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Random-matrix perspective on many-body entanglement with a finite localization length
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We provide a simple and predictive random-matrix framework that naturally generalizes Page’s law for ergodic
many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured
one-dimensional model to a completely unstructured model and a physical system, we uncover a remarkable
degree of universality, suggesting that the effective localization length is a universal combination of model
parameters up until it drops down to the microscopic scale.
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Introduction. In this Rapid Communication we present a
generalization of Page’s law [1]—central to the statistical
description of entanglement in completely ergodic many-body
systems—so that it incorporates a finite entanglement length
scale, designed to represent an effective localization length
in a many-body localized system [2–6]. Page’s law is based
on the simple assumption that a typical ergodic many-body
eigenstate |ψ〉 constitutes a random Fock-space vector with
independent identically distributed Gaussian entries ψm =
〈m|ψ〉. Bipartitioning the system as a tensor product |m〉 =
|ab〉, with indices a = 1, 2, 3, . . . , MA for a subsystem A and
b = 1, 2, 3, . . . , MB for its complement B, the reduced density
matrix ρ

A|B
aa′ of a subsystem A can be reinterpreted as a matrix

product,

ρA|B = VV †

tr VV †
, (1)

where Vab = 〈ab|ψ〉 is a random MA × MB Gaussian matrix.
This ties the description to the celebrated Wishart ensemble
of random matrix theory—the inaugural ensemble of random
matrix theory in the history of science [7], which is based
on completely positive Hermitian matrices of the form VV †.
Applying these arguments, Page then arrived at the prediction

S(A|B) = −tr(ρA|B ln ρA|B) = ln MA − MA

2MB
(2)

for the ensemble-averaged bipartite von Neumann entangle-
ment entropy, assuming 1 � MA � MB [8]. This prediction
serves as an important benchmark to detect deviations from
ergodic many-body behavior, including signatures of many-
body localization and topological states [9–13].

Here, we present a simple and predictive statistical frame-
work that accurately captures these deviations, and covers the
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distance from entirely ergodic behavior to the strongly many-
body localized regime. This gives very direct and specific
insights into a transition that so far has been addressed mainly
through insightful perturbative strong-disorder renormaliza-
tion schemes [14–19]. We first give a simple motivation and
description of the framework and analyze its main features,
amongst which is a surprising degree of universality with
regard to both the microscopic parameters as well as the local
structure of the random-matrix model. We then demonstrate
its predictive power in comparison with a paradigmatic spin-
chain model. Finally, we discuss the framework from the
general perspective of matrix-product states.

Premise and background. To motivate our approach it is
suggestive to declare Page’s statistical assumptions as natural
in the following sense: The matrix V can be interpreted to
capture the correlation amplitudes between the adjacent parts
A and B, in a statistical invariant way where, for instance, any
independent superposition V = ∑Nα

α=1 V α of matrices from
the same Gaussian ensemble delivers the same statistics [20].
In our generalization, the system is partitioned into a larger
number of small ergodic patches P1, P2, P3, . . ., which we take
of identical dimensionality M0, and the wave function takes
the simple form

ψabcd... =
Nα∑

α=1

V 1|2,α

ab V 2|3,α

bc V 3|4,α

cd . . . . (3)

The random Gaussian matrices V k|k+1,α again describe the
correlations between neighboring ergodic patches, only that
there are now many of these. This defines the highly structured
variant of our model. Taking, in contrast, the matrices V
as separable, we arrive at a completely unstructured model
equivalent to a superposition of completely separable states

ψabcd... =
Nα∑

α=1

χ1,α
a χ2,α

b χ3,α
c χ4,α

d . . . (4)

with random amplitudes χ , which is agnostic about the order-
ing of the patches and hence does not contain any information
about geometric features, such as dimensionality and bound-
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FIG. 1. (a) Page’s law (2) describes the entanglement in an er-
godic system partitioned into parts A and B. (b) The highly structured
model (3) describes the transition from a strongly localized regime,
where the bipartitioned system can be effectively reduced to two
small ergodic patches next to the partition point, over a universal
regime with a finite localization length (5), to the ergodic case
where Page’s law is recovered. (c) In the completely unstructured
variant (4), a similar transition occurs but the ergodic regions may be
interpreted as noncontiguous.

