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ABSTRACT Hemodynamically unstable ventricular tachycardia (VT) is a critical cardiac arrhythmia
associated with hemodynamic compromise that requires immediate cardioversion to prevent sudden cardiac
death. Since unnecessary cardioverter defibrillators shocks damage the heart and increase the risk of
mortality, the discrimination between unstable (i.e. requiring cardioversion) and stable (i.e. not requiring
cardioversion) VT is of paramount importance. The aim of this study was to propose and assess non-invasive
identification of hemodynamically unstable VT using photoplethysmography (PPG). Seventy-five
(n = 75) episodes of VT were recorded in 14 patients undergoing invasive electrophysiological studies for
VT catheter ablation. Invasive continuous arterial blood pressure (ABP), PPG and electrocardiogram (ECG)
were simultaneously recorded. VTs were classified as unstable if during the first 10 seconds from onset, the
mean ABP (PVT< 60PVT) was PVT< 60PVT <60 mmHg or if PVT dropped more than 30% with respect to
a 10 seconds baseline (i.e. ratio RABP <0.70). Five PPG morphological features were derived and compared
to the heart rate from the ECG. PPG markers detected hemodynamically unstable VT with accuracy as high
as 86% and were more accurate than the heart rate. The mean absolute slope was the best PPG parameter for
classification of PVT< 60PVT <60PVT< 60 mmHg (AUC = 0.85, Sensitivity = 72%, Specificity = 86%)
and RABP <0.70RABP< 0.70 (AUC= 0.90, Sensitivity= 83%, Specificity= 89%) and it was automatically
selected in the best two-variables logistic regression, for which AUC= 0.94. In conclusion, PPG analysis can
accurately identify haemodynamically unstable VTs and has potential to enable optimization of VT therapy
and reduce unnecessary and harmful cardioversion shocks.

INDEX TERMS Assistive technology, biomedical signal processing, cardiology.

I. INTRODUCTION
Ventricular tachycardia (VT) is a critical arrhythmia that in
some circumstances can become life threatening. The condi-
tion manifests itself through consecutive rapid contractions
dissociated from normal sinus rhythm and it can dramati-
cally reduce cardiac output. The degree of danger associated
with VT depends on its impact on arterial blood pressure
(ABP), i.e. on its haemodynamic stability. Hemodynamically
unstable VT is associated with abrupt ABP loss that can pre-
vent oxygen and nutrients from circulating, therefore threat-
ening vital organs function. Contrary to hemodynamically
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stable VT, which does not dramatically impact ABP, unsta-
ble VT requires immediate cardioversion to prevent sudden
cardiac death.

Implantable cardioverter defibrillators (ICD) are capa-
ble of stopping life-threatening ventricular arrhythmias by
delivering electrical shocks to the heart and are becom-
ing mainstream (hundreds of thousands are implanted every
year worldwide). Although potentially life-saving, defib-
rillator shocks damage the heart and increase the risk of
death [1]–[4]. Therefore, reducing the number of unneces-
sary ICD shocks by specifically targeting unstable VT is a
critical aspect for improving VT patients’ care. In current
practice, ICDs are programmed to deliver a shock when
the heart rate increases above a pre-determined threshold,
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without taking into consideration ABP. Automatic identifi-
cation of unstable VT remains however challenging, as no
fixed relationship exists between heart rate and ABP during
VT [5].

The photoplethysmogram (PPG) is a non-invasive opti-
cal signal measured in many wearable devices capable of
providing real-time cardiac and haemodynamic informa-
tion. We therefore hypothesised that PPG could be used
to enable detection of hemodynamically unstable VT. The
methodology presented in this study uses PPG features
recorded before and at the onset of VT to classify its
hemodynamic response. While previous studies have focused
on improving alarm detection (including cardiac arrhyth-
mia) in intensive care using PPG data [6] and others have
classified ventricular arrhythmias based on electrocardio-
graphic (ECG) features [7], non-invasive identification of
unstable VT by means of PPG is novel. We envisage this
study as a first step towards a new approach with the
potential of improving clinical management of millions of
patients relying on ICD therapy to stop life-threatening
VTs.

