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Abstract: Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in NPC1
or NPC2. This review focuses on poorly characterized clinical and molecular features of early infantile
form of NPC (EIF) and identified 89 cases caused by NPC1 (NPC1) and 16 by NPC2 (NPC2) mutations.
Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2,
prolonged jaundice in 30/89 NPC1 and 7/16 NPC2. Early lung involvement was present in 12/16
NPC2 cases. Median age of neurological onset was 12 (0–24) and 7.5 (0–24) months in NPC1 and
NPC2 groups, respectively. Developmental delay and hypotonia were the commonest first detected
neurological symptoms reported in 39/89 and 18/89 NPC1, and in 8/16 and 10/16 NPC2, respectively.
Additional neurological symptoms included vertical supranuclear gaze palsy, dysarthria, cataplexy,
dysphagia, seizures, dystonia, and spasticity. The following mutations in homozygous state conferred
EIF: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC,
c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) in NPC1
and c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) in NPC2.
This comprehensive analysis of the EIF type of NPC will benefit clinical patient management, genetic
counselling, and assist design of novel therapy trials.

Keywords: Niemann Pick disease type C; early infantile onset; neurological manifestations

1. Introduction

Niemann Pick type C (NPC) disease (MIM#257220 and MIM#607625) is a progressive, irreversible,
and debilitating neurovisceral lysosomal storage disorder characterized by impaired intracellular lipid
trafficking, which leads to the accumulation of unesterified cholesterol, sphingosine, and a range of
glycosphingolipids in the endolysosomal compartment [1,2].

Bi-allelic mutations in one of the two genes cause NPC: NPC1 (MIM*607623) in 95% of cases and
NPC2 in the remainder (MIM*607625) [1,3,4]. NPC1 (encoded by NPC1) is a large 1278 amino acid
transmembrane protein localized to late endosomes and lysosomes. It contains three luminal and
13 transmembrane domains, as well as a lysosomal signal region [5]. The luminal domains are highly
glycosylated and have a cholesterol-binding region and a sterol-sensing domain (SSD) [6,7]. A soluble,
cholesterol-binding protein, NPC2, is made up of 151 amino acids and four highly conserved domains
responsible for cholesterol- binding and release [8–10]. Based on recent studies, the dynamic interface
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between NPC2 and NPC1 proteins facilitates the cholesterol transport by reducing the energy barrier
and stabilizing the passage [11].

The estimated incidence of this devastating disease is approximately 1/100,000 births,
with variations between ethnic groups [12]. Higher incidence has been reported in some isolated
populations such as Acadians in Nova Scotia, Hispanics from Southern Colorado and New Mexico,
and Greeks on a small Aegean island due to a founder effect [1,13–15]. It is also suggested that the
adult-onset form may have a higher prevalence at 1/19,000–36,000 [16]

The clinical spectrum and progression of disease are extremely heterogeneous [17,18]. Disease onset
occurs across the lifespan, from the prenatal period to adulthood and a range of visceral,
neurological, and psychiatric clinical features seem to appear and progress differently in individual
patients [1,3,12,17,19,20]. The age of onset of neurological symptoms determines the speed of progression
of the disease and allows life expectancy predictions to be made [1]. Hence, NPC is best classified
according to the age of onset of neurological manifestations as follows:

1. Visceral-neurodegenerative form

• Early-infantile (neurological onset <2 years)

2. Neurodegenerative form

• Late-infantile (neurological onset 2–6 years)
• Juvenile (neurological onset 6–15 years)

3. Psychiatric-neurodegenerative form

• Adult (neurological onset >15 years) [12]

More than 40% of patients with all forms of NPC present in the first year of life with cholestatic
jaundice and visceromegaly, usually hepatosplenomegaly [1,17]. Although jaundice and hepatomegaly
disappear after 6–12 months in most patients, splenomegaly usually remains [20,21]. Very infrequently
(probably <5% of the total NPC population) patients present in the first 2 weeks of life with liver
failure leading to death unless liver transplantation is performed [22]. In such rare cases patients may
recover after liver transplant and have a variable period of reasonable health before succumbing to
neurological disease [23–26]. Moreover, there is another distinct phenotype, known as fetal onset NPC
which presents with fetal ascites/nonimmune hydrops fetalis [1,12,27–29].

In the majority of patients, neurological symptoms start insidiously after a varying period of normal
or slightly delayed development. While initial symptoms are often nonspecific such as hypotonia,
developmental delay, and clumsiness, regression gradually occurs with patients experiencing loss of
motor skills and cognitive decline [1,17,30]. Vertical supranuclear gaze palsy, cataplexy, or drop attacks
could occur early in the presentation of NPC. Ataxia, dysphagia, dysarthria, and loss of cognitive skills
demonstrate progression of the disease and psychiatric symptoms are typical in adult patients [4,31–33].
Patients with early onset NPC have a more severe and rapidly progressing course than those with later
onset of neurological disease [1,12,27,34,35].

Whilst the features and rate of progression of the common juvenile form of NPC are well
known, the specific disease characteristics of the rarer early infantile form (EIF) is not well established.
The dearth of knowledge in this area impairs provision of accurate prognosis for the families and
potentially inhibits design of clinical trials for novel therapies. Thus, in this article we aimed to provide
better insight into this form of the disease on the basis of our review of published cases.

2. Results

2.1. Literature Search

Keyword “Niemann Pick Disease type C” yielded 1097, keyword “Niemann Pick Disease” gave
3638 publications. A total of 181 articles underwent full text review. According to the reference list
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check 22 additional articles were assessed and in 28 of publications patients met our inclusion criteria.
Articles included in this study were published between 1988 and 2020. Figure 1 shows a flowchart of
the search process for the publications included in this study.
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2.2. Early Infantile Cases with NPC1 Mutations

Several international publications reported clinical and molecular findings in their cohorts of NPC
cases (Table 1). In the Czech Republic, the estimated prevalence of NPC was suggested as 0.93 per
100,000 births [36] and 56 NPC patients, 30 (54%) females and 26 (46%) males, were reported in an
observational, retrospective analysis of all NPC cases, diagnosed between 1975 and 2012. A total of
21 patients (38%) from 10 families were relatives; siblings and cousins. A total of 55 patients were
diagnosed with NPC1 and one was diagnosed with NPC2. A total of 8 of 55 NPC1 patients (14.5%)
had EIF (six NPC1, 1 NPC2 mutations and two with unknown genetics) [36]. Psychomotor retardation
or regression between 6 months and 2 years of age were the most common symptoms among EIF
patients. All of the EIF patients had visceral symptoms including neonatal hepatosplenomegaly and/or
prolonged neonatal jaundice. Ataxia and speech retardation occurred around 2 years of age and was
followed by gelastic cataplexy, seizures, oculomotor abnormalities, dysphagia, and spasticity. Most of
these patients deceased around 5 years of age due to respiratory complications [36].

Table 1. Summary of the Niemann Pick disease type C (NPC) studies.

Reference Country Methodology
Total Number

of Patients
NPC1/NPC2

Number of
EIF Patients
NPC1/NPC2

Most Common
Neurological

Symptom among EIF
Patients

Median Age
of Death
(Months)

[36] Czech
Republic

Observational
retrospective 55/1 6/1 Psychomotor

Retardation/regression 60

[37] UK Observational
retrospective 110/2 8/0 DD, ataxia, dysarthria 65

[2] International Observational
prospective 134/3 16 DD, dysphagia and

VSGP

[38] Spain Mutation
screening 40/0 12

[39] Spain Mutation
screening 30/0 10
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Table 1. Cont.

Reference Country Methodology
Total Number

of Patients
NPC1/NPC2

Number of
EIF Patients
NPC1/NPC2

Most Common
Neurological

Symptom among EIF
Patients

Median Age
of Death
(Months)

[40] Italy Mutation
screening 32/2 11/2 Hypotonia, ataxia

[41] Italy Mutation
screening 97/8 21/3

[42] France Prospective
open-label 19/1 8/0 Hypotonia, DD

[43] Egypt Observational
descriptive 23/0 6/0

[44] Iran Observational
descriptive 21/0 3/0 DD

[45] Iran Observational
case series 11/0 5/0

[46] China Biochemical/genetic
screening 11/1 6/1 Frequent falls, DD

[21] Germany
Switzerland

Cross-sectional
analysis 41/1 5/1

[47] Israel Descriptive 12/0 5/0

The prevalence of NPC in the UK is estimated as 0.78 per 100,000 birth [37]. An observational
retrospective study revealed a total of 146 NPC patients born between 1954 and 2009, among whom
77 (53%) were female and 69 (47%) male [37]. A total of 112 patients (77%) had at least one identified
disease-causing mutation; 110 had NPC1 mutations and two had NPC2 mutations. Six patients (4%)
had the visceral neonatal form, eight patients (5%) had EIF, 51 patients (35%) had LIF, 42 (29%) had
juvenile and 25 (17%) had adolescent/adult phenotype [37]. The mean (SD; range) age at onset of
neurological manifestations in EIF group was 1.1 (0.7; 0–2.0) years. Moreover, the mean (SD) time
between onset of neurological manifestations and diagnosis was 0.26 (1.49) years, with diagnostic
testing based on detection of visceral symptoms in four patients. The median age at death was
65 months, ranged 40–101 months in this group which was reported as death related to NPC. A total of
6/8 patients (75%) exhibited both prolonged neonatal jaundice and hepatosplenomegaly. Most frequent
neurological symptoms were developmental delay, ataxia, and dysarthria which were developed in
all eight patients. Cataplexy/epileptic seizures and swallowing difficulties were each recorded in 6/8
(75%) patients. Ophthalmic assessments revealed vertical supranuclear gaze palsy (VSGP) in 5/8 (63%)
of EIF patients [37].