ary conditions. The interplay of models (3) and (4) defines our
random-matrix framework. In both cases, the reduced density
matrix for a bipartition A|B = P1 . . . PK |PK+1PK+2 . . . is ob-
tained by tracing out the sequence of patches PK+1PK+2 . . ..

We will argue, and verify numerically, that this framework
identifies key entanglement characteristics of systems with a
finite range of the entanglement, subsumed into a universal
effective localization length ξ that combines the microscopic
model parameters M0 and Nα into one. The universality is
fully established in the mesoscopic regime, where the parts are
all small compared to the size of the bipartioned subsystems,
and Nα is moderately large, but in practice already holds
well for Nα = O(1). In particular, in comparison to physical
models the framework turns out to be remarkably predictive
for the bipartite entanglement entropy at different system sizes
and choice of bipartition [11,12,21,22]. As this universality
is observed also between the two variants of the model,
we conjecture that it also extends to interpolating scenarios,
including multifractal cases [23].

The key idea of the model, namely, partitioning the system
into small patches Pk of size below the universal localization
length scale and then considering superpositions to arrive at
a universal mesoscopic regime, is shown pictorially in Fig. 1.
A complementary approach has been taken before by several
groups [14–19], who set up insightful perturbative strong-
disorder renormalization schemes for many-body localized
systems based on coupling strengths and thermalization rates
between coupled blocks. In contrast, our statistical approach
directly stipulates the wave functions of the composed sys-
tem. Conceptually, this wave-function centered construction
starting from the ergodic limit has its precedent in powerful
approaches to single-particle Anderson localization. In in-

fluential papers by Dorokhov, Mello, Pererya, and Kumar
(DMPK) [24,25] it has been shown that Anderson localization
naturally arises from the multiple scattering in a chain of
individual weakly scattering components. Analogously, Iida,
Weidenmüller, and Zuk (IWZ) [26] showed that the same
universal behavior emerges from the multiple scattering in
a chain of individually strongly scattering components. The
DMPK model and the IWZ model both attain the same
universal thick-wire fixed point as the supersymmetric σ

model [27,28], which is governed by a single length scale, the
single-particle localization length, in accordance to the one-
parameter scaling hypothesis [29]. The model and predictions
presented in our work can serve as a benchmark to establish to
which extent an analogous form of one-parameter scaling ap-
plies to many-body localization. For establishing a gradually
more ergodic behavior of wave functions by superpositions,
a useful reference point is Berry’s random wave model for
quantum-chaotic systems [30], which we here effectively
carry over to Fock space based on wave functions equipped
with a suitable local structure. With this wave-function-
centered approach, the resulting framework complements the
application of random-matrix theory as a benchmark for
energy-level statistics [3,4,31,32]. Other phenomenological
approaches recently gained substantial interest, e.g., in sys-
tems with imposed entanglement restrictions [33], as they
provide simple yet predictive pictures of phenomena that are
otherwise difficult to describe microscopically.

Key features. To identify the key features of the highly
structured model (3) and the completely unstructured model
(4), Fig. 2 shows the bipartite entanglement entropy obtained
in systems of different length and patch size. For definiteness,
we phrase the length scales in the language of systems with
N spins, broken down into small patches of length N0 (thus
M0 = 2N0 ).

In the left panels, we vary the partition point while keeping
Nα fixed. For Nα = O(1), the entropy is small and independent
of the partition point, corresponding to a highly localized
system. For increasing Nα , the entropy rises, and finally attains
the ergodic result (2) for the complete system, which now
depends on the partition point. Remarkably, the curves of both
models match up closely in the crossover.

