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A B S T R A C T

This paper presents a biologically plausible generative model and inference scheme that is capable of simulating
communication between synthetic subjects who talk to each other. Building on active inference formulations of
dyadic interactions, we simulate linguistic exchange to explore generative models that support dialogues. These
models employ high-order interactions among abstract (discrete) states in deep (hierarchical) models. The se-
quential nature of language processing mandates generative models with a particular factorial structure—-
necessary to accommodate the rich combinatorics of language. We illustrate linguistic communication by si-
mulating a synthetic subject who can play the ‘Twenty Questions’ game. In this game, synthetic subjects take the
role of the questioner or answerer, using the same generative model. This simulation setup is used to illustrate
some key architectural points and demonstrate that many behavioural and neurophysiological correlates of
linguistic communication emerge under variational (marginal) message passing, given the right kind of gen-
erative model. For example, we show that theta-gamma coupling is an emergent property of belief updating,
when listening to another.

1. Introduction

In April 2018, an international group of experts assembled in
Frankfurt for an Ernst Strüngmann forum addressing complexity and
computation in the cortex (Singer et al., 2019). One group was briefed
to discuss human cognition and, reflecting the interests of that group,
chose to focus on language processing—a challenging area for compu-
tational neuroscience, linguistics and theoretical neurobiology (Hauser
et al., 2002). What follows is a formal analysis that speaks to a key
conclusion of that group; namely, that the neuronal correlates of lan-
guage processing and functional brain architectures should emerge
naturally, given the right kind of generative model. In brief, this paper
uses simulations of linguistic communication to show that many be-
havioural and neurophysiological correlates of language processing
emerge under deep diachronic models.

A generative model refers to a probabilistic mapping from causes
(e.g., semantics) to consequences (e.g., auditory signal). Perception,
recognition or inference then becomes the (Bayesian) inversion of the
generative model to infer causes from consequences. The notion of a
generative model rests on a commitment to the brain as a constructive
organ, generating explanations for its sensations. We will use an active
inference (a.k.a., predictive processing) formulation of this basic idea

that inherits from a long tradition of psychological ideas about how the
brain works; from Kant through Helmholtz (Helmholtz, 1878 (1971)),
from analysis by synthesis (Yuille and Kersten, 2006) to perception as
hypothesis testing (Gregory, 1980), from the Helmholtz machine
(Dayan et al., 1995) to the free energy principle (Friston, 2010). Spe-
cifically, we will use a corollary of the free energy principle; namely,
active inference (Friston et al., 2017a). The basic idea behind active
inference is that any neuronal processing can be formulated, in a nor-
mative sense, as a minimisation of the same quantity used in approx-
imate Bayesian inference; i.e., a variational free energy or evidence
bound (Mattys et al., 2005; Winn and Bishop, 2005).

Minimizing variational free energy is equivalent to maximizing the
sensory evidence for an internal model of how unobserved (i.e., hidden)
states of the world generate observed (i.e., sensory) consequences.
Technically, this can be formulated in terms of maximising the marginal
likelihood for models of the lived world—that is neatly summarized as
self-evidencing (Clark, 2016; Hohwy, 2016); in other words, gathering
sensory evidence for our generative models. Having specified the gen-
erative model one can then use standard, ‘off-the-shelf’ belief updating
schemes (Friston et al., 2017c) to create synthetic agents, who perceive
and act in a self-evidencing fashion. These simulations can also be used
to predict empirical behavioural and physiological responses. Here, we
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use simulations to test hypotheses about communication; such as gen-
eration and understanding of linguistic phrases, in relation to con-
ceptual knowledge (Barsalou, 2003; Yufik, 1998, 2019), the use of a
shared narrative (Mar et al., 2011; Mathewson et al., 2019), and the
linearization of language (Bornkessel et al., 2005).

This paper extends a long line of existing work in the domain of
natural language processing (and response generation). Previously, the
focus has been on treating natural language processing as a learning
problem (Elman, 1990), where the use of deep learning has spear-
headed algorithmic developments (Young et al., 2018): e.g., word
embeddings derived from learning predictive relationships (Collobert
et al., 2011; Mikolov, 2010; Mikolov et al., 2013; Pennington et al.,
2014) and fully contextualized word representations (Devlin et al.,
2018; Radford et al., 2019; Vaswani et al., 2017). These approaches to
natural language processing limit themselves to learning associa-
tions—between an input and output—via the training of particular
neural networks. In contrast, response generation—including con-
versational dialogue agents—have been framed as either deep re-
inforcement learning (Li et al., 2016; Zhao et al., 2017) or inference
problems (Liu et al., 2018). These approaches, whilst closely aligned
with our work, are optimising objective functions that do not account
for the future, including their ability to have forward-looking con-
versations, due to word-repetitions or closed-form replies (Li et al.,
2016). In contrast, by framing language as an active (Bayesian) in-
ference problem, with an underlying generative model, our approach
infers causal relationships between inputs and outputs—and provides a
structural understanding of the sequences of words being presented and
their context sensitivity. This results in uncertainty resolving actions
that lead to forward-looking conversations: as demonstrated in the si-
mulations that follow, an agent does not need to revisit issues that have
already been resolved.

The resulting approach also differs from previous cognitive theories
of language processing. Although the idea of ‘surprisal’ has become
increasingly prevalent in the literature (Hale, 2001; Levy, 2008), this
usually refers to the magnitude of ‘surprise’ conveyed by individual
words, such that expected semantics are simply an amalgamation of the
semantics conveyed by all preceding words. In contrast, in the current
formulation, belief updating occurs at a higher level and relies on be-
liefs about an acoustic scene, about which the agent has prior beliefs.
Note that the mathematical formulation used here—which is described
in detail in the sections that follow—differs from previous approaches
in this literature. There are two key points to note here. First, the
current formulation considers the uncertainty of the agent’s beliefs
about the scene at hand. Second, we introduce an active compo-
nent—which generates predictions about the information that an agent
will seek to resolve their uncertainty. In other words: What questions
should I ask next, to resolve my uncertainty about the subject of our
conversation?

This paper comprises four sections. The first (Generative models of
language) describes a top-down approach to understanding functional
brain architectures in terms of generative models, with a special focus
on models that are apt for linguistic communication. This section
considers the requisite computational architecture and the second sec-
tion (Active inference) describes the accompanying message passing.
The third section (“Twenty Questions” simulations) uses the generative
model to illustrate behavioural and neurophysiological correlates of
speaking and listening (Edwards and Chang, 2013; Kayser, 2019;
Lizarazu et al., 2019; Pefkou et al., 2017). This section concludes with a
demonstration of how the model predicts responses that would be in-
terpreted as theta-gamma coupling (Giraud and Poeppel, 2012;
Lizarazu et al., 2019; Pefkou et al., 2017). It also reproduces some
simple violation paradigms, in terms of synthetic event related poten-
tials and difference waveforms—of the sort seen in mismatch nega-
tivity, P300, and N400 studies (Coulson et al., 1998; Van Petten and
Luka, 2012). The final section (Synthetic communication) turns to
communication per se, using dyadic interactions between two synthetic

subjects to illustrate that certain kinds of belief updating can be in-
stantiated linguistically. We conclude with a discussion of what has not
been addressed; for example, a sense of agency and the acquisition of
language through learning deep models.

2. Generative models of language

Before modelling linguistic communication, we first begin with a
simplified generative model of how spoken phrases are generated by an
individual synthetic agent. This generative model is not intended to be
a comprehensive model of language, but rather specify key components
of a computational architecture that will allow us to simulate linguistic
communication. The advantage of focusing on generative models—as
opposed to recognition models—is that the same generative model can
be used to generate an auditory signal given a narrative (i.e., for lan-
guage production) and to infer the narrative given auditory input (i.e.,
for language understanding). Here, we focus on simulating a simple
agent, who can ask questions and answer them. In this formulation, the
agent does not know whether its beliefs are its own or are generated by
some external narrator. We will return to this issue in the discussion.

So, what are the special requirements of a generative model for
language? Here, we take a common-sense approach and list the ne-
cessary properties such a model must possess. Starting with the gen-
erative model somewhat simplifies things, in the sense that one only has
to specify what would be sufficient to generate meaningful language.
One can then simulate basic language understanding by applying es-
tablished inversion schemes. First, we will assume that language is for
communication, which immediately implies a shared forward-looking
narrative (Allwood et al., 1992; Brown and Brune, 2012; Friston and
Frith, 2015a; Mar et al., 2011; Schegloff and Sacks, 1973; Specht,
2014). In turn, this implies shared (and evolving) beliefs about the
subject of communication (Mathewson et al., 2019). This simple ob-
servation has some fundamental implications. The first may be slightly
counterintuitive and borrows from earlier work on neuronal herme-
neutics (Friston and Frith, 2015a). This work—using generalised syn-
chrony to simulate communication between songbirds—suggests that it
is sufficient to share the same generative model to infer the meaning of
sensory exchanges between interlocutors. The issue of who is talking
and attribution of agency then becomes a somewhat secondary issue,
which is only necessary for turn-taking (Ghazanfar and Takahashi,
2014; Wilson and Wilson, 2005). In short, a narrative cannot be un-
iquely attributed to you or me—it is our narrative.

The notion of a shared narrative is central to our formulation of the
generative model. Usually, in realising or simulating active inference
(in real artefacts or in silico), outcomes are generated by external states
of the world that agents navigate. These sensory outcomes are then
used to update beliefs about external states, which are used to plan
actions. Policies—which are sequences of actions—change external
states and generate new outcomes. And so, the perception-action cycle
continues. However, in the context of dyadic exchange, outcomes are
generated by another person or agent, without any necessary reference to
external states. In this setting, when an artificial agent speaks, it gen-
erates outcomes that are most consistent with its beliefs which, in turn,
update the beliefs of its correspondent. The upshot of this exchange is a
synchronisation or alignment of belief states that—in pure commu-
nication—circumvent any reference to external states of the world.

This alignment follows naturally from generating outcomes that are
consistent with beliefs (technically, outcomes that have the greatest
marginal likelihood or model evidence). Actions and outcomes are as-
sumed to be isomorphic. Subsequent belief updating based on those
outcomes makes the beliefs of both subjects consistent with the out-
comes they share. In short, outcomes and beliefs are selected in concert
to maximise model evidence and, implicitly, the predictability of sen-
sory samples. The inevitable endpoint of this reciprocal exchange is
convergence to the same belief states (Isomura et al., 2019), which
ensures the outcomes generated by one agent are easily predictable, in

K.J. Friston, et al. Neuroscience and Biobehavioral Reviews 118 (2020) 42–64

43



virtue of the fact that these are the same outcomes the agent would
have produced itself. This kind of generalised synchronisation has been
explored in numerical analyses of communication by birdsong and in-
tracellular communication (Friston et al., 2015; Friston and Frith,
2015b; Isomura et al., 2019; Kuchling et al., 2019). In this paper, we
focus on pure communication; in the sense that all outcomes are gen-
erated by one or another agent. This means there are no other states of
the world to consider. See Fig. 1 for a graphical depiction of the special
conditional dependencies implied by pure communication.

In what follows, we try to show how the belief states of two or more
agents become aligned through pure communication, where this
alignment is an emergent property of selecting beliefs that are con-
sistent with what is heard while, at the same time, generating outputs
that are consistent with those beliefs. If two or more agents comply with
these imperatives, their beliefs align, thereby evincing a minimal form
of communication. It is interesting to consider how external states
might get into the game; for example, providing visual cues that affect

the beliefs of one agent: i.e., how does one person convey her beliefs
about what she is seeing to another, or how do they reach consensus
when they can see different parts of the same scene? However, in this
work, we will just consider pure communication without external states
and focus on how beliefs about a scene are installed by a shared nar-
rative.

