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method for multilevel and longitudinal data
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Abstract

Objective: Decision-tree methods are machine-learning methods which provide results that are relatively easy to interpret
and apply by human decision makers. The resulting decision trees show how baseline patient characteristics can be
combined to predict treatment outcomes for individual patients, for example. This paper introduces GLMM trees, a
decision-tree method for multilevel and longitudinal data.

Method: To illustrate, we apply GLMM trees to a dataset of 3,256 young people (mean age 11.33, 48% girls) receiving
treatment at one of several mental-health service providers in the UK. Two treatment outcomes (mental-health difficulties
scores corrected for baseline) were regressed on 18 demographic, case and severity characteristics at baseline. We
compared the performance of GLMM trees with that of traditional GLMMs and random forests.

Results: GLMM trees yielded modest predictive accuracy, with cross-validated multiple R values of .18 and .25. Predictive
accuracy did not differ significantly from that of traditional GLMMs and random forests, while GLMM trees required
evaluation of a lower number of variables.

Conclusion: GLMM trees provide a useful data-analytic tool for clinical prediction problems. The supplemental material
provides a tutorial for replicating the GLMM tree analyses in R.

Keywords: multilevel data; decision making; decision-tree methods; mixed-effects models; subgroup detection

Clinical or methodological significance: Decision tree-methods provide results that may be easier to apply in clinical
practice than traditional statistical methods, like the generalized linear mixed-effects model (GLMM).

e GLMM trees provides a flexible decision-tree e The supplementary material provides a manual

algorithm that can be applied to a wide range of
research questions in psychotherapy research,
and that can account for multilevel and longi-

which shows researchers how they can fit
GLMM trees to their own data in the open-
source statistical programming environment R.

tudinal data structures.

e Using a large patient-level dataset on out-
comes at UK mental health services, we
show that GLMM trees provide accuracy on
par with traditional GLMMs and random
forests, a modern machine-learning method,
while requiring less information for making
a prediction.

Introduction

Many empirical research questions in mental health
are focused on decision making in clinical practice.
For example: Which patients are (not) at risk for a
recurrent disorder? Which patients will benefit most
(least) from treatment? Such research questions are
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traditionally addressed using additive linear models,
like the generalized linear model (GLLM) or the gen-
eralized linear mixed-effects model (GLMM). For
example, in recent publications in Psychiatry
Research, GL(M)Ms were applied by O’Keeffe et al.
(2018) to predict dropout among adolescents receiv-
ing psychotherapy, and by Koffmann (2020) to
predict outcomes among adults receiving psychother-
apy. Although such GL(M)Ms allow for identifying
predictors associated with psychotherapy outcomes,
they do not directly show what to do in clinical
decision making. For example, if the predictor vari-
able is continuous, where should we draw the line
for deciding high versus low risk? And when some
risk factors are present, but others absent, how
should we combine the risk factors into a single
decision?

In contrast to traditional GL(M)Ms, recursive parti-
tioning or decision-tree methods do show what to do in
decision making. Instead of describing the association
between predictor and outcome variables by a math-
ematical formula (e.g., = by + b1x1 + baxp + b3x3),
recursive partitioning methods describe the association
between predictor and outcome variables by a binary
decision tree. Such decision trees are easier to apply
in clinical practice, where information, time and com-
putational power are limited and costly (e.g., Gigeren-
zer, Todd, & the ABC Research Group, 1999). This
relative ease of interpretation and application has led
several authors of earlier studies published in
Psychotherapy Research to apply decision-tree methods
for predicting treatment outcomes (e.g., Berman &
Hegel, 2014; Hannover et al.,, 2002; Hannover &
Kordy, 2005; Hansen et al., 2007). An additional
advantage of decision-tree methods is their non-para-
metric nature: They do not require assumptions like
linear associations or normally distributed residuals,
and allow for specifying a large number of potential
predictor variables, which may even exceed the
number of observations.

The current paper aims to introduce a recent
decision-tree method that allows for the analysis of
multilevel and longitudinal datasets: GLMM trees
(Fokkema et al., 2018). Such data structures are
commonly encountered in psychotherapy research,
and GLMM trees may thus provide a useful data-
analytic tool in such studies. The paper is structured
as follows: In the remainder of the Introduction, we
discuss the position of decision trees within the
broader area of machine learning. Next, we discuss
the building blocks of the GLMM tree algorithm.
In the Method and Results section, we illustrate
how the GLMM tree algorithm can provide a clini-
cally useful alternative to traditional GLMMs. We
apply the GLMM tree algorithm to an existing
dataset from an earlier study on patient-level

predictors of young people’s treatment outcomes in
UK mental-health services (Edbrooke-Childs et al.,
2017). We compare the resulting decision trees in
terms of predictive accuracy and interpretability
with the traditional GLMMs originally fitted to the
data. We also compare the performance with that of
random forests, a machine-learning algorithm
which has often been found to rank highest in terms
of predictive accuracy. In the Discussion section,
we integrate our results with earlier findings on
(mixed-effects) decision-tree methods. For readers
interested in fitting GLMM trees to their own data,
the supplementary material provides a tutorial on
how to fit GLMM trees in the statistical program-
ming environment R (R Core Team, 2020).

Decision Trees and Machine-learning
Methods

Compared to other machine-learning algorithms for
prediction, the main advantage of single decision
trees is their interpretability: the tree-like structure
is preeminently suited for practical decision making.
At the same time, however, the tree-like structure is
relatively simple, so it may provide only a coarse
approximation of very smooth or fine-grained associ-
ations possibly present in a dataset. As a result, single
decision trees generally do not rank among the most
accurate machine-learning methods (e.g., Fernan-
dez-Delgado et al., 2014; Gacto et al., 2019; Zhang
et al., 2017).

To improve the predictive accuracy of single
decision trees, so-called ensembling techniques can
be used. For example, techniques like bagging
(Breiman, 1996), boosting (Schapire & Freund,
1995) and random forests (Breiman, 2001) grow a
large number of trees on random samples of the orig-
inal dataset. This allows the predictive model to flex-
ibly approximate the associations present in a dataset
in a smooth manner. As a result, these ensemble
methods provide better predictive accuracy, exceed-
ing that of any of the individual trees (e.g., Rokach,
2010). The main disadvantage of such tree ensembles
is their complexity: instead of a single decision tree,
the predictive model now consists of a large number
(generally > 500), that can no longer be visually
grasped.

