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We introduce a concise methodology to detect the parity of atomic and molecular orbitals based on
photoelectron holography, which is more general than the existing schemes. It fully accounts for the Coulomb
distortions of electron trajectories, does not require sculpted fields to retrieve phase information and, in principle,

is applicable to a broad range of electron momenta. By comparatively measuring the differential photoelectron
spectra from strong-field ionization of N, molecules and their companion atoms of Ar, some photoelectron
holography patterns are found to be dephased for both targets. This is well reproduced by the full-dimensional
time-dependent Schrddinger equation and the Coulomb quantum-orbit strong-field approximation (CQSFA)
simulation. Using the CQSFA, we trace back our observations to different parities of the 3p orbital of Ar and the
highest-occupied molecular orbital of N, via interfering Coulomb-distorted quantum orbits carrying different
initial phases. This method could in principle be used to extract bound-state phases from any holographic
structure, with a wide range of potential applications in recollision physics and spectroscopy.
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I. INTRODUCTION

Parity is of fundamental importance in many areas of
physics, e.g., atomic and molecular physics, cosmology, and
particle physics. It is conserved in electromagnetism, strong
interactions, and gravity, but not in weak interactions [1]. In
quantum mechanics, it mostly relates to the symmetry of wave
functions representing microscopic particles, and to quantum
phase differences. For an atom or molecule interacting with
a strong laser field, the parity of electronic orbitals gov-
erns many phenomena such as resonant multiphoton transi-
tions [2], molecular ionization suppression [3], and the phase
differences acquired by the tunneling wave packet [4-7].

In the context of above-threshold ionization (ATI),
schemes to detect parity using quantum interference have been
proposed. For instance, one may use sculpted fields [8], where
Coulomb effects have been approximated by a simple eikonal
phase, or interference carpets, whose explanation ignores the
residual Coulomb potential [9]. However, Coulomb distortion
represents a troublesome issue for directly probing parity, as it
modifies the interfering trajectories themselves [10-12]. This
includes the number of trajectories, their shapes, initial mo-
menta, and ionization times. Thus, it is questionable whether
additional phase shifts around Coulomb-free orbits will lead
to a reliable modeling of the system’s dynamics. A way
around this is to consider momentum ranges for which the
Coulomb potential is not crucial and adopt highly directional
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methods. For instance, in [9] scattering angles perpendicular
to the driving-field polarization, for which Coulomb effects
cancel out, were used. Furthermore, in [8] only a small portion
of photoelectrons with low perpendicular and high parallel
momenta with respect to laser polarization are suitable for
inferring the parity information. This limits the applicability
of such methods, and may be problematic for larger systems
such as polyatomic molecules, which may be difficult to align.
It is also noteworthy that, even for simple molecules, the
detection of parity for molecular systems remains elusive. In
this paper, we introduce a general and concise differential
holographic method which deals with above issues.

Ultrafast photoelectron holography [13,14] is a very pow-
erful imaging technique based on the physical picture of laser-
driven recollision [15] which combines high electron currents
with subfemtosecond time resolution. Thereby, a probe and
a reference wave are employed to reconstruct a target by
recording phase differences between them. Both probe and
reference terms stem from qualitatively different ionization
pathways, which can be associated with interfering electron
wave packets. This phase encoding makes it an ideal tool to
probe the parity of the atomic and molecular orbitals (for a
review see [14]).

Since its inception, ultrafast photoelectron holography has
been used for extracting not only structural information [16],
but also for visualizing the attosecond dynamics of valence
electron motion [17] and revealing the coupled electronic and
nuclear dynamics of molecules [18]. Prominent holographic
examples are the spiderlike [13], the carpetlike [9], and the
near-threshold fan-shaped structures [19-21]. The spider and
in particular the fan are caused by the interplay between
the residual Coulomb potential and the laser field [22-24].
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FIG. 1. Schematic representation of dominant trajectories (left-
hand side), classified from I to IV according to [10,25], contributing
to characteristic interference patterns in the final photoelectron mo-
mentum distributions (right-hand side). The lower panel on the left
side indicates the contour lines of laser-distorted potentials for an
Ar atom at two adjacent laser field peaks. The laser peak intensity is
chosen as 6.5 x 10'> W/cm? here. The interferences between types
and II (I and III) trajectories are responsible for the fan-shaped (spi-
derlike) structures [11,27,28]. The carpetlike structures result from
the interferences between type-III and type-IV trajectories along the
transverse direction [12]. Within the CQSFA theory, trajectories that
pass closer than the tunnel exit can be considered as soft or hard
rescattering, where hard rescattering trajectories pass within the Bohr
radius, while soft rescattering trajectories do not. Trajectories of type
III and IV are always rescattering ones here [12].

