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Heegner points in Coleman families

Dimitar Jetchev, David Loeffler and Sarah Livia Zerbes

Abstract

We construct two-parameter analytic families of Galois cohomology classes interpolating the
étale Abel–Jacobi images of generalised Heegner cycles, with both the modular form and
Grössencharacter varying in p-adic families.

1. Introduction

1.1. Statement of the theorems

Let f be a cuspidal modular newform of level Γ1(N) and weight � 2, and K an imaginary
quadratic field in which all primes dividing N are split (the ‘Heegner condition’). The landmark
article of Bertolini–Darmon–Prasanna [6] defines a family of algebraic cycles — generalised
Heegner cycles — associated to twists of f by suitable algebraic Grössencharacters of K. This
construction includes, as special cases, the familiar Heegner points of Gross–Zagier [19] and
Kolyvagin [28] and the Heegner cycles studied by Schoen [38], Nekovář [34], and others. We
refer to the pairs (f, χ) to which this construction applies as Heegner pairs; the conditions on
(f, χ) are recalled in § 2.2.

Via the étale Abel–Jacobi map, the generalised Heegner cycle for a Heegner pair (f, χ) gives
rise to a class in the cohomology of the conjugate-self-dual Galois representation Vp(f)∗ ⊗ χ,
where Vp(f) is Deligne’s p-adic representation associated to f , and Vp(f)∗ = Hom(Vp(f),Qp).
If we assume p � N , then these Galois representations naturally vary in 2-dimensional p-adic
families: one dimension comes from varying χ, and a second dimension comes from varying
the modular form f in a Hida or Coleman family. So it is natural to ask whether these étale
generalised Heegner classes interpolate p-adically in these families.

More precisely, we define a p-stabilised Heegner pair (see § 2.4) to be a triple (f, α, χ), where
(f, χ) is a Heegner pair, and α is a root of the Hecke polynomial of f at p. We introduce in
Definition 2.4.2 a 2-dimensional p-adic rigid space EK(N), which is a fibre bundle over the level
N Coleman–Mazur eigencurve E(N); pairs (f, α) determine points on E(N), and the covering
EK(N) parametrises the additional choice of the character χ. By construction, p-stabilised
Heegner pairs (f, α, χ) give rise to points of EK(N), lying over the point (f, α) of E(N). We
shall show that Heegner classes can be interpolated over neighbourhoods of classical points in
EK(N).

We choose a point of E(N) corresponding to a p-stabilised eigenform (f0, α0) which is noble
in the sense of [20]. Then we can find a neighbourhood V � (f0, α0) in E(N) which is smooth,
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and étale over weight space, corresponding to a Coleman family F passing through (f0, α0);
and a free rank 2 O(V )-module MV (F) with an action of Gal(Q/Q) that interpolates the
Galois representations Vp(f) for all classical points (f, α) of V (including (f0, α0)). Let Ṽ be
the preimage of V in EK(N), and κṼ the universal family of characters over Ṽ .

Theorem A. If V is small enough, there exists a rigid-analytic family of cohomology classes

zF ∈ H1(K,MV (F)∗ ⊗ κṼ ),

the ‘big Heegner class’, whose specialisation at any point of Ṽ corresponding to a p-stabilised
Heegner pair (f, α, χ) is an explicit scalar multiple depending on α, of the generalised Heegner
class associated to (f, χ).

Note that we make no assumption on the local behaviour of p in K: it can be split, inert, or
ramified. The proof of Theorem A relies heavily on the techniques developed by two of us in the
paper [32] to interpolate Euler systems for GL2 ×GL2 in Coleman families. As in op.cit., the
main tool is the theory of overconvergent étale cohomology introduced by Andreatta–Iovita–
Stevens [4].

In § 6, we study the local properties of the Heegner class zF , and show that it is naturally
a section of a ‘Selmer sheaf’ over Ṽ , defined using Pottharst’s theory of trianguline Selmer
complexes. It would be interesting to attempt to formulate (and maybe even to prove)
an Iwasawa main conjecture in this context; we have not attempted to do this here, for
reasons of space, but it will be treated in forthcoming work by members of our research
groups.

In the final two sections of the paper, we impose the additional assumption that p splits in
K. In this case, Bertolini, Darmon and Prasanna have defined a ‘square root p-adic L-function’
LBDP
p (f), interpolating square roots of central L-values L(f, χ−1, 1) for varying χ. We show

in Theorem 7.3.3 that the BDP L-functions for varying f interpolate to a 2-parameter p-adic
L-function LBDP

p (N) on EK(N). Our final main result relates this ‘analytic’ p-adic L-function
to the Heegner class in Galois cohomology from Theorem A:

Theorem B. If V is sufficiently small, then the image of the class zF under the Perrin–Riou
regulator map is the restriction to Ṽ of the p-adic L-function LBDP

p (N).

(In contrast to Theorem A, the assumption that p split in K is essential for our methods
here. Andreatta and Iovita [3] have recently constructed an analogue of the BDP L-function
of an individual cuspform f when p is inert or ramified in K, and it would be interesting to
investigate whether this can be extended to allow f varying in Coleman families; we understand
that this question will be treated in forthcoming work of their research groups.)

1.2. Relation to earlier work

Theorem A extends earlier work of a number of authors. In particular, if F is an ordinary
Coleman family (that is, a Hida family), then Howard [21] has constructed a family of
cohomology classes zF interpolating the Heegner points at weight 2 specialisations of F . It
is, however, not clear from Howard’s construction whether the specialisations of the family zF
at higher weight classical points (f, χ) coincide with the generalised Heegner cycles, which is
the content of Theorem A in this case.

This compatibility is known if χ has ∞-type (k2 ,
k
2 ) and p is split in K, by work of Castella

[11]. Castella has informed us that his method could also be made to work for χ of more general
∞-type; but the restriction to p split is fundamental, since his strategy involves deducing
Theorem A from a version of Theorem B for Hida families proved in [12], rather than the
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other way around as in our approach. A direct proof of Theorem A for ordinary families,
without assuming p split, can be extracted from recent work of Disegni [17]; Disegni’s methods
are rather closer in spirit to those of the present paper.

The case of non-ordinary Coleman families does not seem to have received so much attention
hitherto. As far as we are aware, the only result in this direction prior to the present work is in
unpublished work of Kobayashi [27], which gives a one-parameter family of cohomology classes
interpolating the Heegner classes for (f, χ), for f a fixed, possibly non-ordinary eigenform
and varying χ (assuming p is split in K and f has trivial character). This result can be
recovered from Theorem A by specialising our family zF to the fibre of Ṽ over the point of V
corresponding to fα.

Note: Shortly after the present paper was first uploaded to the arXiv in June 2019, two
other papers appeared focussing on the same problem. The preprint [9] of Büyükboduk and
Lei extends Kobayashi’s work to Coleman families, thus giving an alternative proof of Theorem
A in the split-prime case. Their proof is significantly different from ours: as with Castella’s work
in the ordinary case, they first prove an analogue of Theorem B and then deduce Theorem A
from it.

The paper [35] proves the same result as our Theorem A in the case of p split in K and F
a Hida family, assumptions similar to those of [11] although the result is stronger than that of
op.cit. (weakening the assumptions on F and allowing all ∞-types of χ). Ota’s methods are
rather different from Castella’s, and appear to be somewhat closer to those of [17] and the
present paper.

1.3. Potential generalisations

Our result raises several natural questions which we hope will be addressed in future work.
Firstly, although we have imposed a strong Heegner hypothesis which allows us to work with
classical modular curves, the construction should extend straightforwardly to Heegner points
arising from quaternionic Shimura curves attached to (indefinite) quaternion division algebras
over Q. It should also be possible to extend the construction to Shimura curves over totally
real fields; Disegni’s results for ordinary families already apply in this generality, and we hope
that it may be possible to extend our results to treat the non-ordinary case.

One can also consider whether the cohomology classes zF glue together for different sections
F . The space Ṽ is a small local piece of an eigenvariety for the quasi-split unitary group
GU(1, 1) associated to K, and it is natural to ask whether the family zF can be ‘globalised’
over the whole eigenvariety. A result of this kind for Kato’s Euler system has been announced in
a preprint of Hansen [20], and it would be interesting to generalise this to the Heegner setting.

The original motivation for this project was to study the behaviour of Heegner classes in
the neighbourhood of a critical-slope Eisenstein series f . Here the eigenspace in classical étale
cohomology associated to f is 1-dimensional, and the projection of the Heegner class to this
eigenspace is trivially zero; but the eigenspace in overconvergent étale cohomology is larger,
and we hope that it may be possible to obtain interesting cohomology classes by projecting
our families zF to these ‘shadow’ Eisenstein eigenspaces.

2. Notation and conventions

2.1. Grössencharacters

We recall the setting in which Heegner points and Heegner cycles are considered, following [6,
§ 4.1]. We shall fix an integer N , which will be the prime-to-p part of the level of the modular
forms we shall consider.
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Let K be an imaginary quadratic field satisfying the classical Heegner hypothesis, that all
primes q | N are split† in K. This hypothesis implies that there exist ideals N �OK such that
OK/N ∼= Z/NZ. We shall choose such an ideal N. For any integer c coprime to N , there is
an isomorphism Oc/(N ∩ Oc) ∼= Z/NZ, where Oc is the OK-order of conductor c. So we can
regard any Dirichlet character ε modulo N as a character of (Oc/N ∩ Oc)×, and hence of the
profinite completion Ô×

c .

Definition 2.1.1. An algebraic Grössencharacter of K of finite type (c,N, ε) and ∞-type‡

(a, b) is a continuous homomorphism χ : A×
K,f → Q

×
satisfying χ(x) = xax̄b for x ∈ K×, whose

conductor is divisible by c, and whose restriction to Ô×
c is ε−1.

The conditions imply that the conductor of χ is exactly cNε, where Nε is the unique factor
of N whose norm is the conductor of ε.

Remark 2.1.2. Grössencharacters of finite type (c,N, ε) and ∞-type (a, b) exist if and only
if ε(u mod N) = u−aū−b for all u ∈ O×

c . If O×
c = {±1} (which is true in virtually all cases, that

is, all except the case when c = 1 and K is either Q(
√−1) or Q(

√−3)), this reduces to the
condition ε(−1) = (−1)a+b.

2.2. Heegner pairs

Definition 2.2.1. A Heegner pair of finite type (c,N, ε) and ∞-type (a, b) is a pair (f, χ),
where:

• χ is an algebraic Grössencharacter of finite type (c,N, ε) and ∞-type (a, b), with a, b � 0;
• f is a normalised cuspidal modular newform of level Γ1(N), character ε, and weight

a + b + 2.

We say (f, χ) has finite type (c,N) if it has finite type (c,N, ε) for some ε modulo N (not
necessarily primitive).