This high predictive accuracy as well as high com-
plexity is shared by other state-of-the-art machine
learning methods, like support vector machines and
artificial neural networks. Studies comparing the pre-
dictive performance of machine-learning methods on
awide range of data problems generally find decision-
tree ensembles, support vector machines, and some-
times artificial neural networks to rank highest in



terms of predictive accuracy. For example, Gacto
et al. (2019) found random forests and support
vector machines to rank highest in solving non-
linear regression problems. Zhang et al. (2017)
found boosted tree ensembles matched or exceeded
the predictive performance of support vector
machines and random forests. Fernandez-Delgado
et al. (2014) found random forests to provide
highest predictive performance, followed by support
vector machines, neural networks and boosted tree
ensembles.

The increase in predictive accuracy provided by
methods like support vector machines, neural net-
works and decision-tree ensembles, however, comes
at the cost of complexity. How these methods
compute predictions from the values of predictor
variables is difficult, if not impossible, for humans
to grasp. Several explanatory methods have therefore
been proposed, which aim to explain how complex
statistical methods arrive at their predictions (e.g.,
Lundberg & Lee, 2017; Ribeiro et al., 2016).
However, these methods currently suffer from
several drawbacks. As noted by Carvalho et al.
(2019), there is no consensus on how to measure
the quality of these explanations. Thus, there is no
guarantee that the explanations provide enough
detail to understand what the black-box method is
doing (Rudin, 2019). Rudin (2019) also noted that
black-box predictive models combined with (simi-
larly complex) explanatory methods may yield com-
plicated decision pathways that increase the
likelihood of human error. This was corroborated
by Kaur et al. (2020), who experimentally studied
the use of explanatory methods among data scien-
tists; they found that the explanations were often
over-trusted and few users were able to accurately
describe what the visualizations were showing.

At the same time, a recent systematic review found
no performance benefit of machine learning over
logistic regression for clinical prediction models (Jie
et al., 2019), indicating that the trade-off between
higher accuracy and lower complexity may not
always hold. A possible explanation for this finding
is that even for flexible models, in order to capture
complex patterns, these patterns need to be observed
repeatedly. This may require very large sample sizes,
especially for the prediction of human behaviour and
life outcomes, which have been noted to be difficult
to predict (e.g., Salganik et al., 2020). Earlier,
Hand (2006) already noted that the gains in predic-
tive performance offered by more complex methods
over simpler ones are generally small, and that prac-
tical, real-world characteristics of prediction pro-
blems may render such differences irrelevant.

Thus, whether for individual prediction problems a
method with state-of-the-art predictive accuracy
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should be preferred over a simpler method likely
depends on several characteristics of the data
problem, such as the relative gain in predictive per-
formance, the amount and cost of information
required for making a prediction, the extent to
which the training data is a random sample from
the target population, and/or the quality of the data
(e.g., measurement error, mislabeled cases).
Especially in situations where the gain in predictive
accuracy offered by more complex methods is
small, or where collecting and processing of infor-
mation is costly, simpler methods like decision trees
or regularized GLLMs may be preferred.

Unbiased Recursive Partitioning and
Extension to Multilevel and Longitudinal
Data

The GLMM tree algorithm is an extension of the
unbiased recursive partitioning framework of
Hothorn et al. (2006) and Zeileis et al. (2008).
Unbiased here means that the methods do not
present with a variable selection bias, in which vari-
ables with a larger number of categories or unique
values are more likely to be selected for partitioning,
even if they are no more informative than their com-
petitors (e.g., White & Liu, 1994). Several of the
earlier recursive partitioning methods, like the Classi-
fication and Regression Trees algorithm (CART;
Breiman et al., 1984), suffer from such a variable
selection bias. The aforementioned studies published
in Psychotherapy Research also employed the CART
algorithm, or adjusted versions thereof. More recent
recursive partitioning algorithms, like the classifi-
cation tree algorithm of Kim and Loh (2001), the
conditional inference tree algorithm of Hothorn
et al. (2006), and the model-based recursive parti-
tioning algorithm of Zeileis et al. (2008) do not
suffer from this variable selection bias.

These algorithms mitigate variable selection bias
by separating variable and cut-point selection: in
every node, the splitting variable is selected first,
based on test statistics quantifying the association
between predictor and response variables. At each
step, the variable with the lowest p value of the associ-
ation test is selected for splitting. After selection of
the splitting variable, the cut-point or splitting value
is selected through optimizing the sum of the loss
function in the two resulting nodes. The use of
statistical tests for selection of splitting variables
also provides a stopping rule: When none of the
potential predictor variables in the current node has
a p value below the pre-specified o level, splitting is
halted.
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The GLMM tree algorithm is based on the GLM
tree algorithm, a specific case of the model-based
recursive partitioning algorithm of Zeileis et al.
(2008). GLM trees fit a recursive partition based on
a (generalized) linear model: The nodes in a GLM
tree consist of subgroup-specific GLMs, which
contain an intercept term and possibly the effects of
one or more predictor variables. The subgroups are
described in terms of additional covariates: variables
that are used to define the partition or subgroups,
which are not included as predictors of the GLM.

The GLMM tree algorithm extends the GLM tree
algorithm by accounting for possible dependence
between observations in longitudinal or multilevel
datasets. In such datasets, individual observations
are nested in higher-level units: In multilevel data-
sets, individual observations (e.g., patients) may be
nested within higher-level units (e.g., therapists and/
or treatment centres), while in longitudinal datasets,
measurements obtained at different occasions may
be nested within patients. Traditionally, such data-
sets are analyzed with GLMM-type linear models,
which account for the correlated nature of obser-
vations through the estimation of random effects. In
(generalized) linear models, this has been found to
yield more accurate standard errors and lower type-
I and -II errors (e.g., Moerbeek, 2004; Steenbergen
& Jones, 2002; Van den Noortgate et al., 2005).
Only recently have decision-tree methods been devel-
oped that allow for the analysis of such correlated
data structures. Accounting for correlated structures
in decision-tree analyses has been shown to yield
more accurate, as well as less complex trees (e.g.,
Fokkema et al., 2018; Hajjem et al., 2017; Sela &
Simonoff, 2012). Further technical detail on the esti-
mation of GLMM trees is provided in Fokkema et al.
(2018).

