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A b strac t

There are regions in the abyssal ocean where sharp topographic gradients occur, for example escarp
ments, canyons or seamounts. In such regions the contribution of the topography to the ambient 
potential vorticity dominates over the ubiquitous effects of planetary curvature, and may play an 
important part in steering abyssal eddies, such as those affecting the dispersal of newly formed 
bottom water. This thesis studies some models of vortex motion near a topographic escarpment. 
The topography produces a restoring mechanism for wave generation, and acts as a wave guide, i.e. 
the topographic wave phase and energy travels parallel to the isobaths with shallow water on the 
right in the Northern hemisphere. The ratio, 5, of the time scale for topographic wave generation to 
the time scale for the vortex circulation, is a measure of vortex intensity. If the two scales axe well 
separated, i.e. S  1 (a weak vortex) or S <  1 (an intense vortex), analytical progress is made. 
For a moderate intensity vortex (5 «  1) the wave-vortex interaction is nonlinear and the contour 
dynamics algorithm is adopted to study the vortex motion in this regime.

In Chapter 1 some examples of geophysical vortices are described, along with their significance. 
Chapter 2 gives a brief summary of the mathematical preliminaries. Chapter 3 constitutes a review 
of the relevant work, namely vortex motion over varying topography in quasigeostrophic dynamics. 
Of interest is vortex motion on the /3-plane, since the methods employed in such studies can be 
adapted for the present work.

In Chapter 4 the results of McDonald (1998) for the motion of an intense singular vortex near an 
escarpment are extended to cover the full range of vortex intensities. Analytic results indicate that 
a weak singular vortex moves parallel to the escarpment in the sense of its image in the escarpment. 
The vortices which travel in the same direction the phase of the topographic waves radiate waves 
and experience motion perpendicular to the isobath as a result of energy loss. Numerical results 
for moderate intensity singular vortices show that the motion is characterised by dipole formation. 
The primary vortex pairs up with an opposite signed patch of relative vorticity which has been 
produced as a result of cross escarpment advection. An anticyclone located on the shallow side of 
the escarpment or a cyclone located on the deep side cross the escarpment as a result. A cyclone 
located on the shallow side of the escarpment or an anticyclone located on the deep side are reflected 
away from the escarpment.

Chapter 5 is an investigation into the motion of an initially circular vortex patch near an escarpment. 
It is found that weak vortex patches behave as if the escarpment were a wall. At large times weak 
vortices which travel in the same direction as the topographic wave phase radiate wave energy, and 
are destroyed as a result of topographic wave radiation. Analytical results show that an intense 
vortex patch moves in the same manner as an intense /3-plane vortex, i.e. cyclones move along 
curved northwest trajectories and anticyclones move southwest. Numerical studies for moderate 
intensity patches show that the motion is again characterised by dipole formation.

Finally, Chapter 6 considers the motion of a singular vortex near a coastal ridge, i.e. an escarpment 
running parallel to a wall. It is shown that weak vortices behave as if the escarpment were a 
plane wall. In the cases where the vortex travels in the direction of the topographic wave phase 
radiate wave energy, and the vortex drifts towards the escarpment as a result. Numerical studies 
are presented in the cases of intense and moderate vortices.
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Chapter 1

Introduction

Many parts of the oceans and atmosphere are characterised by the presence of strong, isolated, 

swirling currents, or vortices. These structures exist over a wide range of length scales and axe 

often long lived. Whilst it is not on the Earth, the Great Red Spot of Jupiter has become almost 

the canonical example of such a vortex in a planetary atmosphere. The Great Red Spot, known 

to exist since the invention of the telescope in 1610, was first described by Robert Hooke in 1665, 

and continues to swirl to the present day. Figure (1.1) shows a picture of the Great Red Spot taken 

in 1979. The Great Red Spot is 14,000 km across in the east-west direction and 40,000 km across 

in the north-south direction. It swirls anticlockwise and is located in the upper atmosphere in the 

southern hemisphere of Jupiter, which means that it is an area of high pressure or an anticyclone. 

Wind speeds in the Great Red Spot axe up to 360 km/hour.

In 1961 Raymond Hide described the origin of the Great Red Spot in the popular science journal 

Nature (Hide, 1961). Unlike fluid which is free to move in three dimensions in an arbitrary way, 

the Jovian atmosphere is confined to a thin spherical shell in which vertical velocities axe negligible 

compared to horizontal velocities. A remarkable feature of such fluids is the emergence of large 

localised laminar vortices from the background small scale turbulent flow (see e.g. McDonald (1999) 

and references therein). Figure (1.1) illustrates this well. There axe several (smaller) white vortices 

to the south of the Great Red Spot, and the motion in between is rather turbulent. The longevity 

of the Great Red Spot is due to opposing shear on the north and south sides, and the rapid rotation 

of Jupiter which has a day of length 9.6 hours.

The earth’s atmosphere and oceans shaxe the quasi two-dimensionality of the Jovian atmosphere and

5



Figure 1.1: The Great Red Spot of Jupiter. The picture was taken by the NASA spacecraft Voyager 
1 on 25th February 1979. The bottom of the picture is south and the top is located roughly at the 
equator of Jupiter.
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each gives rise to similar isolated vortices. For example, there is the wintertime polar vortex, located 

in the stratosphere, and which in effect is isolated from the rest of the atmosphere, enabling the 

chemistry of ozone depletion to take place (McIntyre, 1995). Tropical cyclones axe further examples 

of intense atmospheric vortices, and which are capable of causing devastation and great cost to 

human life.

Vortices are equally prolific in the ocean. They are, for example, produced by instabilities in sepa

rated intense western-boundary currents. The Gulf Stream is an example of such a current, which 

spawns vortices when its meandering becomes sufficiently large. These vortices are lenses of anoma

lous warm water and axe known as Gulf Stream Rings. Figure (1.2) shows a satellite image of the 

sea surface temperature off the northeast coast of America. The warm Gulf Stream sepaxates from 

the western boundaxy of the Atlantic and its meandering motion is evident. Note the warm rings 

near the large meander. Gulf Stream rings axe typically a few hundred metres deep and 50 to 200 

km in diameter. They move southwest in to the surrounding cold water until they interact with the 

shelf or the Gulf Stream itself. Most of the rings have a lifespan of 1-3 months and are eventually 

reabsorbed by the Gulf Stream. Similar vortices are shed from the Agulhas current at the tip of 

South Africa and the Kurushio current off the east coast of Japan.

All of the Gulf, Agulhas and Kurushio rings exhibit a strong surface signature. However oceanic 

vortices aren’t exclusively surface phenomena. For example the Mediterranean salt lenses (meddies) 

are large flat discs which form 1000 m below the surface in the Mediterranean sea and move out 

into the Atlantic Ocean. Meddies can be 100 km in diameter and about 800 m in vertical extent. 

Moreover, they have a lifetime of up to 2 years and travel up to 2000 km into the Atlantic ocean - a 

speed of about 2 cm s_1. Recent evidence also suggests that in the abyssal ocean, deep bottom water 

formed in the polar oceans is dispersed by vortices rather than continuous currents (see references 

in McDonald (1999)).

One of the most important characteristics of geophysical vortices is their ability to self propagate on 

a rapidly rotating planet. Coupled with their longevity this gives vortices the ability to transport 

passive scalars, such as momentum, salt, heat and biota, over distances much larger than their 

characteristic size. For example the water, in the core of a meddy is up to 4°C warmer than the 

surrounding Atlantic water and 1 part per thousand saltier; hence meddies axe responsible for the 

dispersal of a large amount of heat and salt throughout the north Atlantic. Similarly Agulhas eddies
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Figure 1.2: Satellite image of a part of the Gulf Stream. See text for further comments.
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transport at least 2.2 x 1020J yr-1 of heat and 14 x 1012kg yr-1  of salt from the Indian ocean to 

the Atlantic ocean. Vortices form an important link in the global circulation of the oceans, and 

the manner by which they redistribute salt and heat is an important factor in determining the 

climate and weather. Unfortunately their lengthscales are too small to be resolved by global climate 

models and so their effects need to be accurately parametrised in such models. It is of considerable 

importance therefore to understand the behaviour of geophysical vortices through simplified models.

Vortices are also important from an environmental point of view. For example the northern ‘wall’ 

of the Gulf Stream meets the Labrador current which brings a high concentration of phytoplankton 

from the nutrient rich polar waters. In turn this provides a happy feeding ground for fish and larger 

sea life, and consequently the Nova Scotia and Newfoundland fisheries are rich in marine life. In 

addition, the water in the Gulf Stream Rings is not only warmer than the surrounding water, but 

the biology is also different. It has been observed that springtime blooms occur at different times in 

the warm rings than in the neighbouring cold water. Some of the biota present in the rings originate 

in the warm Sargasso sea and are not otherwise seen in the cold shelf waters. See Davis and Weibe 

(1985). At a smaller scale, surf zone vortices near coastlines may be important in the dispersal of 

pollutants.

As alluded to before, geophysical vortices are not simply pushed around by prevailing currents, but 

have the ability to self-advect. It is of particular importance to be able to predict the trajectories and 

longevity of vortices. This is a complex matter since planetary rotation, thermodynamics, shearing 

currents, neighbouring vortices, friction and bottom topography all contribute to the motion. This 

thesis examines the effect of sharp topographic gradients on the motion of vortices. Sharp topography 

exists in the deep ocean and may have a considerable effect on the motion of vortices. For example 

McDonald (1993) modelled the dispersal of newly formed bottom water from polar regions along 

mid ocean ridges by cold eddies. The continental slope affects the trajectories of the Gulf Stream 

rings and the Walvis ridge considerably affects the motion of Agulhas rings. Before proceeding with 

the study the next chapter presents some of the theoretical background to the present thesis.
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Chapter 2

Preliminary considerations

In this chapter and the next some background theory necessary to the present work is considered 

without derivation. The details can be found in Pedlosky (1979), Chapter 3. In chapters 4 through 

to 6 , quasigeostrophic dynamics of a single layer fluid on an /-plane is modelled. This model ignores 

the effects of planetary curvature (usually represented by the /3-plane), which are assumed negligible, 

at least locally, compared to the effect of sharp topographic gradients. Vertical structure is trivial, 

since it is the dynamics of abyssal eddies that are of interest, and the deep ocean can be thought of 

as a layer of relatively dense fluid lying under an infinitely deep layer of fluid of much lower density. 

Future work could include the /3-effect, more general topography or the effects of stratification. Such 

work is likely to be numerical in nature. The simple model problems considered in this thesis admit 

analytical solutions in certain limits. Moreover, when taken in conjunction with existing analytical, 

numerical and experimental studies of vortex-topography interactions it may be possible to identify 

some general features of a wide class of geophysical vortex dynamics, an important concern for 

mesoscale modelling in general circulation models.