So, what is a narrative? On the active inference view, everything we
do can be regarded as pursuing a narrative that resolves uncertainty
(Friston et al., 2017a; Mirza et al., 2016). This means that the only sort
of narrative that matters is one that has epistemic affordance; namely,
the opportunity to reduce uncertainty under a particular belief struc-
ture about the world. In this sense, the formal imperatives for language
become exactly the same as any active inference; for example, active
vision (Ferro et al., 2010; Ognibene and Baldassarre, 2014). Indeed, the
same principles underlie experimental design in scientific enquiry,
where one solicits data that disambiguate among competing hypotheses
(Lindley, 1956). Much of the motivation for the generative model below

Fig. 1. Active inference and Markov blankets. This figure illustrates the conditional dependencies among various states that constitute (active) inference about
external states of affairs in the world. Active inference rests upon a four-way partition of states into external states (s) and internal states (s, π) that are separated by
Markov blanket states (o, u). Technically, the Markov blanket of internal states comprises their parents, their children and the parents of the children. In this figure,
blanket states correspond to the pale blue circles. Blanket states comprise observations or outcomes (o) and action (u). The upper panel illustrates the standard way in
which conditional dependencies are mediated: internal states are treated as encoding representations of external states. These representations prescribe action on
external states, which generates outcomes. In this construction, internal states play the role of sufficient statistics or parameters of a posterior belief (Q) about
external states and plans or policies that are realised by action. These beliefs are optimised by minimising a free energy functional of posterior beliefs, given
outcomes. Posterior beliefs about the policies provide a probability distribution from which the next action is sampled. This action changes external states, which
generate outcomes – and so the (perception-action) cycle continues. The lower panel shows the simplified scheme used in this paper, labelled ‘Diachronic inference’.
In this setting, actions (u) and outcomes (o) are assumed to be isomorphic. In other words, I act by generating an outcome that minimises free energy. This is
equivalent to generating or selecting outcomes that are the most likely under my beliefs about the causes of that outcome. Because these outcomes are shared
between two (or more) agents, they constitute the Markov blanket that separates the internal states of every agent in the exchange. This means the internal states of
one agent now constitute the external states of another (and vice versa). Crucially, this rests upon a diachronic switching, in which only one agent generates outcomes
at any one time. Heuristically, this means that I can either listen or speak but not both at once. With this particular constraint on conditional dependencies, the shared
outcome is (e.g., spoken words) constitute the blanket states that are shared by all agents. The superscripts in the lower panel denote two agents (i and j). The
equations express the sampling of various states, or their minimisation with respect to variational free energy. An interesting aspect of the diachronic setup is that
everything minimises a free energy; effectively resolving uncertainty; such that the beliefs of one agent are installed in another, via an exchange of outcomes.
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inherits from the formally identical problem of querying the world with
saccadic eye movements during scene construction (Mirza et al., 2016;
Ognibene and Baldassarre, 2014; Purpura et al., 2003). In short, we will
regard language as acting on the world to resolve uncertainty, where
epistemic foraging has been elevated from visual palpation (i.e., visual
search in active vision) to an interrogation of the world via semantics
and semiotics, acquired by encultured learning (Constant et al., 2019;
Creanza and Feldman, 2014; Penn et al., 2008; Rizzolatti and
Craighero, 2004). Following this analogy to its conclusion, a minimal
but sufficient model of language for communication can then be framed
in terms of a series of ‘questions’ and ‘answers’ (i.e., propositions and
responses), in the same way that sampling the world with our sensory
epithelia constitutes a ‘question about what is out there’ (Gregory,
1980). And the subsequent sensory samples provide some salient, un-
certainty reducing, evidence for our beliefs about the world.

With this in mind, we set ourselves the task of formulating a gen-
erative model that could play a game of “Twenty Questions”. In other
words, a model that could generate a sequence of questions and closed
“yes/no” answers, which progressively reduce uncertainty about the
subject of conversation (i.e., contextual knowledge). These sorts of se-
quential communication games have extensively been tackled in the
literature: including one round of question-answer ‘whisky pricing’ in-
teraction (Hawkins et al., 2015), playing restricted ‘cards corpus’ with
one-off communication (Potts, 2012), sequential ‘info-jigsaw’ game
(Khani et al., 2018), ‘hat game’ where agents learn to communicate via
observing actions (Foerster et al., 2016) and conversations about visual
stimulus (Das et al., 2017). Having specified the generative model for
our “Twenty Questions” paradigm, we made no further assump-
tions—we used off-the-shelf (marginal) message passing to simulate
neuronal processing (Dauwels, 2007; Friston et al., 2017c; Parr and
Friston, 2018; Winn and Bishop, 2005). Exactly the same belief up-
dating scheme, for partially observed Markov decision processes, has
been used in many contexts; ranging from exploration of mazes and
economic game theory, through to abstract rule solving and scene
construction (Friston et al., 2017a). We anticipated that these simula-
tions would reproduce key behavioural and neuronal responses seen in
empirical language studies.

2.1. A deep diachronic model of language for communication

In brief, our generative model has to generate a sequence of ques-
tions and answers, under the constraint that they are articulated as a
discrete sequence of continuous outcomes; here, spoken words. This
means that narratives emerge at several (i.e., discrete and continuous)
levels, which speaks to the deep or hierarchical aspects of the requisite
model. This way of hierarchically framing the conversational dialogue
problem, has previously been explored through the inclusion of two
separate (fast and slow) levels using artificial neural networks (George
et al., 2017; Serban et al., 2016; Sordoni et al., 2015). To illustrate this
deep structure and implicit separation of temporal scales, we con-
sidered the problem of generating a succession of question and answers
that depend upon beliefs about the world. States of the world come in
many flavours. We will refer to these states as hidden factors, where
each factor (e.g., ‘colour’) has a number of discrete states (e.g., ‘red’,
‘green’, ‘blue’ …). The use of factors is known as a mean field approx-
imation in the variational machine learning literature (Jaakkola and
Jordan, 1998; Kschischang et al., 2001; Sallans and Hinton, 2004;
Zhang et al., 2018) and is important for simplifying the form of the
generative model and ensuing inference. In fact, the notion of approx-
imate Bayesian inference using variational Bayes, is defined oper-
ationally in terms of this sort of factorisation.

The problem of specifying a generative model now reduces to spe-
cifying the factors that are sufficient to generate a particular question or
answer. These include the form of the question, its content, and the
beliefs about the world that determine the correct answer. By inducing
a factorisation between the form of the sentence and its content, one

can finesse the combinatorics of representing all possible questions with
all possible content. In other words, we will assume that the brain re-
presents—at some suitably high level—the form of a question and its
content separately, where the two only interact when generating an
outcome or context for the hierarchical level below.

In this paper, we consider two hierarchical levels; namely, a con-
ceptual level generating syntax and semantics, and a lower level gen-
erating lexical sequences of words or phrases. One could consider fur-
ther levels, all the way down to phonemes and articulation; however,
this level of modelling has already been considered in the context of
active listening (Friston et al., 2020) We will therefore restrict the cur-
rent analyses to the generation and understanding of fully formed
words (noting that the Matlab simulations that accompany this paper
include a full three-level demonstration that supports spoken answers
and questions: please see software note).

So, what does one need to know to generate a sentence? Basically,
we need the temporal structure or syntax of the question, the semantic
content—that fills in content words like nouns and verbs—and the
answer (e.g., ‘yes’ or ‘no’). However, to generate syntax and semantics,
we need the narrative (e.g., is this a question or answer?) and the form
of the question (e.g., is this a question about where something is—i.e.,
location—or what something is—i.e., shape?). We also need to know the
states of the world being described (e.g., contextual or scenic knowl-
edge) and which particular attributes are being discussed. These con-
ceptual constructs constitute the highest level of the generative model;
namely, everything one would need to know to specify the syntax and
semantics of a lower-level.

In deep models of this sort, deeper hierarchical levels are con-
stituted by factors that change over progressively longer timescales
(Friston et al., 2017d; George and Hawkins, 2009; Kiebel et al., 2009).
This means higher level factors are attributes of a sentence or phrase,
while lower level factors may change from word to word (Chien and
Honey, 2020; Davis and Johnsrude, 2003; Demirtaş et al., 2019; Specht,
2014; Stephens et al., 2013). Here, high-level factors include the nar-
rative structure; namely, is this sentence a prompt, question or answer?
If this sentence is a question, then what is the question about; e.g., the
location or colour of an object? If the narrative requires an answer, then
there have to be scenic factors encoding states of the world that render
the answer right or wrong; e.g., the object is ‘red’. Finally, and possibly
most importantly, there have to be factors that support a shared nar-
rative; namely, the shared subject of discussion. We will refer to these
as semiotic factors to emphasise that this kind of factor underwrites
communication (Roy, 2005; Steels, 2011). In other words, semiotic
factors entail latent states that exist only in the context of discourse;
e.g., ‘we are discussing the colour of something’.

These four kinds of factors (narrative, question, scenic and semiotic)
are sufficient to specify a question about something, or an answer,
generated under beliefs about something. Crucially, some of these
factors depend upon choices or policies and the others do not. For ex-
ample, the agent can choose the form of a question and its semiotic
content but cannot change scenic states (i.e., the scene or concept being
discussed). In addition, we will assume that the narrative cannot be
changed, in the sense that a question is always invited by a prompt and
is followed by an answer. With this particular construction, agents can
update their beliefs about scenic states on the basis of their beliefs about
the current semiotic state and responses to questions. In other words,
hidden states of the world can be communicated via shared semiotics
that rest upon lawful answers to questions under a shared generative
model. One can intuit that this generative model requires high-order
interactions among the factors in play to generate sentences. In other
words, the contingencies that generate a sequence of veridical questions
and answers necessarily entail the interactions or conjunctions among
several factors. Much of what follows is an attempt to illustrate these
interactions using worked examples.

Having specified the form and semiotic content of a sentence, one
can now generate a sequence of words in a subordinate level of a
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generative model that is equipped with probabilistic transitions among
lexical states. The implicit transitions from word to word are prescribed
by the narrative and question factors of the higher level to generate a
syntax, while semantic content is specified by the semiotics. These two
attributes (syntactic and semantic) constitute, in the example below, the
hidden factors of the lower level of the model. Finally, given these two
factors one can generate the appropriate lexical sequence of words;
again, via an interaction of (syntactic and semantic) factors.

2.2. A generative model for “Twenty Questions”

Fig. 2 provides a schematic illustration of this kind of generative
model and fills in some of the details (please see figure legend). This
example will be used later to illustrate a simplified version of ‘Twenty

Questions’, where a subject has to determine the configuration of two
hidden objects by asking a series of closed questions in response to a
prompt. The two objects are placed on top of each other and each object
can either be a square or a triangle, which can be either red or green.
This means that an ideal (active) Bayesian observer should be able to
disclose the configuration with four questions: two questions to estab-
lish the colour and shape of the lower object and two questions do the
same for the upper object. However, this depends upon asking the right
questions, in relation to updated beliefs based upon previous answers. It
is this epistemic, uncertainty reducing aspect of communicative ex-
change we hoped to demonstrate and characterise.