GLMM trees allow for the analysis of a wide range
of research questions. First, outcome variables may
be continuous, binary, or counts; predictor variables
may be continuous or (ordered) categorical. Second,
in addition to finding predictors of (clinical) out-
comes, GLMM trees can also be used to find mod-
erators in the association between predictor and
outcome variables in multilevel and longitudinal
datasets. Examples of particular relevance to psy-
chotherapy research include the detection of modera-
tors of treatment effect, where the interest is in
detecting subgroups which show differential effects
for two or more treatments (Doove et al., 2014;
Fokkema et al.,, 2018; Seibold et al., 2016).
Another example is the detection of subgroups in
growth curve models, where the interest is in
finding subgroups with different initial levels of
symptomatology or different patterns of change over
time. As such, GLMM trees provide a flexible

statistical tool for informing a wide range of clinical
decision questions. In the current paper, we focus
on a relatively simple prediction problem, where the
value of treatment outcomes are predicted using a
range of baseline patient characteristics, while poss-
ible differences due to service providers are
accounted for. Although GLMM trees can be
applied to more complex research questions, the
aim of this paper is to provide an introductory
primer on the use of a GLMM trees. Readers inter-
ested in more complex analyses can consult
Fokkema et al. (2018) and/or the examples in the
documentation of package glmertree (Zeileis &
Fokkema, 2019), that can be used for fitting
GLMM trees.

It should be noted that there are other algorithms
and software packages that allow for recursive parti-
tioning of GLMM-type models, such as SEM trees
(Brandmaier et al., 2013), longRpart (Abdolell
et al.,, 2002) and longRpart2 (Stegmann et al.,
2018). In the current paper, we focus on GLMM
trees, because it allows for partitioning based on
variables measured at both the lowest level (e.g.,
patient level) as well as higher levels (e.g., therapist,
treatment centre, region level). The other packages
mentioned allow for partitioning based on variables
measured at the highest level only, which precludes
analyses such as the one in the current paper, where
we want to detect subgroups with different treat-
ment outcomes based on patient-level character-
istics (level I), while accounting for treatment
outcome differences between treatment -centres
(level II).

Method
Dataset

Edbrooke-Childs et al. (2017) analyzed a sample of
3,256 young people who received treatment at one
of 13 mental-health service providers in the UK.
The analyses were performed on complete cases.
Summary statistics for age, gender and ethnicity are
provided in Table I. Potential predictor variables
were demographic variables (age, gender, ethnicity),
case characteristics (coding the presence or absence
of several mental and behavioural disorders), and
severity characteristics (measures of impairment in
functioning) assessed at baseline.

Specifically, ethnicity was captured using the cat-
egories from the 2001 Census from the UK Office
for National Statistics, and grouped for analysis
according to the levels reported in Table I. Case
characteristics included absence/presence of hyperac-
tivity, emotional problems, conduct problems, eating
disorder, self-harm, autism, special education needs



Table I. Descriptive statistics of the full sample (N = 3,256).
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M (SD) or % Min Max
Age 11.33 (3.42) 4.00 18.00
Gender Female 48%
Ethnicity White 69%
Mixed 5%
Asian 8%
Black or Black British 6%
Other 5%
Not reported or missing 13%
Case characteristics Hyperactivity 10%
Emotional problems 55%
Conduct problems 20%
Eating disorder 5%
Self-harm 8%
Autism 9%
Special education needs 8%
Other presenting problems 22%
Infrequent characteristics 12%
Total difficulties T1 18.49 (7.13) 0.00 39.00
Total difficulties T2 15.48 (7.87) 0.00 38.00
Unadjusted treatment outcome 0.00 (1.00) —4.51 5.12
Adjusted treatment outcome 0.16 (1.21) —6.44 5.86

and other presenting problems (Table I). Further-
more, the presence of case characteristics occurring
with a frequency of <5% in the sample were
grouped into a single “infrequent characteristics”
indicator (i.e., psychosis, intellectual disability, devel-
opmental disorder, habit disorder, substance misuse,
child protection concerns, and Child Act order in
place). Severity characteristics were assessed using
the impact supplement of the Strengths and Difficul-
ties Questionnaire (SDQ; Goodman, 1997). This
yielded six indicators for the severity of mental-
health problems: duration (rated on a 5-point scale
ranging from absent to>1 year), overall distress,
and impairment on home life, friendships, classroom
performance, and leisure activities (all rated on a 3-
point scale ranging from little or no severity to high
severity).

Treatment outcome was quantified as the total
mental-health difficulties score on the SDQ, assessed
approximately 4—8 months after the first (baseline)
assessment. This score was computed by summing
the four difficulties subscales of the SDQ (conduct
problems, emotional problems, peer problems,
hyperactivity; descriptive statistics presented in
Table I). Two outcome variables were calculated:
An unadjusted treatment outcome, which is the stan-
dardized value of the total difficulties score corrected
for the baseline assessment, with higher values indi-
cating poorer outcomes. Secondly, an adjusted treat-
ment outcome was calculated, which corresponds to
the so-called “added value score” on the SDQ! (Ford
et al., 2009). It reflects the standardized difference

between observed and expected change in mental
health difficulties, and aims to correct for spon-
taneous improvement and regression to the mean.
It can be interpreted as an effect size, where positive
values indicate more improvement and negative
values indicate more deterioration than expected.
We analyzed both treatment outcomes, because the
unadjusted outcome can be interpreted as a weighted
change score, while the adjusted outcome can be
interpreted as deterioration compared to what
would have been expected, had the young person
not accessed services.

Statistical Analyses

All analyses were performed in the statistical pro-
gramming environment R (R Core Team, 2020).
Mixed-effects regression models were fitted using
package Ime4 (Bates et al., 2015). A random inter-
cept was estimated with respect to mental-health
service provider and restricted maximum likelihood
(REML) estimation was employed. GLMM trees
were fitted using package glmertree (Zeileis &
Fokkema, 2019). Again, a random intercept was esti-
mated with respect to mental-health service provider.
Default settings were employed: REML was
employed for estimation of the fixed- and random-
effects parameters, an o level of .05 was employed
and p values for the variable selection tests were Bon-
ferroni corrected. Random forests were fitted using
package randomForest (Liaw & Wiener, 2002). We
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included the indicator for mental-health service pro-
vider as a categorical predictor variable. Further-
more, earlier studies have found good predictive
performance for the standard random forest algor-
ithm in multilevel data when the intra-class corre-
lation was small (Hajjem et al., 2014; Karpievitch
et al., 2009; Martin, 2015). Because this was also
the case in our study, we employed default settings:
no a-priori restrictions on tree size were applied,
500 bootstrap samples were drawn, and for selecting
each split, a random sample of 1/3 of the potential
predictor variables was used.

