

3.2.3 Halo model power spectrum and bispectrum supersample covariance

Halo model expressions for the Gaussian and non-Gaussian parts of the covariance matrices in terms

of the power spectrum, bispectrum and higher-level polyspectra are straightforward and are given,

for example, in Kayo et al. (2012) and Takada and Hu (2013). Here we discuss the supersample

terms. We review the power spectrum supersample covariance in the halo model formalism and

derive an expression for the complete bispectrum supersample covariance for equilateral triangles.

The halo model is discussed in more detail in Section 1.3.2 of the introduction to this thesis. It

is based round the integrals :

Iβµ (k1, k2, ...., kµ) ≡
∫

dM
dn

dM

(
M

ρ̄

)µ
bβũM (k1)ũM (k2) . . . ũM (kµ) . (3.33)

Here M(z) is halo mass, n(M, z) is the number density of halos, ũM (k) is the Fourier transform of

the halo density profile, µ is the number of points being correlated, and bβ(M) is the halo bias. The

bias quantifies the β-th order response of the halo mass function dn/dM to the long-wavelength

mode δb (Mo and White 1996; Schmidt et al. 2013):

bβ(M) =
1

f

∂βf

∂δβb

∣∣∣∣
δb=0

, (3.34)
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where f(M, z) ≡ dn/dM . We assume linear bias so that b0 = 1, b1 = b(M) and bβ = 0 for

β > 1.

The halo model expression for the power spectrum is

P (k) = I0
2 (k, k) + [I1

1 (k)]2PL(k) , (3.35)

so

∂P (k)

∂δb
=
∂I0

2 (k, k)

∂δb
+ [I1

1 (k)]2
∂PL(k)

∂δb
, (3.36)

where we assume that the one-halo term I1
1 (k) is not affected by the background mode δb (Chiang

et al. 2014). We further assume that in the presence of δb the halo mass function changes from f to

(1 + δb)f but the halo profile does not change (Schaan et al. 2014), so that

∂I0
2 (k, k)

∂δb

∣∣∣∣
δb=0

=

∫
dM

(
M

ρ̄

)2( ∂f
∂δb

+ f

)
ũM (k1)ũM (k2) . (3.37)

From Equation 3.34

∂f

∂δb

∣∣∣∣
δb=0

= fb(M) . (3.38)

Substituting into Equation 3.37 gives

∂I0
2 (k1, k2)

∂δb
=

∫
dM

dn

dM

(
M

ρ̄

)2

(1 + b(M))ũM (k1)ũM (k2) (3.39)

= I1
2 (k1, k2) . (3.40)

Finally

∂P (k)

∂δb
= I1

2 (k, k) + [I1
1 (k)]2

∂PL(k)

∂δb
. (3.41)

Thus we need the response of the linear power spectrum to the background fluctuation δb. This was

derived by Takada and Hu (2013) using perturbation theory and consistency relation arguments.

Similar results were also obtained by Li et al. (2014a) using a separate universe approach and by

Chiang et al. (2014) using the position-dependent power spectrum and integrated bispectrum. All
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these authors expressed the power spectrum in the presence of the long-wavelength mode as

PL(k|δb) ≈
(

1 +
26

21
δb

)
PL(k) + δb

(
PL(k)− 1

3
k
∂PL(k)

∂k

)
(3.42)

=

(
1 +

47

21
δb

)
PL(k)− δb

3

∂PL(k)

∂ ln k
. (3.43)

From this we obtain

∂PL(k|δb)
∂δb

=
47

21
PL(k|δb)−

1

3

∂PL(k)

∂ ln k
. (3.44)

We can restate the final partial derivative and substitute into Equation 3.41 to get

∂P (k)

∂δb
= I1

2 (k, k) + [I1
1 (k)]2

[
68

21
− 1

3

∂ ln k3(PL(k))

∂ ln k

]
PL(k) . (3.45)

Thus the halo model expression for the power spectrum supersample covariance is

CovPP
SSC = (σLW )2

[
I1

2 (ki, ki) + [I1
1 (ki)]

2

[
68

21
− 1

3

∂ ln k3
i (PL(ki))

∂ ln ki

]
PL(ki)

]
×
[
I1

2 (kj , kj) + [I1
1 (kj)]

2

[
68

21
− 1

3

∂ ln k3
j (PL(kj))

∂ ln kj

]
PL(kj)

]
(3.46)

The I1
2 (ki, ki)I

1
2 (kj , kj) and (I1

1 (ki))
2(I1

1 (kj))
2 terms correspond respectively to halo sample

variance and beat coupling and there is also a BC-HSV cross term. The derivative terms represent

linear dilation.
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3.2.4 Matter bispectrum response function

In the halo model the bispectrum response in Equation 3.31 is

∂B(k1,k2,k3)

∂δb
=

∂

∂δb

(
B1h +B2h +B3h

)
(3.47)

=
∂

∂δb

(
I0

3 (k1, k2, k3) + I1
1 (k1)I1

2 (k2, k3)P (k1) + 2 perms.

+ I1
1 (k1)I1

1 (k2)I1
1 (k3)BPT(k1,k2,k3)

)
(3.48)

= I1
3 (k1, k2, k3) + I1

1 (k1)I1
2 (k2, k3)

∂P (k23)

∂δb
+ 2 perms.

+ I1
1 (k1)I1

1 (k2)I1
1 (k3)

∂BPT(k1,k2,k3)

∂δb
(3.49)

= I1
3 (k1, k2, k3) +

47

21

[
I1

1 (k1)I1
2 (k2, k3)P (k1) + 2 perms.

]
+ I1

1 (k1)I1
1 (k2)I1

1 (k3)
∂BPT(k1,k2,k3)

∂δb
, (3.50)

where BPT is the perturbation theory bispectrum. To determine the response of BPT to the

background fluctuation δb we follow the method of Chiang et al. (2014). These authors derived the

power spectrum response from the position-dependent power spectrum: the correlation between the

power spectrum measured in a sub-volume with length scale L and volume VL and the mean density

contrast at the centre of the sub-volume, r. They showed that this is equivalent to an integrated

bispectrum which is straightforward to calculate.

The position-dependent power spectrum is

〈P (k), δ̄(r)〉 =
1

V 2
L

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3
〈δ(k− q1)δ(−k− q2)δ(−q3)〉

×WL(q1)WL(q2)WL(q3)e−Ir·(q1+q2+q3) (3.51)

=
1

V 2
L

∫
d3q1

(2π)3

d3q3

(2π)3
B(k− q1,−k + q1 + q3,−q3) (3.52)

×WL(q1)WL(q2)WL(q3)

(3.53)

where δ̄(r) is the local mean density fluctuation within the sub-volume and WL(q) is the sub-

volume window function. WL(q) = 1 inside the sub-volume and zero otherwise. Thus the

position-dependent power spectrum can be viewed as an integrated bispectrum which we denote as

iB(k).
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For modes well within the sub-volume, that is with q1, q3 � k, the dominant contribution to

iB(k) comes from the bispectrum in squeezed configurations with one triangle side very much

shorter than the other two: B(k,−k + q,−q).

We can further simplify by spherically averaging over the solid angle Ωk between k and q to

get the angle-averaged integrated bispectrum

iB(k) =
1

V 2
L

∫
d3q

(2π)3
|WL(q)|2

∫
d2Ωk

4π
B(k,−k + q,−q) . (3.54)

In perturbation theory the bispectrum can be expressed in terms of the power spectrum as

B(k,−k + q,−q) = 2[F2(k,−k + q)P (k)P (| − k + q|) (3.55)

+ F2(−k + q,−q)P (| − k + q|)P (q)

+ F2(−q,k)P (q)P (k)]

As a consequence, to leading order the angle-averaged integrated bispectrum has the form (Chiang

et al. 2014)

iB(k) ≈ σ2
Lf(k)P (k) , (3.56)

where σ2
L is the variance of the density field on the sub-volume scale

σ2
L =

1

V 2
L

∫
d3q

(2π)3
W 2
L(q)P (q) . (3.57)

Thus f(k) is the required response of the power spectrum to the long-wavelength mode.

f(k) ≡ ∂ lnP (k)

∂δb

∣∣∣∣
δb=0

. (3.58)

Chiang et al. (2014) used perturbation theory to derive an expression for the squeezed limit

bispectrum in Equation 3.54, and showed that this produced the result for the power spectrum

response in Equation 3.44.

We now define the integrated trispectrum iT (k1,k2,k3) in an analogous way to the integrated

bispectrum and use this to determine the bispectrum response, on the assumption that we can obtain
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an expression, analogous to Equation 3.56, of the form

iT (k1, k2, k3) ≈ σ2
Lg(k1k2, k3)B(k1,k2,k3) , (3.59)

where now

g(k1k2, k3) =
∂ lnBPT(k1,k2,k3)

∂δb

∣∣∣∣
δb=0

, (3.60)

and iT (k1, k2, k3), independent of the directions of the wavevectors, is an angular average of

iT (k1,k2,k3).

The integrated trispectrum has also been used by Adhikari et al. (2016) in the context of

primordial non-Gaussianity and is discussed in detail by Munshi and Coles (2017). It is defined as

a position-dependent bispectrum:

iT (k1,k2,k3) ≡ 〈B(k1,k2,k3)δ̄(r)〉 (3.61)

=
1

V 2
L

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3

∫
d3q4

(2π)3

× 〈δ(k1 − q1)δ(k2 − q2)δ(k3 − q3)δ(−q4)〉

×WL(q1)WL(q2)WL(q3)WL(q4)e−Ir·(q1+q2+q3+q4) . (3.62)

We can now use the definition of the trispectrum

〈δ(q1)δ(q2)δ(q3)δ(q4)〉c = (2π)3δD(q1 + q2 + q3 + q4)T (q1,q2,q3,q4) (3.63)

and a change of variables q4 → q3,q3 → −(q1 + q2 + q3). Then performing the q4 integral

leads to

iT (k1,k2,k3) =
1

V 2
L

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3

× T (k1 − q1,k2 − q2,k3 + q1 + q2 + q3,−q3)

×WL(q2)WL(−q1 − q2 − q3)WL(q3) . (3.64)
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Following the method used for the integrated bispectrum we can remove two of the q integrals

using the property of the binary window function

∫
d3q2

(2π)3
WL(−q1−q2)WL(q2) = WL(q1) (3.65)

and then make another change of variables k1 − q1 → k1, k2 − q2 → k2 and q3 = q, to arrive at

iT (k1,k2) ≈ 1

V 2
L

∫
d3q

(2π)3
|WL(q)|2T (k1,k2,−k12 + q,−q) , (3.66)

where k12 = k1 + k2 and we have used the fact that k1 + k2 + k3 = 0.

We now average this trispectrum over the solid angles Ω12 and Ω23 between two pairs of

wavevectors to obtain iT (k1, k2), independent of the directions of the k vectors.

iT (k1, k2) =

∫
d2Ω12

4π

∫
d2Ω13

4π
iT (k1,k2) (3.67)

=
1

V 2
L

∫
d3q

(2π)3
|WL(q)|2

∫
d2Ω12

4π
T (k1,k2,−k2 + q,−q) . (3.68)

In the last line we have removed one angular integral by fixing the direction of one k vector. Thus

once again, as with the integrated bispectrum, we must evaluate a trispectrum with one wavevector

much smaller than the other three. However the derivation above makes some strong assumptions.

Strictly speaking the step leading to Equation 3.66 is not legitimate because the squeezed limit of

the trispectrum cannot be defined by four sides alone. It also requires a fifth item, either an angle or

a diagonal. As a consequence Equation 3.66 is not in general the exact squeezed limit of Equation

3.64 (Adhikari et al. 2016).

Nevertheless we proceed using perturbation theory to derive the squeezed trispectrum which

appears in Equation 3.68, specialising to ‘equilateral’ configurations with three sides of equal

length and a fourth much smaller side. This derivation has not explicitly been presented by previous

authors.

In perturbation theory the general trispectrum TPT(k1,k2,k3,k4) can be expressed as (Bernardeau

et al. 2002; Pielorz et al. 2010):

TPT = 4Ta + 6Tb (3.69)

where Ta is the sum of 12 terms like F2(k1,−k1−k3)F2(k2,k1 +k3)PL(k1)PL(k2)PL|k1 +k3|)
and Tb is the sum of 4 terms like F3(k1,k2,k3)PL(k1)PL(k2)PL(k3).
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For the trispectrum T (k1,k2,−k12 + q,−q) this leads to

Ta(k1,k2,−k12 + q,−q) =

P1P2[P (|−k2 + q|)F2(k1,k2 − q)F2(k2,−k2 + q)

+ P (|k1 − q|)F2(k1,−k1 + q)F2(k2,k1 − q)]

+ P1P (|−k12 + q|)[P (|k1 + k2|)F2(k1,−k12)F2(−k12 + q,k12)

+ P (|k1 − q|)F2(k1,−k1 + q)F2(−k12 + q,k1 − q)]

+ P1PL(q)[P (k12)F2(k1,−k12)F2(−q,k12)

+ P (|−k2 + q|)F2(k1,k2 − q)F2(−q,−k2 + q)]

+ P2P (|−k12 + q|)[P (k12)F2(k2,−k12)F2(−k12 + q,k12)

+ P (|k2 − q|)F2(k2,−k2 + q)F2(−k12 + q,k2 − q)]

+ P2PL(q)[P (k12)F2(k2,−k12)F2(−q,k12)

P (|−k1 + q|)F2(k2,k1 − q)F2(−q,−k1 + q)]

+ P (|−k12 + q|)PL(q)[P (|−k2 + q|)F2(−k12 + q,k2 − q)F2(−q,−k2 + q)

+ P (|−k1 + q|)F2(−k12 + q,k1 − q)F2(−q,−k1 + q)] (3.70)

and

Tb(k1,k2,−k12 + q,−q) = P1P2P (|−k12 + q|)F3(k1,k2,−k12 + q)

+ P1P2PL(q)F3(k1,k2,−q)

+ P1P (|−k12 + q|)PL(q)F3(k1,−k12 + q,−q)

+ P2P (|−k12 + q|)PL(q)F3(k2,−k12 + q,−q) . (3.71)

Here k12 = k1 + k2 = −k3, Pi is shorthand for PL(ki) and P (k12) = PL(|k1 + k2|).

We use the computer algebra package Mathematica5 to evaluate these expressions, and then

specialise to configurations with three sides of equal length k and one side of length q, retaining

only leading order terms in q/k. Further details are given in Appendix 3B. Our final result, ignoring

5https://www.wolfram.com/mathematica
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terms which vanish as q → 0, is

T equi
PT = P (q)PL(k)

[(
2055

98
+

1354(k · q)2

98k2q2

)
PL(k) (3.72)

+

(
327

147k
− 2268(k · q)2

147k3q2

)
∂PL(k)

∂k

]
.

We substitute this into Equation 3.68 and take the average over the solid angle Ω between k and q.

The angular average of (k · q)2/k2q2 is 1/3 and so we get

iT equi =
1

V 2
L

∫
d3q

(2π)3
|WL(q)|2

∫
d2Ω

4π
T equi

PT (3.73)

= σ2
LPL(k)2

[
7519

294
− 143

49

∂ lnPL(k)

∂ ln k

]
. (3.74)

Then from Equations 3.50 and 3.66 the bispectrum response is:

∂Bequi

∂δb
= I1

3 (k, k, k) +
47

7

[
I1

1 (k)I1
2 (k, k)PL(k)

]
+ I1

1 (k)I1
1 (k)I1

1 (k)

[
7519

294
− 143

49

∂ lnPL(k)

∂ ln k

]
. (3.75)

Figure 3.1 shows the shapes of our calculated response functions at z = 0 using Equation 3.45

for the matter power spectrum and Equation 3.75 for equilateral matter bispectrum configurations.

The total response functions are shown in black (excluding the dilation terms which are small

except at large scales). We also separately show the one-halo, two-halo and three-halo terms which

make up the totals. As would be expected, the one-halo terms dominate at small scales where

correlations are between different points in a single halo. At large scales points in different halos

are being correlated so that the power spectrum response is dominated by the two-halo term and the

bispectrum response by the three-halo term.

Substituting for the bispectrum response in Equation 3.31 gives the bispectrum supersample

covariance. The power spectrum–bispectrum supersample covariance can be derived in a similar

way from the power spectrum and bispectrum response functions.

In Section 3.2.6 we extend these results to the components of the weak lensing supersample

covariance.
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3.2.5 Other derivations of the matter bispectrum response function

Several recent authors have published analysis relevant to the bispectrum response function.

Adhikari et al. (2016) used the integrated trispectrum method to constrain bias parameters and

the amplitude of primordial trispectra, Chan et al. (2018) used perturbation theory to derive the

response function, and the bispectrum response has been considered by Kehagias et al. (2014),

Valageas (2014), Wagner et al. (2015) and Barreira et al. (2018b). These works have used differing

methods and assumptions and have arrived at different answers. This may not be surprising given

the complexity of three-point statistics and the need to approximate to make the analysis tractable.

As an intermediate step in their analysis Adhikari et al. (2016) derived the late-time angle-

averaged integrated trispectrum for equilateral triangles as

iT (k) = PL(k)2P (q)

[
579

98
− 8

7

∂ lnPL(k)

∂ ln k

]
. (3.76)

This is significantly different from our result. It is difficult to explore why the difference arises

because Adhikari et al. (2016) give no detail of their derivation which was also generated by

Mathematica (private communication).

Chan et al. (2018) used perturbation theory in a thorough analysis of the matter bispectrum

response and arrived at

∂B(k1,k2,k3|δb)
∂δb

∣∣∣∣
δb=0

=
433

126
BPT(k1,k2,k3) +

5

126
BG(k1,k2,k3)

− 1

3

3∑
i=1

∂BPT(k1,k2,k3)

∂ ln ki
, (3.77)

where BPT is the tree-level matter bispectrum and BG is identical to BPT but with the F2 kernels

replaced by G2. We show in Appendix 3C that for equilateral triangles this becomes

∂Bequi
PT

∂δb
=

[
2623

98
− 36

7

∂ lnP (k)

∂ ln k

]
P (k)2 . (3.78)

This is is close to, but not identical with our result. Once again it is difficult to unearth the source of

the discrepancy, although it may be partly due to the assumptions we made when taking the angular

average of the integrated trispectrum (Equations 3.64 and 3.66). Certainly with these assumptions

we would not expect to obtain exactly the result of Equation 3.77. Throughout the remainder of

this chapter we have chosen to use Equation 3.77 since this is the more complete and general result
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(even though we restrict our analysis to equilateral triangles). In the next section we show that

using Equation 3.74 instead (or indeed Equation 3.76) would make only a very small difference to

the weak lensing supersample covariance.

3.2.6 Weak lensing power spectrum and bispectrum covariance

We can use Equations 3.11 and 3.12 to relate the lensing power spectrum and bispectrum to their

matter counterparts. Appendix 3A gives details of the resulting expressions. To illustrate the

dominant terms of the resulting weak lensing covariance matrices, Figure 3.2 shows the Gaussian,

non-Gaussian and supersample terms calculated for a single redshift bin for a 15,000 deg2 survey.

In the case of the bispectrum we show results for equilateral configurations only.