2.1 Shallow water theory

In shallow water theory the dynamics of the atmosphere and oceans are modelled by a single “thin” 

layer of homogeneous (constant density, p), inviscid fluid, rotating at constant angular velocity ft 

about the vertical 2-axis. The motion is governed by the shallow water equations, which in a frame 

of reference rotating with the fluid are

lit +  (u.V)u +  / k  A u  =  - g 'V h  (2.1)
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Ht + V.(uH) = 0. (2.2)

The first equation is the momentum equation, and the second is the equation of mass conservation. 

Here the dependent variables are u  =  (u,v), the horizontal velocity of the fluid, and H (x ,y , t ) ,  the 

thickness of the fluid layer. The latter quantity can be written

H (x, y , t) = h(x , y, t ) -  hB (x , y), (2.3)

where h is the deviation of the free surface from its level position at any point and hB is the equation 

of the rigid bottom boundary above some reference level z = 0. The bottom boundary is called the 

topography. The independent variables are x, y, the horizontal coordinates, and t the time variable 

which has units

Ta = § ,  (2.4)

where L  is the “appropriate” length scale for horizontal motions with corresponding velocity scale 

U. Hence Ta is the typical time scale for a fluid particle to move a distance L. In problems involving 

vortices, choosing L  to be the length scale for the vortex and U to be the typical swirl velocity of the 

vortex, Ta is the typical time for a fluid particle to rotate about the vortex centre. For this reason Ta 

is sometimes called the eddy turnover time. The remaining quantities in the shallow water equations 

are the Coriolis parameter f  = 2H, discussed later, and —g'k, the acceleration due to the reduced 

gravity of the fluid. In the context of the abyssal ocean the single layer model can be though of as a 

layer of relatively dense fluid lying under an infinitely deep less dense upper layer (sometimes called 

the l|-layer model), where the interface between the layers is free to deform. Then the reduced 

gravity is g' = g&p/p, where g is the acceleration due to gravity, p is the fluid density and Ap is the 

difference in density between the lower layer and the infinite upper layer.

The vertical scales in the derivation of the shallow water equations axe D, the typical layer depth 

and W, the typical vertical velocity. The notion of a thin layer is made precise by insisting that

j ;  <  1, (2.5)

i.e. the horizontal length scale is much larger than the vertical length scale. Equation (2.5) is the 

definition1 of the shallow water model, and it implies that the vertical acceleration is (D /L )2. Thus 

a particle with initially zero vertical velocity maintains a zero vertical velocity to within small values

1This constraint implies that the fluid pressure is p =  pg(h — z) + p o ,  with po the pressure at the surface, i.e. the  
hydrostatic approximation. The hydrostatic approximation could also be taken as the definition of the shallow water 
model. It is this that enables the equations to  be written in terms of the fluid depth H ,  rather than the pressure 
directly.
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of order (D /L )2 compared with the horizontal accelerations. The tendency of the motion of a thin 

rotating fluid to become strongly aligned with the rotation axis is a  famous result, known as the 

Taylor-Proudman theorem. Taylor (1923) demonstrated that when an obstacle is dragged through 

a rotating fluid at right angles to the rotation axis, the column initially above the obstacle moves as 

a column with the obstacle. The “Taylor columns” are a feature of thin rotating fluids, and enable 

the two dimensional description of the large scale horizontal motions.

The choice of a rotating frame of reference gives rise to an apparent force in the momentum equations, 

—/ k  A u, known as the Coriolis force. Importantly the Coriolis force acts at right angles to the 

direction of the fluid motion, i.e. to the right (left) looking in the direction of the motion in the 

northern (southern) hemisphere. On the Earth the local horizontal component of the Coriolis force 

is unimportant, at least in the mid latitudes (e.g. Gill (1982)), and the vertical component varies 

lineaxly with the sine of the latitude <f>. The Coriolis parameter is

/  =  2Oj5 sin0 , (2 .6)

where fIe  = 7.292 x 10- 5s-1  is the angular velocity of the earth. Taking a fixed latitude (f> is 

equivalent to a tangent plane approximation to the curved surface of the planet, and is called the / -  

plane. The /-plane describes well mid-latitude motions with only small meridional (i.e. latitudinal) 

variations.

The Coriolis parameter varies with latitude due to the sphericity of the Earth sphericity. Rossby 

(1939) developed a model in which the Coriolis parameter varies linearly with latitude in the mid 

latitudes. In this model, known as the /3-plane, /  is approximated by linearising about some mean 

latitude (f>o,

/  =  fo +  &y-> (2.7)

where fo = 20  sin 0O and y is the coordinate in the latitudinal direction. The parameter (3 measures 

the variation of the Coriolis parameter in the latitudinal direction and is given by

20
( 3 = — cos </>o, (2.8)

ro

where ro is the radius of the Eaxth. The value of /3 at, for example 30° N, is 1.9 x 10- 13cm- 1s-1 . 

The /3-plane model has proved to be very useful in understanding the large scale motion of the 

atmosphere and oceans. The motion of vortices on the /3-plane has has attracted considerable

attention, and a review is given in the following chapter. It is shown below that the /3-plane
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approximation is equivalent to the /-plane approximation with linearly sloping topography, and for 

this reason comparison of vortex motion near sharp topographic features with vortex motion on the 

/3-plane is made throughout this thesis.

In shallow water theory there is a physical quantity of such importance that the governing equations 

can be written as a single conservation law. The potential vorticity is

n = ^±L, (2.9)

where
dv du ,

( = T y - r x ’ (210)

is the relative (i.e. to an observer in the rotating frame) vorticity, which is aligned with the rotation 

axis. The potential vorticity is conserved on fluid columns,

+  (2 .11)D t \  H  

where

g ^ J  + ( -V ) (212)

is the material or advective derivative, which expresses the rate of change of a scalar quantity 

following a fluid element in its evolution. The conservation law, (2.11) states that relative vorticity 

is generated due to vortex column stretching (i.e. changes in H) in the planetary vorticity field /  

as fluid columns move over topographic or Coriolis gradients. This single expression encapsulates 

the essence of geophysical fluid dynamics. The ubiquitous acquisition of relative vorticity by the 

fluid is characteristic of the large scale motions of the atmosphere and oceans. Potential vorticity 

conservation is responsible, for example, for the tendency of sub-inertial frequency (Rossby) waves

to adopt a preferential westward phase velocity, or for strong circulating cyclonic currents to follow

curved northwest paths.2

The motion of fluid in the atmosphere and oceans is approximately in a state of so called geostrophic 

balance, i.e. the Coriolis force approximately balances the horizontal pressure gradient. Steady, 

linearised shallow water motion has velocity components

•  -  - lM  <"*'

'  ■ 5 1  * “ >
2Tbis latter statem ent holds in the northern hemisphere only.
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where 77 is the deviation in the free-surface from its resting value. Thus 77 is a streamfunction for the 

flow. Since 77 is proportional to the fluid pressure, the flow is equivalently along the isobars, which 

is why the isobars are used as a diagnostic in evaluating the weather.

2.2 Quasigeostrophic m otion

The small departures of the fluid motion from purely geostrophic flow are of most interest. To 

examine these departures the shallow water equations are rescaled, with the assumptions that the 

free surface deviations and the topographic variations are small with respect to the average layer 

depth. The equations are then expanded in a series in the Rossby number

R o = j Z , (2.15)

which is a small parameter, i.e. interest is focused on motions whose time scale is much larger 

than the inertial period. Small Rossby number flows in dimensional terms are those that evolve 

over weeks and months as opposed to hours or days. In the context of vortex motion the Rossby 

number is the ratio of the inertial period to the eddy turnover time, and is therefore a  gauge of the 

importance of rotation on the vortex evolution. In particular if Ro  is of order unity or less then the 

rotation of the Earth plays an important role in the vortex motion. Typical values of, for example,

an Aghulas ring at 35° S are /  =  8 x 10- 5s-1 , U = 50 cm s-1  and L = 80 km, leading to Ro  «  0.1

(McDonald (1999)).

The derivation is described in detail in Pedlosky (1979), and leads to the conservation law

w = 0’ (216)

where the conserved quantity,

0  =  v 2 V > - ( ^ )  i> + f y  + S h B, (2.17)

is the quasigeostrophic potential vorticity in the context of a single layer /3-plane. Here rf) is a 

streamfunction for the flow and is proportional to the free-surface deviation or the fluid pressure. 

The leading order velocity field in this scaling is



hence the name “quasigeostrophic”. The potential vorticity consists of three parts. First, the term 

V 2ip in (2.17) is the relative vorticity. The second term ip is a, contribution due to variations

in the free surface elevation, and the parameter L / R d is the ratio of the horizontal length scale to 

the Rossby (deformation) radius,

R d  =  (2 -2 0 )

The Rossby radius is a length scale which arises naturally in the derivation of the quasigeostrophic 

governing equation. It is the ratio of the gravity wave speed to the Coriolis parameter, and is the 

length scale on which the relative vorticity and the surface elevation make equal contributions to the 

potential vorticity, or alternatively, the length scale on which the tendency of the surface to become 

flat due to adjustment under gravity is balanced by the tendency of the Coriolis effect to deform the 

surface. It is of great importance in geophysical fluid dynamics, and its presence in (2.17) defines 

a preferential length scale for the motion. In particular, the free-surface effect of the rotating fluid 

tends to cause disturbances to decay on distances of the order of the Rossby radius.

These first two terms in (2.17) are due to the relative motion. The remaining terms axe present 

independently of the motion and axe therefore called the ambient potential vorticity. The variable 

part of the ambient potential vorticity, (3y +  S h s  consists of the planetary vorticity field and the 

topography.3 Gradients in the ambient potential vorticity provide a restoring mechanism for wave 

generation. To see this consider the case of hs  =  sgn(y), and /5 =  0, so that y = 0 is an interface 

between regions of differing Q, with higher Q lying in y > 0. If this interface is deformed as in 

Figure (2.1), the priciple of conservation of potential vorticity implies that fluid which has moved 

from shallow water to deep water will acquire positive relative vorticity and fluid which has moved 

from deep to shallow water will acquire negative relative vorticity. Hence the disturbance propagates 

with shallow water (i.e. higher ambient potential vorticity) to the right as shown in Figure (2.1).

It should be noted that this ‘stiffness’ of motion in the direction perpendicular to the ambient 

potential vorticity gradient is not a consequence of the quasigeostrophic assumption; precisely the 

same conclusions can be reached by consideration of the shallow water potential vorticity in equation 

(2.9). In fact, the choice of topography mimics the variation of potential vorticity on the /5-plane, 

increasing in the poleward direction. Potential vorticity waves on the /5-plane are known as Rossby

3It is well known (e.g. Pedlosky (1979)) that the linear variation in the Coriolis parameter is equivalent to a linearly 
sloping topography on an /-p lane. This is apparent even in (2.17), since setting /? =  0 and h s  =  0 ' y  is equivalent to  
rescaling /3 =  S 0 1 over flat topography. This fact enables the /3-plane to  be modelled in a rotating, sloping bottom ed  
tank in a laboratory. Throughout this work comparisons will be made with vortex m otion on the /3-plane.
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shallow

waves

Figure 2.1: The generation of waves by redistribution of ambient potential vorticity. The waves 
propagate with higher ambient potential vorticity to the right.

waves. Such waves exist whenever there is a gradient in the potential vorticity. Since this occurs 

for background sheared currents and variable topography as well as the meridional variation of / ,  

potential vorticity waves are ever-present in the atmosphere and oceans.

