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Abstract
The effectiveness of Reinforcement Learning (RL) de-
pends on an animal’s ability to assign credit for rewards
to the appropriate preceding stimuli. One aspect of un-
derstanding the neural underpinnings of this process in-
volves understanding what sorts of stimulus representa-
tions support generalisation. The Successor Representa-
tion (SR), which enforces generalisation over states that
predict similar outcomes, has become an increasingly
popular model in this space of inquiries. Another dimen-
sion of credit assignment involves understanding how
animals handle uncertainty about learned associations,
using probabilistic methods such as Kalman Temporal
Differences (KTD). Combining these approaches, we pro-
pose using KTD to estimate a distribution over the SR.
KTD-SR captures uncertainty about the estimated SR as
well as covariances between different long-term predic-
tions. We show that because of this, KTD-SR exhibits
partial transition revaluation as humans do in this experi-
ment without additional replay, unlike the standard TD-SR
algorithm. We conclude by discussing future applications
of the KTD-SR as a model of the interaction between pre-
dictive and probabilistic animal reasoning.
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Introduction
An impressive signature of animal behavior is the capacity to
flexibly learn relationships between the environment and re-
ward. One approach to understanding this behavior involves
investigating how the brain represents different stimuli such
that credit for reward is generalised appropriately. Predic-
tive representations, like the Successor Representation (SR)
(Dayan, 1993), generalise over stimuli that predict similar fu-
tures and can provide a useful balance between efficiency and
flexibility (Gershman, 2018; Russek, Momennejad, Botvinick,
& Gershman, 2017). SR learning is faster to adapt to change
than model-free (MF) learning, particularly changes in reward
location, and supports more efficient state evaluation than
model-based (MB) algorithms, which use time-consuming for-
ward simulations to evaluate state. Since this efficiency
depends on caching long-term expected state occupancies,
however, the SR is worse than MB at handling changes in the
environment’s transition structure. In neuroscience and psy-
chology, the SR offers a compelling explanation for a range
of behavioural and neural findings (Momennejad et al., 2017;
Stachenfeld, Botvinick, & Gershman, 2017; Gardner, Schoen-
baum, & Gershman, 2018; Garvert, Dolan, & Behrens, 2017).

While the SR offers a solution to some of the shortcomings
of model-free learning, existing methods for estimating the
SR, such as temporal difference (TD) learning, do not take into
account uncertainty. Here, we attempt to rectify this by draw-
ing on the Kalman TD (KTD) method for value learning (Geist
& Pietquin, 2010), which explains a range of animal condition-
ing phenomena that standard TD cannot explain (Gershman,
2015). KTD-SR gives the agent an estimate of its uncertainty
in the SR as well as the covariance between different entries
of the SR. We show how this augments the SRs capacity to
support revaluation following changes in transition structure.

Results
The successor representation
We define an RL environment to be a Markov Decision Pro-
cess consisting of states s the agent can occupy, transition
probabilities Tπ(s′|s) of moving from state s to states s′ given
the agent’s policy π(a|s) over actions a, and the reward avail-
able at each state, for which R(s) denotes the expectation.
An RL agent is tasked with finding a policy that maximises its
expected discounted total future reward, or value:

V (s) = Eπ

[
∞

∑
t=0

γ
tR(st) |s0 = s

]
(1)

where t indexes timestep and γ, where 0≤ γ< 1, is a discount
factor that down-weights distal rewards.

The value function can be decomposed into a product of
the reward function R and the SR matrix M (Dayan, 1993):

V (s) = ∑
s′

M
(
s,s′
)

R
(
s′
)

(2)

M is defined such that each entry M(s,s′) gives the expected
discounted future number of times the agent will visit s′ from
starting state s, under the current policy (Dayan, 1993):

M(s,s′) = Eπ

[
∞

∑
t=0

γ
t I(st = s′)|s0 = s

]
(3)

where I(st = s′) = 1 if st = s′ and 0 otherwise. Each row
M(s, :) in this matrix constitutes the SR for some state s,
thus representing each state as a vector over future “succes-
sor states.” Factorising value into an SR term and a reward
term permits greater flexibility because if one term changes, it
can be relearned while the other remains intact (Dayan, 1993;
Gershman, 2018).

