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Abstract: Clinical criteria/Family history-based BRCA testing misses a large proportion of
BRCA carriers who can benefit from screening/prevention. We estimate the cost-effectiveness of
population-based BRCA testing in general population women across different countries/health
systems. A Markov model comparing the lifetime costs and effects of BRCA1/BRCA2 testing all general
population women ≥30 years compared with clinical criteria/FH-based testing. Separate analyses are
undertaken for the UK/USA/Netherlands (high-income countries/HIC), China/Brazil (upper–middle
income countries/UMIC) and India (low–middle income countries/LMIC) using both health
system/payer and societal perspectives. BRCA carriers undergo appropriate screening/prevention
interventions to reduce breast cancer (BC) and ovarian cancer (OC) risk. Outcomes include OC, BC, and
additional heart disease deaths and incremental cost-effectiveness ratio (ICER)/quality-adjusted life
year (QALY). Probabilistic/one-way sensitivity analyses evaluate model uncertainty. For the base case,
from a societal perspective, we found that population-based BRCA testing is cost-saving in HIC
(UK-ICER = $−5639/QALY; USA-ICER = $−4018/QALY; Netherlands-ICER = $−11,433/QALY),
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and it appears cost-effective in UMIC (China-ICER = $18,066/QALY; Brazil-ICER = $13,579/QALY),
but it is not cost-effective in LMIC (India-ICER = $23,031/QALY). From a payer perspective,
population-based BRCA testing is highly cost-effective in HIC (UK-ICER = $21,191/QALY,
USA-ICER = $16,552/QALY, Netherlands-ICER = $25,215/QALY), and it is cost-effective in UMIC
(China-ICER = $23,485/QALY, Brazil−ICER = $20,995/QALY), but it is not cost-effective in
LMIC (India-ICER = $32,217/QALY). BRCA testing costs below $172/test (ICER = $19,685/QALY),
which makes it cost-effective (from a societal perspective) for LMIC/India. Population-based BRCA
testing can prevent an additional 2319 to 2666 BC and 327 to 449 OC cases per million women than
the current clinical strategy. Findings suggest that population-based BRCA testing for countries
evaluated is extremely cost-effective across HIC/UMIC health systems, is cost-saving for HIC health
systems from a societal perspective, and can prevent tens of thousands more BC/OC cases.

Keywords: BRCA; population testing; cost-effectiveness; ovarian cancer; breast cancer; cancer prevention

1. Introduction

Around 10–20% of ovarian cancer (OC) [1] and 6% breast cancer (BC) [2] overall are caused by
inheritable BRCA1/BRCA2 mutations. Women carrying BRCA1/BRCA2 mutations have a 17–44% risk of
OC and 69–72% risk of BC until age 80 years [3]. Most of these cancers can be prevented in unaffected
BRCA1/BRCA2 women carriers. Women can opt for risk-reducing salpingo-oophorectomy (RRSO),
to reduce OC risk [4]. In BRCA women, RRSO reduces OC risk by 79–96% [4–6]. Additionally, they can
opt for MRI/mammography screening, chemoprevention with selective estrogen-receptor modulators
(SERM) or aromatase inhibitors [7]; or risk-reducing mastectomy (RRM) [8,9] to reduce their BC risk [10].
RRM reduces BC risk by 90–95% [8,9]. Mutation identification also enables women to make timely,
informed reproductive/lifestyle choices and consider prenatal/pre-implantation genetic diagnosis.

Despite 25 years of BRCA testing and effective mechanisms for prevention, current guidelines and
access to testing/treatment pathways remain complex and associated with a massive under-utilisation
of genetic testing [11]. Only 20% of eligible US women have accessed/undergone genetic testing [11].
A UK analysis shows the huge majority (>97%) of BRCA carriers in the population remain
unidentified [12]. This highlights substantial missed opportunities for early detection and primary
prevention. The current approach uses established clinical-criteria/family-history (FH) based a priori
BRCA probability thresholds to identify high-risk individuals eligible for BRCA testing. These clinical
criteria/FH-based criteria are used to calculate mutation probability and have been loosened over the
years. Earlier, the threshold for offering BRCA testing used to be 20% probability. Most countries/health
systems now offer BRCA testing at a BRCA mutation probability of around 10% [13]. A number of
different strategies ranging from standardised criteria to complex mathematical (Empirical/Mendelian)
models have been used to calculate mutation probability and are used in clinical practice. However,
this requires individuals and health practitioners to recognise and act on a significant FH. BRCA carriers,
who are unaware of their FH, unappreciative of its risk/significance, not proactive in seeking advice,
or lack a strong FH (small families/paternal inheritance/chance) get excluded. Over 50% BRCA carriers
do not fulfil clinical criteria and are missed [14–20]. Current detection rates are inadequate to identify
all BRCA carriers and even doubling detection rates will need 165 years to ascertain the ‘clinically
detectable’ proportion of BRCA carriers [12]. Why should we wait for decades for people to develop
cancer before identifying BRCA carriers and unaffected at-risk family members to offer prevention?

These limitations can be overcome through unrestricted/unselected population based BRCA
testing. Falling BRCA testing costs, advances in computing/bioinformatics, and next-generation
sequencing has made this possible. Jewish population studies show this is feasible, acceptable,
has high satisfaction (91–95%), significantly reduces anxiety, doesn’t harm psychological well-being
or quality of life, and is extremely cost-effective [15,16,21,22]. Pilot general population studies
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are ongoing in the UK/Canada [23]. However, the potential applicability and scope for primary
prevention transcends continents and countries. Health systems, infrastructure, costs, environment,
contexts, opportunities, and capacity along with health sector priorities vary considerably across
different countries, [24]. Economic evaluations of health interventions, health perspectives and
cost-effectiveness thresholds differ amongst countries. Nevertheless, economic evaluation is important
to weigh up costs and health effects of alternative health strategies, to help health policy decision
making with respect to cost efficiency and resource allocation. For interventions to be sustainable,
they need to be cost-effective and affordable. The World Bank separates countries into four income
categories using Gross National Income (GNI) per capita (USA dollars): Low-income (LIC: ≤$1025),
Lower–Middle Income (LMIC: $1026–$4035), Upper–Middle Income (UMIC: $4036–$12,475), and High
Income (HIC: ≥$12,476). In settings of state funded universal health care coverage, the difference
between government and societal perspectives is narrower than countries with a limited social
security structure/net, where this gap can be significantly larger and consequences considerable.
We for the first time evaluate the cost-effectiveness of population-based BRCA-testing (compared to
clinical-criteria/family-history testing) across multiple countries/health systems: India (LMIC), Brazil
(UMIC), China (UMIC), the USA (HIC), the UK (HIC), and the Netherlands (HIC). We present analyses
from both health system or payer (here forth called ‘payer’) and societal perspectives.

2. Results

The comparison of lifetime costs and quality-adjusted life year (QALYs) of population testing and
clinical-criteria/FH testing for women in different countries along with the country-specific incremental
cost-effectiveness ratios (ICERs) and willingness-to-pay (WTP) thresholds are given in Table 1.
Our results show that from a ‘societal perspective’ (using WHO guidelines), population-based BRCA
testing is actually ‘cost-saving’ and contributes to better health in HIC of the UK (ICER = $−5,639/QALY;
life expectancy gained = 3.0 days), USA (ICER = $−4018/QALY; life expectancy gained = 2.2 days),
and The Netherlands (ICER = $−11,433/QALY; life expectancy gained = 2.8 days). It appears potentially
cost-effective in UMICs of China (ICER = $18,066/QALY; life expectancy gained = 1.8 days) and cost-effective
in Brazil (ICER = $13,579/QALY; life expectancy gained = 3.7 days), but it is not cost-effective in India
(ICER = $23,031/QALY; life expectancy gained = 2.5 days) (LMIC) for the base case.

From a ‘payer perspective’ (using WHO guidelines), population-based BRCA testing is ‘highly’
cost-effective compared with clinical criteria/FH-based testing in HIC, with UK-ICER = $21,191/QALY
(life expectancy gained = 3.0 days), USA-ICER = $16,552/QALY (life expectancy gained = 2.2 days), and
Netherlands-ICER = $25,215/QALY (life expectancy gained = 2.8 days). In UMIC population-based
BRCA testing is cost-effective with ICER = $23,485/QALY in China (life expectancy gained = 1.8 days)
and ICER = $20,995/QALY in Brazil (life expectancy gained = 3.7 days). Population-based BRCA testing
is not cost-effective in LMIC with ICER = $32,217/QALY in India (life expectancy gained = 2.5 days).

If we consider local, country-specific guidelines for the UK, USA, and the Netherlands, then
population-based BRCA testing is cost-effective from the payer perspective (UK-ICER = $24,066/QALY;
USA-ICER = $16,552/QALY; Netherlands-ICER = $17655/QALY), and cost-saving from the societal
perspective (UK-ICER =−$3543/QALY; USA-ICER =−$4018/QALY; Netherlands ICER =−$3185/QALY).
The corresponding values for life expectancy gained are 2.6 days (UK), 2.2 days (USA) and 4.2 days
Netherlands. Figure 1a,b plot change in ICER/QALY with varying BRCA testing costs in Brazil, China
and India for payer and societal perspectives. Population testing becomes potentially cost-effective
(from a societal perspective) in India if the BRCA testing cost falls to $172/test (ICER = $19,685/QALY)
(Figure 1a; Appendix D). BRCA testing costs need to reach $95/test (ICER = $19,670/QALY) for
cost-effective population testing in India from the payer perspective (Figure 1b; Appendix D).

The lifetime population impact (reduction in BC and OC cases and deaths; and excess coronary
heart disease (CHD)) of offering population BRCA testing for the six countries is detailed in Table 2.
A population-based BRCA testing approach can potentially prevent an additional 2319 to 2666 BC and
327 to 449 OC cases per million women, translating to tens of thousands more BC/OC prevented across
the population than the current clinical strategy.
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Table 1. Baseline analysis.