Furthermore, the swirl velocity of a vortex will cause redistribution of the background potential 

vorticity leading to relative vorticity production. The secondary currents associated with this process 

will in turn affect the motion and longevity of the vortex - indeed potential vorticity conservation 

lends vortices the ability to self propagate. The dimensionless parameter S  in (2.17) is a measure of 

the strength of this interaction, and can be written as a ratio of time scales

Here Ta is the eddy turnover time and $ is the change in the fractional height of the topography 

over the horizontal length scale4. Relative vorticity is produced due to vortex column stretching on 

the time scale Tw = <5-1 / -1 , the topographic vortex stretching time and is the time scale on which 

this process of wave generation proceeds. For this reason Tw is also called the topographic wave time 

scale. Note that S  can also be rewritten

S  = ± .  (2.22)

In either form 5  describes the relative importance of advection and topographic wave generation. 

Both 6 and Ro are small parameters in quasigeostrophic theory, but their ratio S  can take on the 

whole range of values. In vortex-topography interactions S  is a measure of vortex intensity. For

4Note that elsewhere in the text <?() refers the delta-function. The meaning should be clear from the context.
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S  <C 1 the vortex is said to be intense, since relative motion due to  the swirl velocity of the vortex 

dominates over topographic wave generation. For 5  >  1, wave production occurs on a much faster 

time scale than advection by the vortex, and the vortex is said to be weak. In these two cases 

where the time scales are well separated, leading order solutions to  initial value problems are often 

available. If, however, S  fa 1, then the interaction between the vortex and the waves is nonlinear 

and numerical solutions must be sought.

Throughout this thesis it is assumed that (3 = 0 and h s  ^  0, i.e. the /3-effect is negligible compared to 

the variation in topographic gradients. Of particular interest is the interaction of vortices with sharp 

(discontinuous) topographic gradients. In the following section the vortex models to be considered 

are presented.

2.3 Quasigeostrophic vortices

There are two models of vortices used in this work. The first is a singular vortex solution to the 

flat bottomed /-plane equations, and the second is a circular patch of uniform relative vorticity. 

These two solutions are related in the sense that a  singular vortex model is often touted as a 

good approximation to a uniform patch of relative vorticity. As will be seen this is a reasonable 

assumption, at least far from the vortex centre, since both types of vortex have the same velocity 

profile in the far-field. From here onwards the unit of length is taken to be the Rossby radius.

2.3.1 Singular vortices on the /-plane

Singular vortex solutions appear to have been first obtained by Morikawa (1960). In the absence of 

topography {hs = 0 )  and for (3 — 0, the conservation of potential vorticity equation (2.17) implies

(2.23)

where the horizontal length scale has been taken to be the Rossby radius, i.e. L = R d • To obtain 

a singular vortex solution to (2.23), suppose that at time t — 0, the potential vorticity distribution 

is given by a delta function at the origin,



where r  is the radial distance from the origin. Equation (2.24) is radially symmetric, and away from 

the origin is the modified Bessel equation of order zero.

l d _  
r dr

1 dip 
r dr - i p  = 0. (2.25)

The general solution is (e.g. Abramowitz and Stegun (1972))

iP{r) = A K 0(r) + B I0(r). (2.26)

where K q and Io are the modified Bessel functions of the first and second kind, zeroth order re

spectively. Since Iq grows exponentially with its argument, solutions which remain localised must 

have B  = 0. The coefficient A  is determined from the circulation around the origin. The azimuthal 

velocity is

v„ = ^  = - A K l (r), (2.27)

where Ki  is the modified Bessel function of the first kind, first order. Hence the circulation of 

velocity around a small circle containing the origin is

r 2 ir  r 2 ir

T =  — lim j  vgrdd = lim J AKi(r)rdd. (2.28)

But, lim K\(r)  =  1 /r, so that
r-»o  v '

r 2 n

T =  Ade = 2nAt (2.29)
Jo

i.e. A  = T/27r. Hence the streamfunction for a singular vortex of strength T at the origin is

m  = (2.30)

The sign of T gives the sense of the circulation. For T > 0 it is clockwise (anticyclonic in the 

northern hemisphere) and for T < 0 it is positive (cyclonic). The streamlines are circular, and due 

to the exponentially decaying nature of the modified Bessel function are bunched near the vortex 

centre; this simple vortex model captures the essential effect of the free surface in rotating flows, i.e. 

disturbances remain localised, diminishing exponentially on the scale of the Rossby radius5.

The angular velocity of the vortex is

h(-r) = Vi  = & r KliT)■ (2-31)
5It should be noted that a singular vortex violates the quasigeostrophic assumption since the am plitude of the free 

surface deformation becomes infinite at the vortex centre. Moreover the horizontal velocities also become infinite at 
the vortex centre implying that the Rossby number is of the order of unity near the vortex. These violations aren’t 
considered important outside of a sm all neighbourhood of the vortex.
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Figure (2.2) shows a plot of the angular velocity profile of the singular vortex. For r « l ,  the small 

argument form for the modified Bessel functions (e.g. Abramowitz and Stegun (1972)) gives

»(r) *  J L ,  (2.32)

so that near the origin the quasigeostrophic singular vortex induces the same velocity as the barotropic6 

singular vortex of the same strength. On the other hand for large values of r the asymptotic expan

sions for the modified Bessel functions give, to leading order,

' 2-33>

Thus, the velocity field due to the quasigeostrophic singular vortex decreases exponentially with 

distance, on a scale of the Rossby radius, as opposed to the geometric decay in the case of the 

baxotropic vortex. Finally, the sign of T is the same as the sign of ip, so cyclones (resp. anticyclones) 

correspond to a depression (raising) of the free surface. This is in keeping with oceanic cold (warm) 

core rings which are cyclonic (anticyclonic) and have depressed (raised) profiles.

2.3.2 A circular patch of uniform relative vorticity

In the absence of topography (hs  =  0), a circular patch of uniform relative vorticity centred at the 

origin has

V2^o — V’o =  —otH(a — r ), (2.34)

where a is the patch radius, H(z) is the unit Heaviside step function and a  gives the sense of the 

circulation. For a > 0 it is clockwise (anticyclonic) and for a  < 0 it is anticlockwise (cyclonic). The 

streamfunction ip0 = ipo(r) is radially symmetric. For r < a equation (2.34) is an inhomogeneous 

modified Bessel’s equation of order zero. Solutions which are bounded at the origin have the form

ipo(r) = a ( l  4- A I0(r)), r < a. (2.35)

For r > a (2.34) is the homogeneous Bessel’s equation of order zero, and has solutions which vanish 

in the far-field (i.e. the vortex is localised),

ipo{r) = a B K 0(r), r > a. (2.36)

6The barotropic approximation is obtained by taking R q  —> oo in (2.17), and in the absence of topography V 2ip =  
constant is an exact solution. Alternatively by imposing a rigid lid on the fluid the same is true, except $  is a mass 
transport streamfunction, ip cx logr. For details regarding the dynamics o f barotropic singular vortices see e.g. Aref 
et. al. (1988)
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Figure 2.2: Profile of the angular velocity, b(r) of a singular vortex with strength r  =  1. Note the 
rapid decay with e-folding length 1, or in dimensional terms, R d -
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The constants A  and B  axe determined by requiring that ipo and its radial derivative d ^ / d r  axe 

continuous on the patch boundary r = a. Making use of the Wronskian for the modified Bessel 

equations (e.g. Abramowitz and Stegun (1972)),

In (z)Kn+i{z) +  In+1(z)Kn(z) = (2.37)
z

the solution is

:s: m
The angular velocity of the vortex patch, required later is

Kr) = 1 2 *  =  i  (  " “ f  " *  °  (2.39)r dr r { —aaIi(a)Ki(r), r > a  v '

Figure (2.3) show plot of the profiles of the streamfunction and the angular velocity.

The singular vortex is often used as an approximation to a uniform vortex patch. There are two 

ways to conceive of this approximation. First, if the motion in the far field is of interest then a 

singular vortex with strength T = 2iraali (a) has the same swirl velocity as a circular vortex patch 

of radius a. Alternatively,
a2

lim aali  (a) =  a — . (2.40)
a —>0 2

Hence a singular vortex of strength T — ana2 is the solution for a vanishingly small vortex patch.

2.4 Contour dynam ics

For investigating flows with piecewise-constant distributions of potential-vorticity, a well-known 

technique is contour dynamics7, a scheme which integrates the full nonlinear governing equation 

(2.17). To derive the algorithm the quasigeostrophic governing equation is recast in a different, 

but equivalent form. The following is an adaptation of the derivation by Dritschel (1985) in the 

barotropic limit. First, write q = (V2 — 1)^, so that the potential vorticity is,

Q = q + ShB• (2.41)

Conservation of potential vorticity then leads to the inhomogeneous Helmholtz equation at any given

time,

(V2 -  1 )if> = q. (2.42)

7or perhaps more correctly “contour advection” .
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Figure 2.3: Profiles of the streamfunction, ipo{r) (solid line) and the angular velocity, 6(r) (dotted 
line) for a circular patch of uniform relative vorticity. The particular case shown has patch radius 
o =  l  and strength a  = —1, i.e. a cyclone.
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The Helmholtz operator, (V2 — 1), has the Greens function — Ko(r)/2n, which leads to

^(*'V) =  - 5~:f j  l ( x '<v')Ko(r)dx'dy', (2.43)

where r2 = (x — x ')2 + (y — y')2 and the integral is taken over the entire fluid domain. The velocity 

field, u = v = ipx , determined by (2.43) is

u{x,y) = (u,v) =  J  J  q { x ' , y ' ) ^ y ^ - ( - { y  -  y'), (x -  x'))dx'dy'. (2.44)

Next, suppose that the anomalous potential vorticity, q, is piecewise constant in regions R k which 

cover the fluid domain, i.e. q = qk if (x, y) e  Rk- Then (2.44) can be written

to it, with R  = 0 and P  =  —Ko(r), and to v with R  — —K q(t) and P  = 0 leads to the velocity field 

in terms of line integrals,

where Ck is the boundary of Rk, xjt =  (Xk,yk) is a point on Ck, and r\  =  (z -  Xk)2 +  (y -  J/fc)28. 

The Ck are “contours” , enclosing fluid of constant anomalous potential vorticity, and axe material 

curves, i.e. no fluid can cross them. It is straightforward to follow the time evolution of the contours 

since the velocity at each point on the contours is given by (2.47).