We first consider the SR in a tabular setting with determin-
istic transitions and a fixed, deterministic policy. This means
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that there is only one possible state st+1 following any pre-
decessor state s. In this setting, the SR matrix rows of two
temporally adjacent states st ,st+1 can be recursively related
as follows:

M(st , :) = φφφ(s)T + γM(st+1, :), (4)

where φφφ(s) is the feature vector (of length n, the number of
features) observed by the agent in state s. In this article, we
consider problems with discrete state spaces, for which the
feature vector φφφ(s) is a one-hot vector with an entry for every
state and a 1 only in the sth position. Equation 4 is analogous
to the Bellman equation for value widely used in RL (Sutton &
Barto, 1998), with the vector-valued M(st , :) in lieu of scalar
V (st).

We can express the estimated current one hot state vector
(based on the SR) as the difference between two successive
SRs:

φ̂φφ(st) = M̂(st , :)T − γM̂(st+1, :)T

= M̂T
φφφ(st)− γM̂T

φφφ(st+1)

= M̂T hhht (5)

where we have defined ht = φφφ(st)− γφφφ(st+1): the discounted
temporal difference between state features. The (vector val-
ued) successor prediction error, used to update the SR in TD
methods, is then given by δδδt = φφφ(st)− φ̂φφ(st).

Learning a probabilistic SR using a Kalman Filter
The algorithm described above produces a point estimate of
the SR. While useful for approximating expected value, it is
not capable of expressing certainty in these estimates. In
order to derive a probabilistic interpretation of the SR, we
assume that the agent has an internal generative model of
how sensory data are generated from the SR parameters that
can be learned with KTD (Geist & Pietquin, 2010; Gershman,
2015). This model consists of a prior distribution on the (hid-
den) parameters, p(mmm0) – where mt = vec(MT

t ) is the SR
reshaped into a vector – an evolution process on the param-
eters, p(mmmt |mmmt−1), and a distribution of observed (one-hot)
feature vectors given the current parameters and observa-
tions p(φφφt |mmmt ,hhht). As with earlier work on KTD, we assume a
Gaussian model: mmm0 ∼ N

(
000,C0|0

)
, mmmt ∼ N (mmmt−1,Cvt ) and

φφφt ∼N
(

φ̂φφt ,Cnt

)
, where C0|0 is the prior covariance between

SR matrix entries, Cvt is the process covariance, describing
how the evolution of different parameters covaries, and Cnt is
the observation covariance, describing covariance in the ob-
servations. C0|0, Cvt and Cnt are set by the practitioner (see
Table 1).

The purpose of the Kalman Filter is to infer a posterior dis-
tribution over that hidden state mmmt given the observations φφφ:

p(mmmt |φφφ1:t) ∝ p(φφφ1:t |mmmt)p(mmmt) (6)

Under the Gaussian model described above, this posterior
distribution is Gaussian with mean mmmt and covariance Ct pa-
rameters which will be estimated by the Kalman Filter. To set

up the filter, we specify an evolution equation describing how
the hidden parameters (the SR) evolve over time and an ob-
servation equation describing how observation relates to our
hidden parameters. These two equations comprise the state-
space formulation for KTD SR:{

mt = mt−1 + vvvt (evolution equation)

φφφ(st) = (ht ⊗ I)T mt +nnnt (observation equation)
(7)

where vvvt is the process noise and nnnt the observation noise,⊗
denotes the Kronecker product and I the identity matrix. We
will start from the assumption that the process noise is white,
meaning that E[mmmt ] = mmmt−1, i.e. the expected mean SR on
time t equals the estimated SR on time t−1.