We will reveal below by statistical arguments that this
amounts to a universal behavior governed by a single param-
eter in each model, an effective localization length

ξ ∼ ξ0 + 2 log2 Nα. (5)

In particular, for Nα = 1 the entropy in the structured model
closely conforms to the ergodic result (2) for a reduced system
with only two patches adjacent to the partition point, hence
effective localization length ξ = ξ0 = 2N0. In the unstruc-
tured model, the entropy vanishes in this limit, so that ξ0 =
0. Increasing Nα then amounts to gradually increasing the
effective range of ergodic behavior, with a universal scaling
of the effective localization length. This universal scaling is
verified in the right panels, where we keep the partition point
fixed. We see that the universal scaling is attained quickly for
moderately large patch and system sizes.

Application to physical models. Below, we will give a de-
tailed statistical justification of this universal behavior. First,
we describe how it conforms and applies to concrete physical
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FIG. 2. Bipartite entanglement entropy S(A|B) as predicted by
the structured model (3) (solid curves) and the unstructured model
(4) (dashed curves), for different partitions A|B = P1 . . . PK |PK+1 . . .,
where each patch has 2N0 internal states. In (a) the system is made
of 16 patches of size N0 = 1, in (b) of 10 patches of size N0 = 2,
in (c) of 8 patches of size N0 = 3, and in (d) of 6 patches of size
N0 = 4. Panels (a) and (b) highlight the dependence with the partition
point for different numbers of superimposed states Nα = 2m, m =
0, 1, 2 . . ., where the results for large m approach the ergodic result
from Page’s law (2) (thick dotted curve). Panels (c) and (d) highlight
the dependence on Nα , where the sloped dotted lines correspond to an
ergodic system truncated to the effective localization length (5); for
large Nα the curves level off at Page’s law. We find excellent agree-
ment with the predicted universal behavior, which sets in quickly for
increasing patch and system size.

systems. This is illustrated in Fig. 3, where we provide a
comparison to results for a spin chain with Hamiltonian

Ĥ =
∑

n

hn · σn −
∑

n

σn · σn+1, (6)

where σn is a vector of Pauli matrices on the nth site, and hn =
(hx

n, hy
n, hz

n) describes a random field with coefficients drawn
independently from a uniform distribution over [−W,W ].

The results in the figure are averaged over 1000 realizations
of the disorder. They are compared to the random-matrix
models (3) and (4) with patch size N0 = 1 (corresponding to
individual spins, hence allowing us to reach small localization
lengths) and selected values of Nα , also averaged over 1000
realizations. The values of Nα are chosen by matching the
random-matrix models to the spin-chain result at the equal
bipartition (center of the curve), and kept fixed for the other
partition points. In panel (a) we only take states in the middle
of the spectrum (central 10% of states in each realization)
and vary the disorder strength, while in panels (b) we fix
the disorder strength and vary the energy range (separating
the states in each realization by energy into ten groups,
each containing 10% of the states). In all cases, the entropy
varies consistently with choice of the partition point, disorder
strength, and energy range, and is in excellent agreement
with the random-matrix models (3) and (4). As illustrated in
panels (c) and (d), this allows one to determine the effective
localization length, Eq. (5), from the data of the physical

FIG. 3. (a),(b) The markers show the bipartite entanglement en-
tropy in spin-chain (6) with N = 12 sites as a function of the partition
point K , for (a) different strengths of disorder W = 1, 2, . . . , 12
obtained from the 10% of states closest to the band center, or (b) at
fixed disorder strength W = 3 with the states separated by energy
into ten groups ranging from the band center (where the entropy
is large, range r = 1) to the band edge (where it is small, r = 10).
The thick dashed curve indicates Page’s law (2) for the ergodic
limit, while the thin solid and dashed curves show the corresponding
predictions from the random-matrix models (3) and (4) in analogy
to Fig. 2, with patch size N0 = 1. In (c) and (d), the corresponding
values of log2(Nα ) are plotted for the same system size as a function
of disorder strength or energy range, which delivers the effective
localization length (5).

model, which is one of the key merits of our approach. This
universal value is independent of the partition. The sudden
drop of the effective localization length occurs near W ≈ 5,
which agrees well with the transition point to the many-body
localized behavior in the literature [34,35].