If (f, χ) is a Heegner pair, then L(f, χ−1, s) has a functional equation centred at s = 1, and
the sign in the functional equation is −1, so L(f, χ−1, 1) = 0.

Remark 2.2.2. Let N denote the Grössencharacter of ∞-type (1, 1) such that for all primes
q of K, N maps a uniformizer at q to #(OK/q). Then (f, χ) is a Heegner pair precisely when
the character χ · N lies in the set Σ(1)

cc (N) associated to f , as defined in [6, § 4.1]. We find it
more convenient to work with χ rather than with χ · N, which has the effect of shifting the
centre of the functional equation from s = 0 to s = 1.

2.3. Galois representations

We briefly fix notations for Galois representations. Let p be a prime not dividing N , and fix an
embedding Q ↪→ Qp. For simplicity, we suppose p 
= 2. We shall also suppose for the remainder
of this paper that N � 4; the case of N = 1, 2, 3 can be dealt with by introducing auxiliary
level structure in the usual way, but we leave the details to the interested reader.

†One could also allow some primes q | N to ramify in K subject to assumptions on the epsilon-factors, as in
[6], but for simplicity we shall stick to the above setting.

‡Our conventions for ∞-types are consistent with [6, § 4.1], but note that some other references would define
this to be ∞-type (−a,−b).
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2.3.1. Modular forms. Let f be any cuspidal Hecke eigenform of level Γ1(N) and weight
k + 2 � 2. Via our fixed embedding Q ↪→ Qp, we can consider the Hecke eigenvalues a�(f) as
elements of Qp. We write Vp(f) for Deligne’s Galois representation associated to f , which is
the unique isomorphism class of two-dimensional Qp-linear representations of Gal(Q/Q) on
which the trace of geometric Frobenius at a prime � � Np is a�(f). Note that the Hodge–Tate
weights of Vp(f) are {0,−1 − k} (where the Hodge–Tate weight of the cyclotomic character is
taken to be +1).

2.3.2. Grössencharacters as Galois characters. Recall that the Artin map identifies
Gal(Kab/K) with the profinite completion of A×

K,f/K×. (We normalise this map so that
uniformisers map to geometric Frobenius elements.)

Our choice of embeddings K ⊂ Q ↪→ Qp gives us two canonical characters σ, σ̄ : (K ⊗
Qp)× → Q

×
p . If χ : A×

K/K× → C× is an algebraic Grössencharacter of ∞-type (a, b) (see

footnote above), then the map A×
K,f → Q

×
p defined by x �→ χ(x)σ(xp)−aσ̄(xp)−b is trivial on

K× and hence can be regarded as a Galois character. It can be characterised as the unique
character unramified outside pfχ that maps a geometric Frobenius at q to χ(
q) for all primes
q � pfχ, where fχ is the conductor of χ and 
q is a uniformiser at q. Note that this construction
sends the norm character N to the inverse cyclotomic character, and the Hodge–Tate weights
of χ at the two embeddings K ↪→ Qp are (−a,−b).

Remark 2.3.3. Our conventions are chosen such that (f, χ) is a Heegner pair, then the
representation V = Vp(f)∗ ⊗ χ of Gal(Q/K) satisfies V τ ∼= V ∗(1), where τ is the non-trivial
element of Gal(K/Q).

Definition 2.3.4. We consider the following abelian extensions of K, corresponding via the
Artin map to open compact subgroups of A×

K,f .

• F denotes the extension corresponding to (1 + NÔK)× (the ray class field modulo N).
• For m � 0, Km is the extension corresponding to Ô×

pm (the ring class field modulo pm).
• Fm denotes the extension corresponding to (1 + NÔK)× ∩ Ô×

pm .

Since N � 4, we have O×
K ∩ (1 + N) = {1}, so the Artin map restricts to an isomorphism

from (1 + NÔK)× to Gal(Kab/F ), where F is the ray class field modulo N. We thus have a
character σ : Gal(Kab/F ) → Q

×
p given by x �→ σ(xp)−1 on 1 + NÔK, and similarly for σ̄. If

χ is a Grössencharacter of finite type (pm,N, ε) and ∞-type (a, b), then the Galois character
associated to χ restricts to σaσ̄b on Gal(Kab/Fm). On the slightly larger group Gal(Kab/Km),
it is given by the character of Ô×

pm mapping x to ε(x mod N)−1σ(xp)−aσ̄(xp)−b; we abuse
notation slightly by denoting this Galois character by εσaσ̄b. Thus the Grössencharacters of
∞-type (a, b) and finite type (pn,N, ε) for n � m correspond to extensions of εσaσ̄b from
Gal(Kab/Km) to Gal(Kab/K).

2.4. Coleman families

Recall that the Hecke polynomial at p of a newform f ∈ Sk+2(Γ1(N), ε) is the quadratic
polynomial X2 − ap(f)X + pk+1ε(p). Each root α of the Hecke polynomial corresponds to
a normalised eigenform fα of level Γ1(N) ∩ Γ0(p) with the same Hecke eigenvalues as f away
from p, and Up-eigenvalue α; we refer to these forms fα as p-stabilisations of f .

Definition 2.4.1. A p-stabilised Heegner pair (f, α, χ) of tame level N consists of a Heegner
pair (f, χ) of finite type (ps,N), for some s � 0, and a choice of root α of its Hecke polynomial.
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These are naturally parametrised by a rigid-analytic space, as we now explain. Let L be
a finite extension of Qp containing the values of ε. We write W for the 1-dimensional rigid-
analytic group variety over L parametrising continuous p-adic characters of Z×

p ; we consider Z
as a subset of W(L) by mapping k to the character x �→ xk.

There is a rigid-analytic space E(N, ε) → W, the N -new, cuspidal, character ε part of the
Coleman–Mazur–Buzzard eigencurve [10, 15], and p-stabilised eigenforms fα as above are
naturally points of E(N, ε). (Here, as in [32], our conventions are such that the fibre over k ∈ Z
corresponds to overconvergent eigenforms of weight k + 2.) There is also a rigid-analytic space
WK(N, ε) parametrising continuous p-adic characters of A×

K,f/K× whose restriction to (Ô(p)
K )×

is ε−1. Mapping a character of A×
K,f to the inverse of its restriction to Z×

p ⊆ O×
K,p defines a

morphism WK(N, ε) → W.

Definition 2.4.2. With the above notations, we define EK(N, ε) to be the fibre product

EK(N, ε):=WK(N, ε)×
W

E(N, ε).

We define EK(N) =
⊔

ε EK(N, ε), and similarly E(N) and WK(N).

This will be the parameter space for our p-adic families. By construction, any p-stabilised
Heegner pair of tame level N gives a point on EK(N), which lies above k ∈ Z ⊂ W if f has
weight k + 2.

Remark 2.4.3 (Notes on the space EK(N)). (i) We can interpret EK(N) as an eigenvariety
for the quasi-split unitary group

(GL2 ×ResK/Q Gm)/Gm
∼= GU(1, 1).

(ii) The space EK(N) is a torsor over E(N) for the rigid-analytic group variety Wac
K

parametrising characters of A×
K,f/(K× · Ô×

p∞) ∼= Gal(K∞/K).
(iii) If ε0 is the trivial character mod N , then the images of both WK(N, ε0) and E(N, ε0) in W

are contained in the subset W+ of the components of W parametrising characters with κ(−1) =
1. Over this subset, one can choose a character Θ : Z×

p → O(W+)× satisfying Θ2 = κuniv, where

κuniv is the canonical character. The composite of Θ with the norm map A×
K,f/K× NmK/Q−−−−−→

A×
Q,f/Q

×
>0

∼= Ẑ× Θ−→ O(W+) then gives a splitting of the map WK(N, ε0) → W+, and hence an
identification

EK(N, ε0) ∼= E(N, ε0) ×Wac
K .

This is the approach adopted in [21] and many other subsequent works such as [11]. However,
the choice of the square-root character Θ is non-canonical, and it is awkward to handle non-
trivial ε by this approach, particularly when ε(−1) = −1. So we prefer to use the space EK(N)
instead.

3. Generalised Heegner cycles

3.1. Groups and embeddings

If τ ∈ K − Q, there is a unique embedding of Q-algebras ι : K ↪→ Mat2×2(Q) such that ι(K)
fixes the line in K2 spanned by (τ1) and acts on the corresponding line by the natural scalar
multiplication.
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Remark 3.1.1. Concretely, ι maps a + bτ ∈ K to the matrix
(
a + b(τ + τ̄) −bττ̄

b a

)
∈ M2×2(Q).

This coincides with the embedding denoted ξ in [6, § 4.3].

Clearly, the algebra embedding corresponding to g · τ is gιg−1. We can also regard ι as an
embedding of algebraic groups H ↪→ GL2, where H is the torus ResK/Q(Gm).

Notation 3.1.2. We let τ∗ = −1/τ̄ .

Clearly, the vector v =
(
τ
1

)
is an eigenvector for ι(K×) acting via the standard representation

of GL2(K) on K2: we have ι(u) · v = uv for all u ∈ K×. On the other hand, if (K2)∨ denotes
the dual of the standard representation of GL2(K), then v∗ =

(
τ∗
1

)
is an eigenvector for ι(K×)

acting on (K2)∨, that is, tι(u)−1 · v∗ = u−1v∗.

3.2. CM points

Recall that the modular curve Y1(N) can be defined as the moduli space of pairs (E,P ), where
E is an elliptic curve and P is a section of exact order N (both defined over some Z[1/N ]-
algebra). The identification Γ1(N)\H ∼= Y1(N)(C), where H is the upper half-plane, is given
by mapping τ ∈ H to the pair (C/Zτ + Z, 1

N mod Zτ + Z).
Let A denote the elliptic curve C/OK, and let t denote a choice of generator of N−1/OK.

Then the pair (A, t) defines a point of Y1(N)(C). This point is defined over the ray class field
F of K modulo N (see, for example, [22, § 15.3.1]).

Lemma 3.2.1. Let H be the upper half-plane. There exists a point τ ∈ H ∩ K such that

(i) the Γ1(N)-orbit of τ represents the pair (A, t),
(ii) τ generates the quotient of additive groups (OK ⊗ Zp)/Zp,
(iii) τ is a unit at all primes above p.

Proof. If τ is any generator of the quotient group OK/Z, then τ certainly generates (OK ⊗
Zp)/Zp. If p is inert in K, then it is immediate that τ is a unit above p; if not, we may achieve
this by replacing τ with τ + n for some n ∈ Z (using the fact that by assumption p 
= 2).