In the present work the topography is an infinitely long escarpment. Suppose that the escarpment 

is aligned along y = 0, so hs  =  sgn(y). Consider the flow regions, shown in Figure (2.4). There 

are two contours in the problem. The first is the topographic contour, T , which lies along y = 0, 

and the second is the advected, material contour A , initially coincident with T, but which deforms 

as the flow evolves. At subsequent times the advected contour moves away from its initial position, 

at first by advection by the vortex. The flow then consists of the three types of region depicted in 

Figure (2.4). Fluid in regions such as (I) originates in deep water, and has crossed the escarpment, 

gaining net anticyclonic circulation, and with q = S. Fluid in regions such as (II) originates on the 

shallow side of the escarpment, and has q =  —S, due to vortex stretching. The g-field is

(2.45)

Applying Stokes theorem,

(2.46)

K 0(rk)dxk, (2.47)

5, in regions (I)
—5, in regions (II) 
0, elsewhere.

(2.48)
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(a)

Q=s

Q=-S

(b)

m

on)

Figure 2.4: The various regions of the flow, (a) Initially the topographic contour and the advected 
contour coincide along y = 0. The dynamic potential vorticity q =  V2 >̂ — ?/>, is zero everywhere, 
fluid of high ambient potential vorticity lies in y > 0 and that of low ambient potential vorticity is in 
y < 0. Any initial deflection of the advected contour is solely due to the vortex, (b) At subsequent 
times the fluid may lie in three types of region. In (I), above the topographic contour, but below 
the advected contour fluid has moved from deep to shallow water and has q = S. Fluid in regions 
such as (II), below T  but above A  similarly have q = —S  and elsewhere (III) q remains zero.
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Only the regions (I) and (II) contribute to the velocity of the fluid. The arrows in Figure (2.4) 

indicate the direction of integration around the boundary of the regions, clockwise in regions (I) and 

anticlockwise around regions (II). Equivalently

K  v) =  ^  Ja Ko{r)dxk ~ J  K 0(r)dxk , (2.49)

where r  is the distance from the point {x,y) to the point (xk,y k) on A  or T  respectively. There are 

three problems under consideration in this thesis, and the contour dynamics algorithm has to be 

applied in a different way in each case.

S ingular vortex

In Chapter 4 the motion of a singular vortex near an escarpment is considered. Since there is no 

self-advection of a singular vortex, the vortex centre is treated as a passive particle, and the velocity 

field calculated from (2.49). The velocity at each of the contour nodes is due to the integral around 

the contours and the velocity due to the vortex centre.

C ircu lar vortex  pa tch

In Chapter 5 the motion of an initially circular vortex patch is considered. Now the vortex does 

contribute to its advection. Denote the boundary of the vortex by V. Then the velocity field at any 

point of either V  or T  is

{u,v) = J ^ K 0(rA)dxk -  ^  J ^ K 0(rA)dxk + J  K 0(rv )dxk, (2.50)

where ry  is the distance from the point on V.

C oastal to pog raphy

In Chapter 6 the motion of a singular vortex near an escarpment running parallel to a plane wall is 

considered. To apply the contour dynamics algorithm in this case the velocity field due to the image 

of the vortex in the wall and the images, T' and A ', of the topographic and advected contours is 

included. The velocity at the vortex is due to its image, and the contours T, A , T '  and A ' . The 

velocity at the contour nodes has the additional contribution due to the vortex and its image.

During the computational runs the advected contours are represented by a discrete set of nodes and 

a cubic polynomial through the nodes. The purpose of this is twofold. First, when time-stepping (by

fourth order Runge-Kutta), the contribution to the integrals for the velocity field between adjacent

®Note that the sense of the potential vorticity jum p is important. Specifically A qk is the potential vorticity to  the 
left minus the potential vorticity to the right as the contour is traversed.

26



nodes is calculated to the first order in the departure from a straight line between the nodes, using 

the coefficients of the polynomial. Second, the nodes are redistributed at each time step, the spacing 

being determined by a non-local node density function, which depends on developing curvature and 

velocity. The nodes are then placed at appropriate positions on the cubic polynomial curve. Surgery 

is carried out at a predetermined cut-off scale. Full details of the algorithm are given in Dritschel 

(1988). Finally, unlike the case of a seamount (e.g. Davey et. al. (1993)), there is no analytical 

result for the integral along the undeflected topographic contour. The contribution to the velocity 

field is obtained numerically at each time step, in the same way as that of the advected contour.

There are two important considerations to make. First, the infinitely long advected contour nec

essarily has a finite representation during computational runs. Therefore, the contour length must 

be chosen such that its ends remain undisturbed during the runs. The particular contour length 

needed for any given parameter values depends on how localised the initial disturbance remains. 

Second, in the analytical considerations in the present work, and that of McDonald (1998) for the 

intense vortex limit, the topography is initialised near a pre-existing vortex. In the contour dynamics 

computations a vortex is switched on near a pre-existing contour. However, as will be seen later, 

contour dynamics results compare well with analytical results in both the weak and intense limits, 

so it is assumed that this is the case for all parameter values.

The codes were tested in several ways. First the time step was decreased until no discernible 

difference in the results occurred. Second, the same procedure was carried out with the spatial 

resolution parameter. Third, many of the runs were carried out both with and without surgery. In 

all cases the trajectory of the vortex centre with surgery active was identical with the trajectory 

obtained without surgery. The saving in the number of contour nodes needed was as much as a 

factor of 10 over long runs.
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Chapter 3

Quasigeostrophic vortex-wave 
interactions

The ubiquity of vortices in quasi two-dimensional fluids and the generation of waves through po

tential vorticity conservation makes vortex-wave interaction a subject of importance in geophysical 

fluid dynamics. As pointed out in the introduction vortices are important in the general circulation 

of the ocean, but their effects have to be paxameterised in general circulation models. Considerable 

attention has been paid to their study through laboratory experiments, numerical studies and the

oretical investigations. In this chapter a brief review is given of some of the literature relevant to 

this thesis.

3.1 Vortex m otion on the /?-plane

The study of the motion of potentially highly destructive tropical cyclones has motivated much of 

the research into vortex motion in the atmosphere. These structures axe intensive, long lived and 

have a size comparable to the Rossby radius. Planetary curvature is a leading influence on the 

trajectory of a tropical cyclone, and consequently the motion of intense cyclones on the /5-plane 

has received considerable attention. The theory of Gulf stream rings has also followed this line of 

study. A review of some1 of the literature is presented here. The work has followed two distinct 

routes: initial value problems and solitary wave models. This review focuses on the former approach, 

i.e. the evolution of an initially circular vortex under the /5-effect. There axe two reasons for this. 

First, the techniques employed in /5-plane vortex problems are adopted in the present work. Second,

*It would take dozens of pages to sim ply cite all of the work!
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as described previously, the /3-plane is equivalent to linear sloping topography and it is of interest 

to compare the response of a vortex near a  sharp topographic gradient with that of a vortex over 

smooth topography.

The evolution of a weak vortex on the /3-plane is well understood. Flierl (1977) used linear quasi- 

geostrophic theory to show that a weak localised disturbance moves west under the influence of /3 

and decays rapidly due to Rossby wave radiation. The decay is substantially slower for more intense 

vortices. Laboratory experiments by Firing and Beardsley (1976), and numerical investigations by 

McWilliams and Flierl (1979) and Mied and Lindeman (1979) show that a  highly nonlinear (i.e. an 

intense) vortex decays slowly and its westward drift speed approaches the Rossby long wave speed. 

The effect of nonlinearity is to increase the longevity of the vortex, and to induce meridional motion.

These early studies revealed the first stage of the evolution of an intense vortex under the influence 

of /3. The studies of McWilliams and Flierl (1979) and Mied and Lindeman (1979) both showed 

that an intense cyclone (resp. anticyclone) with an initially Gaussian vorticity distribution, follows a 

curved northwest (southwest) trajectory. The physical mechanism for this process is well understood. 

Consider the case of a cyclone. The sense of the circulation implies that fluid lying to the east of 

the vortex is advected north, and by virtue of potential vorticity conservation gains anticyclonic 

relative vorticity. To the west of the vortex, fluid advected south gains cyclonic relative vorticity. 

Thus initially, a dipolar secondary circulation is set up by the primary vortex sweeping fluid columns 

across the potential vorticity gradient. The sense of this dipole, the so-called /3-gyres2, is such as 

to initially induce a northward motion in the vortex. In the case of the weak vortex Rossby wave 

production dominates and energy is rapidly radiated away from the vortex, which in turn decays. 

In the case of an intense vortex the strong axisymmetric swirl of the vortex dominates the near 

field dynamics and the /3-gyres remain in the vicinity of the vortex. In turn the axisymmetric swirl 

of the vortex rotates the axis of the dipolar /3-gyres and consequently the vortex follows a curved 

northwest trajectory. The case of an anticyclone is analogous, but with the exception that the 

motion is southwest.

Analytical expressions have been found for the /3-gyres in certain cases, and importantly the evolution 

of the initially symmetric dipole has been described. Sutyrin and Flierl (1994) considered the

evolution of an initially axisymmetric vortex of piecewise constant potential vorticity using the

2This term was coined by Fiorino and Elsberry (1989) in a numerical study of non-divergent (aka barotropic) 
vortex motion on the /3-plane.
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quasigeostrophic /3-plane model. Azimuthal mode-1 (i.e. the /3-gyres) is mainly responsible for the 

motion of the vortex and in this case an expression for the drift of the vortex centre was obtained. 

The initial symmetric disturbance evolves into a uniform westward stream at large times and the 

vortex drift speed approaches the Rossby long wave speed. Similar expressions were obtained by 

Reznik and Dewar (1994) investigating the dynamics of an initially circular vortex with arbitrary 

distribution of relative vorticity with zero circulation using a barotropic /3-plane model, and also by 

Reznik (1992) investigating the motion of singular vortices on the /3-plane.

This early stage of the vortex evolution is well understood. However since the vortex drift velocity 

approaches the Rossby long wave limit the question arises as to the possible influence of wave 

radiation, or put another way, the effect of the higher order normal modes. Reznik and Dewar 

(1994) and Sutyrin et  al. (1994) have shown that the influence of higher order modes reduces the 

vortex amplitude and decelerates its westward drift velocity. Until recently all analytical attempts 

at describing the second stage of the vortex evolution have assumed that the vortex tends to some 

purely westward quasisteady state with a radiated Rossby wave train in its wake. For example, Flierl 

(1984), investigating the motion of an intense warm core ring in a two layer non-quasigeostrophic 

model, used a solvability condition on the order one field to determine the time evolution of the 

lowest order field. In this model the isolated vortex in the upper layer radiates Rossby waves in the 

lower layer. In turn this radiation gives rise to a drag on the vortex, which migrates southward in 

response.

Recently Reznik and Grimshaw (1998) have argued against this approach on three counts. First they 

claim that there is no numerical or laboratory evidence that the radiated wave field is quasi-steady. 