The International NPC registry, a prospective observational cohort study, included 163 NPC
patients from 14 European countries, Australia, Brazil, and Canada and 137 patients had available
genetic results; 134 had NPC1 and three had NPC2 mutations. A total of 16 patients (11%) were in
EIF group [2]. Almost all EIF patients had visceromegaly and/or prolonged jaundice and eight out
of 16 (50%) were diagnosed before the appearance of neurological manifestations. Three patients in
the EIF onset group presented with perinatal hypotonia. Developmental delay, dysphagia, and VSGP
were the most common neurological manifestations among the EIF cases [2].

A total of 40 Spanish NPC1 patients diagnosed between 1988 and 2003 were presented in one
study [34] where the only available clinical data was the presence of visceromegaly and neonatal
jaundice. Though the publication lacked expanded neurological information, as many as 12/40 (30%)
patients were determined as “severe infantile” with a neurological presentation in the first 2 years of
life [38].

Similar to the above study, 30 NPC1 patients who were referred for molecular analysis from Spain
were described in another report. According to the age of neurological onset, three (10%) neonatal,
10 (33.3%) EIF, six (20%) LIF, six (20%) juvenile, and two (6.6%) adult cases were noted [39].



Int. J. Mol. Sci. 2020, 21, 5059 5 of 31

In a multicenter study from Italy, 44 NPC patients were reported. A total of 41/44 patients had
NPC1 mutations and 11/41 (26.8%) were in the EIF group [40]. A total of three NPC1 cases who died
during the first month of life due to liver or respiratory insufficiency without signs of neurological
involvement were labelled as early infantile systemic lethal form (EISL) [40].

In a more recent updated publication, 105 patients from 83 unrelated families were included in a
collaborative multicenter study aimed at characterizing the molecular bases of Niemann–Pick C in
Italy [41]. Clinical phenotypes were classified according to the age at onset of neurological symptoms
and 97/105 cases had NPC1 mutations and 21.9% of these NPC1 cases were EIF patients [41].

A prospective, open-label study reported all pediatric NPC patients treated with miglustat in
France between October 2006 and December 2010, adult cases were not included. A total of 19/20 cases
were NPC1 patients, and 8/19 (42%) had EIF presentation [42]. A history of hepatosplenomegaly and/or
neonatal jaundice was recorded in all eight EIF patients and liver biopsy revealed evidence of cirrhosis
in two patients [42]. In EIF group, neurological symptoms including hypotonia, developmental delay
and swallowing difficulties were first detected between 5 and 12 months of age [42]. VSGP was observed
at 9, 18, and 24 months of age in five patients, but no patients had cataplexy [42]. One patient had
significant dysphagia at 5 months of age, requiring enteral feeding with nasogastric tube, gastrostomy
was inserted at the age of 9 months [42]. Four patients had peripheral neuropathy and distal motor
deficit [42].

A total of 23 NPC1 patients were reported from Egypt in a study designed to describe the spectrum
of clinical, biochemical and molecular profile of the disease [43]. Disease onset was reported as neonatal
in eight patients (presenting <3 months of age), EIF in six (presentation from 3 months–2 years of age),
LIF in three (2–6 years), and juvenile in six patients (6–15 years), nevertheless, adult patients were not
reported in this cohort [43]. Nineteen patients were offspring of consanguineous marriages (82.6%),
while positive family history was reported in 13 families (65%) [43]. Age of neurological onset varied
between 8 and 18 months in the EIF group while all of these cases had also visceral symptoms [43].

A total of 21 NPC patients diagnosed between 2009 and 2012 were included in an observational
study from Iran [41]. All patients were from consanguineous parents and three of them had EIF.
Among EIF and LIF patients, 70% had hepatomegaly with or without spleen involvement and 40% had
prolonged neonatal jaundice as a presenting feature. Neurodevelopmental delay was seen in all three
patients with EIF [44]. In another Iranian cohort, 11 NPC patients were reported. A total of 5/11 were
EIF patients with accompanying visceromegaly and three of them died in the first 2 years of life [45].

A publication from China reported that 7/12 total NPC cohort had EIF disease [42]. A total of
6/7 had NPC1 mutations, 4/6 had splenomegaly, and 2/6 had hepatosplenomegaly. Frequent falls and
developmental delay were the most common neurological symptoms [46].

A cross-sectional analysis of 42 NPC patients residing in Germany or Switzerland were designed
to assess neuropsychiatric symptoms. A total of 6/42 patients had a neurological onset in the first
2 years of life, five of whom had NPC1 mutations [21].

A retrospective study from Israel reported 12 patients from six nuclear families of Bedouin origin.
A total of 5/12 patients had EIF with NPC1 mutations and all of them died before 5 years of age [47].

Overall, we identified 89 cases reported as EIF NPC due to NPC1 mutations (Table 2). There were
40 (45%) females and 23 (26%) males and 26 (29%) of unknown gender. While the exact age of
neurological symptom onset was included in 66 cases, 23 cases were only determined as “early infantile
Niemann Pick type C”. In these 66 cases, median age of neurological onset was 12 months (range
0–24 months). Positive family history was noted in 27 patients and there were five pairs of siblings.
Consanguinity status was mentioned in 35 cases and 30 of them were from consanguineous parents.

As expected, visceral symptoms were very frequent among the EIF NPC patients (Figure 2).
The presence of visceromegaly has been noted in 80/89 cases (89.9%). A total of 54/89 were determined
as hepatosplenomegaly (HSM), 11/89 as splenomegaly (SM), and 15/89 as visceromegaly (VM).
In four cases, there was no visceromegaly and status of visceromegaly was unknown in five cases.
Prolonged jaundice was reported in 30/89 cases.
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Table 2. Demographic, clinical, and molecular features of early infantile neurological onset disease with NPC1 mutations.

Patient
No

Initial Neurological
Symptom/s (Age First
Reported in Months)

Visceral
Symptoms Sex Ethnicity Allele 1 Allele 2

Age of
Death

(Months)
Ref.

1 Swallowing difficulties lack of
motor coordination (3) HSM, PJ F Spanish del promotor+exon1 del promotor+exon1 NK [48]

2
Severe encephalopathy with

uncontrolled movements,
ataxia, tremor, nystagmus (24)

SM M Spanish c.385delT c.385delT NK [48]