Figure 3.3 splits the supersample terms of the equilateral-triangle bispectrum covariance and

the power spectrum-bispectrum cross-covariance into their one-halo, two-halo and three-halo

components. (For the cross-covariance we retain both the one-halo and two-halo terms for the

power spectrum but vary the bispectrum terms). In both the bispectrum covariance and the cross-

covariance the one-halo term is dominant, especially at small scales, and for the cross-covariance it

is always the largest term. In the rest of this chapter we always use all three terms, but in fact the

dominance of the one-halo terms means that the other terms could safely be dropped. Moreover

the fact that the three-halo component is sub-dominant except at very large scales means that the

discrepancy between our calculation of the bispectrum response (Equation 3.74) and the response

derived from the formula in Chan et al. (2018) (Equation 3.77 (which we have used in later analysis)

is immaterial. This is shown in Figure 3.4 which compares the three-halo contributions and also the

total supersample covariance using each of the three derivations of the matter bispectrum response

discussed above (this work, Chan et al. (2018) and Adhikari et al. (2016)). Even using a very

different result for the response function makes almost no difference to the total weak lensing

supersample covariance at the scales of interest for weak lensing. An obvious corollary is that the

total covariance shown in Figure 3.2 is also hardly affected.
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Power spectrum response
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Figure 3.1: Responses of the linear matter power spectrum (top) and tree-level matter equilateral
bispectrum (bottom) to a long-wavelength super-survey mode δb. Shown are the individual halo
model terms and the total response at z = 0. The dilation terms, which are sub-dominant, are not
included.
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Power spectrum
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Figure 3.2: Diagonal terms of the weak lensing power spectrum and bispectrum covariance matrices
and their cross-covariance, calculated for a single redshift bin at z = 0.2. The Gaussian (including
shot noise), non-Gaussian and supersample terms are shown. The bispectrum covariance and
cross-covariance include equilateral triangles only.
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Bispectrum supersample covariance
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Figure 3.3: Individual terms of the weak lensing supersample covariance, calculated for a single
redshift bin at z = 0.2. Top: Bispectrum supersample covariance. Bottom: Power spectrum-
bispectrum supersample cross-covariance. The power spectrum includes both the one-halo and
two-halo terms.
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Bispectrum supersample covariance
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Figure 3.4: The impact on the weak lensing bispectrum supersample covariance of alternative
expressions for the matter bispectrum response: Chan et al. (2018) (red), Adhikari et al. (2016)
(orange) and our Equation 3.74 (blue), calculated for equilateral triangles and a single redshift bin
at z = 0. Dotted lines indicate the three-halo term of the weak lensing bispectrum supersample
covariance and solid lines show the total supersample covariance.
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3.3 Statistical uncertainties

In this section we consider statistical errors only and therefore assume perfect knowledge of, for

example, redshifts and galaxy shapes. This approach is consistent with earlier discussions of

the weak lensing bispectrum, in particular in Takada and Jain (2004), Kayo et al. (2012), Kayo

and Takada (2013), Sato and Nishimichi (2013) and Rizzato et al. (2019). The first four of these

considered only relatively small surveys, with areas ranging from 25 to 1,500 square degrees.

In keeping with this they either used no tomography or only 3 or 4 redshift bins. Only Rizzato

et al. (2019) discussed a survey as large as Euclid with 10 tomographic bins, but presented only

signal-to-noise forecasts and not Fisher matrix analysis.

Some broad and consistent conclusions arose from all these studies: in particular the importance

of including shot noise, the need to include supersample covariance in the power spectrum and

bispectrum covariances (other studies had considered the Gaussian covariance only), and the value

of a larger survey and many redshift bins. Finally, all agreed that including the bispectrum as

well as the power spectrum could make a worthwhile improvement to parameter constraints. For

example Kayo et al. (2012) estimated a 20-40% improvement in the signal to noise ratio, Kayo and

Takada (2013) forecast a 60% improvement in the dark energy figure of merit (which measures how

well dark energy parameters are constrained), and Rizzato et al. (2019) forecast an improvement in

the signal to noise ratio of around 10%. (The differences in the results can be attributed to different

survey specifications and tomographic set-ups). Kayo et al. (2012) and Sato and Nishimichi (2013)

additionally compared their analytical results to results from simulations and found good agreement.

It might appear counter-intuitive that supersample covariance is important for a survey like

Euclid which covers a large fraction of the sky so that there are relatively few super-survey modes.

There are two reasons why this intuition may be wrong, especially for a tomographic weak lensing

survey. Firstly, in a tomographic survey only a fraction of the survey volume is available at low

redshifts, so many Fourier modes are larger than the effective survey area for a given tomographic

bin. Secondly, the supersample covariance depends on the survey area in a different way from

the Gaussian and ‘standard’ components which both scale as the inverse of the survey area. In

contrast the (matter) supersample covariance depends on the variance of the background mode

within the survey footprint (Equation 3.28). Thus supersample covariance does not decrease in a

straightforward way as the survey area increases.
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3.3.1 Survey and modelling assumptions

We base our survey assumptions on requirements for Euclid specified in Laureijs et al. (2011).

We assume a survey with area 15,000 deg2, total galaxy density 30 arcmin−2 and redshift range

zmin = 0.2 to zmax = 2.0. We allow for up to 10 redshift bins with overall redshift distribution

given by

p(z) ∝ zα exp

(
−
(
z

z0

)β)
, (3.79)

with α = 2.0, β = 1.5, z0 = zmed/
√

2, zmed = 0.8. We assume sources are equally distributed

between bins and have a Gaussian distribution within each bin. We use 20 angular bins equally

logarithmically spaced from `min = 30 to `max = 3000. This is a conservative `max, which avoids

non-linear scales where the matter bispectrum in particular is not well understood. For many Euclid

forecasts `max as high as 5000 is used (Laureijs et al. 2011). For ease of computation we consider

only triangles which are equilateral in the angular multipole ` within angular and redshift bin

widths.

We model the non-linear matter power spectrum with the fitting formula from Takahashi et al.

(2012) and the matter bispectrum with the formula from Gil-Marı́n et al. (2012), which was the

most recent and accurate available at the time this work was done. The fitting range of this formula

is comparatively narrow and we note that Takahashi et al. (2019)) recently derived an improved

formula which is accurate further into the nonlinear regime and which explicitly takes account of

baryonic effects on the bispectrum.

For the halo model we assume an NFW halo matter density profile, using the mass-concentration

relation given in Duffy et al. (2008). We model the halo mass function using the formula in Tinker

et al. (2008).

We employ the transfer function from Eisenstein and Hu (1998).

We assume a spatially flat ΛCDM model and consider cosmological parameters with fiducial

values Ωb = 0.05, Ωm = 0.27, ΩΛ = 0.728, σ8 = 0.81, h = 0.71, ns = 0.96.

To calculate the power spectrum and bispectrum supersample covariance we need to model

the survey window function which determines the interaction between in-survey and super-survey

modes (see Appendix 3A). For example for the tomographic power spectrum supersample
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covariance:

Cov[P κij(`1), P κi′j′(`2)]SSC =
1

Ω2
s

∫
dχ q(i)(χ)q(j)(χ)q(i′)(χ)q(j′)(χ)χ−6 (3.80)

× ∂Pδ(`1/χ;χ)

∂δb

∂Pδ(`2/χ;χ)

∂δb

∫
d2`

(2π)2
|W̃ (`)|2PL(`/χ;χ) ,

where Ωs is the survey area, q(i)(χ) is the lensing weight function in redshift bin i (Equation 3.9),

W̃ is the Fourier transform of the survey mask, PL is the linear matter power spectrum, and we

assume the Limber and flat-sky approximations.

We make the simple assumption of a single square survey patch so W̃ (`;χ) is evaluated as

W̃ (`;χ) = Ωs sinc

(
`x
2

√
Ωs

)
sinc

(
`y
2

√
Ωs

)
, (3.81)

where `x and `y are the Cartesian components of the vector ` and sinc(x) = sin(x)/x. The right

hand side of Equation 3.81 implicitly depends on redshift and the integral over ` in Equation 3.80

is evaluated separately for each tomographic bin.

3.3.2 Fisher matrix analysis

We quantify the improvement in parameter constraints in two ways. Firstly we calculate the Fisher

matrix which was introduced in Section 1.3.4 of this thesis. For the power spectrum this is defined

(in simplified notation) by

Fαβ =
∂P

∂pα
Cov−1

P

∂P

∂pβ
, (3.82)

where P is the power spectrum data vector, CovP is the power spectrum covariance, and pα and pβ

are cosmological parameters. In detail this matrix multiplication is a sum over all combinations of

angular frequencies and tomographic bins. Similar definitions apply to the bispectrum and to the

power spectrum and bispectrum combined. The Fisher matrix measures how peaked the posterior

is around its maximum likelihood value and thus quantifies the information content (Tegmark et al.

1997). Throughout we show ellipses corresponding to 1σ credible regions.

An alternative way to quantify the improvement in parameter constraints is to use the inverse of

the area of the Fisher ellipse as a figure of merit (FoM) as defined by the Dark Energy Task Force
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(Albrecht et al. 2006). In the plane of the parameters pα and pβ this is

FoMαβ =
[
(F−1)αα(F−1)ββ − ((F−1)αβ)2

]−1/2
. (3.83)

We focus on figures of merit in the Ωm − σ8 and w0 − wa planes, since this is where we might

hope that the bispectrum can do most to break degeneracies.

Constraining power

Because of the complexity of the bispectrum covariance it has sometimes been simplified by

omitting some or all of its constituent terms. In this section we consider the effect on constraining

power of shape noise, supersample covariance and the ‘standard’ non-Gaussian covariance term

and hence determine which of these should be included in the covariance matrix and which can be

dropped.

In Figure 3.5 we show parameter constraints obtained with the Gaussian power spectrum

covariance only (blue) and with the supersample covariance as well (red). For illustration this

figure is based two tomographic bins only; similar effects would be seen with more bins. The top

panel does not include shape noise and shows that the supersample term significantly increases the

statistical uncertainty compared with using the Gaussian covariance only. This confirms previous

results for example in Sato and Nishimichi (2013); Barreira et al. (2018b). Ignoring the supersample

term would significantly underestimate parameter uncertainties.

In the bottom panel we add to the power spectrum shape noise of the form σ2
ε /2n̄i where σ2

ε is

the total intrinsic ellipticity dispersion and n̄i is the galaxy number density in redshift bin i. With

our Euclid-like survey parameters the inclusion of shape noise can increase the Gaussian errors

significantly especially for the Ωm–σ8 ellipse. Similar results are shown in Sato and Nishimichi

(2013) for a smaller survey. In the remainder of this chapter we always include Gaussian shape

noise.

Figure 3.6 additionally includes the full non-Gaussian terms of the covariance and shows these

make little difference to parameter constraints over and above the constraints obtained with the

Gaussian and supersample terms only. Illustrative results are shown using five tomographic bins for

the power spectrum and a single bin for the bispectrum. Varying the number of bins does not affect

this conclusion which is consistent with results in Rizzato et al. (2019) and Barreira (2019) who

found the non-Gaussian term to be sub-dominant. This result can also be expected from examining

the relative sizes of the non-Gaussian terms shown in Figure 3.2. In the light of this we use only the

Gaussian and supersample terms in the rest of this chapter.
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Power spectrum covariance, 2 tomographic bins, no shape noise
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Power spectrum covariance, 2 tomographic bins, with shape noise
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Figure 3.5: Effect of shape noise - power spectrum. Parameter constraints from weak lensing power
spectrum using two tomographic bins between z = 0.2 and z = 2.0. Constraints using only the
Gaussian covariance are shown in blue and using Gaussian plus supersample covariance matrices
are shown in red. Top: Without shape noise. The supersample term increases most parameter
uncertainties. Bottom: With Gaussian shape noise. shape noise reduces the constraining power of
the Gaussian covariance.
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Power spectrum covariance, 5 tomographic bins
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Figure 3.6: Effect of including non-Gaussian covariance. Parameter constraints from weak lensing
power spectrum and bispectrum. Constraints obtained with Gaussian only (red) are compared with
constraints using Gaussian + SSC (blue) and Gaussian + SSC + non-Gaussian (orange). Shape
noise is included. Top: Power spectrum - five tomographic bins between z = 0.2 and z = 2.0.
Bottom: Bispectrum - one tomographic bin only. (The blue and black ellipses effectively coincide
in this case.)
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Effect of tomography

To investigate the effect of tomography we use the Ωm − σ8 and w0 − wa figures of merit defined

in Section 3.3.2.
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Figure 3.7: Improvement in figures of merit from using more tomographic bins. We plot the figure
of merit relative to the figure of merit with no tomography. Increasing the number of bins used for
the power spectrum and bispectrum simultaneously yields large improvements in the figures of
merit. Left: Ωm–σ8. Right: w0 − wa.

Figure 3.7 shows how increasing the number of tomographic bins from one to five improves the

figure of merit when using only the power spectrum, only the bispectrum and both together. In all

cases tomography makes difference of several orders of magnitude to the figures of merit. However

again the improvement levels off after 3-5 bins, a finding also noted by Rizzato et al. (2019). For

the power spectrum covariance we found that there is little further improvement from using more

than five bins. This result is already well-established, for example in Ma et al. (2006) and Joachimi

and Bridle (2010).
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Gaussian plus supersample covariance, 5 tomographic bins
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Figure 3.8: Effect of including bispectrum. Parameter constraints from weak lensing power
spectrum and power spectrum plus bispectrum. Constraints using only the power spectrum are
shown in red and using the power spectrum plus the bispectrum are shown in blue. Five tomographic
bins between z = 0.2 and z = 2.0 are used. Gaussian shape noise is included.

Additional information provided by the bispectrum

Figure 3.8 shows how parameter constraints are improved when the combined power spectrum-

bispectrum covariance is used. The improvement is quantified in Table 3.1 which shows how the

inclusion of the bispectrum covariance reduces errors on individual parameters. This shows the

marginalised error on each parameter using the power spectrum covariance only and also with the

combined power spectrum and bispectrum. With five tomographic bins including the bispectrum

can reduce errors by up to a third.

Given the rapid increase in size of the bispectrum covariance as the number of redshift bins

increases it is interesting to see whether a worthwhile improvement in the figures of merit can be

obtained if the power spectrum is based on many bins but fewer bins are used for the bispectrum,

and whether this is a better strategy than using a moderate number of bins for both. In Figure 3.9

we fix the number of power spectrum bins at ten and show the figures of merit as a function of the

number of bispectrum bins, compared with benchmark values obtained with five power spectrum

and five bispectrum bins. It is clearly better, and a more efficient use of computational resources, to
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Marginalised statistical errors

Ωm σ8 w0 wa
Power spectrum 0.006 0.006 0.067 0.207
Bispectrum 0.019 0.048 0.419 1.64
Power spectrum + bispectrum 0.004 0.005 0.044 0.167
% improvement from bispectrum 34 27 34 19

Table 3.1: Improvement in statistical errors from including the bispectrum covariance as well as the
power spectrum. Results are for a Euclid-like survey with 5 tomographic bins.
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Figure 3.9: We compare the figures of merit obtained with ten power spectrum tomographic bins
and increasing numbers of bispectrum bins with the values obtained with five bins for both the
power spectrum and bispectrum.

use many power spectrum bins. We find that with ten power spectrum bins, using only two redshift

bins for the bispectrum produces an improvement of around 10% in the figures of merit compared

with no tomography. The improvement with five bispectrum bins is about 15%. This suggests that

an effective strategy is to use as many power spectrum bins as feasible but only two or three bins

for the bispectrum. Little is gained by using more bins for the bispectrum, at great computational

expense.

3.3.3 Conclusions - statistical uncertainties

Our results confirm previous findings about the information content of the weak lensing bispectrum,

specifically for a Euclid-like survey, and set the stage for the exploration of systematic errors in
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Section 3.4. We have shown that it is important to include both shape noise and the supersample

covariance in the covariance calculation. Without these, parameter uncertainties can be severely

underestimated. Although we used the one-halo, two-halo and three-halo terms of the bispectrum

supersample covariance, in fact we showed that the one-halo term is dominant and it is safe to

neglect the other terms. Furthermore, the ‘standard’ non-Gaussian covariance makes little difference

to parameter constraints once the supersample terms are included. For these reasons all subsequent

analysis in this chapter is based on the Gaussian plus supersample terms only and includes shape

noise.

Next we showed that, for both the power spectrum covariance and the bispectrum covariance,

tomography greatly reduces statistical uncertainties. However in the absence of systematic errors

this improvement levels off once more than about five tomographic bins are used. We also showed

that, for a Euclid-like survey with five redshift bins, including the bispectrum covariance can

decrease statistical errors in Ωm, σ8 and the dark energy parameters by around 20-30%. Moreover if

enough tomographic bins are used to estimate the power spectrum covariance, most of the gain from

the bispectrum can be achieved even if only two or three bins are used to estimate the bispectrum

covariance. This is a useful result because the size and complexity of the bispectrum covariance

and the computational cost of estimating it increase rapidly as the number of tomographic bins

increases. Overall these results suggest that if systematic errors can be sufficiently well controlled

the bispectrum can provide useful information over and above the power spectrum.

3.4 Control of systematics

The results in the previous section suggest that in the absence of systematic errors the weak lensing

bispectrum could provide worthwhile improvements to parameter constraints. However in reality

weak lensing is affected by many hard-to-control systematic uncertainties. The effect of systematic

errors on the weak lensing power spectrum has been studied extensively and there is a significant

literature presenting general methods of estimating and controlling weak lensing systematics or

discussing specific types of uncertainty, for example Huterer and Takada (2005); Huterer et al.

(2006); Ma et al. (2006); Bridle and King (2007); Hearin et al. (2012); Massey et al. (2012); Cropper

et al. (2013). In contrast relatively little attention has been paid to the bispectrum even though

many of the concepts developed for the power spectrum can readily be adapted. In this section we

address the bispectrum and model two major sources of systematic error: intrinsic alignments of

galaxies and uncertainty about their redshifts. We estimate by how much these systematics degrade
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the figures of merit presented in Section 3.3 and explore whether they affect the bispectrum and

power spectrum in different ways. We then consider the scope for self-calibration: the possibility

of estimating the systematic nuisance parameters alongside the cosmological parameters using only

data from the survey itself.

In Section 3.4.1 we first discuss the basic concepts of intrinsic alignments, for simplicity starting

with their effect on two-point statistics, and go on to develop a model of the intrinsic alignment

bispectrum. In Section 3.4.2 we discuss our modelling of redshift uncertainties. Results for both

systematics are given in Section 3.4.3 and our conclusions are in Section 3.4.4.

3.4.1 Intrinsic alignment of galaxies

Basic concepts: two-point statistics

Galaxies (even spiral galaxies) are intrinsically elliptical and the shear signal is much smaller

than this intrinsic ellipticity. If the intrinsic component was randomly oriented with respect to the

shear field then in principle these two sources of ellipticity could be disentangled straightforwardly.

However in fact galaxies are aligned with the local tidal gravitational field which is also the source

of the lensing signal. Thus intrinsic alignment is correlated with lensing, which enormously

complicates the extraction of the shear signal. Useful recent reviews are Joachimi et al. (2015) on

all aspects of galaxy alignment and Troxel and Ishak (2015) specifically on the effect of intrinsic

alignments on weak lensing.

As an introduction we first discuss the effect of intrinsic alignments on two-point statistics. The

observed galaxy ellipiticity can be considered as the sum of the true gravitational shear, γG, and the

intrinsic ellipticity of the galaxy, εI:

εobs = γG + εI . (3.84)

So the observed two-point correlation function for two galaxy samples denoted by i and j is

〈εiobsε
j
obs〉 = 〈γiGγjG〉+ 〈γiGεjI 〉+ 〈γjGεiI〉+ 〈εiGεjI 〉 (3.85)

The first term is the lensing signal, generally referred to as GG, which is what we want to measure.

The next two terms are labelled GI and represent cross-correlations between shear and intrinsic

ellipticity, and the fourth, II, term represents intrinsic-alignment–intrinsic-alignment correlation. If
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zj
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observedzi

II
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Figure 3.10: Origin of the GI and II terms. Top: GI term. A distant galaxy (coloured red) at redshift
zj is lensed by a structure at redshift zi. The same galaxy is also gravitationally affected by a galaxy
at redshift zi (coloured blue) which is intrinsically aligned to the same matter structure. Bottom: II
term. Two galaxies at redshift zi are intrinsically aligned to the structure at the same redshift.
In each case the rightmost column shows what is observed, with the true orientation of the lensed
galaxies shown by a dotted outline. Lensing is anti-correlated with intrinsic alignment.
Adapted from Figure 6 in Troxel and Ishak (2015).

we assume that zi < zj then the second term should be negligible because it is not possible for an

intrinsically-aligned galaxy at higher redshift to affect the lensing of a galaxy at lower redshift.