II. METHODS
A. DATA SETS AND PRE-PROCESSING
Twenty-two (n= 22) patients undergoing catheter ablation of
VT in the Catheterization Lab were prospectively recruited at
the Barts Heart Centre, London, UK. ECG, invasive arterial
blood pressure and PPG were simultaneously measured with
sampling frequency of 240 Hz (Mac-Lab System, General
Electric). Fourteen (n = 14) patients, out of the 22, exhibited
VT and were included in the study. Their background is
presented in supplementary Table S.I. PPG was recorded
from the middle finger of the left hand. Signals were exported
bypassing the patient monitor auto-gain filters. ABP and PPG
signals were filtered with a finite impulse response (FIR)
low pass filter of 30 Hz cut-off frequency and order 120.
A 100 Hz low pass filter was applied to the ECG waveform.
Data were collected as part of a Barts Heart Centre ethically
approved study of VT ablation and patients gave informed
consent.

In some patients, ventricular pacing (cycle length equal
to 423 ± 32 ms, range 410-870 ms) was established to
induce VT and 4 patients were studied while in slow incessant
monomorphic stable ventricular tachycardia.

B. DATA ANALYSIS
The onset of each VT was time-stamped (t0) and invasive
ABP, PPG and ECGwere evaluated in 3windows (see Fig. 1):
(A) From 10 s before to the onset of VT (T0 : t0− 10s < t <

t0); (B) From the onset of VT to 10 s after it (TVT : t0 ≤
t < t0 + 10s); (3) Earliest 10 second interval preceding the
VT onset, t0, showing either normal sinus rhythm or base-
line atrial pacing (TSR). This additional reference window
was considered because in some cases T0 presented irregular
rhythm due to ectopics or standard pacing maneuvers utilized
to induce VT.

FIGURE 1. Recordings of ECG, invasive blood pressure (ABP) and
non-invasive PPG during hemodynamically stable (A) and unstable
(B) VTs, within 3 10-seconds windows: Sinus rhythm preceding VT (TSR ),
any cardiac rhythm immediately before VT onset (T0) and VT (TVT ).

1) ARTERIAL BLOOD PRESSURE AND DEFINITION OF
UNSTABLE VT
Mean ABP was used to evaluate the hemodynamic response
to VT. This is standard practice and more reliable than using
measurements based on systolic blood pressure, since dur-
ing fast VT it is not always possible to clearly distinguish
blood pressure pulses. Hemodynamically unstable VTs were
identified as those characterized by either (A) mean ABP
during TVT lower than 60 mmHg, i.e. PVT < 60 mmHg,
where PVT = meant=TVT (xABP(t)), with xABP(t) representing
continuous blood pressure, or by (B) a drop in mean ABP
during VT higher than 30% from baseline mean ABP, i.e.
RTOABP = PVT

/
PT0 < 0.70 or RTSRABP = PVT

/
PTSR < 0.7, with

baseline taken at T0 and TSR, respectively. These definitions
are supported by previous studies and were adopted before
data analysis [8], [9].

2) HEART RATE FROM ECG
The heart rate was estimated from the time-frequency
(TF) distribution of the ECG waveform. The signal was
down-sampled to 20 Hz and the TF spectrum was calculated
using the quadratic distribution described in [10], [11]. The
heart rate during T 0,TVT and TSR was measured as the tem-
poral mean of the instantaneous frequencies, f0(t), identified
as the highest spectral peak of the TF distribution. Only values
above 40 bpm were considered as being valid heart rates.

3) PPG PARAMETERS
Five PPGmetrics based on the PPG signal,V (t), were defined
to indirectly assess hemodynamics during VT. All of them
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were expressed as the ratio between the metric’s value during
TVT and baseline values obtained either during T0 or T SR.

1. RT0A and RTSRA : Ratio between the mean pulse amplitude
during VT and baseline, where the pulse amplitude was
measured from foot to peak for each pulse within TVT ,
T0 and TSR.

2. RT0MS and R
TSR
MS : Ratio between the pulse maximum slope

during VT and baseline. The pulse maximum slope was
measured as the temporal mean of the maximum of the
first derivative of each pulse: V ′M =

1
N ·

∑
n V
′
M [n],

where n = 1, . . . ,N is a heartbeat and V ′M [n] is the
maximum of the first derivative measured during the
pulse’s upslope, V ′M = max (dV (t)/dt).