To estimate the models’ predictive accuracies, we
employed 10-fold cross validation. Cross validation
provides a more realistic estimate of generalization
error than calculating variance explained in the train-
ing sample (Hastie et al., 2009). Cross-validated pre-
dictions for the mixed-effects regression and GLMM
tree models were computed based on both random
and fixed effects, so that predictions for all fitted
models captured the effect of mental-health service
provider. Prediction error was quantified as the
mean squared difference between predicted and
observed response variable values (MSE). The stan-
dard error of the MSE was computed as the standard
deviation of the squared difference between predicted
and observed response variable values, divided by the
square root of the sample size. Furthermore, we stan-
dardized MSE values through dividing by the sample
standard deviations of the response variables. This
yields a measure which can be interpreted as the mul-
tiple R coefficient. In the current study, this multiple
R value may seem relatively low, compared to values
that readers are used to, because it was computed
based on cross-validation instead of training data
and because the treatment outcome variables were
computed so that they already accounted for baseline
SDQ values.

Results

In the original analyses of Edbrooke-Childs et al.
(2017), linear mixed-effects models were fitted to
predict treatment outcomes, in which fixed effects

Table II. Statistically significant predictors of treatment outcome
according to the original analyses of Edbrooke-Childs et al. (2017).

Unadjusted treatment outcome Adjusted treatment outcome

Age Autism

Ethnicity Infrequent case characteristics
Eating disorder Disorder duration
Hyperactivity

Autism

Infrequent case characteristics

were estimated for the demographic, case and sever-
ity characteristics, and a random intercept was esti-
mated with respect to service provider. This yielded
seven statistically significant predictors of treatment
outcome (Table II), and estimated intra-class corre-
lations of 0.05-0.07. We applied the GLMM tree
algorithm to the same data and research question.
As in the original analyses, demographic, case and
severity characteristics were included as potential
predictor variables (see Table I), and a random inter-
cept was estimated with respect to service provider.

The GLMM tree for the unadjusted treatment
outcome is presented in Figure 1. Higher values of
the unadjusted treatment outcome reflect poorer
treatment outcomes. Age at referral was selected as
the first predictor variable, with poorer average treat-
ment outcome for those aged <9.1, compared to
those aged > 9.1 at referral. In the lower age group,
presence of emotional problems was selected as the
second predictor variable, with the absence of
emotional problems yielding poorer treatment out-
comes, on average. In the group with emotional pro-
blems, gender was selected as a predictor variable:
boys had poorer treatment outcomes than girls, on
average. In the group with higher age at referral
(age at referral > 9.1), the presence of an autistic dis-
order was selected as a second predictor variable:
those with an autistic disorder had poorer treatment
outcomes, on average.

The terminal nodes in Figure 1 also present stan-
dard errors for the estimated subgroup means.
These standard errors are computed based on a con-
firmatory mixed-effects model, which accounts for
variability between treatment centres, but not for
the searching of the tree structure. Thus, they
provide a useful indication of variability, but may
underestimate true variability. Taking into account
the standard errors, we can conclude that the unad-
justed treatment outcomes do not differ significantly
between nodes 3 and 5, between nodes 3 and 9,
between nodes 5 and 9, between nodes 6 and 8.

The predicted values of the random intercept are
depicted in Figure 2, which indicates a quite sym-
metric distribution around the mean of 0. The esti-
mated intra-class correlation was 0.06. Poorest
outcomes were observed for service provider 113,
and best outcomes were observed for service provider
138. Note that the error bars in Figure 2 do not
account for the searching of the tree structure and
may therefore be too small.

The GLMM tree for the adjusted treatment
outcome is presented in Figure 3. Lower values of
the adjusted treatment outcome reflect poorer out-
comes. Again, we see that that lower age at referral
is associated with poorer treatment outcomes. In
both age groups, the next split was based on the
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N =558 gender N = 2075 N=178
M =0.227 M =—0.205 M =0.235
SE = 0.079 female  male SE = 0.071 SE = 0.100
(9] 161
N =253 N =192
M=0.107 M =—0.282
SE = 0.091 SE = 0.097

Figure 1. GLMM tree for the unadjusted treatment outcome. Higher values represent poorer treatment outcomes. Panels depict subgroup
sizes (IN) and estimated fixed-effects means (M) with standard errors (SE). Note that SEs account for random variability between treatment

centres, but not for the searching of the tree structure.

parent-reported impairment of mental-health pro-
blems on home life, with stronger impairment on
home life yielding better outcomes (than would be
expected based on baseline SDQ mental-health diffi-
culty scores). In the group aged <9.1 at referral, a
third split was created based on ethnicity, with
Asian and non-reported or missing ethnicity yielding
better treatment outcomes, compared to other ethni-
city groups. This split should be interpreted with
care: The two resulting subgroups (especially term-
inal node six) are rather small, yielding less reliable
estimates of the difference between the two groups,
which is also evidenced by the relatively large stan-
dard errors. Furthermore, the split was partly based
on ethnicity being not reported or missing, making
it difficult to draw conclusions on the meaning of
this split. Taking into account the standard errors
reported in the terminal nodes, we can conclude
that the adjusted treatment outcomes do not differ
significantly between nodes 3 and 6, between nodes
5 and 8, and between nodes 5 and 9.

The predicted values of the random intercept are
depicted in Figure 4, which indicates a rather sym-
metric distribution around the mean of 0. The

intra-class correlation was 0.05. Again, poorest out-
comes were observed for service provider 113, and
best outcomes were observed for service provider
138.

We compared predictive accuracy of GLMM trees
with that of traditional GLMMs and random forests
using 10-fold cross validation. Results are presented
in Table III, which shows that GLMM trees yielded
accuracy on par with that of the traditional
GLMMs and the random forests. The traditional
GLMMs yielded slightly higher predictive accuracy
than GLMM trees. Random forests yielded some-
what lower predictive accuracy than both traditional
GLMMs and GLMM trees. Taking into account
the standard errors of the MSEs indicates that predic-
tive accuracy did not differ significantly between
methods.