3 NK HSM, PJ F Spanish c.2830G>A (p.D944N) c.3104C>T (p.A1035V) NK [48]

4 NK (22) HSM M Spanish c.1757delA c.2746_2748delAAT NK [48]

5 Hypotonia (5) HSM, PJ F French c.1138C>T (p.L380F) c.2872C>T (p.R958X) NK [42]

6 Hypotonia, DD (6) HSM, PJ F French p.C63fsX75 p.C63fsX75 NK [42]

7 Hypotonia, DD (7) HSM F French c.3614C>G (p.T1205R) c.3614C>A (p.T1205K) NK [42]

8 Hypotonia, DD (9) HSM, PJ F French IVS21-2del ATGC IVS21-2del ATGC 33 [42]

9 Hypotonia, DD (9) HSM, PJ F French c.3584G>T (p.G1195V) c.3584G>T (p.G1195V) NK [42]

10 Hypotonia, DD (10) HSM, PJ F French c. 1298C>T (p.P433L) IVS14+1G>A NK [42]

11 Hypotonia, DD (12) HSM, PJ F French c. 1298C>T (p.P433L) p.T1205fs NK [42]

12 Hypotonia, DD (12) HSM, PJ F French c.3107C>T (p.T1036M) c.3107C>T (p.T1036M) NK [42]

13 Frequent falls, DD (12) SM F Chinese c.1501G>T (p.D501Y) c.1800delC (P.I601FfsX13) NK [46]

14 Frequent falls, DD (18) SM M Chinese c.416dupC (p.N140KfsX30) c.1832A>G (p.D611G) NK [46]

15 Frequent falls, DD (12) HSM, PJ M Chinese c.2177G>C (p.R726T) c.3734_3735delCT (p.P1245RfsX12) NK [46]

16 DD (20) HSM M Chinese c.2230_2231delGT (p.V744SfsX27) c.3734_3735delCT (p.P1245RfsX12) NK [46]

17 Frequent falls (15) SM F Chinese c.1553G>A (p.R518Q) c.2795dupA NK [46]

18 Frequent falls (20) SM M Chinese c.1553G>A (p.R518Q) c.2795dupA NK [46]

19 DD (NK) No M UK c.2819C>T (p.S940L) NK 92 [37]

20 DD (NK) VM, PJ F UK c.3557G>A (p.R1186H) c.3107C>T (p.T1036M) 101 [37]

21 DD (NK) VM, PJ F UK c.3557G>A (p.R1186H) c.3107C>T (p.T1036M) 85 [37]

22 DD (17) No F UK c.3503G>A (p.C1168Y) c.3503G>A (p.C1168Y) 77 [37]

23 DD (NK) PJ, VM F UK c.3578_3591 + 9del c.3578_3591 + 9del 40 [37]

24 DD (NK) PJ, VM F UK c.2801G>A (p.R934Q) c.2978del (p.G993EfsX4) 53 [37]

25 DD (12) HSM, PJ M Czech c.3557G>A (p.R1186H) NK 60 [36]

26 DD (12) HSM F Czech c.3182T>C (p.I1061T) c.3591+1G>A 132 [36]
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Table 2. Cont.

Patient
No

Initial Neurological
Symptom/s (Age First
Reported in Months)

Visceral
Symptoms Sex Ethnicity Allele 1 Allele 2

Age of
Death

(Months)
Ref.

27 DR (20) HSM F Czech c.1812dupT (p.Ala605Cysfs*2) c.3558delC (p.A1187Rfs*54) 48 [36]

28 Speech retardation (22) HSM, PJ F Czech c.3557G>A (p.R1186H) c.826T>C (p.Y276H) NK [36]

29 DR, ataxia (18) HSM F Czech c.3557G>A (p.R1186H) c.2196dupT (p.Pro733Serfs*10) NK [36]

30 DD, ataxia (22) SM F Czech c.3557G>A (p.R1186H) c.3614C>A (p.T1205K) 72 [36]

31 DD (12) HSM F Spanish c.319delc Nucleotide +5 at intron 18 NK [49]

32 Speech regression (18) SM F Japanese c.2108T>C (p.F703S) c.2438C>G (p.S813X) 108 [50]

33 Hypotonia (2),
DD (4) HSM, PJ M Japanese c.2783A>C (p.Q928P) c.3008T>G (p.L1003R) NK [51]

34 Hypotonia (1) HSM NK Spanish c.2826G>T (p.W942C) c.2883_2897del15 (p.Ile962_Phe966del) NK [38]

35 Hypotonia, DD (12) HSM NK Spanish c.3104C>T (p.A1035V) c.3104C>T (p.A1035V) NK [38]

36 Hypotonia (Newborn) HSM NK Spanish c.530G>A (p.C177Y) c.2876T>A (p.V959E) NK [38]

37 Motor regression, spastic
tetraparesis (12) No NK Spanish c.955+1G>A (IVS7+5G>A) c.2826G>T (p.W942C) NK [38]

38 Nystagmus (8) HSM NK Spanish c.1935T>A (p.C645X) c.3236T>C (p.F1079S) NK [38]

39 DD (3) HSM, PJ M Iranian c.2925_2928delCTGC (p.C976fs) c.2925_2928delCTGC (p.C976fs) NK [44]

40 NK (8) VM F Egyptian c.3380dupT (p.M1127Ilfs*131) c.3380dupT (p.M1127Ifs*131) NK [43]

41 NK (4) VM M Egyptian c.425_426delAA (p.K142Rfs*27) c.425_426delAA (p.K142Rfs*27) NK [43]

42 NK (6) VM M Egyptian c.2872C>T (p.R958X) c.2872C>T (p.R958X) NK [43]

43 NK (4) VM M Egyptian c.2245+1G>A c.2245+1G>A NK [43]

44 NK (9) VM M Egyptian c.2972_2973delAG (p.Q991Rfs) c.2972_2973delAG (p.Q991Rfs) NK [43]

45 NK (10) VM F Egyptian c.2972_2973delAG (p.Q991Rfs) c.2972_2973delAG (p.Q991Rfs) NK [43]

46 NK (4) VM M Egyptian Duplication/multiple copies of
exons 10 and 11

Duplication/multiple copies of exons
10 and 11 NK [43]

47 NK (8) VM F Egyptian c.3032_3038delins10bp (p.C1011*) c.3032_3038delins10bp (p.C1011*) NK [43]

48 NK (18) VM F Egyptian c.2972_2973delAG (p.Q991Rfs) c.2972_2973delAG (p.Q991Rfs) NK [43]

49 Hypotonia (24) HSM F Portuguese IVS23+1G>A IVS23+1G>A NK [52]

50 DD (12) HSM NK Portuguese c.3104C>T (p.A1035V) c.3104C>T (p.A1035V) 54 [52]

51 Hypotonia (23) HSM, PJ NK Portuguese IVS23+1G>A c.3104C>T (p.A1035V) 36 [52]

52 NK (18) VM M Egyptian c.2872C>T (p.R958X) c.2872C>T (p.R958X) NK [43]
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Table 2. Cont.

Patient
No

Initial Neurological
Symptom/s (Age First
Reported in Months)

Visceral
Symptoms Sex Ethnicity Allele 1 Allele 2

Age of
Death

(Months)
Ref.

53 NK (11) VM M Egyptian c.451_452delAG (p.S151Ffs*18) c.451_452delAG (p.S151Ffs*18) NK [43]

54 DR (NK) HSM F Iranian c.2920_2923delCCTG (p.C976Ffs*6) c.2920_2923delCCTG (p.C976Ffs*6) 24 [45]

55 DR (NK) HSM M Iranian c. 2740T>A (p.C914S) c. 2740T>A (p.C914S) NK [45]

56 DR (NK) HSM F Iranian c.1415T>C (p.L472P) c.1415T>C (p.L472P) NK [45]

57 DR (NK) HSM F Iranian c.3478-6T>A c.3478-6T>A 28 [45]

58 DR (NK) HSM F Iranian c.960_961dup (p.A321Gfs*16) c.960_961dup (p.A321Gfs*16) 7 [45]

59 DD, Ataxia (24) HSM F Greek c.3394G>A (p.A1132P) c.3394G>A (p.A1132P) NK [13]

60 NK HSM NK Italian p.F284LfsX26 p.F284LfsX26 NK [40]

61 NK SM NK Italian c.2972_2973delAG (p.Q991Rfs) c.2972_2973delAG (p.Q991Rfs) NK [40]

62 NK HSM NK Italian c.1819C>T (p.R607X) c.3614C>A (p.T1205K) 36 [40]

63 NK SM NK Italian c.93_94delTG (p.C31WfsX26) c.93_94delTG (p.C31WfsX26) NK [40]

64 NK HSM NK Italian c.464-2A>C c.464-2A>C NK [40]

65 NK HSM NK Italian c.464-2A>C c.464-2A>C NK [40]

66 NK HSM NK Italian c.3467A>G (p.N1156S) c.3467A>G (p.N1156S) NK [40]

67 NK HSM NK Italian c.3613dupA (p.T1205NfsX53) c.3613dupA (p.T1205NfsX53) NK [40]

68 NK HSM NK Italian c.2800C>T (p.R934X) c.2872C>T (p.R958X) 36 [40]

69 NK HSM NK Italian c.2829C>G (p.I943M) NK NK [40]

70 NK NK F German c.2071C>T (p.P691S) c.2279_2281TCTdel (p.Phe760del) NK [21]

71 NK (12) NK F German c.352_353delAG
p.(Gln119Valfs*8)

c.352_353delAG
p.(Gln119Valfs*8) 72 [21]

72 NK (24) NK F German c.3047A>T (p.H1016L) c.3182T>C (p.I1061T) NK [21]

73 NK (24) NK F German p.S940L NK NK [21]

74 NK (24) NK M German c.3019C>G (p.P1007A) c.2873G>A (p.R958Q) NK [21]

75 DD (5) SM, PJ M Iranian c.1415T>C (p.L472P) c.1415T>C (p.L472P) NK [53]

76 DD, DR (9) SM F Iranian c.1415T>C (p.L472P) c.1415T>C (p.L472P) NK [53]

77 Hypotonia, DD (NK) PJ M Greek IVS23 + 3insT
(c.3591 + 3insT) NK 42 [54]

78 Hypotonia, DD, Dystonia (5) HSM, PJ F Greek c.852delT (p.F284Lfs*26) del promotor+exon1-10 26 [54]
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Table 2. Cont.

