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Abstract Disease subtyping, which helps to develop personalized treatments, remains
a challenge in data analysis because of the many different ways to group patients based
upon their data. However, if we can identify subclasses of disease, then it will help to
develop better models that are more specific to individuals and should therefore
improve prediction and understanding of the underlying characteristics of the disease
in question. This paper proposes a new algorithm that integrates consensus clustering
methods with classification in order to overcome issues with sample bias. The new
algorithm combines K-means with consensus clustering in order build cohort-specific
decision trees that improve classification as well as aid the understanding of the
underlying differences of the discovered groups. The methods are tested on a real-
world freely available breast cancer dataset and data from a London hospital on
systemic sclerosis, a rare potentially fatal condition. Results show that “nearest con-
sensus clustering classification” improves the accuracy and the prediction significantly
when this algorithm has been compared with competitive similar methods.
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1 Introduction

Disease subtyping helps to develop personalized treatments that better fit individual
patients. It does, however, remain a challenge in data analysis because of the many
different approaches to clustering patients based on their data. Nevertheless, if we can
identify subclasses of disease, then it will assist the development of better models that
are more specific to individual groups of patients and should therefore improve
prediction and understanding of the underlying characteristics of the disease in ques-
tion. Cluster techniques have an effective track record in this field. Clustering methods
that divide (sometimes thousands of) patients into subgroups of manageable portions
can offer many advantages in medicine [1]. However, the quality of traditional algo-
rithms such as K-means, DB-scan, and Fuzzy C-means can be both biased and variable
(due to limited samples, inherent model bias and noise). For this reason, consensus
clustering approaches have been developed [2]. These approaches have typically dealt
with model bias and variability but not sample variance which this paper will explore
through resampling approaches.

Discovering subtypes have become increasingly important as more data be-
comes available. Wu et al. identify clear cell renal cell carcinoma (ccRCC) as one
of the most important subtypes of renal cell carcinoma. This paper highlights the
importance of molecular typing for individuals for the personalized care of cancer
as well as improving overall accuracy. Unsupervised consensus clustering has
been used in order to discover a new subpopulation of ccRCC. An unsupervised
consensus clustering approach has enabled the identification of three distinct
subtypes based on hierarchical clustering. This is highly important because of
the ability to identify stable categories with gene expression patterns. Also, the
clusters show clinical meaning which may be informative of tumor behavior and
prognosis [3]. Zhu et al. proposed a novel subspace clustering guided unsuper-
vised feature selection (SCUFS) model. This algorithm learns by representation
based subspace clustering. This algorithm learns the data distribution in that it
uncovers the underlying multi-subspace structure of the data. The results show
that subspace clustering guided unsupervised feature selection model outperform
other approaches [4].

Choosing the right clustering method is not an easy task as different methods
can return different results. Combining the results of several methods can lead to
better groupings. Moreover, bootstrap techniques can be used to resample datasets
in order to build more confidence in clusters [5]. Consensus clustering which
explores the consensus over different clustering algorithms can increase overall
confidence compared to each individual input cluster method [6]. An even higher
confidence can be given to “robust clusters” which enforces maximum agreement
across input clustering methods [6]. Swift et al. used robust and consensus
clustering in order to improve the confidence in discovered clusters [7]. For a
good review of consensus clustering methods, please see [8]. Weighted-kappa can
be used to evaluate the consistency of clustering results. This statistical metric
measures the interagreement among decisions made by two or more observers. It
can therefore be used to compare different allocations of data to clusters and
generates a score that ranges between − 1 and + 1 from poor agreement strength to
very good agreement strength [9].
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Having identified subclasses of patients, supervised learning can be used in disease
prediction. Decision trees and Bayesian classifiers perform well [10] and have the
added advantages of being transparent in how they model the data (unlike many black
box approaches). Tucker et al. incorporated a model that combined unsupervised
learning to identify subclasses with supervised learning to predict health outcomes
for patients [11]. The results showed that it both improved the prediction and enabled
better understanding by clinicians [11]. We expand on this by exploring how consensus
methods can be used to identify individual models for each discovered subgroup, which
aids understanding as well as improving prediction.