The cross-validated multiple R values indicate that
the predicted values are not very precise. This is in
large part due to both treatment outcomes already
being corrected for baseline SDQ mental-health diffi-
culty scores, which were a strong predictor of later
difficulty scores, as indicated by the estimated
sample correlation of 0.63. Although the predicted
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Figure 2. Random-effects predictions of the GLMM tree for the unadjusted treatment outcome. The y-axis represents indicators for service
provider. The x-axis represents the predicted value of the random intercept, where higher values represent poorer treatment outcomes. Blue
dots represent point predictions, black lines represent point predictions *1.96 times the standard error. Note that these standard errors do not

account for the searching of the tree structure.

values may be too unreliable for individual predic-
tions, they do provide useful group-level insights.
For example, the GLMM trees in Figures 1 and 3
identify those subgroups at risk for poorer treatment
outcomes than can be expected based on baseline
SDQ mental-health difficulty scores.

Discussion

Our study found no significant differences in predic-
tive accuracy between GLMM trees, traditional
GLMMs and random forests. This is in line with
earlier studies comparing mixed-effects decision-
tree algorithms and traditional mixed-effects models
(e.g., Fokkema et al., 2018; Hajjem et al., 2017;
Sela & Simonoff, 2012). The finding that random
forests did not outperform single decision trees or
mixed-effects linear models was somewhat surpris-
ing, but similar findings have been reported in other

studies (e.g., Jie et al., 2019; Martin, 2015; Rudin,
2019).

Both the traditional GLMMs and GLMM trees
found lower age at referral, presence of an autistic
disorder and ethnicity to be associated with treatment
outcomes. The GLMM trees additionally identified
presence of emotional problems, gender and
parent-reported impairment of mental-health pro-
blems on home life as predictors of treatment
outcome. The traditional GLMMs additionally
identified presence of eating disorder, hyperactivity,
infrequent case characteristics and symptom duration
as predictors of treatment outcome. Random forests
fitted on the complete dataset included all predictor
variables in the predictive model. Thus, in our
dataset, GLMM trees required the lowest number
of variables for making a prediction on treatment out-
comes, requiring the assessment of two to three vari-
ables for making a prediction. The traditional
GLMMs require assessing three (for the adjusted



Psychotherapy Research 9

<= a little > a little <= a little > a little
4 r—\/ \I_\
3] 4] B (o]

N =576 N = 1354 N = 899
M = -0.035 M =0.242 M = 0.459
SE =0.088 1,2,4,5 3,6 SE =0.081 SE =0.084

(5] (6]
N = 343 N = 84
M = 0.294 M =-0.153
SE = 0.097 SE =0.149

Figure 3. GLMM tree for the adjusted treatment outcome. Lower values reflect poorer treatment outcomes. Panels depict subgroups sizes
(N), estimated fixed-effects means (M) and their respective standard errors (SE). Ethnicity was coded White (1), Mixed (2), Asian (3), Black
or Black British (4), Other (5), Not reported or missing (6). Note that SEs account for random variability between treatment centres, but not

for the searching of the tree structure.

treatment outcome) or six variables (for the unad-
justed treatment outcome). Furthermore, the
GLMM trees directly show how the relevant patient
characteristics should be combined to decide
whether a patient is at risk for poorer treatment out-
comes. With the traditional GLMMs, all relevant
predictor variables would have to be evaluated, mul-
tiplied by their respective coefficients and added
together to make a prediction. With the random
forests, all 18 predictor variables would have to be
assessed and inputted into a computer in order to
make a prediction on treatment outcome.

In clinical practice, the fitted GLMM trees could
be used to inform policy or treatment decisions. For
example, the tree for the unadjusted treatment
outcome (Figure 1) indicates that clients who are
younger than 9 years of age at referral and who do
not present with emotional problems, and clients
over 9 years of age presenting with autism are at
risk for even poorer treatment outcomes, than can
be expected based on baseline SDQ mental-health
difficulty scores. If additional resources or more
intensive treatments are available, but cannot be

provided to all clients, perhaps these should be pro-
vided to those client groups.

A major advantage of decision tree-methods is that
they involve few assumptions about the distribution
of the data. Traditional GLMMs, for example,
assume linear associations between predictor and
outcome variables and a normal distribution for the
model’s residuals. Violations of these assumptions
may vyield spurious effects, especially in mixed-
effects models (e.g., Bauer & Cai, 2009). GLMM
trees do not involve these assumptions, but do
involve assumptions about the distribution of the
random effects. Like with traditional GLMMs,
correct specification of the random-effects structure
is therefore an important prerequisite for obtaining
valid results with the GLMM tree algorithm. The
tutorial in the supplementary material illustrates
how to assess potential model misspecifications.

It is important to note that that recursive partition-
ing methods are exploratory techniques. Especially in
small samples, fitted decision trees may differ from
sample to sample. However, this disadvantage likely
applies more strongly to standard regression trees
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than mixed-effects regression trees. In (generalized)
linear models, the relative advantages of mixed-

Table III. Prediction error of GLMM trees, traditional GLMMs
and random forests, estimated through 10-fold cross validation.

Unadjusted Adjusted treatment
treatment outcome outcome
Method R MSE (se) R MSE (se)

GLMM tree 252 0.931 179 1.421 (0.043)
(0.028)

Traditional .253 0.930 .205 1.406 (0.043)
GLMM (0.027)

Random forest .195 0.956 .049 1.464 (0.044)
(0.028)

Note. MSE denotes mean squared error; se denotes standard error;
R is the square root of the treatment outcome variance explained by
the predicted values; it can be interpreted as the correlation
between predicted and observed treatment outcomes.

effects methods over ANOVA and GLM-type
models have been widely shown and discussed
(lower Type I error, more accurate standard errors;
e.g., Borenstein et al.,, 2010; Gueorguieva &
Krystal, 2004; Nich & Carroll, 1997). Similarly,
lower Type I error and higher accuracy have also
been observed for mixed-effects regression trees,
compared to standard regression trees (Fokkema
et al., 2018; Hajjem et al., 2017; Sela & Simonoff,
2012).

With GLMM trees, like with any other statistical
method, larger sample sizes will likely yield more
accurate and stable results. However, sample size
requirements cannot be computed in advance,
because exploratory methods do not have a concept
of statistical power. Users should thus keep in mind
that a trade-off between sample size and the signal-
to-noise ratio applies. That is, the stronger the associ-
ation between potential predictor variables and the
response, the more likely this association will be



recovered by the fitted tree. Also, the larger the
number of the potential predictor variables that are
in fact noise variables (i.e., not associated with the
response), the less likely that the actual associations
in a dataset will be recovered by the fitted tree.