Indeed, they axgue, that a non-divergent (barotropic) vortex always has a meridional drift speed 

of the same order as the zonal drift speed, and so the establishment of a  quasisteady wave wake 

is not possible. Second the quasisteady wave wake has infinite energy, which is unphysical, since 

the system of vortex and waves conserves energy. In particular the vortex must lose energy to the 

radiated waves. Third, no previous theories conserve energy or enstrophy.

Reznik and Grimshaw (1998) present a new theory to remedy this charge. In it they show, through 

considering solution to higher order terms in a perturbation series in /3, that an intense divergent 

(quasigeostrophic) vortex on the /3-plane does adopt a quasisteady state, but that this is a non

radiating state. It is shown that the leading order solution (the /3-gyres) tends to a uniform westward
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flow matching the drift speed of the Rossby waves. This “kills” the /3-effect and the vortex moves 

steadily westward adopting a nonradiating state. At the next order the /3-gyres produce a correction 

consisting of an axisymmetric component and a quadrupolar component. The quadrupole spreads 

out from the central region containing the vortex and has little influence on the vortex motion. The 

axisymmetric component is opposite in sign to the primary vortex in the vortex core and opposite 

in sign outside of the vortex core. The anticyclonic rotation of the annulus in turn advects the 

planetary vorticity in the opposite sense to the primary vortex. Thus the correction at the third 

order is also dipolar and is termed the “secondary /3-gyres” . Since this term is opposite in sense to 

the primary /3-gyres the vortex drift velocity is retarded at large times. The important conclusion of 

this paper is that the dipolar component of the secondary circulations controls the vortex drift up 

to times when the vortex decays. Since this is a near field effect, it is argued that far-field radiation 

has negligible effect on the dynamics.

A further recent study is a numerical investigation which compliments the theoretical results of 

Reznik and Grimshaw (1998), by Lam and Dritschel (1998), who apply the new “contour-advective 

semi-Lagrangian” (CASL) algorithm of Dritschel and Ambaum (1998) to the evolution of an initially 

circular quasigeostrophic vortex on the /3-plane. In doing so the hitherto highest resolution numerical 

simulations to date have been produced. Moreover the dependence of the dynamics on the size and 

intensity of the vortex was examined. Two key features are identified. First is the existence of a 

region of fluid moving with the vortex, a “trapped zone”. This is consistent with the results of 

Sutyrin and Flierl (1994), and is due to the axisymmetric component of the secondary circulation 

identified by Reznik and Grimshaw (1998). The trapped zone helps to shield the vortex from the 

effect of the radiated Rossby waves. Results confirm the rapid decay of a weak vortex and the 

longevity and northwest trajectory of a cyclone. Importantly it was shown that moderate intensity 

vortices undergo the greatest meridional displacement. The mechanism for this enhanced poleward 

motion is identified as a “trailing front” , which is part of the radiated Rossby wave train. To describe 

it differently, and to reinforce one of the conclusions of this thesis, the trailing front consists of a 

patch of anticyclonic relative vorticity and it is the formation of a dipolar mechanism of comparable 

strength with the primary vortex that enhances the meridional motion of moderates vortices.
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3.2 Vortex m otion near sharp potential vorticity gradients

There are regions of sharp (discontinuous) potential vorticity gradients in the ocean. Currents such 

as the Gulf Stream are examples of such flows. Near a jet stream the shear flow forms a potential 

vorticity interface with the rest of the flow. Vortices are often formed by pinching off from the jet 

stream and the local sheax flow dominates over the /2-effect on these vortices. In the abyssal ocean 

there are sharp topographic gradients such as seamounts, escarpments and canyons. These features 

similarly dominate over planetary curvature in steering deep ocean eddies.

Hide (1961) showed that for Taylor columns to exist in flow over a finite height object the ratio 

S  = 5/Ro  must exceed some critical value. Here 6 is the height of the obstacle expressed as a 

fraction of the depth of the fluid. If the obstacle is a topographic feature, then S,  referred to as 

the Hide parameter in flow over finite height object problems, is the same as the S  appearing in 

the quasigeostrophic potential vorticity (2.17). A right circular cylinder is often used to model a 

seamount. Johnson (1984) considered the topographic waves admissible over a seamount, and found 

that they cycle clockwise around the obstacle with the frequency of the lowest mode of azimuthal 

wavenumber-1. This work was extended by Davey et al (1993) to flow over a seamount in multilayer 

flow, using contour dynamics. Importantly when the oncoming flow is sufficiently strong or the 

height of the seamount sufficiently low, a vortex is created over the seamount as the flow sweeps 

the fluid off the seamount and downstream. Also considered was the capture of incident eddies by 

the seamount. McDonald and Dunn (1999) have recently made a preliminary investigation into the 

evolution of a vortex patch near a seamount. It was found that anticyclones tended to form dipoles 

with the fluid initially located on the seamount.

The limit that the seamount has infinite radius is the case of an escarpment. Longuet-Higgins (1968) 

derived the wave solutions to the shallow water equations over a topographic escarpment. These 

waves have unidirectional phase and group velocities, propagating with shallow water to the right in 

the northern hemisphere. The amplitude is maximum over the escarpment, and decays exponentially 

with distance on either side. These waves are thus dubbed double Kelvin waves or seascarp waves. 

Johnson and Davey (1990) studied the surface adjustment problem in /-plane quasigeostrophic 

motion over an escarpment, and also found that the escarpment acts as a wave guide, the waves 

propagating with shallow water to their right.
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McDonald (1992) considered the time dependent response of fluid to a source of buoyancy near an 

escarpment using /-plane quasigeostrophic dynamics. It was found that a  wavetube is excited and 

grows linearly in time at the group velocity of the long topographic waves. However it was found that 

the flux of fluid away from the source region is less than the flux of fluid a t the source so eventually 

nonlinear effects must become important. Numerical studies showed that if the source is located on 

the shallow side of the escarpment then eddies are formed which self-propagate due to the presence 

of the escarpment. In two further studies the role of the escarpment in steering bottom eddies was 

investigated. McDonald (1996) investigated the interaction of a modon, (a dipolar distribution of 

potential vorticity), with an escarpment. Linear theory predicts that when the modon moves within 

the range of possible topographic wave phase speeds, a radiated wave train is left in the wake of the 

modon. As a result the modon speed and radius decay exponentially. There is also an anomalous 

case in which the modon moves at the long wave group velocity, so that energy cannot escape from 

the vicinity of the modon and the response must eventually become nonlinear. In this case the 

evolution of the topographic waves is governed by a forced Kortweg-de Vries equation, which leads 

to the same result for the rate of decay of the modon as in the linear theory.

In a further study McDonald (1998) studied the motion of an intense singular vortex near a topo

graphic escarpment, again using quasigeostrophic /-plane dynamics. The leading order drift velocity 

components were found and it was shown that (if the escarpment is chosen to lie in the east-west di

rection) an intense cyclone follows a curved northwest trajectory and an anticyclone follows a curved 

southwest trajectory, qualitatively the same behaviour as a /3-plane vortex. An important difference, 

however, is that the westward drift speed is less than the topographic long wave group speed. The 

westward drift speed is intimately related to the distance of the vortex from the escarpment. This 

indicates an important difference between the case of the continuous topographic gradient and the 

sharp topography considered in this thesis: on the /3-plane there is no meaning in “distance from 

the topography” , since the gradient of the topography is constant. It is anticipated that there will 

be new types of behaviour in vortex interactions near an escarpment. McDonald (1998) found an 

expression for the large time response of the vortex by equating the momentum flux of the radiated 

waves with the rate of change of momentum of the vortex. If the vortex is within about a Rossby 

radius of the escarpment then it migrates south (north) if it is an anticyclone (cyclone). Contour 

dynamics simulations of the full equations confirmed the analytical results.
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Recent experimental results of particular relevance to the present study are due to Zavala Sanson 

e t  al. (1999) who have investigated the behaviour of barotropic vortices near an escarpment, 

both experimentally and numerically. In that investigation the escarpment lay in the meridional 

direction on a /3-plane. The /3 parameter was small in comparison to the height of the topography, 

and mainly served to bring the vortex near to the escarpment. The strength of the vortices was 

of the same order of magnitude as the relative vorticity produced by fluid crossing the escarpment, 

or, in the terminology of the present work, S  «  1. It was found that anticyclones situated on the 

shallow side of the escarpment were able to “climb” the topographic gradient, whilst cyclones were 

“back-reflected”. This behaviour is also observed in the following investigation.

There are two further works which should be mentioned. Large scale warm (cyclonic) and cold 

(anticyclonic) rings are formed by the meanders of the Gulf Stream. It has been observed that 

if the vortex is weak, compared with the shear flow, then it can drift antiparallel to the stream 

(this is analogous to eastward propagation on the /3-plane). Stern and Flierl (1987) investigated 

the interaction of a singular vortex with an idealised shear flow, in which the potential vorticity is 

assumed piecewise constant in two regions, using both barotropic and quasigeostrophic dynamics. 

They noted that if an anticyclonic vortex is sufficiently distant (i.e. weak) from an interface of 

cyclonic vorticity then it moves antiparallel to the stream. Vortices which are close to the interface 

“capture” the contour and wrap it up, qualitatively the same behaviour observed by McDonald 

(1998). In a similar study Bell (1989) investigated the interaction of a weak singular vortex and 

a potential vorticity interface, using contour dynamics in quasigeostrophic theory with R& = oo. 

It was found that if the vortex moves within the range of possible phase speeds of the potential 

vorticity waves then a radiated wave train is left in the wake of the vortex (cf McDonald (1996)). 

The singular vortex responds by moving towards or away from the interface depending on the sense 

of the circulation. If the vortex moves at a speed outside of the wave phase speeds then the interface 

adopts a quasisteady shape, which constitutes a patch of relative vorticity of the opposite sign to 

the vortex. The vortex and the deformed interface move together.

This latter phenomenon is of particular importance in the rest of this work. In all cases examined 

below it is found that a weak vortex near an escarpment behaves as if the escarpment were a plane 

wall. The physical mechanism for this process is identified as a quasisteady deformation of the 

contour initially separating shallow and deep water. This disturbance is a patch of relative vorticity
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of the opposite sign to the primary vortex. This phenomenon is expected to be a generic feature of 

the interaction of a weak vortex with sharp potential vorticity gradients and for this reason, in this 

thesis, it has been named the pseudoimage of the vortex.

The rest of this thesis consists of three different studies of vortex topography interaction. In Chapter 

4 the work of McDonald (1998) is extended to cover the full range of values of S  for the motion 

of a singular vortex near an escarpment. In Chapter 5 the motion of an initially patch of uniform 

relative vorticity near an escarpment is investigated for the full range of values of 5. In Chapter 6 

the motion of a vortex near coastal topography (i.e. an escarpment running parallel to a plane wall) 

is investigated. Analytical results for the weak vortex limit are given and some preliminary contour 

dynamics results are given for the intense and moderate regimes.
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Chapter 4

Motion of a singular vortex near 
an escarpment

The investigation of McDonald (1998) into the motion of an intense, (5 <  1), singular vortex near 

an escarpment was described in the previous chapter. The aim of the present chapter is to extend 

this work to investigate the full range of values of the vortex intensity.