In this article, we have analyzed patients affected by systemic sclerosis (SSc).
The aim of this article is to combine unsupervised learning that identifies potential
subclasses and supervised learning that helps to predict health outcomes based
upon these subclasses. We have designed a novel algorithm that has performed
better than supervised learning alone by incorporating unsupervised learning (K-
means clustering). We have named this algorithm nearest consensus clustering. In
the next section, the disease will be explained followed by the data and methods in
Sect. 3, including the new algorithm. We will then describe the set of experiments
undertaken, and in Sect. 4, the results are documented before conclusions are
drawn. In particular, thanks to a partnership between the Computer Science
Department at Brunel University London and the Centre for Rheumatology and
Connective Tissue Diseases (CTDs) at the Royal Free London Hospital, it was
possible to work on a dataset of more than 600 systemic sclerosis subjects with the
disease onset between January 1995 and December 2003, followed for up to
15 years.

2 Systemic Sclerosis

In order to allow for a better understanding of our paper, it is important to state briefly
the definition of systemic sclerosis (SSc) illness which is the main clinical problem in
our research. Systemic sclerosis is an uncommon connective tissue disorder with
multisystem involvements and a chronic and often progressive course [12]. The
comparison and interpretation epidemiological studies have become quite difficult
not only because of the rarity and clinical heterogeneity of SSc but also the lack of
universally used classification and diagnosis criteria [13]. The understanding of the
above disease and its stages has been improved. However, the causes of SSc are still
unclear. There are three key pathophysiologic processes that account for its occurrence:
vasculopathy of small vessels, immune response leading to production of autoanti-
bodies, and vascular fibrosis in multiple organs [14].

The research community has validated a few clinical outcome measurements
for specific SSc manifestations. The thickened skin is the main characteristic for
SS illness, so there are skin thickness assessments in 17 different anatomic
surfaces. The total skin score can range from 0 (no thickening) to 51 (severe
thickening). The patterns of skin involvement are the most widely accepted
clinical method of dividing SSc into groups [15]. The clinical test is the main
criteria to diagnose the SSc. Skin induration, with a characteristic symmetric
distribution patterns, institutes the diagnosis with high degree of confidence.
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Thickness biopsy can make certain of the disease occurrence [12]. Also, ACA
(anti-centromere antibodies), ATA (anti-topoisomerase I antibodies), and ARA
(anti-RNA polymerase III antibodies) are highly specific to predict SSc [16].

In SSc, each organ can be affected but some are clearly more affected than others.
The gastrointestinal tract involvement is the most region that might be affected by SSc.
Up to 90% of patients could have complications in any site of gastrointestinal tract [17].
Also, pulmonary fibrosis complications can be found in about 75% patients and it could
affect small areas of the lung [18]. Pulmonary arterial hypertension is another serious
complication of SSc that develops usually later in the disease and nonspecific symp-
toms [19]. The other complication is scleroderma renal crisis that is rare but very severe
and life-threatening complication, one of the few medical emergencies in rheumatology
[20].

3 Data and Methods

3.1 Data

Systemic sclerosis is an uncommon connective tissue disorder with multisystem
involvements and a chronic and often progressive course [12]. The diagnosis of
systemic sclerosis is made on the clinical grounds, and it is generally plain in
patients with established disease. In fact, the presence of skin induration, with a
characteristic symmetric distribution pattern associated with typical internal organ
manifestations, establishes the diagnosis with a high degree of confidence, while a
full-thickness biopsy of the skin is sometimes required to make certain of its
occurrence [12]. Digital pitting scars and radiologic evidences of pulmonary
fibrosis are useful to perform a diagnosis as well as the Raynaud’s phenomenon,
although for this sign, a nailfold capillaroscopy can be requested. This procedure
is a non-invasive, low-cost, and reproducible imaging method allowing the eval-
uation of structural changes in peripheral microcirculation, which is mainly used
in the differentiation between primary and secondary Raynaud’s phenomenon
[21].

The 677 patients in our data have the following distinct features:

3.1.1 General and Subset Data

& Subset: char indicating the systemic sclerosis subcategory, with only two possible
options. Patients without skin thickening in areas proximal to elbows and knees
were grouped into the limited cutaneous subset (L), whereas patients with skin
thickening that acted both areas distal and proximal to elbows and knees were
grouped into the diuse cutaneous subset (D); it is marked as “2” when it is with skin
thickening and “1” when it is without skin thickening. Its values take only “1” or
“2” (binary).