Baseline Analysis Based on WHO Guidelines, Using GDP-Based Thresholds

Population-Based Testing # FH-Based Testing ICER WTP Threshold ($/QALY)

Health Effects Costs Health Effects Costs Cost/LY Cost/QALY (95% Credible Intervals) 1*GDP per
Capita

3*GDP per
CapitaLY QALY Payer Societal LY QALY Payer Societal Payer Societal Payer Societal

UK 25.67 25.62 2543 18,568 25.66 25.61 2336 18,623 25,530 −6794 21,191 (14,857, 29,619) −5639 (−11,880, 1895) 42,656 127,969

USA 25.23 25.18 7250 21,951 25.22 25.17 7122 21,982 20,997 −5097 16,552 (4435, 30,280) −4018 (−15,947, 8764) 57,589 172,766

Netherlands 25.86 25.81 2478 24,642 25.85 25.80 2239 24,750 30,587 −13,868 25,215 (18,193, 34,069) −11,433 (−18,054, −3689) 50,539 151,616

China 20.70 20.69 820 7687 20.70 20.68 665 7568 30,788 23,684 23,485 (13,947, 36,162) 18066 (8683, 30,653) 15,531 46,592

Brazil 24.54 24.51 834 6314 24.53 24.49 586 6153 24,496 15,844 20,995 (15,707, 27,953) 13,579 (8561, 20,180) 15,182 45,545

India 18.17 18.16 634 30,968 18.17 18.15 369 30,779 39,473 28,218 32,217 (23,982, 42,786) 23,031 (15,107, 22,112) 6574 19,722

Country-Specific Analysis Based on Local Health Economic Guidelines Where they Exist

Population-Based Testing # FH-Based Testing ICER WTP Threshold ($/QALY)

Health effects Costs Health effects Costs Cost/LY Cost/QALY (95% Credible Intervals)

LY QALY Payer Societal LY QALY Payer Societal Payer Societal Payer Societal

UK
∏

23.55 23.51 2263 16,570 23.55 23.50 2053 16,601 29,273 −4309 24,066 (16,407, 33,590) −3543 (−10452, 4901) 28,471 42,857

USA 25.23 25.18 7250 21,951 25.22 25.17 7122 21,982 20,997 −5097 16,552 (4435, 30,280) −4018 (−15947, 8764) 50,000 100,000

Netherlands
∫

34.58 34.51 1968 19,109 34.57 34.49 1725 19,153 20,796 −3752 17,655 (12,948, 23,766) −3185 (−7568, 2319) 24,390 60,976

ICER: incremental cost-effectiveness ratio, LY—life years, QALY—quality-adjusted life years, FH—family history, GDP—gross domestic product. # Reference Strategy, Costs are given in $
WTP: willingness to pay. This reflects the different cost-effective thresholds for different countries. For GDP-based thresholds: Three times GDP per capita is the threshold for being
cost-effective and one time GDP per capita is the threshold for being highly cost-effective. Discount rate is 3% for costs and health effects (LYs and QALYs). For country-specific thresholds:
For the UK, this is £20,000 to £30,000 [25]; For the USA, this is $50,000 to $100,000 [26]; For the Netherlands, this is: €20,000 to €50,000 [27]. Values in £s and €s have been converted to $
using PPP (purchasing power parity) [28].

∏
For the UK, the discount rate is 3.5% for costs and health effects as per National Institute of Health and Care Excellence (NICE) economic

evaluation guidelines [25].
∫

For the Netherlands, the discount rate is 4% for costs and 1.5% for QALYs as per Dutch health economic analysis guidelines. Perspective: Dutch guidelines
recommend a societal perspective. UK NICE guidelines recommend a payer perspective [25]. (See Appendix D for details and references). 1*GDP means 1 × GDP; 3*GDP means 3 × GDP
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Figure 1. Change in ICER/QALY with varying BRCA testing costs in Brazil, China, and India. (a) Change in ICER/QALY with varying BRCA testing costs in Brazil,
China and India from a payer/healthcare perspective. (b) Change in ICER/QALY with varying BRCA testing costs in Brazil, China, and India from a societal perspective.
The graphs depict the change in ICER/QALY at varying costs of BRCA testing for Brazil, China, and India from payer (Figure 1a) and societal (Figure 1b) perspectives.
X axis: BRCA testing costs in US$; Y axis: ICER/QALY.
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Table 2. Lifetime population impact of offering genetic testing for the population.

Population-Based
Testing FH-Based Testing Difference

Per Million Actual Per Million Actual Per Million Actual

UK (female population over 30 years = 21,760,299)
BC cases 112,014 2,437,458 114,666 2,495,166 −2652 −57,708
OC cases 15,822 344,291 16,269 354,018 −447 −9727
BC deaths 12,985 282,557 13,258 288,498 −273 −5941
OC deaths 278 6049 550 11,968 −272 −5919

Excess CHD deaths 17 370 0 0 17 370

USA (female population over 30 years = 101,428,241)
BC cases 106,431 10,795,109 109,084 11,064,198 −2653 −269,089
OC cases 9985 1,012,761 10,417 1,056,578 −432 −43,817
BC deaths 8113 822,887 8285 840,333 −172 −17,446
OC deaths 235 23,836 475 48,178 −240 −24,343

Excess CHD deaths 17 1724 0 0 17 1724

Netherlands (female population over 30 years = 5,694,479)
BC cases 111,732 636,256 114,398 651,437 −2666 −15,181
OC cases 10,964 62,434 11,413 64,991 −449 −2557
BC deaths 11,822 67,320 12,072 68,744 −250 −1424
OC deaths 277 1577 542 3086 −265 −1509

Excess CHD deaths 17 97 0 0 17 97

China (female population over 30 years = 422,831,894)
BC cases 27,062 11,442,677 29,546 12,492,991 −2484 −1,050,314
OC cases 3862 1,632,977 4228 1,787,733 −366 −154,756
BC deaths 3728 1576317 4015 1,697,670 −287 −121,353
OC deaths 163 68922 369 156,025 −206 −87,103

Excess CHD deaths 12 5074 0 0 12 5074

Brazil (female population over 30 years = 58,670,634)
BC cases 66,227 3,885,580 68,891 4,041,879 −2664 −156,299
OC cases 5358 314,357 5787 339,527 −429 −25,170
BC deaths 12,901 756,910 13,421 787,419 −520 −30,509
OC deaths 271 15,900 539 31,623 −268 −15,724

Excess CHD deaths 17 997 0 0 17 997

India (female population over 30 years = 298,650,697)
BC cases 13,713 4,095,397 16,032 4,787,968 −2319 −692,571
OC cases 2826 843,987 3153 941,646 −327 −97,659
BC deaths 3796 1,133,678 4391 1,311,375 −595 −177,697
OC deaths 168 50,173 429 128,121 −261 −77,948

Excess CHD deaths 8 2389 0 0 8 2389

BC—breast cancer, CHD—coronary heart disease, FH—family history, OC—ovarian cancer. The female population
data is obtained from the World Bank [29]. We used the modelling to estimate the number of BC cases, OC cases, BC
deaths, OC deaths, and excess CHD deaths per million women aged 30 years in the six countries and calculated the
number of cases prevented and deaths prevented. The actual numbers of cases prevented and deaths prevented
were estimated based on the number of female population aged over 30 years in the six countries [29].
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Scenario analyses results are given in Table 3. Different scenarios analysed include no reduction in
BC risk from RRSO, nil compliance with hormone replacement therapy (HRT), reduction in RRM and
RRSO rates by half, and reduced genetic testing costs of $100. Population-based BRCA testing remains
cost-effective from payer and societal perspectives in each HIC and UMIC country at their respective WTP
thresholds, even without reduction in BC risk from RRSO, no HRT uptake after RRSO, and 50% lower RRM
and RRSO uptake rates (Table 3). If the BRCA testing costs fell to $100/test, it would be highly cost-effective
from the payer perspective and cost-saving (negative ICERs) from the societal perspective for HIC; highly
cost-effective from payer/societal perspectives for UMIC, and cost-effective from the societal perspective
for India (LMIC). The maximum BRCA testing costs for population testing to remain cost-effective
from the payer/societal perspectives respectively are in Appendix E. At the 3*GDP WTP threshold,
these are: UK = $1254/$1520; USA = $1417/$1577; Netherlands = $1407/$1758; China = $354/$390;
Brazil = $493/$582; and India = $95/$172. Using UK/USA/Netherlands guideline-based WTP thresholds,
these maximum BRCA testing costs are UK = $365, USA = $850–$1010, and Netherlands = $800.

Results of the one-way sensitivity analysis indicate that model outcomes are not impacted much by
treatment costs, utility scores, mutation prevalence, and probabilities (Appendix E). The variable with
the maximum effect on ICERs is the cost of BRCA testing. Probabilistic sensitivity analysis (PSA) results
(Figure 2) show that at the WTP thresholds in each country, a population-testing strategy is cost-effective
compared to clinical-criteria/FH-testing strategy from both the payer and societal perspectives for
HIC and UMIC but not LMIC countries evaluated. The PSAs were highly cost-effective for the
evaluated HIC and UMIC countries. All (100%) simulations are cost-effective at the guideline-specific
thresholds for the UK/USA/Netherlands from payer and societal perspectives. For the 3*GDP-based
WTP threshold for China/Brazil/India, 100%/100%/22.2% for the societal perspective and 100%/100%/0%
simulations for the payer perspective were cost-effective (Figure 2a,b). However, a population strategy
becomes cost-effective in India (LMIC) at $172/test. At the country-specific WTP thresholds for
UK/USA/Netherlands, 84.9%/100%/98.5% of simulations for the payer perspective were cost-effective,
and 100% simulations for the societal perspective were cost-effective for all three countries).
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Table 3. Scenario analysis.