The particular levels of the factors in the generative model of Fig. 2
have been constructed to create a minimal model of how one agent can
communicate beliefs about scenic states (i.e., configurations of hidden

Fig. 2. A generative model for Twenty Questions: This figure provides a schematic illustration of the generative model. This schematic displays the architecture
involved in generating a sequence of words that could constitute a language-like narrative. In brief, this is a hierarchical (i.e., deep) generative model formulated in
terms of discrete hidden states and outcomes (here, outcomes from the lower level are single words). The architecture is deep because there are two levels of hidden
states, where the higher (deeper) level unfolds slowly in time—furnishing contextual constraints on the lower level that generates a sequence of words. The higher
level contains hidden factors that generate the syntax and semantic content of a sentence, which are passed to the lower-level. Each panel uses a coloured shape to
describe the different states of each factor. At the higher level, transitions among narrative states (B(2)) generate a sequence of phrases that cycle in a particular order
through “Prompts”, “Questions” and “Answers”, where their form depends upon interactions with other hidden states in the generative model. The form of questions
has been factorised into the type of question (“Shape”, “Location”, or “Colour”) and its semiotic content. The semiotic content has three factors (noun, objective and
adverb), each with two states (noun: “square” or “triangle”; adjective: “green” or “red” and adverb: “below” or “above”). Similarly, the four scenic factors correspond to
beliefs about the attributes of upper and lower objects in the world; namely, their colours (green or red) and shapes (square or triangle). In this generative model,
choices about the type of question and its semiotic content are policy-dependent—as illustrated by the red arrows. In other words, policies determine transitions
(encoded by the B(2) matrices) among controllable states, so that question and semiotic states are selected intentionally. For example, the question generated by the
thick red arrows in the figure would be: “Is a red triangle above?” The combination of these states completely determines the syntax and semantic content of a
sentence at the lower level (which is encoded in the matrix D(1)). The hidden syntax states at the lower level comprise specific words, such as “Ready” and “Is”,
grammar, such as “?” or “!”, and abstract representations, such as noun, adverb, and adjective. The words denoted by the abstract representations are determined by
the semantic factor, which is isomorphic with the semiotic factor of the higher level. The first word of the phrase corresponds to the initial syntactic state at the lower
level—which is determined by the interactions among states at the higher level, encoded by the mapping D. For example, if the narrative state is a Question, then the
initial syntax state is the word “Is”, no matter which of the three question states are selected at the higher level. The B(1) matrices then determine subsequent words
(illustrated by the black arrows), by specifying transitions among syntax states that do depend upon the question states at the higher level. However, if the narrative
state is Answer, then the initial syntax state can be “Yes” or “No”, depending upon high order interactions among the remaining high-level states: a “Yes” will be
generated when, and only when, scenic and semiotic states are congruent (e.g., if the question “Is a red triangle above?” admitted a positive response, because a red
triangle is in the upper location). For clarity, some syntaxes have been omitted; for example, a “Not sure” answer. In addition, this figure omits embellishments that
generate synonymous phrases (e.g., “not sure”, “can't say”, and so on). The final stage is to map states at the lower level to outcomes at each time step of the
generative process. This is denoted by the likelihood mapping A(1). In the example highlighted here, the articulated word “triangle” depends upon the current syntax
state being a noun and the associated content being a “triangle”. States without arrows are absorbing states; in other words, the state only transitions to itself.

K.J. Friston, et al. Neuroscience and Biobehavioral Reviews 118 (2020) 42–64

46



objects) to another. At the higher level, the model incorporates beliefs
about the part of the narrative that is enacted (prompt, question, or
answer), the type of question (shape, location, or colour), the putative
scenic state of the world, and a semiotic factor indicating the topic of
discussion. These factors generate expectations for the lower level:
namely, the syntax (i.e., the ordering and content of words) and the
semantics (i.e., which shapes, colours, and locations the agent is being
questioned on). The lower level thus generates sequences of words,
which are concatenated to form phrases—and sequences of phrases
(i.e., exchanges) occur as the higher level cycles through the lower
level.

Note that the ‘syntaxes’ included here would not all be considered as
syntax under traditional definitions. In the current implementation,
syntaxes are just sequences of states (words), with grammar used as
terminating states to indicate that the conversational turn has ended.

The repertoire of syntactic structures within this model is limited to
three sorts of questions and two sorts of answers; however, even with
this limited repertoire, the combinatorics of what could be said is non-
trivial. To ask a particular question, the subject has to choose the form
of the question and the levels of the three semiotic factors by selecting
the appropriate policy. To make sense of any answer, it also has to
remember these choices. This memory is endowed by a higher level that
maintains beliefs about controllable (i.e., question and semiotic) fac-
tors, after committing to a particular policy. The selected policy mini-
mises uncertainty and will therefore change with beliefs about the
hidden scene, over successive questions and answers, ensuring forward-
looking exchanges (Allwood et al., 1992). Note that this kind of
working memory—and epistemic behaviour—emerges naturally from
maximising model evidence (i.e., minimising variational free energy),
given a generative model of successive states of the world that generate
outcomes.

We included a prompt state simply to demonstrate the cycling be-
tween prompts, questions, and answers. In this formulation, the prompt
conveys no interesting information: it is merely part of the structured
dialogue. In the following simulations, we simply use it to convey the
type of turn-taking that is often seen in realistic settings.

Clearly, there are many ways in which we could carve up the factors
or causes that underwrite linguistic exchanges, and we have ignored
many interesting aspects; however, the basic message is that one needs
to consider the factorisation and the deep (hierarchical) nature of
generative models before dissecting the computational architecture of
language. In what follows, we consider more broadly how generative
models of this sort can be represented in graphical form, and how
variational message passing generates predictions for neuronal dy-
namics.

3. Active inference

The previous section considered the form of a generative model. We
can now use active inference to simulate action and perception under
that model. The procedures used here assume that the brain restricts
itself to a limited number of characteristic states (Friston, 2013)—a
property that all sentient systems must possess. Mathematically, these
procedures minimise surprise (in information theoretic terms), which is
equivalent to maximising Bayesian model evidence; in other words,
they maximise the probability of sensory exchanges with the environ-
ment, under a generative model of how those sensations were caused.
This is the essence of active inference, and implicit self-evidencing
(Hohwy, 2016).

Intuitively, self-evidencing means the brain can be described as
inferring the causes of sensory samples while, at the same time, soli-
citing sensations that are the least surprising (e.g., not looking at the
sun directly or maintaining thermoreceptor firing within a physiolo-
gical range). Technically, this take on action and perception can be cast
as minimising a proxy for surprise, known as variational free energy.
From a statistical perspective, variational free energy can be

decomposed into complexity and accuracy, such that minimising varia-
tional free energy provides an accurate account of some data in the
simplest way possible (Maisto et al., 2015). Crucially, active inference
generalises Bayesian inference, such that the objective is not just to
infer the latent or hidden states that cause sensations but to act in a way
that minimises expected surprise. In information theory, expected sur-
prise is known as entropy or uncertainty. This means, one can define
optimal behaviour as acting to resolve uncertainty: e.g., saccading to
salient, or information rich, regimes of visual space or avoiding out-
comes that are, a priori, costly or unattractive. In the same way that
direct action and perception minimise free energy, action can be spe-
cified in terms of plans or policies that minimise the free energy ex-
pected on pursuing that policy.

This section briefly reviews parts of active inference that are re-
levant to the current paper. We begin by explaining expected free en-
ergy. We then consider how active inference is applied to discrete
generative models, such as the model described in the previous section.
Finally, we consider how belief updating can be implemented as a
neuronally plausible message passing scheme.

3.1. Expected free energy

Expected free energy (G) has a relatively simple form (see Appendix
A), which can be decomposed into an epistemic, information seeking,
uncertainty reducing part (intrinsic value) and a pragmatic, goal seeking,
cost aversive part (extrinsic value). Formally, the expected free energy
for a particular policy (π) can be expressed in terms of posterior beliefs
[ =Q o s P o s Q s π( , ) ( | ) ( | )τ τ τ τ τ ] about outcomes (o) and states (s) of the
world at time τ in the future:

≥ − − −G π τ E Q s o π Q s π E P o( , ) [ln ( | , ) ln ( | )] [ln ( )]Q τ τ τ Q τ

intrinsic value extrinsic value
     

(1)

Extrinsic (i.e., pragmatic) value is simply the expected value of a
policy defined in terms of outcomes that are preferred a priori; where
the equivalent cost corresponds to Bayesian risk or prior surprise (see
Table 1 and Appendix B). The more interesting part is the uncertainty
resolving or intrinsic (i.e., epistemic) value, variously referred to as
relative entropy, mutual information, information gain, Bayesian sur-
prise or the value of information expected under a particular policy
(Barlow, 1961; Howard, 1966; Itti and Baldi, 2009; Linsker, 1990;
Optican and Richmond, 1987). An alternative formulation of expected
free energy can be found in Appendix A: this formulation rearranges the
equation for expected free energy, so that it is cast as the expected
uncertainty about outcomes (i.e. ambiguity or expected inaccuracy) plus
the Kullback-Leibler divergence between predicted and preferred out-
comes (i.e., risk or expected complexity). This formulation shows that
minimising expected free energy is guaranteed to realise preferred
outcomes, while resolving uncertainty about the states of the world
generating those outcomes.

Here, we are less concerned with the pragmatic aspect of expected
free energy and focus on the epistemic drive to reduce uncertainty. We
have previously addressed this epistemic affordance in terms of sac-
cadic eye movements—to provide a constructivist explanation for vi-
sual searches: c.f., scene construction (Hassabis and Maguire, 2007;
Mirza et al., 2016). In this paper, we use a more sophisticated gen-
erative model to illustrate the same sort of epistemic foraging, mediated
by linguistic exchange. It is worth bearing in mind that the purposeful,
inquisitive and abductive behaviours we will see later are all emergent
properties of minimising (expected) free energy. In other words, there is
no need to handcraft any rules or grammar, or provide any reinforce-
ment or feedback. All of the behaviours shown in this paper result from
the structure of the generative model. Subsequent sections will illus-
trate the belief updating under this model—and so, first, we consider
how belief updating relates to neuronal processes and action.
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3.2. Belief updating and neuronal dynamics in discrete generative models

This section focuses on generative models of discrete outcomes
caused by discrete states that cannot be observed directly (i.e., hidden
states). This summary is based on (Friston et al., 2017c), which contains
more detail for readers who are interested in the approach. In brief, the
unknown variables in these models correspond to states of the
world—that generate outcomes—and the policies that generate succes-
sive states. For simplicity, we introduce belief updating in terms of a
generic discrete generative model, which has a single level; we then
extend this description to discrete hierarchical models containing two
levels.

Fig. 3 describes the basic form of these generative models in two
complementary formats, and the implicit belief updating following the
observation of new (sensory) outcomes. The equations on the left spe-
cify the generative model in terms of a probability distribution over
outcomes, states and policies that can be expressed in terms of marginal
densities or factors. These factors are conditional distributions that
entail conditional dependencies—encoded by the edges in the Bayesian
network on the upper right. The model in Fig. 3 generates outcomes in
the following way. First, a policy (i.e., a plan or controlled action se-
quence) is selected at the highest level using a softmax function of the
free energy expected under plausible policies. Sequences of hidden
states are then generated using the probability transitions specified by
the selected policy (encoded in B matrices). As the policy unfolds, the
states generate probabilistic outcomes at each point in time (encoded in
A matrices).

The equivalent representation of this graphical model is shown as a
Forney factor graph on the lower right. Here, the factors of the gen-
erative model (numbers in square boxes) now constitute the nodes and
the (probability distribution over the) unknown states are associated
with edges. The rules used to construct a factor graph are simple: the
edge associated with each variable is connected to the factors in which
it participates.

After specifying the generative model, we can use standard belief
updating schemes (Friston et al., 2017c) that have been used in pre-
vious applications of active inference (e.g., Adams et al., 2013; Mirza
et al., 2016). These message passing schemes are neuronally plausible,
and minimise free energy. In brief, the average transmembrane poten-
tial of a neuronal population is assumed to reflect the logarithm of an
expected hidden state, under a particular policy: =ν slnπ τ π τ, , . By in-
troducing an auxiliary variable (i.e., state prediction error), one obtains
the following update scheme, whose solution satisfies the belief update
equations in the lower left panel of Fig. 3.

= + ⋅ + ⋅ −

=

=

− − + o
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, , 1 , 1 , , 1 ,

, ,
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Although we employ a marginal message passing scheme in the si-
mulations presented later, the derivations presented here use a mean-
field approximation to simplify the expressions. While we could have
used a mean field approximation and the ensuing variational message
passing, this tends to lead to overconfident inferences. Practically, there
is little difference between the two (Parr et al., 2019a): both rely upon
the synthesis of local messages from the Markov blankets of variables in
the factor graph.