Patient
No

Initial Neurological
Symptom/s (Age First
Reported in Months)

Visceral
Symptoms Sex Ethnicity Allele 1 Allele 2

Age of
Death

(Months)
Ref.

79 Hypotonia (3) PJ, HSM M Greek c.275A>G (p.Q92R) c.3557T>C (p.C119*) NK [54]

80 DD (9) PJ, HSM M Greek c.3265G>A (p.E1089K) c.2102-2103insA (p.N701Kfs*13) NK [54]

81 DD (3) PJ, HSM NK Bedouin-Israeli c.1211G >A (p.R404Q) c.1211G > A (p.R404Q) 40 [47]

82 DD, DR (12) PJ, HSM NK Bedouin-Israeli c.1211G >A (p.R404Q) c.1211G > A (p.R404Q) 35 [47]

83 DD, DR (24) HSM NK Bedouin-Israeli c.1211G >A (p.R404Q) c.1211G > A (p.R404Q) 53 [47]

84 DD, DR (24) HSM, PJ NK Bedouin-Israeli c.1211G >A (p.R404Q) c.1211G > A (p.R404Q) 46 [47]

85 DD, DR (18) HSM, PJ NK Bedouin-Israeli c.1211G >A (p.R404Q) c.1211G > A (p.R404Q) 52 [47]

86 Hypotonia, abnormal gait (20) HSM NK French c.1211G >A (p.R404Q) c.709C>T (p.237S) 64 [55,56]

87 DD (12) HSM, PJ NK French c.2324A>C (p.Q775P) c.2324A>C (p.Q775P) 44 [55,56]

88 DD (10–12) HSM, PJ NK French c.1892T>G (p.M631R) NK 42 [55,56]

89 Abnormal gait, speech
problems (20–24) HSM NK Tunisian c.1553G>A (p.R518Q) NK 60 [55,56]

HSM: hepatosplenomegaly, VM: visceromegaly, SM: splenomegaly, PJ: prolonged jaundice, DD: developmental delay, DR: developmental regression, M: male, F: female, NK: not known,
Ref: reference.



Int. J. Mol. Sci. 2020, 21, 5059 10 of 31

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 36 

Int. J. Mol. Sci. 2020, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms 

As expected, visceral symptoms were very frequent among the EIF NPC patients (Figure 2). The 
presence of visceromegaly has been noted in 80/89 cases (89.9%). A total of 54/89 were determined as 
hepatosplenomegaly (HSM), 11/89 as splenomegaly (SM), and 15/89 as visceromegaly (VM). In four 
cases, there was no visceromegaly and status of visceromegaly was unknown in five cases. Prolonged 
jaundice was reported in 30/89 cases. 
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The time of onset and the type of neurological symptoms that patients experience predict the 
general disease course, progression, and life span in NPC. In Table 2 and Figure 3 we detailed the 
initial reported neurological symptoms and/or signs and the age of their onset. 

 

Figure 3. Presenting neurological signs and symptoms of all NPC1 patients. Blue: developmental 
delay; orange: hypotonia; silver: developmental regression; yellow: frequent falls, ataxia, and lack of 
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orange-red: severe encephalopathy; grey: dystonia; mustard: speech problems.
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2.3. Presentation and Progression of Neurological Symptoms

The time of onset and the type of neurological symptoms that patients experience predict the
general disease course, progression, and life span in NPC. In Table 2 and Figure 3 we detailed the
initial reported neurological symptoms and/or signs and the age of their onset.
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Figure 3. Presenting neurological signs and symptoms of all NPC1 patients. Blue: developmental
delay; orange: hypotonia; silver: developmental regression; yellow: frequent falls, ataxia, and lack
of motor coordination; light blue: nystagmus; green: spasticity; navy blue: swallowing difficulties;
orange-red: severe encephalopathy; grey: dystonia; mustard: speech problems.

In order to define the typical neurological features in a better categorized cohort of patients with
EIF NPC, we removed patients with very limited information, i.e., those with “developmental delay”
as the only clinical characteristic, from our calculations (Table 3).
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Table 3. Range of neurological symptoms and signs. Patients selected from the total group on the basis of presence of more than one neurological symptom or sign.
Patient number is linked to Table 1.

Patient
No

Presenting Neurological
Sign/Symptom (Age of Onset) Developmental Progress

Ataxia,
Abnormal
Gait (Age
of Onset)

Cataplexy
(Age of
Onset)

Seizures
(Age of
Onset)

VSGP
(Age of
Onset)

Dystonia
(Age of
Onset)

Dysphagia
(Age of
Onset)

Dysarthria
(Age of
Onset)

Spasticity
(Age of
Onset)

1 Swallowing difficulties, lack of
motor coordination (3 m) Psychomotor retardation Yes Yes Yes

2
Severe encephalopathy with

uncontrolled movements, ataxia,
tremor, nystagmus (24 m)

5 Hypotonia, DD (5 m) Motor and cognitive deficits Yes
(9 m) Yes Yes

6 Hypotonia, DD (6 m) Motor and cognitive deficits Yes
(18 m) Yes

7 Hypotonia, DD (7 m) Motor and cognitive deficits Yes
(24 m) Yes Yes

8 Hypotonia, DD (9 m) Motor and cognitive deficits

9 Hypotonia, DD (9 m) Motor and cognitive deficits Yes

10 Hypotonia, DD (10 m) Motor and cognitive deficits Yes Yes

11 Hypotonia, DD (12 m) Motor and cognitive deficits Yes Yes

12 Hypotonia, DD (12 m) Motor and cognitive deficits Yes Yes

13 Frequent falls, DD (12 m) Delayed motor development

14 Frequent falls, DD (18 m) Independent walking at 18 m,
language delay

Yes
(30 m)

15 Frequent falls, DD
(12 m)

Independent walking at 12 m, slower
intelligence progression,
psychomotor regression

Yes
(36 m)

16 DD (20 m)
Delayed independent walk, slow

motor development, psychomotor
regression 24 m

17 Frequent falls (15 m) Motor regression 36 m Yes
(36 m)

18 Frequent falls (20 m) Yes

19 DD (NK) Developmental delay <24 m Yes
(<24 m)

Yes
(24 m)

Yes
(48 m) Yes Yes

(60 m) Yes
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Table 3. Cont.

Patient
No

Presenting Neurological
Sign/Symptom
(Age of Onset)

Developmental Progress

Ataxia,
Abnormal
Gait (Age
of Onset)

Cataplexy
(Age of
Onset)

Seizures
(Age of
Onset)

VSGP
(Age of
Onset)

Dystonia
(Age of
Onset)

Dysphagia
(Age of
Onset)

Dysarthria
(Age of
Onset)

Spasticity
(Age of
Onset)

20 DD (NK) Developmental delay, never
mobile, no swallowing problems

Yes
(60 m)

Yes
(70 m)

Yes
(36 m)

Yes
(<36 m)

21 DD (NK) Developmental delay, never
mobile, no swallowing problems

Yes
(60 m)

Yes
(70 m)

Yes
(36 m)

Yes
(<36 m)

22 DD (17 m) Developmental delay 17 m, ataxia Yes
(48 m)

Yes
(48 m)

Yes
(60 m)

Yes
(36 m)

Yes
(60 m) Yes

23 DD (NK) Developmental delay <18 m Yes
(<24 m)

Yes
(35 m)

Yes
(13 m)

Yes
(<24 m)

24 DD (NK) No speech Yes
(41 m)

Yes
(<18 m)

Yes
(36 m)

29 DR, ataxia (18 m)

30 DD, ataxia (22 m) Psychomotor regression

31 DD (12 m)
Developmental delay at 1st year,
cannot stand and walk at 19 m,

tremor in upper limbs, no speech

Yes
(30 m)

Yes
(42 m)

32 Speech regression (18 m)

Early development was normal,
walked independently at 14 m.

Loss of speech at 18 m, cannot walk
at 30 m, left hemiparesis, could not
stand at 36 m, bedridden at 48 m

Yes Yes

33 Hypotonia (2m), DD (4 m)
2m hypotonia, poor sucking,

developmental delay (poor head
control at 4 m)

35 Hypotonia, DD (12 m) Psychomotor retardation

37 Motor regression, spastic
tetraparesis (12 m) Motor regression

51 Hypotonia (23 m) Neurological regression 24 m

55 DR (NK) Developmental regression,
intellectual disability

56 DR (NK) Developmental regression,
intellectual disability
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Table 3. Cont.

