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ABSTRACT

The necessary edge condition, which is used here, 
includes both dynamic variation of the contact angle and 
contact angle hysteresis. It is given by making the slope 
of the free surface at contact proportional to its 
velocity, however, viscosity has been ignored throughout.

Six problems are studied. The first one is the 
damping of capillary-gravity waves inside a vertical and 
axisymmetric cylinder, where the frequency of these waves 
are calculated.

The second problem is concerned with the study of the 
waves produced by a vertically oscillating cylinder, and 
determining the surface elevation, at both on and large 
distances away from the cylinder.

The third problem is the horizontal oscillation of a 
cylinder partially immersed in the fluid, such that the 
cylinder and the fluid are both of infinite or finite 
depth, where again the surface elevation from the free 
surface at large distances and on the edge of the cylinder 
are evaluated.

The fourth problem studies the scattering of a 
capillary-gravity wave by a surface-piercing circular 
cylinder, and the depending condition applied at the 
contact line between the fluid and the obstacle. Using a 
model for this condition that incorporates the effect of 
dynamic contact-angle variation, the wave field close to 
the obstacle and at large distances away are determined.

The fifth problem studied, concerns the vertical and 
horizontal oscillation of a vertical cylinder, as well as 
the scattering of waves made by it, in shallow water. When 
the depth of the fluid is small compared with the
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wavelength, the simplifications of shallow-water theory 
can be applied and the results arrived at more readily 
than by the methods used for arbitrary depths. In each 
case, the surface elevation of the radiated waves at large 
distances away from the cylinder is obtained, as well as 
some special cases (when some of the parameters have 
extreme values).

The sixth problem studied is the waves produced by a 
vertical plate, when it is forced to oscillate 
horizontally. The length of the plate is considered to be 
finite and the fluid is either of infinite depth or of the 
same depth as the length of the plate. Both the 
steady-state and the transient motion are studied. 
However, when the depth of the fluid is small, the 
simplifications of shallow-water theory can be applied. 
The surface elevation at large distances away and the 
amplitude of these waves are calculated for the cases of 
vertically moving boundary and for the reflection of an 
incident wave.
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CHAPTER I

INTRODUCTION

1.1 - Surface Waves

Wave phenomena is observed every day in our normal 
life at home (e.g. in the bath). When water is disturbed, 
waves are produced which are due to gravity and on a small 
scale surface tension, where both of these factors try to 
restore the surface to its original level. For gravity 
waves which are sufficiently long, surface tension is 
unimportant. However, short waves are dominated by 
capillarity, capillary-gravity waves, and produced by the 
effect of surface tension as well as gravity.

When the container or obstacle is large (e.g. in 
oceans, lakes and large basins), the surface tension can 
be ignored, and the waves are treated as gravity waves 
only. However, when gravity is reduced or when very short 
waves are important, both forces of gravity and 
capillarity must be considered. For precise experimental 
studies on a laboratory scale, the effects of surface 
tension need to be taken into account. In experimental 
tanks, wavemakers are used to produce waves. They are very 
important for ship and sea defense designers. Most of the 
research done on capillary-gravity waves has concentrated 
on the propagation of waves. It is also well-known that in 
unbounded regions capillary-gravity waves behave in much 
the same way as pure gravity waves, but with a different 
wave velocity. If the wavemaker oscillates with a given 
amplitude and frequency, the steady state at large 
distance from it (the wavemaker) shall consist of a plane 
wave and the amplitude and phase of this wave are the 
quantities to be determined. This calculation was 
performed first by Havelock (1929) for a vertical infinite 
plane and a vertical circular cylinder.
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When capillarity is present, there is an extra
term in the free-surface pressure condition which is 
proportional to the curvature of the free surface. For 
propagating waves in unbounded regions, the only effect of 
capillarity is the change in the dispersion relation. When 
there is a boundary (or boundaries) which intersects the 
free surface, the increase in the order of the pressure 
condition (the dispersion relation) requires extra 
conditions to be imposed at the line of contact between 
the free surface and the boundary. Therefore when surface 
tension is included, at the intersection of A free surface 
of the fluid with the boundary, the order of the dynamic 
boundary condition shall be increased at the interface and
a term proportional to the curvature of the free surface
would be included, and hence a further condition would be 
required. The need for this extra condition was first 
pointed out by Evans (1968) in his discussion of the 
reflection of capillary-gravity waves by a vertical 
barrier. Although he recognized the importance of the edge 
condition, he assumed that the slope of the free surface
at the edge had a harmonic oscillation with a prescribed
amplitude. He made no attempt to relate this amplitude 
with the wave motion (and it cannot be chosen 
independently), and his solution contains an arbitrary 
parameter. The wavemaker problem with the surface tension 
included was discussed by Rhodes-Robinson (1971) who also 
made a similar assumption. He assumed that the slope of 
the free surface at the edge could be prescribed and 
varied in phase with the horizontal motion of the 
wavemaker.

If the microscopic-scale physics of the processes 
involved near the contact line is considered, it would be 
justifiable in some contexts, to postulate that their 
macroscopic effect can be accounted for by a contact angle 
that exhibits both a dynamic variation with the speed of 
the contact line and contact-angle hysteresis. Figure 1.1 
shows the typical behaviour of the contact angle for an
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air-fluid-solid contact.

contact
angle

speed a d v a n c  i n gr e t r e a t i n g

Figure 1.1. Dynamic contact angle with hysteresis.

In the fluid, the contact angle increases when the speed 
of advance of the fluid into the air increases and
decreases when the fluid retreats. There is also a 
discontinuity between the minimum advancing angle and the 
maximum retreating angle. Therefore, there is a range of 
possible static angles, and not just a single static 
contact angle. It follows that this behaviour of the
contact line shall produce an oscillatory motion on the
free surface. If the hysteresis is sufficiently large (for 
example for waves of small amplitude) then the contact 
line will remain at rest throughout the oscillation, which 
is the edge condition used by Benjamin & Scott (1979). 
However, in general the contact line remains at rest until 
the slope increases sufficiently for it to move up the
boundary. When the speed decreases, the contact line will 
stop moving and remains at rest until the slope decreases 
far enough for it to begin to move down again, and again 
remains at rest for a while and starts moving up and so 
on.

For the first time, Benjamin & Scott (1979) discussed 
the need to impose edge conditions. They argue that the 
contact line must remain fixed throughout the motion (the 
pinned-end condition). In brimful channel, which was their 
main interest, the fixed contact line is appropriate, but
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they also argued that the same condition can be used on a 
solid surface when the contact angle between the fluid and 
the solid exhibits hysteresis. Therefore, when there is a 
range of possible static contact angles, the edge remains 
stationary. Surface roughness on the solid boundary, 
appears to have effects on the range of possible static 
contact angles (Jansons 1985) and can be reduced by 
careful preparation of the material. It is possible that 
the wave amplitude may be so large (but still small 
enough, so that the linear theory still holds) that the 
static range of contact angle is exceeded, leading to 
dynamic behaviour becoming more significant. In a 
different context, Davis (1980) suggested that, a more 
profitable alternative is to discuss the situation when 
the static range of angle is very small. In this case the 
dynamic behaviour becomes the significant feature.

The edge condition used by Benjamin & Scott (1979) 
was also used by Graham-Eagle (1984) in KiS study of 
determination of the frequencies of capillary-gravity 
waves in a full circular cylinder. The edge condition used 
by them is the extreme case in which the contact line 
remains fixed throughout the motion. The other extreme 
case is when the contact line can move freely up and down 
the boundary. As well as these two extreme cases, there 
are also some intermediate possibilities. An edge 
condition that incorporates the dynamic variation, but not 
the hysteresis, was used by Hocking (1987a) to calculate 
the frequency and damping of standing waves between two 
parallel vertical walls. The contribution to the damping 
from the edge condition is sometimes much larger than that 
produced by viscosity. Young and Davis (1987) studied the 
motion of a vertically oscillating plate partially 
immersed in fluid with both the dynamic variation and the 
hysteresis of the contact angle included in their 
analysis. There was no coupling between the fluid motion 
induced and the position of the contact line, to the 
leading order, with the range of parameter chosen. With an 
increase in the size of the surface tension parameter, the
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fluid motion and the contact-line motion have to be 
determined simultaneously and this problem has been solved 
by Hocking (1987c). In this edge condition proposed by 
Hocking, the mean static contact angle is taken to be 90° 
for simplicity, so that the free surface is horizontal in 
equilibrium. For small amplitude waves, the linear dynamic 
variation of the contact angle has the form:

^  = x a-n (1 ixat ax ' u-i;
where x is the horizontal distance from the plate, t is
the time and 7)(x,t) is the elevation of the free surface. 
The constant X measures the strength of the dynamic 
variation; X = 0 corresponds to a fixed contact line (that 
is large hysteresis) and with X = oo the contact line can 
move freely along the plate with the contact line fixed at 
90°. Therefore the proposed edge condition not only 
includes the free-end (X = ») edge condition, but also the 
pinned-end (X = 0) condition which was used by Benjamin & 
Scott (1979) and Graham-Eagle (1984). Hocking (1987c) has
used this condition to determine the amplitude of
capillary-gravity waves generated by the vertical motion 
of a plate. This condition takes into account some of the 
wetting properties of the fluid and can be referred to as 
the "wetting" condition.

1.2 - Present Work

In chapter II, the general formulation for the 
following chapters is given, using the wetting edge 
condition explained in section 1.1.

Damping of surface waves has been studied by Benjamin 
& Ursell (1954), Case & Parkinson (1957) and Keulegan 
(1959) for containers of different shapes. Hocking (1987a) 
has solved the problem for capillary-gravity waves between 
two vertical walls. In chapter III, the problem solved by 
Hocking has been extended for water inside circular 
cylinder.
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Many investigations have been done on the interaction 
between surface waves and partially immersed bodies. These 
bodies may be fixed or moving. Wehausen (1971) and Evans 
(1981) have contributions on wave-body interactions. Hogan 
(1979) and Vanden-Broeck (1984) have discussed -fU 
capillary-gravity waves in horizontally unbounded regions. 
Since surface tension is included, an extra edge condition 
would be needed. Using the edge condition (1.1) discussed 
in section 1.1, the problem of vertical and horizontal 
oscillation of a cylinder in water has been investigated 
in chapters IV and V respectively, where the surface 
elevation of the waves at a large distance away and on the 
cylinder have been obtained.

One of the interesting problems of wave motion is the 
scattering of a gravity wave on the surface of a fluid by 
a solid obstacle. Thomson (1871), Hogan (1979) and 
Vanden-Broeck (1984) have extensively studied the effect 
of surface tension on the propagation of surface waves in 
unbounded regions. The reflection of capillary gravity 
waves by an obstacle of the shape of a vertical plate is 
studied by Hocking (1987b). In chapter VI, however, a full 
account of the paper by Mahdmina and Hocking (1990) is 
given, in which the problem of scattering of 
capillary-gravity waves by a cylindrical shaped obstacle 
is investigated. The surface elevation both at large 
distance and on the cylinder have been obtained.

When the depth of the fluid is small compared with 
the wavelength, the shallow-water approximation can be 
used to simplify the analysis considerably. With shallow 
water, the limiting value of the quantities calculated in 
chapters VI (for large time), V and IV, for small depth 
can be solved easily using the shallow water theory. These 
problems are investigated in chapter VII for circular 
cylinder wavemakers and obstacles.

So far, the steady state's problem was mentioned.
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Now, if the time expands, the problem would become harder 
because of the singularity which should be removed. In 
determining the transient motion after an impulsive start, 
there is always a difficulty, since an initial singularity 
in the slope of the free surface at the wavemaker would be 
predicted. This phenomenon was described in an unpublished 
note by Peregrine (1972), and is treated at length by 
Roberts (1988). He considered the transient motion for 
power-law motions of the wavemaker and concluded that the 
singularity could only be removed by starting the motion 
sufficiently smoothly. The solutions so far described have 
ignored the presence of surface tension, which also acts 
to provide a restoring force on the free surface. In 
chapter VIII, the wavemaker problems for capillary-gravity 
waves are studied, in which the edge condition of 1.1 has 
been used. More importantly, the examination of the 
small-time solution shows that, when the postulated edge 
condition is employed, there is no singularity in the 
free-surface elevation or the slope at the wavemaker, even 
when it is started impulsively. It is not necessary to 
include nonlinear terms in the free-surface condition to 
arrive at an acceptable solution. The particular case of a 
plane vertical wavemaker which is impulsively brought into 
a harmonic oscillation of small amplitude is considered. 
There are two special cases which have been concentrated 
on: fluid of finite depth with the wavemaker extending
from top to bottom of the fluid, and fluid of infinite 
depth with only the top portion of the vertical boundary 
of the fluid brought into motion. The amplitude of the 
steady-state wave train is obtained, generalizing the 
results of Havelock (1929). In this chapter, the problem 
of a horizontally oscillating plate in fluid of infinite 
depth is also studied, using the source-sink approach to 
find the surface elevation of surface waves at large 
distances away from the plate.

Finally in chapter IX, conclusions and possible 
suggestions on the previous chapters are made.
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CHAPTER II

NON-DIMENSIONALIZATION AND FORMULATION

2.1- Introduction

For an inviscid and incompressible fluid (which is a 
good assumption for fluids in general, specially water 
waves), moving with the velocity v, the equation of 
continuity is

V.(v) = 0, (2.1)

and the Euler's equation is

_§v------- i- v p  + g, (2.2)

where, p is the uniform density, p is the pressure, g is 
the acceleration due to gravity and D/Dt is the 
conventional notation for differentiation. Furthermore, 
since the waves amplitude are small, the fluid motion is 
irrotational and the velocity vector can be expressed in 
terms of a scalar velocity potential <p as

v = V0, (2.3)

and consequently the equation of continuity becomes a 
Laplace's equation

div(V0) = V20 = 0, (2.4)

which is solved with appropriate boundary conditions to 
determine the behaviour of small amplitude surface waves 
for different conditions.

Consider unbounded fluid of depth D', with angular
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frequency cr' and wavelength 2n/k'. The velocity potential 
for waves progressing in the horizontal x'-direction is 
given by

$ = A exp[i(k'x' - cr't')] cosh[k'(z' + D') ], (2.5)

where z' is measured vertically upwards from the 
free surface.

The horizontal and vertical components of velocity 
in terms of the velocity potential are respectively

<2 -6 >
and furthermore the horizontal component of velocity is 
expressed as (using equation 2.2)

du 1 dp f \
“at- “ ~ p ~ ax'• \ )

The kinematic and dynamic boundary conditions for 
small amplitude waves are

37)' 86 , a V  ^ /o o\“af7" = psto' -  r — *3--  P. <2-8>
ax

where tj' corresponds to the disturbance of the free 
surface.

The scaling quantity k' can be determined (using 
equation 2.8) from the kinematic condition for 
capillary-gravity waves of the given frequency at z' = 0 
such that

a-'2 - f gk' + — j tanh(k'D'). (2.9)

where y is the surface tension at the fluid/air interface, 
however, if the fluid has of infinite depth, then

<r'2 = ( gk' + y^'3 j, (2.10)
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noting that depth of the fluid also affects the boundary 
condition on the bottom end of the fluid along the z-axis.

Below, the problem of surface waves in the presence 
of vertical barriers (planes or cylinders) is discussed, 
with the fluid either outside the barriers or confined 
between them. The barriers themselves can be of planes or 
cylinders.

2.2- Cylinders

Here, it is assumed that the fluid is bounded by a 
circular cylinder of radius a. Cylindrical polar 
coordinates (ar,tf,az) with the upward vertical z-axis 
along the axis of the cylinder. The radius of the cylinder 
is chosen as the non-dimensionalization factor. The fluid 
occupies the region r  ̂ 1 if it is outside the cylinder, 
and r s 1 if it is inside.

The gravity acceleration g can be used in conjunction 
with the length scale a to provide a time scale. Thus time 
is measured by (a/g)1/2t. The dynamic pressure is pgp, the

4/2velocity components are (g a) (u,v,w) and the free 
surface elevation is 7j(r,tf,t). Euler’s equations are 
(using scaled variables),

l ap_
at ar r a#

at (2.11)

the equation of continuity is,

r (2.12)

and Laplace's equation for the pressure p is
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<je. + ? ■ £ _  + -2!p.„. =  0, (2.13)
ar2 r ar r2 a*2 az2

The time factor exp(i<rt) (or exp(-i<rt)) can be removed 
from all the dependent variables, u, v, w, p and tj, by 
considering waves of non-dimensional frequency cr.

We also need to know the conditions on the cylinder 
as well as the conditions at the bottom of the fluid to 
solve the problem.

The edge condition is (from equation 1.1, as was 
justified in chapter 1 for a stationary boundary)

5t? 8tj
= X ---- at r = 1, (2.14)

dt dr

and it includes the effect of contact-angle variation with 
the speed of the contact line. If A — > «, the free surface 
meets the cylinder orthogonally and if X — 0 the contact 
line does not move. If the cylinder has a vertical motion 
u exp(icrt), the edge condition (2.14) becomes

dl) dTJ
— u = X   , (2.15)

at ar

since it is the motion of the edge relative to the 
boundary that is required.

Finally the behaviour of the vertical component of 
velocity should be considered as the bottom of the fluid 
is approached, that is -h (when the fluid is of finite 
depth h) or -» when the fluid is of infinite depth. 
However, the radiation condition is needed only when the 
fluid is outside the cylinder, which gives the behaviour 
of waves at large distances away from the cylinder.

At the free surface, the kinematic and dynamic 
boundary conditions (in equation 2.8) are. used. The dynamic 
condition balances the disturbance to the dynamic and
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hydrostatic parts of the pressure by the capillary 
pressure, which is proportional to the local curvature of 
the surface. For a cylinder, this condition is (in 
non-dimensionalization form),

r d2v dri 1  3 2 t?
K ---—  +   +     —  - 7] = - P, (2.16)
L ar2 rar r a*2 J

where the capillarity coefficient K is the inverse of the 
Bond number and is defined as

r
K = ------ . (2.17)2 ' 7pga

The capillarity coefficient measures the relative 
importance of the two restoring forces, capillarity and 
gravity.

On the free-surface, 
di)
at = w at z = 0, (2.18)

which can be compared with equation 2.16 to investigate 
the propagation of surface waves in different cases.

The solution of the Laplace’s equation in the 
cylindrical polar coordinates leads to Bessel functions, 
and if the centre of the cylinder is included (that is 
when the fluid is inside the cylinder) the Y-Bessel 
functions should be excluded from the solutions, because 
they are singular at z = 0 (and example of which is the 
problem in chapter 3, where the damping of 
capillary-gravity waves inside a vertical cylinder is 
studied). However, if the fluid is outside the cylinder, 
the Y-Bessel functions as well as J-Bessel functions 
should be included in the solutions.

The shallow water approximation can be used for the 
fluid with the small depth (h « 1) outside a cylindrical
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wavemaker oscillating horizontally and consequently 
simplifying the problem. The variables can be expressed in 
terms of powers of h if w = hW and z = h£, and the 
relationship between frequency and wavenumber is

a-2 = k'2h (1 + Kk'2). (2.19)

2.3- Plates

The general approach for plane wavemaker is similar 
to the cylindrical one (as discussed in section 2.2). 
There are only two major differences. One is the system of 
coordinates and the other is the scaling factor.

For plates, the Cartesian coordinates is used with 
the x-axis perpendicular to the plate, along the 
undisturbed free surface, and the z-axis in the upward 
vertical direction. It is assumed that a thin plate is 
oscillating with a frequency cr', then the motion is 
entirely two-dimensional, and the chosen lengthscale for 
the non-dimensionalization is proportional to the 
wavelength 27r/k/ of the surface waves, which has the same 
frequency as the plate's oscillation. The coordinates of a 
point in the fluid are denoted by (x,z)/k7. The 
corresponding velocity components are V7(u,w), time is 
measured by (gk7)~1/2t, pressure by pV7 (g/k7 )1/2p and the 
free-surface elevation by V7 (gk7 )”1/2t j , where p is the 
uniform density of the fluid and g is the gravitational 
acceleration.