These differential equations correspond to a gradient descent on
variational free energy as described in (Friston et al., 2017a) and Ap-
pendix B:
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(3)

Crucially, in terms of neuronal dynamics, the sigmoid function (σ) in
Eq. 2 can be thought of as a sigmoid (firing rate) activation function of
transmembrane potential, and log expectations about hidden states can
be associated with depolarisation of neuronal populations encoding
expectations. This has some construct validity in relation to theoretical
proposals and empirical work on evidence accumulation (de Lafuente
et al., 2015; Kira et al., 2015) and the neuronal encoding of prob-
abilities (Deneve, 2008). Equivalent updates can be derived for beliefs
about policies and the precision of those beliefs. Although omitted from
Fig. 3 for simplicity, the expected precision of beliefs about policies is
interesting because it has all the hallmarks of phasic dopamine dy-
namics. We will look briefly at simulated dopaminergic firing later.
Interested readers are referred to (Friston et al., 2017a, 2014) for de-
tails.

As noted above, in this (pure communication) setting, outcomes are
generated by the agent who is currently speaking. These outcomes are
those that minimise variational free energy. As can be deduced from Eq.
3, these are simply the outcomes that maximise accuracy:

=

= −
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+ +

+ +
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E P o s
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min
[ln ( | )]

(ln )

τ o o

o Q τ τ

τ τ

1

1 1

1 1 (4)

This follows from the fact that the complexity part of free energy
does not depend upon outcomes (see Eq. 3). This sort of outcome is
formally related to motor output under active inference; namely, the
fulfilment of proprioceptive predictions by classical reflexes (Adams
et al., 2013; Shipp et al., 2013). In the current simulations, words or
phrases are generated, which play the equivalent role of fulfilling pre-
dictions based upon beliefs about hidden states at each point in time.

The final step is to create deep generative models by stacking gen-
erative models on top of each other; such that the outcomes generated
by one level provide (empirical) priors on the initial states of the level
below. By linking hierarchical levels in this fashion, states at the higher

Table 1
Expressions pertaining to models of discrete states: the shaded rows describe
hidden states and auxiliary variables, while the remaining rows describe model
parameters and functionals.
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Outcomes and their posterior
expectations

∈

= ∑ ⋅ ∈

s
s π s

{0, 1}
[0, 1]

τ

τ π π π τ,

Hidden states and their posterior
expectations

=o Asπ τ π τ, , Expected outcome, under a particular
policy
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Policies specifying state transitions and
their posterior expectations
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Auxiliary variable representing
depolarisation and expected state, under
a particular policy
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Auxiliary variables representing state
prediction error

A The likelihood of an outcome under each
hidden state

Bπ τ, Time dependent probability transition
matrices specified by the policy

= − P o πC ln ( | )τ τ Prior surprise about outcomes; i.e. prior
cost or inverse preference

D (Empirical) Prior expectations about
initial hidden states

= ∑ F π τF ( , )π τ Variational free energy for each policy

= ∑ G π τG ( , )π τ Expected free energy for each policy

= G oG ( )o Expected free energy for next outcome
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Softmax function, returning a vector that
constitutes a proper probability
distribution.
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level change slowly over time, because states higher level remain the
same throughout a sequence of state transitions at the lower level. In
the current setting, this means that beliefs about successive words at the
lower level are updated on a faster timescale than beliefs about a phrase
at the higher level—obliging a phrase to consist of multiple words. Top-
down (empirical) priors from the higher level provide a context for
inference about the next word, which is informed by all the preceding
words in a sentence. This is an important aspect of deep temporal
models that lends inference a hierarchical nature; known technically as
a semi-Markovian process. Fig. 4 illustrates the hierarchical form of the
generative model (upper panels) and the accompanying message pas-
sing scheme (lower panels) in the form of a factor graph. Note that
Fig. 4 is simply an extension of Fig. 3. At the higher level, the likelihood
mapping from hidden states to outcomes (A) from Fig. 3 is replaced by a

mapping from hidden states in the higher level to the initial states of a
lower-level (denoted by D). These mappings allow interactions between
states at the higher level to influence states in the lower level.

In the spirit of Fig. 4, Fig. 5 shows the particular Forney style factor
graph for the generative model of Twenty Questions in Fig. 2. Here, the
hidden states have been unpacked into their factors, where controllable
states are labelled in red. As noted above, controllable states have
transition probabilities that are prescribed by a policy. For example, for
the semiotic factor noun, the available policies could move the semiotic
state ‘square’ to ‘triangle’. Here, the policy remains in play for a suc-
cession of state transitions. In other words, once a policy is inferred or
selected, it remains operational in terms of predicting successive out-
comes. For example, if I commit to the semiotic state ‘square’, then it
remains the subject of the next question and subsequent answer. Recall

Fig. 3. Generative models for discrete states and outcomes. Upper left panel: These equations specify the generative model. A generative model is the joint
probability of outcomes and their (latent or hidden) causes, see first equation. Usually, the model is expressed in terms of a likelihood (the probability of consequences
given causes) and priors over causes. When a prior depends upon a random variable it is called an empirical prior. Here, the likelihood is specified by a matrix A, whose
elements are the probability of an outcome under every combination of hidden states. The empirical priors pertain to probabilistic transitions (in the Bmatrix) among
hidden states that can depend upon action, which is determined probabilistically by policies (sequences of actions encoded by π). The key aspect of this generative
model is that policies are more probable a priori if they minimise expected free energy G, which depends upon prior preferences about outcomes or costs encoded by
C. Finally, the vector D specifies the initial state. This completes the specification of the model in terms of its parameters; namely, A, B, C and D. Bayesian model
inversion refers to the inverse mapping from outcomes to causes; i.e., estimating the hidden states that cause outcomes. In approximate Bayesian inference, one
specifies the form of an approximate posterior distribution. This particular form in this paper uses a mean field approximation, in which posterior beliefs are
approximated by the product of marginal distributions over time points. Subscripts index time (or policy). See Section 2 and Table 1 for a detailed explanation of the
variables (italic variables represent hidden states, while bold variables indicate expectations about those states). Upper right panel: This Bayesian network re-
presents the conditional dependencies among hidden states and how they cause outcomes. Open circles are random variables (hidden states and policies) while filled
circles denote observable outcomes. Squares indicate fixed or known quantities, such as the model parameters. Lower left panel: these equalities are the belief
updates mediating approximate Bayesian inference and outcome selection. When the agent is responsible for generating outcomes (e.g., speaking), they are selected
to minimise free energy or, in other words, maximise accuracy under posterior beliefs about the next state of the world. Lower right panel: this is an equivalent
representation of the Bayesian network in terms of a Forney or normal style factor graph. Here the nodes (square boxes) correspond to factors and the edges are
associated with unknown variables. Filled squares denote observable outcomes. The edges are labelled in terms of the sufficient statistics of their marginal posterior.
Factors have been labelled in terms of the parameters encoding the associated probability distributions (on the upper left). The circled numbers correspond to the
messages that are passed from nodes to edges (the labels are placed on the edge that carries the message from each node). The key aspect of this graph is that it
discloses the messages that contribute to the posterior marginal over hidden states; here, conditioned on each policy. These constitute [forward: ❷] messages from
representations of the past, [backward: ❸] messages from the future and [likelihood: ❹] messages from the outcome. Crucially, the past and future are represented at
all times so that as new outcomes become available, with the passage of time, more likelihood messages participate in the message passing; thereby providing more
informed (approximate) posteriors. This effectively performs online data assimilation (mediated by forwarding messages) that is informed by prior beliefs concerning
future outcomes (mediated by backward messages). Please see Table 1 for a definition of the variables in this figure. Adapted with permission from (Friston et al.,
2017c).
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that policies are selected to minimise expected free energy (Section
3.1).

Equipped with this model and variational message passing scheme,
we are now in a position to simulate conversations; both in terms of
belief updating and associated neuronal message passing. When the
agent is listening, the outcomes can be generated by another agent to
simulate dyadic exchange. Conversely, when the agent is talking, out-
comes are selected to minimise the free energy under the agent’s beliefs.
In other words, when the agent is talking, it selects the least surprising
words, given its beliefs about the current syntax and semantics. Notice
that the agent does not ‘know’ who is talking—it just expects to hear
things that are consistent with its beliefs. If it hears something that is
surprising or unexpected, the agent will update its beliefs about the
scene and semiotics currently in play. More importantly, the agent’s
beliefs about what is being said depend upon the policies inferred.
These policies minimise expected free energy, which means the agent
expects to encounter salient, informative answers and, crucially, ques-
tions. In other words, it expects to hear questions and answers that
resolve uncertainty, which will be the same as the questions it would
ask and the answers it would supply.

When considering hierarchical generative models of language pro-
cessing, we are confronted with the linearization problem (Bornkessel

et al., 2005): namely, how are outcomes supplied to higher levels of the
generative model and, how do higher levels provide constraints on
evidence gathering at lower levels? In other words, how can one ac-
cumulate evidence from sequential stimuli to form beliefs about things
that do not change with time? Happily, this problem that has already
been solved by deep temporal models of the sort above. We demon-
strate the implicit message passing and belief updating that underwrites
this form of (linearised) evidence accumulation in the next section, by
simulating an agent playing the “Twenty Questions” game.

4. “Twenty questions” simulations

To illustrate belief updating—and its neuronal correlates—we use a
simplified version of “Twenty Questions”. Specifically, we simulated
conversations comprising six exchanges, where each exchange com-
prises three phrases or sentences. The phrases always followed the same
sequence: a prompt, a question, then an answer. This order was fixed by
specifying very precise priors about transitions among narrative states.
Each phrase comprised up to six words, and each word was processed
with belief updates described by Eq. 3. These updates were evaluated in
16 time-steps of 16 ms (of simulated and approximately real time). This
meant that words were generated every 256 ms, such that a sentence of

Fig. 4. Deep temporal models. Left panel: This figure provides the Bayesian network and associated Forney factor graph for deep temporal models, described in
terms of factors and belief updates on the left. The graphs adopt the same format as Fig. 3; however, here the model has been extended hierarchically, where
(bracketed) superscripts index the hierarchical level. The key aspect of this model is its hierarchical structure that represents sequences of hidden states over time or
epochs. In this model, hidden states at higher levels generate the initial states for lower levels, which unfold to generate a sequence of outcomes: c.f., associative
chaining (Page and Norris, 1998). Crucially, lower levels cycle over a sequence for each transition of the level above. This is indicated by the subgraphs enclosed in
dashed boxes, which are ‘reused’ as higher levels unfold. It is this scheduling that endows the model with deep temporal structure. The probability distribution over
initial states is now conditioned on the state (at the current time) of the level above. Practically, this means that D now becomes a tensor, as opposed to a vector. The
messages passed from the corresponding factor node rest on Bayesian model averages that require the expected policies [message ❶] and expected states under each
policy. The resulting averages are then used to compose descending [message ❷] and ascending messages [message ❻] that mediate the exchange of empirical priors
and posteriors between levels, respectively. Adapted with permission from (Friston et al., 2017c).
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four words takes about a second to articulate. In these simulations, the
artificial agent could take the role of the questioner or the answerer: the
agent either listened for the prompt, asked a question, and then listened
to the answer, or issued the prompt, listened for a question, then sup-
plied the answer. In all cases, the agent (slightly) preferred affirmative
answers (“Yes”) over negative answers (“No”). These preferences were
specified by setting prior costs of C = –¼ for “Yes” and C = ¼ for “No”
(see Table 1). This means that the agent will ask questions that it be-
lieves will elicit a “Yes” answer, everything else being equal.