Patient
No

Presenting Neurological
Sign/Symptom
(Age of Onset)

Developmental Progress

Ataxia,
Abnormal
Gait (Age
of Onset)

Cataplexy
(Age of
Onset)

Seizures
(Age of
Onset)

VSGP
(Age of
Onset)

Dystonia
(Age of
Onset)

Dysphagia
(Age of
Onset)

Dysarthria
(Age of
Onset)

Spasticity
(Age of
Onset)

57 DR (NK)
Developmental regression,

intellectual disability, hearing
impairment, visual impairment

Yes

58 DR (NK) Developmental regression Yes

59 DD, ataxia (24) Mild global developmental delay Yes
(54 m)

Yes
(54 m)

75 DD (5) Head control 5m, walking
independently 24 m

Yes
(30 m)

Yes
(45 m)

Yes
(45 m)

Yes
(36 m)

Yes
(36 m)

Yes
(45 m)

76 DD, DR (9) Developmental regression 9m,
never walk, no speech Yes Yes Yes Yes Yes Yes

77 Hypotonia, DD (NK)
Mild psychomotor retardation,

decreased muscular tone,
walking difficulties

78 Hypotonia, DD,
Dystonia (5)

Able to sit: 18 m
Never stand up or walk

Yes
(8 m)

82 DD, DR (12)

83 DD, DR (24)

84 DD, DR (24)

85 DD, DR (18)

DD: developmental delay, DR: developmental regression, VSGP: vertical supranuclear gaze palsy, M: male, F: female, m: months, NK: not known.
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This narrowed the cohort down to 43 patients with at least two neurological signs or symptoms.
Developmental delay remained the most common first reported symptom which was noted in
31/43 (72%). Developmental delay was noticed in 17/43 of cases in the first year of life and 8/43 between
13 and 24 months of age. In six patients age of onset of the delay was not reported.

Hypotonia was the second most frequently reported initial symptom which was recorded in
13/43 patients. While it was reported in 11/43 patients in first 12 months of life, 1/43 patients presented
with hypotonia between 13 and 24 months (Figure 3). In one case, the age onset of hypotonia was not
identified. In 12 cases, hypotonia was noted to accompany developmental delay.

A total of 12/43 cases were reported to have exhibited developmental regression which means
losing acquired functions or failing to progress after a normal developmental period, indicating a
neurodegenerative disorder. Regression was described to occur in the first year of life in 3/43 patients,
in the second year of life in 5/43 patients, and was not defined in 4/43.

Frequent falls, lack of motor coordination, and ataxia were reported as a presenting symptom in
10/43 patients; 3/10 in the first 12 months and 7/10 between 13 and 24 months. Frequent falls and ataxia
were associated with developmental delay in 5/10 patients.

Spasticity, dystonia, and dysphagia were the other initial neurological symptoms described; each
was reported in one patient occurring in the first 12 months of age.

Nystagmus was noted as a presenting symptom in one patient accompanied by severe
encephalopathy with uncontrolled movements, ataxia, and tremor at the age of 24 months.

Descriptions of these 43 patients had varying degrees of detail regarding the neurological
progression of the disease. Age distribution of neurological symptoms and signs is shown in Figure 4.
In 7/43 patients, additional symptoms were described in the first 24 months of life: VSGP in five cases,
ataxia, dysphagia, and dysarthria in one case and one patient was described to display both ataxia and
cataplexy. Most additional symptoms were described to have occurred after 24 months of age.
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Vertical supranuclear gaze palsy and dysarthria were the most common neurological
manifestations developed in the course of the disease; 16/43 (37.2%) and 13/43 (30.2%), respectively.
VSGP was typically reported between 8 and 54 months.

A total of 10/43 cases developed cataplexy, which is a sudden and transient episode of muscle
weakness and loss of consciousness lasting a few seconds and followed by full conscious awareness.
The onset of cataplexy was described to have occurred between the ages of 2–5 years. A total of five of
them were determined as gelastic cataplexy which is triggered by laughter.

Dysphagia and swallowing difficulties were reported in 9/43 patients between the ages of 13 and
60 months. A total of 8/43 patients developed seizures between the ages of 30 and 70 months.
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Ataxia/abnormal gait was described in 5/43 patients during the follow-up. A total of 4/5 patients with
ataxia were also reported to have dysarthria. Dystonia was described in 5/43 cases and spasticity
in 4/43.

2.4. Developmental Milestones

Delay in reaching normal developmental milestones is the major presenting feature of EIF NPC.
Unfortunately, little detail was provided in the description of the milestone achievement and therefore
it was not possible to tease out specific problems in most cases.

The distribution of description of developmental delay is shown in Figure 5. Developmental delay
was reported in 31/43 patients. Motor development delay was the most commonly mentioned
abnormality among the EIF patients, reported in 20/43 patients. In 10/43 patients motor delay was
accompanied by cognitive delay and in 3/43 patients by speech delay. In 1/43 case only speech delay was
mentioned. Unspecified developmental delay was mentioned in 9/43 patients and global development
delay was noted in 1/43 patients. Hearing and visual impairment were reported in one patient.
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2.5. Age and Cause of Death

Age of death was reported in 31/89 patients. Median age of death was 48 months (range
7–132 months). Cause of death was only reported in 7/31 cases and all of them were due to respiratory
failure. A total of 3/31 of these patients received miglustat treatment. A total of two of them started
miglustat therapy at the age of 7 years, however they only received treatment for 1 week. One other
patient started miglustat therapy at the age of 20 months and after 13 months of therapy, the patient
was deceased due to the respiratory complications.

2.6. Neuroimaging Findings

Neuroimaging data was available in 10/81 patients and only one of them was reported as
normal [51]. Cerebral atrophy was mentioned in nine patients [42,46,49,50]. Deep white matter signal
abnormalities were seen in six patients [42,49].

2.7. Additional Diagnostic Investigations

The filipin test, based on the demonstration of accumulated unesterified cholesterol within the
lysosomes of cultured fibroblasts, for many years was regarded as the gold standard for NPC diagnosis,
however, more recently it has been used less frequently compared with analysis of other biomarkers [12].
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As expected, most of the historical patients underwent filipin staining. Filipin test was used to confirm
the diagnosis in patients in whom only a single NPC1 mutation was identified. The other tests that were
commonly employed to assist in the diagnostic process in the past included bone marrow aspiration
and chitotriosidase activity assay. These analyses are not recommended anymore as they are not as
sensitive or specific as the newer tests such as analyses of oxysterols, NPC bile acids, and lyso-SM-509
levels [3].

2.8. Genotype Phenotype Correlation

In order to identify NPC1 mutations that confer EIF phenotype we selected 42 patients with at
least two neurological signs or symptoms from Table 2. As above, patients who presented with only
mild developmental delay were not included in order to avoid potential inclusion error (Table 2).
We were able to identify mutations that in homozygous state confer EIF phenotype (Table 3). Some of
these mutations were also seen in homozygous state in LIF phenotype suggesting a degree of overlap
between the two groups. A combination of the severe (EIF causing) mutation with a milder one was
seen to confer the later onset disease.

A total of 15 mutations occurred in homozygous state in EIF patients (Table 4). They included two
gross deletions, one small deletion, two insertions and deletions that result in a frame shift, two splice
site mutations, and eight missense mutations.

A total of 9/15 mutations: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75,
IVS21-2delATGC, c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup
(p.A321Gfs*16) were only reported in EIF patients.

c.3503G>A (p.C1168Y) was identified in one EIF patient but also in two LIF patients in a
homozygous state [37,55]

c.1415T>C (p.L472P) in exon 9 of the NPC1 gene was found in two Iranian patients with EIF [53].
It was previously reported in two other Iranian patients in a homozygous state; one of them was also
EIF patient, while the other was a LIF patient [45].

c.3394G>C (p.A1132P), a missense point mutation in exon 22, was reported in a Greek patient
with an EIF. The same report described a LIF patient who died at the age of 14 years with the same
mutation [13].

Homozygous gross deletion of exon 1+promoter was reported in one patient [48]. In previous
reports, three patients were also described with a EIF phenotype even though they had different gross
deletions of the NPC1 gene in a compound heterozygous state [39,57].

c.1211G>A (p.R404Q) was found in Bedouin-Israeli patients in homozygous state who had EIF,
LIF, and EISL phenotypes [47]. It was also detected in a French EIF patient in a compound heterozygous
state with c.709C>T (p.237S) [56]. A total of two juvenile patients were reported to have c.1211G>A
(p.R404Q); one as the only mutation, the other was in combination with c.1133T>C (p.Vl378A) [37].

c.3104C>T (p.A1035V) was reported in two EIF patients; one in homozygous state, the other was
reported in combination with IVS23+1G>A [52]. It was also reported in a juvenile patient with an
unknown second allele [52]. Another juvenile patient had c.3104C>T (p.A1035V) in combination with
c.3019C>G (p.P1007A), again suggesting that this latter mutation confers milder phenotype [58].