Figure 3.10, motivated by Figure 6 in Troxel and Ishak (2015), shows how the GI and II terms

arise. The top panel shows the GI case. The grey shape represents a matter structure at redshift zi

which lenses a distant galaxy (red) at redshift zj . The gravitational tidal field of the structure also

affects the intrinsic alignment of a galaxy (blue) which is close to the structure (effectively at the

same redshift and angular position). The rightmost panel shows what is observed, with the position

of the matter structure shown by a dotted line: the observed ellipticities of the blue and red galaxies

are correlated. In fact the lensing effect is anti-correlated with the intrinsic alignment, so that the

GI term is negative.

The lower panel shows the II case - two galaxies which are both at the same redshift and angular

position as the matter structure. Both are intrinsically aligned by its tidal gravitational field. The

left panel shows their actual positions at redshift zi and the right panel shows how they appear to an

observer.
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Controlling intrinsic alignment uncertainties

For two-point statistics three broad approaches have been used to control errors due to contamination

from intrinsic alignments: modelling, self-calibration and nulling (Troxel and Ishak 2015). Modelling

involves developing fitting functions for the intrinsic alignment signals with one or more free

parameters (Joachimi and Bridle 2010). This can be extended to self-calibration in which systematic

errors are modelled using other information from the survey, for example about the clustering

of galaxies (Huterer et al. 2006; Zhang 2010). Finally, the nulling technique uses the redshift

dependence of the correlation between intrinsic ellipticity and shear to remove the intrinsic

alignment contamination, though with some loss of information (Joachimi and Schneider 2008).

Few studies have considered the control of intrinsic alignments for three-point shear statistics.

Of these few, Troxel and Ishak (2011, 2012) used the redshift dependency within single redshift

bins to inform a self-calibration method and Shi et al. (2010) studied the scope for using nulling.

In this work we adapt the linear alignment model developed by Hirata and Seljak (2004) which is

well-established for two-point statistics (Bridle and King 2007; Kirk et al. 2012) and has been used

to inform practical investigations (Hildebrandt et al. 2016; Köhlinger et al. 2017; van Uitert et al.

2018; Hildebrandt et al. 2020).

The linear alignment model assumes that the ellipticity of a galaxy is linearly related to the

gravitational potential at the time the galaxy formed. In its basic form the model is relatively simple;

to make it more realistic it has been developed in various ways, for example Schneider and Bridle

(2010) developed a halo model version which extended the modelling to small scales, and other

models incorporate dependence on the redshift and luminosity of source galaxies, partly motivated

by simulation results (Tenneti et al. 2016; Hilbert et al. 2017). We adopt some of these extensions,

as explained in the next section. Appendix A of Kirk et al. (2012) usefully summarises the history

and rationale for the linear alignment approach.

Modelling the intrinsic alignment bispectrum

We now extend the earlier discussion of intrinsic alignments to cover three-point statistics. From

Equation 3.84 we can see that the three-point weak lensing correlation function is the sum of four

terms

〈εiobsε
j
obsε

k
obs〉 = GGG + GGI + GII + III , (3.86)

where i, j and k denote different galaxies, G represents lensing and I represents intrinsic alignment.
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The four terms in this equation are given by

GGG = 〈γiGγjGγkG〉 (3.87)

GGI = 〈γiGγjGεkI 〉+ 〈γjGγkGεiI〉+ 〈γkGγiGεjI 〉 (3.88)

GII = 〈γiGεjI εkI 〉+ 〈γjGεkI εiI〉+ 〈γkGεjI εiI〉 (3.89)

III = 〈εiIεjI εkI 〉 . (3.90)

In a similar way we can divide the observed bispectrum Bobs into four terms

Bobs = BGGG +BGGI +BGII +BIII . (3.91)

Figure 3.11 shows the origin of these terms using notation similar to Figure 3.10. The

configurations in the three-point case are more complicated than for two-point statistics. In

particular GII terms can arise in two different ways shown in the two central panels of Figure 3.11:

firstly a distant galaxy may be lensed by two structures along the line of sight each of which has

an associated nearby intrinsically-aligned galaxy, and secondly lensing may be due to a single

structure with two nearby intrinsically-aligned galaxies.

The first term, BGGG, is the lensing bispectrum defined by

〈γ̃iG(`1)γ̃jG((`2)γ̃kG(`3)〉 = (2π)2δD((`1 + `2 + `3)Bijk
GGG((`1, `2, `3) , (3.92)

where γ̃G is the Fourier transform of the shear. In a tomographic analysis we can associate the labels

i, j and k with different redshift bins rather than different galaxy samples and assume zi < zj < zk.

Using the lensing weight q(i)(χ) defined by Equation 3.9 we can write the lensing bispectrum

as a projection of the three-dimensional matter bispectrum, Bijk
δδδ:

Bijk
GGG(`1, `2, `3) =

∫ χlim

0
dχ q(i)(χ)q(j)(χ)q(k)(χ)χ−4Bδδδ

(
`1

χ
,
`2

χ
,
`3

χ
;χ

)
. (3.93)

The other three terms in Equation 3.91 can be defined similarly, replacing γ̃G by ε̃I as

appropriate.

For example for BGGI

〈γ̃iG(`1)γ̃jG(`2)ε̃kI (`3) = (2π)2δD(`1 + `2 + `3)Bijk
GGI(`1, `2, `3) , (3.94)
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Figure 3.11: Origin of the GGI, GII and III terms. Top panel: GGI term. Distant galaxies (coloured
red) at redshifts zj and zk are lensed by a structure at redshift zi. The galaxies are also affected by a
galaxy at redshift zi (coloured blue) which is intrinsically aligned to the matter structure at the same
redshift. Centre two panels: GII terms. These can arise in two ways. Firstly a galaxy (coloured
red) at redshift zk is lensed by structures at redshifts zj and zi. Two other galaxies (coloured blue)
are intrinsically aligned to the same structures. This configuration can also be considered to be
intermediate between GGI and GII. Secondly, the main source of the GII signal, a galaxy at redshift
zj is lensed by a structure at redshift zi and two other galaxies at redshift zi are aligned to the
same structure. Bottom panel: III term. Three galaxies at redshift zi are instrinsically aligned to a
structure at the same redshift.
In each case the rightmost column shows what is observed, with the true orientation of the lensed
galaxies shown by a dotted outline. Lensing is anti-correlated with intrinsic alignment.
Adapted from Figure 7 in Troxel and Ishak (2015).
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and

Bijk
GGI(`1, `2, `3) =

∫ χlim

0
dχ q(i)(χ)q(j)(χ)p(k)(χ)χ−4BδδδI

(
`1

χ
,
`2

χ
,
`3

χ
;χ

)
, (3.95)

where p(k)(χ) is the distribution of galaxies in the kth tomographic bin and BδδδI is defined by

〈δ̃G(k1, χ)δ̃G(k2, χ)δ̃I(k3, χ)〉 = (2π)3δD(k1 + k2 + k3)BδδδI

(
`1

χ
,
`2

χ
,
`3

χ
;χ

)
. (3.96)

Here δ̃I denotes the Fourier transform of the matter density contrast of the field which produces the

intrinsic alignment. The full expression for the BGGI part of the observed bispectrum is formed by

summing Equation 3.95 over all permutations of the three redshift bins.

To evaluate the matter bispectrum we use the fitting formula for the three-dimensional matter

bispectrum derived by Gil-Marı́n et al. (2012) which is based on perturbation theory. In this formula

the normal perturbation theory kernels F2 are replaced by new effective kernels F eff
2 so that

Bδδδ(k1,k2,k3) = 2F eff
2 (k1,k2)Pδ(k1)Pδ(k2) + 2 perms. (3.97)

We need similar expressions for BδδδI , BδδIδI and BδIδIδI . We build on the expression for δ̃I

derived by Hirata and Seljak (2004) for intrinsic alignment power spectra. In the two-point case

there are two such spectra, PδIδI(k) and PδδI(k), given by

PδIδI(k) =

(
− C1ρc

(1 + z)D(z)

)2

P lin
δ (k) , (3.98)

PδδI(k) = − C1ρc
(1 + z)D(z)

P lin
δ (k) , (3.99)

where ρc is the critical density, D(z) is the growth factor normalised to unity at the present day and

P lin
δ (k) is the linear matter power spectrum. The parameter C1 is a normalisation factor which in

principle can be determined from observations or simulations. Thus in this model δ̃I is related to

δ̃G as δ̃I = fIAδ̃G with

fIA = − C1ρc
(1 + z)D(z)

. (3.100)
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For both the power spectrum and bispectrum we choose a more flexible version of the factor fIA

than in Equation 3.100 to allow for uncertainty in the amplitude and possible redshift dependence:

fIA = −AIA
C1ρc

(1 + z)D(z)

(
1 + z

1 + z0

)β
. (3.101)

The amplitude AIA and the exponent β are free to vary and z0 is an arbitrary pivot value. We

substitute the non-linear power spectrum in place of P lin
δ (k) following Bridle and King (2007) who

found this was a practicable way of extending the model to smaller scales. We use the value of

C1 determined by the same authors which is 5× 10−14 h−4M−2
� Mpc6, leading to C1ρc = 0.0134

(Joachimi, Mandelbaum, Abdalla and Bridle 2011). We take the fiducial value of the amplitude to

be 1 and of β to be zero.

We extend this model to the intrinsic alignment bispectra we use the fitting function from

Equation 3.97 which leads to

BδIδIδI(k1,k2,k3) = f4
IABδδδ(k1,k2,k3) (3.102)

BδδIδI(k1,k2,k3) = 2
[
f2

IAF
eff
2 (k1,k2)Pδ(k1)Pδ(k2) (3.103)

+ 2f3
IA[F eff

2 (k2,k3)Pδ(k2)Pδ(k3) + F eff
2 (k3,k1)Pδ(k3)Pδ(k1)]

]
BδδδI(k1,k2,k3) = 2

[
f2

IAF
eff
2 (k1,k2)Pδ(k1)Pδ(k2) (3.104)

+ 2fIA[F eff
2 (k2,k3)Pδ(k2)Pδ(k3) + F eff

2 (k3,k1)Pδ(k3)Pδ(k1)]
]
.

Then integrating as in Equation 3.95 gives expressions for the weak lensing intrinsic alignment

bispectra. Examples of resulting bispectra for arbitrary illustrative tomographic bins are shown

in Figure 3.12. This plots equilateral triangle bispectra obtained with 5 redshift bins, assuming

fiducial values of the intrinsic alignment parameters AIA and β. The GGI bispectrum is negative

and its magnitude can be almost as large as the GGG signal. The other bispectra are positive.

In some bin combinations the GII bispectrum can also be large, but the III bispectrum is always

sub-dominant, which is consistent with the findings in Semboloni et al. (2008) for a survey like

CFHTLens. Overall this confirms the importance of taking intrinsic alignments into account;

otherwise the weak lensing bispectrum can be seriously mis-estimated.
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Figure 3.12: Examples of intrinsic alignment bispectra for illustrative tomographic bin combinations.
Results are given for equilateral triangle configurations with 5 redshift bins, assuming fiducial
values of the parameters AIA and β, and show the absolute values of the bispectra since the intrinsic
alignment bispectra can be negative in some configurations. The magnitudes of the GGI and
GII bispectra can approach that of the GGG lensing signal in some bin combinations. The III
bispectrum is always sub-dominant.

Figures 3.13 and 3.14 show the relative importance of the intrinsic alignment terms compared

with the pure lensing signal. We find that intrinsic alignment affects the power spectrum more than

the bispectrum, confirming that the bispectrum should help mitigate this systematic. However we

note that this contrasts with the findings from simulations in Semboloni et al. (2008). These authors

measured three-point aperture mass statistics and concluded that the III/GGG ratio was generally

higher than the II/GG ratio. They also found that the III signal is negative whereas in our model it

is positive. We discuss these disagreements further in Section 3.5. For now we have no reason to

discard the linear alignment model which is well-established and robust for two-point statistics.
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Figure 3.13: The absolute value of the total the intrinsic alignment power spectrum relative to the
lensing power spectrum for all combinations of 5 tomographic bins.
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Figure 3.14: For equilateral triangles only, the absolute value of the total intrinsic alignment
bispectrum relative to the lensing bispectrum for the same tomographic bin combinations as in
Figure 3.12. Comparison with Figure 3.13 shows that intrinsic alignment affects the bispectrum
less than the power spectrum.
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Figure 3.15: Schematic depiction of the number density distribution of galaxies. The black line
shows the overall number density distribution normalised so that the maximum value is 1. Bins are
defined so that each contains the same number of galaxies and coloured lines show distributions
within each redshift bin. Dotted and dashed blue lines show uncertainty in the mean redshift of the
fourth bin.

3.4.2 Redshift errors

Another source of systematic uncertainty is the measurement of the redshifts which are used to

allocate galaxies to tomographic bins and estimate the distribution of galaxies in each bin. It is not

feasible to obtain accurate spectroscopic redshifts for all the galaxies in a survey and we have to

rely on photometric measurements which will always include some inescapable uncertainty. In this

work we consider a single source of uncertainty: bias in the mean redshift of each tomographic bin.

In other words we consider the effect of shifting the whole distribution of galaxies in a bin to higher

or lower redshift, without changing the shape of the distribution. We allow for different uncertainty

and hence different shifts in each tomographic bin so that with Nz tomographic bins there are Nz

parameters representing the shifts in the mean of each bin. A similar method for forecasting redshift

systematics was used by Huterer et al. (2006). It is also the standard approach used in all current

surveys, for example Joudaki et al. (2016), Abbott et al. (2018), Hikage et al. (2019).

We assume the overall redshift probability distribution of galaxies, ptot(z), has the form given

by Equation 3.79 and that the redshift distribution within each bin is Gaussian. The redshift bin

boundaries are then constructed so that each bin contains the same number of galaxies. This results

in bin boundaries [0.20,0.51], [0.51,0.71], [0.71,0.91], [0.91,1.17] and [1.17,2.00]. Figure 3.15

shows this schematically, firstly assuming the mean redshift of each bin is known exactly and

secondly indicating positive (dashed) and negative (dotted) shifts in the mean of the fourth redshift

bin.
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3.4.3 Results

We now expand the Fisher information matrix which we used in Section 3.3 to additionally take

account of the two nuisance parameters for the intrinsic alignment model – the parameters AIA and

β from Equation 3.101 – and Nz nuisance parameters ∆zi denoting the shift in the mean value of

the redshift bin centered on zi, as well the seven cosmological parameters listed in 3.3.1.

As in earlier parts of this chapter we use equilateral triangle bispectra only and work with

five tomographic bins. The covariance matrix includes the Gaussian (including shape noise) and

supersample terms allowing better estimation of statistical errors than for example in Shi et al.

(2010) who used only the Gaussian covariance.

As before we use figures of merit defined by Equation 3.83 to quantify the improvements in

parameter constraints. We focus on the Ωm–σ8 and w0–wa figures of merit, since these parameter

combinations are degenerate in weak lensing. For completeness, Appendix 3D contains Fisher

matrix results including all cosmological and nuisance parameters.

To calculate the Fisher matrices we need the derivatives of the power spectrum and bispectrum

with respect to the parameters. For the cosmological parameters and redshift shifts we use a

standard five-point stencil. The derivatives with respect to the intrinsic alignment parameters are

evaluated analytically.

In Table 3.2 we summarise the impact of systematic uncertainties on the figures of merit, and

demonstrate the effect of combining the power spectrum and bispectrum. We compare the figures

of merit with no systematics with firstly those involving intrinsic alignments only, secondly redshift

uncertainties only and finally both systematics together. The presence of systematic uncertainties

severely reduces the figures of merit. However, as also shown in Table 3.3, this reduction can

be partly redressed by including the bispectrum as well as the power spectrum, and in fact the

bispectrum is much more beneficial when systematic uncertainties are present. In both these tables

we use wide, essentially uninformative, priors on all the nuisance parameters.

We next investigate the effect on the figures of merit of narrowing the priors on the nuisance

parameters, starting from a very wide prior of ten. As we narrow the priors (ie increase our

knowledge of the parameters) the figures of merit increase until they reach a plateau where the

improvement levels off. At this point effectively no further information is obtainable: if the nuisance

parameters were constrained as tightly as this then we could retrieve all information. The difference

between the plateau obtained with tight priors and the ‘base’ level obtained with wide priors
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Spectrum type FoM Ωm–σ8 FoM w0–wa
PS no systematics 71139 160
PS with intrinsic alignments 229 0.4
PS with redshift bin shifts 7752 4.5
PS with both systematics 210 0.3
PS + BS no systematics 116734 268
PS + BS with intrinsic alignments 16198 5.2
PS + BS with redshift bin shifts 66359 40.1
PS + BS with both systematics 14170 4.8

Table 3.2: The table compares the figure of merit obtained firstly with the power spectrum only,
and then using the power spectrum and bispectrum together. In each case we show the figures of
merit without systematic uncertainties (the best which can theoretically be achieved), then in the
presence of intrinsic alignments only, redshift uncertainties only, and finally both together.

Ratio of figures of merit
Spectrum type Ωm–σ8 w0–wa
(PS + BS)/PS no systematics 1.64 1.60
(PS + BS)/PS with intrinsic alignments 70.7 13.0
(PS + BS)/PS with redshift bin shifts 8.6 8.9
(PS + BS)/PS with both systematics 67.5 15.5

Table 3.3: Effect of the bispectrum on figures of merit. Based on the data in Table 3.2, we show the
ratios of the figures of merit using the combined power spectrum and bispectrum to the figures of
merit using the power spectrum only. The bispectrum results in large improvements in the figure of
merit if systematic uncertainties are present.

quantifies the loss of information caused by systematic uncertainties. The scope for self-calibration

is indicated by the value at which the increase in figure of merit occurs. The smaller this value is,

the less need for external information to help calibrate the nuisance parameters.

We first consider the intrinsic alignment parameters only. Figure 3.16 shows that if only the

power spectrum is used the improvement plateaus when the priors on AIA and β are around 0.1.

The percentage improvement in the figures of merit as the priors are tightened is less for the

combined power spectrum and bispectrum than for the power spectrum alone. However this is

an improvement to figures which are already considerably larger, as shown in Table 3.2. The net

effect is that, when systematics are present, including the bispectrum will produce a significant

improvement in parameter constraints and better self-calibration. We also observe that, for the

power spectrum, the Ωm–σ8 figure of merit is most sensitive to the amplitude parameter AIA and

the w0–wa figure of merit is most sensitive to the redshift exponent β. This is as expected: Ωm and

σ8 are related to the growth of structure which also affects the amplitude of the intrinsic alignment
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signal, whereas the dark energy parameters depend on the expansion of the Universe and hence on

the measured redshift.

In Figure 3.17 priors on both intrinsic alignment parameters are tightened simultaneously. In

this case the self-calibration regime starts at a prior of around 0.1.
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Figure 3.16: Percentage increase in figures of merit when the priors on the parameters AIA and β
are tightened, compared to a wide prior of 10. Left: Effect of tightening prior on AIA only. Right:
Effect of tightening prior on β only.

In Figure 3.18 we turn to theNz redshift bin nuisance parameters. The top row shows the impact

of tightening priors when we consider only the power spectrum and the bottom row shows the effect

when the power spectrum and bispectrum are combined. The left and right panels respectively show

the figures of merit for Ωm–σ8 and w0–wa. Each line shows the effect of tightening the prior on a

single redshift bin. The self-calibration regime extends to a prior of around 0.001 on the redshift bin

mean. This is confirmed by Figure 3.19 where we tighten the priors on all the redshift bin means

simultaneously.