& Gender: char indicating the sex of patient, “m” for males and “f” for females; in the
dataset, it takes “1” or “2,” where “1” refers to M and “2” refers to F.

& Age: number indicating the years of patient at disease onset (integer values).
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3.1.2 Blood Tests Results

& abs: string indicating the detected autoantibodies. Next to it, there is a list of 16
columns, each one labeled as a specific autoantibody acronym and filled with a
binary value to indicate its absence or presence; e.g., “0” is absent and “1” is present
(binary values).

& Hb: value indicating the measure of hemoglobin; it is expressed in grams per
deciliter. Normal range for men 13.5 to 17.5 g per deciliter and normal range for
women 12.0 to 15.5 g per deciliter.

& Cr: value indicating the measure of creatinine in that test. It tells your doctor your
stage of kidney disease. It can be calculated by serum creatinine level, age, sex, and
race. Baseline for Cr is between 60 and 90 ml/min/1.73 m2.

3.1.3 Lung Function Test Results

& FVC: value indicating the measure of forced vital capacity in that test; it is
expressed in liters.

& DLCO: value indicating the measure of diffusing capacity for carbon monoxide. It
is expressed in liters.

& T2RIP: number of months between disease onset and death.
& T2PF: number of months between disease onset and pulmonary fibrosis.
& T2PAH: number of months between disease onset and pulmonary arterial

hypertension.

3.1.4 Anti-Body Information

The following antibodies are marked in the dataset as binary values “1” or “0”:

& ACA is the most frequently discovered, and it is associated with the limited
cutaneous subset of SSc, although a small proportion of ACA-positive patients
can develop a diffuse cutaneous SSc [22].

& ATA also known as anti-Scl-70, is associated with a higher prevalence of arthritis,
tendon friction rubs, severe pulmonary fibrosis, cardiac involvement, and sclero-
derma renal crisis [22].

& ARA are strongly associated with the diffuse cutaneous subset and correlated with
severity of skin involvement [23].

Every organ can be clinically affected due to systemic sclerosis, so we are particu-
larly interested to go explore different organ complications in this study since we want
to predict the occurrence of these estimating if they might happen before or after a
specific temporal threshold to better intervene. For instance, pulmonary arterial hyper-
tension (PAH) is serious complication of SSc; it can affect both subsets in similar
proportions, and it develops usually later in the disease as a debilitating and progressive
disorder characterized by a blood pressure increase in arteries of the lungs. It is defined
by right heart catheterization as a mean pulmonary arterial pressure not less than
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25 mmHg with a pulmonary capillary wedge pressure not greater than 15 mmHg. The
natural history of SSc-associated PAH is variable, but in many patients, it follows a
downhill course with the development of right heart failure and death. It usually
presents with nonspecific symptoms of exertional dyspnea, fatigue, angina, and exer-
tional near-syncope. With the disease progression, symptoms and signs of right ven-
tricular failure appear [12].

SSc shows heterogeneous clinical manifestations with a wide variability in presen-
tation, severity, and outcome: some patients reveal fast and fatal progression, whereas
others have a benign course [24]. Then, considering the disease susceptibility, there are
three principal factors: age, gender, and ethnicity. Similar to other autoimmune con-
nective tissue diseases, women are almost four times more likely than men to develop
SSc; this strong female predominance is most pronounced in the childbearing years and
declines after menopause [24].

We explore SSc data, provided by Royal Free London Hospital for 677 patients
where we want to predict time to death and time to PAH—a common comorbidity in
SSc. The aim of our proposed algorithm is to cluster the patients within three groups
and to predict time to develop PAH and to predict time to death for each group. The
patients have been selected as follows:

& Select all patients from the original dataset who died within the first 5 years and all
patients who still alive over 5 years. The predicted class will have two values “1”
representing patients who could die before 5 years and “2” representing patients
who could die after 5 years. The novel algorithm was applied on this resulted
dataset in order to predict time to death.