Recently, an orbit-based approach that incorporates the
Coulomb potential and the laser field on equal foot-
ing, the Coulomb quantum-orbit strong-field approximation
(CQSFA) [10], has offered a transparent picture of different
interference structures. It also predicted a spiral-like holo-
graphic structure [12], whose high-energy limit gives the
interference carpets in [9].

Here we demonstrate, both experimentally and theoreti-
cally, that photoelectron holography is a sensitive tool for
probing the parity of atomic and molecular orbitals. We
introduce a differential holographic method using an atom
with comparable Coulomb effects to retrieve the parity of
molecular orbital. Our article is organized as follows. In
Sec. II, we outline the strategy to be followed and briefly
discuss its experimental realization. In Sec. III we provide
the theoretical background necessary to model and interpret
our results. These are presented and discussed in Sec. IV.
Finally, in Sec. V we state our conclusions. Information of
either complementary or technical nature is provided in the
Appendix.

II. STRATEGY AND EXPERIMENTAL SETUP

Our basic strategy is illustrated in Fig. 1. Let us consider
an atomic or molecular orbital of odd parity. When irradiated
by an intense laser pulse, the tunnel ionized electrons ending
up with same final momentum lead to various interference
patterns in the photoelectron momentum distribution. Within

TABLE I. Summary of the phase shifts expected for different
types of orbits and initial bound states of different parity.

Structure Orbits Parity Shift
Fan I 1T even/odd 0/
Spider IL, 11 even/odd 0/0
Carpet I, IV even/odd 0/m

the CQSFA [10], each trajectory carries a phase that can
be separated into two parts, i.e., the initial phase which
includes the parity of the atomic or molecular orbital and the
phase accumulated along the pathway from the origin until
the detector. For each given final momentum, the electron
trajectories can be distinguished into four groups, as intro-
duced in CQSFA [10] or trajectory-based Coulomb-strong-
field approximation theory [25]. For type-I trajectories, the
electron moves directly to the detector without revisiting its
parent core. For type-II and type-III trajectories, the electron
first moves away from the detector and then turns around
and finally arrives at the detector. For type-IV trajectories,
the electron initially moving to the detector goes around the
core and then again moves towards the detector. Ignoring the
subcycle distortion of the orbital by the laser field, one can
expect a shift of w between the initial phase of type-I and
type-II (also type-1II and type-IV) trajectories for an orbital
with odd parity since they come from two opposite sides of
the target, while there will be no such phase shift for an
orbital with even parity. For the spiderlike structures, there
will always be no initial phase shift irrespective of the orbital
parity, because type-II and type-III trajectories are released on
the same side. A summary is provided in Table I.

To experimentally realize the strategy, we use Ar as a
reference atom to reveal information about the target molecule
N;. One important reason for this target choice is that the
ground state 3p of Ar and the highest-occupied molecular
orbital (HOMO) of N, have odd and even parities, respec-
tively. Additionally, according to the CQSFA theory [10,11],
for each type of trajectory in identical laser fields, the phase
obtained along the continuum propagation is expected to be
nearly identical for Ar and N, due to their close ionization
potentials and similar long-range Coulomb effects, as we
will see below. The initial phase encoding the parity of the
atomic or molecular orbital is thus accessed by comparing
the holographic patterns of the two targets. We find that the
measured fan-shaped (and carpetlike) patterns show out of
phase features for Ar and N,, whereas the spiderlike patterns
are in phase under identical laser conditions, which is in
contrast with previous differential measurements [26]. The
observations are reproduced by a numerical solution of the
time-dependent Schrodinger equation (TDSE), as well as
the CQSFA simulation. In terms of the CQSFA theory, we
demonstrate that our findings can be ascribed to the different
parities of the 3p orbital of Ar and the HOMO of Nj. This also
defies the previous narrative that strong-field ionization of N;
behaves like Ar and thus sheds light on the topic.