This gives a τ which satisfies (ii) and (iii), and which represents the SL2(Z)-orbit of (A, t).
Moreover, this is also true if we replace τ with γ · τ , for any γ ∈ Γ(p), where Γ(p) is the principal
congruence subgroup of level p in SL2(Z). Since p � N , Γ(p) acts transitively on SL2(Z)/Γ1(N),
so we can choose a τ which represents (A, t). �

Notation 3.2.2. We fix (for the remainder of this paper) a τ satisfying the conditions
of the lemma, and let ι : H ↪→ GL2 be the corresponding embedding. For m � 0, we let
τm = p−mτ , and we let ιm = (p

−m 0
0 1)ι(

pm 0
0 1) be the embedding corresponding to τm. We let

Am = C/(Zτm + Z), φm : A → Am the canonical cyclic pm-isogeny, and tm the N -torsion point
φm(tA) of Am, so that Γ1(N) · τm represents the pair (Am, tm).

Note that the endomorphism ring of Am is Opm , so (Am, φm) defines an element of the
set IsogNpm(A) in the notation of [6, § 1.4]. The pair (Am, φm) is defined over the field Fm of
Definition 2.3.4.

Observe that the Tate module Tp(A) is canonically identified with OK ⊗ Zp. From the
main theorem of complex multiplication, we have the following characterisation of the étale
cohomology of A:
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Proposition 3.2.3. The action of Gal(Q/F ) on Tp(A) ⊗ Qp is given by σ−1 ⊕ σ̄−1, where
σ and σ̄ are regarded as Galois characters as in § 2.3.

Since σ and σ̄ are unramified outside p (and A is independent of p), the Neron–Ogg–
Shafarevich criterion implies that A has good reduction at every prime of F . In particular,
(A, t) defines a point on the integral model of Y1(N) over OF [1/N ].

3.3. Algebraic representations

If E is any commutative ring, we write Symk E2 for the left representation of GL2(E)
afforded by the space of homogenous polynomials of degree k over E in two variables
X,Y , with (a b

c d) · f = f((X,Y ) · (a b
c d)) = f(aX + cY, bX + dY ). The dual of Symk E2 as a

GL2(E)-representation is given by TSymk((E2)∨), where (E2)∨ is the dual of the standard
representation, and TSymk denotes symmetric tensors (see (see [24, § 2.2] or [25, § 2.2] for
further details).

We now assume that E is a field, and that there exists an embedding σ : K ↪→ E (and we
fix such a choice). Then σ and its conjugate σ̄ are 1-dimensional representations of H over E.

Definition 3.3.1. We let G = GL2 ×H, and for integers a, b � 0, we define Va,b to be the
following representation of G over E:

Va,b = Syma+b(E2) �
(
σ−a ⊗ σ̄−b

)
.

We write δ for the diagonal embedding (ι, id) : H ↪→ G, where ι is the embedding H ↪→
GL2 fixed in Notation 3.2.2, and similarly δm = (ιm, id). We write δ∗m for the restriction of
representations from G to H via δm. The following computation is straightforward:

Proposition 3.3.2. For any m, the representation δ∗m(V ∨
a,b) has a unique summand

isomorphic to the trivial representation of H.

If ι is given by τ ∈ P1
K as above, then we let em =

(
σ(τ∗

m)
1

)
∈ (E2)∨, where τ∗m = pmτ∗. On

this vector em, the group ιm(H) acts as σ−1. Hence, for every a, b � 0, we can consider the
vector

e[a,b]
m = (em)⊗a · (em)⊗b ∈ TSyma+b((E2)∨) =

(
Symk E2

)∨
,

where · denotes the symmetrised tensor product in the algebra TSym•((E2)∨). The vector
e
[a,b]
m transforms under δm(H) via σ−aσ̄−b, so it is a basis vector of δ∗m(V ∨

a,b).

3.4. Heegner classes

As in [6, § 2.3], the pair (φm, Am) determines a cycle

Δφm
∈ εW εA CHk+1

(
(Wk ×Ak)Fm

)
Q
,

for each k ∈ Z�0, where Wk is a compactification of the fibre product Ek of the universal
elliptic curve over Y1(N), εW and εA are certain idempotents defined in op.cit., and Fm is as
in Notation 3.2.2. Via pullback, we regard Δφm

simply as a cycle on Ek ×Ak. In the language
of relative Chow motives, we have

εW εA CHk+1
(
(Ek ×Ak)Fm

)
= H2

mot

(
Y1(N)Fm

,TSymk(h1(E)(1)) ⊗ TSymk(h1(A))(1)
)
,
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where h1(E) ∈ CHM(Y1(N)Q) is the degree 1 part of the relative motive of E/Y1(N), and
similarly for A.

If we choose a, b � 0 with a + b = k, then inside TSymk(h1(A)) ⊗K is a rank-1 direct
summand h(a,b)(A) on which the complex multiplication action of OK is given by [x]∗ = xax̄b.
We write

z
[a,b]
mot,m ∈ H2

mot

(
Y1(N)Fm

,TSymk(h1(E)(1)) ⊗ h(a,b)(A)(1)
)

for the projection of Δφm
to this direct summand.

We can reinterpret this more slickly as follows. Let us write Sm for the canonical model
over K of the Shimura variety for H of level UN,pm = {x ∈ Ô×

pm : x = 1 mod N}. Since our
Shimura data for both H and GL2 are of PEL type, there is a functor from algebraic
representations of G to relative Chow motives on Y1(N) × Sm, compatible with tensor products
and duals, constructed by Ancona [1, 31]; and it follows from the definition of this functor
that TSymk(h1(E)(1)) ⊗ h(a,b)(A) is the relative motive associated to V ∨

a,b. A result due to
Torzewski [39] shows that this functor is natural with respect to morphisms of PEL data, so
we have a diagram

where the top arrow δ∗m is restriction of algebraic representations, and the bottom arrow is
pullback of relative Chow motives. For any a, b � 0, let Va,b be the image of Va,b under Ancona’s
functor. Since Sm has codimension 1 in Y1(N) × Sm, the pushforward (Gysin) map δm∗ gives
a morphism

H0
mot(Sm, δ∗m(V∨

a,b))
δm∗−−→H2

mot(Y1(N)K × Sm,V∨
a,b(1))

=H2
mot

(
Y1(N)Fm

,TSymk(h1(E)(1)) ⊗ h(a,b)(A)(1)
)
,

for any a, b, where the last isomorphism comes from the fact that Sm is isomorphic as a
K-variety to the Gal(Fm/K)-orbit of τm. The left-hand side is just (V∨

a,b)
δm(H), and the

pushforward of our basis vector e
[a,b]
m is exactly the Heegner class.

If L denotes a p-adic field with an embedding σ : K ↪→ L, then the above motivic cohomology
groups map naturally to their étale analogues with coefficients in L; and the p-adic realisation
of Va,b is exactly the lisse étale L-sheaf on ShG(U) associated to the representation Va,b of
G(Qp). (We shall abuse notation a little by using the same symbol Va,b both for the relative
Chow motive and its étale realisation.) We write

z
[a,b]
ét,m ∈ H2

ét

(
Y1(N)Fm

,V∨
a,b(1)

)
for the étale realisation of z[a,b]

mot,m. The realisation map is compatible with pushforward maps,

so we deduce that z[a,b]
ét,m is simply the pushforward via δm of the class in H0

ét(Sm, δ∗mV∨
a,b) given

by e
[a,b]
m .

Remark 3.4.1. There is a corresponding description of the realisations of the Heegner class
in other cohomology theories admitting functorial realisation maps from motivic cohomology,
such as absolute Hodge cohomology, or p-adic syntomic cohomology.
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3.5. Projection to eigenspaces

Since Y1(N) is affine, its base-change to Q has cohomological dimension 1, so the Hochschild–
Serre spectral sequence gives a natural map

H2
ét

(
Y1(N)Fm

,V∨
a,b(1)

) → H1
(
Fm, H1

ét(Y1(N)Q,V∨
k (1)) ⊗ σaσ̄b

)
= H1

(
K, H1

ét(Y1(N)Q,V∨
k (1)) ⊗ IndK

Fm
σaσ̄b

)
,

where Vk is the étale Qp-sheaf associated to the representation Symk(Q2
p) of GL2(Qp), and

σ, σ̄ are interpreted as characters Gal(Kab/F ) → Q×
p via the Artin map.

As the groups H1(K,−) are not in general finite dimensional, it is convenient to introduce the
following abuse of notation. Let Σ be the set of primes of K dividing pN . Then all the modular
curves and Kuga–Sato varieties that we consider have smooth models over the ring OK[1/Σ], so
the elements we consider will in fact land in the finite-dimensional subspace H1(OK[1/Σ],−)
(the cohomology unramified outside Σ). We shall abusively write H1(K,−) when we mean
H1(OK[1/Σ],−) henceforth, and similarly for finite extensions of K.

Definition 3.5.1. If f is an eigenform of level N , weight k + 2 and character ε, then for
m � 0 and 0 � j � k, we define

z
[f,j]
ét,m:=prf

(
z
[k−j,j]
ét,m

)
∈ H1

(
Fm, Vp(f)∗(σk−j σ̄j)

)
.

Now suppose (f, χ) is a Heegner pair of finite type (pm,N, ε) and ∞-type (a, b). Then χ
gives an extension of σaσ̄b to Gal(Q/K).

Proposition 3.5.2. The class z
[f,j]
ét,m lies in H1(Fm, Vp(f)∗(χ))Gal(Fm/Km) ∼=

H1(Km, Vp(f)∗(χ)).

Proof. The 0-dimensional variety Sm has an action of Ô×
pm/UN,pm ∼= (Z/NZ)×; and the

embedding δm intertwines this with the action on Y1(N) × Sm given by (〈a mod N〉, a), where
〈a mod N〉 denotes the action of (Z/NZ)× on Y1(N) via the diamond operators. Since χ

restricts to εσaσ̄b on Gal(Kab/Km), this implies that z
[f,j]
ét,m is invariant under this group when

we twist the Galois action by ε. The second isomorphism is an easy consequence of the inflation-
restriction exact sequence (since we are working with Qp coefficients). �

Proposition 3.5.3. For (f, χ) a Heegner pair of finite type (pm,N, ε) and ∞-type (k − j, j),
we define

z
[f,χ]
ét := normKm

K
(
z
[f,j]
ét,m

)
∈ H1(K, Vp(f)∗(χ)).

For applications to p-adic deformations, it is convenient to extend this by defining cohomol-
ogy classes on the modular curves Y1(N(pn)) of level Γ1(N) ∩ Γ0(pn), for any n � 0. If m � n,
then the point on Y1(N(pn)) corresponding to τm is defined over Fm; using this modular curve
in place of Y1(N) in the above constructions, we obtain a class

Z
[a,b]
ét,m,n ∈ H2

ét

(
Y1(N(pn))Fm

,V∨
a,b(1)

)
; (3.1)
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note that Z [a,b]
ét,m,0 is the class z[a,b]

ét,m defined above. This definition does not make sense for m < n,

but one can show that if n � 1 the points Z
[a,b]
ét,m,n satisfy

normFm

Fm+1

(
Z

[a,b]
ét,m+1,n

)
= U ′

p · Z [a,b]
ét,m,n,

where U ′
p is a Hecke operator (the transpose of the usual Up with respect to Poincaré duality);

see Proposition 5.1.2. So we can define Z
[a,b]
ét,m,n for m < n by this relation, after projecting to

the maximal direct summand of H2
ét(Y1(N(pn))Fm

,V∨
a,b(1)) on which U ′

p acts invertibly (the
sum of the generalised eigenspaces with non-zero eigenvalue). In particular, we can thus define
classes z

[fα,j]
ét,m , for fα a p-stabilised eigenform of level Γ1(N) ∩ Γ0(p) and m � 0, and z

[fα,χ]
ét for

(f, α, χ) a p-stabilised Heegner pair, in the same way as above.