Then linearized Euler's equations for the inviscid 
fluid is,

u = d(t> du_______________ _aw________ap_ {?ax ' at ~ ax ' at ” az ' (2.20)
the continuity equation is

3u + = o, (2.21)ax az
and Laplace's equation for the pressure is
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i !e_ + =  0/
dx2 dz2

(2.22)

where factor exp(io*t) is removed from all the dependent 
variables, u, v, w, p and tj, if the non dimensional waves 
frequency is o*. Furthermore, the conditions on the plate 
and at the bottom of the fluid are needed to solve the 
problem. For the edge condition, the condition in equation
1.1 is used (which was justified in chapter 1 for a 
stationary boundary)

d T J  dTJ

  = X ----
at ax

however, if the plate has
condition becomes

dTJ  d r j

------- u = X-----, (2.24)
at ax

since it is the motion of the edge relative to the 
boundary which is required, and at x = 0, the velocity u 
is zero or non-zero if the plate oscillates vertically or 
horizontally respectively.

Finally, w approaches zero towards the bottom of the 
fluid, that is at -h or -« (when the fluid is of finite or 
infinite depth) respectively, where the radiation 
condition should also be satisfied.

The conditions on the free surface which should be 
considered, are

— = w at z = 0, (2.25)
and

K -SflL- - „ = - P/ (2.26)
ax

where the capillarity coefficient K is

at x = 0, (2.23)
i (T ta vertical motion u.e , this
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K - - * | ^ f (2.27)

and the equation for 7) can be obtained by comparing 
equation 2.25 and 2.26.

The non-dimensional form of <r' the frequency, that is
a is

<r2 = (1 + K) tanh(d), (2.28)

<r2 = (1 + K), (2.29)
when the fluid has finite or infinite depth respectively.

If the problem of plane wavemaker which is considered 
to be the oscillation of a wavemaker at one end of a 
channel with inviscid fluid inside it, then since the 
analysis takes different forms for finite and infinite 
fluid depth, we can treat the two cases separately. In 
case of the finite depth, where the depth of the fluid d, 
and the channel h, are the same, the channel’s end 
position (at x = 0) is shifted forward. When the fluid is 
of infinite depth, with a boundary at x = 0 of which the 
top portion, of depth h, is the wavemaker, the analysis 
can proceed in a similar fashion to that for a finite 
depth of fluid. If the depth of the channel is small 
compared with the wavelength, the simplifications of 
shallow-water theory can be applied and the results 
arrived at more readily than by the methods used for 
arbitrary depths. In this case, the relationship por-
the frequency \s,

<T2 = (1 + K) (i. (2.30)

It is possible to find the transient solution of the 
shallow-water equations by taking a Laplace transform. 
However, this does not give the correct result for the 
short-time behaviour because the limits h and t do not 
commute in their limits approaching zero. The impulsive
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initial motion of the wavemaker creates waves of all 
wavelengths, including those that are short compared with 
the fluid depth, but the shallow-water approximation 
assumes that all variations in the x-direction are small 
compared with those in the z-direction and this assumption 
is not valid for t small.
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CHAPTER III

DAMPING OF WAVES AT CYLINDRICAL BOUNDARIES

3.1 - Introduction

Most research on capillary-gravity waves on a free 
liquid surface has concentrated on their propagation. Lamb 
(1932) introduced methods for determining the frequencies 
of standing gravity waves for vertical boundaries. When 
the horizontal dimension of the container is large, as in 
harbours and lakes, capillarity can be ignored and only 
gravity waves need to be considered, but this is not so 
when the container is small, such as in basins used in the 
laboratories. Even then, the effect of capillarity 
introduces only a quantitative change except for very 
small containers, high frequency modes or low-gravity 
environments.

The free surface must intersect the vertical walls 
orthogonally in absence of surface tension, however with 
surface tension present, the free-surface condition has an 
extra term, which is proportional to the curvature of the 
free surface, and for progressive waves, produces a change 
in the frequency of the waves for a given wavenumber. 
However, the increase in the order of the pressure 
condition, requires that extra conditions to be imposed. 
These conditions control the position of the free surface 
at its intersection with the boundary of the container. If 
the orthogonality condition of the free surface at the 
walls is imposed when capillarity is present, the 
frequency of the standing waves in the container shall 
alter in a similar way to the change produced in 
progressive waves. But it is not clear that the condition 
of orthogonal intersection of free surface and boundary is 
the appropriate one for standing capillary-gravity waves.
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The pinned-end edge condition (one in which the edge 
remains stationary) was introduced (as explained in 
chapter 1) by Benjamin & Scott (1979) and Graham-Eagle 
(1984) independently. They argue that the surface 
elevation at the edge of the free surface stays in its 
equilibrium position, and furthermore this is the
appropriate condition for a rim-full container and
determined the frequencies for progressive waves along a 
channel with sidewalls, two-dimensional standing waves 
between two vertical boundaries and standing waves in a 
circular cylinder. Furthermore, Benjamin & Scott (1979) 
argue that the pinned-end edge condition may also be 
appropriate when the container is not brimful.

When the gravity-wave condition of an orthogonal
intersection with the free-end edge condition, is extended 
to waves with capillarity, the contact angle needs to
remain fixed at 90° without any dynamic behaviour, and the 
contact line can move freely across the solid boundary.

There are two questions of major importance in the 
study of standing waves. One is the determination of their 
possible frequencies and the rate of which they are 
damped. The damping of gravity waves has been examined 
theoretically by Ursell (1952). He showed that the major 
contribution came from the action of viscosity at the 
sidewalls, except when the container is very wide or very 
shallow. In his study of damping in closed basins, Miles 
(1967) included the effects of capillary hysteresis. He 
assumed that the contact angle is a constant with 
different values (depending on the direction of motion of 
the contact line), and deduced the dissipation from the 
rate of working of the capillary forces. He ignored the 
fraction of the time period during which the contact angle 
changes and the contact line is at rest. Without any 
reference to the edge conditions (i.e. assuming the 
free-end value) the frequency of the wave is determined. 
Mei & Liu (1973) have demonstrated the importance of the
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edge region in the calculation of the viscous damping of 
surface waves. In the absence of surface tension, such as 
in the analysis of Mei & Liu (1973), the surface elevation 
is also unbounded at the edge, however, when surface 
tension is present, the pressure is balanced by the 
free-surface curvature, and the elevation is uniformly 
small. Benjamin & Ursell (1954), Case & Parkinson (1957) 
and Keulegan (1959) independently have measured the 
damping of surface waves for containers of various shapes. 
The degree of agreement between these observations and the 
predicted values of the damping rate based on the action 
of viscosity is variable and seems to depend on the 
properties of the materials used and the preparation of 
the solid boundaries. They suggest that the neglected 
capillary effects, particularly when associated with the 
behaviour of the interface near the edge, may have caused 
the discrepancy between theory and observation. The 
free-end edge condition used by these authors and the 
pinned-end condition suggested by Benjamin & Scott (1979) 
show that the gap between theory and experiment is not 
likely to be improved. The damping rate when the 
pinned-end edge condition is used is probably less than 
that for the free-end condition because of the reduction 
in the movement of the interface at the contact line and 
hence of the fluid near to it. The observed damping rates 
are often considerably greater than the theoretical 
predictions. The wetting boundary condition implies the 
dissipation of energy at the contact line which may be 
equal to or greater than that produced by viscosity.

However, the wetting edge condition, used by Hocking 
(1987a) is applied here. This condition ( explained in 
chapter 1) includes the free- and the pinned-end 
conditions as special cases. It relates the speed of the 
contact line to the change in the contact angle. Hocking 
(1987a) applied the wetting condition to the problem of 
standing capillary-gravity waves between two parallel 
vertical walls. The frequencies of these waves, and their 
damping both by wetting and viscosity, are determined. He
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showed that the dissipation associated with the surface 
forces can exceed of that produced by viscosity.

Below, the problem of standing waves inside an 
upright fixed circular cylinder is studied with inviscid 
fluid, and the waves of small amplitude. The axis of the 
cylinder is perpendicular to the free-surface of the fluid 
and the depth of the fluid is sufficiently large for the 
effect of the bottom to be ignored, in comparison to the 
radius of the cylinder. The static contact angle is 90°. 
The waves are three-dimensional and the elevation of the 
waves from the free surface in the presence of capillarity 
is studied.

3.2 - Three-dimensional Standing Waves

An inviscid fluid of infinite depth is confined 
inside a vertical cylinder of radius a. Cylindrical polar 
coordinates (r,tf,z) is used with the origin at the centre 
of the cylinder. The non-dimensionalization factor is the 
radius of the cylinder (as discussed in chapter 2 ), and 
the waves can be linearized due to their small amplitude. 
The linearized equations of motion are:

du _ _ dp 
d t  ~  d r (3.1)

- - 1 d w  _ _ ap

A  ** 4 _*L_ + _H_ + = o (3 3)^ ar r az '
where p is the pressure and u & v are the components of
the velocity. The boundary conditions are :

-|f- — 0 at r = 1, (3.4)
and

_a£_ as z — > — oo. (3.5)az

If 7] is the free-surface elevation above its
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equilibrium position at z = 0 , the kinematic and pressure 
conditions in the linearized form, are

w' = dr\
at

T) - K a 7) d f l  +  _ l a27]

d r ‘ d r d d ‘
= P,

(3.6)

(3.7)

where K is the capillarity coefficient. Finally, the 
wetting edge condition (explained in chapter 1) is

& nat = — A dji
d r

on r = 1 . (3.8)

The pressure p, depends on the distance from the 
centre of the cylinder r, the vertical distance from the
free surface of the fluid z, and d. The z-dependence is

00

Z (z ) = ) P exp (k z ) + Q exp (-k z ) . (3.9)/ n n n n
n = 1

The radial-dependence R(r), is a combination of Bessel 
functions (J (k r) and Y (k r) ) , where m is the modem n m n
number which is the order of the Bessel functions, and n 
is the number of terms in the series, and the arguments of 
the Bessel and the exponential functions k , aren
determined later using the frequency equation (when A = « 
which shall be explained in section 3.4)

of = Kk^ + k , (3.10)

where equation 3.10 is obtained (as discussed in chapter 
2) form equation 3.^, and the coefficient P is foundn
later (in equation 3.21). The ^-dependence 0(#), satisfies 
the following differential equation :

d2@ 2 /o 11\= — m , (3.11)
which gives,

© 2u d-d2

®(d) = A cos(mtf), (3.12)
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when J (k r) should be used to avoid singularity at r = 0.m n
The time factor exp(icrt) is omitted from each term.

The following conditions are obtained (by satisfying 
the equations 3.4 & 3.5)

J (k ) = 0, Q = 0. (3.13)m n n

Therefore, the pressure can be written as
00

p = cr cos (m#) ) J (k r) P exp(k z ), (3 .14)/  m n n n
n = 1

and (using equations 3.1 & 3.2)
00

u = i cos (mil) ) P k J (k r) exp(k z), (3.15)/  n n m n n
n = 1

w =  i cos (mil) ) P k J (k r) exp(kz). (3.16)/ n n m n n
n = 1

Therefore, the surface elevation ti (using equations 3.6 &
3.16) is

1 aPv  =  — 2 dZ<T

oo
 cos (mi?) y  p k j (k r), (3.17)CT n n m n

n = 1
On the free surface, the exponential term is unity, then 
surface elevation is a function of r and only.

The complementary solution of equation 3.7 is
- 1 / 2  N - 1 / 2  N

ri K J= A im Im rK (3.18)T) = A aJm

and since I produces inward moving waves, as is required.m
In order to compare the solution of equations 3. and 
3.7, surface elevation tj, should be
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V = > C J (k r) ,/ n m n (3.19)
n = 1

where C is (using equations 3.1-f & 3.7 and equating the 
coefficients of J (k r))

C = cr

Kk + 1n

P . (3.20)

Since J (k r) is a Bessel function, it satisfies them n
following differential equation

d*j (k r) -m n ^  X

dr

dJ (k r)m n

dr

hence the solution to the differential equation of 3.7 is
- 1 / 2  x

7) = Al I r K

+ cr cos(mtf) I — 1 +n = 1 Kk
J (k r).2 m n (3.22)

In order to compare the two expressions for 77 (in 
equations 3.22 and 3.1^), the first term of the above 
equation (3.22) should be written as an infinite series of 
J (k r). Therefore letm n

- 1 / 2  x
I r Km = cos(m#)\ B J (k r),/ n m n 

n = 1

(3.23)

and hence 
1

r I |r K
- 1 / 2

] J (k.r) dr = B J m' A • r r J (kr) J (kr) dr,m n m
(3.24)

where the right-hand side of the equation 3.24 becomes
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Bn/\Jm(kn)/ 2 k* (by using the first condition in equation 
3. i 3 and the l'Hopital's rule), and its left-hand side
gives

i K1/2 - 1 / 2  x
J |i Km

( K k n2 + * )

(3.25)

and hence the coefficient B is obtained. Therefore tjn
becomes (by using equations 3.23 and 3.22)

7) = cos(m#)
n = 1

— 2Ai K1/2 k 2 J I i Kn m 'K‘ )
Kk + 1n ) ( * "  -  v )

+  CT

1 + Kk Jm(knr) m n (3.26)

By equating the coefficients of J (k r) in equations 3.26m n
and 3.17, the following expression for P in terms of A isn

p =n

. t.1/2 i 2 — ' , . .,-1/2.—  2Aicr K k J (l K )n m

(-Kk 3 - k - cr2) J (k ) Im2 - k 2)n n m n I n J

(3.27)

Therefore the edge condition in equation 3.8 can be 
written as

cos (mtf)

n = 1

. 2 _,1 /2 _ ' . . -1/2.2A (T k K J (l K )
J (k ) k -------- --------------------------------m n n / \

(+Kk 3 + k - a 2) J (k ) m2 - k 2/m n I n Jn n

= - AAi K~ 1 / 2 |i K~ 1 / 2 j > (3.28)

and therefore,
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00

I -2crKi k 3n (3.29)
/  f 2 . 2L— 1 m - kn = 1 nn d „ « r )

where
d (cr) = crn

2 Kk 3 k . (3.30)n n

Here, a theoretical determination of the damping of 
surface waves by capillary action has been presented. This 
damping is associated with conditions at the line of 
contact between the fluid and the container. A significant 
contribution to the total damping rate, and sometimes a 
dominant one, is the capillarity, since the wetting edge 
condition can account partially for the effect of the 
surface tension in dissipating the wave energy. The 
important point to remember is that in this chapter, a 
free-oscillation problem is studied and hence the 
frequency cr, is unknown (the analytical approach to find 
the real and the imaginary parts of the frequency is given 
in the next section). In figures 3.1, 3.2 and 3.3, the
imaginary part of <r is drawn against the real part for the 
first three modes. The imaginary parts give the damping 
rate associated with capillarity and the edge condition. 
As predicted this is zero for the free- and the pinned-end 
cases, but intermediate values of X give significant 
damping rates. For each mode, the initial guess for cr is 
made at X = co, which corresponds to the free-end case and 
as X decreases, the graph goes to its maximum which 
corresponds to a loss of energy, and then decreases 
towards the pinned-end case with X = 0.

The case of m = 0 corresponds to the axisymmetric 
case with the lowest loss of energy.

In all three cases, the biggest frequency corresponds 
to the larger mode. For K and m equal to unity (where m = 
1 corresponds to the splashing mode), the real and the
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imaginary parts are of the same order, suggesting a big 
loss of energy. In this case (i.e. m = 1 & K = 1), the
first part of the curve starting from X = 0, before
approaching its maximum value at (4.2, 3.01), is vertical. 
This behaviour is less apparent when K = 0.1 and K = 10. 
When the splashing mode is considered and K = 1, the real 
and imaginary part of the maximum frequency are of the 
same order. When K is 10 they are again of the same order,
but if K = 0.1 (i.e. small capillarity), they are not of
the same order with the maximum at (2.02, 0.56).

3.3 - Axisymmetric waves

This is the special case of the problem discussed in 
the previous section. Here, the problem is axisymmetric 
(i.e. independent of #), and m = 0. There is an additional 
term independent of r in the expansion 3.23 (Dini Series) 
which can be cancelled by including a constant pressure 
term in equation 3.14. Thus the complete solution of 3.7 
satisfies the condition that the volume of the fluid is 
unchanged by the disturbance. Therefore, the equations for 
7) and X can be obtained by substituting m = 0 into the 
corresponding equations (i.e. equations 3.22 and 3.29 
respectively).

3.4 - Numerical Approach

In this chapter, unlike the other chapters, the 
frequency is unknown, therefore the real and imaginary 
parts of cr are to be found. If k is known, cr can also ben
obtained. Therefore, the first step is to determine the 
root of

J 7 (k ) = 0. (3.32)m n
The Bessel functions J and J ' can be written in terms ofm m
lower orders of Bessel functions, using recurrence 
relations The values of J (k ) and J (k ) are determined0 n 1 v n
numerically (using NAG library). The initial guess for the 
root of the equation 3.32 is improved by using Newton's
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method in the following form
* (3.32)s s /n n

where the final updated root (s *) is the root of then
equation 3.31. The next root for the given mode is kn+ tt, 
and therefore this way all the roots of the equation 3.31 
are obtained by adding n to the previous root .This 
procedure is repeated for every mode (here, only three 
modes of 0, 1 & 2 are considered). For the Newton method, 
here, numerical results (and comparing them with the 
available tables of roots of Bessel functions (e.g. 
Abramovitz's (1970)) show that 20 iterations give 
sufficient accuracy (up to 10’4) .

Once the roots of the equation 3.31 are known, the
real and imaginary parts of the frequency are obtained.
When A. = oo, 3n(<r) = 0 (according to equation 3.29) and
therefore the initial value for the real part of cr (by
using equation 3.32) for fixed m and the first root of the 
equation 3.31 (i.e. for n = 1) is

When X is infinite or zero the imaginary part of a is 
zero. But for other values of X (5, 2, 1, 0.5, 0.2, 0.1) 
between these two extreme values, both the real and the 
imaginary parts of cr shall be obtained. For each value of 
X, the real part of cr is updated using Newton's method in 
the following way

( \ i / 2
<r = I Kki'3 + k I (3.33)

cr* cr F(<r) (3.34)
where

00
3

(3.35)
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where the equation for dn(cr) is given in the equation 
3.29. For the fixed value of X, the frequency a, has an 
imaginary part, say e, where (using equation 3.29)

Kk 3
e -----------  , (3.36)

X 2 - m2

which is a good approximation for the initial guess of the 
imaginary part of <r. This can be improved,' using Newton’s 
method again.

The calculation was repeated for the first five 
modes. Values chosen for the parameter K are 10, 1, 0.1
and 0.01. The range of X is taken to be from 0 to 10. 
There is no need to choose a larger value for X since 
increasing the value of X from 10 to 100 has little effect 
on the convergence. Therefore the behaviour of the curves 
at X = 10 gives a good idea of their behaviour at the 
extreme case of the free-end edge condition.

Numerical results shows that the number of terms 
required in the series depends on the value of K. For a 
larger K, the number of terms that need be included is 
smaller. The summation is truncated at n = 200 in all 
cases, since larger values of n (300 and 400) only differ 
in the third decimal place.
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Figure 3.1. Imaginary against real part 
of frequency with K = 0.1.
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Figure 3.2. Imaginary against real part 
of frequency with K = 1.

37



Imaginary part
14

12

10

8

6

4

2

0
25 30 3520150 5 10

Real part

m = 0   m = 1 m = 2

Figure 3.3. Imaginary against real part 
of frequency with K = 10.
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CHAPTER IV

VERTICALLY OSCILLATING CYLINDER

4.1- Introduction

The interaction between surface waves' and partially 
immersed bodies (either fixed or floating) has been 
investigated (see e.g. Wehausen (1971)) before, where in 
the majority of the applications the gravity waves have 
been considered only and the effect of the surface 
tension has been ignored. When gravity is reduced or 
short waves tend to be important, capillarity cannot be 
ignored and both restoring forces of gravity and 
capillarity should be included. Hogan (1979) and 
Vanden-Broeck (1984*) have investigated the 
capillary-gravity waves in horizontally unbounded 
regions, but little consideration has been given to the 
interaction of such waves with vertical boundaries. 
Hocking (1987c) studied the case of vertical oscillation 
of a plate partially immersed in a fluid, where both 
restoring forces, the dynamic variation of the contact 
angle and contact-angle hysteresis were considered.