Finally we consider what happens if we know the accuracy of either the intrinsic alignment

parameters or the redshift parameters so that we can impose fixed priors. In Figure 3.20 we show

the effect of imposing priors on the redshift parameters and varying the priors on the intrinsic

alignment parameters and in Figure 3.21 we show the reverse. The effects are summarised in

Table 3.4 and Table 3.5. If both the power spectrum and power spectrum are used and priors on the
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Figure 3.17: Percentage increase in figures of merit when the priors on both the parameters AIA

and β are tightened simultaneously, compared to wide priors of 10.

nuisance parameters are sufficiently tight the figures of merit can increase by as much as 70% for

Ωm–σ8 and 15% for w0–wa, compared with using the power spectrum only.
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Figure 3.18: Percentage increase in figures of merit when the priors on the means of the five redshift
bins are tightened, compared to a wide prior of 10. Top: Power spectrum. Bottom: Power spectrum
and bispectrum combined Left: Figure of merit Ωm–σ8. Right: Figure of merit w0–wa. Only
redshift nuisance parameters are considered. Each redshift bin prior is varied individually. Note
different scales in each panel.
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Figure 3.19: Percentage increase in figures of merit when the priors on all redshift parameters are
tightened simultaneously. The vertical dashed line indicates the requirement for redshift accuracy
from the Euclid Definition Study Report (Laureijs et al. 2011).

154



10−4 10−3 10−2 10−1 100 101

prior on intrinsic alignment parameters

0

10

20

30

40

50

60

%
im

p
ro

ve
m

en
t

in
F

oM

10−4 10−3 10−2 10−1 100 101

prior on intrinsic alignment parameters

0

10

20

30

40

50

60

%
im

p
ro

ve
m

en
t

in
F

oM
−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

Power spectrum FoM Ωm − σ8

Power spectrum FoM w0 − wa
Power spectrum + bispectrum FoM Ωm − σ8

Power spectrum + bispectrum FoM w0 − wa

Figure 3.20: Percentage increase in figures of merit from varying the prior on the intrinsic alignment
parameters when a fixed prior is imposed on every redshift parameter.
Left: Prior of 0.1. Right: Prior of 0.002.

Spectrum type FoM Ωm–σ8 FoM w0–wa
PS 0.1 prior on IA parameters 254 0.4
PS 0.01 prior on redshift parameters 211 0.3
PS 0.002 prior on redshift parameters 215 0.3
PS + BS 0.1 prior on IA parameters 14927 5.1
PS + BS 0.01 prior on redshift parameters 14793 4.8
PS + BS 0.002 prior on redshift parameters 15429 4.9

Table 3.4: The table shows figures of merit obtained with the power spectrum only and with the
power spectrum and bispectrum together, when priors are imposed on the nuisance parameters.

Ratio of figures of merit
Spectrum type Ωm–σ8 w0–wa
(PS + BS)/PS 0.1 prior on IA parameters 58.8 12.8
(PS + BS)/PS 0.01 prior on redshift parameters 70.1 15.5
(PS + BS)/PS 0.002 prior on redshift parameters 71.8 15.0

Table 3.5: Based on the values in Table 3.4, we show the ratios of the figures of merit using the
combined power spectrum and bispectrum to the figures of merit using the power spectrum only,
when priors are imposed on the nuisance parameters.
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Figure 3.21: Percentage increase in figures of merit from varying the prior on the redshift parameters
when a fixed prior of 0.1 is imposed on both intrinsic alignment parameters.

Bringing this all together, Figure 3.22 summarises our results, highlighting the ‘worst case’

where we use the power spectrum only and know nothing about the systematics and also the case

where the power spectrum and bispectrum are combined and the Euclid requirement for redshift

accuracy is met. Two key conclusions are firstly that using the bispectrum as well as the power

spectrum goes a long way towards mitigating the effect of systematics and secondly that lack of

knowledge of the nuisance parameters causes little loss of information so that self-calibration is

possible. This is particularly true for the redshift parameters where the self-calibration regime

coincides with the Euclid accuracy requirement.

To further highlight the main results from this section, in Figure 3.23 we recast the information

presented in Figure 3.22 to plot the percentage change in the figures of merit compared with the

figure of merit obtained from the power spectrum only and a tight redshift prior of 0.002. The

improvement from the bispectrum is large and effectively independent of the prior.
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Figure 3.22: Summary of the findings in this section showing the effect of using the bispectrum as
well as the power spectrum to constrain parameters and the further effect of priors on the nuisance
parameters. Top: The Ωm–σ8 figure of merit. Bottom: The w0–wa figure of merit. We highlight two
cases: power spectrum only with no knowledge of systematics, and power spectrum and bispectrum
combined with 0.002 priors on the redshift parameters.
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Figure 3.23: Based on the same information as Figure 3.22, we compare each figure of merit
with the figure of merit obtained with the power spectrum only and priors of 0.002 on the redshift
parameters, the requirement for redshift accuracy from the Euclid Definition Study Report (Laureijs
et al. 2011). The vertical dashed line indicates the Euclid requirement.

3.4.4 Conclusions - systematics

In the context of a Euclid-like tomographic weak lensing survey we have considered two major

sources of systematic uncertainty: contamination by intrinsic alignments which adds additional

terms to the cosmic shear power spectrum and bispectrum, and uncertainty in the mean redshifts

of the tomographic bins. We model the intrinsic alignment bispectrum using a variant of the

linear alignment model developed for the power spectrum, with two free parameters: the intrinsic

alignment amplitude and a power law dependence on redshift. We show that with our modelling

assumptions intrinsic alignments affect the power spectrum much more than the bispectrum and

thus the bispectrum can be expected to help alleviate the effect of this systematic error. We find

similar results when we consider uncertainty in the means of redshift bins.

Whether we consider the power spectrum only or the combined power spectrum and bispectrum,

the presence of these systematic uncertainties causes an order of magnitude decrease in both the
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Ωm–σ8 and w0–wa figures of merit. However, compared to using the power spectrum only,

combining the bispectrum and power spectrum has a very beneficial effect on the figures of merit.

Much more can be gained from using the bispectrum than from using tighter priors with the power

spectrum only. This is true even though we used a ‘cut down’ bispectrum which depends only on

equilateral triangles. Using more triangle configurations could be expected to produce even greater

gains.

The self-calibration regime extends to around 0.001 for redshift bin means. Since the Euclid

requirement for redshift accuracy is 0.002, this suggests that self-calibration is a realistic, and

helpful, possibility. There is no similar specification for intrinsic alignment accuracy, so it is hard

to judge whether the self-calibration value of around 0.1 is consistent with the accuracy which can

be achieved in practice. However our results do not rule out the possibility of self-calibration.

3.5 Discussion and further work

The results in this chapter suggest that in principle using three-point statistics in a Euclid-like

survey could be very beneficial, especially for controlling systematic uncertainties where we have

shown there is considerable potential for self-calibration. We discuss here possible further work

to extend our results, to resolve some discrepancies with the literature, and to address practical

challenges before our findings can be applied to a real survey.

Complexity of the bispectrum covariance

Any potential gain from the bispectrum must be balanced against the extra cost of measuring

three-point statistics. It is common to tackle this by simplifying the bispectrum and its covariance

matrix in ways which are expected to preserve most of the information content. For example we

ignored the ‘standard’ non-Gaussian terms of the covariance, and showed that is safe to use only

the one-halo term of the supersample covariance. We also showed that the bispectrum covariance

need only be based on two or three tomographic bins, so long as the power spectrum is based on

many bins. On the other hand we considered only equilateral triangles which certainly means we

threw away some useful information, for example from squeezed triangles (Barreira 2019).

An alternative to ad hoc simplification is data compression. A standard approach is principal

component analysis which was employed by Kayo et al. (2012) and Rizzato et al. (2019). Both

concluded that a small fraction of eigenmodes carry nearly all the weak lensing bispectrum

information. A promising alternative is the Karhunen-Loève algorithm (Tegmark et al. 1997).
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Gualdi et al. (2018, 2019) showed that for the galaxy bispectrum this algorithm can reduce the

dimension of the data vector to the number of cosmological parameters without significant loss of

information. This has not been investigated for the weak lensing bispectrum and could be the best

way forward in practice.

We discount other methods of accessing non-Gaussian weak-lensing information, for example

peak counts (Kratochvil et al. 2010; Liu et al. 2015; Kacprzak et al. 2016) or Minkowski functionals

(Kratochvil et al. 2012; Petri et al. 2013). Although they may bypass some of the complexities

of the bispectrum these have other limitations. For example it is not clear how the modelling of

systematics could be addressed.

Intrinsic alignment bispectra

Our model of the intrinsic alignment bispectra, based on the linear alignment model, is in

disagreement with results obtained from simulations by Semboloni et al. (2008) in several respects.

Most conspicuously, these authors found that intrinsic alignments affect three-point weak lensing

statistics more strongly than two-point statistics, while we find the opposite. They also report

that the III signal is negative whereas our model suggests it is positive (see also Figure 3.11 ).

Nevertheless both studies find that intrinsic alignments affect the bispectrum differently from the

power spectrum so support the idea of using the bispectrum to control systematics.

The discrepancies do not invalidate our method or general conclusions about self-calibration.

The linear alignment model works well for two-point statistics. In principle there is no reason why

our straightforward extension should not be valid for three-point statistics at the large, linear scales

we are interested in where the halo model and perturbation theory work well. Semboloni et al.

(2008) is based on simulations which are now quite old and assumes a much smaller survey than

Euclid. The best way to settle the question would be to repeat their analysis using data from more

modern simulations such as the Euclid Flagship Mock Galaxy Catalogue6, or survey data such as

the Dark Energy Survey Instrument Bright Galaxy Survey7.

It would also be worthwhile to explore other approaches to modelling intrinsic alignments

and where necessary to extend these to three-point statistics. For example Blazek et al. (2015)

developed a model which goes beyond the linear alignment model to include nonlinear tidal effects.

This approach was further developed by Blazek et al. (2019) to include tidal torquing as well as tidal

alignment thus catering for spiral as well as elliptical galaxies. Vlah et al. (2020) recently developed

6https://sci.esa.int/web/euclid/-/59348-euclid-flagship-mock-galaxy-catalogue
7https://www.desi.lbl.gov/the-desi-survey/
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an intrinsic alignment model based on perturbative effective field theory for both two-point and

three-point statistics.

Theoretical modelling of the bispectrum

In this chapter we model the matter bispectrum using the fitting formula developed by Gil-Marı́n

et al. (2012). This model has been used recently for example to constrain the sum of the neutrino

mass (Coulton et al. 2019), and to investigate the bispectrum in modified gravity at non-linear scales

(Bose et al. 2019). However the formula is known to have deficiencies, due partly to the limited

size and scope of available simulations at the time it was developed. In particular it is known to

overestimate the squeezed bispectrum (Namikawa 2016).

More recently Takahashi et al. (2019) have developed a new more accurate formula, named

BiHalofit, based on high-resolution simulations. This is specifically designed to provide predictions

at small scales and takes account of baryonic effects such as radiative transfer and active galactic

nuclei feedback. Use of this formula would reduce modelling uncertainties, allow us to extend our

results to smaller scales with more confidence and allow further investigation of the robustness of

the results to changes in `max.

Multiplicative shear bias

It would be useful to explore whether the bispectrum can help with self-calibration of the bias due to

the presence of noise in galaxy shape measurements, another major source of systematic uncertainty

in weak lensing. This bias has a dominant multiplicative factor (Heymans et al. 2006), as well

as a lesser additive term, and is usually calibrated using image simulations. Future Euclid-like

surveys will require the accuracy of calibrated shapes to be around 0.1% (Cropper et al. 2013). To

date many analyses of survey data have calibrated multiplicative bias from catalogues of image

simulations (Heymans et al. 2012; Hildebrandt et al. 2016; Hikage et al. 2019) but an alternative

method, which lends itself to the self-calibration approach, is to treat the multiplicative factors as

nuisance parameters (Abbott et al. 2018).

Baryonic effects

Recently Foreman et al. (2019) reported a baryonic feature in the matter bispectrum which is not

present in the power spectrum and attributed this to decreased feedback from active galactic nuclei

at late times. If the result could be extended to weak lensing (using the BiHalofit model) this
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would provide another justification for combining the bispectrum and power spectrum - to control

systematic uncertainties from baryonic effects.

Choice of three-point statistic

In this chapter we have worked exclusively in Fourier space but in a real survey it can be easier to

work in real space. It would be worth investigating statistics which are derived from three-point

correlation functions, analogous to commonly used derived two-point real-space statistics such

as aperture mass statistics (Schneider 1996) or complete orthogonal sets of E/B-mode integrals

(COSEBIs) (Schneider et al. 2010). COSEBIs were designed to cleanly separate the ‘gradient

component’ E-modes from the ‘curl component’ B-modes of the shear signal. This is desirable

since the detection of B-modes strongly indicates the presence of systematics. However Shi et al.

(2014) found that three-point aperture mass statistics separate E- and B-modes adequately, so it is

not clear that three-point COSEBIs have any advantage.

Overall, despite the many unresolved issues, our results establish that weak lensing three-point

statistics should be a useful tool for future surveys. We have shown that using the bispectrum as

well as the power spectrum can help improve cosmological parameter constraints and that there is

considerable scope for self-calibration of some of the main systematic uncertainties which affect

weak lensing.

Nevertheless many challenges need to be overcome if three-point statistics are to be used

successfully. In most cases this is not as daunting as it first seems. It should often be possible

to build on solid work which has been done using two-point statistics - all the standard methods

developed and implemented for current surveys. In short, the prospects for using three-point weak

lensing statistics in next-generation surveys are very encouraging.
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Appendices

3A Weak lensing covariance

In this appendix we give expressions for the components of the convergence power spectrum and

bispectrum covariance for a single redshift bin. We assume a survey with area Ωs in steradians and

consider angular bins of width ∆`i centred on the values `i. Thus li −∆`/2 ≤ |`i| ≤ li + ∆`/2.

Throughout we assume that the Limber and flat-sky approximations are valid. Further details

and derivations can be found in Takada and Jain (2009), Kayo and Takada (2013) and Sato and

Nishimichi (2013). Rizzato et al. (2019) gives all permutations of terms in these covariances for a

tomographic survey.

Gaussian covariance

The Gaussian part of the convergence power spectrum covariance is

Cov[P κ(`1), P κ(`2)]G =
2δK
`1`2

Npairs(`1)
P κ(`1)P κ(`2) , (3.105)

where δK
`1`2

is the Kronecker delta which is 1 if `1 = `2 and `1 is within the bin width ∆`1, and

zero otherwise. Npairs(`1) is the number of independent pairs of modes within the bin width.

The Gaussian part of the convergence bispectrum covariance is

Cov[Bκ(`1, `2, `1), Bκ(`4, `5, `6)]G =
Ωs

Ntrip(`1, `2, `3)
P κ(`1)P κ(`2)P κ(`3) (3.106)

× [δK
`1`4δ

K
`2`5δ

K
`3`6 + δK

`1`4δ
K
`2`6δ

K
`3`5 + δK

`1`5δ
K
`2`4δ

K
`3`6

+ 3 perms] ,

where Ntrip(`1, `2, `3) is the number of triplets of modes which form triangles of side lengths `1,

`2 and `3 within the specified bin widths ∆`i.

Npairs and Ntrip can be approximated by (Takada and Bridle 2007; Joachimi et al. 2009)

Npairs(`) =
Ωs`∆`

2π
, (3.107)

Ntrip(`1, `2, `3) =
Ω2

s `1`2`3∆`1∆`2∆`3

2π2
√

2`21`
2
2 + 2`22`

2
3 + 2`23`

2
1 − `41 − `42 − `43

. (3.108)
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‘Standard’ non-Gaussian covariance

The in-survey non-Gaussian part of the convergence power spectrum covariance is

Cov[P κ(`1), P κ(`2)]NG =
2π

Ωs

∫
d2`

`1∆`1

∫
d2`′

`2∆`2
T κ(`,−`, `′,−`′) , (3.109)

where T κ is the convergence trispectrum. The integrals are over all wavevectors which are within

the bin width ∆` around ` or `′. The in-survey non-Gaussian part of the convergence bispectrum

covariance is

Cov[Bκ(`1, `2, `3), Bκ(`4, `5, `6)]NG = (3.110)

2π

Ωs
Bκ(`1, `2, `3)Bκ(`4, `5, `6)

[
δK
`1`4

`1∆`1
+

δK
`1`5

`1∆`1
+ 7 perms

]
+

2π

Ωs

[
δK
`1`4

`1∆`1
T κ(`2, `3, `5, `6)P κ(`1) +

δK
`1`5

`1∆`1
T κ(`2, `3, `4, `6)P κ(`1) + 7 perms

]
+

1

Ωs

∫
dψ

2π
P κ6 (`1, `2, `3, `4, `5, `6;ψ) ,

where P κ6 is the pentaspectrum. Triangle conditions mean that the P κ6 term depends on two

triangles; ψ is the angle between these triangles.

Supersample covariance

The weak lensing power spectrum and bispectrum supersample covariance are

Cov[P κ(`1), P κ(`2)]SSC = (3.111)

1

Ω2
s

∫
dχ q4(χ)χ−6∂Pδ(`1/χ;χ)

∂δb

∂Pδ(`2/χ;χ)

∂δb

∫
d2`

(2π)2
|W̃ (`)|2PL(`/χ;χ) ,

Cov[Bκ(`1, `2, `3), Bκ(`4, `5, `6)]SSC = (3.112)

1

Ω2
s

∫
dχ q6(χ)χ−10∂Bδ(, `1/χ, `/χ2, `3/χ;χ)

∂δb

∂Bδ(, `4/χ, `5/χ, `6/χ;χ)

∂δb

×
∫

d2`

(2π)2
|W̃ (`)|2PL(`/χ;χ) ,

where q(χ) is the lensing weight function (Equation 3.9), W̃ is the Fourier transform of the survey

mask and PL is the linear matter power spectrum.
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3B Perturbation theory squeezed ‘equilateral’ trispectrum
To derive an approximation for the perturbation theory trispectrum with three equal short modes

and one long mode q we start from Equation 3.69 for the general trispectrum TPT and Equations

3.70 and 3.71 for its components Ta and Tb in the squeezed configuration. Three terms of Equation

3.70 are zero in the limit q → 0 because F2(k,−k) = 0 and one term of Equation 3.71 is zero

because F3(k1,k2,k3) = 0 if k1 +k2 +k3 = 0. We set |ki| = k for i = 1, 2, 3 and ki ·kj = k2/2

for i 6= j. Then Taylor-expanding, for example, P (|k + q|) to first order in q/k gives

P (|k + q|) ≈ P (k) +
k · q
k

∂P (k)

∂k
. (3.113)

Similarly, as examples, expanding F2(−q,k− q) gives

F2(−q,k− q) =
4(k · q)3

7k4q2
+

2(k · q)2

7k2q2
− 15(k · q)

14k2
− k · q

2q2
+

17

14
(3.114)

≈ 2(k · q)2

7k2q2
− (k · q)

2q2
+

17

14
, (3.115)

and expanding F3(k,k,−q) gives

F3(k,k,−q) = −(k · q)3

3k4q2
+

16(k · q)2

21k2q2
− 2(k · q)

3k2
− 4(k · q)

3q2
+

26

21
(3.116)

≈ 16(k · q)2

21k2q2
− 4(k · q)

3q2
+

26

21
. (3.117)

Expanding all terms similarly, combining them and keeping only leading order terms results in

T equi
a =

9P (k)2P (q)

98k2q2
[17(k · q)2 + 42k2k · q + 32k2q2] (3.118)

− 9P (k)P ′(k)P (q)

98k3q2
[(k · q)3 + 14k2(k · q)2 + 6k2q2]

T equi
b =

P (k)2P (q)

84k2q2
[106(k · q)2 − 216k2k · q + 53k2q2] (3.119)

+
P (k)P ′(k)P (q)

126k3q2
[70(k · q)3 − 216k2(k · q)2 + 93k2q2]

T equi
PT =

P (k)2P (q)

98k2q2
[1354(k · q)2 + 2055k2q2] (3.120)

− P (k)P ′(k)P (q)

147k3q2
[436(k · q)3 − 2268k2(k · q)2 + 327k2q2] ,

where P ′(k) = ∂P (k)/∂k. Although Ta and Tb include terms in k · q/q2 which are divergent as

q→ 0, these cancel out in the final expression for the squeezed trispectrum.