& Select all patients from the original dataset who develop PAHwithin the first 5 years
and all patients who still not develop PAH over 5 years. The predicted class will
have two values “1” which means the patient could develop PAH before 5 years
and “2” the patient could develop PAH after 5 years. Also, the novel algorithm was
applied on this resulted dataset in order to predict time to develop PAH.

We also explore our approach on a freely available breast cancer data provided by
the UCI machine learning repository. It consists of 10 attributes and 699 patients, where
we want to predict whether a tumor is benign or malignant.

4 Consensus Clustering

Consensus clustering involves combining multiple cluster results. It takes a number of
different clustering methods as inputs in order to find a single consensus clustering that
is a better fit than each individual clustering method. Consensus clustering is needed
because it represents a way of reconciling clustering information which arises from
different experimental sources or from multiple runs of the same nondeterministic
algorithm [25]. It is also a method of finding clusters that are more stable and less
sensitive to starting values based on a membership principle. It considers multiple input
clusterings where items that have been clustered repeatedly together in the inputs will
be more likely to appear in the consensus clustering. For example, consensus clustering
can use different clusterings as inputs that have been generated with different clustering
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methods or starting parameters [26] in order to remove bias. Alternatively, input
clusterings can be generated by resampling the original dataset in order to generate a
more stable consensus clustering by removing sampling bias.

The first task to build consensus clustering involves the construction of an n x n
“agreement matrix” based on input clustering results. This matrix contains cells that
represent the number of agreements among the input clustering methods used for
clustering together each pair of objects, represented by the indexing row and column.
This matrix is then employed to group objects based on their cluster agreement by
rewarding clusters with high agreement between members and penalizing clusters with
low agreement [9].

The input methods used to generate the agreement matrix can be from the results of
different clustering methods as was explored in [7]. However, here, we are concerned
with sampling bias so we use different clustering results from K-means applied to
repeated resampling of the data. Consensus clusters are built that reward variables if
they have high cluster agreement and penalizes variables if they have low agreement.
Figure 1 shows a general schematic of how consensus clustering works [27].

5 Nearest Consensus Clustering Algorithm

Our proposed method attempts to deal with the natural variation in many clustering
methods as well as sample variance by using the consensus approach in combination
with C4.5 decision tree classifiers. C4.5 is a decision tree method used for classification
that is transparent in that it generates a tree structure that can be interpreted. The tree is
inferred based on the information gain ratio measure [28]. Data is split into a training
and testing set. The training data undergoes resampling to build a set of consensus
clusters. A separate tree is then inferred from each of these consensus clusters. Next,
each test data point is scored based upon the distance to each discovered consensus
cluster using a single linkage approach with Euclidean distance. This is used to assign
the appropriate decision tree to be used to classify the data point. We explore a number
of distance metrics within this, e.g., single linkage, further linkage, and average linkage.
Figure 2 is a general schematic figure that explains the proposed nearest consensus
clustering algorithm. In this example, the training data has been divided into three

Fig. 1 Consensus clustering algorithm (schematic)
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clusters, using consensus clustering of multiple K-means with resampled data. The
decision tree (DT) is then constructed from each consensus cluster. When classifying
test data, our algorithm aligns the test data (denoted by an “x”) to the nearest consensus
cluster (here cluster 3) by using the single linkage measure (nearest neighbor). The
associated decision tree is then used to classify the test data point (here DT3).

The following pseudocode explains the steps that are used orderly to build the new
algorithm.

Algorithm 1 Pseudocode of Nearest Consensus Clustering Classification 

Input: Dataset of Patients. 

Output: Different clusters of patients and different decision trees for each group. 

Begin 

1: For i =1 to 10 do 

2: Generate Randomly 80% Training dataset and 20% Test dataset. 

3: Run K-Means on Training dataset and store in InputClusters
4: End for 

5: Compute Agreement Matrix (n x n), A from InputClusters
6: Run Hierarchical clustering on A to generate Consensus Clusters, CC
7: Print CC (Patients groups). 

8: Build decision Tree, DT, for each group in CC generated in step 6. 

9: For j=1 to the size of Test dataset 

10: Compute Euclidean metric for Test dataset patient(j) to each group in CC
11: Return the group that has the minimum value, mingroup. 