The Kalman Filter keeps track of the mean mmmt and covari-
ance Ct of the posterior (6). At each timestep, the parameters
of the posterior are updated using the Kalman Filter equa-
tions:

m̂t|t = m̂t|t−1 +Kt(φφφt − φ̂φφt) (8)

Ct|t =Ct|t−1−KtCφφφt
KT

t (9)

Kt =CmφtC
−1
φt

(10)

where Cmφt is the covariance between the parameters and the
prediction error, and Cφt is the covariance of the prediction er-
ror. The notation Ct|t = E [Ct |φφφ1...φφφt ] means that the estimate
of the parameter covariance is conditioned on all observations
until time t (see Geist & Pietquin, 2010). Importantly, and in
contrast to standard TD updates for the SR (Dayan, 1993),
the Kalman gain Kt is stimulus specific (it is a matrix of num-
ber of SR entries by number of features) and dependent on
the ratio between covariance in the parameters and covari-
ance in the observations, allowing for a principled weighting
of prior knowledge and incoming data. See Algorithm 1 for a
full description of the method, including how these quantities
are computed.

In summary, we have introduced a method of handling un-
certainty over SR estimates. This allows for an efficient com-
bination of prior knowledge and incoming information when
updating the SR estimates. Furthermore, it allows us to es-
timate dependencies between different entries in the SR that
inform SR updates. This permits non-local updates which,
in the case of KTD for value estimation, have proven to bet-
ter explain animal behaviour than the strictly local updates of
vanilla TD (Gershman, 2015). We explore a possible role for
non-local updates in the following section.

Partial Transition Revaluation Simulations
A key prediction of standard TD-SR learning is that “reward
revaluation” should be supported while “transition revaluation”
should not. Momennejad et al. (2017) tested this in humans.
In the first phase of their experiment, participants learned two
different sequences of states terminating in different reward
amounts: 2→4→6→$1 and 1→3→5→$10 (see Figure 1B).
In the next stage, half of the participants were exposed to the
transition revaluation condition, observing novel 4→5→$10
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Algorithm 1: Kalman TD Successor Representation

Initialization: priors m0|0 and C0|0 ;
for t← 1,2, ... do

Observe transition (st ,st+1) ;
Prediction step;
m̂t|t−1 = m̂t−1|t−1 ;
Ct|t−1 =Ct−1|t−1 +Cvt ;
Compute statistics of interest ;
φ̂φφ(st) = (ht ⊗ I)T m̂t ;
Cmφφφt

=Ct|t−1(ht ⊗ I) ;
Cφt = (ht ⊗ I)TCt|t−1(ht ⊗ I)+Cnt ;
Correction step ;
Kt =CmφtC

−1
φt

;

m̂t|t = m̂t|t−1 +Kt(φφφt − φ̂φφt) ;
Ct|t =Ct|t−1−KtCφφφt

KT
t

end

Table 1: Parameter values
Name Symbol Value

Discount factor γ 0.9
Process covariance Cvt (1×10−3)I
Observation covariance Cnt I
Prior covariance C0|0 0.1I
Prior SR mmm0|0 vec(I)
Rescorla Wagner learning rate αr 0.1
Number of trials per phase N 50

and 3→6→$1 transitions. The other half experienced “re-
ward revaluation” in the form of novel reward amounts 6→$10
and 5→$1 (Figure 1A). Importantly, the novel experiences
start from intermediate states such that transitions from 1 or 2
are not seen following phase 1. While participants were sig-
nificantly better at reward revaluation than transition revalua-
tion, they were capable of some transition revaluation as well
(Figure 1C). Accordingly, the authors proposed a hybrid SR
model: an SR-TD agent that is also endowed with capacity
for replaying experienced transitions (Figure 1F). This permits
updating of the SR vectors of states 1 and 2 through simulated
experience.