165



3C Matter response function for equilateral bispectra

In this appendix we derive the perturbation theory bispectrum response for equilateral triangles

from the general result given by Chan et al. (2018) which is

∂B(k1,k2,k3|δb)
∂δb

∣∣∣∣
δb=0

=
433

126
Bm(k1,k2,k3) +

5

126
BG(k1,k2,k3) (3.121)

− 1

3

3∑
i=1

∂Bm(k1,k2,k3)

∂ ln ki
,

where BPT is the tree-level matter bispectrum and BG is identical to BPT but with the F2 kernels

replaced by G2. This can be rewritten in terms of the cosines, µij , between ki and kj as

∂BPT(k1,k2,k3)

∂δb
= (3.122)[

2180k2
1k2 + (441k2

1 + 1533k3
1 − 441k2

2 + 1533k1k2
2)µ12 + 886k2

1k2µ
2
12

441k2
1k2

]
× P (k1)P (k2) + 2 perms.

−
[

10k1k2 + 7(k2
1 + k2

2)µ12 + 4k1k2µ
2
12

7k2
1k2

][
∂P (k1)

∂ ln k1
P (k2)P (k3) + 2 perms.

]

For equilateral triangles we have k1 = k2 = k3 = k and µij = 1/2, leading to

∂Bequi
PT

∂δb
=

[
2623

98
− 36

7

∂ lnP (k)

∂ ln k

]
P (k)2 (3.123)

and the halo model bispectrum response given by Equation 3.50 becomes:

∂B

∂δb
= I1

3 (k, k, k) +
47

7

[
I1

1 (k)I1
2 (k, k)P (k)

]
+ (I1

1 (k))3

[
2623

98
− 36

7

∂ lnP (k)

∂ ln k

]
P (k)2 . (3.124)
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3D Fisher matrix analysis of systematic uncertainties

We show here Fisher matrix plots corresponding to the analysis of systematic uncertainties in

Section 3.4.
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Figure 3.24: Fisher matrix analysis including intrinsic alignment nuisance parameters. Parameter
constraints from weak lensing power spectrum and power spectrum plus bispectrum. Constraints
using only the power spectrum covariance are shown in red and using the power spectrum plus
the bispectrum are shown in blue. Five tomographic bins between z = 0.2 and z = 2.0 are used.
Gaussian shape noise is included.
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Figure 3.25: Fisher matrix analysis including redshift nuisance parameters. Parameter constraints
from weak lensing power spectrum and power spectrum plus bispectrum. Constraints using only
the power spectrum covariance are shown in red and using the power spectrum plus the bispectrum
are shown in blue. Five tomographic bins between z = 0.2 and z = 2.0 are used. Gaussian shape
noise is included.
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4 Likelihoods for weak lensing

4.1 Introduction

This chapter discusses two issues which need to be considered when estimating cosmological

parameters in a Bayesian framework: is it valid to use a Gaussian power spectrum likelihood, and

if a Gaussian likelihood is used, does the parameter-dependence of the covariance matrix matter?

The discussion is mainly framed around weak lensing but also includes results from the CMB and

large-scale structure literature where the issues have often been investigated more thoroughly.

Section 4.2 focuses on the theoretical background. We discuss the true form of the power

spectrum likelihood and show that it is not Gaussian even if the underlying density field is Gaussian.

We recap the customary approach to Bayesian inference in cosmology and then discuss how to

choose an appropriate likelihood. We show that in most cases the exact likelihood has a gamma

distribution, then describe some alternative non-Gaussian likelihoods which approximate this. We

also outline other strategies which allow a Gaussian likelihood to be used or which avoid explicitly

evaluating the likelihood at all. We then identify and discuss variants of Gaussian likelihoods which

are commonly used for real surveys.

In Section 4.3 we turn to likelihoods for weak lensing correlation functions, building on recent

modelling work by Sellentin et al. (2018). We consider the joint distributions of correlation functions

in two angular bins and confirm the conclusion that likelihoods for weak lensing correlation

functions are also non-Gaussian.

In Section 4.4 we consider the parameter-dependence of the covariance matrix in a Gaussian

likelihood. We first summarise an argument in Carron (2013) which shows why it is formally

incorrect to recalculate the covariance matrix at each sampled point when using a Gaussian

likelihood. We then review how the parameter-dependence of the covariance matrix has been

treated in practice, and the conclusions which have been drawn (correctly or incorrectly). In the

subsequent discussion we start from the assumption that for real surveys the only practicable

approach may be to use a Gaussian likelihood, and therefore a fixed covariance matrix. We develop

a simple iterative method to derive a suitable fiducial cosmology at which to calculate the covariance,

based on an emulator for the power spectrum covariance matrix.
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4.2 Choice of likelihood

4.2.1 Bayesian inference

As discussed in Chapter 1, the starting point for all Bayesian inference is Bayes’ theorem.

P (θ|d) =
P (d|θ)P (θ)

P (d)
, (4.1)

where d = (d1, d2, · · · , dn) is the data vector and θ = (θ1, θ2, · · · , θm) is the vector of model

parameters. P (θ|d) is the posterior. The denominator P (d), the Bayesian evidence, is not

important for the discussion in this chapter since it does not depend on the parameters.

The inputs to the inference are firstly the likelihood of the experimentally observed data (given

a chosen set of parameters) and secondly priors on the parameters, determined from pre-existing

knowledge. Then Bayes’ theorem is used to infer the posterior distribution of the parameters and

hence the bestfit parameter values (typically given by either the maximum or the mean of the

posterior in parameter space). Often the priors are assumed to be uniform or ‘flat’ to reflect a lack

of knowledge, on the assumption that flat priors are uninformative (which may not in fact be true,

as discussed for example in Trotta (2017)). It follows that the likelihood carries a great deal of

weight in the inference process and needs to be specified appropriately and accurately.

To estimate the values of the parameters which maximise the posterior, the likelihood and priors

are typically fed into a Monte Carlo Markov Chain (MCMC) code or another sampling method

such as nested sampling. These samplers can estimate not only the maximum likelihood values, but

also the full shape of the posterior distribution. Crucially they require the likelihood to be estimated

many thousands of times, so it is necessary to balance the correctness of the likelihood against the

computational cost of calculating it.

4.2.2 Exact power spectrum likelihood

We want to estimate cosmological parameters from data which describes some density field,

for example CMB temperature or polarisation anisotropies, cosmic shear, or galaxy clustering

measurements. In the case of the CMB the underlying fields are Gaussian, but in most cosmological

cases the field is not Gaussian. In particular the development of non-linear structure at small scales

and late times makes both the matter and weak lensing fields non-Gaussian.
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Following Carron (2013) we distinguish between ‘field level’ analysis based on the underlying

density fluctuations, which we assume can be expressed in terms of spherical harmonics a`m, and

‘estimator level’ analysis based on a summary statistic.

In principle we can carry out the likelihood analysis at the field level (for example Hinshaw et al.

(2007)). If the field is Gaussian the a`m have zero mean and variance equal to the power spectrum

of the fluctuations, C`. The likelihood based on the a`m is also precisely Gaussian. However if the

field is not Gaussian then we would expect the likelihood (at the field level) to be non-Gaussian as

well.

Even if the field is Gaussian, working at the field level is often intractable because of the very

large size of the data vector and the need to invert large matrices. Instead it is usual to compress the

field data into summary statistics, normally the power spectrum or two-point correlation function.

In the remainder of this section we discuss the power spectrum, C`. For one multipole ` this is

defined by

〈a`ma`′m′〉 = δ``′δmm′C` . (4.2)

If the underlying field is Gaussian then the power spectrum contains exactly the same information

as the field so this data compression should not in itself reduce the accuracy of the parameter

estimation. This is not the case for non-Gaussian fields.

For simplicity we ignore complications such as sky coverage and measurement noise and define

an estimator for the power spectrum by

Ĉ` =
1

2`+ 1

∑̀
m=−`

|a2
`m| . (4.3)

Now we need a likelihood for the power spectrum rather than the field. The most common way

to proceed, especially in the weak lensing literature, is to assume that the likelihood of the power

spectrum is Gaussian. For a single multipole ` this has the form

LG(Ĉ`|C`) =
1√

2πdetΣ`
exp

(
−(C` − Ĉ`)2

2detΣ`

)
, (4.4)

where Σ` is the power spectrum covariance.

Strictly speaking the assumption that the power spectrum likelihood is Gaussian is incorrect

even if the underlying field is Gaussian. Ĉ` is the sum of squares of identically distributed random

Gaussian variables. Such a sum has a gamma distribution, normally characterised by a shape
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parameter k and a scale parameter θ. In terms of these parameters the probability density function

of this distribution is

P (Ĉ`|C`) = exp

(−Ĉ`
θ

)
Ĉk−1
`

θkΓ(k)
, (4.5)

where Γ(k) is the gamma function:

Γ(k) =

∫ ∞
0

xk−1 exp(−x)dx . (4.6)

The gamma distribution has mean kθ, variance kθ2 and skewness 2/
√
k. In our case we have

k =
2`+ 1

2
(4.7)

θ =
2C`

2`+ 1
, (4.8)

so the mean of the distribution isC`, the variance is 2C2
` /(2`+ 1) and the skewness is 2

√
2/(2`+ 1).

Thus using a Gaussian likelihood is formally incorrect and in principle could produce biased

parameter estimates. The true likelihood is positively skewed. In weak lensing this skewness is

most likely to affect estimates of Ωm and σ8 because these both contribute to the power spectrum

amplitude.

4.2.3 Strategies for taking account of non-Gaussian likelihood

Given the difficulty of modelling the exact likelihood even in an ideal situation, various other

strategies have been implemented or proposed in the literature. These can be broadly categorised as

• Do the analysis wholly or partly at the field level. This can be feasible for the CMB where

the field is Gaussian (Hinshaw et al. 2007). Recent Planck analysis adopts a hybrid approach

where large scales are analysed at field level but an estimator with Gaussian likelihood is used

at small scales, for example Ade et al. (2014). However for weak lensing field-level analysis

presents many practical difficulties, and in any case the likelihood is still non-Gaussian.

• Transform the underlying field so it is more Gaussian, for example using the transformations

discussed in Box and Cox (1964). A more Gaussian field leads to a more Gaussian

covariance and likelihood. For example Joachimi, Taylor and Kiessling (2011) applied

such transformations to the convergence field.
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• Devise a likelihood distribution which approximates the exact gamma distribution but is

more computationally tractable. Several examples, mainly from CMB and galaxy clustering

analyses, are discussed in Section 4.2.4.

• Make the likelihood more Gaussian by removing non-Gaussian contributions to the data

vector. For example Lin et al. (2019) found that principal component analysis of their data

vector removed much of the non-Gaussianity, and Sellentin et al. (2018) suggest a three-

step process to remove B-mode contributions from cosmic shear data, resulting in a more

symmetric likelihood.

• Use a Gaussian likelihood anyway and assume that it does not unduly bias parameter

estimates. This is the approach normally adopted in weak lensing, for example Kilbinger

et al. (2013); Hildebrandt et al. (2016); Köhlinger et al. (2017); Hikage et al. (2019); Troxel

et al. (2018). It is a pragmatic choice based on computational considerations, but is also

defended by appealing to the central limit theorem which ensures that even if the likelihood

is not Gaussian it will approach Gaussianity as the number of modes increases. In Section

4.2.4 we discuss alternative formulations of Gaussian likelihoods which are commonly used.

• Take account of the non-Gaussianity of the field, at least partly, by including the full non-

Gaussian terms in the covariance matrix Smith et al. (2006). As discussed in Chapter 3,

these terms are generated by in-survey and super-survey mode-coupling (Takada and Hu

2013). They depend on four-point functions and are a direct consequence of the fact that the

underlying field is not Gaussian. In current weak lensing analyses these terms are normally

included as a matter of course if the covariance matrix is calculated analytically (Hildebrandt

et al. 2016; Köhlinger et al. 2017; Hikage et al. 2019; Troxel et al. 2018; van Uitert et al. 2018).

Alternatively if the covariance matrix is estimated from simulations then the non-Gaussianity

is included implicitly, for example in Kilbinger et al. (2013).

For a real survey with complicated geometry the actual likelihood is very complex and may not

be approximated well by any of these choices. This has prompted the development of so-called

likelihood-free methods, for example approximate Bayesian computation, in which the likelihood

is not specified explicitly but instead is estimated from simulations (Hartlap et al. 2009; Alsing et al.

2018; Leclercq 2018; Taylor et al. 2019).
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4.2.4 Alternative likelihoods

In this section we discuss several likelihood functions which have been considered in the literature,

including variants of the Gaussian distribution. A useful overview of CMB likelihood methods,

published after this chapter was written, is Gerbino et al. (2019).

We assume flat priors and focus on the log posterior (rather than the likelihood) of a single

multipole, P (C`|Ĉ`). In this view C` (the model) is a random variable which is a function of Ĉ`

(the data).

Ideally we would like both the likelihood and posterior to be good approximations of the

true distributions. However to obtain unbiased estimates of cosmological parameters it is more

important to match the true posterior probability.

Gamma distribution

A gamma-distributed log posterior with shape parameter (2`+1)/2 and scale parameter 2C`/(2`+1)

takes the form (up to a constant which can be ignored)

−2 lnPΓ(C`|Ĉ`) = (2`+ 1)
Ĉ`
C`

+ (2`+ 1) lnC` − (2`− 1) ln Ĉ` (4.9)

−2
∂ lnPΓ(C`|Ĉ`)

∂C`
=

[
− (2`+ 1)

Ĉ`
C2
`

+ (2`+ 1)
1

C`

]
(4.10)

= (2`+ 1)
C` − Ĉ`
C2
`

, (4.11)

so this peaks at the mean value C` = Ĉ`.

The gamma distribution does not lend itself to the complications of real surveys and so is almost

never used. Interestingly Sellentin et al. (2018) have argued that a likelihood based on the gamma

distribution can and should be used with shear two-point correlation functions ξ±(θ). If the power

spectrum posterior is gamma-distributed, then transforming from Fourier to real space gives for the

correlation function posterior

PΓ(ξ±(θ)|ξ̂±(θ)) =
∑
`

`F (`θ)

2π
PΓ(C`|Ĉ`) , (4.12)

where F (`θ) is a filter function (normally a Bessel function) corresponding to ξ±(θ). We return to

this in Section 4.3.

As a slight digression, the frequently-encountered chi-squared distribution is a special case of

the gamma distribution where all the summed squared variables are drawn from a standard normal
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distribution N (0, 1). In multiple dimensions the gamma distribution generalises into the Wishart

distribution which is the analogous likelihood distribution for more than one Gaussian field.

Likelihoods related to the lognormal distribution

This section summarises some salient points from comprehensive discussions of lognormal-based

likelihoods in Percival and Brown (2006), Hamimeche and Lewis (2008) and Sun et al. (2013).

The lognormal distribution is a natural choice for an approximation which is related to the

tractable Gaussian distribution but has non-zero skewness. It was first proposed by Bond et al.

(2000) in the context of early CMB analysis. It has log posterior

−2 lnPLN(C`|Ĉ`) =
(2`+ 1)

2

[
ln

(
Ĉ`
C`

)]2

. (4.13)

Figure 4.1, motivated by Figure 1 in Sun et al. (2013), compares the likelihood and posterior

distributions for the exact gamma distribution, the lognormal approximation and a Gaussian

distribution. The top row is for ` = 2 and the bottom row has ` = 50. The left panel shows the

likelihood functions L(Ĉ`|C`) and the right panel shows the posterior distributions P (C`|Ĉ`). The

likelihoods and posteriors are normalised so that their maxima are all equal to 1 and their means

are also equal to 1. The quadrupole shows that the Gaussian posterior has a biased maximum-

likelihood estimate and completely fails to match the shape of the exact likelihood and posterior.

This mismatch reduces when more modes are included and the distributions become more Gaussian.

In contrast, the lognormal approximation matches the gamma posterior quite well and produces the

correct maximum-likelihood estimate.

Verde et al. (2003) found that the lognormal distribution was slightly biased for CMB measurements

from the First Year Wilkinson Microwave Anisotropy Probe (WMAP)1. Instead these authors sought

a more accurate approximation by writing Ĉ` = (1 + ε)C` and expanding around C`. Then, since

Ĉ` is a constant in the posterior, the log posterior from Equation 4.9 can be approximated as

−2 lnPΓ(C`|Ĉ`) ≈ (2`+ 1)

(
ε2

2
− ε3

3

)
. (4.14)

1https://map.gsfc.nasa.gov
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Figure 4.1: Upper left: The true gamma likelihood for ` = 2, together with two approximations:
lognormal and Gaussian. Lower left: As for upper left but for ` = 50. Upper right: The posterior
distributions corresponding to the likelihoods in the left panel for ` = 2. Lower right: As for upper
right but for ` = 50. All likelihoods and posteriors are normalised to have a maximum-likelihood
estimate of 1.0 and mean 1.0.

With the same expansion the Gaussian and lognormal posteriors, Equations 4.4 (ignoring the

determinant term) and 4.13, become

−2 lnPG(C`|Ĉ`) ≈ (2`+ 1)
ε2

2
(4.15)

−2 lnPLN(C`|Ĉ`) ≈ (2`+ 1)

(
ε2

2
− ε3

2

)
. (4.16)

This underlines the fact that the Gaussian distribution approximates the exact distribution up to

O(ε2). Motivated by Equations 4.15 and 4.16, Verde et al. (2003) suggested the Gaussian plus

lognormal approximation

−2 lnPGLN(C`|Ĉ`) =
1

3
lnPG(C`|Ĉ`) +

2

3
lnPLN(C`|Ĉ`) (4.17)
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and found that this version estimated the amplitude of temperature fluctuations to better than 0.1%

accuracy. Figure 4.2 compares this distribution with the gamma distribution.
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Figure 4.2: Upper left: The gamma likelihood for ` = 2, together with the Gaussian plus lognormal
distribution (Verde et al. 2003). Lower left: As for upper left but for ` = 50. Upper right:
The posterior distributions corresponding to the likelihoods in the left panel for ` = 2. Lower
right: As for upper right but for ` = 50. All likelihoods and posteriors are normalised to have a
maximum-likelihood estimate of 1.0 and mean 1.0.

Other candidate distributions have been suggested which also approximate the expansion in

Equation 4.14 (Percival and Brown 2006). For example the offset lognormal distribution gives:

−2 lnPOLN(C`|Ĉ`) =
2`+ 1

2Ĉ2
`

[
Ĉ`(1 + a) ln

(
C` + aĈ`

Ĉ` + aĈ`

)]2

. (4.18)

The free parameter a can be varied to fit a particular situation. Practical applications using this

distribution include Sievers et al. (2003) (CMB) and Kalus et al. (2015) (galaxy clustering).

Another approximation, also related to the expansion in Equation 4.14, was derived by Smith

et al. (2006) for B-mode polarisation data. By considering the third derivative of the likelihood
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around its maximum value these authors found new variables, transformations of C` or Ĉ`, which

had Gaussian likelihoods. This led to a pair of related likelihoods

−2 lnPICN(C`|Ĉ`) =
9(2`+ 1)

2Ĉ2
`

(
2`+ α

2`+ 1

)1/3[(2`+ α

2`+ 1

)1/3

Ĉ` − Ĉ4/3
` C

−1/3
`

]2

, (4.19)

where α can take the values 1 or −1 (Hamimeche and Lewis 2008). The variant with α = 1 is

sometimes referred to as the inverse cubic normal distribution. In this case the distribution of Ĉ1/3
`

is Gaussian.