In the GLMM tree algorithm, sample size and the
number of potential predictor variables directly affect
the power of the variable selection tests: If sample size
increases, the power of these tests increases, increas-
ing the likelihood that a predictor variable in the
current node obtains a p value lower than the pre-
specified o level. The p values are Bonferroni cor-
rected by default, based on the number of potential
predictor variables. Thus, although there are no a-
priori constraints on the number of predictor vari-
ables that can be specified, increasing the number
of potential predictor variables effectively increases
the p values, reducing the power to detect splits.

As mentioned in the Introduction, the use of stat-
istical tests for variable selection also provides a
natural stopping criterion. Recursive partitioning
algorithms that do not separate variable and cut-
point selection generally grow a very large tree first,
which is subsequently reduced in size through post-
pruning (e.g., Rokach & Maimon, 2008). The pre-
specified a level for the variable selection tests can
therefore be seen as the main tuning parameter. For
many data problems, the default value of a=.05
will suffice. However, for datasets with (very) large
sample sizes, this may yield a tree that is too large
to interpret and thus a lower value of @ may be pre-
ferred. For datasets with a large number of potential
predictor variables, the Bonferroni correction may
be overly conservative, resulting in too few splits
(e.g., no split) being made. In such cases, users may
prefer a higher value of a, or to not apply the Bonfer-
roni correction. When a higher or lower value than
the default value of a is preferred, the value that opti-
mizes predictive accuracy can best be determined
through cross validation.

Due to the exploratory nature of decision tree ana-
lyses, in most cases it would be advisable to validate
the results in a different sample, or to at least evaluate
predictive accuracy of the decision tree using cross-
validation methods. This prevents overly optimistic
estimates of predictive accuracy that results from
using the same data that was used for training the
model (e.g., Hastie et al., 2009; Yarkoni & Westfall,
2017). For this reason, we applied 10-fold cross vali-
dation to assess predictive accuracy in the current
study.

We hope this paper has shown the potential of
GLMM trees to generate decision trees from empiri-
cal data with a multilevel structure. The GLMM tree
algorithm can also be employed for subgroup detec-
tion in more complex research designs, like growth

Psychotherapy Research 11

curve models or clinical trials comparing the effects
of two or more treatments. Readers interested in
such research questions, or the computational
details of the GLMM tree algorithm are encouraged
to read Fokkema et al. (2018). Readers interested
in a more general introduction to recursive partition-
ing methods are encouraged to read Strobl et al.
(2009). Finally, readers interested in fitting GLMM
trees to their own data can do so using R (R Core
Team, 2020) and the R package glmertree (Zeileis
& Fokkema, 2019). The tutorial in the supplemen-
tary material provides several examples, instructing
readers on applying the GLMM tree algorithm to
their own data and interpreting the results.

Note

! The standardized added value score is computed as .46
+.16*total difficulties at TI1+.04*total impact at TI1
— .06"emotional problems at T1 — total difficulties T2.

Supplemental Data

Supplemental data for this article can be accessed
https://10.1080/10503307.2020.1785037

References

Abdolell, M., LeBlanc, M., Stephens, D., & Harrison, R. (2002).
Binary partitioning for continuous longitudinal data:
Categorizing a prognostic variable. Staristics in Medicine, 21
(22), 3395-3409. https://doi.org/10.1002/sim.1266

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4. Fournal of Statistical
Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Bauer, D. J., & Cai, L. (2009). Consequences of unmodeled non-
linear effects in multilevel models. Journal of Educational and
Behavioral Statistics, 34(1), 97-114. https://doi.org/10.3102/
1076998607310504

Berman, M. 1., & Hegel, M. T. (2014). Predicting depression
outcome in mental health treatment: A recursive partitioning
analysis. Psychotherapy Research, 24(6), 675-686. https://doi.
org/10.1080/10503307.2013.874053

Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R.
(2010). A basic introduction to fixed-effect and random-
effects models for meta-analysis. Research Synthesis Methods, 1
(2), 97-111. https://doi.org/10.1002/jrsm.12

Brandmaier, A. M., von Oertzen, T., McArdle, J. J., &
Lindenberger, U. (2013). Structural equation model trees.
Psychological Methods, 18(1), 71-86. https://doi.org/10.1037/
20030001

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2),
123-140. https://doi.org/10.1007/BF00058655.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5—
32. https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984).
Classtfication and regression trees. Chapman & Hall/CRC.

Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine
learning interpretability: A survey on methods and metrics.
Electronics, 8(832), 1-34. https://doi.org/10.3390/
electronics8080832.


https://10.1080/10503307.2020.1785037
https://doi.org/10.1002/sim.1266
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.3102/1076998607310504
https://doi.org/10.3102/1076998607310504
https://doi.org/10.1080/10503307.2013.874053
https://doi.org/10.1080/10503307.2013.874053
https://doi.org/10.1002/jrsm.12
https://doi.org/10.1037/a0030001
https://doi.org/10.1037/a0030001
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/electronics8080832
https://doi.org/10.3390/electronics8080832

12 M. Fokkema et al.

Doove, L. L., Dusseldorp, E., Van Deun, K., & Van Mechelen, 1.
(2014). A comparison of five recursive partitioning methods to
find person subgroups involved in meaningful treatment—sub-
group interactions. Advances in Data Analysis and
Classification, 8(4), 403-425. https://doi.org/10.1007/s11634-
013-0159-x

Edbrooke-Childs, J., Macdougall, A., Hayes, D., Jacob, J.,
Wolpert, M., & Deighton, J. (2017). Service-level variation,
patient-level factors, and treatment outcome in those seen by
child mental health services. European Child & Adolescent
Psychiarry, 26(6), 715-722. https://doi.org/10.1007/s00787-
016-0939-x

Fernindez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D.
(2014). Do we need hundreds of classifiers to solve real world
classification problems? The Fournal of Machine Learning
Research, 15(1), 3133-3181. http://www.jmlr.org/papers/
volumel5/delgadol4a/delgadol4a.pdf.