Below, it is assumed that a cylinder of radius a is 
oscillating vertically along its z axis, partially 
immersed in a fluid with inviscid fluid (with negligible 
viscosity) of infinite depth with the radial coordinate 
a * r z oo, such that the motion is independent of the 
azimuthal angle # (since the cylinder oscillates parallel 
to its z axis), and the waves can be linearized due to 
the small amplitude of the motion. Then the elevation of 
the surface waves from the free surface of the fluid is 
determined.

The following notation introduced below shall be
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used in the sections of this chapter

Jo(k,r) = Yo(kr) JQ (k) - JQ(kr) Yq (k),
/2

J0(k) = Yo (k) + Jo (k),
kj = k(Kk‘ + 1), k2 = k' (Kk'2 + 1), 

k = k - k , k = 3Kk'2 + 1 ,
3 1 2 '  4 '

e = ~ n'U k = k2K + k/2K +> Kkk' + !
' 5

H (l) H (1>(k) 0 v '
(k - k') k H 111 (k)
'  5 0 V J

dk

H (2) H (2) (k) 0 v ’

(k - k7 ) k H (2)/ (k)
v ‘ 5 o v ‘

dk

H (1) (k) = e H (1)/ (k) , H (2)(k) = H {2)' (k)o '  o v / ' o  - 0

where J and Y represent the Bessel functions. H is the o o r o
Hankel function, K is the capillarity coefficient. The 
length scale chosen for non-dimensionalization (as 
explained in chapter 2) is of tw. The wavelength
27T/k' of surface waves have the same frequency as the 
oscillation of the cylinder, and the angular frequency is 
or. It should also be noted that differentiation with 
respect to the corresponding argument is represented 
by ' .

4.2- Surface Elevation

The equations of motion and continuity, in the 
non-dimensional form (as discussed in chapter 2) are 
respectively
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au
at
aw
at

au
ar + u

_ ar

_ _?£_ az
a w
az = o,

where the conditions on the free surface are
dvw  =

37) -icrt— eat

p - T) = - K

= A

at

ari
ar

d2Tj

dr2

a 7)
ar

and the associated boundary conditions are 
u = w  = 0 as r — > oo,

(a — p O  W — > 0 as z — > —  co,

u = 0 at r = 1 .

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
(4.8)
(4.9)

The pressure, loy using a superposition of separable 
solutions can be expressed as

p = e- 1 crt k z J (kr) + f Y (kr) ov 2 ov 7]  dk,
by 0

such that fusing equations 4.1, 4.2 & 4.9)

f = - i
f Y (k) 2 0 ' 7

J ( k )0 v 1

(4.10)

(4.11)

and since the fluid is outside the cylinder, both Bessel 
functions are included, that is the singularity at the 
centre of the cylinder (r = 0 ) does not need to be 
excluded. Until further notice, the exponential term in t 
has been omitted since it appears in the right-hand side 
of all equations.
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The relationship between cr and k' (as explained in 
chapter 2, using the dynamic condition on the free 
surface) is

O-2 = k'(Kk'2 + 1) = k2. (4.12)

The surface elevation y (using equations 4.6 and 
4.10) can be expressed as a non-homogeneous second order 
ordinary differential equation

d2y _1_ d y  1_ _______ 1
d r 2 r dr K K f3 JQ (k , r ) dk, (4.13)

where
f

f ,  r-2--- , (4.14)
J (k)0 v 1

and its solution as the sum of the complementary and 
principal solutions respectively is (noting that 
JQ(ri/ K1/2) and KQ (r/ K1/2) are equal)

00
K (r/ K1/2)

y = f K 1/2— ^-------- +
4 K (K'1/2)

k J0(k'r)
£2 - F  j'(k) dk- (4‘15)l o x 1

where f shall be determined later (when the coefficient
f3 is found by first evaluating f and f ) by using
equation 4.14, as its principal solution should be a
linear combination of Bessel functions J (kr) and Y (kr).o o
Then, using the complementary solution of y (in equation 
4.15)

where the coefficient f is determined later
4

(equation 4.320, and finally, the surface elevation can 
be expressed as (using equations 4.2 and 4.4)
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?) = dZ f k J (k,r) dk 3 o ' ' 7 (4.17)

The term KQ(r/ K 1/2) of the complementary solution of the 
surface elevation (in equation 4.15) can be written as an 
infinite integral of the linear combination of Bessel 
functions such that

K
p

r
k ,/2 j

J0(k) JQ(k,r) dk, (4.18)

and after multiplying both sides (of equation 4.18) by 
rkJQ(k,r), using the Fourier-Bessel integral theorem^ 
(discussed by Sneddon (1951)) and the definition of the 
Bessel function

R oo
\ \ ►Vv
R — oO

J

* _ Tel(e,r) ,
rk JQ(k) Jo (k ,r )a dk dr = JQ(k) JQ(k) (4.19)

1 o
* ' \
rk K0

, 2  1/ 2
J o(k,r) dr =   J0(k,l) K0'(K_1/2)

(4.20)

respectively, however, since JQ(k,l) is the Wronskian of 
YQ(k) and JQ(k) it is equal to -2/7rk, and

J 0 (k )  =
T, , - 1 /2 . 

2k K Ko (K >
TTk J (k )  0 v 7

with (using equations 4.18, 4.17 & 4.15)

o

f =
3

2f Kcr‘
4

rrk J (k )
3 0 '  1

+ fs ~YT- 6 (k-k ),

(4.21)

(4.22)

where f is are determined later (from equation 4.32), 
and 8 is the Dirac delta function. Finally, the surface 
elevation is expressed as (by substituting equation 4.22 
in equation 4.17)
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2f kK
4

7Tk

JQ (k , r ) 

J0<k >
dk + f5 JQ(k',r) (4 .1k)

4.3- Away From The Cylinder

The behaviour of the surface elevation tj at a large 
distance away from the cylinder (that is when the radial
distance r approaches infinity) is analyzed here. The
Bessel functions are expanded in terms of the Hankel 
functions as

A g j

J (k) = H (k) H (k)0 0 0

5o<k”>- - 2 T -  { H0(1,(kr) H0(2)'(k)

- Hq<2>(kr) H0(1)'(k) j,

where the asymptotic value (as r — > ») is

50(k,r)= - 2 1 -  (-sf^)172^  Ho<2,'(k > - -J- HoU,'<k >}'
(4.26)

and the surface elevation can be expressed as (using 
equations 4.26, 4.24 and 4.23)

(4.24)

(4.25)

77 = - -•
r

if K 4 H0‘1’(k,r'l H (2>(k-,r) 0

7i (k-k' ) k ' 5

2H
0

a
1

w

1__
_ dk

+ [fs 5o(k''r >]

if K 4
7T [ H0(U<k > - H0<2’(k  ̂ ] + [f5 5o'k''r)]

(4.27)
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In order to avoid singularity as k — > k7, and assuming 
that k = ik and k = -ik for HQ(1)(k) and HQ(2)(k) 
respectively, as r approaches infinity, for small values 
of k, and noting that

-kr 'PH* rrkr '
1/2

2cr - ik(l-Kk2) Ho(1)'(ik)

cr2 + |ik( 1-Kk2) Ho<2) (ik)
dk

— kre k
3 / 2

r1/2 K '(k) 0
dk

= 2 { kV2 r"1/2| = - £ i £S/2) as
(4.28)

_ - i
since with k is small, Kq7 (k) - k , and (furthermore
from Abramowitz (1970))

7T1 (i) TTl (2)V k> = - T-  H0 (ik> = - - T -  H0 <"ik>
H0(1)/(ik) = Ho(2),(-ik) = - K0'(k),

(4.29)

(4.30)

then by contour integration

H (1) (k) - H (2) (k) a l(2lTk' }---- I"  e(k' *—  +
r1/2 k L H (1) (k')

4 0 v 7

-1
ee (k7) ] ^

H (2)/ (k7 ) -I
0 (4.31)

The function f , considering the radiation condition and 
the time dependence e , can be expressed as (using 
equations 4.30 and 4.27)

45



2ik7 K f
f =

5 k H (1) 7 (k7 ) H (2)/ (k7 )
4 0 '  ' 0

(4.32)

and finally the surface elevation at a large distance 
away from the cylinder t? , is

7) = e (k '> (-S R E -)
1 / 2 2f K

4

k h  (1)' (k-)
4 0 '

as r — >oo, (4.33)

noting that the right-hand side should be. multiplied by
e term. Then using equation 4.5, can be determined
as

■F —  ITT^ — 4K<J f ' (4.34)

and

k J (k)
3 o '  7

dk + 7T1

k J (k7 )
4 O ' 7

• 2. ITT X
4Kcr

(4.35)

The principal value integral above is evaluated in 
section 4.5 of this chapter.

Finally, the surface elevation in the transformed
1/2coordinate tj = tj r ,

V = e(k7 ) nk'

1 / 2 2f K
4

( 1 )7 1 k H (k7)
4 0 '  7

(4.36)

and are presented in Figures 4.1-4.7.

For a given capillarity coefficient K, the value of 
7) decreases monotonically as X increases for k7 less than 
unity, as presented in Figures 4.1 and 4.2 (with K =  10 
and 0.1 respectively). However, the
value of surface elevation tj, tends to be I When
k7 is large (such as 8,4,2,1) for a given K ( = 100 and 
0.1 as presented in Figures 4.3 and 4.4).
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The variation of 7) with X for different values of K 
(= 0 .1, 1 and 10) for fixed value of k7 (of unity) is
presented in Figure 4.5. The surface elevation 7) for

1/2small values of k7 , behaves as K and is directly 
proportional to K for values of X < 0.5 and X £ 0.5 
respectively, and furthermore for a given value of k7 , it 
(t?) decreases as capillarity coefficient increases and X 
approaches infinity.

The value of the surface elevation depends on the 
radius of the cylinder which changes with k7 if values of 
X and Kk72 are zero and constant respectively, such that 
7] decreases when the radius i'n creases while k7 increases. 
In Figures 4.6 and 4.7 variation of rj with k7 (for fixed 
values of K) and with K (for fixed values of k7) are 
presented respectively.

4.4- On The Cylinder

The surface elevation on the cylinder, that is at 
r = 1, can be expressed as (using equation 4.z3»)

-ikrr JQ(k,r)
2 o* JQ(k) k 3 W(K,k7 )

dk +

k'Ti2 JQ(k',r)
2o- k4 Ho'2)' (k' ) Ho (1>'(k') W(K,k')

(4.37)

then

T?

where

-71

k H (11' (k') H <2)< (k')
4 0 '  1 0 '  7

+ i Z(K,k')

r=l
cr W(k.,k7 )

(4.38)
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w(K,k') = 7T1

k H 11 * * (k') H <2)' (k')
4 0 '  '  0 '  7

+ Z(k,k7) + Xin2

4Kcr
(4.39)

with Z(K,k7) being evaluated in section 4.5.

The value of the surface elevation at different 
values of K and k7 and X is computed (and presented in 
Figures 4.8-4.12). Furthermore, as in Figures 4.8 - 4.10, 
the surface elevation tends to be a constant approaching 
zero for large values of k7 (typically 4 or larger) and 
K i 1.

4.5 - Numerical Approach

The principal value integral in equation 4.35 can be 
expressed as

i I * | ----1-----  dk = I -  I ,
k3 Jo<k >

(4.40)

where I and I are 1 2

I = i J (k7 ) ov 1 (k - k ) ' 1 2
dk =

k J (k)
4 O ' 7

In
f k 1 2
Kk/ 3

1/2

3k' K1''2
<k 4 + 3) 1/2 tan-l

k + 3 I 1 / 2-.
4

Kk7 2V ^

(4.41)

J (k) - J (k7) o o
(kt - O  jQ(k) Jo(k7)

dk
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For other values of k the above principal value 
integral is integrated numerically by the trapezoidal 
rule from zero (its lower limit) to a large value of k 
( = 200 with step size of 0 .1, where satisfactory 
accuracy is obtained according to the computational 
results), and then analytically to its upper limit 
infinity (using the asymptotic value, since I tends to 
be indefinite at large values of k) . The computation is 
performed for different values of the capillarity 
coefficient K ( = 0.1, 1.0 and 10.0) and k'(= 0.1, 0.2, 
0.4, 0.6, 0.8, 1, 2, 4 and 8 for each value of K) with 
0 n - > o o  ( =0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10, 
where the last value satisfactorily presents the upper 
limit of \ from numerical point of view).

The step size is taken to be 0.1 since the computed 
values are accurate to three decimal points with smaller 
step size such as 0.05, 0.025, 0.0125 according to the
computational results.

The upper value for the trapezoidal rule is taken to 
be 200 since with larger values, the accuracy is to the 
second decimal points.

The capillarity coefficient K is taken to be 100, 
10, 1, 0 .1, 0 .01, 0 .001, where the upper value is 
according to the experimental results.
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Figure 4.5. Surface elevation at large 
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Figure 4.7. Surface elevation at large 
distance away from the cylinder as a 
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Figure 4.8. Surface elevation on the
cylinder; K = 10.

53



Elevation0.8
k’ =8
k’ = 4
k' = 20.6

0.4

0.2

107 8 94 5 62 31

Figure 4.9. Surface elevation on the 
cylinder; K = 1.
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Figure 4.10. Surface elevation on the
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Figure 4.12. Surface elevation on the
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CHAPTER V

WAVES PRODUCED BY HORIZONTAL OSCILLATION OF A CYLINDER

5.1 - Introduction

Waves on the free surface of a fluid in a 
gravitational field can be produced by the normal motion 
of a wavemaker immersed in the fluid. The displacement of 
the fluid by the wavemaker leads to a deformation of the 
free surface, which propagates away from the wavemaker. 
The problem is then to determine the characteristics of 
this propagating wave train, given the motion of the 
wavemaker.

There has been a number of investigations and 
research on the propagation of water wave trains but most 
of them have ignored the presence of surface tension, 
which in addition to gravity acts to provide a restoring 
force on the free surface. There has been some work by 
Hogan (1979) and Vanden-Broeck (1983) on capillary-gravity 
waves in horizontally unbounded regions, although the 
interaction of these waves with the boundaries is not 
taken into account. The dispersion relation for waves 
controlled by the combination of gravity and surface 
tension is well known, and suffices to determine the 
properties of such capillary-gravity waves in the absence 
of vertical boundaries. However, since the presence of 
surface tension increases the order of the dynamic 
boundary condition on the pressure at the free surface, 
the problem of capillary-gravity waves in a horizontally 
unbounded fluid can be solved only when some suitable edge 
condition is applied where the free surface and the 
boundary intersect. In this chapter, the edge condition 
which has been justified in chapter 1, is used.

Here, the elevation of surface waves (both at a large
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distance and on the wavemaker) produced by horizontal 
oscillation of a vertical cylinder, is studied. The 
surface elevation at large distances away from the 
cylinder shall be studied both when the fluid is of finite 
and of infinite depth.

The following notation is introduced which shall be 
used in the following sections

J ^ ^ r )  « Y^kr) j/(k) - J^kr) Y^fk),
a
J x(k) = Yj / 2(k) + J / 2(k), 

kt = 1 + Kk2,

k2 = k(l + Kk2) tanh(kh), 
k3 = k'(1 + Kk/2) tanh(k'h),

k = 1 + Kk/2, 
k5 = 1 + 3Kk'2,
H^k) = H (1)' (k) H <2)' (k) .

Consider a vertical cylinder of radius a which is 
partially immersed in the fluid, and whose axis is the 
z-axis. If a force is applied to the cylinder in a 
horizontal direction, the fluid will be displaced which 
leads to the free surface being deformed. As well as 
gravity, surface tension acts on the surface to provide a 
restoring force. The consequence is a propagating wave 
train whose characteristics are interesting to be 
determined.

5.2 - Surface Elevation

The velocity potential has two components: the
forcing <p̂ , and the scattering part <pz . The total velocity 
potential <f> is the sum of 0i and <f>2 . The potential <p̂ has
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r and # dependence and no z - dependence. However, <p2 is a 
function of r, # and z. The # - dependence is like cos# 
and time dependence is like e*lcrt.

The following conditions should be satisfied by the 
velocity potential and its components

e +icrt cos^ ^  r==\ t (5 .1 )

at the bottom, (5.2)

as r — > oo. (5.3)

The edge conditions are (using the non-dimensionalization 
discussed in chapter 2)

d<p
 —  = 0 on r = 1, (5.4)
dr

= X -§£_ on r = 1. (5.5)

Now, the first component of the velocity potential <p , 
satisfies Laplace's equation and is

0i = (Ar + —5— ) cos# e+ °̂rt. (5.6)

Therefore A = 0 (using equation 5.3). Hence (p (by
applying equations 5.1 and 5.4) becomes

+ ic r t
<P1 = -- — ---- cos#. (5.7)

The second component 02, has two different z - components 
depending on whether the height of the cylinder is finite 
or infinite.

a<p
dr
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5.3 - Finite Depth

In this case, the depth of the fluid is h (finite) 
and therefore the z-dependence of #2 is cosh{k(z+h)} 
(satisfying condition 5.2). Since the fluid is outside the 
cylinder, the radial dependence of <f>2 is a combination of 
the two Bessel functions J^kr) and Y^kr) and hence 

00

=  j [c •V**) + D V kr>] COcosh(kh?)}" cos* d k - (5-8> 
0

The coefficient C can be written in terms of D (by using 
equation 5.4) and if E(k) is written as

E (k) = D ,(k) , (5.9)
Jj (k)

then the total velocity potential <p is

. -icrt <p = e costf
00

1
E <k > Jt<k 'r > COcosK(k~H y ~  dk

(5.10)

The time dependence e 1(7t can be omitted since it appears 
in every term. Since

 SS-. I5 -11)

therefore

p =-i<x costf - - FriM T (V r) cosh{k(z+h) } „E(k) (k,r) cosh(k-h-)

5.12)

>̂vj noting that 

dvw  = at at z = 0 and a w
at _  _dR_ az ' (5.13)
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(A)€ Ucxve ,
v  =  - i cos# E(k) k Ji(k/r) tanh(kh) dk (5.14)

At the free surface, the disturbance to the dynamic and 
hydrostatic parts of the pressure (as mentioned in chapter 
2) must be balanced by the capillary pressure, which is 
proportional to the local curvature of the surface. Hence 
at z = 0,

„ - k U ! * -  + - L
L ar2 r

31) +
dr

V  - P' (5 -l5>r a# -J
where the parameter K, an inverse Bond number, is defined 
as

K =
pga

but d2-n
a#2

= — 7] (from equation 5.14), then

(5.16)

V = Qi K K 1/2
C O S #  + icr C O S #

where

i<r cos# J (k, r)
E(k) ----------    dk,

Q =
K1/2 L

K
K 1/2 '

(5.17)

(5.18)

and L is some pa-ro^etar which shall be determined later (in 
equation 5.24). Writing the first two terms of equation 
5.17 as integrals with the same kernel as the third term

Fo Cr- Î iePj<rÔ  ^  >
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t7 = 2KLi cos# dk - 2icr cos#
7T J x (k)

dk
7rk J 1(k)

- icr cos# E(k) J1 (k,r) dk.
1

Now, by equating the two expressions for 7),

(5.19)

E (k ) =
2cT KLk2 - ck I

!------, *) ,
7r k2 J x (k) <r2 - k2

+ D 5 (k-k'), (5.20)

where 5 is the Dirac delta function and the coefficient D 
is to be determined later. Therefore the equation for tj 
has the following form (by substituting E(k) into the 
equation for t?),

2
V = - cr cos#

cos#

* tanh(kh) J (k,r) 2cr KLk|̂ KLk2 -o>ki|
7T J (k) k i v '

dk

k tanh(kh) J (k,r) D 5 (k-k') dk. (5.21)

To find the surface elevation of the fluid from the free 
surface at a large distance away from the cylinder, 7/ , as 
in chapter 4, the asymptotic forms of the functions of r 
should be written. Then the denominator of the first term 
of the above equation is factorized, followed by k 
approaching k'. By satisfying the radiation condition, the 
parameter D can be obtained as
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D =
2 cri K L k '2 -  crk4

k' 2 H (k') 1 ' 7

tanh(k7h) kg + k7h k4 sech2(k7h)
and hence

= 200 bM1 /2 cos# tanh(k7h) e r 3rr/4)
H 1 (2)/(k7)

KLk7 2 - (rk
k7 tanh(k7h) k + k 7hk sech2(k7h)

5 4

Now applying the edge condition 5.5, the parameter ] 
be determined as

L =
GJ\*M ~)

where
4cr k tanh(k7 h) . 2 .