3.5.4. Relating p-stabilised and non-p-stabilised classes. If fα is a p-stabilisation of a
prime-to-p level eigenform f , then Vp(f)∗ and Vp(fα)∗ are isomorphic as abstract Galois
representations, but realised differently as quotients of cohomology of the tower of modular
curves. An explicit isomorphism between the two is given by the map (Prα)∗ : Vp(fα)∗ → Vp(f)∗

defined in [25, Definition 5.7.5], and a straightforward check gives the following relation,
analogous to Theorem 5.7.6 of op.cit.:

Proposition 3.5.5. We have

(Prα)∗(z
[fα,χ]
ét ) = Ep(fα, χ) · z[f,χ]

ét ,

where Ep(fα, χ) is a non-zero scalar. If χ is ramified at p this scalar is 1; if χ is unramified,

Ep(fα, χ) is given by (1 − χ(p)
α )(1 − χ(p̄)

α ) if p = pp̄ is split, (1 − χ(p)
α2 ) if p is inert, and (1 − χ(p)

α )
if p = p2 is ramified.

4. Interpolating coefficient systems

4.1. Spaces of distributions

Let L be a finite extension of Qp, and k � 0 an integer. Let T = O2
L, considered as a left

GL2(OL)-module via the defining representation of GL2; and recall the explicit model of the
GL2(OL)-module Symk T described above. As we have seen, the dual of Symk T is the module
TSymk(T∨) of symmetric tensors of degree k over T∨.

Definition 4.1.1. Let n � 1.

(i) Define a compact open subgroup K0(pn) ⊂ GL2(Zp) by

K0(pn):=

{(
a b

c d

)
∈ GL2(Zp) : c = 0 mod pn

}
.

(ii) Let Ak,n denote the space of power series in a variable Z (with coefficients in L) which
converge on pnOCp

, equipped with a left action of K0(pn) via(
a b

c d

)
· f = (bZ + d)kf

(
aZ + c

bZ + d

)
. (4.1)

We consider Ak,n as a Banach space in the supremum norm (as functions on pnOCp
), with

unit ball the OL-lattice A◦
k,n of functions whose supremum norm is � 1.



12 DIMITAR JETCHEV, DAVID LOEFFLER AND SARAH LIVIA ZERBES

(iii) We consider Symk T as a submodule of A◦
k,n, via f(X,Y ) �→ f(Z, 1).

(iv) We let D◦
k,n = HomOL

(A◦
k,n,OL), and Dk,n = D◦

k,n ⊗ L = Homcts(Ak,n, L). We equip
these with the dual action of K0(pn) defined by

(γ · φ)(f) = φ(γ−1f)

for all γ ∈ K0(pn), φ ∈ Dk,n, and f ∈ Ak,n. Dualising the inclusions of (iii) gives us K0(pn)-
equivariant moment maps

momk : D◦
k,n → TSymk(T∨).

Note that the action (4.1) is well defined, since c ∈ pnZp and d ∈ Z×
p , and hence Z �→ c+aZ

d+bZ
preserves pnOCp

.
We can extend the action of K0(pn) on Ak,0 to the monoid Σ0(pn) ⊂ GL2(Qp) generated

by K0(pn) together with the element (p 0
0 1), which acts on Ak,n as f(Z) �→ f(pZ). Hence we

obtain a left action on Dk,n (or D◦
k,n) of the monoid Σ′

0(p
n) generated by K0(pn) and (p

−1 0
0 1).

This is compatible with the specialisations momk.

4.2. Interpolation over weight space

Let W denote the rigid space parameterising characters of Z×
p , as above. We shall interpolate

the distribution spaces Dk,n over W, following [4, 20, 32].
More precisely, for n � 1, let Wn be the locus in W consisting of ‘n-analytic’ characters,

which are the characters κ such that vp(κ(1 + p) − 1) > 1
pn−1(p−1) , where vp is the valuation

such that vp(p) = 1. (Geometrically, W is a union of p− 1 discs of radius 1, and Wn is the
union of slightly smaller open discs inside each component of W.) If κ is n-analytic, then its
restriction to each coset a + pnZp is given by a single convergent power series.

We let U be an open disc contained in Wn and defined over L. Associated to U is an algebra
ΛU

∼= OL[[u]] of functions on U bounded by 1, which is a local ring with maximal ideal mU and
finite residue field; and a universal character κU : Z×

p → Λ×
U . We define A◦

U,n to be the space
of power series

∑
s�0 as(

Z
pn )s with as ∈ ΛU tending to 0 in the mU -adic topology. This space

has a right action of Σ0(pn), via the same formulae as before. (This relies crucially on the fact
that κU is n-analytic, which follows from the assumption that U ⊆ Wn.)

If we let D◦
U,n be the set of ΛU -linear maps A◦

U,n → ΛU , then D◦
U,n is a profinite topological

ΛU -module with a left action of Σ′
0(p

n), equipped with a filtration by open Σ′
0(p

n)-invariant
ΛU -submodules, and with Σ′

0(p
n)-equivariant moment maps

momk : D◦
U,n ⊗̂

(ΛU ,k)
OL → TSymk T∨

for all k ∈ U . Cf. [32, Lemma 4.2.8].

4.3. The eigen-distribution associated to H

Recall that we have fixed in Notation 3.2.2 a point τ ∈ H ∩ K which is a unit at the primes
above p, and defined τ∗ = −1/τ̄ . Enlarging L if necessary, we suppose that L contains the
image of K under our embedding Q ↪→ Qp, so we have a distinguished embedding σ : K ↪→ L.

Let m � n. Since σ(τ∗) ∈ OL, ‘evaluation at σ(τ∗m) = pmσ(τ∗)’ is well defined as a map
A◦

k,n → OL, that is, as an element ek,0,m ∈ D◦
k,n.

Proposition 4.3.1. We have ιm((Opm ⊗ Zp)×) ⊆ K0(pn), and ιm((Opm ⊗ Zp)×) acts on

ek,0,m via the character σ−k. Moreover, the image of ek,0,m under momk is e
[k,0]
m ∈ TSymk T∨.
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Proof. Unravelling the definitions, if u ∈ K ⊗ Qp maps to (a b
c d) ∈ GL2(Qp) under ιm, then

aσ(τ∗m) + c = σ(u)τ∗m and bσ(τ∗m) + d = σ(u). Thus aτ∗
m+c

bτ∗
m+d = τ∗m, so for f ∈ A◦

k,n we have((
a b

c d

)
· f

)
(σ(τ∗m)) = σ(bτm + d)kf(τ∗m) = σ(u)kf(σ(τ∗m)).

Hence (a b
c d) · ek,0,m = σ(u)−kek,0,m as required.

The restriction of this linear functional ek,0,m to Pk = Symk T is given by evaluation of
polynomials at (X,Y ) = (σ(τ∗m), 1), which is exactly the definition of e[k,0]

m . �

For an open disc U ⊆ Wn as above, we have a class eU,0,m defined similarly, for any m � n.
This is an ιm((Opm ⊗ Zp)×)-invariant vector in D◦

U,n which transforms under (Opm ⊗ Zp)× by
the character κU ◦ σ (which is well defined as a character of O×

n , since κU is n-analytic).

4.4. Twisting

We have succeeded in p-adically interpolating the e
[k,0]
m , for varying k � 0. We shall now extend

this by interpolating the e
[k−j,j]
m , for a fixed j � 0 and varying integers k � j, via the following

simple trick: we consider the tensor product of the vector ek−j,0,m ∈ (D◦
k−j,n) with e

[0,j]
m ∈

TSymj(T∨). This gives, clearly, a vector in the space D◦
k−j,n ⊗ TSymj T∨, on which ιm((Opm ⊗

Zp)×) acts via σ−(k−j)σ̄−j ; and its image under the composite

D◦
k−j,n ⊗ TSymj T∨ momk−j ⊗id−−−−−−−−→ TSymk−j T∨ ⊗ TSymj T∨ → TSymk T∨,

where the last map is the symmetrised tensor product, is e
[k−j,j]
m . This evidently interpolates

over discs U , as above. More subtly, for any j � 0 there is a map of Σ′
0(p

n)-modules

Πj : DU−j,n ⊗ TSymj V ∨ → DU,n,

the ‘overconvergent projector’. (This is the map denoted by δ∗j in [32, § 5.2], but we use a
different notation here to avoid conflict with the morphism denoted δm elsewhere in this paper.)
The map Πj does not preserve the natural OL-lattices in general, but its denominator is
bounded by an explicit function of n and j.

Definition 4.4.1. We define

eU,j,m:=Πj

(
eU−j,0,m ⊗ e[0,j]

m

)
∈ DU,n.

By construction, this vector transforms under (Opm ⊗ Zp)× via the character σ−(κU−j)σ̄−j ,
and its image under momk for k ∈ U is given by

momk (eU,j,m) =

⎧⎨⎩e
[k−j,j]
m if k � j,

0 if k < j.

Remark 4.4.2. The class eU,j,m is independent of n: more precisely, the classes with the
same name for different functions n are compatible under the natural maps DU,n → DU,n−1.

One can make the value of eU,j,m on f ∈ AU,n explicit using the formulae of op.cit.: it is
a linear combination of the first j derivatives of f at pmτ∗. However, we shall not need this
explicit formula here.

The following lemma will be crucial in § 5.3:
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Lemma 4.4.3. Let h � 0. There is a constant C, depending on n and h but independent of
m, such that

h∑
j=0

(−1)j
(∇− j

h− j

)
eU,j,m ∈ CphmD◦

U,n,

where ∇ ∈ ΛU [1/p] acts in weight k as multiplication by k.

Proof. We note first that em − ēm = pm ·
(
τ∗ − τ̄∗

0

)
as elements of T∨ ∼= (OL)2. Thus em −

ēm ∈ pmT∨; so

(em − ēm)⊗h =
h∑

j=0

(−1)je[h−j,j]
m ∈ pmh TSymh T∨.

On the other hand, we know there is a constant C (depending only on n and h) such that

Πh

(
D◦

U−h,n ⊗ TSymh T∨
)
⊆ CD◦

U,n.

Hence we obtain
h∑

j=0

(−1)jΠj

(
eU−h,0,m ⊗ e[h−j,j]

m

)
∈ CpmhD◦

U,n.