Population-Based Testing FH-Based Testing ICER WTP

Health Effects Costs Health Effects Costs Cost/LY Cost/QALY GDP per
Capita

3*GDP per
CapitaLY QALY Payer Societal LY QALY Payer Societal Payer Societal Payer Societal

Scenario: No reduction in breast cancer risk from RRSO (P9 = 1)
UK † 25.67 25.62 2550 18,589 25.66 25.61 2336 18,626 27,692 −4729 23,188 −3960 42,656 127,969

USA ‡ 25.22 25.18 7273 21,982 25.22 25.17 7125 21,986 25,474 −565 20,318 −450 57,589 172,766

Netherlands
∫

25.86 25.81 2483 24,668 25.85 25.80 2240 24,754 32,834 −11,559 27,318 −9617 50,539 151,616
China 20.70 20.69 825 7693 20.70 20.68 666 7569 32,874 25,745 25,401 19,892 15,531 46,592
Brazil 24.54 24.51 837 6321 24.53 24.49 586 6154 26,175 17,447 22,577 15,049 15,182 45,545
India 18.17 18.16 637 30,974 18.17 18.15 370 30,779 41,333 30,125 34,019 24,795 6574 19,722

Scenario: No compliance with HRT (P13 = 0)
UK † 25.67 25.62 2542 18,569 25.66 25.61 2335 18,623 26,315 −6954 21,707 −5736 42,656 127,969

USA ‡ 25.22 25.18 7250 21,951 25.22 25.17 7122 21,982 21,997 −5280 17,173 −4122 57,589 172,766

Netherlands
∫

25.86 25.81 2477 24,647 25.85 25.80 2239 24,751 31,629 −13,869 25,897 −11,356 50,539 151,616
China 20.70 20.69 812 7678 20.70 20.68 664 7566 29,975 22,722 22,750 17,246 15,531 46,592
Brazil 24.54 24.51 833 6312 24.53 24.49 586 6153 24,932 16,077 21,296 13,732 15,182 45,545
India 18.17 18.16 623 30,957 18.17 18.15 367 30,777 38,327 26,995 31,242 22,005 6574 19,722

Scenario: Half RRM uptake (p2 = 0.235) *
UK † 25.67 25.62 2545 18,590 25.66 25.61 2336 18,627 27,301 −4834 22,648 −4010 42,656 127,969

USA ‡ 25.22 25.18 7265 21,978 25.22 25.17 7125 21,987 24,248 −1503 19,122 −1185 57,589 172,766

Netherlands
∫

25.86 25.81 2480 24,671 25.85 25.80 2240 24,755 32,616 −11,449 26,879 −9435 50,539 151,616
China 20.70 20.69 826 7695 20.70 20.68 666 7569 33,440 26,362 25,453 20,066 15,531 46,592
Brazil 24.54 24.51 838 6324 24.53 24.49 587 6155 26,622 17,938 22,762 15,337 15,182 45,545
India 18.17 18.16 620 30,959 18.17 18.15 367 30,777 39,820 28,637 32,377 23,285 6574 19,722

Scenario: Half RRSO uptake (p8 = 0.275)
UK † 25.67 25.62 2546 18,589 25.66 25.61 2336 18,628 28,209 −5272 23,325 −4359 42,656 127,969

USA ‡ 25.22 25.18 7271 21,982 25.22 25.17 7127 21,989 25,917 −1205 20,308 −944 57,589 172,766

Netherlands
∫

25.86 25.81 2482 24,675 25.85 25.80 2241 24,758 33,868 −11,681 27,799 −9588 50,539 151,616
China 20.70 20.69 820 7688 20.70 20.68 665 7568 32,321 25,018 24,651 19,081 15,531 46,592
Brazil 24.54 24.51 835 6319 24.53 24.49 586 6154 26,241 17,341 22,475 14,852 15,182 45,545
India 18.17 18.16 630 30,967 18.17 18.15 369 30,779 40,490 29,175 33,037 23,805 6574 19,722
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Table 3. Cont.

Population-Based Testing FH-Based Testing ICER WTP

Health Effects Costs Health Effects Costs Cost/LY Cost/QALY GDP per
Capita

3*GDP per
CapitaLY QALY Payer Societal LY QALY Payer Societal Payer Societal Payer Societal

Scenario: Genetic testing cost of $100
UK † 25.67 25.62 2443 18,468 25.66 25.61 2335 18,622 13,337 −18,988 11,070 −15,761 42,656 127,969

USA ‡ 25.23 25.18 7150 21,851 25.22 25.17 7121 21,981 4717 −21,377 3718 −16,852 57,589 172,766

Netherlands
∫

25.86 25.81 2378 24,542 25.85 25.80 2238 24,749 17,893 −26,562 14,750 −21,897 50,539 151,616
China 20.70 20.69 721 7587 20.70 20.68 664 7567 11,165 4061 8517 3098 15,531 46,592
Brazil 24.54 24.51 735 6214 24.53 24.49 585 6152 14,741 6089 12,635 5219 15,182 45,545
India 18.17 18.16 535 30,869 18.17 18.15 368 30,778 24,832 13,577 20,267 11,081 6574 19,722

LY—life years, QALY—quality-adjusted life year, FH—family history, GDP—gross domestic product, HRT—hormone replacement therapy, ICER—incremental cost-effectiveness ratio,
RRM—risk-reducing mastectomy, RRSO—risk-reducing salpingo-oophorectomy, WTP—willingness to pay. * Half the RRM uptake rate of the baseline case analysis. Baseline uptake = 47%,
Half the baseline = 23.5%. # Half the RRSO uptake rate of the baseline case analysis. Baseline uptake = 55%, Half the baseline = 27.5%. † UK health-economic guideline based threshold
is $28,471–$42,857/QALY. £s have been converted to $ using PPP (purchasing power parity) [28]. ‡ USA health-economic guideline based WTP threshold is $50,000–$100,000/QALY.∫

Netherlands health-economic guideline based WTP threshold is $24,390–$60,976/QALY. €s have been converted to $ using PPP (purchasing power parity).
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The results of 1000 simulations were plotted on a cost-effectiveness acceptability curve showing the proportion of simulations (Y-axis) that indicated that the
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with different analyses provided for both payer (Figure 2a) and societal (Figure 2b) perspectives.
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3. Discussion

For the first time, we explore the cost-effectiveness of population-based BRCA testing across
countries from HIC, UMIC and LMIC health systems. We show that population-based BRCA testing is
extremely cost-effective across HIC/UMIC health systems assessed and is potentially cost-saving for
HIC health systems (UK/USA/Netherlands) if analysed from a societal perspective. Societal perspective
analyses are associated with lower ICER/QALY than the payer perspective, as it incorporates additional
costs linked to productivity loss. There is increasing recognition of the importance and need for
economic cost-effectiveness evaluations to conform to the societal perspective and is recommended by
WHO/international bodies. This is particularly important in middle/lower–income countries that lack
a robust/comprehensive state-funded social security system. However, some countries such as the UK
only consider a payer perspective when making health policy.

A population-based BRCA testing approach can potentially prevent an additional
57,708/269,089/15,181/1,050,314/156,299/692,571 BC cases and 9727/43,817/2557/154,756/25,170/97,659
OC cases in the UK/USA/Netherlands/China/Brazil/India respectively (Table 2) compared to the current
clinical strategy. Given the huge under-utilisation of BRCA testing along with limited access and
uptake associated with current treatment pathways [11,12], one could postulate that the benefit could
be even higher. Our findings are important, as we show that a new population-based approach can
have much broader global applicability and a far greater impact on BC/OC burden in the population
than current treatment strategies. Cost-effectiveness analyses are necessary to guide policy decisions on
healthcare resource allocation. Our findings support a change in paradigm toward population testing
to maximise OC/BC prevention and highlights a need for further implementation research in this area.

Our results are sensitive to the cost of testing, particularly in LMIC countries. BRCA testing costs
need to fall further for population testing to be cost-effective in LMIC countries. In India, it would
become potentially cost-effective at $172/test. Although our base case analysis uses costs higher than
this, we are aware of Indian providers who offer BRCA testing for around $140/test. Genetic testing
costs have fallen considerably over the last 5 years and remain on a downward trajectory. While we
have used a standard cost for BRCA testing that is currently available across countries, some providers
may charge more than this. Our analysis of maximum cost(s) of BRCA testing for a population testing
strategy remaining cost-effective (Appendix D) shows that these lie above what is charged by a number
of providers today.

The precise definition of an appropriate cost-effectiveness threshold remains an important
issue of ongoing debate. While this has been clearly defined in some (particularly HIC) health
systems, a WHO-CHOICE 3*GDP threshold is considered too high by some, as it ignores opportunity
costs [30]. Additionally, whilst cost-effectiveness is a key factor for allocating health budgets,
it needs to be considered along with context-specific local issues, affordability, budget impact,
fairness, and feasibility [31]. Some advocate against a single fixed threshold and recommend a range
of thresholds for different contexts. The Norwegian health system prioritises interventions based on
health benefit, resource implications, and health loss to the beneficiary if the intervention was absent
(higher priority for higher health loss to the beneficiary) [32]. We provide a range of cost estimates for
BRCA testing linked to varying potential cost-effectiveness thresholds (ICER/QALY) from payer and
societal perspectives to help decision makers in UMIC and LIC. This is important, as the main model
parameter impacting the overall result is the cost of BRCA testing (Figure 1a,b).

Our analysis has several advantages. We follow the transparency principle to facilitate the
interpretation of methodology and results and use current standard of care or best practice as the
comparator for measuring costs and effects. As per NICE recommendations, we use QALYs to measure
health outcomes, which captures both length of life and quality of life and is generalisable across
disease states. Our economic evaluation uses a lifetime horizon that is long enough to capture all
costs and effects relevant to the decision problem. Additionally, costs and effects are discounted to
reflect their value at the time of decision making, ensuring that the potential time preferences of
the relevant population are accounted for. Our base case reflects direct health-care costs and health
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outcomes, and our analysis includes a societal perspective. We explore heterogeneity through scenario
analyses and uncertainty and variability through extensive one-way/PSA analyses, as recommended.
Our results remain robust at parameter extremes on one-way analysis (Appendix E) and with PSA
(Figure 2). Our analysis uses PPP (purchasing power parity), which is a mechanism for accounting
for different relative costs of goods when undertaking a comparative analysis of expenditures and
incomes in different countries. Besides OC/BC outcomes, we also included excess CHD deaths from
premenopausal oophorectomy [33] and incorporate costs for HRT, excess heart disease, bone health
monitoring, and treatment. Our costs also include pre-test counselling for all and post-test genetic
counselling for pathogenic mutations and VUS.