G (V\,k' ) -  Acr+ ------- ^ -------------------- 4avn^_ N
irk'2 H (k') M(k') 7T2 1

(5

G (k,k') = A + 4K^tanh(k'h) 4o*Ki
7T H ^ k 7 ) M(k7) n 2 2

M(k7) = tanh(k7h)ks + k7 hk4sech2(k7 h)

N
k tanh(kh) 

k2 Jt(k) (<r2 - kaj
dk,

(5.22)

(5.23)

1 can

(5.24)

>.25)

(5.26)

(5.27)

(5.28)
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00

N2
tanh(kh) (5.29)

The principle value integrals shall be evaluated in 
section 5.7.

The surface elevation at large distances away from 
the cylinder is obtained for different depths h, namely 
0.1 (corresponding to shallow water)', 1 and 100 
(corresponding to infinite depths). For each of these 
depths, different values for the parameter k', namely 10, 
5, 2, 1, and 1 to 0.2 with interval of 0.1 have been
tried.

\LFigures 5.1-5.17 show that |7?00|r is a monotonically 
decreasing function of K. The curves seem to attain their 
limits when X — >10, although X = 10 is not large enough 
to be infinite. Another interesting feature about these 
curves is that when k' changes from 10 to 0 .2, the curves 
first have minima and as k' reduces, they gradually seem 
to have maxima, although the peaks are rather flat. The 
behaviour of these curves is the same for different 
depths, that is when h is 100, 1 or 0 .1 .

5.4 - Infinite Depth

Here, the depth h is taken to be infinite . The 
corresponding velocity potential, therefore becomes:

which satisfies the boundary conditions 5.1, 5.2 and 5.3. 
The pressure and the surface elevation are

CO
<f> = e+ ̂<Jt cos# <- — + E(k) Ji(k,r) e ^zdk ► (5.30)

o

63



p = icr cos# - — V 7E(k) (k, r) e*^ dk (5.31)

V =  Qi K
f \

r
K 1/2

„ , i <j  cos# ,C O S #  +  -----   +

-io* cos# J (k,r)
E(k) ------- c--- 2------  dk, (5.32)

respectively.

An identical procedure to the one in the previous
section for finite depth will lead to the following form
for surface elevation from the free surface y , when the00
depth h is infinite at large distances away from the 
cylinder,

?) I ri/2= 2 [—  ]I irk'r J
1/2 cos# ĵ KLk'2 - a k4j 

k7 k H (2)' (k7 )
5 1 v 7

(5.33)

The parameter L is (by using the edge condition 5.5)

L =
G2( U > y)

(5.34)

where

Gj(^ ,k7 ) =  Acr+
4cr2 k

7rk/2 H i (k7 ) M(k7 )
/i 2 •4cT 1

71
(5.35)

G ( h , k ' ) = X +   _■ 4 - ------------------ N ? (5.36)
n H (k' ) M(k') ji

with
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N
k Jt(k) - kk

j

dk, (5.37)

N
J,(k) cr -  k k

dk, (5.38)

and M(k') = kg.

Comparing the surface elevation of infinite depth and 
finite depth, it can be noticed that when the finite depth 
problem for large depth is solved an identical answer to 
the infinite depth problem is obtained proving the 
validity of the expression for the finite depth.

Figures 5.7-5.12 (which correspond to the large depth) 
show that the surface elevation of the surface waves at 
large distances monotonically increases as K decreases. 
When k' changes from 10 to 1, the curves appear to find 
minima, whereas in the interval of 1 to 0 .2, the minima 
gradually change to maxima (this behaviour is more 
apparent in the case of smallest capillarity coefficient).

5.5 - Surface Elevation On The Cylinder

In the previous sections, the elevation of water 
waves above the free surface at large distance away from 
the cylinder, was determined. In this section, the 
elevation of the waves above the free surface on the outer 
surface of the cylinder is studied.

In equation 5.14, if r is given the value of 1, which 
is the radius of the cylinder, the surface elevation on 
the cylinder becomes
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V i cos#
r=l E(k) k J^k,!) tanh(kh) dk

2i cos#
TUT

E(k) tanh(kh) dk

2i cos# 
Tier

tanh(kh) 2cr KLk - crkĵ KLk2 - crkj
7ik J^k)

dk

, 2i cos# . u \ t\+ ----— --- tanh(k'h) D = X COS# (5.39)

The surface elevation on the cylinder is a monotonic 
decreasing function of K, regardless of the value of h. 
The bigger k', the smoother the curves. For smaller k', 
the curves tend to their limits faster as X grows, and the 
steeper are the curves. Generally, X as 10 is large enough
for our calculations, although it is not infinite. |tj|_
is a monotonically increasing function of X (Figures 
5.18-5.32). This behaviour is repeated when the depth is 
changed to 100 or 0.1 although they are the two extremes 
for the depth. The smaller the height, the sooner the 
corresponding curves tend to their limits.

5.6 - Numerical Approach

The two principal value integrals, and N£
should be evaluated, where

N tanh(kh) 
k2 Ji(k) [cr2 - k2]

dk, (5.40)

and
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N tanh(kh)
JjOO cr - k

dk (5.41)

From these two (in equation 5.28) can also be
obtained, which is N + K N .

'  5 2

When k — » 0,
tanh(kh) = kh,

* - V .
and hence N

When k is large,
tanh(kh) — » 1,

s 4 t '
and therefore

tanh(kh)

X
k* J t (k) cr - k

dk s - 7T (5.42)
6KX'

where X is some large number, which is taken to be 20 in 
the numerical calculations.

Now, for other values of k, the limits of integration 
can be divided into smaller divisions ; 0 to k'- (, k7- C 
to k7 - c, k7 + c to k7 + £, k7 + £ to X and X to », where £ 
is the step size of the integration using the trapezium 
rule, and c is a small number which gives the smallest 
interval near k7. Therefore

N y- (C -e)[f(k7+ C) + f(k' + e) + f(k7-e) +

k'- C X
f(k ■-<>]

71

6KX'
+ f(k) dk + f(k) dk, (5.43)

k7- C
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where
tanh(kh) dk. (5.44)

The integrand above between the two different sets of 
limits can be evaluated numerically using the trapezium 
rule. The step size for the integration is taken to be 
0.1, and e is 0.01. Halving the step size from 0.1 to 0.05 
and reducing c by a factor of 10 from 0.01 to 0 .001, 
improves the results only in the 7th decimal place. 
Therefore in these calculations £ is taken to be 0.1 and c 
is 0 .01.

The integrand in equation 5.29 approaches zero, when 
k — > 0. When k » 1, N (k) s - 2k x "f anc* ^ecause of the 
pole at k = k',

k'- C X
N2(k) tanh(kh) tanh(kh)

o k'+ C

(C -e)|g(k/+ C)+g(k7+ c)+g(k7-e)+g(k'-C)J ► 2KX '
n

(5.45)
where, here

tanh(kh) (5.46)
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Figure 5.1. Elevation as a function of ^  
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Figure 5.7. Elevation as a function of ^  
at large distance; k’=5, infinite height.
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Figure 5.8. Elevation as a function of ^
at large distance; k’=2, infinite height.
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Figure 5.9. Elevation as a function of ^  
at a large distance from the cylinder; 
k’ = 1, infinite height.

Elevation

0.8
0.6
0.4

0 1 2 3 4 5 6 7 8 9 10

K = 0.1 K = 1.0 K = 10

Figure 5.10. Elevation as a function of ^
at large distance; k’=0.8, inf. height.
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Figure 5.11. Elevation as a function of ^  
at large distance; k’ = 0.4, inf. height
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Figure 5.12. Elevation as a function of ^
at large distance; k’ = 0.2, inf. height
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5.13. Elevation as a function of ^  
at a large distance from the cylinder; 
k’ = 5, small depth (0.1).
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Figure 5.14. Elevation as a function of ^
at large distance;k’=2,small depth (0.1).
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Figure 5.15. Elevation as a function of ^  
at large distance from the cylinder; 
k’ = 1, small depth (0.1).
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Figure 5.17. Elevation as a function of %  
at large distance from the cylinder; 
k’ = 0.2, small depth (0.1).
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Figure 5.18. Elevation as a function of
on the cylinder; k’ = 5, infinite depth.
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Figure 5.19. Elevation as a function of A 
on the cylinder; k’ = 2, infinite depth.
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Figure 5.20. Elevation as a function of A
on the cylinder; k’ = 1, infinite depth.
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Figure 5.21. Elevation as a function of >  
on the cylinder; k’= 0.5, infinite depth
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Figure 5.22. Elevation as a function of
on the cylinder; k’= 0.2, infinite depth
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Figure 5.23. Elevation as a function of ^  
on the cylinder; k’ = 5, height = 1.
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Figure 5.24. Elevation as a function of %
on the cylinder; k’ = 2, height = 1.
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Figure 5.25. Elevation as a function of ^  
on the cylinder; k’ = 1, height = 1.
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Figure 5.26. Elevation as a function of
on the cylinder; k’ = 0.5, height = 1.
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Figure 5.27. Elevation as a function of ^  
on the cylinder; k’ = 0.2, height = 1.
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Figure 5.28. Elevation as a function of A
on the cylinder; k’=5, small depth (0.1)
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Figure 5.29. Elevation as a function of ^  
on the cylinder; k’=2, small depth (0.1)
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Figure 5.30. Elevation as a function of A
on the cylinder; k’=1 , small depth (0.1)
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Figure 5.32. Elevation as a function of A
on the cylinder;k’=0.2, small depth(0.1)
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CHAPTER VI

SCATTERING OF WAVES BY A VERTICAL CYLINDER

6.1 - Introduction

The scattering of a capillary-gravity wave by a 
surface-piercing obstacle depends on the condition applied 
at the contact line between the fluid and the obstacle. A 
model for this condition that incorporates the effect of 
dynamic contact-angle variation is used to determine the 
wave-field close to the obstacle and at large distances 
from it. The solutions depend on the ratio between the
wavelength of the incident wave and the radius of the
obstacle, which is taken to be a circular cylinder, and on 
the relative size of the capillary and gravitational
restoring forces. A third parameter is a constant of
proportionality in the edge condition. Extreme values of 
this parameter relate to the special cases of orthogonal 
contact and of a fixed contact line. The strength of the 
scattered wave and the angular variation of its amplitude 
at large distances are calculated for a range of values of 
the parameters. The amplitude of the surface elevation on 
the boundary of the cylinder is also determined.

The diffraction of a plane gravity wave on the 
surface of fluid by a surface-piercing cylinder is 
mathematically equivalent to the diffraction of a plane 
sound wave by a 'hard' cylinder whose axis is parallel to 
the wave front and to the shadow of a cylinder illuminated 
by a distant source of light, the important parameter is 
the ratio of the wavelength to the radius of the circular 
cylinder. In the typical acoustic problem this parameter 
is large, in the optical case it is small, but all values 
of the parameter are relevant to the surface-wave problem. 
Phenomena associated with the scattering of waves by an

85



obstacle were studied in the 19th century and Sommerfeld 
(1896) presented the solution of the scattering of a 
surface wave by a semi-infinite plate with a vertical
edge. The first solution to be written down for the
scattering of a surface wave by a cylindrical obstacle
appears to be that of McCamy and Fuchs (1954), which is
most readily accessible in the discussion of their 
solution by Mei(1983). There has been a growing interest 
in this problem in recent years, mainly in its extension 
to the scattering of waves by multiple- obstacles, an 
interest which stems from the need to understand the wave 
forces on the supporting legs of ocean platforms (for 
example, Kagemoto and Yue(1986)).

An important feature of the solution is that the 
structure of the scattered wave is quite different near to 
and far from the obstacle. The change in the intensity of 
the scattered wave as a function of the angular position 
of the sampling point is also highly irregular. The 
acoustic problem is discussed at length by Morse (1948), 
who also gives some examples of the intensity of the 
scattered wave for short wavelengths.

In the ocean, the size of the obstacles and their 
relative spacing are both significant length scales, but 
in all reasonable cases the effect of capillarity can be 
neglected. In experiments on a laboratory scale, however, 
or with a reduced gravitational field, as at the interface 
between two fluids of nearly equal densities, it is 
possible that the restoring force of surface tension 
complements or even dominates that of gravity. It seems 
reasonable, therefore, to examine the classical scattering 
problem for surface waves by a cylinder with the inclusion 
of capillarity. It is, of course, well-known that in 
unbounded regions capillary-gravity waves behave in much 
the same way as pure gravity waves, but with a different 
wave velocity. The change in the dispersion relation is of 
great significance in problems of interference and if 
nonlinear interactions of waves are considered, but these
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matters do not affect the classical scattering problem.
There is, however, an important difference between
unbounded waves and waves in the presence of boundaries 
when capillarity is included. The surface elevation must 
satisfy the dynamical boundary condition and, when surface
tension is not negligible, a term proportional to the
curvature of the free surface must be included. This 
increases the order of the boundary condition and it is 
necessary to introduce a further condition that specifies 
the slope of the free surface at its intersection with any 
surface-piercing obstacle. This in turn implies that some 
consideration must be given to the correct conditions 
applicable at a moving contact line. Before describing a 
suitable edge condition, it is worth noting in 
anticipation that the scattered wave will contain 
contributions of all wavelengths, so that even if the 
incident wave is long compared with the capillary length 
scale, capillarity cannot be neglected in the scattered 
wave.

An edge condition that incorporates contact-angle 
hysteresis and the dynamic variation of the contact angle
has been used by Young and Davis (1987) and Hocking for a
vertically oscillating plate (1987c), and for the 
radiation of two-dimensional waves from a heaving body 
(1988a) and the normal (1987b) and oblique (1988b) 
reflection of a plane capillary-gravity wave by a plane 
barrier. The problem considered in Iki^ cAcxpter' is 
that of the scattering of an incident plane wave by a
fixed cylindrical obstacle, placed in the fluid with its 
axis vertical and piercing the free surface. In contrast 
to the previous problems, the free-surface elevation is 
fully -dimensional. The objective is to determine the 
angular variation of the mean elevation of the free
surface, both on the cylinder and at large distances from 
it. The key parameters measure the ratio of the two 
restoring forces, capillarity and gravity, and the ratio 
of the wavelength of the incident wave to the radius of 
the obstacle. The justification of the form of the edge
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condition used here is fully explained in chapter 1.

The q u a ^ ' ^ ^  of interest are the elevation of the 
free surface, both on the obstacle and at large distances. 
Because the amplitude of the scattered wave may vary 
rapidly with the angular position of the sampling point, 
an averaged value of the amplitude over all possible
directions is more meaningful. These quantities are found 
for representative values of the surface tension, 
wavelength, and the constant of proportionality in the 
edge condition. It should also be mentioned that some of 
the material given in this chapter is presented in the 
paper by Mahdmina and Hocking (1990).

6.2 - Formulation

Small-amplitude waves on the surface of water of
infinite depth are considered. A plane incident wave of 
amplitude ca, with c small, is scattered by a rigid 
cylinder of radius a, which is placed with its axis 
vertical and which extends above the fluid surface. The 
uniform density of the fluid is denoted by p, the surface 
tension by j and the gravitational acceleration by g. The 
non-dimensionalization explained in chapter 2 is used 
here. The fluid occupies r  ̂1, z  ̂0. The incident wave 
has a non-dimensional frequency equal to <r, so a factor 
exp(icrt) is removed from all the dependent variables, u, 
v, w, p and 77. The linearized Euler equation then show 
that

(u, v, w) = -i- grad p, V2p = 0. (6.1)

The boundary conditions are that p is zero at
infinite depth and that there is no flow across the 
boundary of the cylinder, so that
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p = 0 as z — > — co, —ir- = 0 at r = 1 . (6 .2)

The kinematic condition at the free surface is

icrrj = w = —  at z = 0. (6.3)cr o e
At the free surface, the disturbance to the dynamic and 
hydrostatic parts of the pressure must be balanced by the 
capillary pressure, which is proportional to the local 
curvature of the surface. Hence at z = 0,

K + _ a 2L_ + _i_ ^ _ _ p; (6 4)

L dr rSr r 3t> ■>

where the parameter K, an inverse Bond number, is defined 
by

K =  r— , (6.5)
pga

and measures the relative importance of the two restoring 
forces, capillarity and gravity. The final condition which 
is needed is the edge condition. The form chosen for this 
condition is

io'Tj = X ^  at r = 1, (6 .6 )

which includes the effect of contact-angle variation as 
discussed above. If X = 0 the contact line does not move 
and if A = co the free surface meets the cylinder 
orthogonally.

There is a plane incident wave of wavenumber k' 
moving parallel to the direction = 0, with surface 
elevation and pressure given by

2
t)i = exp(ik'r cos#), pt = —p —  exp(ik'r cos# + k'z),

(6.7)

and the dynamic surface condition (equation 6.4) then 
shows that
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tr2 = k' (1 + Kk'2) . (6 .8 )
This determines the wavenumber for a given frequency, but
k' and K shall be regarded as the independent parameters,
along with X, so that equation 6.8 determines the
frequency of the incident wave. The triplet (k',K,\) of 
parameter values shall be denoted by P. If the surface 
elevation and the pressure are written as the sum of 
incident and scattered components. so that

17 =  vi +  V  p  =  p i +  p s ‘ ( 6 , 9 )

The two components of the surface elevation, t?- and 7)s, 
must be determined so that the conditions on the cylinder 
and at the edge are satisfied and that they represent an 
outward-moving wave.

There are four quantities we wish to calculate. The 
first is the amplitude of the surface elevation on the 
cylinder which we denote by H, where

H(#,?>) = 177̂ + 77s| on r = 1. (6.10)

The second is the mean-squared value of this elevation, 
denoted by

n

E ( P )  =  12n 
—it

H(#,P)2 d#. (6.11)

The third is the amplitude of the elevation in the 
scattered wave at large distance R from the cylinder, 
which is given by

S(tf,P) = R1/217} I as R — » oo. (6.12)1 s 1
The fourth measures the intensity of the wave at large 
distances, averaged over all directions, and is given by
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I ( p > -  - 4 r  {  M 2
— 71

as R — > 00. (6.13)

For pure gravity waves (K = 0), the dynamic boundary 
condition (equation 6.4) is of lower order and cannot be 
imposed an edge condition. The other condition^; however, 
ensure that the free surface meets the cylinder 
orthogonally, which agrees with the requirement of the 
edge condition (equation 6 .6) when X = oo. It is convenient 
to consider first the special case of orthogonal contact 
for capillary-gravity waves, that is, for arbitrary values 
of K.

6.3 - Orthogonal Contact

Since ■ = 0 at r = 1 from equation 6.2, it follows
from equation 6.3 that, when there is no singularity at 
the contact line, ■ d.?— = 0 at r = 1 , which is the edge 
condition when X = oo. in this case the scattered wave can 
be written as

t? = V' A cos(ntf) H (2)(k7r), p = - exp(k'z) tj ,s / n n s s
n=0 (6.14)
(2)where Hn is the Hankel function that represents an

outward-moving wave. The dynamic surface condition
(equation 6.4) is then automatically satisfied, since the
frequency a is given by equation 6 .8 . If the boundary 

3(V + V )
condition ----^ ^ —  = 0 at r = 1, is now applied, which
also ensures that equation 6.2 is satisfied, and expand 7̂  
as a Fourier series in &, the following will be obtained

Jn (k,)A = - 2in 5  ?-------- , (6.15)
H (2)/(k7)n

where
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5 = 1  for n > 0,n '
(6.16)

It follows that the elevation of the wave is independent 
of the surface tension parameter K, which only enters the 
problem through the dispersion relation. The solution is 
otherwise identical with that for pure gravity waves, and 
for the acoustic and optical problems.