Using the identity

Πh

(
eU−h,0,m ⊗ e[h−j,j]

m

)
=

(∇− j

h− j

)
eU,j,m

(cf. [32, Lemma 5.1.5]), we deduce the result. �

5. Families of Heegner classes

5.1. Families over weight space

As above, let U be an open disc in weight space defined over L, and let κU be the associated
universal weight; and suppose that U ⊆ Wn, for some n � 1, so that κU is n-analytic in the
sense of § 4.2.

Since D◦
U,n is a profinite left K0(pn)-module, we can interpret it as an étale sheaf on the

modular curve Y1(N(pn)). For each m � n and j � 0, we can regard eU,j,m as a section

eU,j,m ∈ H0
ét

(
Sm, δ∗m

(
D◦

U,n ⊗ σκU−j σ̄j
))

in the notation of § 3.4, whose image under the moment map momk, for any k ∈ U with k � j,
is the étale realisation of e[k−j,j]

m . We can thus define

z
[j]
U,m,n = (δm)∗(eU,j,m) ∈ H2

ét

(
Y1(N(pn))Fm

, DU,n(1) ⊗ σ(κU−j)σ̄j
)
,

and we automatically obtain the following interpolation property:

Proposition 5.1.1. For every m � n, and every k ∈ U ∩ Z�0, we have

momk
(
z
[j]
U,m,n

)
=

{
Z

[k−j,j]
ét,m,n if k � j,

0 if k < j,

where Z
[k−j,j]
ét,m,n is as defined in (3.1).
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These classes have the following straightforward but crucial norm-compatibility property. Let
Ŷ be the modular curve of level {g ∈ Γ1(N) : g = 0 mod ( ∗ p

pn ∗)}; and consider the diagram of
modular curves

where Φ is given by the action of (p 0
0 1) ∈ GL2(Qp) (which corresponds to τ �→ τ/p on the

upper half-plane). On the cohomology of the Qp-sheaves Vk and V∨
k , this diagram gives rise to

two Hecke operators: the operator (p̂r)∗ ◦ Φ∗ ◦ (pr)∗, which is the usual Hecke operator Up; and
the operator U ′

p = (pr)∗ ◦ (Φ−1)∗ ◦ (p̂r)∗, which is the dual of Up under Poincaré duality. See
[25, § 2.4] for further details. The action of U ′

p makes sense on the cohomology of the sheaves
Dk,n, compatibly with the moment maps, since pullback by Φ−1 corresponds to acting on the
sheaf by (p

−1 0
0 1) ∈ Σ′

0(p).

Proposition 5.1.2. For all m � n � 1, we have

normFm+1
Fm

(
z
[j]
U,m+1,n

)
= U ′

p · z[j]
U,m,n.

Proof. One computes that the CM point at level Ŷ corresponding to τm is defined over
Fm+1, and its orbit under the action of Gal(Fm+1/Fm) is exactly the preimage under p̂r of
the Γ1(N(pn))-orbit of τm. Applying the same constructions as before to this CM point on Ŷ
gives a class

ẑ
[j]
U,m,n ∈ H2

ét

(
ŶFm+1 , DU,n(1) ⊗ σ(κU−j)σ̄j

)
satisfying

normFm+1
Fm

(
ẑ
[j]
U,m,n

)
= p̂r∗

(
z
[j]
U,m,n

)
.

Hence we have

U ′
p · z[j]

U,m,n = normFm+1
Fm

(
(pr)∗(Φ−1)∗ẑ[j]

U,m,n

)
.

The image under Φ of the CM point τm is τm+1; and the action of Φ−1 on the sheaf sends
e[j]
U,m,n to e[j]

U,m+1,n. So we can conclude that

(pr)∗(Φ−1)∗ẑ[j]
U,m,n = z

[j]
U,m+1,n.

Combining these last two formulae gives normFm+1
Fm

(z[j]
U,m+1,n) = U ′

p · z[j]
U,m,n, as required. �

5.2. Projection to a Coleman family

Let f0 be a level N newform of some weight k0 + 2 � 2, and α0 a root of its Hecke polynomial
at p. We impose the technical condition that the p-stabilisation (f0)α0 be a noble eigenform
in the sense of [20], which is automatic if α0 has valuation < k0 + 1 and is distinct from† the
other root β0.

Then there exists an affinoid disc V � k0 in W, and a unique Coleman family F of eigenforms
over V , specialising in weight k0 to (f0)α0 (equivalently, a lifting of V to a neighbourhood of

†This condition α0 �= β0 is known to be automatically satisfied if k0 = 0, and for all k0 � 0 assuming the
Tate conjecture [14].
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(f0, α0) in E(N)). Shrinking V if necessary, we may arrange that for every k ∈ V ∩ Z�0, the
specialisation of F at k is a p-stabilisation fα of some level N newform f of weight k + 2.

As explained in [32, § 4.6], after possibly further shrinking V , we may find an open disc
U ⊃ V contained in W1 with the following property: the Galois representation

MV :=H1
ét

(
Y1(N(p))Q, DU,1(1)

)
⊗̂

ΛU [1/p]
O(V )

has a direct summand MV (F)∗ which is free of rank 2 over O(V ), and interpolates the (dual)
Galois representations of the classical specialisations fα of F . See [32, § 4.6] for further details.

Our assumption that all classical-weight specialisations of F are classical forms implies that
the image of z[j]

U,m,1 in MV (F)∗ is divisible by
(∇
j

)
(cf. [32, Proposition 5.2.5]). So we obtain

classes

z
[j]
F,m ∈ H1

(
Fm,MV (F)∗ ⊗ σκV −j σ̄j

)
,

for all m � 1 and j � 0, satisfying

normFm+1
Fm

(
z
[j]
F,m+1

)
= αF · z[j]

F,m,

where αF ∈ O(V )× is the Up-eigenvalue of F . These have the following interpolation property:
let k ∈ V ∩ Z�j , and let fα be the specialisation of F at k. Then the image of z

[j]
F,m under

specialisation at k is 1

(kj)
z
[fα,j]
ét,m .

5.3. Interpolation in j

Let F∞ =
⋃

n�1 Fn, and let Γac
1 = Gal(F∞/F1) ∼= (Op ⊗ Zp)×/Z×

p . This is an abelian group
isomorphic to the additive group Zp, and χac = σ/σ̄ is a character Γac

1 → Q×
p of infinite order.

Let Wac
1 denote the rigid-analytic variety parametrising characters of Γac

1 , which is equipped
with a universal character κac : Γac

1 → O(Wac
1 )×. We regard Z as a subgroup of Wac

1 (Qp) via
the powers of χac, so the specialisation of κac at n ∈ Z is (χac)n.

Proposition 5.3.1. There exists a cohomology class

zF,∞ ∈ H1
(
F1,MV (F)∗ ⊗ σκV ⊗̂O(Wac

1 )(−κac)
)

whose image in H1(Fm,MV (F)∗ ⊗ σκV −j σ̄j), for any j � 0 and m � 1, is 1
αm

F
z
[j]
F,m.

Proof. Let λ � 0 be such that pλ is the supremum norm of α−1
F ∈ O(V ). We choose an

integer h � �λ�, and consider the family of cohomology classes defined by

cm,j,h = α−m
F

(∇
h

)
z
[j]
F,m,

for 0 � j � h and m � 1. Here ∇ ∈ O(V ) is the element whose value at a character κ : Z×
p →

C×
p is given by κ′(1) (cf. [32, Proposition 5.2.5]); in particular, ∇ takes the value n at the

character x �→ xn.
These classes cm,j,h are norm-compatible in m. Moreover, if ‖ · ‖ denotes the supremum

seminorm on H1(F∞,MV (F)∗) induced by some choice of Banach O(V )-module norm on
MV (F)∗, then these classes satisfy the bound∥∥∥∥∥∥

h∑
j=0

(−1)j
(
h

j

)
ResF∞

Fm
(cm,j,h)

∥∥∥∥∥∥ = O(p−(h−λ)m),
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by Lemma 4.4.3; note that we are using here the identity(
h

j

)
·
(∇
h

)
=

∇(∇− 1) . . . (∇− h + 1)
j!(h− j)!

=
(∇
j

)(∇− j

h− j

)
,

so
∑h

j=0(−1)j
(
h
j

)
ResF∞

Fm
(cm,j,h) is the image of the quantity

∑h
j=0(−1)j

(∇−j
h−j

)
eU,j,m considered

in the lemma.
Since F is cuspidal, we have H0(F∞,MV (F)∗) = 0; so we can now invoke the general

construction of [32, Proposition 2.3.3] to give a class

c(h) ∈ H1(F1,MV (F)∗ ⊗ σκV ⊗̂Dλ(Γac
1 )(−κac)),

which interpolates these classes, where Dλ(Γac
1 ) is the subspace of O(Wac

1 ) consisting of
distributions of order λ. Moreover, if we take two different values h, h′, then the classes(∇
h

)
c(h′) and

(∇
h′
)
c(h) have the same specialisations at locally algebraic characters of degree up

to min(h, h′) � �λ�, so they must in fact agree.
We can map c(h) into the slightly larger module H1(F1,MV (F)∗ ⊗ σκV ⊗̂O(Wac

1 )(−κac)).
This is the sections of a torsion-free sheaf over V ×Wac

1 ; and the image of c(h) is divisible by(∇
h

)
(because sufficiently many of its specialisations are so). Hence the quotient c(h)/

(∇
h

)
is

well defined and independent of h, and therefore enjoys an interpolating property at characters
of all weights j � 0. �

5.4. Re-parametrisation of weights

Since σκV is not well defined as a character of Gal(Q/K) but only of Gal(Q/F1), it is convenient
to ‘re-parametrise’ V ×Wac

1 , as follows.
Consider the group ΓK,1 = (Zp + pOK,p)×, and let WK,1 denote its character space. Then

we have a short exact sequence of abelian profinite groups

1 → Z×
p → ΓK,1 → Γac

1 → 1,

(which is, in fact, split, although there is no canonical splitting). There is therefore a natural
map WK,1 → W, whose fibres are the orbits of Wac

1 . Over V , this morphism admits a canonical
section (since 1-analytic characters of Z×

p extend to ΓK,1). Hence the preimage of V in WK,1

is isomorphic as a rigid-analytic space to V ×Wac
1 .

On the other hand, we have defined above a space WK(N, ε), and restriction of characters
defines a finite map WK(N, ε) → WK,1. Some careful book-keeping shows that if Ṽ denotes the
preimage of V ×Wac

1 in WK(N, ε), and κṼ is the universal character Gal(Kab/K) → O(Ṽ )×,
then the pullback of zF,∞ to Ṽ is an element of H1(F1,MṼ (F)∗), where

MṼ (F)∗:=MV (F)∗ ⊗O(V ) O(Ṽ )(κṼ ).