3. RT0MAS and RTSRMAS : Ratio between the mean absolute
slope during VT and baseline. The mean absolute slope
was measured as the temporal mean of the absolute
value of the first derivative of the PPG signal, |V ′| =
meanT

∣∣∣ dV (t)dt

∣∣∣.
4. RT0PR and RTSRPR : Ratio between the pulse rate during

VT and baseline. The pulse rate was measured as the
barycentre of the power spectrum ofV (t) estimated using
the Fourier transform of the PPG signal within the win-
dows of interest TVT , T0 and TSR.

5. RT0IP and RTSRIP : Ratio between the average instan-
taneous power of V (t) during VT and baseline.
The average instantaneous power was measured as
meanT

(∫ f0(t)+BH
f0(t)−BL

S (t, f )df
)
, where f0(t) is the instanta-

neous frequency of the highest spectral peak, (BL −BH )
are the boundaries of the time-varying spectral band
where the instantaneous power is estimated and S (t, f )
is the TF distribution described in [10], [12]. BL and BH
were set at ±10 bpm within baseline windows T0 and
TSR and at -10 to +70 bpm within the VT window TVT .

Of note,RA andRMS are the onlymetrics to require PPGpeaks
detection, which during some VTs can be challenging due to
the loss of the pulsatile components in the PPG signal (see
Fig. 1B).

4) SENSITIVITY ANALYSIS
Sensitivity analyses were conducted to assess the impact of
choosing different thresholds for the definition of unstable
VTs (see Section II.B1) and varying the duration of windows
TVT , T0 and TSR from 5 to 15 seconds.

C. STATISTICAL ANALYSIS
Distributions of data are presented as mean ± standard devi-
ation, unless otherwise specified. Correlation between ABP
and PPG parameters was measured using the Spearman’s
correlation coefficient. Differences between PPG and ECG
parameters during hemodynamically stable vs unstable VTs
were assessed using the Wilcoxon rank-sum test using a
threshold for statistical significance equal to 0.05/N, where
N = 23 represents the number of pair-wise comparisons (see
Table 1).

TABLE 1.

Binary classification of stable and unstable VTs was
assessed using receiver operating curves (ROC), from which
the area under the curve (AUC), sensitivity and specificity
were measured. For each parameter, the threshold provid-
ing best accuracy was defined as that associated with the
ROC point closest to the upper left corner (Sensitivity =
Specificity = 100%). Given that the number of events was
relatively small (n = 75), AUC, sensitivity and specificity
were first estimated using all events as both training and
test set. However, to assess possible overestimation due to
overfitting, classification assessment was then repeated by
randomly splitting all events into a training test composed
of 80% of events, and an independent test set composed of the
remaining 20%. The optimum threshold was estimated from
the training set and used to assess sensitivity and specificity in
the independent test set. This process was repeated 10 times
and results are reported as mean ± standard deviation.
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FIGURE 2. Correlation between invasive blood pressure (ABP) features
(mean ABP during VT, PVT , ABP reduction during VT with respect to
baseline, RT 0

ABP and RTSR
ABP ) and PPG features (ratio of mean absolute slope

during VT with respect to baseline, RT 0
MAS and RTSR

MAS ). Correlation
coefficient (cc) is shown within each panel.

Least absolute shrinkage and selection operator (LASSO)
models were used to identify the best pair of features for
classification. Logistic regressions utilizing the selected pair
of parameters were used for classification and assessed as
described before, i.e. both using all data for training and
test and then using 80% of data for training and 20% for
testing.

III. RESULTS
Fourteen patients exhibited at least one VT episode and a total
of 75 VTs were analysed. Table 1 reports the distribution of
parameters within stable and unstable VT groups, the P-value
of their differences and the correlation coefficient between
PPG and ABP parameters. Boxplots providing a graphical
representation of these results are shown in Supplemen-
tary Fig. S.1-2. Fig. 2 illustrates the relation between ABP
changes and PPG mean absolute slope for all VT episodes.
Table 2 reports results of the binary classification including
AUC, optimum threshold, accuracy, sensitivity and speci-
ficity estimated within the entire data-set and using separate
training and test sets.