First the weak vortex limit, S  »  1, is investigated. The leading order solution on the topographic 

wave time scale is found using linear theory. The large time solution is then investigated under the 

assumption that the response remains linear on the advective time scale. This assumption is verified 

through contour dynamics experiments. Second, the results of McDonald (1998), for an intense 

singular vortex are summarised, partially for completeness, but also to investigate the departure of 

the vortex dynamics from the intense regime to the moderate regime. Finally the case of a moderate 

intensity singular vortex, for which there is no analytical theory, is investigated through contour 

dynamics experiments.

4.1 Topographic waves

All of the work presented in this thesis assumes quasigeostrophic dynamics, described previously 

in Chapter 2 . The /-plane is used, to isolate the effects of sharp topographic gradients from the 

/3-effect. Here the explicit nondimensionalisation for the present study is given. Denote the original,
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dimensional variables by superscript *, and introduce the following, nondimensional variables,

t = r / '  x = i x*’ y = b ‘ ' (41)

Here the horizontal length scale, L, is the Rossby radius, and the time scale Ta is the advective (or

eddy turnover) time L/U  or equivalently, by geostrophy, D j f  A, where D  is a typical fluid depth,

/  > 0 (i.e. the northern hemisphere) is the Coriolis parameter, A is a suitable scale for the vortex 

amplitude and U is a typical vortex velocity due to geostrophy. The Rossby number, Ro = U / f L ,  is 

necessarily small for the quasigeostrophic approximation. Under this scaling the governing equation 

is

^ ( v 2v>-V') + J[V ',vV -V '] +  5 ^ ^ =  0, (4.2)

where the conserved quantity is the quasigeostrophic potential vorticity,

Q = V2i>-rl> + ShB(y). (4.3)

The nondimensional topography hs{y) is assumed to vary only in the y-direction, and the parameter 

S  is the ratio of the eddy turnover time to the topographic vortex stretching time, or, equivalently, 

of the fractional height of the topography to the Rossby number:

5  =  _ i £ L  =  ±  =  Zk (44)
S~l f ~ l Ro Tw ’ ( • '

where 6 = A D / D  is half the fractional height of the topography in a layer of depth D. Figure (4.1a) 

shows the present choice of topography, an infinitely long escarpment aligned along y =  0 , which 

can be expressed as

M y )  =  sgn(y). (4.5)

By analogy with the /3-plane, shallow fluid lies in the direction of increasing y. For convenience 

of description, the direction of increasing y is identified as north, and increasing x  as west. In re

ality there is no preferential direction on the /-plane, so this choice is made simply so as to align 

the isobaths, or potential vorticity contours, in the /5-plane sense. The fluid motion is strictly not 

quasigeostrophic near y =  0, since there the topography has infinite gradient, so the flow must be 

three-dimensional near the escarpment. Given that S 1 in the derivation of the quasigeostrophic 

governing equations, it is assumed that the three-dimensional effects near the escarpment are neg

ligible and have no leading order effect on the dynamics. The two numbers, 6 and Ro  are small 

parameters, but their ratio S  can, of course, take the whole range of values.
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(a)

AD

(b)

shallow
deep

Figure 4.1: The present problem, (a) is a plot of the cross section of the fluid domain, and the 
dimensional variables. The free surface elevation, 77 is scaled on R o f L 2 and written ip] D is the 
typical layer depth in the absence of motion, and S = A D / D  is half the fractional height of the 
topography, (b) shows the initial condition, which is a vortex (here a cyclone), distance L  from the 
escarpment, which is aligned along y = 0. Shallow water lies in the half-plane y >  0, and so contains 
fluid with high ambient potential vorticity.
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Of interest in the present study is the interaction between a vortex and the topographic waves. The

linear wave solutions to (4.2) can be obtained by setting e =  S -1  and introducing the rescaled time

variable r  =  e£, so that the unit of time is Tw, the time scale for topographic wave generation. Under 

this rescaling the governing equation is

i - ( V 2V>-V>) + ^ , V V - V > ]  + ^ ^ =  0. (4.6)

For r  <C e-1 , the advection term is negligible, and (4.6) becomes a linear topographic wave equation,

Note that this implies that V 2^  — if) = 0, everywhere except y = 0. The boundary conditions at the

escarpment are (see Johnson and Davey (1990)),

bP] = 0 , y = 0 (4.8a)

[ipyT] + 2ipx = 0  , y = 0. (4.8b)

where [ ] denotes the jump of the enclosed quantity across the escarpment, i.e. \g] = g(0+) — 

#(0- ). The first condition is continuity of i f )  across the escarpment, whilst the second, obtained by 

integrating (4.7) across the escarpment, is continuity of pressure.

Wave solutions which vanish in the far-field have the form

ijj oc e- VW+I \y\ei(kx- WT), (4.9)

and the dispersion relation, obtained by substitution into (4.8b), is

u  = —  k  (4.10)VW+1
The waves have maximum amplitude over the escarpment, and decay exponentially with distance 

from the escarpment, the same properties as the linearised shallow-water escarpment waves of 

Longuet-Higgins (1968). Note also that the wave amplitude decreases exponentially with the 

wavenumber fc, so that the short waves have minimum amplitude. The phase and group veloci-



so both the phase and energy of the waves propagate in the direction of decreasing x, i.e. with shallow 

water to the right. Figure (4.2) shows a plot of the phase and group velocities. The escarpment 

acts as a wave guide and dictates the preferential west direction of the wave propagation. This 

is analogous to the Rossby wave on the /3-plane, where the one dimensional topographic gradient 

induces west propagation of wave phase and energy. The restoring mechanism for the waves is the 

production of relative vorticity due to vortex stretching or contraction as fluid crosses the escarpment, 

as demanded by potential vorticity conservation (4.3) . Figure (4.6) below shows this mechanism 

schematically.

In the following section the solution for the initial value problem of a weak singular vortex near an 

escarpment is investigated.

4.2 A weak singular vortex

From chapter 2 isolated singular vortex solutions to (4.2) in the absence of topography, and with 

the Rossby Radius as the characteristic length scale of the motion, are

*„(x  - X , y - Y )  = £ K 0 (((x  -  X f  + ( y -  Y)2) ‘/2)  , (4.12)

where (X ( t ) ,Y ( t )) is the position of the vortex centre, and K 0 the modified Bessel function of the 

first kind, order zero. Here T =  ±1 gives the sense of the circulation; for T > 0 it is clockwise 

(anti-cyclonic) and T < 0 anti-clockwise (cyclonic). The vortex is initially 0(1) distance from the 

escarpment. Suppose at t = 0 there is a vortex of the form (4.12) with location

(X(0),Y(0)) =  (0,L). (4.13)

See Figure (4.1b). The aim is to determine the subsequent motion of the vortex (X  ( t ) ,Y  (t )). Seeking 

a solution of the form,

if) = $ v ( x - X , y - Y ) + < f ) ,  (4.14)

the governing equation becomes

( W  -  V V  -  fl +  (4.15)

In the following subsection the leading order solution for the weak vortex limit is found by simple

Fourier analysis.
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Figure 4.2: A plot of the phase velocity (solid line) and group velocity (dotted line) against the 
wavenumber k. Note that both cp, cg < 0, so the wave phase and energy both propagate to the west.
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4.2.1 Short time solution

As in the previous section set e =  S _1 <C 1 and introduce the rescaled time variable r  — et, so that 

the unit of time is the short, topographic wave time scale Tw, and denote the solution on this time 

scale by 0o- For t  < 0 (e-1 ) the advection term in (4.15) is negligible, so for times up to r  =  0 (e_1),

✓t72jl ^  , d<j>odhB _  dVv dhB
+ > - * > ) * + - &  s r — t e - § f ’ f4-16)

which is a linear, forced topographic wave equation, the forcing being due to the vortex. On this 

time scale scale the vortex drift velocity components are 0 (e), and advection of the vortex is by the 

regular 00-field1, so that

A Y
(4.17a)

x = X , y = Y

dX 50o
dr 6 dy
d Y 50o
dr e dx

X —

(4.17b)
- Y

Hence, for times up to r  =  0 (e_1), X  = 0(e) and Y  = L  +  0(e), and the vortex term is, to leading 

order

V v = V v( x , y - L ) ,  (4.18)

on this time scale. Also dhB/dy  =  25(y) so away from y =  0 (4.16) is

V 20o - 0 o  =  0. (4 .19)

The topography is “switched on” near a pre-existing vortex at r  =  0, i.e the initial condition is

0o(ar, y,0) =  0. (4.20a)

The boundary conditions are

V0O —y 0 , x 2 +  y2 —y oo, (4.20b)

[0o] =  0 , y = 0 , (4.20c)

[0Oyt] 20ox — — ~L)  , y — 0. (4.20d)

Condition (4.20b) is the requirement that the fluid to be at rest fax from the escarpment, whilst 

(4.20c) and (4.20d) are the matching conditions (4.8a) and (4.8b) respectively. The solution to this 

problem is obtained through standard Fourier transform methods. Define the Fourier transform of 

0o by

/ OO

4>o{x,y,T)e~lkxdx. (4.21)
-OO

1 since there is no self advection by a singular vortex.
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(4.24)
y = 0

In Fourier space the problem becomes

0oi/i/ -  (fc2 +  l ) 0 o  =  0, , y ±  0 (4.22a)

0o —> 0 , y —> ±oo, (4.22b)

o] =  0 , y = 0. (4.22c)

Equations (4.22a), (4.22b) and (4.22c) have solutions of the form

M k ,y , r )  =  B(fc,r)e-'/F +Tl»l. (4.23)

The function B  is determined from boundary condition (4.20d), which transforms to the ODE

— y/k2 +  1 B t + ikB = —ik

with initial condition B(k,  0) =  0. Also 4^ is even in x  so that

roo ■p
= 2 tyycoskx dx = —  e~\v-L\Vk2+i ' (4.25)Jo 2v/FTI v '

The final equality in (4.25) is obtained from the following identity (Gradshteyn and Rhyzik (1980), 

p736);

J  K 0 |rjy/x2 + cos'yx dx = ^ - - r ^ e ~ ^ 72+1, (4.26)

for 7 7 , P > 0. Thus equation (4.24) becomes

B r + iu)B =  ^ J L =e-\L\Vk*+i (4.27)
2^ / F ^  v j

where uj is the topographic wave frequency given by (4.10). Equation (4.27) is linear and is easily

solved using the integrating factor method, giving

B (k ' T) =  2v J + i e~'L|V,gqT ^ ’ ” T “  ^  ’ (428)

and hence from (4.23)

M k , y , r )  =  ( e - i u , r  _  ( 4 2 9 )

The inverse Fourier transform is

1 -
(j>o{x,y,r) =  —  y 0o{k,y ,r)elkx dk, (4.30)

Using the evenness of 0o and identity (4.26) it is straightforward to show that the solution consists

of a steady term and a topographic wave term,

00 =  (4.31)
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where

4 * ’ =  - |^ o  ((** + (|y| +  | i | ) 2) 1/2) , (4.32)

and
■p r oo

=  7T~ I V) cos(kx — un )  dk, (4.33)27r y0

with
-(Ivl+ILDVF+T 

=  (434)

At r  =  0 the topographic wave term 0 ^  cancels with the steady term (j>̂8\  i.e. the correct initial 

condition. Below it is shown that the wave term decays rapidly on this time scale, so after the initial 

adjustment the response for times of order of the topographic wave time, Tw, is steady. The two 

terms are now considered separately.