Here, we simulate this experiment and find that the proba-
bilistic KTD-SR accounts for partial transition revaluation even
without replay (Figure 1D). KTD-SR correctly learns the SR
matrix after phase 1 (Figure 1E) as well as an estimate of the
covariance between all entries in the SR matrix, Ct|t . Unlike
TD-SR, KTD-SR uses the covariance matrix to estimate the
Kalman gain and uses that to update the whole matrix. This
means that after seeing 3→ 6, it updates not just M(3, :) but
also M(1,6) because these entries have historically covaried
(same for M(4, :) and M(2,5)) (Figure 1F). To estimate direct
reward r̂, the agent uses a Rescorla-Wagner rule (Rescorla &
Wagner, 1972). Model parameters are listed in Table 1 and ex-

perimental parameters are kept the same as in (Momennejad
et al., 2017).

Figure 1: KTD SR performance on a transition and reward
revaluation experiment. (A-B) Task structure for (A) reward
revaluation and (B) transition revaluation experiments. (C) Hu-
man performance on transition and reward revaluation tasks.
(D) Model predictions for classic model-free, model-based or a
hybrid of model free and model-based algorithms, TD-SR, hy-
brid SR and KTD-SR. (E-G) The SR matrix estimated by KTD
after (E) learning (phase 1), (F) re-learning (phase 2) and (G)
after a hypothetical complete transition revaluation. Panels A–
C reprinted with permission from Momennejad et al. (2017).

Discussion
The SR constitutes a middle ground between model-based
and model-free RL algorithms by separating reward repre-
sentations from cached long-run state predictions. Here we
learn a probabilistic SR model using KTD that supports princi-
pled handling of uncertainty about state predictions and inter-
dependencies between these predictions. We exploit this fea-
ture to show that, unlike standard TD-SR, KTD-SR can per-
form partial transition revaluation. In later work, we plan to
test our model on other tasks that could benefit from KTD-SR
in a similar way, such as policy revaluation (a well-known weak
spot of TD-SR; Barreto, Munos, Schaul, & Silver, 2016).

We note the relative strengths and weaknesses of KTD-
SR when compared to a hybrid-MB-SR approach. Replay re-
quires a buffer to store experienced episodes and a sufficient
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number of replays that information is propagated throughout
the SR model. While KTD-SR can incorporate information
about long-range in a single update, it must learn and store
a large n2×n2 matrix (although dimensionality reduction can
reduce this burden; Fisher, 1998). There is compelling evi-
dence in favor of both replay (Carr, Jadhav, & Frank, 2011;
Ólafsdóttir, Bush, & Barry, 2018) and probabilistic represen-
tations (Ma, Beck, Latham, & Pouget, 2006) driving behavior.
Future work will consider how the relative tradeoffs of these
approaches constrain hypotheses.

Probabilistic models provide a number of advantages for
RL in terms of optimal credit assignment (Kruschke, 2008),
uncertainty-minimising exploration (Dearden, Friedman, &
Russell, 1998), arbitration between competing models (Daw,
Niv, & Dayan, 2005). Distributional RL-trained neural net-
work agents achieve state of the art performance (Bellemare
& Dabney, 2017). Furthermore, a range of animal learning
findings suggest that animals are capable of probabilistic rea-
soning (Gershman, 2015; Kruschke, 2008; Courville, Daw, &
Touretzky, 2006). Future work will involve exploring these ad-
vantages in the context of SR learning (Gardner et al., 2018).

We make several assumptions in order to make this model
tractable. The Gaussian assumption is clearly violated in the
case of one-hot state vectors (i.e. neither φ nor M should
have negative entries). However, the model is sufficiently ex-
pressive that a good approximation can still be found, and a
“successor feature” model could be applied over arbitrary fea-
tures for which the Gaussian assumption might hold. The ran-
dom walk process noise is useful for capturing slow changes
in the environment, but might be ill-suited for step changes
or sub-optimal when the dynamics are predictable. While we
assume deterministic transitions and linear function approxi-
mation in this work, it is straightforward to extent the model
to stochastic transitions and nonlinear function approximation
with a “coloured noise” approach (Geist & Pietquin, 2010).
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