In our experiments, intense laser pulses at a central wave-
length of 788 nm were generated by a commercial Ti:sapphire
femtosecond laser system (100 kHz, 100 wuJ, 45 fs, Wyvern-
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500, KMLabs). The laser beam was then focused by a
spherical concave mirror (f = 60 mm) onto a cold supersonic
jet of mixture of Ar and N, inside the main chamber of a
cold target recoil Ion momentum spectroscopy (COLTRIMS)
reaction microscope [29]. The use of a mixture gas jet
substantially reduces the systematic uncertainties resulting
from the absolute determination of each gas target density
as well as the laser intensity, and beam pointing fluctuations
during long-time measurements. The laser intensity in the
interaction region was calibrated by measuring the “donut”-
shape momentum distribution of singly charged Ne* ions
with circularly polarized light [30]. We did not align the N,
molecules throughout our measurements.

We employed the COLTRIMS setup to simultaneously
measure the three-dimensional momentum distributions of
the electrons and ions from ionization of Ar and N,. The
photoelectrons and photoions were guided by homogeneous
electric (27.6 V/cm) and magnetic (9.5 G) fields towards
two microchannel plate detectors equipped with delay-line
anodes [31] in order to obtain the positions of impinging
particles. The spectrometer consisted of an ion arm with a
18.2 cm acceleration region and a 40.0 cm drift region, and
an electron arm with an acceleration region of 7.8 cm. By
checking for momentum conservation between the detected
electrons and the singly charged ions, the events arising from
false coincidences were suppressed substantially.

III. THEORY

A. Time-dependent Schridinger equation

In the resent study, the TDSE was solved in the veloc-
ity gauge. We employed a cosine square function to rep-
resent the temporal profile of the laser pulse. The details
about the TDSE simulations can be found elsewhere [32,33].
For Ar, the simulation was performed within the single-
active-electron approximation for an effective model poten-
tialV(r) = —(1 + aje™®" 4+ azre™™" + ase™%")/r witha; =
16.039, a, = 2.007, a3 = —25.543, a4 = 4.525, as = 0.961,
and a¢ = 0.443 [34] considering a 3p (m = 0) orbital ne-
glecting spin orbit interaction. For N, we only considered the
HOMO in the simulation, and used the linear combination
of atomic orbitals (LCAO) approximation [35]. This is rea-
sonable as the sharp fringes in the experimental interference
carpets suggest a single dominant orbital.

B. Coulomb quantum-orbit strong field approximation

The CQSFA theory describes ionization in terms of quan-
tum orbits from the saddle-point evaluation of the Coulomb-
distorted transition amplitude. In an exact form, the ionization
amplitude reads

Mip) = =i fim [ dto (i IOttt ).

(D

where |Yo(f0)) = e |) is the initial bound state (I is the
ionization potential) and the final state |, (7)) is a continuum
state with momentum p;. U(t, 1y) is the time-evolution op-
erator of the Hamiltonian A (t) = p/2 + V(&) + H;(¢), with
H;(t) = —t - E(r) and the Coulomb potential V (). Using the

Feynman path-integral formalism [36,37] and the saddle-point
approximation [38,39], Eq. (1) can be rewritten as [10,11]

 li apst) 1172
M(py) o —l,l_lgloXS: {det [m”
X C(tg.5)e'SBrFront) )

where

Clto.0) = 271/ (S (By, vy, 10,0, D/08,)

(s (t0.s) + Alto.s) |Hi (f0.)| o) 3)

is a prefactor, dp,(¢)/0dr(ty ) is related to the stability of the
trajectory, and

t
S rut0.) =t — [ delp T +F2HVEON @)
o

denotes the action, where p is the field-dressed momentum
and p =p+ A(r) with ) < T <t is the electron velocity.
Equation (2) indicates that there are in principle many trajec-
tories along which the electron may be ionized. For the same
final momentum, the corresponding transition amplitudes will
interfere.

The sum in Eq. (2) is over the semiclassical trajectories
starting from position r(fp ;) at time fy; and ending at mo-
mentum p(¢) at time ¢t — oo. The index s denotes the different
trajectories satisfying three saddle-point equations:

[po + A(t0)1?/2+ 1, = 0, (5)
P(r) = —V,V[r(z)], (6)

and
(7)) = p(r) + A(7). (7)

These equations are solved using an iteration scheme for
any given final momentum [10] under the assumption that
the electron is ionized by tunneling from £y to t(f = Re[1]
and then reaches the detector at a final (real) time [40,41].
For simplicity, we used —1/r as the form of Coulomb po-
tential for both Ar and N, in the simulations. Close to the
origin, a regularization procedure was implemented to treat
the Coulomb singularities in the complex time plane (See [42]
and references therein). The GAMESS code [43] was adopted to
calculate the exact wave functions of the 3p, m = 0 state for
Ar, neglecting spin orbit interaction and the HOMO of N,.