Similar to other modelling studies, our study has some limitations. In line with earlier analyses
in high-risk and low-risk women, our base case analysis assumes a reduction in BC risk with
premenopausal oophorectomy. However, recently, there has been uncertainty around the benefit of BC
risk reduction from RRSO. Nonetheless, our scenario analysis shows cost-effectiveness in HIC/UMIC
even without BC risk reduction (Table 3). We use established surgical prevention rates from HIC in
the base-case analysis (Table 4). However, RRM/RRSO rates vary, and lower rates are reported in
some populations [34]. The uptake of breast screening, chemoprevention, and risk-reducing surgery
may also be influenced by socioeconomic, demographic, and cultural factors and may vary across
populations [34]. Rates of screening and preventive interventions have also increased with time. Higher
rates are reported in the last 10 years compared to earlier decades, as knowledge and awareness
of these issues has improved. Rates could be lower in carriers ascertained from population testing,
particularly in the absence of cancer burden in the family. More prospective data on the uptake of
surgical prevention following population-based testing will be needed. Our scenario analyses confirm
cost-effectiveness for both payer and societal perspectives, even at half of standard surgical prevention
rates (Table 3). Although we incorporate a disutility for RRSO and RRM in the analysis, these procedures
have potential complication rates of around 3–4% and 21%, respectively [35,36]. This needs to be part
of the informed consent and decision-making process. While RRSO has been reported to have high
satisfaction rates, less cancer worry, and no detriment in generic quality of life; poorer sexual function
despite HRT use has been found [37]. RRM has an adverse association with body image and sexual
pleasure but not with sexual activity/habit/discomfort, anxiety/depression, or generic quality of life,
and overall satisfaction rates are good. Countries such as India and China lack established national
breast cancer screening programmes. The uptake of mammograms is much lower in these countries.
The cost-effectiveness of population testing may be higher for these countries than estimated, as the
implementation of these interventions in BRCA carriers are likely to be more beneficial in the absence of
routine mammograms in the population. In our analysis, while we included productivity loss, we did
not include all indirect costs in the analysis. This may be a limitation. However, including additional
indirect costs would improve cost-effectiveness, so our analysis is conservative in that respect. While
our analysis covers some important/key countries across different income groups, it does not cover
most countries, and therefore, these results are not generalisable globally to all countries across different
(HIC/UMIC/LMIC) income groups. While the countries represented in this analysis are from four
continents—North America, South America, Europe, and Asia—we do not have representation from
Africa or Australia. The populations of countries in our analysis contribute approximately 45% to the
global population.

Population-based BRCA testing implementation studies have been completed in the Jewish
population [15,21,22,38], and pilot ones are being undertaken in the UK and Canadian general
populations [23]. For population testing to be feasible, newer approaches for delivering pre-test
information will be needed to facilitate informed decision-making. These will need to be country/region
or context-specific. The best modality to deliver pre-test education within the population testing setting
remains unresolved. We do not feel there will eventually be a one-size-fits-all model. Although we
have costed for pre-test counselling for all in our analyses, whether formal pre-test counselling will
be needed for all in the future remains uncertain. Israeli and Canadian Jewish population studies
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provided only ‘pre-test information’ and post-test genetic counselling for BRCA carriers, with >90%
satisfaction rates [39,40]. An Australian Jewish population [41] and a UK general population study have
demonstrated the feasibility of an online web-based decision aid (along with an optional telephone
helpline) pre-test education and consent process [42].

A strategy for the management of variants of unknown significance (VUS) is important and
will need developing. People have raised concerns at unnecessary treatment or screening/preventive
intervention(s) being undertaken for VUS alone. However, VUS are currently identified through
routine clinical testing, too. There is clear acceptance in clinical practice that for a VUS (class-3 variant),
no clinical action should be taken based on that variant alone [43]. A key presumption inherent in
a public health screening strategy is that it is not designed to identify ‘all’ individuals with disease,
but the large/significant proportion of individuals in a clinically efficient and cost-effective manner.
Therefore, some suggest an alternative option of not providing VUS results within a population-testing
context [14]. We incorporate a cost for VUS counselling and management in our analysis.

Chronic disease accounts for 90% US Medicare and 70% UK health care expenditure and is a major
challenge facing most health systems, with cancer being its second commonest cause. Between 2006
and 2016, the average annual age-standardised incidence rates for all cancers increased in 130 of
195 countries [44]. The leading cause for women is BC: 1.7 million cases, 535,000 deaths, 14.9 million
disability adjusted life-years (DALYs) [44]. Globally breast/ovarian cancers in women are predicted
to increase by 46.5%/47% and cancer deaths are predicted to increase by 58.3%/58.6% respectively
over the next 20 years [45]. Population testing for BRCA genes can significantly increase BRCA carrier
detection rates for maximising prevention and reducing cancer burden. It can also serve as an initial
model, which subsequently informs the potential applicability of a population testing risk-stratification
strategy for other cancer genes and other chronic diseases.

While developing an approach towards implementing population-based BRCA-testing,
it is important to bear in mind the principles of population testing of disease. These were initially
proposed by Wilson and Jungner [46]. Updated criteria have been suggested by the UK National
Screening Committee [47], Khoury [48], the CDC (ACCE model) [49], and Burke and Zimmerman
(Public Health Foundation) [50]. Analytic validity, clinical validity, clinical utility, and associated
ethical, legal, and social implications remain key principles of the ACCE model, providing a framework
for evaluating the applicability of a genetic test [49]. In our study, we focussed on BRCA testing,
as testing for these genes has well-established clinical utility fulfilling the ACCE principles. Multigene
panel testing is widely available in current clinical practice. We are against indiscriminate large-scale
commercial panel testing without well-established clinical benefit/utility in the population-testing
context. The low incidence of moderate penetrance genes, poor precision, and wide confidence intervals
around prevalence and penetrance estimates require more data on the clinical significance of pathogenic
variants in multigene panels, and these are reasons against currently implementing large multigene
panel testing in the general population [51,52]. The USPSTF currently recommends against population
testing in the general population [51]. More data are needed on the ‘E’ (Ethical, legal, and social
implications) of a population-based BRCA testing approach across different populations and health
systems. There is an urgent need for multiple implementation studies across countries for evaluating
general population BRCA testing and to develop local/regional and context-specific implementation
pathways. These studies will need to provide prospective data on the impact of population testing on
psychological well-being, quality of life, long-term health behaviour, socio-ethics, and lifestyle outcomes.
A number of challenges and logistic hurdles will need to be overcome, including varying levels of
workforce expansion/upskilling and the reorganisation of health services infrastructure. These include
increasing public and health-professional awareness, establishing/expanding laboratory testing
infrastructure, expanding downstream management pathways, and involving general practitioners,
genetics services, gynaecologists, and breast clinicians/services. A framework/structure for data
management and legal and regulatory protections will need to be established. These changes will need
to be system/country and context-specific.
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4. Materials and Methods

We developed a Markov model (Figure 3) (TreeAge-Pro-2018 Williamson, MA, USA) to compare
the lifetime costs and effects of BRCA1/BRCA2 testing all general population women ≥30 years
compared with clinical-criteria/FH-based testing. We describe separate analyses for populations
in the UK, USA, Netherlands, China, Brazil, and India using both payer and societal perspectives.
While some countries only consider a payer perspective, a societal perspective is recommended by
the WHO and other international bodies [53]. In the model, all women ≥30 years in the Population
testing arm and only those fulfilling clinical/FH criteria in the Clinical-Criteria/FH-based testing arm
undergo genetic testing for BRCA mutations. We include pre-test counselling for all and assume
a 70% uptake of genetic testing (from the published literature) [22]. We include the cost of post-test
counselling for mutation carriers as well as the cost of post-test counselling for those with variants
of uncertain significance (VUS). We assume a VUS prevalence of 2% [54]. Model probabilities are
described in Table 4, Appendix A, and costs are outlined in Appendix B. BRCA carriers identified are
offered RRSO to reduce OC risk [4] and MRI/mammography screening, chemoprevention with SERM
or RRM [8] to reduce their BC risk [10]. OC screening is excluded given the lack of mortality benefit.
Women undergoing RRSO receive hormone replacement therapy (HRT) until 51 years. We include
the costs of bone health monitoring and dual energy X-ray scans. We incorporate the excess risk and
mortality from coronary heart disease (CHD) after premenopausal RRSO for women who do not take
HRT (absolute mortality increase = 3.03%) [33]. Associated costs are modelled over an individual’s
lifetime. The Markov cycles’ run depends on life expectancy and these are different across countries
(starting from age 30): UK = 53 cycles, US = 52 cycles, Netherlands = 53 cycles, China = 48 cycles,
Brazil = 49 cycles, and India = 38 cycles. Cancer incidence is estimated by summing the probabilities
of pathways ending in OC or BC.

4.1. Probabilities

The model probabilities for different pathways are given in Table 4, and a detailed explanation is
given in Appendix A. The age-specific incidence of BC and OC among general population women is
obtained from Cancer Research UK [55,56], USA Cancer Statistics [57], and the International Agency
for Research on Cancer (GLOBOCAN-2018) [58]. The BC/OC incidence for BRCA1/BRCA2 carriers is
obtained from the literature [3].

Figure 3 is a schematic diagram showing the Markov model structure for population and
clinical-criteria/family-history (FH)-based BRCA1/BRCA2 testing. In the Population testing arm,
all women ≥30 years old are offered BRCA1/BRCA2 testing and get classified as BRCA-positive and
BRCA-negative. BRCA mutation carriers identified are offered options of risk-reducing mastectomy
(RRM) and risk-reducing salpingo-oophorectomy (RRSO). Depending on the probability of BRCA
women undertaking RRM and/or RRSO (+/− chemoprevention), they are placed into different health
states and then progress to either BRCA-associated breast cancer (BC) or BRCA-associated ovarian
cancer (OC). All women undergoing RRSO have an increased risk of fatal coronary heart disease (CHD).
In addition, they have a probability of dying from the background all-cause mortality. Hence, patients
in the model can go from intervention to death without ever developing breast cancer, ovarian cancer,
or coronary artery disease. Patients can move from healthy state to death as they have a probability of
dying from the background all-cause mortality. BRCA-positive women who do not progress or die
would stay in the health states and undertake the next cycle. BRCA1/BRCA2-negative women progress
to sporadic non-BRCA OC or non-BRCA BC based on the age-dependent probabilities. They also have
a probability of dying from the background all-cause mortality. Women do not progress or die would
stay in the health states to undertake the next cycle.
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risk-reducing mastectomy; RRSO, risk-reducing salpingo-oophorectomy.