A. IDENTIFICATION OF UNSTABLE VT
VT episodes were classified as hemodynamically stable
or unstable based on two criteria: A) Mean ABP during
VT lower than 60 mmHg (PVT< 60 mmHg) and B) Drop of
ABP larger than 30%with respect to baseline (RT0ABP< 0.70 or
RTSRABP < 0.70 if baseline was taken at T0 or TSR, respectively).
Thirty-two (n = 32, 42.7%) of VTs showed

PVT< 60 mmHg. The heart rate was higher during unstable

FIGURE 3. Classification of stable vs unstable VT based on mean blood
pressure during the first 10 sec of VT. ROCs show classification results for
the heart rate from the ECG (HRVT ) and 2 of the best PPG features (RMS
and RMAS ) using either T0 (A) or TSR (B) as baseline. Panels C-F show the
area under the curve (AUC), accuracy, sensitivity and specificity for all
features measured using T0 (blue) or TSR (red) as baseline.

than stable VTs (HRVT = 155 ± 25 bpm vs 132 ± 24 bpm,
P = 5.2 10−4). All PPG parameters except RT0IP were sig-
nificantly lower (P<2.17E-03) during unstable than stable
VTs (see Table IIA). Among PPG parameters, RT0MAS and
RTSRMAS showed the highest correlation with PVT , cc= 0.57 and
cc = 0.52, respectively (Fig. 2A-B).

Classification of unstable VTs (PVT< 60 mmHg) using
heart rate from the ECG was moderately accurate, with
AUC = 0.74, high sensitivity (94%) but low specificity
(49%). Classification was more accurate using PPG param-
eters, with RT0MS and RT0MAS providing the best results within
parameters requiring and not-requiring PPG pulse detec-
tion, respectively. For these indices, AUC was >0.80 and
accuracy was >80%, with specificity slightly higher than
sensitivity. Results, including ROC curves, are summarized
in Fig. 3.

Analysis performed using separate training and test
data-sets showed similar results (Table 2 A).

Seventeen (n = 17, 23%) VTs showed RT0ABP< 0.70
and were considered hemodynamically unstable using this
definition. As shown in Table IB, the heart rate correlated
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TABLE 2. VT Classification using uni-variable models.

only moderately to RT0ABP (cc = 0.6) and it was signifi-
cantly higher in VTs characterized by sudden and signif-
icant ABP drop (RT0ABP< 0.70) than for the rest of VTs.
All PPG parameters except RT0IP were significantly lower
during VTs characterized by sudden and significant ABP
drop than during the rest of VTs (Table 1B). RT0MAS showed
the highest correlation coefficient with RT0ABP at cc = 0.73
(Table 1B). Classification was more accurate using PPG
parameters than heart rate from the ECG, with RT0MS and
RT0MAS providing the best results within parameters requir-
ing and not-requiring PPG pulse detection, respectively. For
these indices, AUC≥0.82 and accuracy was ≥77%, with
similar specificity and sensitivity. Results, including ROC
curves, are summarized in Supplementary Fig. S.3. Analy-
sis performed using separate training and test data-sets or
that used TSR as baseline window showed similar results
(Table 2B).

B. SENSITIVITY ANALYSES
Sensitivity analyses were conducted to explore how the use
of different parameters affected the accuracy of stable vs
unstable VT classification.

1) IMPACT OF ARBITRARY THRESHOLDS FOR UNSTABLE VTs
Data and statistical analysis were repeated for different
thresholds, with unstable VTs identified as those for which
PVT < X , with 50 <X< 70 mmHg or RT0ABP and RTSRABP <

X , with 0.60 <X< 0.80. Prevalence of unstable VT varied
between 27% and 72% in the first case and between 11%
and 56% in the second case. Fig. 4 shows AUC of HRVT ,
RMAS and RMS as a function of the threshold used to identify
unstable VTs based on mean ABP and ABP drop. AUC
remained high for all configurations, and tended to slightly
increase for thresholds that made unstable VT more severe
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TABLE 3. VT Classification using lasso to identify the best pair of pre.