Besides occurring in homozygous state, there were two patients referred in literature being
compound heterozygotes for IVS23 +1G > A (c.3591+1G>A) with c.3104C>T (p.A1035V) or c.3182T>C
(p.I1061T), respectively, who displayed the EIF phenotype and another patient who had this mutation
in combination with c.2090C>T (p.V697A) and showed the LIF phenotype, confirming the hypothesis
that this mutation confers more severe illness [36,52,59].

c.3107C>T (p.T1036M) is a severe mutation which was associated with EIF phenotype in a
homozygous state [42]. It was reported in two other EIF patients in combination with c.3557G>A
(p.R1168H) [37]. c.3107C>T (p.T1036M) was found in two LIF and one juvenile patient, in combination
with c.3182C>T (p.I1061T) and c.2861C>T (p.S954L) mutations that typically confer later onset
phenotypes [37].
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Table 4. NPC1 mutations causing early infantile phenotype. Mutation–phenotype association.

EISL Phenotype in
Combination with

the Following
Mutations

Early Infantile
Phenotype in
Homozygous

State

Early Infantile Phenotype in
Combination with

Late Infantile Phenotype in
Combination with the
Following Mutations

Juvenile Phenotype in
Combination with the
Following Mutations

Deletions/
Insertions

exon 1+promoter X
c.385delT X

c.960_961dup (p.A321Gfs*16) X
p.C63fsX75 X

c.3578_3591 + 9del X

Missense
Mutations

c.3614C>G (p.T1205R) -c.1261C>T (p.Q421X) -c.3614C>A (p.T1205K) -c.1553G>A (p.R518Q)
c.3107C>T (p.T1036M) X -c.3557G>A (p.R1168H) -c.3182C>T (p.I1061T) -c.2861C>T (p.S954L)

c.1553G>A (p.R518Q) c.2795dupA -Homozygous
-c.1172A>G (p. E391G)

-c.3019C>G (p.P1007A)
-c.494C>T (p.A165V)

c.3557G>A (p.R1186H)

-c.3107C>T (p.T1036M)
-c.826T>C (p.Y276H)

-c.3614C>A (p.T1205K)
-c.2196dupT (p.P733Sfs*9)

-c.1421C>T (p.P474L)
-c.3019C>G (p.P1007A)

-c.826T>C (p.Y276H)
-c.3182T>C (p.I1061T)
-c.2830G>A (p.D944N)

-c.2196dupT (p.P733Sfs*9)

- c.2861C>T (p.S954L)

c.1415T>C (p.L472P) X -Homozygous

c.3104C>T (p.A1035V) X -IVS23 +1G > A (c.3591+1G>A) -NK
-c.3019C>G (p.P1007A)

c.3394G>C (p.A1132P) X -Homozygous
c.3503G>A (p.C1168Y) X -Homozygous

c.1211G>A (p.R404Q) -Homozygous X -c.709C>T (p.237S) -Homozygous -c.1133T>C (p.Vl378A)
-NK

c.2740T>A (p.C914S) X
c.3584G>T (p.G1195V) X

Splice Site
Mutations

IVS23 +1G > A (c.3591+1G>A) X -c.3104C>T (p.A1035V)
-c.3182T>C (p.I1061T) -c.2090C>T (p.V697A)

c.3478-6T>A X
IVS21-2delATGC X
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c.3557G>A (p.R1186H) mutation was found in the EIF phenotype when it occurs in
combination with c.3107C>T (p.T1036M), c.826T>C (p.Y276H), c.3614C>A (p.T1205K), and c.2196dupT
(p.P733Sfs*9) [36,37]. It was also reported in LIF patients in combination with c.1421C>T
(p.P474L), c.3019C>G (p.P1007A), c.826T>C (p.Y276H), c.3182T>C (p.I1061T), c.2830G>A (p.D944N),
and c.2196dupT (p.P733Sfs*9) [36,60]. c.3557G>A (p.R1186H) mutation was also detected in juvenile
patients when it occurs in combination with a c.2861C>T (p.S954L) mutation known to confirm juvenile
phenotype [36,60]. c.3557G>A (p.R1186H) was found in a LIF patient and a patient with isolated
splenomegaly without neurological presentation in a homozygous state, which suggests that the
severity of this mutation depends on the additional genomic factors [36].

While c.1553G>A (p.R518Q) was found in two EIF patients in combination with c.2795dupA,
it was detected in a LIF patients in a homozygous state and in combination with c.1172A>G
(p. E391G) [61,62]. It was shown in juvenile patients in combination with c.3019C>G (p.P1007A) and
c.494C>T (p.A165V) [37,61].

While c.3614C>G (p.T1205R) was reported in an EIF patient with c.3614C>A (p.T1205K), it was
also noted in a LIF patient in a combination with c.1553G>A (p.R518Q) suggesting that the latter
mutation confers milder phenotype [63]. It was detected in a patient presented as an EISL phenotype
in a compound heterozygous state with c.1261C>T (p.Q421X) [36].

2.9. Early Infantile Neurological Onset NPC Due to NPC2 Mutations

Analysis of massively parallel sequencing data sets revealed that incidence rate for NPC2 mutations
is extremely rare at 1/2,858,998 [16]. Therefore, only a few small case series were reported [64–68].

An observational, retrospective study of NPC patients from Czech Republic revealed
56 cases and only one of them had NPC2 genotype with an EIF phenotype. This female patient
presented with pulmonary involvement, psychomotor retardation, central hypotonia, and moderate
hepatosplenomegaly at the age of 1 year. Spasticity and cognitive deterioration occurred during the
second year of life and the patient died at 4 years of age due to respiratory insufficiency [36].

Retrospective data for UK-based patients with NPC revealed two cases with NPC2 mutations
among a total of 112 patients. Both of them were LIF patients with few insidious neurological
manifestations [37].

A collaborative multicenter study from Italy which aimed to characterize the molecular basis of
NPC reported eight NPC2 patients, six of whom presented with severe phenotypes including EISL and
EIF; two patients had an adult phenotype [41].

The clinical, biochemical, and molecular findings of 14 NPC cases diagnosed in Greece were
demonstrated and only 1/14 had NPC2 mutations causing a LIF [54].

A prospective epidemiologic cohort study from Turkey aimed to investigate the frequency of NPC
mutations in consanguineous families with at least one homozygous family member. A total of 3/4
randomly selected probands had NPC2 mutations, which is likely to demonstrate a founder effect in
this region [67].

According to the review of literature, 16 NPC2 cases were found with EIF (Table 5). Cases which
did not have neurological symptoms were excluded. A total of 8/16 cases were female, 3/16 were male,
and 5/16 were unknown gender.

While visceral symptoms were found in all patients, visceromegaly was noted in 15/16 patients
(93.8%); 9/16 had HSM, 4/16 were SM, and 2/16 had HM. Pulmonary involvement was reported in
12/16 patients. Prolonged jaundice was noted in 7/16 patients.

Age of neurological onset was reported in 14 patients with median age of onset 7.5 months
(range 0–24). Hypotonia and developmental delay were the most common initial neurological symptoms,
reported in 10/16 and 8/16 cases, respectively. While hypotonia presented in 8/16 patients in the first
12 months, it was reported to have occurred between 12 and 24 months in 2/16 patients. Similar to that
developmental delay was noted in 6/16 patients in the first year of life and 2/16 cases in the second year
of life. In one case, abnormal gait accompanied hypotonia as a presenting neurological symptom.
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Table 5. Demographic, clinical, and molecular features of early infantile disease with NPC2 mutations.

Patient No
Presenting Neurological

Sign/Symptom (Age of Onset
in Months)

Visceral
Symptoms Ethnicity Sex

F/M Allele 1 Allele 2
Age of
Death

(Month)
Ref.

1 DD (12) HSM, PI Czech F c.58G>T (p.E20X) c.58G>T (p.E20X) 48 (RF) [36]
2 NK HSM, PI Italian NK c.58G>T (p.E20X) c.58G>T (p.E20X) 10 (RF) [40]
3 NK HSM, PI Italian NK c.58G>T (p.E20X) c.58G>T (p.E20X) NK [40]
4 DD, Hypotonia (12) SM Turkish F c.352G>T (p.E118X) c.352G>T (p.E118X) 24 (RF) [67]
5 Hypotonia PJ, HSM, PI Turkish F c.352G>T (p.E118X) c.352G>T (p.E118X) 10 (RF) [67]
6 Hypotonia, DD (2) HSM, PJ, PI Turkish F c.434T>A (p.V145E) c.434T>A (p.V145E) 8 (RF) [68]
7 Newborn Hypotonia (NK) HSM, PJ, PI Turkish F c.434T>A (p.V145E) c.434T>A (p.V145E) 9 (RF) [67]
8 Hypotonia (4) SM Turkish NK c.352G>T (p.E118X) c.352G>T (p.E118X) NK [67]
9 Hypotonia (2) SM, PJ, PI Tunisian M c.436C>T (p.Q146X) c.436C>T (p.Q146X) 4.5 (RF) [65]