In the Clinical criteria/FH arm, only women whose FH fulfil current clinical criteria (based on
current guidelines) undergo BRCA1/BRCA2 genetic testing and get classified as BRCA-positive and
BRCA-negative. Women with a negative FH are either BRCA negative or have an undetected BRCA
mutation. Options of RRM and RRSO and disease progression for identified BRCA mutation carriers
and disease progression for BRCA negative women are the same as those in the population testing
arm and are described above. All women undergoing RRSO have an increased risk of fatal coronary
heart disease (CHD). Undetected BRCA women are not offered RRM or RRSO. Depending on the
baseline risk (no risk-reducing options), they progress to BRCA-associated BC or BRCA-associated OC.
In addition, they have a probability of dying from the background all-cause mortality. Hence, patients
in the model can go from intervention to death without developing breast cancer, ovarian cancer,
or coronary artery disease. Patients can move from healthy state to death as they may die from the
background all-cause mortality. Women who do not progress or die stay in the health state of BRCA
undetected and undertake the next cycle.

Progression through the model is dependent on the probabilities provided in Table 4.
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Table 4. Probability Values.

Probability Description Value (95% CI) (Range) Source

P1 BRCA1/2 mutation prevalence in general population 0.0067 (0.0059, 0.0077) [59]
P2 Probability that carriers will undergo RRM 0.47 (0.34, 0.56) [60]
P3 Reduction in ovarian cancer risk from RRSO 0.96 [0.8, 0.96] [4,6]
P4 Probability of having a positive FH 0.0098 (0.0047, 0.0179) ABCFS
P5 BRCA1/2 mutation prevalence in FH-positive individuals 0.1 [10]
P6 BRCA1/2 mutation prevalence in FH-negative individuals 0.0058 (0.0051, 0.0068) [59], ABCFS

P7 Reduction in breast cancer risk from RRM without RRSO in
BRCA1/2 carriers 0.91 (0.62, 0.98) [8]

P8 Probability that carriers will undergo RRSO 0.55 (0.45, 0.64) [61]
P9 Hazard ratio in breast cancer risk from RRSO alone 0.49 (0.37,0.65) [4]
P10 Reduction in risk of breast cancer from RRM with RRSO 0.95 (0.78, 0.99) [8]
P11 Excess CHD risk 0.0072 (0.0068, 0.0076) [33]
P12 Fatal CHD risk 0.0303 (0.011, 0.043) [33]
P13 Compliance with HRT 0.8 (0.76, 0.83) [62]
P14 HR of breast cancer risk from breast cancer chemoprevention 0.71 (0.6, 0.83) [63]
P15 Uptake of breast cancer chemoprevention 0.163 (0.136, 0.19) [64]

95%CI—95% confidence interval, ABCFS—Australia Breast Cancer Family Study, CHD—coronary heart disease,
FH—family history, RRM—risk-reducing mastectomy, RRSO—risk-reducing salpingo-oophorectomy. A detailed
explanation of probabilities is given in Appendix A.

4.2. Costs

The analysis was conducted from both a payer perspective and societal perspective. All costs
are reported at 2016 USA dollars, which was converted by purchasing power parity (PPP) factor [28].
PPP reflects the value of a country’s currency required to purchase equivalent amounts of goods
and services in the domestic market as the USA dollar would buy in the USA. Thus, it is used to
translate and compare costs of goods/services between countries using the USA dollar as a common
reference point. For comparison, we convert values in all other country currencies (£s, €s, ¥,
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to $ (USA) using the purchasing power parity (PPP) factor [28]. In line with the National Institute
of Health and Care Excellence (NICE) recommendations, future healthcare costs not associated with
BC/OC/heart disease were not considered [25]. We collected primary data on relevant direct medical
costs from the Urban Basic Medical Insurance Database in China [65]; the Dutch Healthcare Authority
(NZA) in Netherlands; Management System of Procedures/Medical drugs/Orthotics/Prosthetics/Special
Materials (SIGTAP) [66], the Health Price Bank (BPS) [67], and Chamber of Regulation of the Market
of Medicines (CMED) [68] in Brazil; and an accredited cancer centre (Tata Medical Centre) in India
(details in Appendix B). Costing data were obtained from published national health service (NHS)
reference costs for the UK [69,70] and published literature for the USA (details in Appendix B).
We adopted a standard internationally available BRCA testing cost (US $200) for our base case and
explored the impact of change in testing costs on the overall results in the sensitivity analyses.

The retirement ages for females are 65 in the UK, 62 in the USA, 50–55 in China, 60 in Brazil, 68 in
Netherlands, and 60–65 in India. We used the lower values of the retirement age ranges in China and
India to get the conservative estimates of productivity loss. The female labour force participation rates
are 56.77% in the UK, 55.99% in the USA, 62.03% in China, 53.32% in Brazil, 58.02% in the Netherlands,
and 27.45% in India, which were obtained from the World Bank [71]. For the hourly wage rates across
countries, see Appendix C. Additionally, we categorised costs due to productivity loss (for details:
see Appendix C) as three subcomponents: (1) temporary disability due to short-term work absences
following diagnosis, (2) permanent disability from reduced working hours following return to work or
workforce departure; and (3) premature mortality due to death before retirement [72]. We estimated
temporary disability as time absent from work multiplied by age-specific gross earnings. We calculated
productivity costs due to permanent disability by applying age-specific gross earnings to the reduction
in working hours, or the number of working hours in cases of permanent workforce departure, until
retirement age. Regarding productivity loss from premature mortality, we assumed that without
cancer, the productive capacity of an individual would continue from the age of diagnosis until the age
of retirement. We multiplied the projected years of life lost by the age-specific gross earnings for the
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remainder of the working life to generate monetary estimates (see Appendix C). While we included
productivity loss, we did not include all indirect costs in the analysis.

4.3. Life Years

Lifetime tables from each country were used to model the lifetime health outcomes, and these
were obtained from the World Health Organisation (WHO) [73]. The median ages for RRM and RRSO
in unaffected BRCA carriers were assumed to be 37 and 40 years [60]. BC and OC survival were
modelled using five-year survival data from the CONCORD global surveillance of cancer survival [74].
No significant overall long-term survival differences between germ-line and sporadic BC/OC have
been found [75–77]. After five years, the probability of death was assumed to be the same as that of the
general population. Modelling estimated the number of BC cases, OC cases, BC deaths, OC deaths,
and excess CHD deaths per million women aged 30 years in the six countries, and it calculated the
number of cases prevented and deaths prevented. The actual numbers of cases prevented and deaths
prevented were estimated based on the number of female population aged over 30 years in the six
countries [29].

4.4. Quality-Adjusted Life Years (QALY)

QALYs are recommended by NICE as the appropriate summary measure of health effects for
economic evaluation. Utility scores multiplied by life years provides QALYs. QALY = (survival in life
years) x (utility score). Utility score is an adjustment for quality of life. It is an indication of individual
preferences for specific health states where 1 = perfect health and 0 = death. The utility scores for early,
advanced, recurrent, and end-stage breast cancer are 0.71, 0.65, 0.45, and 0.16 [78]. The utility scores
used for early, advanced, recurrent, and end-stage OC are 0.81, 0.55, 0.61, and 0.16, respectively [79].
Additionally, utility scores used for RRM is 0.88 (SD = 0.22) and RRSO is 0.95 (SD = 0.10) [80].

4.5. Analysis

The Markov model is illustrated in Figure 3. Model outcomes include OC, BC, and excess
deaths from CHD. Future costs and health effects are discounted at WHO-recommended 3%
rate for the WHO analyses [81] and at country-recommended rates for country-specific analyses
(see Table 1). The lifetime costs and QALYs were estimated in both population-testing and
clinical-criteria/FH-testing arms. The incremental cost-effectiveness ratio (ICER) was calculated
by dividing the difference in cost by the difference in health effects between these two strategies.
ICER = (CostPopulation-Testing–CostCriteria/FH-testing)/(EffectPopulation-Testing–EffectCriteria/FH-testing).
The potential population impact was estimated by calculating the additional reduction in BC and OC
incidence/deaths obtained through BRCA testing women aged >30 years. We present analyses using
a range of cost-effectiveness thresholds. For all countries, we present the initial WHO recommendation
of three times gross domestic product (GDP) per capita (threshold of being cost-effective) and one-time
GDP per capita (threshold for being highly cost-effective) [82]. For countries (UK [25], USA [26],
Netherlands [27]) with specific health economic willingness-to-pay (WTP) threshold guidelines,
we also present analysis using those guidelines: UK = £20,000–30,000 [25]; USA = $50,000–100,000 [26];
Netherlands = €20,000–50,000. [27] Additionally, given the lack of a clear established threshold,
we evaluate changes in ICER/QALY with BRCA testing costs for China, Brazil, and India to identify
the BRCA testing cost threshold for a given economic cost-effectiveness threshold. We use $ (USA)
conversion with PPP for comparison [28].

We also explored a number of scenario analyses, including: (1) no BC risk reduction from RRSO
(p9 = 1); (2) no HRT uptake (p13 = 0); (3) 50% reduction in RRM uptake; (4) 50% reduction in RRSO
uptake; (5) lower BRCA-testing costs of $100; and (6) the maximum genetic testing costs at which
population BRCA testing remains cost-effective (see Table 3, Appendix D). In the one-way sensitivity
analysis, each parameter is varied to evaluate their individual impact on results. Probabilities and
utility scores were varied according to 95% confidence intervals or ranges where available or by +/−10%.



Cancers 2020, 12, 1929 18 of 38

Costs were varied by +/−30%. Probabilistic sensitivity analysis (PSA) was undertaken, and parameters
varied simultaneously across their distributions. Costs were specified as having a Gamma distribution,
quality of life was specified as having a log-normal distribution, and probability was specified as
having a beta distribution, as recommended [83]. A cost-effectiveness acceptability curve was used
to plot the results of 1000 simulations for each country, showing the probability of population-based
BRCA testing being cost-effective at different WTP thresholds. Different curves were generated for
payer and societal perspectives.