12: Assign patient(j) to mingroup. 

13: Classify using DT associated with mingroup
14: End For. 

End

Fig. 2 Nearest consensus clustering classification: training and testing data (schematic figure)
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6 Experiments

In this paper, we compare nearest consensus clustering classification to results with
standard K-means clustering of patients, the C4.5 Decision Tree (with no clustering of
patients), and nearest K-means (without consensus clustering).

In detail, we apply out nearest consensus clustering by running K-means on the
training data for ten repeated resampled datasets in order to produce an agreement
matrix. This aims to capture the sampling bias. K-means clustering is then applied to
the agreement matrix to create the consensus clusters. Cross-validation which is an
evaluation technique used to assess the predictive capabilities of a specific model on
unseen examples is used to determine the accuracy. It is performed by partitioning the
original data into a training set to learn the model, and a test set to evaluate it, then
crossing-over both the training and validation sets in multiple iterations so that each
data point is used for validation [27]. The current datasets in this were randomly
resampled into training dataset 80 and 20% for ten times.

In the first set of results, we explore three methods:

i) Using simple K-means alone to identify clusters (with no resampling/consensus)
for building each decision tree—we call this “nearest K-means.”

ii) A standard decision tree with no clustering at all.
iii) The full nearest consensus clustering algorithm described above.

We explore these based upon the resulting decision trees, the cluster membership,
the predictive accuracy, and Kaplan-Meier curves for

A) The SSc for predicting time to pulmonary hypertension
B) The SSc for predicting time to death
C) The Breast Cancer data for predicting tumor type

We then perform the following analyses:

D) We perform a full sensitivity analysis of these methods.
E) We explore the impact of changing the number of clusters, K, on the accuracies.
F) We compare our proposed approach with other similar combinations of clustering/

classifiers. In particular, we have explored hierarchical clustering and PAM and
hierarchical clustering as opposed to K-means, and support vector machines
(SVMs) instead of decision trees. SVM is the often considered the most consis-
tently accurate classifier. The disadvantage of this algorithm is the complexity of
determining the number of support vectors. It works by transforming data and
conducting a simple scaling so that the classes are linearly separable [29]. PAM
clustering is a similar method to K-means in that it splits the dataset into K groups
but here medoids (rather than centroids) must be represented by a data point. These
data points correspond to the most centrally located point in each cluster [30].
Hierarchical clustering is another clustering method that partitions the dataset into
groups using a dendrogram tree structure [31].

G) Finally, we explore a small follow up piece of data analysis on the discovered
groups within the clinical context.
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7 Results

7.1 Systemic Sclerosis: Time to Develop Pulmonary Arterial Hypertension

We have run C4.5 Decision Tree (without clustering), nearest K-means (without
consensus), and nearest consensus cluster classification to the systemic sclerosis data
in order to predict time to develop pulmonary arterial hypertension. The following plot
(Fig. 3) shows the results of these experiments as well as the result of each individual
cluster model on all of the test data (K1, K2, and K3). Notice first that each individual
cluster model classifies the test data worse than ones that attempt to model all clusters.
In addition, the standard decision tree and nearest K-means produce a better and less
variable set of errors. Nearest consensus cluster classification performs better than all
other algorithms with lower error and reduced variance (significantly better than nearest
K-means with t test, p = 0.040), indicating that sampling bias is an issue that need to be
addressed when identifying patient subgroups.

If we now look at the decision trees inferred from each consensus cluster found in
SS dataset when time to develop pulmonary arterial hypertension class needs to be
predicted (Figs. 4, 5, and 6), we can see that the trees are very different, indicating a
different set of required criteria for each subset of patients that have been discovered.
For example, group 1 is considerably smaller than group 2 and group3 and all trees
involve different combinations of important variables. This highlights the importance
of separating out these cohorts of patients when diagnosing. For instance, in group 3,
knowing the DLCO, age, and FVC test result, has more of an impact on predicting time
to develop pulmonary arterial hypertension whereas in group 1, knowing only the Hb,
ACA, and others has more impact for predicting time to develop pulmonary arterial
hypertension. Figure 5 is very simple decision tree that only rely on the Hb variable, so
from the Hb attribute values for the first group, time to develop pulmonary arterial
hypertension can be predicted.