10 Hypotonia, DD (8) PI, HSM German F c.352G>T (p.E118X) c.352G>T (p.E118X) 11 (RF) [65]
11 DD (7) PJ, PI Algerian M c.58G>T (p.E20X) c.58G>T (p.E20X) 19 (RF) [64,69]
12 Hypotonia, abnormal gait (18) HSM, PI Turkish F c.199T>C (p.S67P) c.199T>C (p.S67P) Alive (45y) [64]
13 DD (16) HSM, PJ Italian NK c.133C>T (p.Q45X) c.133C>T (p.Q45X) Alive (54) [70]
14 Hypotonia, DD (1) HM, PJ, PI Sri-Lankan NK c.141C>A (p.C47X) c.141C>A (p.C47X) Alive (12) [70]
15 Hypotonia (12) HM, PI Indian M c.82+2T>C (IVS1+2T>C) c.82+2T>C (IVS1+2T>C) NK [71]
16 DD (12) SM Chinese F c.3G>C (p.M1I) c.190+5G>A(IVS2+5G>A) NK [46]

HSM: hepatosplenomegaly, VM: visceromegaly, SM: splenomegaly, PJ: prolonged jaundice, DD: developmental delay, PI: pulmonary involvement, M: male, F: female, NK: not known,
Ref.: reference.
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There was not enough data to detail the neurological progression and developmental milestones
in NPC2 patients, mainly because most succumb in infancy. Distribution of neurological symptoms
are shown in Figure 6. A total of three patients exhibited hypotonia with developmental delay
during the follow-up. Dysarthria was reported in two cases. While VSGP was mentioned in one case,
another patient developed mild horizontal saccade abnormalities and end-point nystagmus as well as
intermittent myoclonus. Ataxia and cataplexy were reported in the same patient. One patient was
reported to develop intellectual regression and another developed seizures at the age of 7 years.
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A total of nine patients were reported as deceased with the median age of 10 months (range 4.5–48).
In all nine patients, cause of death was reported as respiratory failure.

NPC2 mutations causing EIF are shown in Table 6, based on mutation–phenotype association.
c.58G>T (p.E20X) nonsense mutation was the most common reported in five cases in a homozygous
state. c.58G>T creates a premature stop codon downstream of the signal peptide. All patients had early
onset pulmonary involvement with neurological deterioration [36,40,64]. However, two other patients
homozygous for the same mutation presented with hepatosplenomegaly without reported neurological
symptoms, significant respiratory disease, and death at the age of 6 months [64]. It was also associated
with respiratory failure and premature death without obvious neurological involvement in a French
patient in combination with c.27delG (p.Leu10Serfs*25) [64]. It was also demonstrated in a LIF patient
in a homozygous state [37].

c.352G>T (p.E118X) was the second most frequent mutation observed in four patients in a
homozygous state. This nonsense mutation in exon 3 of NPC2 leads to a premature stop codon and
was associated with a severe clinical progression and death in the first 2 years of life [65,67]. It was
reported in a German patient presented with visceromegaly, respiratory involvement, and early death
without assigned neurological symptoms [64].

c.434T>A (p.V145E) was exclusively reported in two patients with EIF in a homozygous state.
The following mutations: c.436C>T (p.Q146X), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A

(p.C47X), and c.82+2T>C (IVS1+2T>C) were all reported in individual cases. All patients had severe
pulmonary disease accompanied by neurological involvement. Homozygous c.436C>T (p.Q146X)
was also reported in an Algerian patient with cholestatic icterus and hepatosplenomegaly with
ascites [66,72]. c.82+2T>C (IVS1+2T>C) was also demonstrated in a Sri-Lankan patient in whom
hepatosplenomegaly, severe pulmonary involvement with hypoxia, and severe nutritional problems
were first detected aged 4.5 months without obvious neurological involvement [66].

c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) mutations were
only associated with EIF.

One Chinese patient was found to be compound heterozygous for c.3G>C (p.M1I) and c.190+5G>A
(IVS2+5G>A) mutations [46]. While c.3G>C (p.M1I) was only reported in this patient, c.190+5G>A
(IVS2+5G>A) was reported in two juvenile cases in a homozygous state [54,64].
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Table 6. NPC2 mutations causing early infantile phenotype. Mutation–phenotype association.

EISL Phenotype in
Combination with the
Following Mutations

Early Infantile
Phenotype in
Homozygous

State

Early Infantile
Phenotype in

Combination with
the Following

Mutations

Late Infantile
Phenotype in

Combination with
the Following

Mutations

Juvenile Phenotype
in Combination with

the Following
Mutations

Missense Mutations

c.58G>T (p.E20X) -Homozygous
-c.27delG (p.L10Sfs*25) X -Homozygous

c.352G>T (p.E118X) -Homozygous X
c.434T>A (p.V145E) X
c.133C>T (p.Q45X) X
c.141C>A (p.C47X) X
c.199T>C (p.S67P) X

c.436C>T (p.Q146X) -Homozygous X

c.3G>C (p.M1I) -
c.190+5G>A(IVS2+5G>A)

Splice Site
c.82+2T>C (IVS1+2T>C) -Homozygous X

c.190+5G>A (IVS2+5G>A) -c.3G>C (p.M1I) -Homozygous
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3. Discussion

This review intended to consolidate the knowledge of the EIF NPC clinical presentation
in order to provide an up-to-date evaluation of the characteristics of this form of the disease.
Granular understanding of the clinical symptom progression is of paramount importance to good
clinical practice, accurate family counselling, and clinical trial design. A major limitation of this review
based on literature search was the considerable heterogeneity among the included studies, particularly
the way patient demographic and clinical characteristics were reported. Moreover, neurological data
including the chronology of signs and symptoms and history of developmental progression were very
limited. Therefore, in order to make the most reliable and accurate conclusions, we restricted the patient
cohort and selected the cases with more detailed information in a consistent way. Several exclusion
criteria were set to minimize the possibility of bias. Hence, clinical characteristics including the initial
presentation, neurological and developmental progression, and molecular features of both EIF NPC1
and NPC2 group were set.

As expected, a remarkable proportion of EIF patients had a history of visceromegaly (80/89).
However, only 30/89 patients had prolonged neonatal jaundice reported [1,36–38,46]. The presence of
these symptoms and early referral to the treatment center is likely to allow early diagnosis of NPC,
provided appropriate diagnostic measures are instigated [12,30,73].

Lung involvement is a prominent feature of the NPC2 disease. It is thought to be caused by
the lung infiltration by foamy macrophages and is associated with pulmonary alveolar proteinosis,
unlike NPC1 patients in whom respiratory complications are typically due to recurrent aspirations and
infections [47,74–80].

Failure to progress along the expected developmental milestones is usually the first opportunity
to identify the neurological abnormality in a patient with EIF NPC [2]. Onset of neurological symptoms
predicts the disease progression and the expected lifespan [1,12]. In the EIF group with two or more
neurological symptoms the median age of onset was 12 months (range 0–24) in the NPC1 and 7.5 months
(range 0–24) in the NPC2. The most frequent neurological symptoms were developmental delay and
hypotonia in both groups. NPC1 patients also displayed developmental regression, “frequent falls and
ataxia”, spasticity, dysphagia, and nystagmus as an initial neurological symptom. Both hypotonia and
developmental delay occurred in the first year of life more often than in the second 12 months.

From the reviewed data it was difficult to obtain granularity in the developmental delay data
(Figure 5). Whilst this symptom is crucial for early diagnosis of EIF, it is well known that cases with
LIF and even juvenile types of the disease may display some developmental delay. Hence, in this
review we tried to select patients with features that provided more reassurance regarding the specific
NPC form. Nevertheless, it is difficult to be absolutely confident in this selection. Furthermore, as an
isolated symptom developmental delay leads to a large list of differential diagnoses and hence may
not be helpful in the diagnostic process.

The age of presentation of various neurological symptoms is shown in Figures 4 and 6. VSGP and
dysarthria were the most common followed by cataplexy, dysphagia, seizures, ataxia, and spasticity.
Gelastic cataplexy and VSGP have been reported as highly specific for NPC and in particular VSGP is
often suggested as the initial neurological sign. Hence, we were keen to explore whether this statement
holds true for the EIF [30,73,81]. In the cohort with at least two neurological signs or symptoms,
we found that VSGP was reported in 16/43 and mostly developed earlier (median 30 months, range
8–54 months) than cataplexy, which was reported in 10/43 cases (median 36, range 24–60 months).
Thus, ophthalmological assessment is an important part of the follow-up management but absence of
VSGP as a presenting feature cannot exclude EIF type of NPC.

Brain imaging in NPC is usually nonspecific early in the disease and is often reported as cerebellar
and cerebral atrophy at later stages of progression. In the EIF cohort reviewed here we found that brain
atrophy and white matter signal abnormalities were the most frequent changes reported [42,49–51]
consistent with other studies [82].
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We have not specifically interrogated the data on laboratory investigations performed in this
cohort. Typically filipin staining and other biomarker analyses such as levels of oxysterols, lysoSM509
ratio, NPC specific bile acids are used for diagnostic screening, whilst molecular tests provide the
definitive result in most, although not in all, cases [3,15,17].