When A = oo, the parameter set 9 can be replaced by 
the single parameter k7, and write the four quantities 
describing the wave, defined by the equations 6 .10, 6 .11,
6.12 and 6.13, by Hw(£,k7), Ero(tf,k7), Sw(tf,k7 ) and 
Iro(tf,k7), respectively. Putting r = 1 into the definition 
of 77 and 7) , it is found that1 s

H (#,k' ) = -Vt- 00 ' Trk7
KJJ

in cos (nil) 
n H (2)'(k7)n =0 n ' 7

(6.17)

and

: (k') = — §—  V  6
“ 7i2k'2 "n =0 H (2)/ (k7)n

(6.18)

The asymptotic values of the Hankel functions as r — > oo 
are proportional to exp{-i(k7r - — —  n - — —  mi)}, so that

i/s ^  (-1) J (k7)

n = 0 h <2)/ (k')n
cos(n#)

(6.19)

Finally, the intensity of the scattered wave at large 
distance is given by

2
(6.20)I (k7 ) = — f oov 7 7rk- I * .

n = 0

jn (k')
H (2)' (k')n

The computed values of these quantities are presented 
together with those for general values of A in section 
6.5.
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6.4 - Finite X

When X is finite, the contact between the free 
surface and the cylinder is no longer orthogonal. The 
solution does not consist only of components with the 
single wavenumber k' and contributions from the whole 
spectrum of wavemumbers must be included. The pressure p 
can be written in the form p = Pt + P2, where

n _  cr2 k
pi " k' e 'z p k ' r  cos* + | ^  CQS (n#) Hn‘2,(k'r)},

(6.21)
and

00 r  vpo = V cos (ntf) | p (k) e z T (kr) dk; (6.22)2 La I n  nn = 0 0

the Bessel functions T (kr) are defined by

T (kr) = J (kr) Y (k) - Y (kr) J (k) . (6.23)n n n n n

The coefficients A are given, as before, by equation
6.14, so that the condition — = 0 at r = 1 is satisfieda r
by this form for p. The value of t) corresponding to p4 is 
given by equations 6.7 and 6.14 and, from equation 6.3, it 
can be concluded that

UJ

\  — i- ycr L— 1

00

cos(n&)
n = 0

k F^(k) Tn(kr) dk. (6.24)

The dynamic surface condition (equat/.on 6.4) for t? can 
also be solved, which yields a solution of the form
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w

* - Z
cos(n#)

n = 0

oo
f <* T (kr)

p (k) — ^----   dk +
1 + Kk

T,1 /2
B   ------ K (K 1/2r )
n K 7 (K"1/2) nn

( 6 . 2 5 )

where K is the modified Bessel function that is boundedn
at infinity. Applying Fourier-Bessel Integral Theorem 
which is explained by Sneddon (1951), the second term in 
this sum can be expressed as an integral with the same 
kernel as the first. Standard properties of Bessel 
functions can be used to evaluate the inversion integral, 
and therefore the equation 6.25 can be replaced by the 
equivalent form

w

-Z cos(n#)
n =0

T (kr)n

1 + Kk:
P ( k )  - B.

where

2K
7T M (k)n

dk,

(6.26)

M (k) = Jn n

,2 ,2 
(k) + Y_ (k) (6.27)

Equating the two expressions in equations 6.24 and 6.26 
for 7) , p  can be written as2 n

P -------------—   B + 6 (k - k' ) C ,
n 71 M (k) {cr2 - k( 1 + Kk2)} " "n

(6.28)

where 8 is the Dirac delta function and the coefficients 
Bn and C are to determined. On the boundary of the 
cylinder,
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a s- . n+145 ln

nk' H l2)< (k')n

B + —     dk+ C 2
2 M (k) {cr2 - k(l + Kk2)} n mr2

o n
cos (ntf),

(6.29)
where the integral takes its principal value. The slope of 
the free surface at the edge r = 1 is given by

ar -  ar + IT -  = 2 .  B" cos(n,?)' ( 6 -30)
n = 0

since has been chosen to have zero slope there and 7)1 2
is given by the equation 6.25. The edge condition 
(equation 6 .6 ), for each value of n, reduces to the 
equation

4<t5 in
----------   + icr B F (k' ,K) + C -=±- = \ B , (6.31)/ „  (2) ,, , . n n' ' n Tl(T n7Tk' H v"' (k7 )n

where

4K dk (6.32)
2 M (k) {cr2 - k( 1 + Kk2)}n 0

The part of the solution represented by tj is the sum of
the incident wave and an outward-moving wave. The
coefficients B and C must be chosen so that, at largen n
values of r, y\̂ represents an outward-moving wave for each 
value of n. The asymptotic value of T (kr) for large r isn
given by

Tn(kr) s ----— 77Z I h„<2) (k) exp{i(kr J-tt r-njI)} ~(2nkr) ( n 4 2

H (l)7(k) exp{-i(kr - -71 - - m r ) } (6.33)
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The leading term in the asymptotic value of i) comes from 
using this value for T^(kr) in equation 6.25, with 
given by the equation 6.28. The major contributions come 
from the evaluation of the principle-value integral near 
the singularity at k = k7 and from the delta-function 
part. Since there must be no inward-moving wave at 
infinity, therefore

----------------   B - C  = 0 .  (6.34)
(1 + 3Kk72) M (k7 ) nn

Using this result, the outward-moving part of tj can be 
calculated and, when this is combined with the 
outward-moving part of vif the total scattered wave at 
large distance is found to be

r 9 1 1/2
\  3 - [-iFFj exp{-i(k'r - - U r ) }  .

r 25 (-1 )n J (k' ) i"*1 H *1' (k' ) ^
> cos(ntf)i = — ,-2  + ------- 2--- ------- c l.

I H ‘ ’ (k') 1 + Kk' J
n'° n (6.35)

The coefficients C can be found (by substituting equationn
6.34 into the equation 6.31) and therefore at large 
distance R from the body,
Vs R1/2 exp{i(k7r - 7r)} =

1/2 ^  5 (-l)ncos(m>){ 9 \ 1/2 —  o vumnvrj f , \

^ ---------- 7----- 1Jn (k,) ’ .
I ' .T f k M  - iv (k M  I n )

(6.36)
n J (k7) - iY (k7)n = 0 n n

where
4Kcr

7t(l + 3Kk' 2 ) [ J (k') - iY (k')]
G (7>) = ------------------ 2-----------2------------ . (6.37)n

X - icrF (k7 ,k) + ------- -----------
n (1 + 3Kk7 )M (k7)

The function S(tf,P) (which is defined by the equation
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6 .12) is determined by taking the modulus of the 
right-hand side of the equation 6.36. The averaged 
intensity of the scattered wave (as defined by equation
6.13 ), is given by

I (?) = TTk
n = 0

lJ n (k<) ' G„ ^ >  I
M (k' )n

(6.38)

The amplitude of the surface elevation on the cylinder can 
be found from equation 6.20. When the values of the 
coefficients B and C are inserted, then

j w ) V  5n1CC 
/ (2 ) 7

cos(ntf)
h

n = 0
(k7 )

X - icrF (k7,k) + ------------------
n (1 + 3Kk/2)M (k7 )n

and the mean squared value of the elevation E(^) is 
defined in the equation 6 .11.

When X = 0, H (&,?) = 0 since the contact line is then 
immobile. When X = », these expressions for E{T),

S(^,?>) and I(P) are the same as those derived for 
orthogonal contact in section 6.3 since G (P) is thenn
zero. The relevant properties of the surface elevation can 
now be calculated by evaluating the above formulae for 
typical values of the parameter set T .

At large distance from the cylinder and when k7 is 
large (that is, for short waves relative to the radius of 
the cylinder), the surface elevation S(tf,P) shows a 
considerable and rapid dependence on the direction tf. 
Figures 6.1 and 6.2 show the results for X =  1 and X =  oo, 
respectively, for k7 = 10 and K = 1. When X = », the
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results are same as for the acoustic scattering problem, 
and Figure 6.2 is similar to one given inA- In both Figures
6.1 and 6.2 there is a long tail behind the cylinder, 
indicating that the maximum amplitude of the scattered 
wave occurs downstream of the cylinder. Figure 6.3 gives 
the results for the scattered wave with X = 1, k7 = 1 and 
K =  1. For this comparatively long wave the variation of 
the surface elevation with angular position is much 
smoother, which is not unexpected since there is only a 
small phase difference in the incident wave between the 
front and rear of the cylinder. The averaged intensity of 
the scattered wave over all directions and at large 
distance from the cylinder is measured by I(P) t and this 
quantity is shown as a function of X and for different 
values of k7 in Figures 6.4 (for K = 0.1) and 6.5 (for 
K = 1). For values of X greater than unity I(P) is an 
increasing function of k7, but for smaller values it is 
not monotonic. To illustrate this feature of the results, 
I{P) is shown in Figure 6.6 as a function of k7 with X = 0 
and for three values of K. It has a series of maxima and 
minima at intervals approximately equal to “Y ”71* T^e 
curves for different values of K are only slightly 
different, and they tend to the same limit as k7 tends to 
infinity. It follows from equation 6.20 that I(P) should 
be independent of K as k7 — » », but values of X greater 
than 10 would be needed to demonstrate this behaviour in 
Figures 6.4 and 6.5.

The minima in the values of the mean-squared 
elevations at large distances from the cylinder as shown 
in Figures 6.4 and 6.5 exist because there is energy 
dissipation when X is neither zero nor infinity. At large 
distances the elevation increases with K, but approaches a 
limiting value independent of K as X — > ». On the
cylinder, however, the elevation decreases as K increases 
for finite values of X . Although it does not seem possible 
to simplify the complicated expressions for the required 
quantities in general, order-of-magnitude estimates can be 
found for the limiting case K — > 0. The major contribution
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to the integral in equation 6.32 comes from values of k of 
order K~1/2, and F (k7 ,K) = -K1/2 + 0(K) . Then
corresponding value of G (?) can be found from equationn
6.37 and (using equation 6.38), therefore I(P) - I ^ k 7 ) is
of order K/A when A > K1/2 and of order K1/2 when A < 
1/2K . The edge effect disappears in the limit as K — » 0, 

as expected. Since 1{T) has a minimum as a function of A
it approaches its limit I from below. But if it is001 /?ensured that A < K as K — » 0, particularly if A = 0, 
then the results shown in Figures 6.4 and 6.5 indicate 
that the limit is approached from above. In the same way 
it can be shown that the mean-squared elevation on the 
cylinder has the limiting form

x2
E{P) = ---------- E (k7) as K — > 0. (6.40)

X2 + k'K “

A comparison of Figures 6.9 and 6.10 confirms this trend.

It is also possible to ascertain the effect of the
edge condition on the force experienced by the cylinder in
the limit as K — > 0. This force can be calculated by
integrating the pressure over the surface of the cylinder
and the pressure is given as the sum of two parts, pt and
P2, given in equations 6.21 and 6.22. The pressure pj
provides the force when the edge condition is of
orthogonal contact, as in the absence of capillarity. The
contribution of p2 to the force is proportional to
(from equation 6.28), is proportional to KB when K is
small. It follows from equations 6.31 and 6.34 that this

1/2part of the force is of order K/A when A > K and of
1/2 1/2 order K when A < K . Thus, for a given small value of

K, the effect of the edge condition is largest when A = 0,
that is, when the edge is fixed, and the force is then

1 /2changed by an amount proportional to K

Results for the total surface elevation on the 
boundary of the cylinder are shown in Figures 6.7 to 6.10. 
The values of H(^,^) are shown in Figure 6.7 for short
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waves, k7 =1 0 , and in Figure 6.8 for long waves, k7 = 1; 
in both figures K = 1 and X = 1. The angular variation 
when k7 = 10 is rapid, but not to so great an extent as 
for the scattered wave at large distance. For k7 = 1 the 
angular variation is not as smooth as it was at large 
distances. The maximum amplitude now occurs on the 
upstream side of the cylinder. The average squared value 
of the elevation, as measured by E(P), is shown in Figures 
6.9 and 6.10 as a function of X for K = 0.1 and for K = 1, 
respectively. These figures show that E{T) is a monotonic 
decreasing function of k7 for all values of X . Comparing 
Figures 6.9 and 6.10, it can be noticed that the limiting 
values of E(f) as A — > m are independent of K, as expected 
from equation 6.18.

6.5 - Numerical Approach

The four functions chosen to describe the scattered 
wave at large distance and the total elevation on the 
cylinder are I(P), and E{T). To calculate
these quantities, first a number of Bessel functions 
should be calculated. The functions Y and theirn
derivatives can be calculated by using recurrence 
relations, with Yq and Yi given by a NAG routine. The 
forward recurrence relation for the J functions, however,n
can only be used when the argument x is greater than n. 
When x<n the recurrence relation is unstable as n 
increases, but it can be used backwards, that is, for 
decreasing n, to compute J (x).n

The Bessel functions tend to zero very rapidly as n 
increases, once n is greater than x. Sufficient accuracy 
was obtained in the summation of the infinite series in 
the desired expressions when they were truncated at n = 
20. The chief difficulty in the calculation is the 
accurate evaluation of the integral F (k7,K), defined byn
the equation 6.32. First, it is separated into two parts 
and write it in the form

1 0 0



F (k7 ,K) =n
4K

7T M ( k 7 ) n k(Kk2 + 1) - k7(Kk'2 + 1)
dk

4K
n

r M (k) - M (k7 )n n
k - k' M (k) M (k7 )n n (1+Kk2+Kkk7 + Kk7 2)

(6.41)

The first integral in equation 6.41 can be evaluated 
analytically and it is given by

1 + 3Kk72
k(Kk2 + 1) - k7 (Kk/2 + 1)

dk = In 1 + Kk,2
Kk / 2

1/2 1/2

Kk / 2

4 + 3kk/2
tan-l 4 + 3Kk/2

Kk / 2
(6.42)

To calculate the second integral in equation 6.41, the
trapezium rule can be used for the bulk of the 
calculation, but special care is needed when k is small, 
when k is close to k7, and when k is large. A step length 
of 0.1 was found to give acceptable accuracy. When k — > 0, 
M^(k) — » oo, but the integrand is finite and has the
limiting value -{k7 (1+Kk/2)M (k7)}-1. When k is equal ton
k7, the integrand is determinate and therefore l'Hopital's 
rule can be applied to determine its limiting value, which 
is

M '(k7)
------- 2     . (6.43)
(1 + 3Kk7 )M (k7)n

As k — » oo, the integrand has the asymptotic value
- ( tt/ 2 K )k"2, so the application of the trapezium rule is
truncated at some large value of k, say k = X, large
enough to ensure that this asymptotic value is 
sufficiently accurate. The evaluation of the integral is
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completed by adding the contribution from the asymptotic 
form, which is -(tt/2K)X-1. When the values of Fn(k',K) 
have been calculated for particular values of k' and K, it 
is an easy matter to evaluate the sums of the various 
series for any value of A and at any angular position tf. 
Some results found in this manner are shown in Figures 6.1 
to 6 .10.
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* = 1 , K  = 1 ,k ’ = 10

Figure 6.1. Polar diagram of S( 0 ,P) 
the mean surface elevation of the 
scattered wave at large distance.

11

Figure 6.2. Polar diagram of S ( 8  ,P),
the mean elevation at large distance.
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1, K = 1, k’ = 1

1 1

Figure 6.3. Polar diagram of S( 0 ,P), 
the mean elevation at large distance.

i(P)
0.6

0.4

0.2

0
0 6 82 4

— —  k’ = 10 — k* = 5 k’= 2
-a- k'= 1 k’ = 0.5 -e- k’= 0.1

Figure 6.4. The averaged intensity of 
l(P) as a function of X ; K = 0.1.
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I(P)
0.7

0.6

0.5

0.4

0.3

0.2
0.1

—  k’= 10 — I—  k’ = 5 k’ = 2
- a- k’= 1 k’ = 0.5 -0- k* = 0.1

Figure 6.5. The averaged intensity of 
l(P) as a function X ;  K = 1.

i(P)0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

k*

K = 0.1   K = 1 . 0 --------K = 10

Figure 6.6. The intensity of the wave 
as a function of k’; \  = 0.
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* = 1 , K  = 1 , k ’ = 10

1 1

Figure 6.7. Polar diagram of H (0  ,P), 
the mean elevation on the cylinder.

A  = 1 , K  = 1 , k f = 1

Figure 6.8. Polar diagram of H( 0  ,P), 
the mean elevation on the cylinder.
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E(P)

6

4

2

0
100 2 4 6 8

k ’ =  10

- a -  k’= 1

Figure 6.9. The averaged intensity of 
the elevation on the cylinder; K = 0.1.

E(P)

6

4

2

0

— —  k’= 10 — «—  k‘= 5 k'= 2
k' = 1 - x -  k’ = 0.5 k’ = 0.1

k’= 5 
k’ = 0.5

k’ = 2 
k’ = 0.1

Figure 6.10. The averaged intensity of
the elevation on the cylinder; K = 1.
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CHAPTER VII

CYLINDERS IN SHALLOW WATER

7.1 - Introduction

At a large distance away from a vertical cylinder, 
the surface elevation of the surface waves can be
determined using the shallow water theory, when the depth 
of the channel or the fluid is small in comparison with 
the waves’ wavelength (as a simpler approach, discussed by 
Crapper (1984)), where the presence of the surface tension 
is significant. This is analyzed below, when the cylinder 
is under a vertical or horizontal oscillation or an 
incident plane wave is scattered when the cylinder is
fixed.

The non-dimensional variables are based on the
horizontal and vertical lengths, a and h respectively.
Furthermore, the vertical coordinate z and the velocity w 
in that direction are written as

according to the shallow water theory (that is when 
h « 1). The time dependence exp(-icrt) is omitted from the 
right-hand sides of the equations since they are all 
multiplied by this factor.

The components of the velocity, using the equations 
of motion are

z = h £ & w = h W (7.1)

u (7.2)

v i_ _E_ (7.3)

w ( 7 . 4 )
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UjZ>*- V/i ^
where p /\ and o* are the pressure and the frequency 
respectively. The pressure p is found to be independent of 
C (using equations 7.1 and 7.4 and existence of small 
depth.