T he stead y  term .

The steady term 0 ^  is reminiscent of an image of the vortex in the escarpment y = 0. Note however

the important distinction: if L  < 0 then +  0 ^  vanishes for y > 0 and similarly if L > 0 then

+  0o^ *s zero f°r 2/ <  0- Thus the fluid on the same side of the escarpment as the vortex feels 

the effect of an image vortex in the escarpment, whereas the fluid across the escarpment from the 

vortex is undisturbed with respect to the steady term ,$v +  0 ^  . For this reason the steady term, 

0o^, is dubbed the pseudoimage of the vortex. The streamlines of 'F*, +  0 ^  are shown in Figure 

(4.3).

The importance of the pseudoimage in the following theory cannot be overstated. In the contour 

dynamics investigations described below, it will be seen that the behaviour of the vortex is well pre

dicted by the pseudoimage description for many eddy turnover times. It should be emphasised that 

the pseudoimage has a definite physical meaning. It is part of the topographic wavetrain, a wavetrain 

which is initially excited by the circulation of the vortex pushing fluid across the escarpment. It 

is non-dispersive, is even in y, and is not singular anywhere. The relative vorticity associated with 

the disturbance 0 ^  is precisely enough to advect the vortex as if the escarpment were a plane wall. 

Importantly, it will be shown that the dispersive topographic waves rapidly propagate away from 

the vortex, and have no influence on it for times r  -> e-1 , i.e. for large times the advection of the 

vortex is due solely to its pseudoimage. The properties of the dispersive waves are discussed next.

T he topographic wave term .
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Figure 4.3: Streamlines for the steady term ip8tat- The vortex has unit strength and is located at 
(0,1). The contour interval is 0.01, and the position of the escarpment is indicated by the dashed 
line. Note the closed streamlines on the side of the escarpment occupied by the vortex. The fluid 
on the opposite side is undisturbed.
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The unsteady part of the solution 0 ^  given by (4.33) is a Fourier superposition of the escarpment 

waves discussed in section 4.1. The amplitude is maximum over y — 0, i.e. over the most rapidly 

varying topography. The dispersion relation is given by (4.10) and the group and phase velocities 

are given by equations (4.11b) and (4.11b) respectively.

Standard asymptotic methods are employed to deduce the large time behaviour of 0q^ . The inte

grand in (4.33) is analytic, so the only contributions to the integral as r  —̂ oo come from the points 

of stationary phase (see, for example, Bender and Orszag (1978)). Rewrite the integral (4.33) in the 

form
p  p  oo

i ? / -  A { k ' v)eifT dk' (4-35)

where

f (k )  = - - u .  (4.36)
T

The points of stationary phase are the solutions of f { k 8) = 0, and the method of stationary phase 

gives, for fixed £ =  x / r  as r  —> oo,

2tt 1 /2

ei7r/i/4, (4.37)

with n = sgn(f"(k8)), the sum is taken over all the points of stationary phase and the real part

is understood to be taken. In the present case there is only one point of stationary phase, which

occurs for —r  < x < 0 , and is given by

fc. = ((-Cr2/3- l ) I/2- (4.38)

Moreover

/"(*,) =  -3M C)5/3 < 0, (4.39)

since ks > 0 and £ < 0. Hence

^  / coa (* .*  -  ^  - 1 )  • (4-4°) 

where u)8 = — -l-l)-1/2. Hence, for large r , at fixed —r  < x < 0 the topographic wave amplitude 

decays like r -1 /2.

The stationary phase approximation breaks down at the point x =  — r, corresponding to the point of 

maximum group velocity L)"(k) = dg{k) = 0, since then the denominator in (4.37) vanishes. Denote 

by k =  km the wavenumbers for which this occurs,

c'g (k m ) = 0. (4.41)
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By considering a third-order expansion of the phase, $ = kx  — wr, about k = km, Lighthill (1974), 

shows that for k «  fcm,

Aw) r* A.{km) , (u \ \ \ ’ (  ^  Cp(fcm)T \ .
^  2 I ,o|l/3 C0S{kmX ~ U{km)T) Al -  1 » 11/3 ’ (4-42)

l< W 2l \  l< W 2l /

as t —y oo. Here Ai() is the Airy function, which satisfies the ODE

(f
^ ■ A i — xAi =  0. (4.43)

The Airy function decays exponentially for negative argument and for positive argument oscillates

like the cosine of the two-thirds power of its argument (see Abramowitz and Stegun (1972) for

details). In the present case km — 0, so the waves with maximum group velocity are the long waves. 

Moreover, the maximum group velocity is c5(0) =  —1. Hence, near x  =  —r , as r  —► oo

r e " (ll/|+|L|) As (  x — t \  fAAA,
~  2 (3r/2)!/3 C0ST (3T/ 2 y / 3) '  ^

Thus, 0q^ decays exponentially for x < —r  and oscillates for x  >  —r. The amplitude of this 

maximum oscillation at the wavefront decays like r -1/3, and the wavefront approximation smoothly 

matches the topographic waves to the undisturbed fluid ahead of the train (see Lighthill (1974) for 

details). The wave term evaluated over y =  0 is illustrated in Figure (4.4a). The plot is obtained 

by numerical integration of (4.33). The west propagating topographic waves axe evident. Note the 

largest amplitude oscillations near the wavefront, and the rapid decay near x  =  0. Equation (4.44) 

predicts that, for the given parameters at r  =  60 the value at x  =  — r  is

—2
4 w)(~r,0) «  cos60 Ai(0) «  0.0032, (4.45)

using Ai(0) «  0.355028 from Abramowitz and Stegun (1972). This compares favourably to the 

numerical value of 0.0028.

Of particular importance is the influence of the waves at the vortex centre. The wave amplitude

decays most rapidly at the x-location of the vortex centre, and this can be seen as follows. There

are no points of stationary phase for x =  0. Equation (4.33) evaluated at the vortex centre is

t \ V P- 2|£|VF+T i.r
4 ”  (°. £ . r )  =  5-  J  cos dk. (4.46)

Writing £ =  k / V W + 1  this may be rewritten

(0, L,  t ) =  L  j  h ( 0  cos fr  d£, (4.47)
'0 
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Figure 4.4: (a) Plot of evaluated over y — 0. Times are r  =  10 (solid curve) and r  =  60 (dashed 
curve), (b) The wave term evaluated at the vortex centre as a function of r. In each case r  =  1, i.e. 
an anticyclone, and the solution has been scaled by 27t. See text for further comments.
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where,

(4.48)

The Riemann-Lebesgue Lemma (e.g. Bender and Orszag (1978)) states that if

/V ( 0 1  d£
Jo

(4.49)

exists then the integral in (4.47) decays like r _1 as r  oo. This is clearly the case here, since h(£) 

is bounded for all f  G [0,1]. Hence, the influence of the waves on the vortex decreases algebraically 

for large r . Figure (4.4b), shows a plot of the response at the vortex centre, obtained by numerical 

integration of (4.46).

It has been shown that the topographic waves decay algebraically on the topographic wave time 

scale, Tw. Significantly their decay is most rapid at the vortex centre, and so as r  —> e-1  they have 

no influence on the vortex drift velocity. The trajectory of the vortex centre on topographic wave 

time scale is considered in detail in the next subsection.

4.2.2 Short-time vortex trajectory

As stated above advection of the vortex is by the regular field fo. First consider times r  C l .  The 

regular term (4.31) is, to leading order in r,

as r  —> 0. The pseudoimage term cancels with the cos kx  term in the expansion of the wave term,

The integral in (4.51b) converges, since \A(k,y)\ < e fc, and is negative, since u  is negative for 

k > 0. Hence, for r  1 the vortex moves with velocity increasing linearly in time, in the y-

(4.50)

and so the pseudoimage has no leading order effect on the vortex at initial times. The vortex velocity 

components given by (4.17a) are then

(4.51b)

direction. Cyclones (T < 0) drift north and anticyclones (T > 0) move south, regardless of the sign

of L.

For times 1 «  r  <  e 1. The topographic waves have propagated away and have no influence on the 

vortex. Then, the advection of the vortex is due solely to the pseudoimage. From equations (4.17a)
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where

u = -  (2 |L|)sgnL (4.53)Zir

Anticyclones ( r  > 0) move west (resp. east) in shallow (deep) water, whilst cyclones ( r  < 0) move 

east (resp. west) in shallow (deep) water. Compare this with the results of Bell (1989) and Stern 

and Flierl (1987), who find that a weak vortex near a potential vorticity interface and a sheax flow 

respectively, also moves in the sense of its image in the interface.

To understand the physical mechanism responsible for the drift of the vortex, consider Figure (4.5). 

This plot shows the evolution of the streamlines associated with the 0o-field, for T = 1, i.e. an 

anticyclone. In Figure (4.5a), the streamlines of the short time solution given by equation (4.50) are 

plotted. The initial response is the establishment of a secondary dipole, centred over the escarpment 

and with its axis aligned along the y-axis. This is the result of the anticyclone drawing fluid to its west 

from the deep side of the escarpment, and pushing fluid to its east away from the shallow side of the 

escarpment. The vortex moves south along the dipole axis2. These secondary circulations, induced 

by the circulation of the primary vortex diminish rapidly, as energy is lost to the topographic waves. 

This process is clear in Figures (4.5b,c), which show the rapid west propagation of the topographic 

waves, away from the vortex centre. The final frame, Figure (4.5d), shows that as r  -» oo all that 

remains is the non-dispersive pseudoimage term. Figure (4.6) shows the same process schematically, 

this time for a cyclone, T = — 1.

This behaviour is in contrast to the motion of an intense singular vortex near an escarpment. 

McDonald (1998) showed that intense cyclones move northwest, while intense anticyclones move 

southwest. Importantly, both cyclones and anticyclones approach a steady westward drift velocity 

that matches a possible topographic wave phase velocity, so that wave radiation must eventually 

become an important factor in the motion of the vortex. In the present weak limit this is not 

always the case as, for instance, shallow water cyclones and deep-water anticyclones move east, i.e. 

antiparallel to the topographic waves. The large time response of the vortex is the subject of the 

following section.