Kalus et al. (2015) found that both Equations 4.18 and 4.19 performed better than Gaussian

likelihoods when predicting the amplitude of the primordial non-Gaussianity parameter fNL from

galaxy clustering data.

Although not strictly a lognormal approach, Hamimeche and Lewis (2008) developed a

likelihood for correlated Gaussian fields which is exact in the full-sky limit. This has since

been used in particular for likelihoods involving polarisation measurements, for example Mangilli

et al. (2015).

One notable advantage of all the lognormal-based distributions is that they do not require

a separate evaluation of the power spectrum covariance matrix, thus reducing computational

complexity.

Gaussian-like likelihoods

In this section we clarify various likelihood functions which are each often loosely termed

‘Gaussian’. We draw in particular on the discussion in Sun et al. (2013).

The ‘standard’ Gaussian likelihood for a single ` leads to

−2 lnPGd(C`|Ĉ`) =
(2`+ 1)

2

(C` − Ĉ`)2

C2
`

+ lnC` . (4.20)

This version has a parameter-dependent covariance matrix and also a parameter-dependent determinant

term, hence the label Gd. Its maximum is not at C` = Ĉ`. To see this we have

−2
∂ lnPGd(C`|Ĉ`)

∂C`
=

(2`+ 1)

2

[
2(C` − Ĉ`)

C2
`

− 2(C` − Ĉ`)2

C3
`

]
− 1

C`
(4.21)

=
(2`+ 1)(Ĉ2

` − Ĉ`C`)− 2C2
`

C3
`

. (4.22)
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This peaks at C` = (2`− 1)Ĉ`/(2`+ 1), so the maximum likelihood is biased low compared to

the mean.

Two variants of Equation 4.20 are also used in the literature. Firstly the determinant term is

sometimes ignored, giving

−2 lnPGnd(C`|Ĉ`) =
(2`+ 1)

2

(C` − Ĉ`)2

C2
`

. (4.23)

One justification for this choice for large surveys is that the determinant becomes relatively less

important as the survey size increases (Eifler et al. 2009).

More commonly, a constant covariance matrix is assumed, say Σ = 2(Cf` )2/(2`+ 1) for some

fiducial value Cf` . In this case the determinant is constant so we have

−2 lnPGcc(C`|Ĉ`) =
(2`+ 1)

2

(C` − Ĉ`)2

(Cf` )2
. (4.24)

Both these versions have maxima at C` = Ĉ`.

Although both PGnd and PGcc produce unbiased maximum posterior estimates, none of the

Gaussian approximations reproduces the shape of the exact gamma distribution, especially for low

values of `. This is illustrated in Figure 4.3 which shows the likelihood P (Ĉ`|C`) and posterior

P (C`|Ĉ`) for these three common variants of the Gaussian distribution, with the ‘true’ gamma

distribution also shown for comparison. The top panels show the distributions for ` = 2 where

the differences in shape are very pronounced. The lower panels are for ` = 50 where it can be

seen that all the likelihoods and posteriors tend towards Gaussian. As shown by Equation 4.22,

the Gaussian likelihood with parameter-dependent covariance matrix and determinant produces a

biased maximum likelihood estimate.
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Figure 4.3: Upper left: Three different versions of Gaussian likelihoods for ` = 2: with a parameter-
dependent covariance matrix and determinant, with a parameter-dependent covariance matrix but
no determinant, and with a constant covariance matrix. Also shown is the ‘true’ gamma distribution.
Lower left: As for upper left but for ` = 50. Upper right: The posterior distributions corresponding
to the likelihoods in the left panel for ` = 2. Lower right: As for upper right but for ` = 50.
All likelihoods and posteriors are normalised to have a maximum-likelihood estimate of 1.0 and
mean 1.0.
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4.2.5 Parameter constraints with Gaussian and non-Gaussian likelihoods

We have established that in principle the choice of likelihood matters and have considered various

alternative likelihoods for the power spectrum and correlation functions. However this does not

necessarily mean that in a practical context likelihood choice adversely affects parameter estimates;

the form of the likelihood may be less important than the multiplicity of other factors which

influence parameter constraints. We now briefly consider what evidence there is that the likelihood

choice matters in practice.

Two studies involving weak lensing correlation functions reached conflicting conclusions.

Hartlap et al. (2009) used simulations to estimate the non-Gaussian cosmic shear correlation

function likelihood and compare its impact to that of a Gaussian likelihood. They found that

their non-Gaussian likelihood made the posterior distribution more sharply peaked and skewed

and applied their theoretical methods to cosmic shear data from the Chandra Deep Field South2.

Against this, Lin et al. (2019) found no evidence that a Gaussian likelihood would produce biased

parameter constraints from a future LSST-like survey, despite detecting non-Gaussianity in their

simulated cosmic shear two-point correlation functions. They cautioned, however, that this result

might not hold for different redshift distributions, survey parameters or cosmologies.

Outside weak lensing, Hahn et al. (2019) re-analysed two large-scale structure studies which had

used Gaussian likelihoods and found that non-Gaussian likelihoods improved parameter constraints.

They were equivocal about whether the non-Gaussianity of the likelihood will matter for next-

generation surveys, arguing that the central limit theorem would make the likelihood more Gaussian,

but also suggesting that the inclusion of extra small- and large-scale modes would enhance non-

Gaussianity. Consequently they recommended that the Gaussian assumption should always be

tested before use in future analyses.

4.3 Likelihoods for weak lensing correlation functions

The discussion above has focused on the power spectrum, C`, as the two-point statistic of choice.

However for weak lensing this is an idealised approach since it is not possible to apply the theoretical

C` to real data. In a practical situation it is often easier to work in real space and use two-point

correlation functions or functions derived from them (for example Hildebrandt et al. (2016); Troxel

et al. (2018)). However if the power spectrum is not Gaussian then nor are the correlation functions.

It is again not obvious that assuming a Gaussian likelihood is legitimate.

2htttp://www.nasa.gov/mission pages/chandra/main/index.html
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As mentioned in Section 4.2.4, Sellentin et al. (2018) (hereafter SHH18) questioned the

assumption that the shear two-point correlation functions have Gaussian likelihoods. They

developed a hierarchical model of the correlation functions based on the premise that the power

spectrum estimator Ĉ` has a gamma distribution. This work was motivated partly by the detection

of significant non-Gaussianity in CFHTLenS shear correlation functions (Sellentin and Heavens

2017) but also by theoretical considerations. We now build on this to explore the joint distribution

of the correlation functions in two angular bins and hence to clarify the correct form of likelihood.

To summarise, the SHH18 method involves sampling from the distribution of Ĉ` and Hankel-

transforming to real space to obtain expressions for the likelihoods of the correlation functions.

Using the flat sky approximation, their model for the correlation functions is

P (Ĉ`|C`) = Gamma
[
ν(`)

2
,

2C`
ν(`)

]
, (4.25)

ξ̂+(θ) =

∫
d`

2π
`J0(`θ)Ĉ` , (4.26)

ξ̂−(θ) =

∫
d`

2π
`J4(`θ)Ĉ` , (4.27)

where ν(`) is the degrees of freedom on the masked sky, and J0(`θ) and J4(`θ) are Bessel functions

of the first kind. For the full sky there are ν = (2` + 1)/2 degrees of freedom. In a real survey

which does not cover the full sky and has complex geometry fewer ` modes are available so ν is

reduced.

SHH18 validated this model against results from simulations, and found that the likelihoods of

the correlation functions are not Gaussian. They then applied the model to more realistic survey

volumes than possible with simulations which are necessarily restricted to small angular scales.

They showed that the likelihood becomes more Gaussian as the survey area increases but found

that even for Euclid-like surveys there is some residual non-Gaussianity at larger scales.

To explore the joint distributions between angular bins we follow a similar procedure. We first

calculate the correlation functions from simulations. As far as possible we mirror the set-up in

SHH18. We use the same weak lensing simulations, the KiDS-450 mock source catalogue from

Scinet LIght Cone Simulations (SLICS) (Harnois-Déraps and van Waerbeke 2015; Harnois-Déraps

et al. 2018), although we use only 800 simulations rather than the 930 in SHH18. The angular

range of the simulations is 0.5-300 arcmin, similar to that considered in recent KiDS analyses

(Hildebrandt et al. 2016, 2020). For consistency with the presentation in SHH18, we do not add
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shape noise to the correlation functions. This means we are considering a worst case since shape

noise would make the distributions more Gaussian. We use a slightly higher redshift than presented

in SHH18 but this does not alter the main conclusions.

We use the TreeCorr package (Jarvis et al. 2004) to calculate the correlation functions from the

galaxy positions provide by SLICS. Our results for ξ+ and ξ− are shown in Figure 4.4 for similar

(small) separation angles to those plotted in Figure 4 of SHH18, and also for larger angles. The

skewed distributions for ξ+ at small angles agree qualitatively with SHH18. We note that although

we have only plotted positive values of the correlation functions, they can in fact become negative.

For ξ− we do not show results for angular separations below 1 arcmin. Resolution limits of the

SLICS simulations mean that the simulations lack power at low angular scales, which particularly

affects ξ−. This is discussed in detail in Harnois-Déraps and van Waerbeke (2015) and we return

to the issue later when we compare our modelling with the simulations. SHH18 adjust for known

deficiencies in the SLICS simulations by aligning the simulation results to their model, but we do

not make this change.

The relative positions of the ξ− distributions at small angular separations arise because at small

scales ξ− is an increasing function of θ, unlike ξ+ which decreases monotonically across the whole

range of angular scales.

In Figure 4.5 we illustrate the joint distribution of ξ+, calculated from the simulations, between

the second and third angular bins of Figure 4.4. The figure shows a strong relationship between the

two bins but we do not have enough simulations to explore this in any detail. Instead we need to

turn to the analytical model. To visually demonstrate the effect of non-Gaussianity we also show

the joint distribution of two Gaussian distributions with the same means and standard deviations.

This is purely to show the difference between the shapes of the distributions.

We now use Equations 4.25 to 4.27 to generate samples of ξ+ and ξ−. To calculate the

correlation functions we use the cosmological parameter estimation code Cosmosis3 (Zuntz et al.

2015). We calculate the non-linear matter power spectrum using the Halofit model (Smith et al.

2003). As far as possible we align our cosmological parameter values and survey characteristics

such as redshift, area and galaxy number density with the simulation set up. Thus we model a

100 deg2 survey. We consider a single tomographic bin with mean redshift z = 0.33 convolved

with a Gaussian filter of width 0.02(1 + z). We use 32 logarithmically equally spaced angular bins.

3https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Figure 4.4: Results from 800 SLICS simulations of 100 deg2: marginal distributions of ξ+ and ξ−
at redshift ∼ 0.33. The area of each histogram is normalised to 1.
Left: ξ+, Right: ξ− , Top: Small angular separations, Bottom: Large angular separations.

We determine the degrees of freedom ν using a similar method to SHH18. They derive the

formula

ν ≈ fsky(2`+ 1)geff(`)

`pix
, (4.28)

where fsky = Asky[sterad]/4π is the sky fraction. The factor geff quantifies the effect of the

survey mask. For a real survey with complicated geometry geff will not generally be easy to

estimate. SHH18 approximated it from the SLICS simulations by minimising the distance between

histograms for ξ+ derived from the simulations and from the model. We adopt their estimate which

is 2.29, independent of `. The quantity `pix expresses the loss of degrees of freedom caused by the

discrete nature of the shear field. It represents the size of a ‘pixel’ which contains sufficient galaxies

to be considered as a smooth field. SHH18 derived a value for `pix by considering a hypothetical

pixel containing Ngal galaxies and asking how large Ngal must be to allow the galaxy distribution
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Figure 4.5: Left: Joint distribution of ξ+ between two angular bins at approximately 2 arcmin and
13 arcmin, based on 800 SLICS simulations. Right: Joint distribution of two Gaussian distributions
with the same means and variance.

within the pixel to be treated as continuous. This is related to the number density of galaxies, n̄, by

`pix ≈
√
π2n̄

Ngal
. (4.29)

We take n̄ to be 2.6 arcmin−2 per tomographic bin, as in SHH18, and estimate Ngal by fitting model

results for ξ+ to results from the simulations, in a similar way to the estimation of geff . There is

very little room for manoeuvre in this fitting process as we are aiming to fit several histograms for

both ξ+ and ξ− by changing a single variable, Ngal. Since geff is already estimated, the estimation

of degrees of freedom is the weakest part of the model. We found it difficult to obtain a value

of Ngal which worked well for both ξ+ and ξ−, and so settled for one which provided a good fit

for the distribution of ξ+. The poorer fit for ξ− is evident in the results presented below. There

is no obvious reason why the same estimate of ν should not work for both ξ+ and ξ−; a more

sophisticated model of the degrees of freedom may be needed.

As basic validation of our modelling, Figure 4.6 compares the mean values of the correlation

functions from our model (red) and the simulations (blue) to the analytical results from Cosmosis

(orange). The model and Cosmosis results agree very well and are barely distinguishable in this

figure. However the simulations show large deviations at small and large scales. As discussed

before, the small-scale deviations are due to the limited resolution of the simulations. To partly

compensate for this we set kmax = 40h−1Mpc in the halofit model. This artificially reduces
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Figure 4.6: Mean two-point correlation functions ξ+ and ξ− estimated from SLICS simulations
(blue) compared with the analytical values from Cosmosis using the halofit model (red) and the
mean values from the hierarchical model given by Equations 4.25 and 4.27 (orange). The analytical
and modelled results agree well and are visually almost indistinguishable.

the theoretical and modelled correlation functions at small angles, especially ξ− which probes

small scales more than ξ+ does. Similar high-k cut-offs were explored in Harnois-Déraps and

van Waerbeke (2015). This reduces the small-scale discrepancy but at the expense of distorting

the model slightly. At large scales the simulations lack modes larger than the simulation box

size – the so-called finite support effect, which particularly affects ξ+. This too is discussed by

Harnois-Déraps and van Waerbeke (2015) who propose a simple rescaling to compensate for the

effect. We have not made any adjustment for the finite box size and simply note that at both the

smallest and largest scales we cannot expect our modelled correlation functions to exactly match

the simulations.

Figure 4.7 shows our modelled results for ξ+ and ξ−. To more explicitly show how the modelled

distributions match the simulations, in Figure 4.8 we compare model and simulation results for

some illustrative angular bins. In keeping with Figure 4.6, the mean values from the model agree

better with the simulations for ξ+ than ξ−. Moreover because we estimated Ngal to agree with

ξ+ and not ξ− the distributions for ξ+ match the simulations better than the ξ− distributions do.

Nevertheless there is broad qualitative agreement with the simulation results. In particular the

skewness of the distributions is apparent and it is clear that the skewness increases with separation

angle.
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Figure 4.7: Marginal distributions of ξ+ and ξ−. The distributions are derived from the hierarchical
model given by Equations 4.25 and 4.27 assuming a survey area of 100 deg2. The area of each
histogram is normalised to 1. Left: ξ+, Right: ξ− , Top: Small angular separations, Bottom: Large
angular separations.

One advantage of using the model rather than the simulations is that we can consider a larger

survey area. Figure 4.9 is similar to Figure 4.7 but for a KiDS-like survey of 450 deg2. The main

point to take from this is the decreased skewness of the distributions for a larger survey.

We now explore the joint distributions of pairs of angular bins. Figures 4.10 and 4.11 show

joint distributions of ξ+ between two angular bins for surveys with area 100 deg2 and 450 deg2

respectively. Figure 4.12 shows results for ξ− for a 450 deg2 survey. In each case we show results

for a pair of relatively small angles and for two larger angles. Alongside each plot we also show

comparable results for Gaussian distributions with the same means and standard deviations.

These results confirm that the correlation function likelihoods are not Gaussian. This is shown

clearly by the SLICS simulations but also applies to larger KiDS-like survey areas. The skewness

of the distributions shows clearly in the bivariate plots which confirm that the non-Gaussianity

decreases for larger survey areas but increases with angular separation. The SHH18 model can fit

the simulations well, although we found it difficult to fit ξ+ and ξ− simultaneously, and provides a
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simple recipe for a non-Gaussian likelihood which is not much more complicated than the normal

Gaussian likelihood. Once again we conclude that in this idealised situation a Gaussian likelihood

may not be valid, except for small scales and large survey areas.
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Figure 4.8: Comparison between distributions of ξ+ and ξ− from simulations and the hierarchical
model given by Equations 4.25 and 4.27 for illustrative angular bins, assuming a survey area of 100
deg2 and z ∼ 0.33. The area of each histogram is normalised to 1.
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Figure 4.10: Left: Joint distributions of ξ+ in pairs of angular bins for a survey area of 100 deg2,
based on the hierarchical model given by Equations 4.25 to 4.27. Right: Joint distributions of two
Gaussian distributions with the same means and standard distributions, for comparison.
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Figure 4.11: Left: Joint distributions of ξ+ in pairs of angular bins for a survey area of 450 deg2,
based on the hierarchical model given by Equations 4.25 to 4.27. Right: Joint distributions of two
Gaussian distributions with the same means and standard distributions, for comparison.
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Figure 4.12: Left: Joint distributions of ξ− in pairs of angular bins for a survey area of 450 deg2,
based on the hierarchical model given by Equations 4.25 to 4.27. Right: Joint distributions of two
Gaussian distributions with the same means and standard distributions, for comparison.
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4.4 Parameter-dependence of the covariance matrix

This section picks up from the discussion of Gaussian power spectrum likelihoods in Section 4.2.4

and discusses whether the covariance matrix should be treated as parameter-dependent.

4.4.1 A Fisher matrix viewpoint

Section 4.2.4 identified pitfalls from using a Gaussian likelihood with a varying covariance matrix,

because the maximum likelihood is biased low compared to the mean. To underline this, the same

problems can also be seen from an information-content perspective. In this section we closely

follow the arguments in Carron (2013) based on Fisher matrix considerations.

The Fisher matrix quantifies the amount of information contained within a field. Consider a

Gaussian distribution P with mean µ and variance Σ. For simplicity assume this depends on only

two parameters α and β. The Fisher matrix is then defined by

Fαβ =

〈
∂P

∂α

∂P

∂β

〉
, (4.30)

evaluated at the maximum-likelihood point. This can be written as (Tegmark et al. 1997)

Fαβ =
∑
i,j

∂µi
∂α

Σ−1
ij

∂µj
∂β

+
1

2
Tr

[
Σ−1∂Σ

∂α
Σ−1∂Σ

∂β

]
. (4.31)

If we work in the field perspective as defined in Section 4.2.2 then the Fisher matrix is

Fαβ =
1

2

∞∑
l=0

(2`+ 1)
1

C`

∂C`
∂α

1

C`

∂C`
∂β

, (4.32)

since the field has zero mean and covariance C`.

If instead we adopt the estimator approach then the mean of the estimator isC` and its covariance

is 2C2
` /(2`+ 1). So in this case the Fisher matrix is

Fαβ =
1

2

∑
(2`+ 1)

1

C`

∂C`
∂α

1

C`

∂C`
∂β

+
1

2

∑
4

1

C`

∂C`
∂α

1

C`

∂C`
∂β

. (4.33)

As remarked by Carron (2013), this result raises questions because it seems to imply that the

estimator contains more information than the field itself. This contradicts the Cramér–Rao inequality

which sets a theoretical limit on the information content: transforming the data by constructing a

power spectrum estimator can at best conserve information and certainly cannot increase it.
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Carron (2013) proceeds to show that this paradox is a consequence of using a Gaussian power

spectrum likelihood. If instead we use the exact gamma likelihood we have from Equation 4.30

Fαβ =
∂θ

∂α

∂θ

∂β

〈(
∂ lnP (Ĉ`|C`)

∂θ

)2〉∣∣∣∣
ML

(4.34)

=

(
2

2`+ 1

)2∂C`
∂α

∂C`
∂β

〈(
∂ lnP (Ĉ`|C`)

∂θ

)2〉∣∣∣∣
ML

. (4.35)

From Equation 4.9

−2
∂ lnP (Ĉ`|C`)

∂Ĉ`
=

2`+ 1

C`
− 2`− 1

Ĉ`
, (4.36)

so the maximum likelihood is at Ĉ` = (2`− 1)C`/(2`+ 1). Substituting this into Equation 4.35

we get

Fαβ =

(
2

2`+ 1

)2∂C`
∂α

∂C`
∂β

1

C2
`

(
2

(2`+ 1)

)2

, (4.37)

and summing over all ` retrieves Equation 4.32. So in this idealised example the exact ‘estimator’

likelihood contains the same information as the field.