If we now explore the difference between the attributes in each discovered consen-
sus cluster, we see notable differences (Table 1). It looks like that Cr (which is the value

Fig. 3 Comparison of K-means, decision tree, nearest K-means, and nearest CC for time to develop
pulmonary arterial hypertension class in systemic sclerosis dataset
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Fig. 4 Consensus clustering decision tree for group 1 in SS dataset and time to develop pulmonary arterial
hypertension class

Fig. 5 Consensus clustering decision tree for group 2 in SS dataset and time to develop pulmonary arterial
hypertension class
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indicating the measure of creatinine in that test) in group 2 is smaller than group 1 and
group 3. When Cr is greater than 90, this means it is normal and this is what we have
found in group 2 and group 3, but when it goes below this value, it is not normal. The
reference range for the time period for Cr was 60–97 μmol/L. Interestingly, these
features do not appear in the decision trees, perhaps because they have been separated
already by the identification of the different subgroups. By identifying these different
subgroups and exploring their characteristics, we can better understand how they differ
and what focused tests may be more appropriate for different patients when making
prognoses. By identifying the characteristics of each consensus cluster, we can identify
the likelihood of patients belonging to any of these cohorts and apply more appropriate
clinical tests as identified in the cohort-specific decision trees. This is essentially what
the algorithm does when in the testing phase.

We now explore disease-free survival analysis: the Kaplan-Meier estimator, also
known as product limit estimator, is a nonparametric statistic method used to
estimate the survival function in reference to an event of interest, such as death or
a disease complication [32]. The estimator is plotted over time to obtain the Kaplan-

Fig. 6 Consensus clustering decision tree for group 3 in SS Dataset and time to develop pulmonary arterial
hypertension class
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Meier curve, which is constituted by a series of horizontal steps of declining
magnitude that, when a large sample is taken, approaches the true survival function
for that population. The curve can be estimated easily if the patient is followed until
death by computing the fraction surviving at each time, but in most cases, there are
a number of patients that tend to drop out for different reasons. Nevertheless, the
Kaplan-Meier analysis allows this information from both censored and uncensored
observations to be considered, and the dependent variable is composed of two parts,
the time to event and the event status, which records if the event of interest occurred
or not. Censored data is where the event is only partially known because it has not
happened yet—for example, in the SSc data, we may only know that a patient has

Table 1 Proportion/means values for SS attributes in CC (time to develop PAH)

Group1 Group2 Group3

Proportion

Subset (without skin thickening) 56% 62% 55%

Subset (with skin thickening) 44% 38% 45%

Gender male 16% 16% 14%

Gender female 84% 84% 86%

Proportion (patients have an event)

ACA 22% 28% 35%

ATA 20% 20% 18%

ARA 15% 1% 12%

U3RNP 4% 6% 0%

NRNP 10% 6% 4%

PMSCL 4% 4% 6%

Th-RNP 0% 2% 0%

KU 1% 3% 0%

Jo1 2% 3% 0%

RO 4% 7% 8%

LA 1% 1% 6%

SM 0% 0% 1%

DSDNA 2% 1% 0%

ANA 18% 16% 12%

ANA NEG. 2% 4% 6%

Means

Group 1 Group 2 Group 3

Hb 12.59 12.78 12.71

Cr 97.06 84.53 93.46

FVC 88.52 89.32 90.37

DLCO 65.58 63.38 65.48

Age 48.11 48.3 49.91
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not developed pulmonary arterial hypertension for at least X years at any point in
time. The Kaplan-Meier curve is defined as the probability of surviving in a given
length of time while considering time in many small intervals, taking into account
only three weak hypotheses [33]. It is required to assume that the censored patients
are characterized by the same survival prospects as those who continued to be
followed, that the survival probabilities are the same for patients recruited early and
late in the study, and finally that the event of interest happens at the specified time
[32].

We carry out a survival analysis in order to determine how long a patient survives or
how long from diagnosis before a patient develops a disease-associated internal organ
complication, in relation to the discovered subgroups. By grouping subjects based on
the nearest consensus clustering classification, we can then analyze if the discovered
clusters are able to separate systemic sclerosis patients into subpopulations that show
different symptoms and disease progression, for helping physicians to make better
informed diagnosis and more focused interventions.