7.2 - Horizontal Oscillation

Here a cylinder of radius a is forced to oscillate
horizontally with frequency a. The boundary condition is

w = 0 when z = -h. (7.5)

The continuity equation is found to be (using equations
7.2 & 7.3)

cos#
i<7

+ _1_  p_a 2 r dr 2dr r
aw (7.6)0Z

then noting that the pressure is independent of C anĉ  
equation 7.5, the z-component of the velocity be

w = -h cos* ( a 2 p _3]0------ 2_) fc + 1l. (7 .7 )
1<r I Sr2 r ar j-2 J Is J

On the free surface of the fluid

071
a t = w at z = 0 . (7.8)

Therefore, surface elevation tj, is (using equations 7.8 & 
7.7)

t? = —h cos#
dr

i£_ _0r (7.9)

The dynamic surface condition

7} - K a2T? + _i 57) +  1 d2V
dr‘ dr 0#'

gives the relationship between the frequency of the 
surface waves cr,the wavenumber k', and the depth h, (as
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discussed in chapter 2) which is

cr2 =  k'2h( 1 + Kk'2) . (7.11)

It can be deduced from equation 7.9 that

52t?
a#2

=  -  7). (7.12)

The following two equations for the surface elevation, 
therefore, can be obtained (using equations 7.9-7.12)

K 5 %
dr‘ dr - (1 + Kk,2)7? = 0 & (7.13)

5 %  + 1 57?+  V 7’ + k ' 2r, =  0, (7.14)(7.14)

with solutions K (1 + Kk'2)/ k J
1/2

<Jr« 
and Hl<1> (k'r)

respectively (since only outgoing waves are required and
1/2

(1 + Kk/2)/ K rtherefore I cannot be considered for
the first equation, and also because of the time
dependence which is exp(-icrt), the Hankel function 

(2)H (k'r) has to be excluded for the second equation). 
Therefore

7? = A H (1)(k'r) + B Ki \ / j (1 + Kk/2)/ K
1/2

(7.15)

where the coefficients A and B (both functions of K, k' 
and X) are determined using the following edge conditions

u = e ^<7t cos# on r = 1, (7.16)

and

57? = A on r = 1. (7.17)at ar

1 1 0



Hence,
-10* e-icrt

B =
Ak7 H (1)(k7) + io* H ,(1)(k/)i \ / j

and
- B

A =

C(K,k7)

icr Ki (a) + Aa K (a)

Ak7 H (1) 7 (k7 ) + icr H (1) (k7 )
where

C(K,k7 ) = - Aak7K (a) H ^ ^ f k 7) |a2 + k ,2J +

(7.18)

(7.19)

[ *
icr |a( 1 - Ka2) ^  (a) Hi(1)(k7)

k'(l + Kk'2) KjCa) ^ “ ’'(k')],
and

a = (1 + Kk/2)/ K
1/2

(7.20)

(7.21)

Therefore the surface elevation at a large distance 
away from the cylinder 77̂ , is (noting that r — > », 
K^otr) -> 0)

\,l - lA l IHj 11 ’ (k'r) | . (7.22)

The quantity |A| is the amplitude of the 
wave.

radiated

7.3 - Limiting Cases Of The Horizontal Oscillation

In this section the limiting value of the surface 
elevation at large distances away from the cylinder in 
shallow water is obtained when

a) k7 is small;
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b) k7 is large;
c) K is small.

The following notation is introduced (to be used in this 
section)

k = -g*'.1-, f (k,k\K) = Kk'4 - Kk4 - k2,
7T

Jj(k) = Yi'2(k) + J / 2(k).

When k7 is small
a  ̂K~1/2, a2* k/2h (using equation 7.11),

1 TI (1)' 
1^  H, (k7) » 1,

therefore (using equation 7.19)

2 , ,2 k/4 h2 K 2 (a) + A2 k7 2 h a2 K /2(a)2 71 k  i v 7 i v 7

k 7 2 h K i2(a) + A2 a K i'2(cc)
(7.23)

The upper and the lower limits of A, « and 0 respectively, 
correspond to the free-end and pinned-end edge conditions, 
where at these limits A is expressed as

2 i ,4 . 7T k7 h (7.24)

and the surface elevation (using equation 7.22) is
2

* J 2 = |A|2 f__2___1[ 7rk7r
hence in the transformed coordinate,

i / 2 . . 3 »i(k7r - --- 7T)e x 4 7 (7.25)

^l2 = h j 2 r - -T- h k'3' (7.26)

which is the limit of |y |2 when the depth is arbitrary as
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discussed below . In chapter 5, the surface elevation at 
large distance away from the cylinder is obtained in 
equation 5.21, and when k7 and h are very small, then L in 
the limit is (using equation 5.22)

L *
(h7rk'4/ 2) - (4k' 2 hi/ rt2) Nt

(Kk's7ih1/2/ 2) - (4k'h1/2i/7t2)
(7.27)

where according to the numerical values

K k 1 k'h/vi/2 (7.28)

and hence
Kk,2L - k'h1/2 “ - k'h1/2( (7.29)

2therefore, | tj | is expressed as

1771 2 « 7ik/3h / 2 
which confirms the above result (equation 7.26)

(7.30)

Next, since for large values of k7 (k7 » 1)

crz a Kk7 4 h, a - k7 ,

*,(«) - - * / ( « )  - [-gr-'
1/2 -k7

-i H (1)' (k') * 1 V 7

hH1 /2 . 3l(k7 - ---- 7T)e 4

Hj<2) (k') «< ' TT (2)7 ,,, .1 H (k ) a 1 ' 7

( rck' )
1 / 2 -1 (k7 - ---- 7T)

then (using equation 7.22) | tj j 2 is expressed as
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- | 2 *n K 2 k /2 h2 + hKX2
k7 2 2hK3k,2+ 4K2X2+ 4XK2h 1/2K1/2k7

(7.31)

and hence

- , 2 
T)\

4Kk ,2

2Kk/ 2

as A — >oo

a t  X =  0 .

(7.32)

Similarly at pinned-end and free-end edge conditions,

L a
(hK)1/2 F(K,k)

when X — > oo, 

when X = 0,
(7.33)

such that

1 - k 1 + K k ‘ dk
k J i(k) fi(k,k7,K )

F(K,k)

Therefore , 
approach

1 -  Kk

-  i 2

dk
J x(k) fx(k,k7,K)

(7-34)

t? | is expressed as (using partial

4Kk ,2

2Kk/ 2

when X— > oo

when X= 0,
(7.35)

which again confirms the above result (according to 
equation 7.32).

Finally, since for small capillarity coefficient K,
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a * K-1/2 » 1, ct2 « k/2 h #

K (a) - - K 7 (a:) -i v / i \ /

1 / 2 -a

then, 17712 is (using equation 7.22)

 1
ttV 7 * 7

. )
- I 2 2 h  V - (7.36)

at both extreme values of X. This result will be confirmed 
later (in equation 7.41). When capillarity coefficient and 
depth are both small, the equation for surface elevation 
at large distances away from the cylinder will be of the 
following form

nk'

where

KLk7 2 - a - <rKk7 21 2
■ i.A —  i. 1

k' 2 J (k')1 ' 7
(7.37)

L ^

, 1 / 2  — h TT
0

2Kk7i J (k7)1 v 7
c

cr when X —V

0
k  d k

j^k) f (k,k7,K)
)
> 00 .

Hence,

2h
Trk7 J (k7 ) 1 v 7

2h
nk7 J i (k7)

when X = 0,

when X — 0,

(7.38)

(7.39)

As it can be seen according to equations 7.26, 7.32 
and 7.36, the approach of finding the surface elevation in 
shallow water, using shallow water theory is less 
complicated than the approach used for determining the 
same thing by determining the elevation of the free 
surface when the fluid is of arbitrary depth and hence let
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the depth tend to zero.

7.4 - Vertical Oscillation

There haH been many investigations on the interaction 
between surface waves and partially immersed bodies, which 
may be fixed or floating or may be forced to move. In most 
of the studies on this topic, surface tension has safely 
been ignored. In chapter 4, the problem of infinite depth 
vertical cylinder oscillating vertically was studied. In 
this section, however, corresponding problem to the one 
solved in that chapter for small depth fluid using shallow 
water theory is considered.

The motion is independent of the radial angle tf, 
since the movement of surface waves produced by vertical 
oscillation of an upright cylinder in water is 
axisymmetric. The forced oscillation has frequency cr. The 
velocity components in non-dimensionalization form are (as 
discussed in chapter 2)

“  =  4 1 ^ '  ( 7 - 40)

w = - 4 - l r 0 ’<9, (7-41)
and the continuity equation is (using equations 7.40 and 
7.41)

[_2!e _ + J L  « E J ______ aw_ ( 7 4 2 )icr I g r 2 r dr J dz '

resulting the relationship between w and £ as (noting that 
p is independent of £ and the boundary condition 7.5)

w = - 1 5 -  [-0 " + 4 -  - l f \ (C + *) • <7 ‘43)

The surface elevation at a large distance away from 
the cylinder (using the free surface condition 7.8 and the 
equation 7.43) is
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7) =  - ifn
dr2

iE.
dr (7.44)

where by simultaneous solution with the dynamic surface
condition, equation 7.10, and using equation 7.11 to
replace <r, the solutions of v are determined as J (k'r),0
Y (k'r), K

( \ 1/2
(1 + Kk'2)/ K r

|(1 + Kk'2)/ K
1/2

&

. However, the third term should be
omitted to satisfy the radiation condition. Then the
linear combination of the Bessel functions H (1)(k'r) &

(2) ^Hq (k'r) is acceptable, and since the time dependence is
exp(-icrt), therefore 77 is

(i)7j = A H (k'r) + B K o o (1 + Kk'2) / K
J

where through the following boundary conditions

1/2

u = 0 on r = 1 ,
and

57]
at - exp(-icrt) = X dv

dr on r = 1,

(7.45)

(7.46)

(7.47)

the coefficients A and B are determined as
( i )'- k' K (a)oA = ------- -̂----  & B =

- a H (k' )
C(k7,K,A,h) C(k',K,X fh)

such that

(7.48)

C(k',K,X,h) = | H0(1,'(k') Ko'(a) [a2 + k/2J \ +

itr |̂a Ko(a) Hoa,'(k') + k' Ho<u(k') Ko'(a)l. (7.49)

Hence the surface elevation at large distances away from
the cylinder 7) , can be obtained as

■nj “  I * nk' (7.50)

117



7.5 - Limiting Cases Of The Vertical Oscillation

When k' is small (k' « 1), 
,-1/2 <j2« k'2h, K (a) ' o K0(K'1/2),

log(k'),

H (1, ' ( k ' )  -  — » 1 ,
nk'

and hence (using equation 7.50)

Next, when k' is large,

cr2 - Kk' 4 h, a - k' ,

K (a) « - K (a) * o o
7T
2k'

1 / 2 -k'

H a)(k') “ -i H <I>, (k' ) « 0 0 hH — 71)4 ,

and therefore (using equation 7.50)

7) r « - 00 1

2K k'4 h
at X = 0,

as X — » oo.
QX‘

(7.52)

Finally, when K is small, 

a - K-1/2 - 2 i,2 ,
» 1 ,  cr » k '  h ,

K (a) « - K ' (a) * f— -— ] ov ' o v [ 2a J
1 / 2 - a

and hence
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2K when X = 0
jrk'h J ,2(k' ) + Y ,2(k' ) 0 v 7 0 v

2k7 K2
(7.53) 

when X — > oo.
7TX2 J /2(k') + Y /2(k') 0 x 0

In this section, the limiting value of the surface 
elevation at extreme values of k7 and K cannot be compared 
with the arbitrary depth's results, as in chapter 4 only 
fluid and cylinder of infinite depth are considered.

7.6 - Scattering Of Waves In Shallow Water

The scattering of a capillary-gravity wave by a 
surface-piercing obstacle depends on the condition applied 
at the contact line between the fluid and the obstacle. 
There has been a growing interest in this problem in 
recent years, mainly in its extension to the scattering of 
waves by multiple obstacles, an interest that stems from 
the need to understand the wave forces on the supporting 
legs of ocean platforms. Hocking (1987b) studied 
reflection of capillary-gravity waves by a vertical plate. 
Same problem has been investigated by Mahdmina & Hocking 
(1990) for a vertical cylinder of infinite height. 
However, the problem of scattering of a capillary-gravity 
wave by a vertical cylinder is studied in shallow water, 
here.

A plane incident small amplitude wave of amplitude ea 
(with e « 1), is scattered by a rigid cylinder of radius a 
which is placed in the water (with uniform density of p, 
surface tension of y, gravitational acceleration of g and 
small height of h) along its vertical axis which extends 
above the surface. A plane incident wave of wavenumber k7 
moves in the direction of # = 0. The surface elevation t\ , 
can be written as
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T? = V + V1 s (7.54)

V l =  exp(ik'r cos#), (7.55)

where subscripts i and s indicate incident and scattered 
components respectively. These components should be 
determined such that the conditions on the cylinder and at 
the edge are satisfied and present an outward-moving wave.

The scattered components of the velocity are (in the 
non-dimensionalization form as discussed in chapter 2)

u - ~ £ T  -Sr" <*>*I**)' (7 '56>

v = -----  SE_ sin(nd), (7.57)

W = <7 '58)

Then, the z-component of velocity is (noting that p is 
independent of £ in shallow water theory and substituting 
equations 7.56-7.58 into equations of motion)

w = — icr cos(n#) ±JL
dr'

(7.59)
Sr

and the surface elevation tj, is (using the free surface 
condition 7.8 and the equation 7.11)

V = - cos(nfl)
k,2(l + Kk'2)

afp dP _ n
Sr' Sr (7.60)

However, in conjunction with the dynamic surface condition
2

7? - K + l arj n
3r‘ r Sr V = P, (7.61)

and consequently the scattered component of the surface 
elevation 7) , is
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( \ 1/2 (1 + Kk/2)/ K r (7.62)

hence (from equation 7.64)

t, _ e (ik

B. k. ((1 + Kk'2)/ KI r
1/2

with the edge conditions of

(7.63)

u = 0 on r = 1, (7.64)

and the condition given in equation 7.17.

The first term of the right-hand side of equation 
7.63 can be written (as discussed in chapter 6) as

00

exp(ik'r cos#) = ^  2in J^k'r) cos(n#). (7.65)
n = 0

Therefore and B can be obtained as (using equations 
7.63, 7.17 & 7.64)

A = — 2in
n En(K,k',X)

F (K,k' ,\) ' (7.66)

where,
(K,k' ,\) = \ 3 ' (k') K ' (a) |"k'2 - a 2] + n n n I J

T fk' J (k' ) K 7 (a) - a K (a) J ' (k' )1 ,I n n  n n I (7.67)

icr

F (K,k' fX) = \ H (1 } 7 (k' ) K 7 (a) Ik'2 - a2l +n n n |_ J

Ik' K 7 (a) H (1 } (k' ) - a H (1 } (k' ) K (a)l ,I n n  n n I
and

(7.68)
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B
k' (1 + Kk' ) hi" J ' (k') + A H (1)' (k')n n n (7.69)n (Ka2 - 1) a K 7(a)n

7.7 - Limiting Cases Of The Scattering Problem

In this section as in the section 7.5, the limiting 
cases cannot be compared with their results obtained 
through arbitrary depth, since the corresponding problem 
(in chapter 6) is studied only for infinite depth.

However, when k7 is small (k7 « 1,
a - K - 1/2 o'2— k/2h, K (a) “ K K"1/2n n

H (1) (k7 )n n
i

j„(k') - H r ) " /  nn+i),

and hence (using equation 7.66)

(7.70)

Next, when k7 is large (k7 » 1),

cr2 « Kk7 4 h, a - k7 ,

H (1) (k7 )n i Hn (k7)

1 2 2



rck7
1 /  2 i(k7 - 7t/4 - rnr/ 2)

J (k7) «n ( Kk' .

1 / 2
cos(k7- n7T TT ),

, , N 1/2
J„ <k ' > “ - [-5F-] sin<*'-

and therefore (using equation 7.66)

nTT TT ),

[.I. -4i(k7 - tt/4 - n7r/ 2)
]■

Finally, when K is small (K « 1)

tt -1 / 2 - 2 i,2 .a - K »1/ cr - k h,

K (a) -a

and hence,
J /2(k')

lA„l “ 4(-l)" ------------
H m  (k' )n

(7.71)

(7.72)
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CHAPTER VIII

HORIZONTAL OSCILLATION OF PLATES

Here, the horizontal oscillation of a vertical plate 
in the presence of surface tension is studied, such that 
two different cases are considered. The. first has the 
plate and the fluid of finite and infinite depths 
respectively. In the second case, surface waves are 
produced by horizontal oscillation of the plane wavemaker 
at one end of a channel. In latter, the waves generated by 
a plane wavemaker in fluid of infinite depth and in fluid 
of a depth equal to that of the wavemaker are determined. 
The second problem is summarized in the recent paper by 
Hocking & Mahdmina (1991).

8.1 - Finite Length Plate And Infinite Depth Fluid

Waves are produced on the free surface of the fluid 
by the heaving motion of a plate which is partially 
immersed in the fluid. These waves will carry energy away 
from the plate which will result in the decay of a free 
motion of the plate or requiring an input of energy to 
sustain a forced motion. This has been the topic of many 
studies, but for gravity waves only. Ursell (1949) has 
studied the case of a horizontal circular cylinder with 
its axis in the free surface. The heaving motion of a 
vertical cylinder has been solved by Yeung (1981). In many 
applications the modifying effects of capillarity have 
been ignored, since the main application has been to ship 
motions and capillarity is not important in such cases. 
However, the effect of surface tension cannot be neglected 
on the scale of laboratory experiments. It may be of some 
interest to determine the radiation of energy from a 
heaving body by capillary-gravity waves. Hocking (1988a)
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has studied the vertical oscillation of a partially 
immersed horizontal circular cylinder and a simple 
source-and-plate model which produces surface waves. He 
has calculated the amplitude of these waves and the amount 
of energy dissipated, when the surface tension is 
included.

Here, the horizontal oscillation of a plate which is 
partially immersed in the fluid is studied. The surface 
elevation of capillary-gravity waves produced by this 
motion of the free surface at large distance away from the 
plate is calculated. Since, only two-dimensional motions 
are considered, the radiated waves are plane. In order to 
ensure a flat interface in equilibrium, it is assumed that 
the plate's surface is vertical where it intersects the 
free surface and that the static contact angle is 90°. The 
solution is linear, since the amplitude of the motion is 
assumed to be sufficiently small. It is also necessary to 
restrict the static range of contact angles to be small, 
since hysteresis effects have been included with 
small-amplitude waves present. Viscosity is ignored 
throughout the study. The edge condition which is used in 
this chapter, is the one justified in chapter 1, which was 
incorporated by Hocking (1987a).

A plate of length 2h which is partially immersed in a 
fluid of infinite depth, is forced to oscillate 
horizontally, along the x-axis. The depth of the submerged 
plate is h. This oscillation can be thought of as 
infinitely many sources and sinks which produce waves on 
the free surface of the fluid. The propagation of these 
waves at large distance away from the plate is to be 
determined. The x-axis is horizontal and the y-axis is 
along the upward vertical from an origin in the free 
surface. As explained in chapter 2, all lengths are scaled 
by 1/k, with 27T/k is the wavelength of surface waves of 1 1

A.''
angular frequency <r, such that
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^ A n 3
a2 = gk + -3*_, y P ' ( 8 . 1 )

g is the acceleration due to gravity, y surface tension 
and p the density of the fluid. The non-dimensional fluid 
velocity, the dynamic pressure, the time and the velocity 
potential are u = (u,v), p, t and 0 respectively. The time 
dependence is exp(icrt) which appears in all the terms and 
therefore it is omitted. The equations for the linearized 
fluid motion can then be written as

= - grad p, V20 = 0. (8.2)

The velocity potential has two components of 0 and <f>,i t
The boundary conditions on 0i and 02 are;

On x = 0,
50
ax

1 when -h < y < 0,

-1 when 0 < y < h.
(8.3)

On x = 0, 
50

50,
= o,

5y

5x

as y — > —  oo.