Moreover, the same argument as Proposition 3.5.2 shows that this class is invariant under
Gal(F1/K1), and hence descends to H1(K1,MṼ (F)∗). We define zF to be the image of zF,∞
under the norm map H1(K1,MṼ (F)∗) → H1(K,MṼ (F)∗). This is the ‘universal’ version of
the projection to the χ-component in the definition of the étale classes, so one has the following
interpolation formula:

Theorem 5.4.1 (Theorem A). Let x be a point of Ṽ corresponding to a p-stabilised Heegner
pair (f, α, χ), of finite type (pm,N). Then the specialisation of the class zF ∈ H1(K,MṼ (F)∗)
at x is given by

Ep(fα, χ)
αm

(
k
j

) · z[f,χ]
ét ,

where Ep(fα, χ) is as defined in Proposition 3.5.5.
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Remark 5.4.2. Recall that Ṽ is the preimage in the 2-dimensional space EK(N) of a small
disc in the GL2 /Q eigencurve E(N) around (f0, α0). It is not clear to what extent the definition
of zF can be ‘globalized’ over the whole rigid-analytic variety EK(N).

6. Local properties of the Heegner classes

As a complement to Theorem A, we now study the local properties of the class zF at primes
of K. For brevity, throughout this section we shall write M for the O(V )-linear Gal(Q/Q)-
representation MV (F)∗, and M̃ for the O(Ṽ )-linear representation Gal(Q/K)-representation
MṼ (F)∗.

6.1. Local conditions outside p

Proposition 6.1.1. For any prime v � p of K, the image of zF under the map

H1
(
K,M̃

)
→ H1

(
Iv,M̃

)
is 0, where Iv is an inertia group at v.

Proof. Let � be the rational prime below v. The claim is automatic if � /∈ Σ, where Σ was
the set of primes fixed in § 3.5, since we have constructed zF using the étale cohomology of a
smooth OK[1/Σ]-scheme.

So it remains to treat the case of � ∈ Σ, and since � 
= p, this implies that � | N . By our
Heegner hypothesis, all such primes are split in K. It follows that v has infinite decomposition
group in the anticyclotomic Zp-extension of K; so zF,∞ and hence also zF , are unramified at
v by the same argument as [32, Proposition 2.4.4]. �

6.2. Phi-Gamma modules and triangulations

In order to study the local properties of the Heegner class at p, we recall some results on p-
adic Hodge theory of M as a representation of GQp

= Gal(Qp/Qp), following [32, § 6]. These
results will also be needed in § 8.

We first summarise the concepts of p-adic Hodge theory we will use. See, for example, [5,
§ 2.2] for further details.

• For E a finite extension of Qp, let RE = B†
rig,E be the Robba ring. There is a full faithful

functor D†
rig, compatible with tensor products and duals, which embeds the category of Qp-

linear representations of Gal(Qp/E) inside the larger category of (ϕ,Γ)-modules over RE .
• The functor D†

rig extends naturally to locally free families of Galois representations over
rigid spaces X (taking values in locally free sheaves of (ϕ,Γ)-modules over RE ⊗̂O(X)).
• There exist cohomology functors Hi(E,−) for (ϕ,Γ)-modules, compatible with the Galois

cohomology functors via D†
rig. The cohomology groups of a family of (ϕ,Γ)-modules over X

are coherent sheaves on X (by [23]), and there is a descent spectral sequence relating these to
the cohomology of any specialisation of the family.
• The Fontaine functor Dcris can be defined on (ϕ,Γ)-modules over RE (consistently with

its existing definition for Galois representations), so it makes sense to speak of a (ϕ,Γ)-module
being crystalline.
• If E′ is an extension of E, then RE is a subring of RE′ , and restriction of Galois

representations corresponds to base-extension of (ϕ,Γ)-modules. If E/Qp is unramified, then
RE = RQp

⊗ E, with ϕ acting on E as the arithmetic Frobenius (and Γ acting trivially on E).
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Theorem 6.2.1 [29, Theorem 0.3.4]. If the disc V � k0 is sufficiently small, the Galois

representation Dp = D†
rig(M|GQp

) over R⊗̂O(V ) is ‘trianguline’: it admits a submodule D+
p

stable under ϕ and Γ such that both D+
p and D−

p :=Dp/D+
p are locally free of rank 1.

Liu’s construction also gives a precise description of D+
p : it has a basis vector on which ϕ

acts as ε(p)−1 · ap(F), and Γ acts via the O(V )×-valued character x �→ xκV +1. On the other
hand, D−

p has a basis vector which is Γ-invariant and on which ϕ acts as ap(F)−1.
So D−

p is crystalline as a family of (ϕ,Γ)-modules; and D+
p is not crystalline as a family, but it

is the twist of a crystalline family by the family of characters χ(1+κV )
cyc where κV is the universal

character Z×
p → O(V )×. Since integer powers of the cyclotomic character are crystalline, the

specialisation D+
p,k of Dp at any integer k ∈ V ∩ Z is crystalline. More precisely, if k ∈ V ∩

Z�0 corresponds to a p-stabilisation of a classical level N eigenform f , then Dcris(D+
p,k) is

canonically identified with the ϕ = ap(F)(k)
pk+1ε(p)

eigenspace in Dcris(Vp(f)∗), where f is the weight
k specialisation of F .

Remark 6.2.2. Here we have identified Dcris(Vp(f)∗) with Dcris(Vp(f)∗ ⊗ χ
−(1+k)
cyc ). This

identification depends on a choice of basis of Zp(1), that is, a compatible system of roots of
unity (ζpn)n�1; we choose ζpn to be the image of exp(2πi/pn) ∈ Q ⊂ C under our embedding
Q ↪→ Qp.

Theorem 6.2.3. There exists a canonical isomorphism of O(V )-modules

ω′
F : Dcris

(
D+

p ⊗ χ−(1+κV )
cyc

) ∼−−→ O(V ),

whose specialisation at any k ∈ V ∩ Z�0 coincides with the map

Dcris(D+
p,k) ↪→ Dcris(Vp(f)∗)

ω′
f−−→ L,

where f is the weight k specialisation of F , and ω′
f ∈ Fil1 H1

dR,c(Y1(N),Vk)[f ] ∼= Dcris(Vp(f))
is the L-rational differential form associated to f as in [26].

This is a straightforward consequence of the overconvergent Eichler–Shimura isomorphism
of Andreatta–Iovita–Stevens [4], combined with Liu’s results; see [32, Theorem 6.4.1].

Remark 6.2.4. Note that the q-expansion of ω′
f at the cusp ∞ is G(ε−1) · f(q); the Gauss

sum is needed since the cusp ∞ is not Q-rational in our model of Y1(N). See [26, Remark
6.1.4] for further discussion.

6.3. Local conditions at p

Let p | p be a prime of K. We let D̃p = D†
rig(M̃|GKp

), which is a rank 2 (ϕ,Γ)-module over
RKp

⊗̂O(Ṽ ), and we let D̃+
p be the rank 1 submodule given by Theorem 6.2.1.

Definition 6.3.1. By a classical point of Ṽ , of weight (a, b), we shall mean a point of Ṽ
corresponding to a p-stabilised Heegner pair (f, α, χ), where (f, α) is a choice of p-stabilisation
of some newform f of level N and weight a + b + 2, and χ is an algebraic Grössencharacter of
∞-type (a, b). We write β = pa+b+1ε(p)/α for the other root of the Hecke polynomial of f at
p.

If χ has conductor prime to p, then we say (f, α, χ) is a crystalline point.
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Proposition 6.3.2. Let x = (f, α, χ) be a classical point, of weight (a, b), with a, b � 0.

Then the map H1(Kp, D̃+
p,x) → H1(Kp,M̃x) induced by D̃+

p ↪→ D̃p is an injection. Moreover,

the Bloch–Kato subspaces H1
e (Kp,M̃x), H1

f (Kp,M̃x), and H1
g (Kp,M̃x) are all equal to the

image of this map.

Proof. Let us say that a de Rham (ϕ,Γ)-module D over the Robba ring is ‘generic’ if every
subquotient D′ of D satisfies Dcris(D)ϕ=1 = Dcris(D∗(1))ϕ=1 = 0. We claim that for a classical
point x, the module D = D̃p,x is generic. If χ is non-crystalline at p, this is obvious; if χ is
crystalline, then D is crystalline and all eigenvalues of ϕ on Dcris(D) and on Dcris(D∗(1)) have
complex absolute value p−1/2, so none can be 1.

The genericity of D implies that H1
e , H1

f and H1
g coincide. Moreover, it also implies that

H0(Kp, D̃−
p,x) = 0, since this module is a submodule of Dcris(D̃−

p,x)ϕ=1.
The functor DdR, and the Bloch–Kato exponential, has been extended to (ϕ,Γ)-modules by

Nakamura [33]; and if D is generic and has all Hodge–Tate weights � 1 (respectively, � 0), then
the exponential map for D is an isomorphism (respectively, is zero). Since D̃+

p,x has Hodge–Tate
weights � 1, and D̃−

p,x has weights � 0, the result follows. �

Remark 6.3.3. Note that the above reasoning would break down at a point corresponding
to a classical newform of level pN (although a closer study of the argument shows that the
problem only arises if a = b and χ is unramified at p). This is related to the phenomenon
of exceptional zeros of p-adic L-functions. However, our (rather strict) definition of ‘classical
point’ rules these out.

Theorem 6.3.4. The map H1(Kp, D̃+
p ) → H1(Kp, D̃p) induced by D̃+

p ↪→ D̃p is an injection,
and locp(zF ) is in the image of this map.

Proof. As in [32, Theorem 7.1.2], the fact that D̃−
p is a non-constant family of rank 1

modules implies H0(Kp, D̃−
p ) = 0. This gives the injectivity, and also implies that H1(Kp, D̃−

p )
is torsion-free. So it suffices to show that there is a Zariski-dense set of points x ∈ Ṽ such that
zF maps to 0 in H1(Kp, D̃−

p,x).
The specialisations of locp zF at crystalline points x of weight (k − j, j), with 0 � j � k, are

in the image of the étale cycle class map; hence they lie in the Bloch–Kato H1
f subspace (see,

for example, [6, § 3.4]). By the preceding proposition, they must map to 0 in H1(Kp, D̃−
p,x).

So locp zF must vanish at all crystalline points satisfying this inequality, and these are clearly
Zariski-dense. �

6.4. The Selmer complex

We use here the formalism of Selmer complexes developed in [37]. To apply Pottharst’s theory
to M̃, we need to make a choice of local conditions Δ = (Δv)v∈Σ; here Δv is the data of a
perfect complex O(Ṽ )-modules U+

v , and a map of complexes ιv : U+
v → RΓ(Kv,M̃). We write

U−
v for the mapping cone of ιv.

Definition 6.4.1. Let Δ denote the following collection of local conditions.