5. Conclusions

The increasing societal awareness and acceptability of genetic testing, falling costs, computational
advancements, and technological advancements provides the ability to implement large-scale
population testing. We have demonstrated the potential cost-effectiveness of BRCA testing on a much
broader scale in the general population and across a number of health systems. This is cost-effective for
HIC and UMIC health systems and can prevent tens of thousands more BC and OC than the current
clinical strategy. Such an approach can bring about a new paradigm for improving global cancer
prevention. Context-specific implementation strategies and pathways for population testing need to
be developed. A number of implementation studies providing data on the impact of population BRCA
testing on real-world outcomes are needed. All this is essential for population genomics to achieve its
potential for maximising early detection and cancer prevention.
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Appendix A. Probability Values and Explanation

Table A1. Probability Values.

Probability Description Value (95% CI) (Range) Source

P1 BRCA1/2 mutation prevalence in general population 0.0067 (0.0059, 0.0077) [59]
P2 Probability that carriers will undergo RRM 0.47 (0.34, 0.56) [60]
P3 Reduction in ovarian cancer risk from RRSO 0.96 (0.8, 0.96) [4,6]
P4 Probability of having a positive FH 0.0098 (0.0047, 0.0179) ABCFS
P5 BRCA1/2 mutation prevalence in FH positive individuals 0.1 [84]
P6 BRCA1/2 mutation prevalence in FH negative individuals 0.0058 (0.0051, 0.0068) [59], ABCFS

P7 Reduction in breast cancer risk from RRM without RRSO in
BRCA1/2 carriers 0.91 (0.62, 0.98) [8]

P8 Probability that carriers will undergo RRSO 0.55 (0.45, 0.64) [61]
P9 Hazard ratio in breast cancer risk from RRSO alone 0.49 (0.37,0.65) [4]
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Table A1. Cont.

Probability Description Value (95% CI) (Range) Source

P10 Reduction in risk of breast cancer from RRM with RRSO 0.95 (0.78, 0.99) [8]
P11 Excess CHD risk 0.0072 (0.0068, 0.0076) [33]
P12 Fatal CHD risk 0.0303 (0.011, 0.043) [33]
P13 Compliance with HRT 0.8 (0.76, 0.83) [62]
P14 HR of breast cancer risk from breast cancer chemoprevention 0.71 (0.6, 0.83) [63]
P15 Uptake of breast cancer chemoprevention 0.163 (0.136, 0.19) [64]

95%CI—95% confidence interval, ABCFS—Australia Breast Cancer Family Study, CHD—coronary heart disease,
FH—family history, RRM—risk-reducing mastectomy, RRSO—risk-reducing salpingo-oophorectomy.

Explanations

P1: BRCA1/2 mutation prevalence in the general population is calculated based on Jervis 2015 [59].
P2: The probability that unaffected carriers will undergo RRM is taken from an analysis of UK

BRCA1/2 carriers by Evans et al. 2009 [60]. A composite uptake rate for BRCA1 (60% RRM rate) and
BRCA2 (43% RRM rate) carriers weighted for the relative prevalence of BRCA1 and BRCA2 mutations
was computed [60].

P3: The reduction in ovarian cancer risk obtained from RRSO is taken from previous studies
which report a 4% residual risk of primary peritoneal cancer following RRSO [6].

P4: The probability of having a positive family history in general population is obtained from the
Australia Breast Cancer Family Study (ABCFS).

P5: The overall BRCA1/BRCA2 mutation prevalence (10%) among FH-positive breast cancer
patients is based on the current testing guideline.

P6: The BRCA1/2 mutation prevalence in FH negative individuals is calculated based on
the BRCA1/2 mutation prevalence in the general population, the BRCA1/2 mutation prevalence
in FH-positive individuals, and the probability of having a positive FH.

P7: The reduction in breast cancer risk from RRM in BRCA1/BRCA2 mutation carriers not
undergoing RRSO is taken from the PROSE study data by Rebbeck et al. 2004 [8].

P8: The uptake of RRSO in unaffected BRCA1/BRCA2 carriers is taken from a study among
high-risk UK women [7].

P9: The hazard ratio for breast cancer in premenopausal unaffected BRCA1/BRCA2 women
undergoing RRSO alone is taken from a meta-analysis by Rebbeck et al. 2009 [4].

P10: The reduction in breast cancer risk in BRCA1/BRCA2 mutation carriers undergoing RRM and
RRSO is taken from the PROSE study data by Rebbeck et al. 2004 [8].

P11: Excess risk of CHD after RRSO is estimated using data from Parker 2013 [33]. The absolute
excess CHD incidence is obtained by subtracting CHD incidence in women undergoing RRSO from
those who have not.

P12: The risk of CHD mortality is obtained from the Nurses Health Study (Parker et al. 2013) [33].
Death from CHD is reported in 1 in 33 premenopausal women undergoing RRSO and not taking
HRT [33].

P13: HRT compliance rate is obtained from a UK cohort (Read et al., 2010) [62].
P14: The Hazard Ratio for breast cancer risk from chemoprevention in high-risk women is obtained

from the extended long-term follow-up of the IBIS-I breast cancer prevention trial (Cuzick et al. 2015) [63].
P15: The uptake of breast cancer chemoprevention is obtained from a recent meta-analysis by

Smith et al. 2016 [64].
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Appendix B. Medical Costs in 2016 Values (USA Dollars Converted by PPP)

Table A2. Medical costs in 2016 values (USA dollars converted by PPP).

Cost descriptions UK US Netherlands China Brazil India

GBP USD USD EUR USD RMB USD BRL USD INR USD

Cost of genetic testing 200 200 200 200 200 200
Cost of genetic counselling 29 42 42 55 67 0 0 135 68 733 42
Cost of prophylactic bilateral salpingo-oophorectomy 2799 3999 7904 3713 4584 4525 1308 957 483 82,368 4712
Cost of ovarian cancer diagnosis and treatment 14,268 20,383 133,121 23,238 28,689 12,991 3755 12,564 6345 613,662 35,107
Annual cost of ovarian cancer in years 1 to 2 5433 7761 14,635 10,865 13,413 48,495 14,016 4442 2244 290,086 16,595
Annual cost of ovarian cancer in years 3 to 5 5090 7271 14,635 10,480 12,939 48,021 13,879 4278 2161 280,720 16,059
Terminal care cost with ovarian cancer 16,452 23,503 93,005 11,325 13,981 10,060 2907 1358 686 80,623 4612
Cost of risk reducing mastectomy 4143 5919 13,101 2950 3642 2634 761 867 438 278,474 15,931
Annual cost of hormone replacement therapy 60 86 52 61 76 2148 621 217 110 15,595 892
Cost of mammography 60 85 156 95 117 82 24 42 21 2051 117
Cost of MRI 203 290 1477 215 265 605 175 252 127 7222 413
Cost of breast cancer diagnosis and treatment in general population 18,148 25,926 85,372 11,977 14,786 74,959 21,664 23,218 11,726 226,451 12,955
Annual cost of breast cancer in general population 1388 1982 8048 2718 3355 12,360 3572 2328 1176 55,519 3176
Cost of breast cancer diagnosis and treatment in BRCA1/2 carriers 16,499 23,570 78,964 10,780 13,309 68,476 19,791 20,861 10,536 200,902 11,493
Annual cost of breast cancer in BRCA1/2 carriers 1400 2000 8048 2656 3279 10,827 3129 1999 1009 53,959 3087
Terminal care cost with breast cancer 16,452 23,503 68,022 11,325 13,981 10,060 2907 1358 686 80,623 4612
Cost of fatal coronary heart disease 3387 4839 23,934 3008 3714 11,972 3460 2953 1491 47,673 2727
Annual cost of excess coronary heart disease 122 175 7277 109 134 526 152 124 63 3708 212
Annual cost of chemoprevention 19 27 899 36 45 93 27 499 252 62 4

CHD—coronary heart disease, HRT—hormone replacement therapy, MRI—magnetic resonance imaging, RRM—risk-reducing mastectomy, RRSO—risk-reducing salpingo-oophorectomy,
PPP—purchasing power parity.



Cancers 2020, 12, 1929 21 of 38

Appendix B.1. Explanations

All costs are adjusted for 2016 consumer price index.
For comparison, we convert values in all other country currencies (£s, €s, ¥,
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, R$) to $ (USA)
using purchasing power parity (PPP) factor [28].

We collected primary data on relevant direct medical costs from the Urban Basic Medical Insurance
Database in China [65]; the Dutch Healthcare Authority (NZA) in Netherlands; Management System
of Procedures/Medical drugs/Orthotics/Prosthetics/Special Materials (SIGTAP) [66], the Health Price
Bank (BPS) [67] and Chamber of Regulation of the Market of Medicines (CMED) [68] in Brazil;
and an accredited Cancer Centre (Tata Medical Centre) in India. UK costing data were obtained from
published NHS reference costs for the UK [69,70].

Appendix B.2. Cost of Genetic Testing/Counselling

We use a standard international cost for genetic testing for all countries (US$ 200 in 2016).
We assume a 71% uptake of genetic testing (based on our previous population based research
studies) [22]. All participants have pre-test counselling and post-test counselling is received by those
testing positive (pathogenic/likely pathogenic carriers). We assume a VUS prevalence of 2% and
include the cost of post-test counselling for VUS in these 2% cases [54].

The cost of BRCA1/BRCA2 testing is based on testing costs for these genes in our population
testing research programme as well as confirmatory testing costs in an accredited national genetics
laboratory for those testing positive. The UK national unit cost assumed for genetic counselling
is £44 per hour of client contact from PSSRU Unit costs of Health and Social Care 2010 [22,85,86].
The US genetic counselling costs are obtained from Schwartz 2014 and include ancillary preparation
(scheduling/administration), counsellor preparation, and counselling [87]. The genetic counselling
costs in the Netherlands, Brazil, and India were obtained from primary data. There is no additional
physician genetic counselling cost charged from patients in China; hence, this was not incorporated for
Chinese analysis.