In these simulations, the agent started out with uniform prior beliefs
about which colour and shape was present at the two locations (above
and below). It played the role of the questioner for the first four ex-
changes, after which it identified the colours and shapes of both objects
with high confidence. Having updated its beliefs, it then switched roles
to answer two questions. To allow the agent to play the roles of the
questioner and answerer for these simulations, we separated the agent’s
generative model from the generative process; effectively, this means
that the agent was ‘in conversation’ with the generative process. The
generative process had exactly the same form as the generative model,
except the generative process had more precise beliefs about the scene.
Here, as the agent was not equipped with beliefs about whether it was
speaking or listening, we simulated turn-taking by sampling the output
from the agent or generative process at the appropriate stages of the
exchange.

Fig. 6 displays the results of belief updating. Each panel shows
posterior expectations about the two hidden objects after each of the six
questions were answered. The questions are shown in black text to-
wards the top of the panel, while the answer is shown at the bottom of
the panel. All answers in this example were correct (i.e., correspond to
the true scene), so are displayed in green. Within each panel, the agent’s
beliefs about shape (square versus triangle) and colour (green versus
red) at the two locations are depicted with large icons. The true (nar-
rative) scene is shown with small icons to the right.

During the first four questions, the agent accumulates evidence and

builds veridical beliefs about the scene at hand. At the beginning, it has
no particular (i.e. uniform) beliefs about the shapes and colours at the
two locations. First, it chooses to ask a question about the shape, be-
cause it is more likely to get an affirmative (preferred) response than if
it were to ask a question about shape and colour together. After the first
answer, it knows there is a square below (see first panel) and subse-
quently asks a question about the combination of shape and colour.
After the second answer (see second panel), it knows that the square is
not green and must therefore be red. It then goes on to ask similar
questions for the upper location, after which time it holds precise be-
liefs about the shapes and colours at the two locations. By the time it
answers the fifth and sixth questions, the agent can provide veridical
answers to questions about specific scene components (the fact these
responses are in green text indicates that the answers are correct).

Notice that the expectations of the colour (red) of the lower panel
become less precise after first inferring there is a red square below
(compare second and third panels). This arises because we have slowed
down belief updating, so that its time constants correspond roughly to
those observed empirically (see below). This precludes complete con-
vergence to free energy minima during belief updating. The ensuing
uncertainty is then carried over to the next exchange. Further, notice
that after responding correctly to the question about the colour of the
lower square (fifth question; lower middle panel), the agent’s beliefs are
refreshed as the answer provides confirmatory evidence about what
was believed.

As anticipated, the artificial agent resolved uncertainty about the
hidden scene after only four questions, suggesting that appropriate
questions were asked. For example, the first question establishes that
there is a square below, while the second discloses the fact that it is red.
It could have opted to ask only What questions, but then it could have
needed as many as 8 questions to infer the correct scene. Notice also
that the second question is not redundant: it is asked in the context of
knowledge that the lower object is square. A possible second question
would have been to ask: “Is there a circle below?”, but given (i) the

Fig. 5. Factor graph for 20 questions: this schematic illus-
trates the message passing using a Forney style factor graph
for the generative model in Fig. 2, using the format of Fig. 4.
In this schematic, we have unpacked the hidden state factors,
labelling those with multiple (policy-dependent) probability
transition matrices in red. This graphic was produced auto-
matically using the SPM software (please see software note).
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agent already knows the lower object is a square and (ii) in this scenario
only one object is present at each location, this question would not
reduce uncertainty about the contents of the scene. Ultimately, the
behaviour demonstrated in these simulations emerges because the
agent selected policies that reduced uncertainty about the scene. This
can only happen because the generative model entertains future states,
which enable the agent to evaluate expected outcomes in the future. For
example, any answer to the second question (“Is a red square below”)
completely resolves uncertainty about its colour. The agent knows this
question will resolve uncertainty before the question is even asked.
Thus, this type of question has epistemic value.

Note the subtle nature of this epistemic behaviour: the agent is using
semiotics states (noun, adjective, and adverb), over which it (believes it)
has control, to resolve uncertainty about scenic states, over which it

(believes it) has no control. In this scenario, the agent exerts control by
generating outcomes (e.g., questions); it will generate outcomes that
are the least surprising, under uncertainty resolving policies. This vi-
carious belief updating is central to the current formulation when
considering how we might install beliefs in others through linguistic
communication.

4.1. Message passing and neurophysiology

Having illustrated belief updating behaviour, we now take a closer
look at the predictions of this type of inference, or sequential evidence
accumulation, for neurophysiology. Fig. 7 illustrates electro-
physiological and dopaminergic responses to the six questions from the
simulation above. These responses are shown in various formats:

Fig. 6. Behavioural responses: Each panel shows the posterior expectations of a synthetic subject after its question had been answered. The agent’s beliefs about
shape (square versus triangle) and colour (green versus red) for the upper and lower locations are depicted with large icons. Where the agent has no particular (i.e.,
uniform) beliefs, the two shapes are displayed overlaid and/or in grey (e.g., upper locations in panels A and B); where the agent’s beliefs tend toward a particular
colour, the shape is shaded slightly red or green. The true scene (with veridical colours and shapes) is shown with small icons to the right. The question is shown in
black text (above each set of expectations), while the answer is shown below. All of the answers in this simulation are correct, so they are displayed in green text. The
human icons and purple callouts are positioned next to the agent’s vocalisations, to illustrate whether the subject was asking questions (first four exchanges) or
answering them (last two exchanges).
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Fig. 7A shows posterior expectations about the colour of the lower
object at various times during the sequence of six narratives, displayed
in raster plot format. There are two temporal scales of belief updating:
the convergence to minimum free energy following each new stimulus,
and faster dynamics that underwrite that convergence. Usually, new
stimuli are assumed to be sampled every 250 ms. This period allows 16
rounds of variational message passing to converge to a free energy
minimum, where each round or iteration is considered to last about 16
ms. These assumptions render synthetic neuronal responses consistent
with the time constants of ERPs in the brain(Friston et al., 2017a, d).
For simplicity, this figure displays only the colour states. Different units
are labelled on the Y-axis; namely, green or red at successive epochs (1,
2, and 3) within each exchange.

During the time window corresponding to the first question and
answer (0–0.75 s), Fig. 7A is shaded in grey, indicating that the agent
has uniform beliefs about the colour of the object during the first
question, which queries the shape and not colour. The second question
asks about the colour of the lower object. This question (Fig. 6B) has the
answer “No” (i.e., not green), indicating that the colour of the square at
the lower position must be red. The plot shows that this answer induces
profound belief updating; the belief that the lower square is red is very
precise and this belief is maintained (i.e., ‘remembered’) throughout the

exchange (i.e., for the remainder of the time plotted). During this time,
the shading on this plot allows us to visualise the reduction in precision
for the belief that the object is red, and subsequent reinstatement of
precision after the fifth question—as discussed in the previous section.

Notice in Fig. 7A that the latency of this belief updating for ex-
pectations at the beginning of the trial is greater than at the end—this is
due to message-passing backwards in time (message ❸ in Fig. 4). As
noted above, these posterior beliefs decay a little over subsequent trials,
until the agent reaffirms its conviction that the lower colour is indeed
red.

Fig. 7B shows the same data in a different format. Here, pooled
expectations (after filtering between 4 and 32 Hz) are shown as a white
line. This is superimposed upon a time-frequency heat map to illustrate
bursts of frequency-specific energy during periods of belief updating.
We will examine this characterisation in more detail later, with re-
ference to the next figure.

Fig. 7C illustrates the simulated fluctuations in neuronal activity,
after bandpass filtering. These can be regarded as simulated local field
potentials or event related potentials (Leonard et al., 2016), corre-
sponding roughly to the voltage fluctuations in Eq. 3. Later in the paper,
we will revisit these synthetic ERPs to characterise responses to sur-
prising outcomes. The current simulation simply shows that the

Fig. 7. Electrophysiological responses: This figure shows
the simulated electrophysiological responses associated with
the belief updating reported in Fig. 6. In this figure, we focus
on beliefs about the colour of the lower object, which is at the
higher level of the generative model—thus, these plots show
simulated responses following each phrase (i.e., prompt,
question, and answer) rather than following each word. The
horizontal axes show time over the entire exchange, assuming
each phrase lasts for 250 ms. Expectations about the hidden
state encoding the colour of the lower object are presented in
raster format in the panel A, where black corresponds to
maximum firing rates. Panel B shows the same data but in a
different format: here, pooled expectations (filtered between 4
and 32 Hz) are shown as a white line. This simulated local
field potential is superimposed upon a time-frequency heat
map to illustrate bursts of frequency-specific energy (white),
during periods of belief updating. The underlying fluctuations
in simulated neuronal activity, after bandpass filtering be-
tween 4 Hz and 32 Hz, are shown in panel C. Each of the
coloured lines on this plot represent belief updating for a
given unit (i.e., the rows of the upper panel). Panel D shows
simulated dopamine responses after each answer: these at-
tenuate as uncertainty is resolved.
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amplitude of simulated ERPs is related to the amount of information
conveyed by an outcome—it shows greater responses to more in-
formative parts of the narrative.

Finally, Fig. 7D shows simulated dopamine responses (i.e., expected
precision of beliefs about policies), as described in (Friston et al., 2014).
Interestingly, the peaks of these phasic responses coincide with times
that answers are given. The key point to take from these phasic re-
sponses is that the implicit changes in confidence—about the policies
being pursued—depends on the extent to which answers resolve un-
certainty and fulfil prior preferences. Every time the agent receives (and
to a lesser extent delivers) an answer, it becomes more confident about
what it is doing. However, becoming more confident about the hidden
scene attenuates the ‘confidence boosts’ (i.e., phasic dopamine re-
sponses). Anecdotally, this seems consistent with the subjective ex-
perience of “Twenty Questions”, where each confirmatory answer is
rewarding, especially at the beginning of the game.

Fig. 8 presents the simulated electrophysiological responses from
Fig. 7 in terms of what one would predict when analysing spectral re-
sponses from the higher order area during belief updating. The lower
panels show the spectral responses. Fig. 8B reports the log spectral
density of the six units (i.e., neuronal populations), whose event related
responses are shown in Fig. 7C. This shows that spectral responses show
a degree of scale-free broadband activity, reflecting the fact that the
simulated neuronal dynamics have multiple nested timescales.

The ensuing nonlinear coupling between fluctuations at different
frequencies is summarised in terms of cross frequency coupling in
Fig. 8C. This simple characterisation is the correlation between the
response magnitudes, over frequencies ranging from 4 to 32 Hz (based
on the time frequency response in the lower panel). The key thing to
note from this panel is the off-diagonal structure: the lighter shading in
the lower left and upper right quadrants of the plot indicate above-zero
correlations, suggesting that there are correlations among the lower and
higher frequencies—in other words, amplitude-to-amplitude coupling
between theta and gamma responses. This coupling arises because be-
lief updates at different temporal scales are likely to co-occur (i.e., at
the same times) under this hierarchical model.

The belief updates under this hierarchical model also necessitate

responses that would be interpreted as reflecting phase-amplitude
coupling. These types of responses arise from belief updating at dif-
ferent hierarchical levels of the generative model, which occur at dif-
ferent temporal scales. Neuronal dynamics perform a gradient descent
on variational free energy, as each new outcome becomes available (for
the higher level, when each phrase is spoken). By virtue of this temporal
scheduling, there are necessarily nested oscillations in the sense that
fast (e.g., gamma) fluctuations unfold at a slow (e.g., theta) rhythm
(Friston et al., 2017a): a succession of transients containing high-fre-
quency components is induced by hearing each word, and these tran-
sients recur at the lower frequency of word presentation. In this class of
hierarchical generative model, each transition at the higher level is
accompanied by a ‘resetting’ of states at the lower level (Friston et al.,
2017c). In the current application, phrase-level inferences generate the
words contained within the phrase, and then the lower level ‘resets’ for
the next phrase. This nesting naturally leads to phase-amplitude cou-
pling—which is the most commonly studied type of cross frequency
coupling (Canolty and Knight, 2010).