IV. RESULTS AND DISCUSSION

In Figs. 2(a) and 2(b) we present the measured photo-
electron momentum distributions of Ar and N,, respectively.
One can find distinct fan-shaped interference patterns near
the ionization threshold (enclosed by the half circles), i.e.,
four smaller lobes distributed symmetrically with respect
to p, =0 a.u. for Ar and five lobes with the middle one
along p, = 0 a.u. for N;. For the spiderlike structures, the
constructive interferences, i.e., the “spider’s legs” for Ar
are analogous with that for N,. Around p, =0 a.u., for
0.55 < p; < 0.95 a.u., the carpetlike structures as revealed
in previous experiments on Xe [9] can be recognized for both
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FIG. 2. (a) and (b) Measured photoelectron momentum distri-
butions (in logarithmic scale) from ionization of Ar and randomly
aligned N, in identical laser fields of a peak intensity of 6.5 x 10"
W/cm?, respectively. The laser central wavelength is 788 nm. The
abscissa p, and ordinate p, = +/p? + p> denotes the momentum
parallel and perpendicular to the laser polarization, respectively. The
fan-shaped structures close to the ionization threshold are enclosed
by half circles. The minima of the spiderlike structures are indicated
with dotted lines. The rectangles mark the carpetlike structures,
including several ATI rings along the transverse direction. The
numbers represent the orders of ATI rings covered in the rectangles.
(¢) and (d) TDSE simulations. (e) and (f) CQSFA simulations. To
compare with the data, the focal volume effect has been considered
in both TDSE and CQSFA simulations. The calculated results for
N, molecules have been averaged over the random alignment of the
internuclear axis. The color scales have been adjusted to highlight
the interference structures.

Ar and N, (confined by the rectangles). For an intensity of
6.5 x 10" W/cm?, the rectangles cover a number of ATI
rings ranging from the fourth to the seventh order. The car-
petlike structures clearly exhibit different features for Ar and
Nj. To highlight this discrepancy, we produced a differential
hologram by calculating the normalized difference [Da.(p) —
Dx, (p)1/[Dar(p) + D, (p)], where Dy, and Dy, denote the
photoelectron distributions for Ar and Ny, respectively. Here
Dxr and Dy, have been normalized to the corresponding
maximum photoelectron yield, respectively. The experimental
differential hologram is displayed in Fig. 3(a). This hologram
reveals that, along p, = 0 a.u., every odd-order (the fifth and
seventh orders) ATI rings exhibit minima for Ar but maxima
for N,. While for every even-order ATI rings (the fourth, sixth,
and eighth orders), maxima for Ar but minima for N, are
observed. In general, when comparing Ar and N, both the
fan-shaped and carpetlike interferences are out of phase while
the spiderlike interferences are in phase.

The TDSE simulations are shown in Figs. 2(c) and 2(d).
Many key features of the experimental results, as described
above, are satisfyingly reproduced by our simulations. More
lobes for the fan-shaped structures around p, = 0 a.u. in the
simulations are not well resolved in the experiments due to

FIG. 3. (a) Blow-up of the experimental normalized momentum
difference spectrum between Ar [Fig. 2(a)] and N, [Fig. 2(b)]. The
numbers represent the orders of ATI rings. (b) The corresponding
CQSFA calculation.

the insufficient momentum resolution along the transverse
direction.

The CQSFA calculated results shown in Figs. 2(e) and 2(f)
agree well with our observations and also the TDSE simu-
lations. The main features of the fan-shaped, spiderlike, and
carpetlike structures for Ar and N, are faithfully reproduced.
The CQSFA underestimates the signal near the polarization
axis due to approximations in the continuum propagation [42].
Figure 3(b) displays the calculated differential hologram high-
lighting the difference of the carpet structures. Again, we find
very good agreement between the experiment and simulation.
In the CQSFA computations, we consider ionization events
only from a finite section of a monochromatic laser field.
There will be a fixed starting point, which introduces and
effective carrier-envelope phase. This will lead to some left-
right asymmetry. We consider ionization events over four
cycles, which causes ATT rings. Including more cycles would
not affect the position of the rings, only their contrast. The
energy region is beyond the direct ATI cutoff 2U, (U, is
the ponderomotive potential. Thus, the carpet is formed by
electron trajectories that interact strongly with the core and
can only be well reproduced by the interference between types
III and IV trajectories within the CQSFA theory (see Fig. 1).
Type III orbits have no counterpart in the SFA and behave like
field-dressed Kepler hyperbolas, while type IV orbits behave
like rescattered SFA trajectories. This is in contrast to previous
interpretation based on the SFA theory that the carpet arises
from direct electrons [9]. For more details on this specific
structure see our recent publication [44].