Appendix B.3. RRSO Costs

The UK RRSO costs are obtained from NHS reference costs [88], and the US costs are from Grann
2011 [89] inflated using the medical component of the USA consumer price index to 2016 US$. Costs of
HRT for the UK are taken from BNF [90] and for the USA from William-Frame 2009 [91]. The costs of
RRSO and HRT in Netherlands, China, Brazil, and India are obtained from primary data. Costs assume
HRT is given from average age of RRSO to the average age of menopause (51 years). These costs are
calculated for the 80% assumed to be compliant with HRT. Costs include the cost of three follow-up
DEXA scans for monitoring bone health and calcium and vitamin-D3 for additional osteo-protection.

Appendix B.4. RRM

The UK RRM costs are obtained from NHS reference costs [88], and the USA costs are from Grann
2011 [89] inflated using the medical component of the US consumer price index to 2016 US$. The RRM
costs in Netherlands, China, Brazil and India are obtained from primary data.

Appendix B.5. Costs of Ovarian Cancer

We assume that the costs of ovarian cancer diagnosis include a pelvic examination, ultrasound
scan, CA125 test, CT scan, percutaneous biopsy, and peritoneal cytology. The costs of ovarian cancer
treatment include the reference cost for a lower and upper genital tract very complex major procedure
and administration of chemotherapy based on 6 cycles of carboplatin and paclitaxel treatment.
It is assumed that in the first and second years, treated survivors would have a further three consultant
visits, a CT scan, and four CA125 tests each year. In the third to fifth years post-surgery, it is assumed
that survivors would have two consultant visits and two CA125 tests.
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Costs for ovarian cancer diagnosis and treatment in the UK are derived from national reference
costs and a recent ovarian cancer guideline developed by NICE [88,92]. Annual costs of ovarian cancer
treatment in the USA are taken from Grann et al. 2011 [89] and inflated using the medical component of
the USA consumer price index to 2016 US$. We include the costs of treatment of recurrence taken from
Cancer Research UK [93] and Grann 2011 [89]. The costs of ovarian cancer diagnosis and treatment in
Netherlands, China, Brazil, and India are obtained from primary data.

The costs of ovarian cancer terminal care are derived from end-of-life costs for cancer patients
based on a report from the National Audit office UK [94]. For the USA, the terminal care costs for
ovarian cancer are obtained from Grann 2011 [89], which were inflated using the medical component
of the USA consumer price index to 2016 US$. The costs of ovarian cancer terminal care are obtained
from primary data in the Netherlands, China, Brazil and India. In line with NICE recommendations,
future healthcare costs not associated with ovarian cancer are not considered [95].

Appendix B.6. Costs of Breast Cancer

In the general population, 10% breast cancer is non-invasive DCIS and 90% is invasive. 95% of
invasive breast cancer is early and locally advanced (stages 1–3), and 5% of invasive breast cancer
is advanced breast cancer (stage 4) [96]. In BRCA1/2 carriers, 20% of cancers are DCIS and 80% are
invasive [9,97].

Seventy percent of invasive breast cancers are ER-positive [98,99], among which 49% are
premenopausal; 15% of early/locally advanced breast cancers and 25% of advanced breast cancers are
HER2-positive; 27% BRCA1 and 67% BRCA2 breast cancers are ER-positive; 5% BRCA1 and 14% BRCA2
breast cancers are HER2-positive [100–105]. All costs are adjusted for BRCA1/BRCA2 breast cancers for
differences in stage at presentation, the proportion of being non-invasive, and the proportion of being
ER-positive or HER2-positive.

Annual breast cancer treatment costs in the USA are obtained from Grann et al. 2011 [89] and
inflated using the medical component of the USA consumer price index to 2016 US$. In the UK,
Netherlands, China, Brazil, and India, breast cancer treatment costs are estimated based on clinical
guidelines and unit costs are detailed as below.

Diagnosis costs: Whether suspected at breast screening or through presentation to the GP, diagnosis
in the breast clinic is made by triple assessment (clinical assessment, mammography, and ultrasound
imaging with core biopsy and/or fine needle aspiration cytology) [98]. Clinical examination and
mammography costs are from the paper by Robertson C et al. [106]. Breast ultrasound and biopsy
costs are obtained from NHS reference costs [88] in the UK and from primary data in Netherlands,
China, Brazil, and India. For all patients presented with suspected advanced breast cancer, MRI should
be offered to assess for bone metastases [99].

Sentinel lymph node biopsy (SLNB) costs: SLNB is used for staging axilla for early invasive breast
cancer and no evidence of lymph node involvement on ultrasound or a negative ultrasound-guided
needle biopsy (73% of early and locally advanced invasive cancers). The SLNB costs in the UK are
obtained from NHS reference costs including sentinel lymph node scan and unilateral intermediate
breast procedures [88]. The SLNB costs in Netherlands, China, Brazil, and India are obtained from the
primary data sources described above.

Pretreatment axilla ultrasound costs: Pretreatment ultrasound evaluation of the axilla should be
performed for all patients being investigated for early invasive breast cancer and, if morphologically
abnormal lymph nodes are identified, ultrasound-guided needle sampling should be offered [96].
The commissioning cost of pretreatment ultrasound evaluation of the breast and axilla is the same
as that of the breast only [88]. The costing model considers the cost of ultrasound-guided needle
sampling only, obtained from NHS reference costs (UK) [24] and primary data (Netherlands, China,
Brazil, and India).

Axillary lymph node dissection (ALND) costs: ALNB is undertaken for lymph node positive
cancers (approximately 31% early and locally advanced invasive cancers—NICE guideline and
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BCCOM project [96,98,107]; 30% node positive for BRCA1/2 breast cancer—familial breast cancer
screening studies, breast cancer case series and Early Breast Cancer Trialists’ Collaborative
Group data) [97,100–102,108]. The cost of ALND is assumed to be 25% of the cost of breast surgery as
per NICE guideline development group recommendations [96].

Breast surgery costs include costs of breast-conserving surgery (assumed for all non-invasive
cancers and 75% of early/locally advanced invasive cancers) and costs of mastectomy with reconstruction
(for 25% early/locally advanced and all advanced cancers). Costs are obtained from the national NHS
reference costs (UK) [88] and primary data (Netherlands, China, Brazil, and India).

Chemotherapy and radiotherapy costs: Invasive breast cancers who are not at low risk [107,109,110]
receive adjuvant treatment in line with NICE guidelines. Costs include radiotherapy costs for 60% of
early invasive/locally advanced, radiotherapy, and chemotherapy costs for 40% early invasive/locally
advanced, and chemotherapy for all advanced cancers. Radiotherapy costs include planning and
40Gy in 15 fractions over 3 weeks [98] or palliative treatment; these were taken from national NHS
reference costs [88]. Chemotherapy costs based on polychemotherapy [108] include administration
costs, the costs of first and second-line therapy and toxicity from NICE guidelines [96,99]. In the
Netherlands, China, Brazil, and India, radiotherapy costs and chemotherapy costs are obtained from
the primary data sources described above.

Endocrine therapy costs: As per NICE guidelines [96,98], ER-positive invasive breast cancers
receive Tamoxifen 20 mg/day (premenopausal) or Anastrazole 1mg/day (postmenopausal). Seventy
percent of invasive breast cancers are ER-positive [98,99], among which 49% are premenopausal.
We assume that the length of endocrine therapy is 5 years. The drug costs are obtained from the
BNF [26] in the UK. ER testing costs are obtained from a local NHS trust and included for all invasive
breast cancers. The costs of drugs and ER testing are obtained from primary data sources in the
Netherlands, China, Brazil, and India described above.

Target therapy costs: HER2-positive breast cancer patients can be given at 3-week intervals for
1 year or until disease recurrence as per NICE guidelines. Breast cancer patients with positive HER2
are eligible for treatment with trastuzumab [98,99]. Ten percent of the eligible patients are intolerant of
trastuzumab. Among women suitable for this treatment, 80% receive trastuzumab [96]. HER2 testing
costs are obtained from a local NHS trust and included for all invasive breast cancers. The trastuzumab
cost per patient including the administration of treatment and cardiac monitoring is £15080, which was
obtained from the NICE costing report [96]. In the Netherlands, China, Brazil, and India, the costs of
HER2 testing and trastuzumab are obtained from the primary data sources described above.

Follow-up costs: Breast cancer patients are offered mammographic surveillance and clinical follow
up, with the screening cost of £141.45 per women in 2011 [106]. We assume that patients are followed
up every four months in the first two years, every six months from the third to the fifth year, and every
year from the sixth to the 10th year.

Bisphosphonate costs: Bisphosphonates is considered to be offered to patients newly diagnosed
with bone metastases to prevent skeletal-related events and reduce pain [99]. Seventy-four percent
of patients with advanced breast cancer will develop bone metastases, and 65% of patients with
bone metastases are offered bisphosphonates [96,111]. Bisphosphonates that are currently offered
include oral sodium clodronate, ibandronic acid, zoledronic acid, and pamidronate. The proportions of
patients receiving the four drugs are 20%, 30%, 25%, and 25%, respectively. The annual costs including
administration for the four drugs are £1971, £2541.96, £3208, and £3208 respectively, which were
obtained from the NICE costing report [96]. We assume that the average length of bisphosphonates
treatment is 2.7 years, which is the life expectancy of advanced breast cancers based on one-year
survival rate (63.2%) [112]. The bisphosphonate costs in the Netherlands, China, Brazil, and India are
obtained from the primary data sources described above.

Recurrence costs: For non-invasive breast cancers, the non-invasive and invasive relapse rates
are both 12.5%. Thirty-five percent of early and locally advanced invasive breast cancers progress to
advanced disease [96]. The recurrence rates for early and locally advanced breast cancer are 15.9% for
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node-positive [113] and 11% for node-negative disease [114]. Weighted for 31% node positive and 69%
node negative, the composite recurrence rate for early and locally advanced breast cancer is 12.5%.
The recurrence rate for the advanced disease is 66% (34% relapse-free five-year survival) [115].