The nesting of electrophysiological responses is illustrated in Fig. 9,
which shows the simulated neuronal firing and associated local field
potentials for neuronal populations at the higher and lower levels.
Fig. 9A shows simulated unit responses at the upper level, Fig. 9B shows
the same at the lower (semiotic) level, and Fig. 9C overlays simulated
local field potentials at the upper and lower levels. The key thing to
observe here is that lower level transients (cyan lines) are faster than
the accompanying higher-level transients (red lines). This means that
fluctuations in the amplitude of frequency-specific responses to each
word or phrase will necessarily produce phase-amplitude coupling.
Phenomenologically, this means that one would not be surprised to see
bursts of beta activity at the higher level coincide with bursts of gamma
activity in the lower-level. See (Arnal and Giraud, 2012; Giraud and
Poeppel, 2012) for a discussion of related phenomena.

Crucially, from this perspective, amplitude-to-amplitude and phase-
amplitude coupling are simply two ways of quantifying non-linear
coupling that inherit from the nesting of transients under a hierarchical
generative model. This nesting of transients would be interpreted as
some form of nonlinear or phase-amplitude coupling, if subject to

Fig. 8. Spectral responses and nested oscil-
lations. This figure shows the spectral re-
sponses associated with the simulated electro-
physiological responses in Fig. 7. Panel A is a
reproduction of Fig. 7B. Panel B reports the
spectral density of the six units (i.e., ‘red’ or
‘green’ for epochs 1, 2, and 3). Only three lines
are visible because pairs of responses overlap
perfectly. Note that the scale is expressed in
terms of log power. The matrix in panel C
shows the correlation between the magnitudes
of responses over frequencies ranging from 4 to
32 Hz. These correlations are based on the time
frequency response in panel A.
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standard empirical analysis procedures such as bi-coherence analysis or
phase-synchronisation measures: for example, see (Giraud and Poeppel,
2012; Lizarazu et al., 2019; Pefkou et al., 2017). In interpreting these
effects, it is interesting to note a subtle distinction between phase-am-
plitude and amplitude-to-amplitude coupling in an idealised setting: the
phase-amplitude coupling is a necessary result of the hierarchical
modelling, because gamma-frequency updates are scheduled at the
slower theta frequency. However, amplitude-to-amplitude coupling
between theta and gamma results from departures from the perfect
theta rate of gamma transients, because the amplitude of theta activity
must vary to produce amplitude-to-amplitude coupling. As is evident in
Figs. 8 and 9, both of these data features would have arisen under
conventional analyses of the electrophysiological responses simulated
here. Practically speaking, however, it is difficult to distinguish dif-
ferent types of cross frequency coupling in real data due to Heisenberg's
uncertainty principle (e.g., see (Aru et al., 2015; Munia and Aviyente,
2019; Nakhnikian et al., 2016)). In other words, the apparent ampli-
tude-to-amplitude coupling reflects the way that people quantify this
type of coupling. For this reason, the phase-amplitude coupling is a
more interesting feature of the hierarchical generative model we de-
scribe. In general, this nonlinear coupling is consistent with “evidence
that the temporal modulation transfer function (TMTF) of human au-
ditory perception is not simply low-pass in nature” (from (Edwards and
Chang, 2013) p113).

4.2. Deep violation responses

Thus far, we have focused on the sort of message passing—and its
neurophysiological correlates—that would be measured using time
frequency analyses of induced responses. Here, we consider how the
same computational architecture generates predictions for evoked re-
sponses. In particular, we show that stimuli that violate expectations

generate differential (mismatch) waveforms, which have been the focus
of many empirical studies; e.g., (Coulson et al., 1998; Friederici, 2011;
Pulvermuller et al., 1995; Van Petten and Luka, 2012; Ylinen et al.,
2016).

Fig. 10 illustrates the neurophysiological simulation of a violation
response; for example, P300 or N400 responses to a semantic violation
or unexpected sentence closure. Here, we reproduce a violation para-
digm by rerunning the fifth exchange from the previous simulations
with the wrong answer at the end. Recall that at the beginning of fifth
exchange, the agent is confident that the colour of the lower shape is
red: it obtained this information from the answer to question 2. The left
panels show the standard responses, using a similar format to Fig. 7.
Simulated event related potentials (i.e., band pass filtered expectations
of the lower colour at the three epochs) are shown on the upper right.
The underlying unit activities producing these fluctuations are shown in
terms of a simulated raster of unit firing—for the six units in ques-
tion—on the lower left. Of note, simulated event related potentials in
the right panel (i.e., when the wrong answer is provided at 0.5 s) have
longer latencies (as illustrated by the blue arrow). These long latency
responses have a remarkably similar morphology to P300 (Donchin and
Coles, 1988; Van Petten and Luka, 2012) and N400 (Kutas and Hillyard,
1984; Van Petten et al., 1999; Van Petten and Kutas, 1990) waveform
components in empirical violation paradigms. Here, they simply reflect
the fact that the artificial agent has to change its mind and undo the
conviction that the lower square was red, given the evidence was in
favour of green; in other words, update its beliefs. As can be seen from
the lower right panel, the agent becomes less certain about the colour,
and leans slightly towards the belief that the colour of the lower object
is green. This posterior belief is entirely congruent with hearing a ne-
gative answer to the question “is there a red square below?”.

Fig. 9. Hierarchical message passing and nested oscilla-
tions. The upper panel illustrates responses at the second level
using the format of the upper panel of Fig. 7. Here, we focus
on representations of the colour of the upper object—fol-
lowing each phrase—for the last three exchanges. At this
point, the agent is fairly sure the upper object is green (as
indicated by the darker shading for the ‘green’ unit in the
upper panel). The middle panel shows the equivalent results
for representations in the lower level, encoding the semantic
adjective factor, which switches between green and red for the
last three questions. The lower panel shows the band-pass
filtered responses (between 4 and 32 Hz) to illustrate the
nesting of simulated electrophysiological responses (solid
lines: higher-level scenic responses. Broken lines: lower-level
semantic responses). Two responses have been highlighted for
illustration in red (high level) and cyan (lower level). The
nesting of (simulated) neuronal fluctuations is evident at a
number of levels. First, bursts of activity are organised around
periods of belief updating, when sensory evidence becomes
available. Periods of activity are evoked by auditory outcomes
(words) at the lower level and—at the higher level—evidence
that speaks to the posterior expectations or representations.
Second, it demonstrates transients at the onset of each word,
which recur at a theta frequency. Each transient carries fast
(e.g., gamma) frequency components. This means there is a
theta-gamma coupling in the sense that the amplitude of
gamma responses fluctuates at a theta frequency. Finally, note
that the transients at the lower level (cyan line) are ‘sharper’
than the transients at the higher level (red line).
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5. Synthetic communication

In the simulations above, external states of affairs were used to
supply veridical answers to the first four questions by sampling from
the generative process. In other words, the external states were standing
in for the beliefs of someone answering or asking questions. In what
follows, we make an important move and replace external states with
another synthetic subject. This has the interesting consequence of
taking external states off the table: outcomes are generated or sampled
from the (posterior) predictions of one or other subject, so at no point
do we need to refer to (external) states of the world (see Fig. 1). This is a
straightforward consequence of allowing agents to generate outcomes
that are shared between them. Heuristically, the imperative to resolve
uncertainty (i.e., minimise expected free energy) is now reflected in a
synchronisation of belief states; namely, a ‘meeting of minds’ and mu-
tual understanding.

5.1. Questions and answers

The simulations reported in Fig. 11 use a similar format to Fig. 6;
however, here there are two synthetic subjects. The second subject has
precise (i.e., confident) beliefs about the scene at hand (namely, a green
square above and a red square below). In contrast, the first subject is
less confident before the exchange begins and effectively inherits the
belief of the confident subject by listening to the answers to the ques-
tions it asks. Analogous to Fig. 6, after the fourth answer, the first
subject has a precise understanding of what the confident subject be-
lieves and is able to answer correctly the when quizzed with two final
questions.

In this example, the first agent chose its questions carefully to re-
solve as much uncertainty as possible. In the lower panel, we reverse
the roles so that the second (confident) agent asks questions and the less
confident agent provides answers. The results of the simulation are

shown in the lower panel (entitled role reversal). In comparison to the
upper panel, the first agent accumulates evidence for the beliefs of the
second agent much more slowly, and the two agents do not share the
same beliefs after the fourth answer. The questions asked by the second
agent are insensitive to the particular uncertainty that confounds the
first, and so all the first agent can do is say that it is “not sure” in
response to the first two questions, when its beliefs are uniform across
the red and green states. For the third question, it responds “no”. Unlike
the first two questions, the third question asks about the combination of
colour and shape attributes in the upper location, which has four pos-
sible options, and so the balance of probabilities means that the most
likely answer is “no”. After hearing its own negative answer, the subject
then convinces itself that the upper shape cannot be a red triangle and
is more likely to be a green square, which is further endorsed by its
subsequent response to the (same) fourth question. Only when obser-
ving definitive and veridical answers can it then start to accumulate
proper beliefs about what the other subject believes.

5.2. Storytelling

We can use exactly the same scheme above to simulate instruction
or storytelling: the same underlying joint belief updating characterises
all forms of exchange in this active inference formulation. We reran the
simulations from the previous section, but this time the second agent
answered its own questions (Fig. 12), while the first simply listened for
the first four exchanges and supplied answers for the last two ex-
changes. As above, the first agent inherits scenic beliefs from the second
agent, but here this is simply by listening to the second agent’s soli-
loquy. After the four questions and answers, the first agent is suffi-
ciently confident about the scene to answer correctly; even though it is
unsure whether the lower object is a red square or a red triangle. This
ambiguity reflects the fact that the preceding questions and answers
were not selected to reduce the first agent’s uncertainty—they were

Fig. 10. Violation responses: This figure illustrates the neurophysiological simulation of a violation response, of the sort seen in response to a semantic violation or
unexpected sentence closure. We reproduced this paradigm by rerunning the fifth narrative but supplying the wrong answer at the end (see panel H). The left box
(A–D) shows the standard responses when the correct answer is supplied (see panel D) using a similar format to Fig. 7. Here, the simulated unit firing of neurons that
respond to the colour of the lower object (i.e., the scenic representation at the higher level) are shown in raster format (panel C). The population average or expected
firing rate is used to simulate unit activity by sampling from a binomial distribution at each 16 ms time window. The average response magnitude and time frequency
response are shown in panel A for the three epochs (prompt, question, answer) of the fifth exchange. The simulated event-related potentials (i.e., expectations about the
colour of the lower object—red or green—at the three epochs, band pass filtered at 4–32 Hz) are shown in panel B. The right box (E–H) reproduces the same results
after supplying the wrong answer (i.e., “No” versus “Yes”), which induces protracted belief updating over a longer latency, as indicated by the blue arrow.
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selected by the second subject, who had very precise beliefs.

5.3. Making your mind up

Things get interesting if we reduce the precision of prior beliefs, so
that both subjects are uncertain about the scene. Recall that the syn-
thetic agents are given three possible responses: “Yes!”, “No!”, and “I’m
not sure”. When allowed to question each other in this setting, they
simply respond truthfully that they are unsure about the answer (see
the upper panel of Fig. 13). However, when we reduce the prior
probability of the ‘not sure’ response, both subjects effectively tell each
other about what they believe, until they come to hold the same beliefs
(see the lower panel of Fig. 13). At this point, uncertainty is precluded
because each can predict the other and their shared understanding. This
is an example of neural hermeneutics (Frith and Wentzer, 2013) in the
absence of ‘truth pointing’. As noted above, this is a form of generalised
synchronisation (Friston and Frith, 2015a), where the orbits of belief
states that underlie linguistic exchange become mutually predictable as
(expected) free energy is minimised. Anthropomorphically speaking,
the two synthetic subjects have simply reached a consensus about how
to describe some shared construct. Crucially, the construct (i.e., scene)
does not exist and, from our perspective, therefore, could be described
as a Folie à deux (Arnone et al., 2006). On a more positive note, it could
also be construed as a joint exercise in creative thinking. Although not
pursued here, one can think about extensions of this sort of simulation
that could be framed in terms of artistic communication and creativity,
bringing us back to the resolution of uncertainty through epistemic
foraging, novelty and fun (Schmidhuber, 2006).