(8.4)

(8.5)

Since the plate oscillates horizontally, there is a 
distribution of sources between y = -h and 0. The 
corresponding sinks are distributed between y = 0 and h. 
The components of the velocity potential will be 

o

- 4r
-h

logjx2 + (y + y i )2j - log £x2 + (y - Yj)2j j- dyi

(8 .6)

and

0 =  2 P(k) cos(kx) e ^  dk (8.7)
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The pressure (using equation 8.2) is

P = - i c r
2n jlogjx2 + (y + )2J - logjx2 + (y - Y ^ 2]j dY1

-  h

- 10* P(k) cos(kx) e ^  dk. (8 .8 )

Noting that the condition on the free surface is
on y = 0,dri _ i dp

dt ~ cr dy (8.9)

the equation of surface elevation can be found as

u - log l + ■ 1 - 4 - P(k) cos(kx) & dk. (8.10)

The surface elevation can be obtained also from the 
dynamic surface condition on the free surface, as

v  32t? ti - K ------ = p
Sx

(8 .11)

If the surface elevation 7), is assumed to be 

A(k) cos(kx) dk, then by substituting into equationV =

8 .11, the solution satisfying the dynamic surface 
condition can be shown to be

7) —  - 1CT
1 + Kk2

P(k) cos(kx) dk. (8.12)

The complementary solution to the dynamic surface 
condition, however, is either C  exp(K~1/2x) or 

Cexp(- K 1/2x). Since the radiation condition must be
satisfied, only the second solution can be permitted,

1 / 2hence the solution to equation 8.11 when C = B K 
is
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7) =  - i c r 1 P(k) cos(kx) dk + &  K 1/2 exp(- K~1/2
1 + Kk*

x) 
(8.13)

In order to equate equations 8.10 and 8.13, the first and 
second term of equations 8.10 and 8.13 should be written 
in Fourier cosine integral form (using the tables of 
integral transforms). By using

log 1 +
x -) - I

1 - e-hk cos(kx) dk (8.14)

and
, - 1 / 2 . K i/a (- K )x

TT
K

1 + Kk*
cos(kx) dk, (8.15)

and the relationship between the non-dimensional angular 
frequency and the capillarity coefficient K (as determined 
in chapter 2) is

cr = 1 + K, (8.16)

then the two equations for 7) can be equated and hence P(k) 
can be determined

2 i
P(k) =

BKkG- i(1 + Kk2 ) . (1 - e"hk)
7ik k( 1 + Kk2) - cr2

+ Cs(k-l)

(8.17)

Now substituting P(k) into equation 8.10 with x — > », the 
surface elevation at a large distance away from the plate 
can be found as
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^  = 00
2 i {BKke1- i(l + Kk2)(l - e-hlt)}
71 {k( 1 + Kk2) - o-2}

cos(kx)dk

C 5(k -1) k cos(kx) dk. (8.18)

In the above equation, if k approaches unity and satisfies 
the radiation condition with the knowledge that the time 
dependence is exp(i<xt), the parameter C in terms of B can 
be found as

2 {BK6- i (1 + K ) (1 - e”h) }
1 + 3KC = (8.19)

and hence 7} becomes

-2i e - i x
{BKGf- i(l + K) (1 - e"h)}'co £(1 + 3K)

For the edge condition of

(8 .20)

971 = x a7? at x = 0,5t ,v dx 

to be satisfied, the parameter B must be

(8 .21)

2cri
B =

r 1 ~ h \ 2 t(1 - e ) - cr J.
(X + icrK1/2) (1 + 3K) + cr2 J + 2crK

where

(8 .22)

2<riK([1 + 3K)
(1 + Kk2)7T k (1 + Kk2) - cr2

dk, (8.23)

and
w

■ f
2 :i - e~ )(1 + 3K)
7Tk k( 1 + Kk2) - a*2

(8.24)

The principal value integrals of and J2 shall be
evaluated in section 8 .2 .
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The surface elevation at a large distance away from 
the plate has been calculated for a range of values of the 
parameters h, K and X. These represent half of the length 
of the plate, the capillarity coefficient and the ratio of 
contact line speed to the variation in the contact angle, 
respectively. The parameter h is taken to be 10, 5, 2, 1 
and 0.1. The capillarity coefficient is given the values 
0.01, 0.1, 0.2, 0.3 and 0.4. The capillarity increases as 
the value of the surface tension increases and hence the 
amplitude of the waves decreases. The range of the 
parameter X is between 0 and 10.

From Figures 8 .1-8.5, it can be deduced that for
h  ̂2, the value of | 12r increases monotonically as K
increases, as is expected. However, for large K (e.g.
0.4), when h = 10 or 5, this rule does not quite hold. For
this reason, in Figures 8.6-8.10, the behaviour of these 
curves for values of 0 < X < 1, where the odd behaviour
happens, has been concentrated on. Figures 8 .1-8.4 show
that the smaller the height of the plate, the more
distinguishable the curves will be. Since I tj I r has a

l 00 1

minimum as a function of X , when h  ̂1, it approaches its 
limit at X = 10 from below. When h < 1, Figure 8.5
indicates that the limit is approached from above. Figures 
8 .6-8.10 show the variation of the surface elevation for 0 
< X < 1.

8.2 - Numerical Approach

The principal value integral J ( in equation 8.24), 
can be written as

J2 -
2 (1 + 3K)

TT
1 - e - hk

k(k - 1)(1 + Kk + Kk + K)
dk
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2 (1 + 3K) 
n

1 - e- h
(k - 1)(1 + Kk + Kk + K)

t i *h i - hkk - k e -1 + e_______
k(k - 1) (1 + Kk2 + Kk + K)

dk

dk

(8.25)

where the first integral on the right-hand side can be 
evaluated analytically as

1 - e- h
(k - 1)(1 + Kk + Kk + K)

dk = 1 - e-h
1 + 3K '

ln[(l+K)/ k] _ ̂ 3/{(3K+4)/ K}1/21 tan-1 f 3K + 4 1
1/2

(8.26)

To calculate the second integral in equation 8.25, the 
trapezium rule can be used for the bulk of the 
calculation, but special care is needed when k is small, 
when k is close to 1, and when k is large. When k is 0 or 
1, the integrand is indeterminate and l'Hopital's rule can 
be applied to determine its limiting value. A step length 
of 0.1 gives acceptable accuracy. The second integrand
tends to

t -h ,1 - e — h and 1 - e-h (1 + h) when k1 + K --- 1 + 3K
approaches zero and unity respectively. The application of
the trapezium rule at some large value of k (e.g. k = X),
is truncated (large enough to ensure that the asymptotic
value is sufficiently accurate, and X = 200 was found to
give good accuracy) . The evaluation of the integral is
completed by adding the contribution from the asymptotic
form, which is (1 - e”h)/ (2KX2) . The value of the
integrand between 0 and X is evaluated numerically.
Therefore
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2 (1 + 3K)
TT

1 - e-h
1 + 3K ln[(l+K)/ k!

1/2

|^3/{ (3K+4)/ K }1/2j ■ tan'1 ̂  3K + 4 j
1/2

k , -h - hk_____ - k e -1 + e_______
k(k - 1) (1 + Kk2 + Kk + K)

dk - 1 - e-h
2KX*

(8.27)

Now the principal value integral J is considered. First 
it is separated into two parts and is written in the 
form

UJ

- f 2criK<[1 + 3K)
(1 + Kk2 )7T . i 

i 
** H4 + * to 1 q to

1 
1 dk = 2criK (1+3K) 

(1 + K)tt

k(l + Kk2) - cr2
dk - dk

1 + Kk*
o

(8.28)

Hence,

J = i
2criK

7T 1 I K log{(l+K)/ K }1/2 +

((3K+2) /{K( 3K+4) }1/2] tan'1 3K t 4 )
1 ’ uns > 1 K >

1/2 7T ( 1 + 3K ) 
2v̂ K (1 + K)

(8.29)

Therefore the surface elevation of the surface waves at a 
large distance from the wavemaker is evaluated, fusing 
equation 8.20 into which the value of the parameter B, 
given in equation 8.22 must be substituted, using 
equations 8.23 and 8.24 in which the quantities J and J2 
are given.
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8.3 - Waves Produced By A Wavemaker In A channel

Waves on the free surface of a fluid in a 
gravitational field can be produced by the normal motion 
of a rigid plate immersed in the fluid. The displacement 
of the fluid by the plate leads to a deformation of the 
free surface, which propagates away from the plate. The 
wavemaker problem is that of determining the 
characteristics of this propagating wave train, given the 
motion of the wavemaker. If the wavemaker oscillates with 
a given amplitude and frequency, the steady state at a 
large distance from the plate shall consist of a plane 
wave with the given frequency, and the amplitude and phase 
of this wave are the quantities to be determined; this 
calculation was first performed by Havelock. If the fluid 
is in a channel of finite depth and the wavemaker is at 
one end of the channel, several different motions of the 
vertical boundary can be considered. For example, the 
whole of the plane wall can be made to oscillate rigidly, 
either remaining vertical or being hinged at the bottom, 
or only the top section of the boundary could be moved, 
the lower section being held at rest. The response of the 
fluid to motions with an arbitrary time-dependence, 
including the transient motion at the initiation of a 
harmonic oscillation, can be solved by means of a Laplace 
transformation. The solutions for a range of wavemaker 
velocities differing in their dependence on depth and time 
have been obtained by Faltas(1988). However, a difficulty 
exists in determining the transient motion after an 
impulsive start, because an initial singularity in the 
slope of the free surface at the wavemaker is predicted. 
This phenomenon was described in an unpublished note by 
Peregrine (1972), and is treated at length by Roberts 
(1987). He considered the transient motion for power-law 
motions of the wavemaker and concluded that the 
singularity could only be removed by starting the motion 
sufficiently smoothly.
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The solutions so far described have ignored the 
presence of surface tension, which also acts to provide a 
restoring force on the free surface. The dispersion 
relation for waves controlled by the combination of 
gravity and surface tension is well known and suffices to 
determine the properties of such capillary-gravity waves 
in the absence of vertical boundaries. The wavemaker 
problem inclusive of surface tension was discussed by 
Rhodes-Robinson (1971) assuming that the slope of the free 
surface at the edge could be prescribed and varied in 
phase with the horizontal motion of the wavemaker. The 
transient waves produced by the initial motion of the 
wavemaker are the subject of a recent paper by Joo et al 
(1990). These authors concentrated on the motion induced 
by a plane wavemaker of the same depth as the fluid, and 
on an impulsive acceleration (ramp) and impulsive velocity 
(step). They specifically include dynamic-contact-angle 
effects in their analysis, but assume that the varying 
slope of the free surface at the contact line is a known 
function of the time. Most of their results, however, are 
for a fixed contact angle. For the ramp motion of the 
wavemaker they encounter no singularity in the 
free-surface elevation, which they determine for small 
values of both time and distance from the wavemaker. For 
the step motion they find that an initial singularity is 
still present, even though surface tension has been 
included. They conclude that the correct formulation for 
small time and distance requires the full non-linear 
free-surface conditions.

This work, in common with other attempts at 
describing the transient motion for capillary-gravity 
waves generated by a wavemaker, is unsatisfactory because 
it assumes that it is possible to prescribe the slope of 
the free-surface, where in general, there is no mechanism 
to control this slope. The exception is when the contact 
angle remains fixed, which is a dynamically possible 
situation, valid in the limit in which there is no dynamic 
variation of the contact angle, or when this variation is
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so small that it can safely be neglected. Since it is
known that the contact angle at a moving contact line
between a fluid and a solid varies with the speed of the 
contact line, this variation can be prescribed and so the 
free surface can respond to the motion of the contact line 
relative to the wavemaker. A condition of this kind has 
been used to determine the amplitudes of capillary-gravity 
waves generated by the vertical motion of a plate (Hocking 
(1987c)) and the reflection of an incident wave by a fixed 
plate (Hocking (1987b)) and by a circular cylinder
(Mahdmina & Hocking(1990)) . It is supposed, for
simplicity, that the contact angle can vary around a value 
of 90°, the variation being proportional to the velocity 
of the contact line relative to the boundary. Extreme
cases of this condition include the possibility of
orthogonal contact, as is present in the absence of
surface tension, and of a fixed contact line with a 
necessarily varying contact angle.

The wavemaker problems for capillary-gravity waves 
that are studied here make use of this edge condition. The 
particular case of a plane vertical wavemaker is 
considered, which is impulsively brought into a harmonic 
oscillation of small amplitude. Two special cases are
important; fluid of finite depth with the wavemaker 
extending from top to bottom of the fluid, and fluid of 
infinite depth with only the top portion of the vertical 
boundary of the fluid brought into motion. The amplitude 
of the steady-state wave train is obtained, generalizing 
the results of Havelock (1929). More importantly, the 
examination of the small-time solution shows that, when 
the postulated edge condition is employed, there is no 
singularity in the free-surface elevation or the slope at 
the wavemaker, even when it is started impulsively. It is 
not necessary to include non-linear terms in the 
free-surface condition to arrive at an acceptable 
solution.

When the depth of the fluid is small compared with
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the wavelength, the shallow-water approximation can be 
used to simplify the analysis considerably. The waves 
produced by a vertical motion of the wavemaker and the 
reflection of an incident wave by a stationary plate, 
which were found previously for arbitrary depth by 
Hocking, can also be found for shallow water by a similar 
analysis, and these results are included here for 
completeness.

Consider an inviscid fluid in a channel of depth d', 
with a wavemaker of immersed depth h' at one end of the 
channel. The wavemaker is assumed to oscillate with a 
frequency cr' and with a small amplitude e' about its mean 
position. The end portion of the end of the channel below 
the wavemaker is fixed. The surface waves of frequency cr' 
in the fluid of depth d' have a wave length 27T/k' , given 
by

a'2 = Qk' + ik'3) tanh(k'd'), (8.30)
where g is the gravitational acceleration and y the 
surface tension. The length scale for
non-dimensionalization (as discussed in chapter 2) is 
chosen to be 1/k'. The horizontal x-coordinate is measured 
from the end of the channel and the vertical z-coordinate 
from the equilibrium free surface. The equations for 
small-amplitude waves with no variation across the width 
of the channel are satisfied by a potential <f> that 
satisfies Laplace's equation, with the horizontal and 
vertical velocity components and the pressure, p, being 
given by

u = -§£-< w = -§!-' p  <8 -31>

The bottom condition on 0 is

= 0 on z = - d (d finite),dz

 > 0 as z — > — oo (d infinite), (8.32)
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ax

where d = k'd' . The motion is forced by the wavemaker, and 
the condition on p at the end of the channel for t > 0 , is

d(̂ = cr exp(-icrt) for 0 > z > - h,

= 0 for -h > z > -d, (8.33)

with h = k'h' and

O'2 = (1 + K) tanh(d). (8.34)
Because the amplitude of the lateral displacement of the 
wavemaker is small, this condition can be applied at the 
mean position x = 0 .

The elevation of the free surface is equal to 
e'Tj(x,t) and the conditions at the free surface are

37> = w, v - K -2 ^ 0 - = + p; (8.35)at ' ' a 2ax

since waves are assumed to be of small amplitude, these 
conditions can be applied at z = 0. The parameter K
measures the relative importance of capillarity and 
gravity and (as explained in chapter 2) is defined by

-yk7 2K = -. (8.36)p g '

The edge condition (as discussed in chapter 1) to be 
applied is

971 = X - P -  at x = 0. (8.37)at ax

The final requirement is that there should be no 
waves travelling towards the wavemaker from infinity, that 
is a radiation condition should be applied. For waves of 
the same frequency as that of the wavemaker this condition 
can be expressed in the form

d7J +cr — ----> 0 as x — >oo, (8.38)
d t  d X

which completes the formulation of the problem.
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The chosen form for the wavemaker velocity can be 
replaced by more general functions of time; it could also 
be allowed to vary with the depth below the free surface. 
A similar analysis to that presented here can be performed 
to deal with these variations. The oscillation of the 
wavemaker begins at t = 0 and the complex form of its 
velocity allows for both an initial impulsive velocity and 
an impulsive acceleration by taking the real or imaginary 
part of the solution, respectively. Because the analysis 
takes different forms for finite and infinite fluid depth, 
the two cases are treated separately.

8.4 - Finite Depth

For fluid of depth d = h, the whole end of the 
channel at x = 0 is made to move. A Laplace transform in t 
is taken, with parameter s, and indicate the transform of

A A
0 by 0 , for example. Then <P =  <P1 +  <P2 , where 0j satisfies 
the inhomogeneous condition 8.33 and the bottom condition 
is the equation 8.32. The value of 0 ^ 3  given by

0 =  —  1 s _g;______ 2(-!)n
+ io- ZL h v 2_ h kn =C n

C O S }k (z + h )v exp(-kx), (8.39)

where

2 h ' (8.40)

The value of 02 that satisfies equation 8.32 and the null 
conditions on x = 0 has the form

(8.41)

The pressure associated with 0i is zero on the surface, 
and 77 can be found from the second part of equation 8.35
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as

y = -s
1 + Kk‘

cos(kx) dk - K1/2 B(s) exp(-x / K1/2),
(8.42)

where the condition that y being bounded at infinity, has 
been used. The slope of the free surface at the contact 
line is equal to B(t). The second term can be written as a 
Fourier integral, so that

V = - sA + 2BK/TT cos(kx)dk> (8.43)
1 + Kk

From the first condition of equation 8.35

sy =
w

Y -+ ^  L hk exp(-k x) +
n =0

kA tanh(kh) cos(kx) dk,

(8.44)

where it can be written as a single Fourier integral as

sy

uu

=  f rkA + ;  ,--------- 2 ■1L s + 1<J 7Tk J tanh(kh) cos(kx)dk. (8.45)

By equating the expressions of equations 8.43 and 8.45 forA A  A
y, A(s,k) can be written in terms of B(s) in the form

(s2 + a 2) A= - 2Ks
71 B - 2cr (1 + Kk ) tanh(kh)

t t( s  + icr) k '

where
o*k2 = k(l + Kk2) tanh(kh), o* = a.

(8.46)

(8.47)

The edge condition 8.37 provides another equation linking 
A and B in the form

kA + s + icr 7ik tanh(kh) dk = XB (8.48)
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Hence B can be determined from the equation 
00 00

2
X + 2Ks

IT
ktanh (kh)
2 , 2 s + crk

dk B = 2 < t s

7T ( s + ic r )
t a n h ( k h )  d k  

(8.49)

i / 2  . 2 »k ( s  + o*k )

Inverting both sides of the equation, B(t) satisfies the 
following integral equation

t

X B (t ) + 2K
71 k tanh(kh) cos ((T̂ z) B(t-r) dr dk =

vur & 2cos a t-cr2cos crt-icr(cr sin <r t-crsin crt) 2ct tanh kh k k ' k k 7
7rk 2 2cr — crk

dk

(8.50)

The slope of the free surface at the contact line is equal 
to B (t ) and the elevation of the free surface there can be 
found by inverting XB/s, so that

t
T7(0,t) = X Jb(t) dr. (8.51)

o
The transient motion introduced by the initial motion 

of the wavemaker is found by considering equation 8.49 for 
large values of s, where for finite X, B = 0(s”4/3ln s),
so that B (t ) = 0(t1/3ln t) as t — » 0. The
fixed-contact-angle case is given formally by X = a> and 
then B (t ) = 0. The initial free-surface elevation can be 
found from equation 8.51 when X is finite, andA
7](0,t) = 0(X t4/3 In t). For X = », XB can be found from
equation 8.49 and then 8.51 shows that, in this case,
17(0,t) = 0(t In t). It follows that, the edge condition 
used here does not introduce any initial singularity in 
either the free-surface elevation or slope at the contact 
line.

The solution for large t is dominated by the
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contribution from the pole at s = -icr. At this value of s 
the denominators of the two integrals in equation 8.49 
become zero at k = 1, and the contour for both integrals 
with respect to k must be indented to lie below this
singularity, since the contour in the s-plane must lie to
the right of -i<r. The value of r\ for large t and large x
can be found from equation 8.42 and the dominant 
contribution comes from the pole at k = 1 in the value of 
A given by equation 8.46. In this way, after the
transients have disappeared, the wavemaker produces a wave 
whose elevation at large distance from the wavemaker has 
the form R exp{i(x - crt)}, where

R = 2a J +2
iATT
2crK

J +l
iA7T
2crK

17T (8.52)

The quantity q introduced in this expression is defined as

q = 1 + 3K + 2h(1 + K) 
sinh(2h) ' (8.53)

which is proportional to the group velocity of surface 
waves of frequency cr, and

k tanh(kh) ^
2 2 cr - crk

(8.54)

J2 -
(k - l)tanh(kh) dk

i / 2 2 .k(cr - cr )v k '
(8.55)

Note that the integral is a principal integral, but the 
integrand in J2 is not singular. The free-surface 
elevation at the wavemaker in the steady state can be 
found from equation 8.49 and 8.51 and has the form

77(0,t) = e-icrt Act
K

J - J + 1 2
ITT

J + 1
iA7T
2crK

ITT (8.56)
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The elevation of |R|, the amplitude of the wave 
generated by the wavemaker, and of 7?(0,t) are
straightforward numerical tasks. Some numerical values of 
these two quantities as functions of A for h = 1 and for 
three values of K are displayed in Figures 8.11 and 8.12. 
The wave amplitude decreases monotonically as K increases. 
Each curve has a shallow minimum as a function of A and 
approaches its limiting value as A — » « from below. It 
should be remembered that, when A is finite and non-zero, 
there is some energy dissipation at the wavemaker which 
may account for the dip in the amplitude of the generated 
wave. The surface elevation at the wavemaker (Figure 8.12) 
is a monotonic increasing function of A and also decreases 
as K increases.