Statistical justification of universality. The observed univer-
sal behavior in the random-matrix models (3) and (4) follows
directly from the statistical properties of the framework. These
are subsumed into two key features: (i) the self-averaging
property

∑

b

V k|k+1
ab

(
V k|k+1

a′b

)∗ → δaa′ , (7)

quickly valid from a moderate number of terms in the sum,
and (ii) the fact that wave functions drawn from each model
constitute a statistically complete basis,

|ψ〉〈ψ | = 1. (8)

In particular, in the structured model (3), we can use the
self-averaging property to show that for Nα = 1 the entropy
of a partition A|B = P1 . . . PK |PK+1PK+2 . . . reduces to that of
the patches adjacent to the partitioning point,

S(A|B) ≈ S(PK |PK+1), (9)
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which in turn is given by Page’s result (2) for the reduced
system. To see this, let us write the wave function (3) for
Nα = 1 as

ψaaK bK+1b = ψ (A)
a,aK

VaK bK+1ψ
(B)
bK+1,b

, (10)

where aK and bK+1 are the indices in the patches next to
the partition point, with Gaussian correlation amplitudes V ≡
V K|K+1, while a and b subsume all the other indices (we
also drop the index α). The structure implies that the reduced
density matrices ρA|B have the same rank as the truncated
density matrix ρPK |PK+1 ∝ VV †: In the space of indices a,
any state orthogonal to the span of ψ (A)

a,aK
corresponds to a

vanishing eigenvalue. Furthermore, to a very good approxi-
mation both matrices share the same entanglement spectrum:
The self-averaging property (7) implies

∑
a ψ (A)

a,aK
ψ

∗(A)
a,a′

K
→

δaK a′
K
. Hence, the finite eigenvalues of ρA|B are recovered

with high accuracy from approximate eigenvectors ϕaaK =
ψ (A)

a,aK
ϕaK where ϕ is an eigenvector of ρPK |PK+1 . Thereby, the

entropy is given by Page’s result for the reduced system of
only two adjacent patches, as stipulated in Eq. (9).

For a finite number Nα of states participating in Eq. (3), a
similar self-averaging argument applies to show that

S(P1 . . . PK |PK+1PK+2 . . .) ≈ S(R|R′), (11)

with effective ergodic patches R, R′ of increased size N0 +
log2 Nα , hence a reduced system of overall size as given by
Eq. (5). Here we use that the collection of states ψ (A)α

a,aK
with

reinstated label α remains statistically orthogonal to each
other as long as Nα does not grow too large. Thereupon, ρA|B
shares the entanglement spectrum of a direct sum of matrices
N−1

α

⊕Nα

α=1 V αV α†. Accounting also for the indicated overall
normalization, the entropy then increases by log2 Nα , resulting
in Eq. (11).

Establishing the ergodic behavior for large Nα is equally
straightforward. Even if matrices V α were drawn from a
highly structured distribution, the Wishart ensemble underly-
ing Page’s result is recovered from V = ∑

α V α for large Nα

as long as the matrices form a complete basis in a statistical
sense. This applies, in particular, also to independently drawn
states of the form (3), whose span covers the whole space
according to their ensemble average (8). Adding a large num-
ber Nα = O(M ) = O(2N ) of these states therefore recovers
the ergodic case. This expectation is again compatible with
the logarithmic growth of the effective localization length (5)
stipulated above.

For the unstructured model, the same arguments can be
adapted in a simplified form. For Nα = 1, the entropy van-
ishes, corresponding to ξ0 = 0. For moderate values of Nα ,
we observe the same statistical direct sum as above, giving
rise to the logarithmic scaling, until one reaches the ergodic
limit where we can again utilize that states drawn from Eq. (4)
form a statistically complete basis.