The following graph shows the percentage of patients survived from that organ
complication on the y-axis, while on the x-axis the time to development of pulmonary
arterial hypertension measured in months.

Figure 7 shows the Kaplan-Meier curves for the three main clusters: cluster 1 is blue,
cluster 2 is green, and cluster 3 is yellow. The graph shows clearly that 18% of the
patients with the third group were affected of pulmonary hypertension after 120 months
while about 10% of the patients were affected after 120 months in the first group.

Fig. 7 Kaplan-Meier curves by nearest consensus clustering on time to develop pulmonary arterial hyper-
tension dataset. With time to develop pulmonary arterial hypertension in months on the x-axis and percentage
of patients survived from that organ complication on the y-axis, the graph illustrates the survival curves
obtained grouping patients based on nearest consensus clustering
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Fig. 8 Comparison of K-means, decision tree, nearest K-means, and nearest CC for time to death class in
systemic sclerosis dataset

Fig. 9 Kaplan-Meier curves by nearest consensus clustering on time to death dataset. With time to death in
months on the x-axis and percentage of patients survived on the y-axis, the graph illustrates the survival curves
obtained grouping patients based on nearest consensus clustering
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7.2 Systemic Sclerosis: Time to Death

We have repeated the same algorithms in order to predict time to death (T2RIP). The
dataset was divided into three groups. Note that these groups are not the same as for the
T2PAH experiments as the data selected will be different. The following boxplot
(Fig. 8) shows that nearest consensus clustering classification performs better than
nearest K-means although nearest K-means has less variation (t test p value = 0.041).

The consensus clustering decision trees which predict time to death class for the
three groups of patients can be found in the Electronic Supplementary Material.

Figure 9 shows that almost 35% of the patients from the first group died after
110 months while 15% of patients from groups 2 and 3 died.

Table 2 Proportion/mean values for SS attributes in CC (time to death)

Group1 Group2 Group3

Proportion

Subset (without skin thickening) 55% 56% 56%

Subset (with skin thickening) 45% 44% 44%

Gender male 12% 2% 18%

Gender female 88% 98% 82%

Proportion
(patients have an event)

ACA 24% 25% 25%

ATA 23% 24% 22%

ARA 13% 10% 10%

U3RNP 4% 6% 5%

NRNP 7% 4% 8%

PMSCL 2% 7% 4%

Th-RNP 0% 1% 2%

KU 1% 1% 2%

Jo1 1% 1% 1%

RO 4% 6% 7%

LA 1% 2% 1%

SM 0% 0% 1%

DSDNA 1% 1% 1%

ANA 21% 5% 18%

ANA NEG. 1% 4% 4%

Means

Group1 Group2 Group3

Hb 12.72 12.53 12.58

Cr 87.41 93 96.28

FVC 87.21 88.65 87.33

DLCO 66 64 62.56

Age 48 51 49
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Again, we see notable differences between the attributes in each discovered consen-
sus (Table 2). It looks like that Cr (which is the value indicating the measure of
creatinine in that test) in group 1 is smaller than group 1 and group 3. When Cr is
greater than 90, this means it is normal and this is what we have found in group 2 and
group 3, but when it goes below this value, it is not normal. The baseline that has been
used in order to distinguish between the groups is whereas Cr is normal or not. Also, it
is clear that DLCO is the smallest in the third group.

Other decision trees for time to death subgroups can be found in Electronic
Supplementary Material.

In order to aid reproducibility, we now explore the freely available breast cancer
dataset available from the UCI repository. K-means, decision tree, nearest K-means,
and nearest CC classification were applied in order to predict whether the tumor was
malignant or benign. The results can be found completely in Electronic Supplementary
Material.

7.3 Sensitivity Analysis

Specificity, sensitivity, precision, and recall have been used to evaluate the results. We
have computed all of these measures for K-means, decision tree, nearest K-means, and
nearest CC classification for time to develop pulmonary arterial hypertension and BC
dataset results. Tables 3 and 4 show the results.