Fokkema, M., Smits, N., Zeileis, A., Hothorn, T., & Kelderman,
H. (2018). Detecting treatment-subgroup interactions in clus-
tered data with generalized linear mixed-effects model trees.
Behavior Research Methods, 50(5), 2016-2034. http://link.
springer.com/article/10.3758/s13428-017-0971-x.  https://doi.
org/10.3758/s13428-017-0971-x

Ford, T., Hutchings, J., Bywater, T., Goodman, A., & Goodman,
R. (2009). Strengths and difficulties questionnaire added value
scores: Evaluating effectiveness in child mental health interven-
tions. The British Journal of Psychiatry, 194(6), 552-558. https://
doi.org/10.1192/bjp.bp.108.052373

Gacto, M. J., Soto-Hidalgo, J. M., Alcala-Fdez, J., & Alcala, R.
(2019). Experimental study on 164 algorithms available in soft-
ware tools for solving standard Non-linear regression problems.
IEEE  Access, 7, 108916-108939. https://doi.org/10.1109/
ACCESS.2019.2933261

Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999).
Simple heuristics that make us smart. Oxford University Press.

Goodman, R. (1997). The strengths and difficulties questionnaire:
A research note. Journal of Child Psychology and Psychiatry, 38
5), 581-586.  https://doi.org/10.1111/j.1469-7610.1997.
thb01545.x

Gueorguieva, R., & Krystal, J. H. (2004). Move over ANOVA:
Progress in analyzing repeated-measures data and its reflection
in papers published in the archives of general Psychiatry.
Archives of General Psychiatry, 61(3), 310-317. https://doi.org/
10.1001/archpsyc.61.3.310

Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects
random forest for clustered data. Fournal of Statistical
Computation and Simulation, 84(6), 1313-1328. https://doi.org/
10.1080/00949655.2012.741599

Hajjem, A., Larocque, D., & Bellavance, F. (2017). Generalized
mixed effects regression trees. Statistics & Probability Letters,
126, 114-118. https://doi.org/10.1016/j.spl.2017.02.033

Hand, D. J. (2006). Classifier technology and the illusion of pro-
gress. Statistical Science, 21(1), 1-14. https://doi.org/10.1214/
088342306000000060

Hannéver, W., & Kordy, H. (2005). Predicting outcomes of inpatient
psychotherapy using quality management data: Comparing classi-
fication and regression trees with logistic regression and linear dis-
criminant analysis. Psychotherapy Research, 15(3), 236-247. https://
doi.org/10.1080/10503300512331334995

Hannover, W., Richard, M., Hansen, N. B., Martinovich, Z., &
Kordy, H. (2002). A classification tree model for decision-
making in clinical practice: An application based on the data
of the German Multicenter study on eating disorders, Project
TR-EAT. Psychotherapy Research, 12(4), 445-461. https://doi.
org/10.1080/713664470

Hansen, N., Kershaw, T., Kochman, A., & Sikkema, K. (2007). A
classification and regression trees analysis predicting treatment

outcome following a group intervention randomized controlled
trial for HIV-positive adult survivors of childhood sexual abuse.
Psychotherapy Research, 17(4), 404-415. https://doi.org/10.
1080/10503300600953512

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of
statistical learning. Springer.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive
partitioning: A conditional inference framework. Fournal of
Computational and Graphical Statistics, 15(3), 651-674. https:/
doi.org/10.1198/106186006X133933

Jie, M., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & van
Calster, B. (2019). A systematic review shows no performance
benefit of machine learning over logistic regression for clinical
prediction models. Fournal of Clinical Epidemiology, 110, 12—
22. https://doi.org/10.1016/j.jclinepi.2019.02.004

Karpievitch, Y. V., Hill, E. G., Leclerc, A. P., Dabney, A. R.,
Almeida, J. S., & Rapallo, F. (2009). An introspective compari-
son of random forest-based classifiers for the analysis of cluster-
correlated data by way of RF++. PloS one, 4(9), €7087, 1-10.
https://doi.org/10.1371/journal.pone.0007087.

Kaur, H, Nori, H, Jenkins, S, Caruana, R, & Wallach, H. (2020).
Interpreting Interpretability: Understanding Data Scientists’
Use of Interpretability Tools for Machine Learning.
Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 1-14.

Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased
multiway splits. Fournal of the American Statistical Association, 96
(454), 589-604. https://doi.org/10.1198/016214501753168271

Koffmann, A. (2020). Early trajectory features and the course of
psychotherapy. Psychotherapy Research, 30(1), 1-12. https://
doi.org/10.1080/10503307.2018.1506950.

Liaw, A., & Wiener, M. (2002). Classification and regression by
randomForest. R News, 2(3), 18-22. https://www.r-projec-
t.org/doc/Rnews/Rnews_2002-3.pdf.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach
to interpreting model predictions. Paper presented at the
31st Conference on Neural Information Processing Systems
(NIPS 2017), Long Beach, CA, Dec. 4-7.

Martin, D. P. (2015). Efficiently exploring multilevel data with recur-
sive partitioming [Doctoral dissertation]. University of Virginia.
https://dpmartin42.github.io/extras/dissertation.pdf

Moerbeek, M. (2004). The consequence of ignoring a level of
nesting in multilevel analysis. Multivariate Behavioral Research,
39(1), 129-149. https://doi.org/10.1207/s15327906mbr3901_5

Nich, C., & Carroll, K. (1997). Now you see it, now you don’t: A
comparison of traditional versus random-effects
regression models in the analysis of longitudinal follow-up data
from a clinical trial. Journal of Consulting and Clinical Psychology,
65(2), 252-261. https://doi.org/10.1037/0022-006X.65.2.252

O’Keeffe, S., Martin, P., Goodyer, I. M., Wilkinson, P.,
Consortium, I., & Midgley, N. (2018). Predicting dropout in
adolescents receiving therapy for depression. Psychotherapy
Research, 28(5), 708-721. https://doi.org/10.1080/10503307.
2017.1393576

R Core Team. (2020). R language definition. Vienna, Austria: R
foundation for statistical computing.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Model-agnostic
interpretability of machine learning. arXiv preprint
arXiv:1606.05386.

Rokach, L. (2010). Ensemble-based classifiers. Arzificial Intelligence
Review, 33(1-2), 1-39. https://doi.org/10.1007/s10462-009-
9124-7

Rokach, L., & Maimon, O. Z. (2008). Pruning trees. In Data
mining with decision trees: Theory and applications. Singapore:
World Scientific.