The extra anomalous term in Equation 4.33 arises because the covariance matrix has been

allowed to vary with the parameters. If instead the covariance is taken as fixed then this term

disappears and Equation 4.33 becomes the same as Equation 4.32. This is precisely what is done

in most real weak lensing likelihood analyses, but for the ‘wrong’ reasons. However with the

availability of more computing power some recent analysis has instead used a parameter-dependent

covariance matrix, for example Hikage et al. (2019). This strategy is considered further in Section

4.4.2.

The main conclusion from this discussion is that using a Gaussian likelihood and a varying

covariance matrix introduces spurious information and is formally incorrect. It will lead to biased

parameter estimates and underestimates of parameter uncertainties. However, fortuitously, a

Gaussian likelihood and fixed covariance matrix produce unbiased maximum-likelihood estimates

(though uncertainties are still mis-estimated as discussed in Section 4.2.4). For real surveys with

complications such as systematics, sky cuts and tomography this validates the use of a Gaussian

likelihood and parameter-independent covariance matrix. In practice this is what is commonly

done, but mainly for computational ease rather than as a matter of principle.
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4.4.2 Effect of using a parameter-dependent covariance matrix

Notwithstanding the discussion above, there is no real consensus about whether a parameter-

dependent covariance matrix should be used. The conclusions in Eifler et al. (2009) have been

particularly influential. This work, based on cosmic shear, demonstrated convincingly that parameter

estimates depend on the parameter values at which the covariance matrix is calculated. The authors

recommended that the covariance should ideally be recalculated at every point in parameter space,

and devised a fitting function for this purpose.

Following this several authors investigated the effect of using (or not using) a parameter-

dependent covariance matrix with a Gaussian likelihood, mostly to justify a fixed covariance.

However the results of these investigations have been inconsistent and inconclusive. Some studies

have suggested that a varying covariance matrix makes little difference. In a weak lensing analysis

using data from CFHTlens, Kilbinger et al. (2013) used the fitting function from Eifler et al. (2009)

to continuously update their covariance matrix and concluded that the impact was small. Hikage

et al. (2019) used the halo model to re-estimate the power spectrum, and hence the covariance

matrix, at each step of their nested-sampling likelihood analysis. They too concluded that the

cosmology-dependence of the covariance matrix had only a small effect: estimates of S8 and Ωm

agreed with fiducial results to within 20% of the statistical uncertainty, with errors also agreeing

within 10%.

Beyond weak lensing, two analyses of SDSS4 BAO data, Labatie et al. (2012) using BOSS

DR7 and Loureiro et al. (2019) using BOSS DR12, investigated the use of parameter-dependent

covariance matrices and found little difference in parameter constraints. More recently Kodwani

et al. (2019) used Fisher matrix analysis to forecast the effects of using a fixed rather than varying

covariance matrix. They concluded that for future large surveys such as Euclid the parameter-

dependence of the covariance matrix will be immaterial, so long as the fixed covariance is calculated

at the true bestfit cosmology (although in practice this may not be known).

In contrast others have found significant effects. Jee et al. (2013) in their analysis of data

from the Deep Lens Survey5 reported that using a (partly) parameter dependent covariance matrix

significantly shifted the parameter contours in the Ωm – σ8 plane. Kalus et al. (2015) using BOSS

DR9 galaxy clustering data concluded that a varying rather than fixed covariance matrix improved

the estimation of some parameters, though not of others.

4https://www.sdss.org/surveys/boss/
5https://www.noao.edu/survey-archives/deeplens/index.html
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Thus a common view seems to be that the covariance matrix should ideally be treated as

parameter-dependent but that this does not make much difference in practice. For example, both

Joudaki et al. (2016) and Hildebrandt et al. (2016) cite Eifler et al. (2009) and Kilbinger et al. (2013)

to justify using a fixed covariance matrix. As we have seen in Section 4.4.1 this view is not correct.

Differences in parameter constraints obtained with varying, rather than fixed, covariance matrices

may be spurious. It is fortunate that these differences seem to be small so that when the covariance

is incorrectly allowed to vary this does not have much impact. The most accurate procedure if using

a Gaussian likelihood is to use a fixed covariance matrix.

4.4.3 Choice of parameter values at which to calculate the covariance

Having decided to use a fixed, parameter-independent covariance matrix, a choice must be made

about the fiducial cosmology at which to calculate it. This choice is rarely discussed explicitly

even though it makes a difference to parameter constraints, as demonstrated by Eifler et al. (2009).

Indeed Harnois-Deraps et al. (2019) concluded from Fisher matrix analysis that choosing the

best cosmology at which to calculate the covariance matrix might be an order of magnitude more

important than optimising the covariance estimation method. However they used some quite

extreme cosmologies in their forecasts, which may have affected their conclusions. In practice

recent weak lensing analyses have used current accurately-known sets of parameter values, for

example most KiDS-450 analysis has used WMAP9 values (Hildebrandt et al. 2016; Köhlinger

et al. 2017).

Eifler et al. (2009) and Harnois-Deraps et al. (2019) both suggest that the best way to choose

where to evaluate the covariance matrix is to use an iterative approach: guess a cosmology, use this

to calculate the covariance matrix and estimate parameters, recalculate the covariance at the new

bestfit values, and continue until convergence is reached, that is until further iteration produces

no further change in the bestfit values. The disadvantage of this is that the covariance and bestfit

parameters must be estimated several times. This is computationally demanding whether the

covariance is calculated analytically or with simulations. Eifler et al. (2009), working in real space,

demonstrated that an iterative process starting from an arbitrary cosmology could converge within

four iterations, though none of their five trials converged to their fiducial parameter values. In a

similar spirit van Uitert et al. (2018) started from both Planck15 and WMAP9 parameter values and

iteratively re-estimated the covariance matrix and bestfit parameter values, reaching convergence

after a single iteration in both cases. This approach is becoming more common: for example both
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Krause et al. (2017) and Hildebrandt et al. (2020) used a similar process, starting from existing

bestfit values and iterating once (without explicitly testing for convergence).

Thus an iterative method seems to offer a systematic way of choosing where to evaluate the

covariance matrix. However it is not obvious how quickly such a process will converge in general,

or indeed whether it will necessarily converge in a small number of steps if the starting cosmology is

not ideal. Nor is it clear whether the converged values depend on the chosen starting point. Finally,

and most importantly, it must be demonstrated that calculating the covariance at a ‘converged’ point

does not bias the final parameter estimates obtained from a maximum-likelihood analysis.

4.4.4 Iterative process

In the light of the previous discussion, in this section we develop a more rigorous iterative method for

choosing where to evaluate the covariance matrix. Our iterative scheme has two main components:

an emulator which can recalculate the covariance matrix quickly at different cosmologies and

a simple routine which finds the maximum of a short MCMC chain generated by the Monte

Python sampler (Brinckmann and Lesgourgues 2019; Audren et al. 2013). In combination these

components can iterate many times to find converged parameter values which are then used to

calculate a fixed covariance matrix. This is fed into a nested sampling analysis which explores the

full posterior in the normal way. For this we use Monte Python together with the nested sampling

code MultiNest (Feroz and Hobson 2008; Feroz et al. 2013).

Details of the emulator are given in Appendix 4A. Here we only note a few key points. First, we

take the ‘true’ covariance which the emulator must reproduce to be that generated by the analytical

code used in most KiDS analyses (Hildebrandt et al. 2016; Köhlinger et al. 2017; van Uitert et al.

2018; Hildebrandt et al. 2020). This approach differs from other covariance matrix emulators which

obtain the truth from simulations (Morrison and Schneider 2013; White and Padmanabhan 2015).

Secondly, we emulate the elements of the covariance matrix directly, rather than calculating the

matrix from an emulated power spectrum. Thirdly, we are interested only in Ωm and σ8 but the

emulator uses Ωch
2 and ln 1010As because Ωm and σ8 are derived parameters in the KiDS-450

analyses. We translate between the two sets of parameters using the CLASS Boltzmann code

(Blas et al. 2011). Finally, we emulate only the Gaussian and supersample terms of the covariance,

ignoring the other non-Gaussian terms which are sub-dominant (Barreira et al. 2018a).

Our analysis is based on a KiDS-like survey, using survey details from Hildebrandt et al. (2016).

Following van Uitert et al. (2018) we use four redshift bins and five logarithmically-spaced angular

bins with means ranging from ` = 200 to ` = 1500 (see Figure A1 in van Uitert et al. (2018)).
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Figure 4.13: 68% credible regions and marginal distributions when the covariance matrix (including
Gaussian and supersample terms) is calculated at the ‘true’ cosmology Ωm = 0.31, σ8 = 0.83 (red),
and at two arbitrary cosmologies Ωm = 0.2, σ8 = 0.75, (blue) and Ωm = 0.4, σ8 = 0.9 (orange).
Black dotted lines indicate the fiducial parameter values. Calculating the covariance matrix at an
inappropriate point can produce misleading values for the uncertainties on S8, as shown by the blue
contours.

We construct a mock data vector at a fiducial cosmology based on values from Ade et al. (2016).

We use the fitting function of Takahashi et al. (2012) to calculate the full non-linear matter power

spectrum.

Purely for illustration, Figure 4.13 confirms that biased estimates of S8 = σ8

√
Ωm/0.3 can

indeed arise if an inappropriate cosmology is used to calculate the covariance matrix. This figure

compares the 68% credible regions and marginal distributions obtained when the covariance matrix

is evaluated first at our fiducial cosmology and then at two arbitrary cosmologies on either side

of the Ωm–σ8 ‘banana’. Other parameters are kept fixed in this analysis. The blue contours in

particular confirm that the choice of cosmology at which the covariance matrix is calculated does

matter. Our iterative method is designed to avoid this sort of inadvertent bias by systematically

choosing a cosmology which will produced unbiased estimates of S8.
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Iteration results

To test the iteration process we use the emulator to calculate the Gaussian and supersample terms of

the covariance matrix. To mimic lack of knowledge of the true covariance we add to the data vector

noise sampled from the Gaussian term of the ‘true’ analytical covariance matrix. We compare the

results to a benchmark which uses only the Gaussian part of the covariance matrix and assumes that

the data vector is known with certainty. In each case we generate 10 random starting cosmologies

with Ωch
2 in the range [0.11, 0.13] and ln 1010As in the range [2.9, 3.1]. These ranges include both

the Planck and KiDS bestfit values. The starting points are generated separately for each case.

Results are shown in Figures 4.14 (Gaussian covariance with no noise in the data vector) and

4.15 (Gaussian plus supersample covariance with a noisy data vector). The top panels show the

starting positions, marked by red dots, and the number of iterations required to reach convergence

from each point. The black dashed line marks the line of constant fiducial S8, which is a proxy for

the direction of the Ωm–σ8 degeneracy line, and the blue cross indicates the fiducial cosmology at

which the data vector was calculated. The bottom panels show convergence to the final value of

S8 as the number of iterations increases. For completeness in Appendix 4B we also show results

for two other cases: Gaussian covariance with a noisy data vector, and Gaussian plus supersample

covariance with no noise in the data vector.

For the benchmark case of a Gaussian covariance matrix with no noise in the data vector the

iterative process reaches the constant-S8 line within six iterations, apart from one starting point

far from the degeneracy line which required eight iterations. As might be expected, the more

complicated covariance in Figure 4.15 combined with a noisy data vector makes convergence

slower. Nevertheless in all but one case, where the starting point was again far from the degeneracy

line, the process converges within 10 iterations. The number of iterations required depends most

strongly on the starting position and is relatively less affected by the complexity of the covariance

matrix or uncertainty in the data vector.

These results give confidence that the iterative process works and generally converges within no

more than about six iterations, provided that the starting point is reasonably close to the constant-S8

line. The converged positions are all close to the lines of constant S8, though none are exactly at the

fiducial values of Ωm and σ8, probably because the likelihood is very flat along the degeneracy line.

Having shown that the iterative process works, we also check that calculating the covariance

matrix at a ‘converged’ position rather than the fiducial cosmology does not introduce bias into the

parameter estimates. To test this we run a full nested-sampling analysis firstly with a covariance
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matrix calculated at the fiducial cosmology and then at two of the ‘worst’ converged points.

These were chosen slightly subjectively as those which were furthest from the constant-S8 line

or furthest along that line from the fiducial point. The results are shown in Figure 4.16, for the

same combinations of covariance (Gaussian term only or Gaussian plus supersample) and data

vector (without or with noise drawn from the Gaussian covariance). There is no indication that the

uncertainties on S8 are biased in any of the scenarios. The effects on parameter uncertainties are

also summarised in Figure 4.17. Here the coloured lines show errors on the parameters calculated at

the ‘badly converged’ points and the dotted lines and grey shaded regions indicated fiducial bestfit

values and 1σ uncertainties.

These results suggest that in a real situation where we do not know, and choose not to guess,

the true cosmology from which the data comes, the iterative procedure will converge to suitable

fiducial values close to the constant-S8 line, and evaluating the covariance matrix at a ‘converged’

point will generate unbiased estimates of S8. For safety at least six iterations are advisable to

ensure convergence; we have shown that if the starting point is far from the ‘true’ cosmology then

convergence may not be achieved in less than this. However in practice the starting point may often

be known to be a good estimate and fewer iterations will suffice.
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Figure 4.14: Results of iteratively recalculating the covariance matrix when only the Gaussian
term of the covariance matrix is used and no noise is added to the data vector. Top: Red dots
indicate starting positions, numbers indicate the number of iterations required for convergence.The
black dashed line marks the line of constant fiducial S8 and the blue cross indicates the fiducial
cosmology at which the data vector was calculated. Bottom: Convergence to the final value of S8

for each of the 10 paths. The black dashed line indicates the fiducial value of S8.
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Figure 4.15: Results of iteratively recalculating the covariance matrix when both the Gaussian and
supersample terms of the covariance matrix are used and the data vector contains noise sampled
from the Gaussian covariance to test the effect of an incorrect covariance model. Top: Red dots
indicate starting positions, numbers indicate the number of iterations required for convergence. The
black dashed line marks the line of constant fiducial S8 and the blue cross indicates the fiducial
cosmology at which the data vector was calculated. Bottom: Convergence to the final value of S8

for each of the 10 paths. The black dashed line indicates the fiducial value of S8.
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Figure 4.16: Parameter constraints obtained with fiducial covariance matrix (red) and with
covariance matrices evaluated at two ‘badly converged’ points (blue and orange, labelled 1 and 2).
Black dotted lines indicate the ‘true’ parameter values. Top left: Gaussian covariance with no noise
in data vector. Top right: Gaussian covariance with noise in data vector. Bottom left: Gaussian plus
supersample covariance with no noise in data vector. Bottom right: Gaussian plus supersample
covariance with noisy data vector. There is no evidence of bias in the estimation of S8 in any of
these cases.
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Figure 4.17: Uncertainties arising from covariance matrices evaluated at two ‘badly converged’
points (blue and orange, labelled 1 and 2). From top to bottom: Gaussian covariance with no noise
in data vector, Gaussian covariance with noise in data vector, Gaussian plus supersample covariance
with no noise in data vector, Gaussian plus supersample covariance with noise in data vector. Black
dotted lines and grey bands indicate the fiducial bestfit values and 1σ uncertainties. Calculating the
covariance matrix even at a badly converged point does not introduce any bias to S8.
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4.5 Discussion and conclusions

Form of the likelihood

In this chapter we have demonstrated that in theory the weak lensing power spectrum likelihood is

not Gaussian and that assuming a Gaussian likelihood will produce biased parameter estimates,

especially of Ωm and σ8.

We have described approximations to the true power spectrum likelihood which in CMB and

large-scale structure analyses have been found to be preferable to the Gaussian assumption. These

are often not feasible for weak lensing because of complicated systematics and survey masks, so it

is an open question whether these approximations could be worthwhile. Numerical studies of the

impact of using a Gaussian likelihood have not conclusively shown that it is a problem, and in any

case alternative methods may be more suitable for weak lensing.

An overall conclusion is that a Gaussian likelihood should never be adopted as a matter of

course: the assumption should always be rigorously scrutinised. Then a principled decision can be

made either to use a Gaussian likelihood, or to adopt one of the many available strategies which

take account of non-Gaussianity.

We have also confirmed the recent conclusions of Sellentin et al. (2018): if the power spectrum

has a gamma distribution then the shear two-point correlation function likelihoods are also skewed,

so that once again it is not formally correct to use a Gaussian likelihood. We have shown that this

model can agree well with simulations, although some aspects need further refinement if the model

is to be used in future, particularly the estimation of degrees of freedom and the modelling of ξ−.

This discussion comes from a very idealised perspective. For weak lensing we do not have

access to the true power spectrum, and survey complexities make reality very different from the

theoretical picture. In practice the raw correlation functions are not normally used and other options

are available which ensure a more Gaussian likelihood. These include data compression, bandpower

methods (van Uitert et al. 2018), quadratic estimators (Köhlinger et al. 2017) and combinations of

correlation functions such as COSEBIs (Asgari et al. 2019). So in practice the non-Gaussianity of

the likelihood is not a problem.

It is unclear whether this non-Gaussianity will become more or less important for next-

generation surveys. The naive view might be that as surveys become larger more modes can be

included in the likelihood and so by the central limit theorem it approaches Gaussianity. However

this is not necessarily the case: larger surveys will include more small and large modes. Small-scale
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modes are more affected by nonlinear structure development so can be expected to introduce

non-Gaussianity, and it cannot be taken for granted that no additional non-Gaussianity will appear

at large scales (Hahn et al. 2019). Our modelling of correlation function likelihoods suggests that

increasing the survey size does not remove all non-Gaussianity. Furthermore, non-Gaussianity will

become increasingly important if higher-order statistics are analysed.

The non-Gaussianity of the likelihood raises some interesting questions which are discussed in

detail in Sellentin et al. (2018). How can we make sense of the fact that the most likely parameter

values are not equal to their mean values? Can we accept that our analysis is likely to produce

values which are lower than the average? Sellentin et al. (2018) suggest that the skewed likelihood

is not a problem for a Bayesian analyst who will accept the maximum likelihood values, conditional

on the priors and likelihood. It would seem slightly inconsistent in practice to declare a Bayesian

stance but then insist on a Gaussian likelihood to ensure that the maximum likelihood and mean

values are the same. However it is not inconsistent to deliberately choose a Gaussian likelihood for

practical reasons, provided the consequences have been considered properly.

Parameter-dependence of covariance matrices

It is likely that Gaussian likelihoods will continue to be used for real weak lensing surveys because

of the complexity of the true likelihood. We have clarified the correct form of Gaussian likelihood

to use and shown that it is incorrect to re-estimate the covariance matrix at each step of a likelihood

analysis. Instead a fixed covariance matrix evaluated at an appropriate fiducial cosmology should

be used. There is considerable confusion about this in the literature and mixed findings about the

impact of a using a parameter-dependent covariance matrix, mostly based on the misconception

that a parameter-dependent covariance matrix improves parameter constraints.