Terminal care costs: The costs of terminal care for breast cancer are derived from end-of-life costs
for cancer patients based on a report from the National Audit office UK [30]. For the US, the terminal
care costs for breast cancer are obtained from Grann 2011 [89], and these were inflated using the medical
component of the US consumer price index to 2016 US$. The costs of breast cancer terminal care are
obtained from primary data sources in the Netherlands, China, Brazil, and India. In line with NICE
recommendations, future healthcare costs not associated with breast cancer were not considered [95].

Appendix B.7. Cost of Breast Cancer Screening

For non-carriers, we assume routine triennial mammography between 50 and 70 years as per
the UK NHS breast cancer screening programme [116] (seven mammograms on average). Breast
screening in the USA assumes mammography every two years starting at 50 years [117]. In the
Netherlands, the National Breast Cancer Screening Programme is designed for women between 50
and 75 years of age. Once every 2 years, women in this age group are invited for a mammogram. The
guidelines from the Brazilian Ministry of Health is for all women aged 50–69 years to be screened
with mammography only every 2 years. The coverage in the target age group remains low ranging
from 27% to 51% [118]. To obtain a conservative estimate of the cost-effectiveness of population-based
genetic testing, we adopted the highest value of uptake (51%) in Brazil. There is no national breast
cancer screening programme in China or India.

For BRCA1/BRCA2 mutation carriers, we assume an annual mammogram from 40 to 69 years and
annual MRI from 30–49 years as per NICE guidelines for familial breast cancer [119] (30 mammograms
and 20 MRIs on average). We assume that breast cancer screening policies for BRCA1/2 carriers in the
Netherlands, China, Brazil, and India, are the same as that in the UK. For the USA, it is based on annual
mammography and MRI starting at 30 years, and annual mammography only from age 50 years [117].

Appendix B.8. Cost of Chemoprevention

BRCA1/BRCA2 mutation carriers are offered tamoxifen (premenopausal) or raloxifene
(postmenopausal) for 5 years [119,120] to reduce breast cancer risk. The drug costs are obtained from
the BNF (UK) [90], Grann 2011 (US) [89], and primary data (Netherlands, China, Brazil, and India).
A 16.3% uptake is assumed for chemoprevention [64].

Appendix B.9. Cost of CHD

Cost of excess CHD: British Heart Foundation statistics reports costs per capita across four
commissioning regions in England (London, Midlands and East, North, and South) [121].

The costs of CHD and stroke are averaged across the four regions. The prevalence of CHD is
estimated at 12.0% in the UK [121] and 11.7% in the USA [122], with the onset of CHD estimated at
55 years of age [33,123].

The yearly cost of CHD in the UK is obtained by dividing the per capita cost by the population
prevalence of CHD [121]. Using the report published by the American Heart Association [124], the total
cost of CHD, CHF, and stroke were divided by the population with CHD [122,125], giving the yearly
cost of CHD in the USA. This yearly cost is multiplied by the number of years between onset of CHD
and average life expectancy to provide the cost attributed to excess CHD.

Cost of fatal CHD: This is costed on the basis of a fatal myocardial infarction using NHS reference
costs [88]. USA costs are obtained from Afana et al. 2015 [126], and these are inflated using the medical
component of the US consumer price index to 2016 US$.

We used the ratio of breast cancer treatment costs in the Netherlands, China, Brazil, and India
compared to treatment costs in the UK to impute the costs of excess CHD and fatal CHD in each of
these countries (Netherlands, China, Brazil, and India) based on the cost of CHD in the UK.



Cancers 2020, 12, 1929 25 of 38

Appendix C. Estimation of Productivity Loss

The retirement ages for females are 65 in the UK, 62 in the USA, 50–55 in China, 60 in Brazil, 68 in
Netherlands, and 60–65 in India. We used the lower values of the retirement age ranges in China and
India to get the conservative estimates of productivity loss. The female labour force participation rates
are 56.77% in the UK, 55.99% in the USA, 62.03% in China, 53.32% in Brazil, 58.02% in Netherlands,
and 27.45% in India, which were obtained from the World Bank [71]. The hourly wage rage across
countries are presented in Table A3.

Table A3. Hourly wage rage across countries (USA dollars in 2016).

Age UK USA Netherlands China Brazil India

30–34 19.47 13.08 16.85 5 5.54 4.77
35–39 19.47 14.75 22.37 5 5.54 4.58
40–44 19.33 14.75 22.37 5 5.54 4.58
45–49 19.33 14.97 24.11 5 5.54 6.56
50–54 17.42 14.97 24.11 5.54 6.56
55–59 17.42 15.10 24.19 5.54 3.71
60–64 15.08 15.10 24.19
65–69 21.32
Source [127] [128] [129] [130] [131] [132]

We categorised the productivity costs as three subcomponents: (1) temporary disability due to
short-term work absences following diagnosis, (2) permanent disability due to reduced working hours
following a return to work or workforce departure; and (3) premature mortality due to death before
retirement [72], as detailed in Table A4.

Table A4. Descriptive statistics for productivity loss in breast and ovarian cancer patients.

Variables Breast Cancer Ovarian Cancer

(1) Temporary disability
Percentage of temporary disability cases 94.0% 98% 1

Average time taken off work following diagnosis (weeks) 44.9 47.22 2

(2) Permanent disability
Percentage of permanent disability: reduced hours 26% 40% 3

Reduced hours per week after returning to work (hours) 5.5 5.5
(3) Premature mortality (before retirement)
Percentage of permanent disability: workforce departure 12.9% 30% 3

Source: Hanly P, et al., 2012 [72]. 1 We assume 98% ovarian cancer patients have cancer-related short-term work
absences after diagnosis. 2 We assume ovarian cancer patients experience four weeks for surgery, 24 weeks
for chemotherapy, and 24 weeks for recurrence treatment with the recurrence rate of 80% [133]. 3 We assume
the percentages of permanent disability for ovarian cancer are 40% for reduced working hours and 30% for
workforce departure.

We estimated temporary disability as time absent from work multiplied by age-specific
gross earnings.

We calculated productivity costs due to permanent disability by applying age-specific gross
earnings to the reduction in working hours, or the number of working hours if permanent workforce
departure, until retirement age. Regarding productivity loss from premature mortality, we assumed
that without cancer, the productive capacity of an individual would continue from the age of diagnosis
until age of retirement. We multiplied the projected years of life lost by the age-specific gross earnings
for the remainder of the working life to generate monetary estimates.
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Appendix D. Maximum Values of Genetic Testing Costs at Which Offering Genetic Testing for the Population Remains Cost-Effective.

Table A5. Maximum values of genetic testing costs at which offering genetic testing for the population remains cost-effective.

Payer Perspective Societal Perspective

Lower WTP # Higher WTP## Lower WTP # Higher WTP ##

Thresholds based on GDP
UK $412 ($42,648/QALY) $1254 ($127,869/QALY) $677 ($42,639/QALY) $1520 ($127,960/QALY)

USA $519 ($57,490/QALY) $1417 ($172,735/QALY) $680 ($57,582/QALY) $1577 ($172,698/QALY)
Netherlands $442 ($50,539/QALY) $1407 ($151,520/QALY) $792 ($50,517/QALY) $1758 ($151,603/QALY)

China $146 ($15,402/QALY) $354 ($46,536/QALY) $183 ($15,522/QALY) $390 ($46,506/QALY)
Brazil $130 ($15,143/QALY) $493 ($45,490/QALY) $219 ($15,168/QALY) $582 ($45,515/QALY)
India Not cost-effective $95 ($19,670/QALY) $62 ($6,540/QALY) $172 ($19,685/QALY)

Thresholds based on local economic evaluation guidelines
UK $238 ($28,386/QALY) $365 ($42,826/QALY) $481 ($28,406/QALY) $608 ($42,845/QALY)

USA $460 ($49,919/QALY) $850 ($99,969/QALY) $620 ($49,882/QALY) $1010 ($99,933/QALY)

Netherlands
∫

$293 ($24,364/QALY) $800 ($60,934/QALY) $582 ($24,369/QALY) $1089 ($60,939/QALY)
# 1*GDP per capita, ## 3*GDP per capita, WTP—willingness to pay (threshold), GDP—gross domestic product.
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The appendix describes the maximum genetic testing costs and corresponding ICER/QALY (in
brackets) at which offering BRCA testing for the population will remain cost-effective. Results are
presented for both the payer and societal perspectives.

For GDP-based thresholds: This is cost-effective at the standard 3*GDP per capita WTP threshold
and highly cost-effective at the 1*GDP per capita WTP threshold [82]. The discount rate is 3% for costs
and health effects (LYs and QALYs) [81].

For country-specific thresholds:
For the UK, this is £20,000 to £30,000 [25,134]; for the USA, this is $50,000 to $100,000 [26,135];

for the Netherlands, this is: €20,000 to €50,000 [27]. Values in £s and €s have been converted to $ using
PPP (purchasing power parity) [28].

For country-specific thresholds:
For the UK, the discount rate is 3.5% discount for costs and QALYs [25,134]; for the USA, this is 3%

discount for costs and QALYs [53]; for the Netherlands, this is 4% discount for costs and 1.5% discount
for QALYs [136].

Perspective:
WHO guidelines recommend a societal perspective [81,82].
Dutch guidelines recommend a societal perspective [136]. UK NICE guidelines recommend a payer

perspective [25]. US guidelines recommend presentation of both societal and payer perspectives [53].

Appendix E. One-Way Sensitivity Analyses

One-way sensitivity analysis for all probabilities, costs, and utilities in terms of ICER of
population-based BRCA testing compared to a clinical-criteria/FH-based approach in the UK, USA,
Netherlands, China, Brazil, and India from both the payer perspective and the societal perspective.

X-axis: Incremental cost-effectiveness ratio (ICER): cost (£s or $s) per quality-adjusted life year
(QALY) (discounted).

Y-axis: Probability, cost, and utility parameters in the model. The model is run at both lower and
upper values/limits of the 95% confidence interval or range of all probability parameters described in
Table 1, and both lower and upper values/limits of the cost and utility-score parameters given in the
methods and Table 2.

‘Upper value’ represents outcomes for the upper limit of the parameter, and ‘Lower value’
represents outcomes for lower limit of the parameter.
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