• For v � p, we choose Δv to be the unramified local condition RΓ(Knr
v /Kv,M̃Iv ).

• For v | p, we choose Δv to be the ‘trianguline’ local condition

RΓ(Kv, D̃+
v ) → RΓ(Kv, D̃v).

We write R̃Γ(K,M̃;Δ) for the corresponding Selmer complex.
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By construction, there is an exact triangle

R̃Γ(K,M̃;Δ) → RΓ(OK[1/Σ],M̃) →
⊕
v∈Σ

U−
v → [+1].

It is clear that H0(OK[1/Σ],M̃) = 0 and that H0(U−
v ) = 0 for v � p; and we have seen above

this is also true for v | p. Thus H0 of the Selmer complex is zero, and its H1 is given by

H̃1(K,M̃;Δ) = ker

[
H1(OK[1/Σ],MṼ (F)∗) →

⊕
v∈Σ

H1(U−
v )

]
.

Thus Proposition 6.1.1 and Theorem 6.3.4 can be summarized as stating that we have zF ∈
H̃1(K,M̃;Δ).

We finish this section by explaining the sense in which the Selmer complex ‘interpolates’ the
Bloch–Kato Selmer groups.

Lemma 6.4.2. Let v � p be a prime in Σ. Then M̃Iv is a direct summand of M̃ as a

O(Ṽ )-module, and if x is a crystalline point, we have (M̃Iv )x = (M̃x)Iv .

Proof. By assumption, v is a degree 1 prime, and exactly one of v and v̄ divides N. We
treat first the case v � N.

If v � N, then the universal character κṼ is unramified at v. So the Iv-invariants of M̃ =
M⊗O(V ) O(Ṽ )(κV ) are given by MI� ⊗O(V ) O(Ṽ ). Thus it suffices to show that MI� is a
direct summand of M over O(V ), where � is the rational prime below v, and we have (Mk)I� =
(MI�)k for all k ∈ V ∩ Z�0.

Since V is a 1-dimensional disc, O(V ) is a Dedekind domain. Thus to check that MI� is a
direct summand, it suffices to show that M/MI� is torsion-free. However, this is obvious: if
g ∈ O(V ) is non-zero and m ∈ M is such that g ·m is I�-invariant, then g · (im−m) = 0 for
all i ∈ I�, and since g 
= 0 and M is torsion-free, it follows that im−m = 0.

Now let k ∈ V ∩ Z�0. For each x ∈ V (Qp) we have a Weil–Deligne representation WD�(Mx)
associated to Mx|GQ�

, and the restriction of WD�(Mx) to the inertia subgroup of the Weil
group is constant over V . So if (Mk)I� is strictly larger than (MI�)k, then the only possibility
is that the action of inertia on the Weil–Deligne is trivial, but the monodromy operator N
is generically non-trivial but degenerates to 0 at k. In this case, the specialisation of F at k
must be old, arising from a newform of level N/�; so the N -new component of the eigencurve
on which F lies must intersect with an old component at this point, which contradicts the
smoothness of the eigencurve at non-critical classical points.

We now briefly treat the case v | N. Let F ′ denote the twisted Coleman family F ⊗ ε−1. Then
M̃ ∼= MV (F ′)∗ ⊗O(V ) OṼ (κṼ · ε−1), and κṼ · ε−1 is unramified outside the primes dividing N̄.
So we may apply the same analysis to F ′ instead of F to obtain the result. �

Corollary 6.4.3. Let x = (f, α, χ) be a classical point of Ṽ . Then:

(i) we have

R̃Γ(K,M̃;Δ) ⊗L
O(Ṽ ),x

Qp
∼= R̃Γ(K,M̃x;Δx),

where Δx denotes the local condition on M̃x = Vp(f)∗(χ) defined by the unramified

local conditions outside p and the trianguline submodules D̃v,x at v | p;
(ii) If χ has ∞-type (a, b) with a, b � 0, then H̃1(K,M̃x;Δx) is the Bloch–Kato Selmer

group H1
f (K, Vp(f)∗(χ)).
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Proof. The preceding lemma implies that the formation of the unramified local conditions
is compatible with specialisation at x. This is true by definition for the trianguline conditions
at p. So we obtain the compatibility of the Selmer complexes with specialisation from [37,
Theorem 1.12], proving (i).

For (ii), we must check that the local conditions Δx,v agree with the Bloch–Kato local
conditions at all primes v of K. Away from p this is true by definition; for v | p it is part of
Proposition 6.3.2. �

Remark 6.4.4. For a single modular form f (rather than a family), assumed to be ordinary
at p, Perrin-Riou has formulated an ‘anticyclotomic Iwasawa main conjecture without p-
adic L-functions’ [36, Conjecture B]; this conjecture been proved, under some mild technical
hypotheses, in [8]. In the language of Selmer complexes, this conjecture relates the index of a
Heegner class in H1 of the anticyclotomic Selmer complex to the torsion submodule of H2 of the
same complex. It would be interesting to formulate a generalisation of Perrin-Riou’s conjecture
in the present setting; it may even be possible to prove some results in this direction using
the ‘Euler system machine’ to bound Selmer groups, analogous to [18] in the Rankin–Selberg
case. We shall not pursue this matter in the present paper, but it would be a very interesting
direction for further work.

7. p-adic L-functions for split p

We now assume that p is split in K; and we write (p) = pp̄, where p is the prime corresponding
to our embedding K ⊂ Q ↪→ Qp. In order to make use of the local computations of [6], we shall
also suppose, as in op.cit., that K has odd discriminant.

7.1. CM periods

Recall the pair (A, t) chosen above, with A isomorphic to C/OK as an elliptic curve over C. Let
Q̂nr

p ⊂ Cp denote the completion of the maximal unramified extension of Qp, and Ẑnr
p ⊂ OCp

denote its ring of integers (equivalently, we can define Ẑnr
p as the ring of Witt vectors of Fp).

Definition 7.1.1. Let ωA be a choice of basis of the 1-dimensional F -vector space Ω1(A/F ).
We define the following two periods.

• Let Ω∞ ∈ C be such that

ωA = Ω∞ · 2πidw
as bases of Ω1(A/C), where w is the standard complex coordinate on A(C) ∼= C/OK (cf. [6,
Equation (5.1.16)]).
• Let Ωp ∈ Ẑnr

p be such that

ωA = Ωp · ωcan,

as bases of Ω1(A[p∞]/Ẑnr
p ), where ωcan is the pullback to A of the differential du

u on Gm, via
an isomorphism of p-divisible groups A[p∞] ∼= μp∞ over Ẑnr

p (cf. [6, Equation (5.2.2)]).

In the language of p-adic Hodge theory, ωA is a basis of Dcris(σ|GFP
) = (Bcris)

GFP
=σ−1

, and
we have ω = Ωp · t, where t is the period for the cyclotomic character. In particular, this shows
that GFP

acts on Ωp via the character σ−1 · χ−1
cyc = σ̄.

We let ηA be the basis of H1
dR(A/FP)/Fil1 which pairs to 1 with ω. As an element of Bcris

this is simply 1/Ωp.
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7.2. The BDP p-adic L-function of a cusp form

We now recall the two main results of [6]: firstly, the construction of a 1-variable p-adic L-
function interpolating square roots of central L-values L(f, χ−1, 1), for a fixed f and varying
χ; secondly, its relation to the Heegner classes for f .

Let f be a newform of level N , character ε and weight k + 2 � 2. Write WK(N, k, ε) for the
fibre of WK(N, ε) above k ∈ W, parametrising characters χ of Gal(Kab/K) unramified outside
Np∞ such that Vp(f)∗ ⊗ χ is conjugate self-dual. We divide the set of classical points χ of
WK(N, k, ε) into three subsets Σ(1) � Σ(2) � Σ(2′), as in [6, Definition 4.1], according to the
∞-type (a, b).

• χ ∈ Σ(1) if 0 � a, b � k.
• χ ∈ Σ(2) if a � k + 1 and b � −1.
• χ ∈ Σ(2′) if a � −1 and b � k + 1.

The χ ∈ Σ(1) are precisely those for which (f, χ) is a Heegner pair. On the other hand, if
χ ∈ Σ(2), then the sign in the functional equation of L(f, χ−1, s) is +1, so the central value
L(f, χ−1, 1) is not forced to vanish.

Notation 7.2.1. For χ ∈ Σ(2) of ∞-type (a, b), let us write

Lalg(f, χ−1, 1) =
C(f, χ−1, 1)

w(f, χ) · Ω2(a−b)
∞

L(f, χ−1, 1) ∈ Q,

as in [6, § 5.1], where C(f, χ−1, 1) and w(f, χ) are appropriate modifying factors as in op.cit.

Theorem 7.2.2 [6, Theorem 5.5]. There exists a bounded rigid-analytic function LBDP
p (f)

on WK(N, k, ε), whose value at a crystalline character χ ∈ Σ(2) of ∞-type (a, b) is given by

LBDP
p (f)(χ)

Ω(a−b)
p

= (1 − χ(p)
α )(1 − χ(p)

β )
[
Lalg(f, χ−1, 1)

]1/2
.

Remark 7.2.3. We apologise for some clashes of notation between the present paper and
op.cit.: as noted above, their χ is χ · N in our notation, where N is the norm character of ∞-
type (1, 1), and their k is our k + 2. It follows from work of Brakocevic [7] that LBDP

p (f) also
enjoys an interpolating property at non-crystalline characters in Σ(2) (ramified at the primes
above p), but we shall not make this explicit here, since the crystalline characters in Σ(2)

are already dense in W(N, k, ε), and so the interpolating property at these points is already
sufficient to uniquely determine LBDP

p (f).

Theorem 7.2.4 [6, Theorem 5.13]. The value of LBDP
p (f) at a crystalline character in Σ(1),

of ∞-type (a, b) with a, b � 0, is given by

LBDP
p (f)

Ω(a−b)
p

=
1

b!
(
a+b
a

)
G(ε−1)

〈
log

(
locp z

[f,χ]
ét

)
, ω′

f ∧ ωb
Aη

a
A

〉
,

where ωA and ηA are differentials on the CM elliptic curve A = C/OK as in § 7.1, and G(ε−1)
is the Gauss sum.

Proof. This is Theorem 5.13 of op.cit. translated into our conventions. The factor
(
a+b
a

)
,

which does not appear in op.cit., reflects our use of symmetric tensors TSymk, rather than
the symmetric powers Symk, in our definition of the Heegner class. For the factor G(ε−1), see
Remark 6.2.4 above. �
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7.3. BDP p-adic L-functions in families

Our next result shows that the p-adic L-function LBDP
p (f) can be extended to a rigid-analytic

function on the 2-dimensional space EK(N, ε), allowing the form f to vary as well as the
character χ. Note that this extends a result for ordinary families due to Castella [11, Theorem
2.11].