Rudin, C. (2019). Stop explaining black box machine learning
models for high stakes decisions and use interpretable models


https://doi.org/10.1007/s11634-013-0159-x
https://doi.org/10.1007/s11634-013-0159-x
https://doi.org/10.1007/s00787-016-0939-x
https://doi.org/10.1007/s00787-016-0939-x
http://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://link.springer.com/article/10.3758/s13428-017-0971-x
http://link.springer.com/article/10.3758/s13428-017-0971-x
https://doi.org/10.3758/s13428-017-0971-x
https://doi.org/10.3758/s13428-017-0971-x
https://doi.org/10.1192/bjp.bp.108.052373
https://doi.org/10.1192/bjp.bp.108.052373
https://doi.org/10.1109/ACCESS.2019.2933261
https://doi.org/10.1109/ACCESS.2019.2933261
https://doi.org/10.1111/j.1469-7610.1997.tb01545.x
https://doi.org/10.1111/j.1469-7610.1997.tb01545.x
https://doi.org/10.1001/archpsyc.61.3.310
https://doi.org/10.1001/archpsyc.61.3.310
https://doi.org/10.1080/00949655.2012.741599
https://doi.org/10.1080/00949655.2012.741599
https://doi.org/10.1016/j.spl.2017.02.033
https://doi.org/10.1214/088342306000000060
https://doi.org/10.1214/088342306000000060
https://doi.org/10.1080/10503300512331334995
https://doi.org/10.1080/10503300512331334995
https://doi.org/10.1080/713664470
https://doi.org/10.1080/713664470
https://doi.org/10.1080/10503300600953512
https://doi.org/10.1080/10503300600953512
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1371/journal.pone.0007087
https://doi.org/10.1198/016214501753168271
https://doi.org/10.1080/10503307.2018.1506950
https://doi.org/10.1080/10503307.2018.1506950
https://dpmartin42.github.io/extras/dissertation.pdf
https://doi.org/10.1207/s15327906mbr3901_5
https://doi.org/10.1037/0022-006X.65.2.252
https://doi.org/10.1080/10503307.2017.1393576
https://doi.org/10.1080/10503307.2017.1393576
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7

instead. Nature Machine Intelligence, 1(5), 206-215. https://doi.
org/10.1038/s42256-019-0048-x

Salganik, M. J., Lundberg, I., Kindel, A. T., Ahearn, C. E., Al-
Ghoneim, K., Almaatouq, A., Altschul, D. M., Brand, J. E.,
Carnegie, N. B., Compton, R. J., Datta, D., Davidson, T.,
Filippova, A., Gilroy, C., Goode, B. J., Jahani, E., Kashyap, R.,
Kirchner, A., McKay, S., ... McLanahan, S. (2020). Measuring
the predictability of life outcomes with a scientific mass collabor-
ation. Proceedings of the National Academy of Sciences, 117(15),
8398-8403. https://doi.org/10.1073/pnas.1915006117

Schapire, R., & Freund, Y. (1995). A decision-theoretic generaliz-
ation of on-line learning and an application to boosting. Paper pre-
sented at the 2nd European Conference on Computational
Learning Theory, Barcelona, Spain, March 13-15.

Seibold, H., Zeileis, A., & Hothorn, T. (2016). Model-based
recursive partitioning for subgroup analyses. International
Fournal of Biostatistics, 12(1), 45-63. https://doi.org/10.1515/
ijb-2015-0032

Sela, R. J., & Simonoff, J. S. (2012). RE-EM trees: A data mining
approach for longitudinal and clustered data. Machine Learning,
86(2), 169—-207. https://doi.org/10.1007/s10994-011-5258-3.

Steenbergen, M. R., & Jones, B. S. (2002). Modeling multilevel
data structures. American Journal of Political Science, 46, 218—
237. https://doi.org/10.2307/3088424

Stegmann, G., Jacobucci, R., Serang, S., & Grimm, K. J. (2018).
Recursive partitioning with nonlinear models of change.
Multivariate Behavioral Research, 53(4), 559-570. https://doi.
org/10.1080/00273171.2018.1461602

Psychotherapy Research 13

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recur-
sive partitioning: Rationale, application, and characteristics of
classification and regression trees, bagging, and random
forests. Psychological Methods, 14(4), 323-348. https://doi.org/
10.1037/a0016973

Van den Noortgate, W., Opdenakker, M.-C., & Onghena, P.
(2005). The effects of ignoring a level in multilevel analysis.
School Effectiveness and School Improvement, 16(3), 281-303.
https://doi.org/10.1080/09243450500114850

White, A. P., & Liu, W. Z. (1994). Bias in information-based
measures in decision tree induction. Machine Learning, 15(3),
321-329. https://doi.org/10.1023/A:1022694010754.

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over expla-
nation in psychology: Lessons from machine learning.
Perspectives on Psychological Science, 12(6), 1100-1122. https:/
doi.org/10.1177/1745691617693393

Zeileis, A., & Fokkema, M. (2019). Glmertree: Generalized linear
mixed model trees (Version R package version 0.2-0). https://
cran.r-project.org/package=glmertree

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recur-
sive partitioning. Fournal of Computational and Graphical
Statistics, ~ 17(2),  492-514.  https://doi.org/10.1198/
106186008X319331

Zhang, C., Liu, C., Zhang, X., & Almpanidis, G. (2017).
An up-to-date comparison of state-of-the-art
classification algorithms. Expert Systems with
Applications, 82, 128-150. https://doi.org/10.1016/j.eswa.2017.
04.003


https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1073/pnas.1915006117
https://doi.org/10.1515/ijb-2015-0032
https://doi.org/10.1515/ijb-2015-0032
https://doi.org/10.1007/s10994-011-5258-3
https://doi.org/10.2307/3088424
https://doi.org/10.1080/00273171.2018.1461602
https://doi.org/10.1080/00273171.2018.1461602
https://doi.org/10.1037/a0016973
https://doi.org/10.1037/a0016973
https://doi.org/10.1080/09243450500114850
https://doi.org/10.1023/A:1022694010754
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://cran.r-project.org/package=glmertree
https://cran.r-project.org/package=glmertree
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1016/j.eswa.2017.04.003
https://doi.org/10.1016/j.eswa.2017.04.003

	Abstract
	Introduction
	Decision Trees and Machine-learning Methods
	Unbiased Recursive Partitioning and Extension to Multilevel and Longitudinal Data

	Method
	Dataset
	Statistical Analyses

	Results
	Discussion
	Note
	Supplemental Data
	References