Relation to matrix-product states. To further illuminate
our framework we connect it to the general framework of
matrix-product states. This framework provides a universal

representation of many-body states, and arises mathemati-
cally from successive applications of singular-value decom-
positions [36], which are also at the heart of the analysis
of the Wishart ensemble [37,38]. Starting from Eq. (3), we
can make this connection explicit by using a singular-value
decomposition of the correlation matrices,

V k|k+1,α

ab =
∑

l

uk,α
al λ

k|k+1,α

l vk+1,α
lb , (12)

with unitary matrices uK,α and vK,α and diagonal matrices λ of
Schmidt coefficients (encoding the entanglement spectrum of
the reduced system with patches PK and PK+1). Rearranging
terms and reinterpreting indices, this directly delivers the
representation

ψabcd... = tr (�1,a�1|2�2,b�2|3 . . .), (13)

with block matrices �k,a
lm = ⊕

α vk,α
la uk,α

am and �k|k+1 =⊕
α λk|k+1,α . Equation (13) is analogous to Vidal’s represen-

tation of matrix-product states [39], which naturally incorpo-
rates entanglement characteristics in the diagonal matrices �,
but with two notable practical differences. (i) In Vidal’s repre-
sentation, the matrices �k|k+1 contain the exact entanglement
spectrum of the bipartition A|B of the complete system, while
here they contain the approximate entanglement spectra of the
neighboring patches. However, both spectra accurately agree
according to our derivation of Eq. (9). In spirit, this conforms
to the conventional reduction of matrix-product states by
truncation of the entanglement spectrum, hence the rank of
matrices � [40]. (ii) Canonically, Vidal’s representation is
designed to describe a single state, while the block structure
above implies this representation being carried out for each
individual state in the sum over α. Thereby, we here also
encounter a truncation of the matrices �, which are of rank Nα .

In principle, our framework can therefore also be formu-
lated in the language of matrix-product states. Arguably, how-
ever, the two modifications outlined above cannot be easily
anticipated without the guidance of the physically transparent
form (3) of the underlying wave function. As shown above, it
is indeed the interplay of these two truncations which sets the
universal entanglement length scale (5).

Conclusions. In summary, we proposed a random-matrix
framework for many-body quantum systems that captures
the effect of finitely ranged entanglement, subsumed into
a universal effective entanglement localization length. The
framework allows us to make predictions for the entangle-
ment entropy for different choice of partitions, which agree
well with those of physical systems with different disorder
strengths and energy densities. This provides a route to extract
this effective entanglement localization length from data.

Just as Page’s law can be utilized as a benchmark to detect
deviations from ergodic behavior, the models presented here
can serve as a useful benchmark to test concrete hypotheses
about disordered many-body systems. For instance, while the
models do not predict an entanglement localization transition
in a sufficiently disordered system, or discriminate such a tran-
sition from a crossover, they can be employed to investigate
this issue based on the described extraction of the effective
localization length.

032010-4



RANDOM-MATRIX PERSPECTIVE ON MANY-BODY … PHYSICAL REVIEW RESEARCH 2, 032010(R) (2020)

More broadly, our framework incorporates a form of one-
parameter scaling, and hence also allows one to test this
as a hypothesis and detect possible deviations. In particular,
in the structured variant of the model the effective local-
ization length denotes a contiguous ergodic region, while
the spatial structure of the ergodic region is not prescribed
in the unstructured model, emphasizing the universality of
this aspect over a range of possible microscopic models.
The observed universality can be conjectured to extend to
interpolating scenarios, including multifractal scenarios for
which no simple model exists. This connects our approach
directly to a crucial question in the analysis of the many-body
localization transition [14–19], which can be further pursued

by considering entanglement in disjoint partitions of the
system [41].

All relevant data present in this publication can be accessed
at Ref. [42].
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