FIGURE 4. Classification using the heart rate from the ECG (HRVT ) and
2 of the best PPG features (RMS and RMAS ) for different thresholds
defining stable and unstable VTs based on invasive blood pressure.
Panels show the area under the ROC (AUC) for unstable VTs defined by
mean arterial blood pressure (ABP) lower than a threshold ranging from
50 to 70 mmHg, i.e. 50 <PVT < 70 mmHg (A and C), and for a reduction of
ABP during VT with respect to baseline windows T0 (B) or TSR (D) ranging
from 60% to 80%, i.e. 60% <RT 0

ABP< 80% and 60% <RTSR
ABP< 80%.

and less frequent (e.g. PVT < 55 mmHg). Of note, AUC
remained higher for PPG markers RMAS and RMS than for
heart rate in all configurations.

2) IMPACT OF USING DIFFERENT WINDOW LENGTHS
Data and statistical analysis were repeated after modifying
the duration of TVT, T0 and TSR from 5 s to 15 s. The
results (Supplementary Tables S.II-III) show that this did not
significantly impacted on the accuracy of stable and unstable
VTs classification.

C. COMBINING PARAMETERS FOR MULTIPLE
REGRESSIONS
The pairs of parameters providing the best classification
of VTs showing PVT< 60, RT0ABP< 0.7 and RTSRABP< 0.7 are
shown in Table 3. In all cases, RMAS was retained as one of

the two best features. Classifications improvedwith respect to
single-variable models, with AUC ranging from 0.85 for the
detection of PVT< 60 mmHg using

(
RTSRMAS;R

TSR
A

)
to 0.94 for

the detection of RTSRABP< 0.7 using
(
RTSRMAS;HRVT

)
. Results

obtained using a separate test sets confirmed high sensitiv-
ity and specificity for all multi-variables logistic regressions
(Table 3 ).

IV. DISCUSSION
This study investigates for the first time the use of PPG
markers to identify VTs characterized by hemodynamic com-
promise within 10 sec from its onset, a critical aspect for
improving therapy in patients at risk of sudden cardiac death.
The main findings are: (1) PPG markers can detect hemo-
dynamically unstable VTs with accuracy as high as 86%;
(2) Detection of unstable VTs was more accurate using PPG
parameters than the heart rate measured from the ECG,
independently of the specific ABP threshold or definition
of unstable VTs. (3) The combination of PPG markers and
heart rate improved accuracy, suggesting that PPG provides
complementary information to the ECG. (4) Accurate pulse
detection in the PPG is not necessary to accurately detect
unstable VTs.

The hemodynamic response to VTs (i.e. stable vs unstable)
was characterized both in terms of mean ABP and sudden
changes in mean ABP. Results show that PPG parameters
can detect both accurately. All PPG markers were expressed
as a ratio between a given PPG feature measured during
the first 10 sec of VT and during a baseline interval, which
was defined either as the 10 sec preceding the VT onset
independent of the heart rhythm (T0), or as the earliest 10 sec
of sinus rhythm preceding VT (TSR). The rational for estab-
lishing this second baseline window was that VT is some-
times preceded by runs of ectopic beats. Additionally, in this
study, some VTs were induced by ventricular pacing that
can potentially affect both ABP and PPG. Results obtained
using these different baseline windows were similar, which
suggests that any interval preceding VT can serve as baseline,
even in presence of irregular rhythm.

The heart rate measured during VT, which represents the
standard parameter utilized to programme ICDs and prevent
sudden cardiac death, was found to only moderately correlate
with mean ABP (cc = −0.45) or sudden drop in mean ABP
(cc = −0.60). While this is not surprising (ABP critically
depends on cardiac function/contractility), it confirms the
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need for a better estimator of the hemodynamic response to
VT. The PPG parameter RMAS showed the highest correlation
with mean ABP (cc = 0.57) and sudden drop in mean ABP
(cc = 0.73) during VT, and one of the best accuracy in clas-
sifying unstable and stable VTs (AUC≤0.85). Furthermore,
RMAS is easy to estimate as it does not require PPG pulse
detection. Thismakes it one of themost promising parameters
for further clinical validation.