Encouraged by the overall agreement, we further explore
the physical origin of our observations. From Eq. (2) we learn
that the interference patterns are closely related to the phase
Re[S], which is accumulated along the pathway starting from
the original position, and the prefactor C(# ;) associated with
the atomic or molecular orbital ¥y [Eq. (3)]. The stability
factor dpy(t)/0r(fos) is a real term and contains no phase
information. In identical laser fields, we find that the differ-
ence between phase Re[S] for different types of trajectory is
nearly identical for Ar and Nj, due to their nearly identical
ionization potentials (see Appendix for details). Moreover, the
simulations without inclusion of the prefactor C(t ;) reveal
practically identical features for Ar and N, (not shown here).
Therefore, our observations can be attributed to the different
prefactors for Ar and N,.

Physically, the prefactor C(tp ;) contains the tunneling
probability v/27i/(32S(Ps, ry, to,5, 1)/322,) and the tunnel-
ing matrix element (p;(fos) + A(to,_v)|1-71’(t0,s)|1po). For each
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trajectory type, the phase of the prefactor, i.e., ®g, =
arg[C(t.5)], is related to the parity of the atomic and molecular
orbital. The tunneling probability term has a simple phase
that will not be affected by this parity. Here s =1, 2, 3,
and 4 correspond to type-I, -II, -III, and -IV trajectories,
respectively, as depicted in Fig. 1. In the Appendix, we explain
how @, leads to the phase differences (or absence thereof)
in specific holographic structures. The analysis verifies the
physical picture illustrated in Fig. 1: Both the carpetlike and
fan-shaped interference structures are sensitive to the parity of
the electronic orbital of the target.

V. CONCLUSION

In summary, we show that the parity of atomic and molecu-
lar orbitals can be inferred from ultrafast holographic patterns.
By using a reference atom and differential measurement,
we show that holography patterns such as fan-shaped and
carpetlike structures are dephased, while the spiderlike fringes
show in phase features when comparing Ar and N, with
identical laser conditions. Our data are well reproduced by
focal- and alignment-averaged time-dependent Schrédinger
equation and Coulomb quantum-orbit strong-field approxi-
mation (CQSFA) simulations. Using the CQSFA, we trace
back the above-mentioned dephasing to parity-related phase
differences in the interfering quantum orbits. These phases
can be attributed to the different parity of the 3p orbital for
Ar and the HOMO of N».

The method presented in this work is general and can in
principle be applied to any holographic pattern in a wide
momentum range, for any target or molecular orbital. This
may constitute an advantage over more directional methods
such as those in [8] and [9], which require restricted mo-
mentum ranges. Molecular orbitals other than the HOMO
may be probed by scanning alignment angles for which their
contributions prevail. This method may also be extended to
ultrafast detection of the parity of multielectron wave func-
tions or multiple orbitals, which plays significant roles in
more complex molecules [45]. This will be particularly useful
for interpreting complex electron dynamics such as charge
migration in polyatomic and biological molecules. Finally,
one key assumption usually adopted in strong-field ultrafast
spectroscopy is that the phase structure of the returning wave
packets due to the parity of the initial orbital is smeared out
during the propagation [46,47]. However, our joint experi-
mental and theoretical work clearly reveals the parity effects
on the interference carpet through rescattering.