Despite this, the cosmology used to estimate the covariance matrix does matter, but is rarely

explicitly discussed. Evaluating the (parameter-independent) covariance matrix far from the

cosmology preferred by the data will alter the likelihood contours and lead to incorrect inferences

about parameters (Eifler et al. 2009). We have developed an emulator for the weak lensing power

spectrum covariance matrix which can be used iteratively to find a suitable cosmology at which

to evaluate the covariance matrix. We have shown that the iterative process converges to the

constant-S8 degeneracy line of the data in a small number of steps, from any reasonable starting

cosmology. This provides a systematic way of ensuring that the covariance is calculated at an

appropriate point. The computational cost of the iterative procedure is relatively small and is

justified by the elimination of one small source of uncertainty in the likelihood analysis.
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Appendices

4A Emulator

Background

Emulation in cosmology is the process of inferring the values of a quantity or model at multiple

positions in parameter space from the values at a small set of ‘training’ positions. It is particularly

suitable for parameter estimation where the likelihood must be estimated many thousands of times.

Simulations are generally far too computationally expensive for this purpose and analytical methods

such as perturbation theory, the halo model or fitting functions calibrated to simulations may have

limited accuracy, be valid only over certain ranges, or still be demanding to calculate.

Emulation was introduced to cosmology by Heitmann et al. (2006) to estimate the matter

power spectrum, but the method has very general application. For example, emulators have been

constructed for the nonlinear matter power spectrum (Heitmann et al. 2010; Lawrence et al. 2010),

the galaxy power spectrum (Kwan et al. 2015), weak lensing peak statistics (Martinet et al. 2017),

the boost factor (the ratio between nonlinear and linear contributions to the matter power spectrum)

(Knabenhans et al. 2019), the 1D Lyman-alpha forest flux power spectrum (Bird et al. 2019; Rogers

et al. 2019) and likelihoods (McClintock and Rozo 2019; Pellejero-Ibañez et al. 2019).

Two key decisions to be made when developing an emulator are the experimental design - the

selection of training points at which to obtain accurate estimates - and the method of inferring

values at positions between the training points.

For the experimental design it is preferable to use some form of stratified sampling with good

space-filling properties, especially if simulations are being used. A common approach is Latin

hypercube sampling. A Latin hypercube design is an n ×m matrix in which each column is a

unique random permutation of the set {1, . . . , n}. A refinement is to supplement a Latin hypercube

with Bayesian optimisation methods (Brochu et al. 2010) which build up the training set iteratively

by maximising a problem-specific acquisition function. This balances the choice of additional

points between those in regions of high uncertainty and those most likely to improve the emulation.

Various methods have been used in the literature to infer intermediate points. Many recent

cosmological emulators use Gaussian process regression (Schulz et al. 2018) which not only

provides accurate emulation but also facilitates careful control of errors. Other methods which have

been used include linear interpolation (White and Padmanabhan 2015), polynomial interpolation
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(Schneider et al. 2011)), radial basis functions (Martinet et al. 2017) and sparse polynomial chaos

expansion (Knabenhans et al. 2019).

Emulator for the weak lensing power spectrum covariance matrix

Our emulator is designed specifically to provide an efficient way to carry out the iterative process

described in section 4.4 and to demonstrate proof of concept. This determines some features of its

design. Firstly, it is intended to be used in a likelihood analysis based on the KiDS-450 analysis in

Köhlinger et al. (2017) and van Uitert et al. (2018). In particular this determines the prior ranges

over which the emulator needs to work. For simplicity we consider only Ωm and σ8, keeping all

other parameters fixed at fiducial values. In practice these two parameters are derived parameters in

the KiDS-450 analysis, so the emulator instead uses Ωch
2 and ln 1010As.

The emulator is trained on analytical calculations of the weak lensing power spectrum covariance

matrix which are based on the halo model, as used in van Uitert et al. (2018). A major advantage

compared with using simulations to generate the training data is that it is not unduly expensive to

work with a large set of training points. It is also relatively easy to try out different sets of training

points or, for example, to produce emulators for different components of the covariance.

Since we can be generous with the number of training points we use a regular grid covering the

whole parameter space. However the KiDS-450 priors are very wide: [0.0, 0.99] for Ωch
2 and [1.7,

5.0] for ln 1010As. To ensure that the (known) high-posterior region is covered by a large enough

set of points our final grid is 9 × 9. A final consideration is that a rectangular grid in Ωch
2 and

ln 1010As space is not rectangular in Ωm and σ8 space (see Figure 4.18) and the grid needed to

cover the Ωm – σ8 plane adequately. Adding extra points along the Ωm– σ8 degeneracy line did not

produce a worthwhile increase in accuracy, but we confirmed that reducing the grid to 7× 7 would

still be satisfactory. Below this, accuracy in the high-posterior region falls.

We use the whole training set to train the emulator but when it is used to interpolate we

impose narrower bounds: Ωch
2 [0.09, 0.40] and ln 1010As [2.4, 4.5]. Outside these ranges the

emulated value is set equal to the nearest boundary value to eliminate unphysical values. It can

be particularly problematic to calculate the covariance at the lower extremes of the KiDS priors,

especially of ln 1010As, as these cosmologies represent essentially homogeneous, structureless

universes. However these regions are also far from the regions where the posterior is large so it is

not a problem if they are approximated by nearby values.
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Figure 4.18: Left: Rectangular grid of training points in the Ωch
2–ln 1010As plane, covering the

whole KiDS-450 prior ranges. Red lines indicate the boundaries of the smaller more realistic region
used for interpolation. Right: Translation of the rectangular grid into the Ωm–σ8 plane. Red lines
indicate the boundaries (approximated as straight lines) of the smaller more realistic region used
for interpolation.

Clearly this simple grid configuration is not particularly efficient. Even a basic Latin hypercube

would be more parsimonious and probably equally accurate. Certainly a more efficient design

would be necessary if the emulator was expanded to more than two dimensions in parameter space.

Unlike other covariance emulators which derive the covariance from an emulated power

spectrum (for example Harnois-Deraps et al. (2019)), every element of the covariance matrix is

emulated separately. With 4 redshift bins and 5 `-bins, 1275 unique elements are necessary to

reproduce the whole covariance matrix. To ensure that the emulated covariance matrix is positive

definite (essential since it must be inverted in the likelihood analysis), we perform a Cholesky

decomposition in which the covariance matrix C is decomposed into a lower triangular matrix L

and a diagonal matrix D so that

C = LDLT , (4.38)

and then emulate the diagonal and lower triangular parts separately. Also we emulate the logarithm

of the diagonal elements to ensure that their emulated values are positive. In theory the sign of the

elements of L is not well-defined and could vary between adjacent points in parameter space. In

practice this was not a problem since the covariance is well-behaved over the two-parameter space.

We use radial basis functions to perform the emulation. These are a special case of the more

general Gaussian processes which are commonly used in cosmological emulators. If we have m

points x1 . . . xm at which the true values f(x1) . . . f(xm) are known, then the value at another
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point x is approximated by

g(x) =
m∑
j=1

λjφ(||x− xj ||) , (4.39)

where φ is a radial basis function and ||x− xj || is a norm or distance which can be measured in

different ways but is often the Euclidean norm. This is a system of linear equations for the weights

λj . It can be shown that it can always be solved for values which make g(xj) = f(xj) for all j.

Many different forms can be used for the function φ. We use the multiquadric form

φ(r) =
√
r2 + c2 , (4.40)

where r is the Euclidean distance and c is an adjustable hyper-parameter.

Radial basis functions are a common choice for interpolation and are known to perform well if

the function being emulated varies smoothly, which is the case for any individual covariance matrix

element. Unlike some other interpolation methods radial basis functions do not require the training

set to be a grid, and they reproduce the training values exactly. They are quick to compute and are

guaranteed to find a solution for all points. Their main disadvantage is that they do not extrapolate

well so perform poorly at the edges of the training region. Since we cut off the more extreme

parts of the plane in any case, we avoid this problem. We considered using more sophisticated

Gaussian process models with more adjustable parameters. After some preliminary investigations

we concluded that these were not necessary for our simple problem and that radial basis functions

performed adequately, as discussed below.

Accuracy of the emulator

We are interested primarily in the accuracy of the covariance matrix as a whole, rather than

individual elements, so choose to measure performance through the accuracy of the determinant,

trace and Fröbenius norm (Reischke et al. 2016), which for a matrix C is defined as

‖C‖ =

√∑
i

∑
j

C2
ij . (4.41)

In practice we focus on the inverse covariance matrix (the precision matrix) since this is what is used

in the likelihood. We estimate the analytical covariance matrix (Gaussian terms only) at 48 random

‘comparison’ points roughly spaced around the maximum likelihood contours and compared these
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with their emulated counterparts. Figure 4.19 shows the error in the determinant of the precision

matrix at each of these points, where the error is defined as the absolute difference between the

emulated and exact determinants relative to the exact value. Large blue dots show comparison

points; small black dots show the training grid. This figure shows no particular pattern in the size of

the errors apart from some indication that higher errors occur at low values of Ωch
2. Repeating with

different sets of randomly-chosen points confirmed this conclusion. Figure 4.20 shows percentage
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Figure 4.19: Absolute errors in the determinant of the emulated inverse covariance matrix, evaluated
at 48 random points in the ln 1010As–Ωch

2 plane. Large blue dots indicate points at which the
covariance matrix was emulated. Small black dots indicate the grid used for emulation. Errors are
the absolute value of the difference between the emulated and exact determinant relative to the
exact value.

errors in the determinant, norm, and trace of the inverse covariance matrix. The errors in the

determinant are all below 1%. Errors in the norm and trace are mainly less than 10%. The accuracy

of the emulated determinant is also demonstrated in Figure 4.21 which compares the analytical and

emulated determinants of the precision matrices, showing good agreement. (The unpopulated white

regions arise because the emulator uses Ωch
2 and ln 1010As rather than Ωm and σ8).

Our ultimate aim is to use the emulated covariance matrix to calculate the likelihood. To

demonstrate its accuracy for this purpose, Figure 4.22 shows the log likelihood at a fixed value of

ln 1010As and 10 equally spaced values of Ωch
2. The left panel shows the results if the likelihood

is calculated analytically at each point and the right panel shows the results of using an emulated

covariance matrix calculated at each of the points. The error in the log likelihood is less than 0.5%

at all points and the two plots are indistinguishable by eye. Similar results are obtained if Ωch
2 is

fixed and ln 1010As varied. Although we recalculate the likelihood at multiple points, this is a test

of the accuracy of the emulator, not of the effect of a parameter-dependent covariance matrix.
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Figure 4.20: Percentage errors in the emulated inverse covariance matrix evaluated at 48 random
points. Top: Determinant. Centre: Fröbenius norm. Bottom: Trace.
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Figure 4.22: Comparison between likelihood estimated with analytical and emulated covariance
matrices. Shown are the log likelihood calculated at the fixed value ln 1010As = 2.99 for varying
values of Ωch

2. Left: Using analytically calculated covariance matrix. Right: Using covariance
matrix emulated at the same values of Ωch

2 and ln 1010As.
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4B Additional iteration results

This appendix provides additional results from the iterative process discussed in Section 4.4.4.

Specifically we show the convergence of the process when we use only the Gaussian part of the

covariance matrix but a noisy data vector and when we use the Gaussian and supersample terms

with no noise in the data vector.
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Figure 4.23: Results of iteratively recalculating the covariance matrix when only the Gaussian term
of the covariance matrix is used and the data vector contains noise sampled from the Gaussian
covariance. Top: Red dots indicate starting positions, numbers indicate the number of iterations
required for convergence. The black dashed line is the line of constant S8, and the blue cross
indicates the fiducial cosmology. Bottom: Convergence to the final value of S8 for each of the 10
paths. The black dashed line indicates the fiducial value of S8.

215



0.29 0.30 0.31 0.32 0.33
Ωm

0.74

0.76

0.78

0.80

0.82

0.84

0.86
σ

8

3

6

10

11

8

10

9 7

8

5

1 2 3 4 5 6 7 8 9 10

Iteration

0.750

0.775

0.800

0.825

0.850

0.875

0.900

S
8

Figure 4.24: Results of iteratively recalculating the covariance matrix when both the Gaussian and
supersample terms of the covariance matrix are used and the data vector is not noisy. Top: Red dots
indicate starting positions, numbers indicate the number of iterations required for convergence. The
black dashed line is the line of constant S8, and the blue cross indicates the fiducial cosmology.
Bottom: Convergence to the final value of S8 for each of the 10 paths. The black dashed line
indicates the fiducial value of S8.
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5 Conclusions and future work

Twenty years ago weak gravitational lensing was an almost speculative idea. The effect had been

detected and measured but its analysis was far from being routine. Today lensing is one of a

handful of primary cosmological probes with an impressive array of results from recent surveys

such as CFHTLens, DES and KiDS. Over the intervening two-decade period many methods of

measurement and analysis have been developed and honed and are now standard. We know how to

‘do’ weak lensing.

The next stage in the evolution of weak lensing is to prepare for the large surveys like Euclid

which will shortly come on stream. This means refining current methodologies, but also exploring

new approaches which were not previously contemplated, either because they learn from earlier

experience or because they simply were not feasible with past data and technologies. In this spirit,

this thesis mainly considers ideas which even for next-generation surveys are not mainstream, but

which Euclid-like surveys could render viable and valuable.

In Chapter 2 our aim was to discover whether one generally overlooked consequence of weak

gravitational lensing will be detectable in next-generation surveys. The point was to identify whether

this signal, the displacement of observed source positions, could provide additional information

from data which anyway is collected by the survey. Dodelson et al. (2008) had already investigated

how this displacement affects the two-point correlation functions of various observables but found

the effect to be small except for high redshift observations with rapidly varying correlation functions.

We extended the analysis to three-point correlation functions but, not surprisingly, found that the

effect was again small. Even a survey like Euclid will not observe enough bright high-redshift

galaxies or quasars to allow us to detect the effect in the correlation function. This is not necessarily

the end of the story, however. In the short term the methodology could be applied to other

cosmological three-point functions. In the longer term future generations of galaxy surveys will

surely probe even higher redshifts and capture many more bright objects so that the effect may

become detectable and useful.

Chapter 3 focused on the weak lensing bispectrum. The idea of using the bispectrum alongside

the power spectrum to improve cosmological parameter constraints has been around for at least a

decade. In the era of relatively small galaxy surveys, which were not optimised for weak lensing,

reducing statistical errors was a pressing issue and it was expected, for example, that the bispectrum
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could help break parameter degeneracies. Using a variety of approaches and assumptions several

previous authors concluded that in principle the bispectrum can add extra information, and we

confirmed these findings. We also clarified some details. In particular we derived all the terms

of the weak lensing supersample covariance and showed that the one-halo term is dominant. We

also confirmed that the in-survey non-Gaussian covariance is sub-dominant and can be neglected.

Finally we showed that most of the gain from the bispectrum can be achieved with a small number

of tomographic bins, provided that the power spectrum covariance is based on many bins.

Even with these and other simplifications the bispectrum is more complicated than the power

spectrum, and its covariance involves even more complexity. The trade-off between the cost

of dealing with this complexity and the benefit of the extra information is implicit in recent

observational weak lensing studies which almost without exception use only two-point statistics, and

in the simplifications invariably introduced into three-point analyses and forecasts. Subjectively we

concluded that the reduction in statistical errors may not be enough to justify the cost of measuring

and analysing the bispectrum; squeezing out every possible improvement is less important for

a Euclid-like survey with an abundance of high-quality observations. However the bispectrum

may still have its uses and in the second part of Chapter 3 we looked at a different rationale for

using three-point statistics: to control systematic uncertainties. Dealing with systematics, whether

observational (for example due to characteristics of the survey instrument) or astrophysical, is one

of the major concerns of current weak lensing research (Mandelbaum 2018) as the community

prepares for next-generation surveys.

Before our work there was some existing evidence that systematics affect two-point and three-

point statistics in different ways, but in practice there had been very little detailed analysis of the

impact of systematics on three-point statistics. In Chapter 3 we made a start on remedying this

situation and it is this part of the thesis which most strongly points to future research with real

potential. Our analysis of two major systematic uncertainties, intrinsic alignments and photometric

redshift biases, suggests that three-point statistics have much to offer. In particular, we have

shown that using the bispectrum as well as the power spectrum can allow self-calibration without

excessively degrading parameter constraints.

This is a promising finding but more work needs to be done to demonstrate that self-calibration

with three-point statistics is a practical proposition for Euclid. At the end of Chapter 3 we list

several immediate ideas for further research, including refining our intrinsic alignment model and

testing it with simulations or data; investigating other systematics such as multiplicative shear bias

and baryonic effects; and adapting the method to appropriate three-point correlation functions
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which are better suited to observational studies. We also suggest that more work should be done to

confirm the validity of current bispectrum models over the scales of interest and in particular to

investigate the model recently published by Takahashi et al. (2019) which probes smaller scales.

This programme of work could lead to firmer forecasts and concrete proposals for implementing

the method when data from Euclid becomes available.

One final comment on the use of three-point statistics is that it is often possible to build on

solid methods developed for two-point statistics. This is particularly true for systematics where

modelling approaches which have worked well for two-point statistics can easily be extended – for

example modelling of intrinsic alignments or baryonic effects. The underlying physics is the same

and there is no need to re-invent the wheel.

Slightly changing tack, Chapter 4 addressed two assumptions that are almost universally made

in analyses of current weak lensing surveys: that the power spectrum (or two-point correlation

function) likelihood is Gaussian, and that the covariance matrix should be treated as parameter-

dependent. There are often good pragmatic reasons for making these assumptions but they can

lead to flawed conclusions. In particular, even if it is valid to use a Gaussian likelihood, combining

this with a cosmology-dependent covariance matrix can result in biased parameter estimates. This

matters for future surveys: given the greater statistical accuracy of Euclid it would be unfortunate

to inadvertently introduce avoidable bias. The question of the non-Gaussianity of the likelihood

will also not go away. We built on a hierarchical model developed by Sellentin et al. (2018)

which suggests that, at least theoretically, non-Gaussianity of the likelihood will matter even for

a Euclid-like survey. We found that this model, especially its relationship to simulations, would

need to be refined if it was to be used for further research. Nevertheless we conclude that the

consequences of assuming a Gaussian likelihood should always be carefully weighed up.

Although it is not necessary (and may even be wrong) to use a cosmology-dependent covariance

matrix, the position in parameter space at which the matrix is evaluated does matter. In the final

part of Chapter 4 we demonstrated a way to derive this fiducial cosmology robustly and checked

that it did not produce biased parameter estimates. The method relies on a simple emulator of

the weak lensing power spectrum covariance. This was essentially a prototype based on only two

cosmological parameters, but potentially paves the way for a more sophisticated multidimensional

emulator if a cosmology-dependent covariance matrix is required.

In summary, the work in this thesis provides pointers towards practical approaches for using

three-point statistics in future weak lensing surveys. We have found that some potential avenues

are not worth exploring further but have also identified others which could be very fruitful.
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H., Nishizawa, A. J., Aihara, H. et al. (2019), ‘Cosmology from cosmic shear power spectra with

Subaru Hyper Suprime-Cam first-year data’, Publications of the Astronomical Society of Japan

71(2), 43.

Hilbert, S., Xu, D., Schneider, P., Springel, V., Vogelsberger, M. and Hernquist, L. (2017), ‘Intrinsic

alignments of galaxies in the Illustris simulation’, Monthly Notices of the Royal Astronomical

Society 468(1), 790–823.
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de la vitesse radiale des nébuleuses extra-galactiques, in ‘Annales de la Société scientifique de
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Lin, C.-H., Harnois-Déraps, J., Eifler, T., Pospisil, T., Mandelbaum, R., Lee, A. B. and Singh, S.

(2019), ‘Non-Gaussianity in the Weak Lensing Correlation Function Likelihood – Implications

for Cosmological Parameter Biases’, arXiv preprint arXiv:1905.03779 .

Liu, J., Petri, A., Haiman, Z., Hui, L., Kratochvil, J. M. and May, M. (2015), ‘Cosmology constraints

from the weak lensing peak counts and the power spectrum in CFHTLenS data’, Physical Review

D 91(6), 063507.

Loureiro, A., Moraes, B., Abdalla, F. B., Cuceu, A., McLeod, M., Whiteway, L., Balan, S. T.,
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