Recall that the BDP p-adic L-function satisfies the following formula, for any crystalline χ
of ∞-type (a, b):

LBDP
p (f)(χ) =

∑
[c]∈Cl(K)

χ(c)−1N(c)bθ−(1+b)f �(c � (A, t, ωcan)). (7.1)

Here f � denotes the ‘p-depletion’ of f , that is, the p-adic modular form with q-expansion∑
p�n an(f)qn; and θ is the differential operator q d

dq on p-adic modular forms. For the notation
a � (A, t, ωcan), see Equation 1.4.8 of op. cit.; note that if c = (ξ) is a principal ideal, with
ξ ∈ OK coprime to N, then we have

c � (A, t, ωcan) = (A, ξ · t, ξ−1ωcan).

We now recall the notion of a family of p-adic modular forms over X, where X is a rigid
space with a map κX : X → W (see [13] for further details). The construction of the eigencurve
gives rise to a universal family of eigenforms Funiv over E(N, ε). We may therefore consider its
p-depletion F �

univ, which is a family of infinite-slope eigenforms.
We want to ‘twist’ this by appropriately chosen characters. We identify O×

K,p with Z×
p × Z×

p

via the two primes (p, p̄). Mapping x ∈ Z×
p to either (x−1, 1) or (1, x−1) defines maps Z×

p ↪→
O×

K,p ⊂ A×
K,f , and hence two characters Z×

p → O(WK(N, ε))×, which we denote by a and b
(since their specialisations at a crystalline character of ∞-type (a, b) are the integers a and b).

Proposition 7.3.1. There exists a family of p-adic modular forms θ−(1+b)F �
univ over

EK(N, ε), whose specialisation at a crystalline point (f, α, χ) with χ of weight (a, b) is
θ−(1+b)(f �).

Proof. Since we know that Funiv and hence F �
univ exist as families of p-adic modular forms, it

suffices to note the following general statement: if X is a rigid space with two maps κ, λ : X →
W, and G is a family of p-adic modular forms over X of weight κ such that Up · G = 0, then
there exists a p-adic modular form θλ(G) of weight κ + 2λ whose q-expansion is

∑
p�n an(G)nλ.

See, for example, [16, § 2.6], or the introduction to § 4 of [2]. �

Remark 7.3.2. Note that although Funiv and hence F �
univ are families of overconvergent

forms, θ−(1+b)F �
univ is not overconvergent. For weights in a certain open subset in the ‘centre’

of weight space, it can be interpreted as a family of nearly overconvergent forms in the sense
of [2]. However, this is not needed for our present purposes.

Theorem 7.3.3. There is a rigid-analytic function LBDP
p (N, ε) on EK(N, ε) with the

following property: if fα is a point on E(N, ε) corresponding to a p-stabilisation of a newform f
of prime-to-p level and weight k + 2, then the restriction of LBDP

p (N, ε) to the fibre of EK(N, ε)
over fα is LBDP

p (f).

Proof. We simply define LBDP
p (N, ε) to be the natural ‘family version” of (7.1), that is, the

sum ∑
[c]∈Cl(K)

κuniv(c)−1N(c)b · θ−(1+b)(F �
univ)(c � (A, t, ωcan)),
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where κuniv : A×
K,f/K× → O(WK(N, ε)) is the universal character. By construction, restricting

this to the fibre above fα gives back the BDP p-adic L-function above. �

Remark 7.3.4. This is in a sense the ‘wrong’ setting for variation of BDP L-functions,
for the following reason: a level N newform f of weight � 2 and character ε will have two
p-stabilisations fα and fβ , which are usually (and conjecturally always) distinct as points in
E(N, ε); but the restrictions of LBDP

p (N, ε) to the fibres of EK(N, ε) above these two points
are the same, since both are equal to LBDP

p (f), and this function is insensitive to choices of
p-stabilisations.

In a recent preprint of one of us [30], assuming N = 1 and imposing some mild local
assumptions on the mod p Galois representation ρ̄ of f , it is shown that LBDP

p (f) extends
to the product of Wac and a 2-dimensional Galois deformation space X . There is a natural
map from the eigencurve E to X (whose image is the ‘infinite fern’ of Mazur), and the function
LBDP
p (N, ε) above is simply the pullback of the ‘universal’ BDP L-function on X ×Wac along

this map. Note that fα and fβ map to the same point of X , which explains the phenomenon
mentioned above. However, for the constructions of the next section, the additional data carried
by the eigencurve — a choice of p-stabilisation, or equivalently a triangulation of the Galois
representation — is indispensable.

8. Explicit reciprocity laws

8.1. Period isomorphisms in families

We now study the local triangulation D̃p of § 6.3 in the split-prime case, assuming p is the
prime corresponding to our embedding K ↪→ Qp as before.

If χcyc denotes the cyclotomic character, then D̃+
p ⊗ χ

−(1+b)
cyc is an unramified, and in

particular crystalline, (ϕ,Γ)-module; we shall write

M̃+
cris:=Dcris

(
D̃+

p ⊗ χ−(1+b)
cyc

)
,

which is a locally free rank 1 O(Ṽ )-module. By construction, for any crystalline point (f, α, χ)
of weight (a, b), there is a canonical inclusion

(M̃+
cris)x ↪→ Dcris(M̃x|GKp

) = Dcris(Vp(f)∗(χ)|GKp
).

We can regard M̃+
cris as the tensor product of two factors.

• The pullback to Ṽ of the (ϕ,Γ)-module D+
p ⊗ χ

−(κV +1)
cyc over V .

• The O(Ṽ )-valued character κṼ · (χcyc)a, which is the restriction to the decomposition
group at p of a character of Gal(Kab/K) unramified outside Np̄.

Theorem 6.2.3 allows us to identify Dcris(D+
p ⊗ χ

−(κV +1)
cyc ) with O(V ), via the linear map ω′

F .

By base-extension to O(Ṽ ), we may consider this as an isomorphism Dcris(D̃+
p ⊗ χ

−(a+b+1)
cyc ) ∼=

O(Ṽ ). As for the second factor, since κṼ · (χcyc)a is unramified at p, we have a canonical
inclusion

Dcris(κṼ · (χcyc)a) ⊂ O(Ṽ ) ⊗̂ Q̂nr
p

(where both sides are regarded as subsets of Bcris ⊗̂O(Ṽ )). Tensoring together these two
constructions gives a period isomorphism

ω̃F : M̃+
cris −→ O(Ṽ ) ⊗̂ Ẑnr

p . (8.1)
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Proposition 8.1.1. Let x = (f, α, χ) be a classical crystalline point, with χ having ∞-type

(a, b). Then the specialisation ω̃F,x of ω̃F at x takes values in FP · Ω(a−b)
p ⊂ Q̂nr

p , and the
morphism

1

Ω(a−b)
p

ω̃F,x : M̃+
cris,x → FP

is the restriction to M̃+
cris,x of the map Dcris(Vp(f)∗(χ)|GKp

) → FP given by x �→ 〈x, ω′
f ⊗

ηaAω
b
A〉.

Proof. This follows readily by comparing the construction of ω̃F with the definition of Ωp

in the previous section. �

8.2. The Perrin-Riou regulator at p

Proposition 8.2.1. There is a canonical homomorphism of O(Ṽ )-modules, the Perrin-Riou
regulator,

L
p, ˜M : H1

(
Kp, D̃+

p

)
→ M̃+

cris,

such that for any crystalline point x = (f, α, χ) of Ṽ , there is a commutative diagram

where Ep is the Euler factor (1 − α
pχ(p̄) )(1 − χ(p̄)

α )−1, and the map ♠ is as follows.

• If χ has weight (a, b) with b � −1, then ♠ = (−1 − b)! exp∗, where

exp∗ :
H1(Kp,M̃x)

H1
f (Kp,M̃x)

∼=−−→ Fil0 Dcris(M̃x|GKp
)

is the Bloch–Kato dual exponential map.
• If b � 0, then the image of the left vertical map is contained in H1

f (Kp,M̃x), and on this
submodule ♠ satisfies the relation

♠ mod Fil0 = (−1)b

b! log,

where

log : H1
f (Kp,M̃x)

∼=−−→ Dcris(M̃x|GKp
)

Fil0

is the Bloch–Kato logarithm.

Proof. Exactly as in the case of Rankin–Selberg convolutions treated in [32, § 6–7], the
map L

p, ˜M is defined simply to be the composite of (1 − ϕ) on the (ϕ,Γ)-module with the
Mellin transform, identifying the kernel of ψ with Dcris-valued distributions. The content of
the theorem is that this map is compatible under specialisation with the classical logarithm and
exponential maps; this follows from Nakamura’s construction of exp∗ and log for (ϕ,Γ)-modules
[33]. �
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Remark 8.2.2. Note that the Euler factor Ep is well defined and non-zero, since the
genericity property established in Proposition 6.3.2 shows that (1 − α

pχ(p̄) ) and (1 − χ(p̄)
α ) are

both non-vanishing. This genericity property also implies that H1
e = H1

f , so the Bloch–Kato
logarithm is defined on H1

f . The interpolating property at non-crystalline classical points can
be made explicit, but we do not need this here.

Corollary 8.2.3. The element

Lp,mot(F):=
(−1)b

G(ε−1)

〈
L
p, ˜M(locp zF ), ω̃F

〉
∈ O(Ṽ )

satisfies

1

Ω(a−b)
p

Lp,mot(F)(x) =
a!

(a + b)!G(ε−1)

(
1 − χ(p)

α

)(
1 − χ(p)

β

)〈
log(locp z

[f,χ]
ét ), ω′

f ∧ ωa
Aη

b
A

〉
for any classical crystalline point x = (f, α, χ) with χ of weight (a, b) such that a, b � 0.

Proof. This follows by comparing the interpolation property of the étale class zF from
Theorem A with the interpolation property of the map L

p, ˜M: two of the four Euler factors
cancel out, and we obtain the result stated. �

Theorem 8.2.4 (Theorem B). The motivic p-adic L-function Lp,mot(zF ) coincides with the

restriction to Ṽ ⊂ EK(N, ε) of the p-adic L-function LBDP
p (N, ε) of Theorem 7.3.3.

Proof. Let x = (f, α, χ) be a classical crystalline point of ∞-type (a, b), with a, b � 0. By
Theorem 7.3.3, the value of LBDP

p (N, ε) at x is LBDP
p (f)(χ); and by Theorem 7.2.4, this is equal

to

Ω(a−b)
p · a!

(a + b)!G(ε−1)

(
1 − χ(p)

δ

)(
1 − χ(p)

β

)〈
log(locp z

[f,χ]
ét ), ω′

f ∧ ωa
Aη

b
A

〉
.

This is exactly the formula we have just obtained for Lp,mot(F)(x). Since crystalline points with
a, b � 0 are Zariski-dense in Ṽ , the ‘motivic’ p-adic L-function must be equal to the restriction
of the ‘analytic’ one LBDP

p (N, ε). �
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