The above results show that nearest consensus clustering classification has improved
the learning significantly as it looks like that nearest consensus clustering perform
much better than K-means, decision tree, and nearest K-means.

Table 4 Metrics measures results for three K-means groups, decision tree, nearest K-means, and nearest CC
for BC dataset

K1 K2 K3 DT NKDT NCCC

Sensitivity 0.7421 0.7178 0.8416 0.7822 0.7422 0.8311

Specificity 0.7832 0.7432 0.8643 0.8012 0.7721 0.8532

Precision 0.7934 0.7323 0.8711 0.8321 0.7895 0.8687

Recall 0.7421 0.7178 0.8416 0.7822 0.7422 0.8311

Table 3 Metrics measures results for three K-means groups, decision tree, nearest K-means, and nearest CC
for time to develop pulmonary arterial hypertension class

K1 K2 K3 DT NKDT NCCC

Sensitivity 0.5921 0.5345 0.5144 0.7233 0.7322 0.7544

Specificity 0.6921 0.6537 0.6745 0.8021 0.8021 0.8256

Precision 0.6211 0.5534 0.4688 0.7234 0.7133 0.8134

Recall 0.5921 0.5345 0.5144 0.7233 0.7322 0.7544
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7.4 Impact of Different Number of Clusters (K)

We briefly explore the effect of different values of K (K-means clustering method) on
accuracy. We have run nearest consensus cluster classification to the systemic sclerosis
data in order to predict time to develop pulmonary arterial hypertension and time to
death five times for each class as each time K has different value. The following two
plots show the results of these experiments as well as the result of each individual
consensus cluster classification model on all of the test data (K = 3, K = 4, K = 5, K = 7,
K = 10). Regarding time to develop pulmonary arterial hypertension, notice first that
nearest consensus cluster classification for K = 3 (NCC3) and K = 4 (NCC4) classify
the test data quite similar than the others and perform better than NCC5 and NCC7,
while the NCC10 improves error and grown variation but it has noise (Fig. 10).

Fig. 11 Comparison of nearest CC classification for time to death class with different values of K

Fig. 10 Comparison of nearest CC classification for time to develop pulmonary arterial hypertension class
with different values of K
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In relation to time to death (T2RIP), notice first that nearest consensus cluster
classification for K = 4 (NCC4) perform better and less variation than K = 3 (NCC3).
Also, NCC4 classifies the test data better than NCC5, NCC7, and NCC10 (Fig. 11).

7.5 Comparison to Other Clusterings/Classifiers

Finally, we briefly compare our new method with some other cluster/classifier combi-
nations including support vector machine when it runs individually and when it merges
with K-means in order to make sure if the proposed method performs better or not, and
also, hierarchical clustering decision tree and PAM decision tree. Table 5 shows the
results.

8 Conclusions and Future Work

In this paper, a set of algorithms were tested on systemic sclerosis dataset and breast
cancer for simultaneously identifying subgroups of patients and diagnosing them based
on these subgroups. The results illustrate issues with firstly ignoring the existence of
subgroups of patients (with worse error rates) and secondly using standard clustering
methods such as K-means (with higher variance in errors due to sample variance and
method bias). The paper introduces a novel approach that exploits consensus clustering
methods and single linkage distance metrics to deal with these issues. Our method,
nearest consensus clustering classification integrates decision trees, consensus cluster-
ing, and single linkage metrics which has improved the classification and reduced the
variance when tested on breast cancer data from the UCI repository and a dataset for
systemic sclerosis from the Royal Free hospital in London. This new model can be used
by clinics to cluster patients and discover key features in each group for classifying
more confidently.

Future work will look at using other resampling methods, a further exploration of
other linkage methods, and kappa measures to identify relationships between resampled
cluster distances and the associated classification accuracies. We would also like to
explore the prediction of other complications and how they interact using multiclass
models.

Table 5 Accuracy comparison between the proposed algorithm and others

Time to death Time to develop

Classifier Accuracy Accuracy

Decision tree 0.754 0.701

Nearest K-means 0.724 0.696

Nearest CC 0.781 0.722

SVM 0.721 0.689

SVM_K-means 0.752 0.711

Hierarchical clustering DT 0.713 0.725

PAMDT 0.749 0.731
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