Previous studies have proposed algorithms to reduce false
alarms in critical care [6], [13], with some of them includ-
ing ventricular tachycardia. Another study has demonstrated
high accuracy in discriminating between VT and ventricu-
lar fibrillation and between ICD shocked and non-shocked
rhythms using features based on Taylor-Fourier analysis of
the ECG [7]. The present study differs in many aspects
as it focused for the first time on the challenge of non-
invasively discriminating haemodynamically unstable VTs
from haemodynamically stable VTs, it uses simultaneous
invasive blood pressure recordings instead of surrogate
parameters (e.g. ICD shocks) as a reference, and it focused on
PPG features. Electromechanical coupling analysis has been
recently used with success [14] to discriminate ventricular
fibrillation from sinus rhythm or artefacts using used two
laser doppler flowmetry light probes, one at the heart and the
other at the finger. Compared to PPG, this laser doppler is a
complex and expensive technology that uses coherent light to
measure perfusion, which limits the application to in-clinic
use.

In this study, we have focused on PPG, because, in contrast
with cardiac signals such as the ECG, it offers an insight
into hemodynamic cardiovascular changes. It functions by
illuminating arterially perfused tissue within light in the visi-
ble and infra-red spectrum and recording the reflected tissue
light. As an estimator of blood pressure, PPG has been limited
by calibration requirements, and has been shown to perform
well only in some patients [15], [16]. Interestingly, PPG had
already been shown potential to detect hypotensive events
during haemodialysis and labour [17], [18], but it was never
been utilized to classify the hemodynamic response to VT.
We have recently shown that PPG features can be used to
detect mechanical (or pulsus) alternans [19], [20]. Combined
with the present results, this suggests that although PPG may
not be accurate in measuring ABP, it can be used to detect
fast and sudden changes in ABP though the analysis of its
pulsatile components.

A. CLINICAL RELEVANCE AND FUTURE APPLICATIONS
PPG sensors are commonly utilized for measuring oxygen
saturation and are ubiquitous in clinics. In recent years,
they have been increasingly incorporated in wearable health
tracking devices (e.g. smart watches) that can provide a plat-
form for improved individualized treatment.We envisage that
future wearable/implanted devices could be used in combina-
tion with ICDs to enable a precise assessment of the hemody-
namic response to VT, thus withholding unnecessary shock
therapy and extending patient life expectancy. Combining

ICD detected electrograms or surface ECG for rates below
the standard VT zone rate cut-offs would also enable more
accurate arrhythmia classification for determining therapy
delivery in certain cases for slower VTs which can represent
as significant challenge. Furthermore, PPG could be used
to indirectly estimate respiratory rate [21]–[23], heart rate
variability [24], mechanical alternans [19], [20] and other
physiological markers to monitor cardiac risk and modulate
ICD therapy (e.g. by preventively using anti-tachycardia pac-
ing to prevent VTs). Cardiac risk assessment traditionally
based on ECG parameters could be further benefit from the
inclusion of ECG parameters. [25]–[28].

B. LIMITATIONS
The main limitation of the study was that data were recorded
during electrophysiological studies. While this provides the
unique opportunity to measure ABP, ECG and PPG during
VT safely and in a controlled environment, the recording
condition with the patients in supine position and the PPG
measured at the finger with minimal movement differ from
those in which the methodology is eventually intended to
be used. Further study should address robustness against
noise and movement artefacts. Furthermore, thresholds for
obtaining the most accurate classification was performed by
optimizing both sensitivity and specificity. While this is the
standard approach, in a clinical scenario a high specificity at
maximum sensitivity (no false negative) may be preferred.
Finally, in this study the ECG was only used to derive the
heart rate, because this is the standard parameter used to
programme ICDs. Further studies may include ECG features
derived with advanced methods [7].

V. CONCLUSION
This work has shown for the first time that PPG features can
accurately classify hemodynamically stable and unstable VTs
defined using simultaneous invasive recordings of arterial
blood pressure. This may have potential clinical implications
as reducing the number of unnecessary ICD shocks by specif-
ically targeting unstable VT is a critical aspect of improving
VT patients’ care.
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