8.5 - Infinite Depth

When the fluid is of infinite depth, with a boundary 
at x = 0 of which the top portion, of depth h, is the 
wavemaker, the analysis can proceed similar to that of a 
finite depth fluid. A suitable form for 0 that satisfies 
the forcing condition 8.33 is given by

2cT 1 - cos(/ch)
7T(s + icr) 2K

sin(xz) exp(-Kx)d/c. (8.57)

The pressure on the free surface from this part of theA
solution vanishes, and the vertical velocity wi is given 
by (cr* T - o') ,

2 crw =   cos(Kh) exp (-/ex) d/c, (8.58)i tt (s + icr)

which can also be written as a Fourier integral in the 
form
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w = 1
2cr

tt(s + icr)
1 - e-kh cos(kx) dk (8.59)

The appropriate form for 02 is
00

kzA(s#k) cos(kx) e dk. (8.60)

Following the same steps as in the finite-depth case, anA
equation for B can be found which corresponds to equation 
8.49, namely

A. + 2Ks
7T 2 , 2 s + crk

dk B = 2crs‘
7i ( s + ic r )

1 - e-kh
i / 2 , 2.k(s + )

dk,

where
(8.61)

crk2 = k(l + Kk2) , cr =  1 + K . (8.62)

The transient motion near the contact line has the 
same form as in the case of finite-depth, since the 
integrals in equation 8.61 for large s are similar to 
those in 8.49. For large t, the wave generated by the 
wavemaker in the same way as before can be determined and 
the complex amplitude of the wave, denoted by R, is now 
given by

_ 2<r2(l - e h )
q'

J  ' +2
iA rr
2crK

T 7 4-
l 2crK

ITT
q7

(8.63)

where q7 = 1 + 3K. This expression for R is very similar 
to that in the finite-depth case given by equation 8.52, 
but the integrals are defined by

• V  =  + 2 2 cr -  crk
dk, (8.64)

which is a principal-value integral, and by
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00

J ' =2
k2 - k /2

i * 2 2 >k(cr - cr )x k '
dk, (8.65)

where

k/2 = 1 - e-kh
-h * (8.66)

1 - e

The free surface elevation at the wavemaker is

7?(0,t) = e' i<7t \(T (1 - e h )
i tJ - J + - 1 2

i7T
q#K J ' + 1A7T + 171

_ i 2crK q'
(8.67)

Numerical values of |R| and of 7j(0,t) as functions of 
\ for h = 1 and for various values of K are displayed in 
Figures 8.13 and 8.14. The main features are similar to 
those of the corresponding results for the finite-depth 
case shown in Figures 8.11 and 8.12. The minima of the 
wave amplitudes are somewhat more pronounced.

8.6 - Small Depth

If the depth of the channel is small compared with 
the wavelength, the simplifications of shallow-water 
theory can be applied and the results arrived at more 
readily than by the methods used for arbitrary depths. The 
wavemaker problem of section 8.4 with h small is 
considered here. The variables are expanded in powers of 
h, noting that cr2 = h(l + K) to the leading order. If
z = h<[, the Laplace's equation for 0 becomes,
2 2d <p / d£ = 0 to the leading order, so that 0 = 0 (x,t) .

Then

U =  - H - '  w  -  - h (C + 1) (8.68)ox ax2

where w has been determined from the equation of 
continuity and the bottom boundary condition. If all the
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dependent variables are assumed to have a factor of 
exp(-icrt) due to the time-dependence of the forcing motion 
of the wavemaker, the pressure and surface elevation are 
given as (using equations 8.31 and 8.35)

p - i<r*, v  V - K - & - - + 1  (8.69)
dx dx

The boundary conditions at x = 0 are;

= cr exp(-iat), icrrj = X -15™, (8.70)ax ^ x -w w,, ^ Qx

and it is also required that

7]  ̂R exp{i(x-crt)} as x — (8.71)
Eliminating 0, the equation for can be written in the 
form

M-t- +  ll Ik -  ( 1  +  K ) T |1  = 0, (8.72)
1 dx -I L dx J

and the solution that satisfies the condition at infinity 
is

7? = R exp{i(x~crt) } + C exp j- [  ̂k K ] X ” (8.73)

The values of R and C are determined by the boundary 
conditions 8.70 and therefore

1 + ±X
h1/2 K1/2R = h ------------------------------------------ , (8.74)

i + ii - i1/2 + “  1 + 2K[ 1 + K ] ,1/2 .,1/2 1 + Kn k

1/2so that R/h depends on the parameters X / h and K. The 
surface elevation at the wavemaker depends on the value of 
R + C and is given by
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h K1/2 1 + K
1 + 2K

(8.75)

The value of & given by equation 8.74 can also be
found by considering the limiting behaviour of the result
for general depth from equation 8.52 as h tends to zero.
In this limit the integrals j and J2 can be evaluated
analytically. The values of |R| calculated from equation
8.74 are shown in Figure 8.15 for h = 0.1. The values
calculated from equation 8.52 are indistinguishable on the
resolution of the diagram. The surface elevation
calculated from equations 8.56 and 8.75 for h = 0.1 are
also in close agreement, although there is some
discrepancy when K = 0.1 and X is small. This is not
unexpected, since the shallow-water limit requires h « 
1/2K which is hardly satisfied when h = K = 0.1.

It is possible to find the transient solution of the 
shallow-water equations by taking a Laplace transform as 
in section 8.4. However, this does not give the correct 
result for the short-time behaviour because the limits 
h — » 0 and t — > 0 do not commute. The impulsive initial 
motion of the wavemaker creates waves of all wavelengths, 
including those that are short compared with the fluid 
depth. But the shallow-water approximation assumes that 
all variations in the x-direction are small compared with 
those in the z-direction and this assumption is not valid 
for t small.

The shallow-water approach can also be used for other 
types of wave motion. For example, if the wavemaker is 
given a vertical velocity instead of a horizontal one, the 
boundary conditions 8.70 must be replaced by
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when the wavemaker has a vertical velocity equal to o* 
exp(-icrt). With 77 of the same form as in the equation 
8.73, these conditions determine R and C, and hence

K
2 1 + 2K (8.77)

1 + + hK ‘ 1 + K
X2 1 + 2K

h1/2 (1 + K )1/2

When X = oo there is no generated wave because then 
the free surface can slip freely along the wavemaker. When 
the edge is forced to move with the wavemaker, that is, 
when X = 0, the amplitude of the generated wave is 
independent of the depth of the fluid and has its maximum 
value as a function of X. This maximum value, as a 
function of K, is always less than 1 / V2 and approaches 
that value as K — > ». The amplitude of the wave produced 
by a vertically oscillating plate for arbitrary depths was 
obtained by Hocking, and the result for shallow water can 
be deduced by taking a suitable limit, but the direct 
derivation for shallow water by the method used here is 
much simpler.

Another problem that can be solved in the 
shallow-water case is the reflection of an incident wave 
by a rigid plane. If it is supposed that the incident wave 
has unit amplitude, the appropriate form for tj is

tj = exp{-i(x + crt)} + R exp{i(x - <xt)}

(8.78)

and the boundary conditions are

at x = 0 . (8.79)

These conditions lead to an expression for R which gives



For both X = 0 and X = » the reflected wave has unit 
amplitude, since in these cases there is no energy loss at 
the contact line. For other values of X the amplitude of 
the reflected wave is reduced. As a function of X, |R| has 
a minimum value IRI when X = X , where1 1 min min

.2 hK( 1 + K) - , (1 + 2K)1/2 - K1/2
min 1 + 2K ' I Lin ^  +

(8.81)

The smallest value of IRI as a function of K is V2 - 11 1 min
as K — >co. The reflection of an incident wave in water of 
arbitrary depth was obtained by Hocking (1987b).

Two main results have been established in this 
section (section 8.3). It has been shown that 
capillary-gravity waves generated by a wavemaker can be 
predicted from the known motion of the wavemaker, provided 
an appropriate edge condition is applied, and without 
assuming a prescribed slope of the free surface at the 
contact line. The special cases of a fixed contact angle 
and a contact line fixed on the wavemaker have been 
included. The solutions have been given for a particular 
motion of the wavemaker, namely an impulsively started 
harmonic oscillation, and the velocity of the wavemaker 
has been uniform over the immersed part of the wavemaker. 
Extensions to other time variations and to depth-dependent 
velocities can easily be made.

The second result has been to show that, with 
capillarity and an appropriate edge condition, the 
transient motion after an impulsive start does not 
introduce a singularity in either the position or the



slope of the free surface. It is not necessary to ensure 
that the initial motion of the wavemaker is sufficiently 
smooth, nor does one need to include non-linear effects to 
remove the singularity that occurs when the surface 
tension is neglected.

The problem in section 8.5 for large t is the same as 
the problem solved in section 8.1. The quantities | | and
| R | (obtained equations 8.20 and 8.63 respectively)
which both correspond to the amplitude of the waves at 
large distances away from the wavemaker, can be shown, are 
identical. They are obtained by two different methods and 
can be compared in Figures 8 .2 and 8.13 , in particular
for K = 1 which shows that they are identical.

Figures 8.11 and 8.12 show the change of amplitude 
and surface elevation with X, for different values of the 
capillarity coefficient, when the depth of the fluid (and 
length of the plate) is finite. The curves corresponding 
to the amplitude have minima which is due to loss of 
energy, whereas at X = 0 and as X — > » (the two extreme 
cases of pinned-end and free-end) the amplitude has larger 
value. Surface elevation, however, is a monotonic 
increasing function of X and monotonic decreasing function 
of the capillarity coefficient, K.

Figure 8.15 corresponds to the amplitude of the waves 
when the depth of the fluid is small (shallow water).
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Figure 8.1. Elevation at large distance 
as a function of A  ; h ■ 0.1.
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Figure 8.2. Elevation at large distance
as a function of ; h ■ 1.
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Figure 8.3. Elevation at large distance 
as a function of >> ; h ■ 2.
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Figure 8.4. Elevation at large distance
as a function of ^  ; h - 5.
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Figure 8.5. Elevation at large distance 
as a function of ^ ; h ■ 10.
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Figure 8.6. Elevation at large distance
as a function of ; h ■ 10.
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Figure 8.7. Elevation at large distance 
as a function of ^ ; h = 5.
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Figure 8.8. Elevation at large distance
as a function of ; h = 2.
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Figure 8.9. Elevation at large distance 
as a function of \  ; h = 1.
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Figure 8.10. Elevation at large distance
as a function of M  h *= 0.1.
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Figure 8.11. Elevation at large distance 
with h = 1 (finite depth).
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Figure 8.12. Elevation on the wavemaker
with h = 1 (finite depth).
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Figure 8.13. Elevation at large distance 
with h = 1 (infinite depth).
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Figure 8.14. Elevation on the wavemaker
with h = 1 (infinite depth).
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Figure 8.15. Elevation at large distance 
with h = 0.1 (shallow water).
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CHAPTER IX

CONCLUSION

In this thesis, the radiation and reflection of 
capillary-gravity waves and their properties was studied. 
Some of the previous work on the generation of 
capillary-gravity waves are based on the unjustified 
assumption that the slope of the free surface at the 
contact line can be prescribed. A more acceptable 
condition is one that relates the slope to the motion of 
the contact line relative to the wavemaker; in this way 
the dynamic properties of the contact angle can be 
incorporated. This edge condition, which was used 
throughout this thesis, includes both the extreme cases of 
pinned- and free-end conditions.

The problems which are studied here are, determining 
the frequency of a contained fluid, radiation of waves 
form a vertically or horizontally oscillating cylinder and 
scattering of a plane wave with a fixed cylinder. In each 
case both the radiated waves elevation at a large distance 
away form the cylinder and the surface elevation on the 
cylinder were obtained. All these problems are studied for 
steady state. The waves generated by a plane wavemaker are 
also determined in the fluid of infinite depth and in 
fluid of a depth equal to that of the wavemaker. An 
important reason for including surface tension is that in 
its absence the transient motion initiated by an impulsive 
start is singular; when surface tension is included this 
singularity is removed. Shallow water theory was also used 
for small depth fluid to obtain the elevation at a large 
distance away from the cylinder or the plate which 
simplifies the analysis considerably.

In chapter 3, a theoretical determination of the 
damping of surface waves by capillary action was
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presented. A free-oscillation problem is studied (in this 
chapter) and hence the real and the imaginary parts of the 
frequency o* are determined. The imaginary parts give the 
damping rate associated with capillarity and the edge 
condition. As predicted this is zero for the free- and 
pinned-end cases, but intermediate values of X give 
significant damping rates. During the computation, for 
each mode, X is chosen to be infinity initially, which 
corresponds to the free-end case and as X decreases, the 
graph goes to its maximum which corresponds to a loss of 
energy, and then decreases towards the pinned-end case 
with X = 0. The case of m = 0 corresponds to the
axisymmetric case with the lowest loss of energy. In all 
three cases, the largest frequency corresponds to the 
larger mode. For K and m equal to unity (corresponding to 
the splashing mode), the real and the imaginary parts are 
of the same order, suggesting a big loss of energy.

In chapter 4, the vertical oscillation of a vertical 
cylinder in the fluid was studied. For a given capillarity 
coefficient K, the surface elevation decreases 
monotonically as X increases for k7<l. For a given 
capillarity coefficient K ( = 100, 1 or 0.1), the value of 
the surface elevation at large distances away from the 
cylinder, decreases monotonically as X increases for k7 
less than unity, and its variation (i.e. the variation of 
the surface elevation) tends to be negligible when k7 is 
large (such as 8 ,4,2,1). The surface elevation (at a large
distance away from the cylinder) for small values of k7 ,

1/2behaves as K and is directly proportional to K for 
values of X < 0.5 and X * 0.5 respectively, and
furthermore for a given value of k7 , it (the surface 
elevation) decreases as capillarity coefficient increases 
and X approaches infinity. The value of the surface 
elevation depends on the radius of the cylinder which 
changes with k7 if values of X and Kk7 2 are zero and 
constant respectively, the surface elevation decreases 
when the radius decreases while k7 increases. The surface 
elevation on the cylinder, however, tends to be a constant
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approaching zero for large values of k7 (typically 4 or 
larger) and K ^ 1.

In chapter 5, the horizontal oscillation of a 
cylinder in a fluid was studied, for both finite and 
infinite depth of the fluid, equal to the height of the 
cylinder. The surface elevation at large distances away 
from the cylinder 177̂  | , is a monotonically decreasing 
function of K and X. The surface elevation on the cylinder 
M  r=1, is a monotonically increasing function of X.

In chapter 6, the scattering of waves by a fixed 
vertical cylinder was studied. At large distances from the 
cylinder and when k7 is large (that is, for short waves 
relative to the radius of the cylinder), the surface 
elevation shows a considerable and rapid dependence in the 
direction of &. When X = «, the results are same as for 
the acoustic scattering problem. The averaged intensity of 
the scattered wave over all directions and at a large 
distance from the cylinder is an increasing function of k7 
for values of X greater than unity, but for smaller values 
it is not monotonic. This intensity seems to have (from 
curves) a series of maxima and minima at intervals 
approximately equal to — , and is independent of K as k7 
— » 00. There are minima in the values of the mean-squared 
elevations at large distances from the cylinder because 
there is energy dissipation when X is neither zero nor 
infinity. At large distances the elevation increases with 
K, but approaches a limiting value independent of K as X 
— > 00. On the cylinder, however, the elevation decreases as 
K increases for finite values of X . It is also possible to 
ascertain the effect of the edge condition on the force 
experienced by the cylinder in the limit as K — » 0. This 
force can be calculated by integrating the pressure over 
the surface of the cylinder and the pressure is given as 
the sum of pt and p2. The pressure pi provides the force 
when the edge condition is of orthogonal contact, as in 
the absence of capillarity. The contribution of p2 to the 
force is proportional to pi. This part of the force is of
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order of K/X and K1/2, when X > K1/2 and X < K1/2
respectively. Thus, for a given small value of K, the
effect of the edge condition is maximum when X = 0, that
is, when the edge is fixed, and the force is then changed

1/2by an amount proportional to K . The average squared 
value of the elevation is a function of X for K of 0.1 and 
1, respectively. The averaged squared elevation is a 
monotonic decreasing function of k7 for all values of X, 
and the limiting values of it as X — > « are independent of 
K.

In chapter 7, the cylinders in shallow water are
studied. Three cases with their limiting values have been 
considered; vertical, horizontal oscillation of the 
vertical cylinder in the fluid and the scattering of waves
with the cylinder which is fixed. It was shown that the
approach of finding the surface elevation in shallow 
water, using shallow water theory is less complicated than 
the approach used for determining the same thing by 
determining the elevation of the free surface when the 
fluid is of arbitrary depth and hence let the depth tend 
to zero.

In chapter 8 , horizontal oscillation of plates in the 
fluid is studied; when the fluid is of finite depth equal 
to the length of the wavemaker or is of infinite depth and 
the plate oscillates horizontally at one end of the 
channel, or when the plate has finite length while the 
fluid has infinite depth, and source and sink approach is 
used, or when the plate oscillates horizontally in shallow 
water. The surface elevation at a large distance away from 
the plate has been calculated for a range of values of the 
parameters h, K and X. These represent the length of the 
plate, the capillarity parameter and the ratio of contact 
line speed to the variation in the contact angle 
respectively. The bigger the capillarity coefficient, the 
bigger the surface tension and hence the smaller the 
amplitude of the waves. The elevation at large distances 
away from the plate, for h smaller than or equal to 2,
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increases monotonically as K increases, which is the 
behaviour expected. For h = 10 or 5, however, when K is 
large, that is 0.4, this rule does not quite hold. Since 
elevation at large distances has a minimum as a function 
of X, when h  ̂1, it approaches its limit at X = 10 from 
below. When h < 1, the limit is approached from above. The 
transient motion is also introduced in this chapter, and 
it follows that the edge condition used here does not 
introduce any initial singularity in either the 
free-surface elevation or slope at the contact line. After 
the transients have disappeared, the wavemaker produces a 
wave whose elevation at large distance from the wavemaker 
has the form R exp{i(x - crt)}, where |R| is the amplitude 
of the waves which decreases monotonically as K increases. 
Each curve has a shallow minimum as a function of X and 
approaches its limiting value as X — » « from below. When X 
is finite and non-zero, there is some energy dissipation 
at the wavemaker which may account for the dip in the 
amplitude of the generated wave. The surface elevation at 
the wavemaker is a monotonic increasing function of X and 
also decreases as K increases. When the surface elevation 
in shallow water is determined and compared with the 
results of the small finite depth, there is some 
discrepancy when K = 0.1 and X is small. This is not
unexpected, since the shallow-water limit requires h «

1 /2K which is hardly satisfied when h = K = 0.1. When X — > 
oo there is no generated wave because then the free surface 
can slip freely along the wavemaker. When the edge is 
forced to move with the wavemaker, that is, when X = 0, 
the amplitude of the generated wave is independent of the 
depth of the fluid and has its maximum value as a function 
of X. This maximum value, as a function of K, is always 
less than 1 / V2 and approaches that value as K — > oo. The 
smallest value of |R| (the amplitude of the wave generated 
by the wavemaker) as a function of K is /2 - 1 as K — » oo. 

When both the plate and the fluid are of finite depth, the 
surface elevation on the plate is a monotonic increasing 
function of X and monotonic decreasing function of the 
capillarity coefficient, K.
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Among the problems which was not considered to be 
done and is possible to do are;

a) when the fluid is of infinite depth and the cylinder 
is of finite height,

b) cylinders of other cross sections, rather than 
circles.
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