Returning to the upper panel of Fig. 13, this example illustrates the
joint maintenance of uncertain beliefs. This is interesting because these
rudimentary agents have no formal metacognitive capacity (see dis-
cussion). In other words, their uncertainty is implicit in neuronal states
encoding uncertain belief distributions, rather than possessing neuronal
states that encode posterior beliefs about the precision of their beliefs.
Having beliefs about the precision of beliefs may sound rather com-
plicated; however, statistical models with a deep structure very often
encode uncertainty explicitly. For example, when we report the degrees
of freedom of a statistical test, we are effectively reporting the con-
fidence in our estimate of uncertainty; e.g., the standard error on some
parameter estimates (Friston et al., 2007). In the current simulations,
there is no such metacognitive inference—and yet the two agents
continue to answer that they are uncertain about the hidden states they
are being questioned on, as is Bayes optimal.

The mechanism that underwrites this apparent confirmation of
‘known unknowns’ is straightforward. It rests upon a nontrivial like-
lihood of saying “I'm not sure”, irrespective of one's beliefs. Consider
the following: I am thinking about numbers between one and one
hundred and I can either report a number or select a “not sure” option.
If the likelihood of reporting a number is 90 % and I am sure about the
number, then I am nine times more likely to report the (exact) number I
have in mind than to say “not sure”. Conversely, if I have no idea about
the number, then the likelihood of reporting any number is equal to the
probability of selecting any other number; the probability of reporting
any individual number therefore falls to less than 1 %, because the
probabilities are dispersed or diluted over 100 number options. In this
case, I am therefore more than 10 times more likely to report “not sure”

Fig. 11. Playing ‘Twenty Questions’ with a partner: These simulations use a similar format to Fig. 6; however, here there are two synthetic subjects. Their beliefs
are displayed in separate columns within each panel, and the text is placed next to the agent who spoke the phrase. The second subject (purple icon, right column) has
precise (i.e., confident) beliefs about the scene at hand: it believes there is a green square above a red square). In contrast, the first agent (green icon, left column)
begins with imprecise beliefs and effectively inherits the beliefs of the confident subject, by listening to the answers to the questions it asks. It is then able to answer
the two questions asked by the other agent in the fifth and sixth narratives. The lower panels replicate the simulation but here the less confident agent answers
questions.
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than any individual number. In Bayesian model selection, this phe-
nomena is known as evidence dilution (Hoeting et al., 1999). The ex-
ample in the upper panel of Fig. 13 highlights this emergent but simple
consequence of entertaining declarations of uncertainty. Note that this
kind of uncertainty rests upon a shared generative model, in which
uninformative responses can be selected, even in the absence of un-
certainty. When we remove the opportunity to generate such agnostic
responses, a different pattern of mutual understanding emerges (see the
lower panel of Fig. 13).

6. Discussion

In summary, we have illustrated a number of plausible correlates of
communication that emerge from active inference under a particular
sort of generative model. This generative model was motivated by the
role of language in communicating a narrative. The key attributes of

this model speak to the notion of a shared narrative that reduces un-
certainty. In Section 4 (“Twenty Questions” simulations), we simulated
an agent that was speaking to itself (i.e., in ‘conversation’ with a gen-
erative process), and in Section 5 (Synthetic communication) we used
exactly the same generative model to simulate two subjects who were
asking and answering questions. In each of these cases, the inference
and sensory evidence were identical: the only difference was agency
(i.e., who was talking). Generally speaking, these simulations demon-
strate that the beliefs of two synthetic agents converge, even when they
initially had different prior beliefs. This simply reflects the fact that an
agent updates its beliefs based on answers (i.e., observations) from the
other agent—and would therefore generalise to other situations where
the prior beliefs of two synthetic agents differ.

In our simulations, hierarchical inference led to belief updating that
resembled theta-gamma phase-amplitude coupling (Fig. 8), which has
often been observed empirically in studies of speech perception; for

Fig. 12. Storytelling: The result of an exchange between two synthetic agents, when the second agent (purple icon, right panel) answered its own questions for the
first four exchanges (panels A–D). For the fourth and fifth exchanges (panels E–F), the second agent asked the questions and the first agent (green icon, left column)
answered. Here, the first agent had to rely upon the question selected by the second agent to update its beliefs about the scene. This resulted in some residual
ambiguity about the lower object (i.e., it is most likely to be a red triangle, it could be a red square, but it is probably not a green square). Nevertheless, the first
subject was still able to answer the questions correctly.
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example, see (Giraud and Poeppel, 2012; Lizarazu et al., 2019; Pefkou
et al., 2017). Of relevance, our simulated neuronal responses reflect
belief updating under model inversion—corresponding to speech per-
ception rather than production. Under this framework, phase-amplitude
coupling between theta and gamma frequencies arises because hearing
each word induces a succession of transients (i.e., belief updates) con-
taining high-frequency (gamma) components, and these transients
recur at the frequency of word presentation, which is in the theta range.
This produces simulated responses that would be interpreted as phase-
amplitude coupling. A multi-timescale nesting process has been pro-
posed by others as a plausible explanation (Arnal and Giraud, 2012;
Giraud and Poeppel, 2012), as it has been noted that the timing of these
rhythms corresponds to important timescales in language. Previous
approaches to modelling this phenomenon (Hovsepyan et al., 2018;
Hyafil and Cernak, 2015) have been data-driven—incorporating ex-
plicit theta and gamma ‘units’. Here, we took a theoretical approach
and show that theta-gamma coupling can arise from belief updating,
given an agent’s goal to understand the contents of a scene from a
dialogue.

Our simulations also predict electrophysiological violation re-
sponses, of the sorts observed in P300 and N400 studies. The P300 has
been observed in oddball paradigms, in which repeating stimuli are
interspersed with unexpected deviants. In this setting, the P300 has
been interpreted as reflecting violations of high-level context (Donchin
and Coles, 1988). The N400 is commonly observed in studies of lan-
guage. It has been elicited when participants hear words that have low
frequency (Kutas and Hillyard, 1984; Van Petten et al., 1999; Van
Petten and Kutas, 1990), or words that are semantically related to

words that have high probability (Kutas and Hillyard, 1984). These
types of mismatch waveforms have been demonstrated in a previous
application of active inference to speech perception (Friston et al.,
2020). Here, we demonstrate that a hierarchical model capable of
generating these types of mismatch responses is also capable of simu-
lating theta-gamma coupling. In previous work, we showed a distinc-
tion in the ERPs generated at different levels of a hierarchical gen-
erative model in a local-global paradigm (Friston et al., 2017d). In
future work, it would be interesting to use the current generative model
to simulate violations at different levels of the hierarchy in a similar
way, and compare these to empirical data showing that different types
of violations generate distinct ERPs (for examples, see Connolly and
Phillips, 1994; Osterhout et al., 1996).

The generative model we have introduced represents a different
way to think about semantic or contextual aspects of language, in re-
lation to previous accounts. Surveying the empirical and theoretical
antecedents of the current formulation of language—and under-
standing—would be an enormous undertaking, given the vast amount
of psychological, philosophical and computational literature in this
area. In this context, three observations are relevant. First, in the cur-
rent framework, belief updating is hierarchical: beliefs about the con-
tent of a scene are maintained at the higher level. Second, an agent’s
uncertainty in their beliefs about the current state of the world affect the
magnitude of belief updating. Finally, here, we cast language under-
standing as an active processes—allowing an agent to ask questions that
maximally resolve their uncertainty about states of affairs. Although the
finer details of the states in the model are somewhat simplified, our aim
was to provide a general computational architecture that can be used to

Fig. 13. Folie à deux: The result of an exchange between two interlocutors (green and purple), who are both unsure about the scene they are discussing. The format
of this figure follows that of previous figures. The upper panels (A–F) show the questions and answers that confess a lack of knowledge or certainty. Each agent’s
posterior expectations about the scene are indicated by the coloured shapes. In this simulation, neither agent informs the other agent about the objects present in the
scene, and so they both remain in a state of mutually consistent ignorance. The lower panels (G–L) show the same simulation when the likelihood of an “I’m not sure”
response was set to zero. This produces a folie à deux described in the main text. In brief, the ensuing belief updating starts from an unstable fixed point of uncertainty
that converges onto a shared fantasy about what both agents (are confident they) believe.
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simulate basic linguistic communication.
Before commenting upon some salient points of contact with related

work, we will qualify this discussion with the following observations: if
one commits to active inference (and implicitly, the free energy prin-
ciple), there is little latitude for hypothesising about the nature and
form of linguistic processing. This is because everything of interest is
defined operationally by the generative model and the generative
model is, in turn, defined by what we want to explain; namely linguistic
communication. In other words, simply defining the inference problem
dictates the form of the requisite generative model, in terms of what
how outcomes are caused by states of the world (or others).
Furthermore, once the generative model has been specified, the belief
updating is prescribed by standard belief updating schemes; here, var-
iational or marginal message passing (Dauwels, 2007; Parr et al.,
2019b; Winn and Bishop, 2005).

This means that there is no latitude to accommodate alternative
hypotheses or constructs, if they are not consistent with the sort of
formulation above—or the basic architecture of belief updating. In
short, in active inference, the only questions are: what kind of gen-
erative model could explain these responses? Strictly speaking, this
precludes questions about the implementation and the neurophysiolo-
gical correlates of language processing (Braiman et al., 2018; Dowty
et al., 1985; Lizarazu et al., 2019; Pefkou et al., 2017; Wilson et al.,
2017; Ylinen et al., 2016). While many of these may be especially useful
within their own remit, unless neurophysiological correlates can be
linked to belief updating (i.e., understanding through communication),
they cannot be used to simulate—and therefore under-
stand—communication. In a similar vein, any exciting advances in
computational neurolinguistics (Barlow, 1974; Lightfoot, 1979;
MacKay and Peto, 1995; Norris et al., 2016; Rosenfeld, 2000) that do
not deal explicitly with belief states updating cannot be used to create
artefacts that communicate. For example, the use of deep learning in
speech recognition may provide compelling insights into the compu-
tational architecture of linguistic processing at an auditory level;
however, speech recognition does not constitute understanding. In
other words, simply mapping from auditory input to a list of words does
not constitute the inversion of a generative model. Some research,
within machine learning, has looked at schemes similar to active in-
ference, within partial observability frameworks. For example, the
Bayesian Action Decoder (Foerster et al., 2018) uses approximate
Bayesian update to obtain a ‘public’ belief that is conditioned on the
actions of all agents in the environment, leading to efficient commu-
nication when playing multi-agent games.

In this paper, we specified outcomes as words rather than an
acoustic timeseries, because the mapping from words to acoustics has
already been considered from the perspective of active listening
(Friston et al., 2020). This allowed us to focus on aspects of the gen-
erative model that are specific to language and communication. Com-
bining the current model with active listening (Friston et al.,
2020)—which maps between words and the acoustic time-
series—would allow future work to systematically investigate other
factors influencing spoken communication, such as the influence of
noise. Although we have framed the current work in terms of speaking
and listening, we note that—in its current form—it also applies to
written communication, such as the exchange of text messages.