According to the literature, the EIF patients live shorter after the onset of neurological disease
than those patients with later presentations [1,18,20,37,83]. Median age of death was earlier in the
NPC2 (median 10 months, range 4.5–48) compared to NPC1 patients (median 48 months, range 7–132).
In agreement with individual reports, respiratory complications were the most frequent cause of
death in EIF patients in both NPC1 and NPC2 groups. The earlier death may be due to the more
severe pulmonary involvement in NPC2 cases. [64,66,67,70]. NPC1 patients usually die following the
neurological disease progression, leading to respiratory complications such as aspiration pneumonia
and respiratory failure [84].

We interrogated professional version of the Human Gene Mutation Database (www.hgmd.cf.ac.uk)
as an up-to-date source of disease mutations in order to verify our findings from the literature review.
It lists a total of 524 NPC1 defects that include 344 missense and nonsense mutations, 73 small
deletions, 47 small insertions, 43 mutations affecting splicing, 12 gross deletions, three small indels,
and two gross insertions/duplications. The NPC1 gene encodes NPC1 protein has 13 transmembrane
domains, a sterol-sensing domain, a cysteine rich luminal loop, and a highly conserved domain with a
leucine-zipper motif in the N-terminal tail. Most common mutations associated with later phenotypes
including p.I1061T, p.P1007A, and p.G992W result in changes in the cysteine-rich loop which has an
important role in the cholesterol transport chain [85].

The following mutations so far have only been reported to only cause EIF in homozygous state:
gross deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC,
c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) (Table 3).
IVS23+1G >A is predicted to be a severe mutation, which causes EIF even in combination with p.A1035V
or p.I1061T. c.1415T>C (p.L472P) and c.3394G>C (p.A1132P) mutations were detected in both early
and LIF patients in homozygous state. c.3107C>T (p.T1036M) and c.1553G>A (p.R518Q) often cause
EIF, however, when in combination with late onset associated mutations such as c.3182C>T (p.I1061T),
c.3019C>G (p.P1007A), and c.2861C>T (p.S954L), they mostly present with a later onset phenotypes.

The NPC2 gene encodes a small lysosomal/late-endosomal glycoprotein that is ubiquitously
expressed and plays a role in cholesterol trafficking [8,9,86]. Twenty-eight disease causing mutations
have been reported so far (www.hgmd.cf.ac.uk) including 19 missense/nonsense mutations, four
mutations affecting splicing, three small deletions, one small insertion/deletion, and one gross
deletion. c.58G>T (p.E20X) and c.352G>T (p.E118X) were the most common mutations associated
with EIF, however they were also reported in non-neurological phenotype with significant pulmonary
involvement and visceromegaly. Whilst the patients did not appear to show obvious neurological
features, it is likely that the early death pre-empted symptom evolution. c.434T>A (p.V145E), c.436C>T
(p.Q146X), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X), and c.82+2T>C (IVS1+2T>C)
mutations were also reported in EIF patients in a homozygous state. c.434T>A (p.V145E), c.199T>C
(p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) mutations were only associated with EIF phenotype
(Table 5). There was only one patient with compound heterozygous c.3G>C (p.M1I) and c.190+5G>A
(IVS2+5G>A) mutations. c.190+5G>A (IVS2+5G>A) was reported in a juvenile phenotype associated
mutation [54,64]. c.3G>C (p.M1I) is predicted to be a severe mutation which led to an EIF even in
combination with a juvenile phenotype associated mutation.

There is a dearth of effective treatments available for NPC. Management is mainly symptomatic
to increase the quality of life [1,12]. Patients with dysphagia should be closely monitored to avoid
serious lung infections secondary to aspiration and to ensure adequate nutrition. Some patients need
gastrostomy to maintain daily caloric intake [18,84]. Antiepileptic drugs are used although typically
seizures are difficult to control [17]. Although tricyclic antidepressants have been used historically for
cataplexy, their effect is very limited [17]. Dystonia and tremors may respond to anticholinergic drugs
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at least transiently, in some patients. Other drugs used for tone management include trihexyphenydil,
benzodiazepines, botulinum toxin, and gamma-aminobutyric acid [17]. Physiotherapy can be used to
delay the onset of contractures.

Miglustat is the only disease specific therapy approved for treatment of NPC worldwide.
Miglustat is an iminosugar that inhibits glycosphingolipid synthesis. It has been reported to slow
neurological deterioration and improve survival in different NPC cohorts [42,84,87,88]. Recently, a large
retrospective observational study that used a multinational registry and five large national cohorts
suggested that miglustat effect was statistically significant in improving the survival of LIF and juvenile
patients, but not those in EIF group [89]. We could not obtain sufficient data on the miglustat use in the
EIF group reviewed here to comment on its effect.

A number of experimental therapy trials are currently at different stages of clinical development.
Arimoclomol upregulates molecular chaperones in cells including Hsp70, which increases the
expression of mutant protein forms that may retain some of the function. The initial results of
an Orphazyme-sponsored prospective, randomized, double-blind, placebo-controlled study suggested
potential efficacy (NCT02612129) [90]. Hydroxypropyl-beta-cyclodextrin (HPβCD) is a molecule,
which was shown to reduce neuronal cholesterol and ganglioside storage, decrease Purkinje
cell death, and increase lifespan in many animal model studies [91–94]. A phase I/IIa trial of
intrathecal HPβCD demonstrated a slower neurological disease progression in treated patients
(NCT02534844, NCT01747135). The clinical trials investigating intravenous (sponsored by CTD
Holdings) and intrathecal (sponsored by Malinckrodt) HPβCD, as well as the combined administration
(see clinicaltrials.govc) are ongoing [95,96]. Acetyl-DL-leucine, an acetylated derivative of a natural
amino acid, significantly improved ataxic symptoms without side effects and quality of life [97,98].
A phase 2 clinical trial investigating the efficacy of Acetyl-L-Leucine sponsored by IntraBio is currently
in progress (NCT03759639). Unfortunately, most of the clinical trials initiated so far excluded patients
with early forms of the disease.

There has been a suggestion that bone marrow transplantation (BMT) may be effective in NPC2
as NPC2 is a soluble and secreted protein. However, only one NPC2 case treated with BMT and a
long-term follow up could be found in the literature. A LIF NPC2 patient, presented with HSM and
respiratory symptoms from the neonatal period including tachypnoea, recurrent infections, and oxygen
dependence underwent BMT at the age of 16 months. Gradual improvement in respiratory symptoms
and hepatosplenomegaly was reported by the age of 3 years. The child started to walk independently
at the age of 24 months. However, after the age of 2 years the patient started regressing and at
33 months he no longer had any words. At 46 months of age, there was a decrease in his socialization
with a reduction in vocalization. At the age of 63 months seizures started and became gradually
intractable [99,100].

Gene therapy is a rapidly evolving field and a number of pre-clinical studies have shown that it may
hold potential in treating NPC [101–103]. These studies have involved adeno-associated viral vectors
to deliver a functional copy of the NPC1 gene to a mouse model of NPC and reported neurological and
systemic improvements and increased survival.

4. Materials and Methods

This review was based on a search through MEDLINE database using PubMed as the search
engine. All relevant articles, original articles, case reports, and reviews published through April 2020
were included. The database was searched using the following medical subject headings (MeSH
terms) “Niemann Pick Disease type C” and “Niemann Pick Disease”. Furthermore, the references
of the articles were investigated by hand for related articles. Our main focus were patients with EIF
phenotype, therefore only cases with neurological symptoms in the first 2 years of life were included.
Cases with late infantile (LIF), juvenile, and adult phenotypes were excluded. Cases presented with
acute liver failure and treated with liver transplantation were not included in order to ensure uniformity.
To evaluate the characteristics of EIF neurological disease, cases with “developmental delay” reported
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as the only symptom were also excluded. Only cases with at least one identified mutation in NPC1
or NPC2 were selected. In cases where only one mutation was identified, the diagnosis had to be
supported by a biomarker test such as filipin staining of cultured skin fibroblasts. Other exclusion
criteria used were (1) the article does not have abstract or the abstract is not available from the included
electronic database; (2) the full text of the article is not available in English.

5. Conclusions

These data derived from an extensive review of NPC literature focused on the EIF type of NPC
and provides an overview of the disease, with particular emphasis on neurological course and genetic
features. Identification of mutations determining the EIF will help predict the disease progression and
structure future clinical trials of novel therapies. Inevitably, only prospective natural history studies
with set inclusion and exclusion criteria as well as detailed assessment categories could provide the
granularity for the time course of the disease. This can only be achieved by close interaction of many
international centers and family organizations.
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