The power of this method lies in a choice of known
companion or reference atom or molecule to image with. The
differences may then inform the features we are interested in
measuring. This difference led to parity in the case of Ar and
N,, but it may be used to study other properties. For example,
for similar polyatomic molecules, holographic discrepancies
could be measured and their source traced back to differences
or changes in structure using the trajectories in the CQSFA.
Furthermore, one could use isoelectronic homonuclear and
heteronuclear molecular pairs, as in [48], with the homonu-
clear molecule as a reference. This is of great importance for
advancing strong-field recollision physics and spectroscopy.
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FIG. 4. Calculations for difference between Re[S;] for type-II
and type-I trajectories (a), between type-III and type-II trajectories
(b), and between type-III and type-IV trajectories (c). The red and
blue lines represent the results for Ar and N,, respectively. The
orange line in each panel represents the difference between the result
of Ar and that of N,. The abscissa p, is the final electron momentum
along the laser polarization. The final electron momentum perpen-
dicular to the laser polarization p, is 0.1 a.u. here. We have found
similar features for other values of p, . The alignment of N, is along
the laser polarization axis.
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APPENDIX

According to the Coulomb quantum-orbit strong-field
approximation (CQSFA) theory [14], the phase difference
between the involved trajectories plays a crucial role in de-
termining the interference structures. The phase for each tra-
jectory mainly includes two components: the phase obtained
along the continuum propagation Re[S;] and the phase of the
prefactor @, relating mainly to the phase of the initial state,
which includes the parity of the atomic or molecular orbital.
Here s = 1, 2, 3, and 4 correspond to type-I, -11, -III, and -IV
trajectories, respectively, as explained in our main text. In the
following, we will show that, because the ionization potentials
of both N, and Ar are similar, the phase difference will stem
mainly from the prefactor.

1. Phase accumulated along the continuum propagation

Figure 4 shows the calculated phase differences, obtained
along the continuum propagation, between different types of
trajectories for Ar and Nj. The result for Ar is very similar
with that for N; in each panel. In Figs. 4(a) and 4(c), there
is a small difference between the results of Ar and N, (the
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FIG. 5. Calculated diagrams of the difference between &g
for type-II and type-I trajectories (the first row), between type-
III and type-1I trajectories (the second row), and between type-
III and type-IV trajectories (the third row). The first and second
columns show the results for Ar and N,, respectively. The differences
between the phase diagrams of Ar and N, are shown in the third
column. The abscissa p, and ordinate p, are the final electron
momentum components. The half circles, dotted lines, and rectangles
mark the regions where the fan-shaped, spiderlike, and carpetlike
structures appear, respectively. The illustrations of the 3 p orbital for
Ar and the highest-occupied molecular orbital (HOMO) of N, are
shown on the top. The alignment of N, is along the laser polarization
axis here.

yellow lines), which stems from the fact that the orbits taken
into consideration leave from opposite sides. In fact, the phase
difference at p, = 0 a.u. is roughly half a cycle times the
difference of both ionization potentials. This will be altered
slightly as the time difference changes as a function of the
parallel momentum. In contrast, for orbits starting on the same

side, this difference is vanishingly small. The fact that these
features are subtle can be attributed to the small difference in
ionization potentials of Ar (15.76 eV) and N, (15.58 eV).

2. Phase of the prefactor

To reveal the influence of the parity of the atomic and
molecular orbitals, we calculate the phase of the prefactor @
for trajectories leading to the interference patterns of interest.
Then we obtain the difference between @ ; for the trajectories
responsible for each interference pattern, as shown in Fig. 5.
For Ar, there is an additional ~7 difference between @ g
for type-II and type-I trajectories in the electron momentum
region where the fan-shaped structures appear [Fig. 5(al)],
while this additional phase difference is around O for N;
[Fig. 5(b1)]. This is due to the different parities of 3p orbital
for Ar and the HOMO of Nj, since type-II and type-I trajec-
tories arise from the opposite sides of the target. Figure 5(c1)
shows the difference between Fig. 5(al) and Fig. 5(b1). Now
all other phases cancel, which clearly reveals a m shift be-
tween the phase diagram of Ar and N,. The same m phase
shift can be found for the carpetlike interference (third row
of Fig. 5), where the trajectories type-III and type-IV tunnel
exits lie on opposite sides of the target. For the region where
the spiderlike interference shows up, the phase difference is
basically the same for Ar and N, [Figs. 5(a2) and 5(b2)]
because type-II and type-III trajectories are released from the
same side of the target. There is thus no phase shift between
the phase diagram of Ar and N, [Figs. 5(c2)]. Note that the
internuclear axis of N is aligned along the laser polarization
axis in the above computation. The ionization probability for
N is maximal for this alignment angle and decreases fast for
other alignment angles [49]. Thus, we expect that this also
holds true for randomly distributed alignments of N, in our
experiments.
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