There are important developments in computational linguistics that
could inform active inference schemes in a useful way. For example, the
use of hierarchical Dirichlet processes to solve the structure learning
problem in generative models of language (MacKay and Peto, 1995;
Salakhutdinov et al., 2013) could be the right approach to grow gen-
erative models—and subsequently prune them with Bayesian model
reduction (Friston and Penny, 2011)—in the context of language ac-
quisition. We have not touched upon this issue in the current paper;
however, having established the basic form of a generative model for
language and understanding, the next challenge would be to study
learning through optimisation of the model parameters; e.g., the

likelihood mapping is entailed by the A matrices between hierarchical
levels. After this (learning) has been addressed, the next level of opti-
misation concerns the form and structure of the model itself. For ex-
ample, how many hidden factors should be included—and how many
levels or mutually exclusive states occupy each factor? This is the
problem of structure learning (Catal et al., 2019; Gershman, 2017;
Tenenbaum et al., 2011; Tervo et al., 2016) that is elegantly addressed
using nonparametric Bayesian methods (Collins and Frank, 2013;
Goldwater, 2006; Teh et al., 2006), such as those found in computa-
tional linguistics (please see below). Importantly, the hidden factors
within the generative model are factorised and, therefore, the belief
updating in the current paper should be preserved if additional factors
were wadded. Adding additional factors only becomes interesting if
they interact with other states to affect outcomes—in which case, the
current framework would allow the behavioural and neurophysiolo-
gical consequences of these interactions to be estimated. Similarly,
simply adding additional mutually exclusive states within a factor
would not affect inference unless they engender high probability po-
licies within Occam’s window—in which case, belief updating may be
slower. Questions about the structure of the generative model would be
interesting topics for future work.

At the lower level, we factorised syntax and semantics into separate
factors. This was intuitive for the current application, in which different
syntax could be used to ask questions about the same features of the
scene (i.e., shape, colour, and position). We acknowledge there is a
long-standing debate as to whether syntax and semantics are in-
dependent (e.g. Dick et al., 2001; Kuperberg et al., 2003; Siegelman
et al., 2019), and extensions of this model may wish to consider this
aspect more carefully. One advantage of this framework is that com-
peting hypotheses about the structure of the model can be compared
using Bayesian model selection (Stephan et al., 2009). In other words,
this would allow researchers to test whether the best explanation for
their data is a factorisation of syntax and semantics or some alternative
with a more nuanced dependency structure.

In this paper, we ignored the attribution of (i.e., inference about)
agency; namely, metacognitive capability (Fleming et al., 2012; Shea
et al., 2014). This means that each synthetic subject had no notion of
who was talking, and the ‘turn taking’ in our simulations needed to be
handcrafted. Nevertheless, our synthetic subject could still use the in-
formation provided to resolve uncertainty about states the world (e.g.,
the configuration of objects in a scene). More sophisticated generative
models would include hidden factors that include agency per se. This
was not necessary for the current examples, but would be necessary for
simulating turn taking in linguistic exchange (Garrod and Pickering,
2009; Ghazanfar and Takahashi, 2014; Wilson and Wilson, 2005). This
was a focus of our earlier work using simulated songbirds (Friston and
Frith, 2015a). In the current work, we simply replaced internally gen-
erated speech with the external speech of a conversant to simulate
asking questions and answering, respectively. However, the agents
were not aware of this.

An important aspect of metacognition is knowing when one is un-
certain. In the simulations above, agents were able to maintain their
uncertainty by providing each other with uninformative (“not sure”)
answers. However, they were not aware of being uncertain (i.e., their
generative models did not have a hidden ‘state of uncertainty’). A more
sophisticated generative model would realise that something was not
known with confidence and respond with "I really don't know". This
apparently simple capacity rests upon a generative model of confidence
that is quintessentially metacognitive; in the sense that inverting this
kind of deep generative model produces (posterior) beliefs about be-
liefs.

It is an interesting challenge to formulate metacognitive depth using
discrete state space models (i.e., hidden Markov models or Markov
decision processes). In one sense, the encoding of precision or con-
fidence in beliefs about policies is a metacognitive representation (see
the simulated dopamine responses in Fig. 7); however, it is quite
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elemental. Furthermore, this sort of representation is a continuous (real
valued) variable, of the sort that has been used to explain dopaminergic
fluctuations in reinforcement learning paradigms (Schwartenbeck et al.,
2015). It would be nice to have the categorical step state of “I am un-
certain” or “I am very confused”. This speaks to the use of higher
hierarchical levels that prescribe uniform (empirical) priors over the
initial states of a level below. In other words, one can generate belief
distributions about the context of a lower level, based upon a dis-
cretisation into confident beliefs about particular states of affairs and
complete uncertainty (with uniform priors). In principle, this should
equip agents with a metacognitive sense of their beliefs—and a way of
communicating these beliefs via language.

An important aspect of language that we ignored is its computa-
tional richness (e.g., discrete infinity) afforded by the combinatorics of
narratives and sentences (Chomsky, 2017). In addition, we have ig-
nored the parsing and transpositions that characterise real language
processing—that themselves have a deep hierarchical form. This issue
presents some interesting challenges, in terms of articulating the
structure of the generative model, which may involve separately gen-
erating the ordinal aspects of spoken language from its content. Tech-
nically, this would involve an interaction between—or coupling of—-
separate ordinal and content factors (Dehaene et al., 2015; Friston and
Buzsaki, 2016). In other words, we would have to replace the prob-
ability transition matrices (B) above with high dimensional arrays, so
that the probability transitions among the levels of one factor depend
upon the level of another. Note that learning the factorial structure of
natural language is the focus of much work: e.g., neural language
modelling using recurrent neural networks (Bengio et al., 2003;
Mikolov, 2010; Mikolov et al., 2013; Shang et al., 2015), or sequence-
to-sequence modelling (Bahdanau et al., 2014; Ghazvininejad et al.,
2018; Sutskever et al., 2014; Vinyals and Le, 2015).

We have not considered language acquisition; e.g. via the learning
of the A, B and D parameters above (Al-Muhaideb and Menai, 2011;
Bengio et al., 2009; Friston et al., 2016). In principle, by listening to an
authoritative sequence of questions and answers, it should be possible
to simulate language acquisition at various levels, via structure learning
and Bayesian model reduction (Tervo et al., 2016). This has been
pursued in the context of abstract rule learning (Friston et al., 2017b),
but has not been applied in the present context. At this point, we get
close to the problems addressed in computational linguistics, via the use
of hierarchal Dirichlet processes (MacKay and Peto, 1995;
Salakhutdinov et al., 2013; Teh et al., 2006). In this setting, the key
problem is to optimise the structure and hierarchal form of the mode-
l—and to know when to add an extra factor or level. It is possible that
this structure learning problem may be usefully addressed with existing
work on hierarchal Dirichlet process models and nonparametric Bayes
(Goldwater, 2006); combined with the more top-down approach pro-
moted in this work.

Finally, our syntax factor is over-simplistic, encompassing only a
handful of possibilities. This was sufficient for the simulations we
presented, but will become important in applications of this kind of
generative model. There is a substantial literature on cognitive models
of syntax processing (for a recent review, see Demberg and Keller,
2019) and how listeners deal with semantic ambiguity (Altmann and
Steedman, 1988; Bever, 1970; Gibson, 1998, 2000). Generally

speaking, evidence from visual paradigms (Kamide et al., 2003) points
to a predictive process, which is broadly consistent with active in-
ference. It has also been proposed that syntax may itself be hierarchical
(Van Schijndel et al., 2013).

In summary, we have presented a generative model and inference
scheme that is capable of simulating exchanges between synthetic
subjects. This generative model is deep and hierarchical: inferences at
the higher level inform words that are selected at the lower level—and
these levels are nested, such that phrase-level inferences generate the
words contained within the phrase, and then the lower level ‘resets’ for
the next phrase. Our simulations of the “Twenty Questions” game show
that agents can select the best questions—to ask of another—to reduce
their uncertainty (in a Bayes optimal fashion) about the subject of
conversation. We have also shown that, if the agent has precise beliefs
about the nature of the scene, it can correctly answer another agent’s
questions. These types of exchanges demonstrate a convergence of be-
liefs, reflecting a successful linguistic exchange. We have also simulated
situations where, if the agent has very imprecise beliefs, it will ac-
knowledge its own uncertainty. If two agents both start with imprecise
beliefs, then their generative models will converge, even though neither
agent knows the veridical state of the scene. This type of setting could
be considered as a folie à deux or an example of joint creative thinking.
Finally, this formulation of communication makes predictions for
neurophysiological responses, based on belief updating. It predicts
violation responses, like P300 and N400 responses, when an answer is
inconsistent with the agent’s beliefs, and shows theta-gamma coupling
as an emergent property of belief updating. Overall, we envisage that
this model will be a useful starting point for simulating more complex
linguistic exchanges—that include metacognition, or which simulate
language acquisition.

7. Software note

Although the generative model changes from application to appli-
cation, the belief updates—and simulated neuronal responses—de-
scribed in this paper are generic and can be implemented using stan-
dard routines (here spm_MDP_VB_X.m). These routines are available as
Matlab code in the SPM academic software: http://www.fil.ion.ucl.ac.
uk/spm/. The simulations in this paper can be reproduced (and cus-
tomised) via a graphical user interface by typing DEM and selecting the
20 questions demo.
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Appendix A. – Expected free energy: the variational free energy of a policy is a functional of an approximate posterior distribution over
states Q s π( | ) given observed outcomes o, under a probabilistic generative model P o s π( , | ), given a policy π

= −

= −

F E Q s π P o s π
D Q s π P s π E P o s

[ln ( | ) ln ( , | )]
[ ( | )|| ( | )] [ln ( | )]

Q s π

KL Q s π

( | )

complexity

( | )

accuracy
     

(A.1)

The second equality expresses free energy as the difference between a Kullback-Leibler divergence (i.e., complexity) and the expected log like-
lihood (i.e., accuracy), given (observed) outcomes.
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In contrast, the expected free energy of a policy is an average over (unobserved) outcomes that determines the distribution over (future) states:

= −

= − −

G E Q s π P o s π
E Q s π P s o π P o π

[ln ( | ) ln ( , | )]
[ln ( | ) ln ( | , ) ln ( | )]

Q o s π

Q o s π

( , | )

( , | ) (A.2)

Replacing the true predictive posterior with the approximate predictive posterior gives:

= − −

= +

G E Q s π Q s o π P o π

D Q o π P o π H Q o s

[ ln ( | ) ln ( | , ) ln ( | ) ]

[ ( | )|| ( | )] [ ( | )]

Q o s π

KL

( , | )

intrinsic value extrinsic value

risk ambiguity

     

     
(A.3)

The first equality expresses expected free energy in terms of intrinsic and extrinsic value, while the second expression is an equivalent formulation
in terms of the divergence between predicted and prior preferences over outcomes (i.e., risk) and expected uncertainty about outcomes, given their
causes (i.e., ambiguity). By comparing Eq. A.3 with A.1, it can be seen that risk is expected complexity and ambiguity is expected inaccuracy, under a
particular policy.

Note that, for completeness and clarity, in the above equations (and the expressions in Table 1) we have conditioned prior preferences on
policies. In practice, however, we assume that prior preferences do not depend upon policies.

Appendix B. – Belief updating: approximate Bayesian inference corresponds to minimising variational free energy, with respect to the
sufficient statistics that constitute posterior beliefs. For generative models of discrete states, the free energy of hidden states and policies
can be expressed as the (time-dependent) free energy under each policy plus the complexity incurred by posterior beliefs about (time-
invariant) policies, where (with some simplifications)

∑

= −

= +

= ⋅ + +

F Q D Q s π P s π P o x

F π τ D Q π P π

π π F G
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(ln )

KL Q

τ Q KL

The free energy of hidden states under each policy is then given by:
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(B.4)

The expected free energy of a policy has a similar form, but the expectation is over hidden states and outcomes that have yet to be observed;
namely, =Q o s P o s Q s π( , ) ( | ) ( | )τ τ τ τ τ .
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(B.5)

Please see Table 1 for a definition of the variables in these equations.

Appendix C. Supplementary data

Supplementary material related to this article can be found, in the online version, at https://doi.org/10.1016/j.neubiorev.2020.07.005.
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