2This is precisely the initial response for an intense vortex near an escarpment and on a /?-plane. In those cases 
however the strong circulation of the vortex rotates the dipole axis before the initial disturbance can disperse as 
topographic waves, causing the southwest (northwest) curved trajectories for anticyclones (cyclones).
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deep

(b)

vortex,

waves

Figure 4.6: The mechanisms for the vortex and wave propagation, (a) The circulation of the vortex, 
here a cyclone, moves fluid to its east from deep to shallow water, and fluid to its west from shallow 
to deep water. The fluid gains net relative vorticity in the sense shown, and the dipolar nature of the 
disturbance advects the vortex northwards, (b) The preferential direction of the waves is west, and 
is also due to the initial relative vorticity production. The waves propagate away from the vortex, 
which is then advected by its pseudoimage, shown by the dotted arrow.
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4.2.3 Large-time solution

In this section the solution on the long, advective time scale is investigated. A natural approach is 

to use the fact that e is small, and seek a solution to equation (4.2) in the form of a perturbation 

series in e,

</> =  0o + €0i + ... (4.54)

However, this leads to a solution which grows secularly. See Appendix A for details. Instead, the 

adjustment on the short, topographic wave time scale is assumed to happen instantaneously on the 

advective time scale. That is, the large r  asymptotic, steady solution of the previous subsection is 

taken as the initial condition. Denote by <f>\ the solution to (4.15) on the advective time scale. The 

two solutions are then matched by demanding that

lim <j>i =  lim <f>0 =  -$„(a:, |?/| +  |L|). (4.55)
t-y0+ r —>oo

For times t <£ 1, from equation (4.53) the vortex centre moves with the steady drift velocity X { t ) =  

lit, suggesting a solution of the form

ip(x,y,t) =  y v(x - u t , y -  L) +  <j>i(x,y,t). (4.56)

Note that J[V2<fo, 0o] =  0 in equation (4.2). That is, the response is linear as t -¥ 0+ . It is assumed 

that this remains the case for finite t. This assumption is justified a posteriori, by contour dynamics 

investigations of the full nonlinear problem.

The linear governing equation for <f>i is then 

Away from y = 0 this is

V20! -  0i =  0. (4.58)

The initial condition is given by (4.55) and the boundary conditions obtained as above are

V0i 0 , x 2 + y2 -+ oo (4.59a)

[0i ] =  0 , y = 0 (4.59b)

e[<piyt\ + 2(j)ix = - 2 ^ v x ( x - u t , - L )  , y = 0 (4.59c)

Denote the Fourier transform of (j>\ by 0 i, so (4.58) and (4.59a,b) have solutions of the form

<fi (k, y, 4) =  B\  (k , 4)e-'/ F +r '!'l. (4.60)
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From the properties of Fourier transforms,

$„(x  -  ut, - L )  = - £ ) ,  (4.61)

so the transform of (4.59c) is, using identity (4.25) and after some manipulation:

j t (£ ie iwt) =  -  \L\Vk*+ipi(k«-u)t } (4 .62)

with solution,
. yp p — \L\^/h?+l

B xeiwt = C(k) +  ■■ -   ei(uj-ku)t /4>63)
2 y / F T l  k u - u  v '

where,

u = - i v h j ’ ( 4 - 6 4 )

is the topographic wave frequency on the advective time scale. Initial condition (4.55) gives 0i (a;, 0,0) 

—̂ (a ; ,  |L|) from which,
T ku

Thus,

C{k) = ----- — —  _ _ —e-|i'|VP+T< (4.65)
2 v 'F T l  k u - u  K 1

<j>i{k,y,t) =  ~ 2^ J  +  1e~(lyl+|L|)V^ f c ^ ~  (kue~iut -  u)e~ikut) . (4.66)

Note that this may be rewritten

U n . p - i u t  _  . ] p - i k u t

4>i(k,y,t) = - t f w(a,|y | +  |L |) k u - u  ’ 4̂‘6^

so in particular, when t = 0

4>i{k,y,0) = - £ v(ar,|?/| +  |T|), (4.68)

which is the correct initial condition. The solution consists of a quasi-steady term and a topographic

wave term, and can be written

0i (*, V,t) = (f>{8) + 0 ^ }, (4.69)

where

r r e-(\v\+\L\WK2+i- i ... ..
4>'[*> =  I  --------- -------- - - = ----- e ' ^ - ^ d k ,  (4.70a)

47t Jc  1 +  euy/k2 +  1 V k 2 +  1

( \ Teu f  e ^ y^ L^ k2+1=  (4 70b) 
4tt Jc  1 + e u V W T l

The 0 ^  term is a non dispersive term of the form 0 ^  =  <f>[a\ x  — ut ,y ), and so is a disturbance

which propagates with the vortex. To leading order in the binomial expansion with respect to e of

the integrand this term is the steadily propagating pseudoimage. The second term is a Fourier
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superposition of topographic waves. The dispersion relation is given by (4.64), and so the phase and 

group velocities are

Cp(i) =  ~ 1 W + T '  (4'72a)

ca(k) =  ~ e(fc2 + 1)3/2 (4.72b)

as before. Note that the appearance of e in these quantities is due to the time scale being the 

advective time scale.

Each of (4.70a) and (4.70b) has simple poles for k =  ± 7  where

(  1 V /2
7 "  (e 3ua 7  ’ (4'73^

whenever — 1 < eu < 0, i.e. whenever the vortex drifts west. In order that the waves radiate 

away from the vortex the inversion contour, C , must pass below these poles as in Figure (4.7). The 

existence of poles gives rise to the possibility of wave radiation as t ->■ 00 . There are only two cases 

to consider since the case u = 0 is of no interest because there is no vortex, and the cases |eit| > 1 

are ruled out, otherwise u is an 0 (l/e) quantity, contradicting the weak vortex assumption which 

constrained u to be at most 0 (1).

(i) 0 < eu < 1

This is the case of either a cyclone located on the shallow side of the escarpment or an anticyclone

located on the deep side of the escarpment, and since 1 +  eu(k2 + 1)1/ 2 7  ̂0 , there are no singularities.

Thus the inversion contour C may be deformed back to the real k-axis. For large t the wave term 

is dominated by the single point of stationary phase, occurring for — t  < x  < 0 ,

*. =  ( ( - < r 2/3- l ) 1/2, (4.74)

where £ — x/t .  A similar calculation to that in section 4.1 yields

-i-i /   ̂ \  Ẑ2
CO. - I ) ,  (4.75)

rtxe e-C!vl+l^l)N/*fTT /  j  y / 2
01 \/27r 1 +  euyjk2 +

for £ constant as t —> 00. The waves are transient, decaying like £-1/2, leaving only the steadily 

propagating vortex and pseudoimage as t -* 00. The vortex is moving at a velocity outside the 

range of topographic wave phase velocities, and in particular, since u > 0 , is moving in the opposite 

direction to the waves. The vortex propagates away from the wave bundle, which consequently
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+7- 7

Figure 4.7: The inversion contour, C , in the complex fc-plane. The radiation condition dictates that 
the contour should pass below the singularities at k = ± 7 . Branch cuts made from ±i  to ±ioo, are 
shown by the heavy lines.
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decays, leaving only the quasi-steady term. The transient nature of the disturbance is illustrated 

by Fast Fourier Transform of the regular field 0 1 over the escarpment in Figure (4.8). The large, 

localised disturbance near the vortex centre is the nondispersive part of the topographic wave train 

(i.e the pseudoimage), whilst the topographic waves propagate away to the west, with amplitudes 

decaying with time.

(ii) — 1 < eu < 0

This is the case of west travelling anticyclones located on the shallow side of the escarpment or 

cyclones located on the deep side of the escarpment. There are simple poles in the integrals (4.70a) 

and (4.70b) at k =  ± 7 , given by (4.73). At large times the the solution is dominated by the behaviour 

near the poles, for which

k »  — »  1, (4.76)eu

corresponding to short waves. Also, a simple rearrangement of (4.73) reveals

“  =  - ^ T T  =  ^ (±7)’ (4-77>

since u < 0. The asymptotic behaviour is dominated by the short waves with phase velocities close 

to the velocity of the vortex.

Consider first the non-dispersive term The contribution to the integral from the semi-circular 

arcs is exponentially small as x  — ut —> — 00 . However the same is not true for x  — ut —> 00. In this

case the inversion contour, (7, must be closed in the upper half-plane and the integral evaluated by

the method of residues. In doing so it is necessary to introduce a branch cut from k = i to k =  00i, 

since \ / k 2 + 1 is double valued. The inversion contour must then be deformed round the branch cut. 

As x  — ut -»• 00 the contribution due to the branch cut is exponentially small and may be ignored. 

To make the poles explicit write

1 1 euy/k2 +  1 — 1
1 +  euVk2 +  1 (eu)2 k2 -  j 2

(4.78)

so that,

,(•>   L _  [ e-(l*W > ^ eW F T T -l
01 4tt (eu)2 Jc  k2 + 7 2 V W + 1  { }

The residue of the integrand at the pole k = 7  is
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Figure 4.8: FFT evaluation of the regular solution over y =  0, for a nonradiating weak vortex. The 
parameter values used are T = —1, e =  0.1 and L  =  0.5. The times are (a) t = 7 and (b) t = 30.
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Similarly the residue at k = —7  is

_  fJL exp ( -  M  + e~n(x-ut) (4 .81)
7 V M  J

The large time behaviour of is then given by 2m times the sum of the residues, i.e. for large t,

(f>[8̂ pa exp ( — M ± !^  sin /y(x — u t)H (a: — ut), (4.82)
euj \  \eu\ J

where H (x ) is the unit Heaviside step function, which arises due to the fact that there is no contri

bution for x — ut < 0. Next consider the wave term (j)[w^. Near the poles k = ± 7  a Taylor expansion 

gives,

u(k) + ku & u(±y)  ±  7  +  (0/ ( 7 ) +  u)(k =f 7 )

=  (c5 (7)+w)(A:T7), (4-83)

since w' (k) = cg. Hence near the poles,

~  dk. (4.84)
4tt Jc 1 +  euy/k^+1

There is no contribution due to the poles as x — cg( j) t  —► —00. A residue calculation for x — cg( i) t  -»• 

00 then yields

<f>[w) «  — —  exp ( — sin 7 (2; — ut)H{x — cgt), (4.85)
eu7  \  |eu| J

where 0 (̂7 ) =  —7 u has been used. Note that for k = ± 7  the inequality u < cg < 0 holds. Thus the 

large time response for the radiated case is

0i & g(y) sin7 (x — ut) [H(x — ut) — H (x  — cgt) \ , (4.86)

where

9fe) = ^ exp ( - ^ p )  (4-87)

This is a wave tube existing for ut < x < c5(7 )i, and whose width, say D, grows like the difference 

of the phase and group velocities of the radiated waves:

\D\ «  e-1 i ((eu) — (eu)3) , (4.88)

since ecg = ec3 at A; =  ± 7 . Since e3 is negligible, the rate of growth of the wave tube is approximately

u, the phase velocity of the radiated waves. Figure (4.9) illustrates the process of the wavetube

formation. Here, the solution <pi has been evaluated over the escarpment by Fast Fourier Transforms. 

The waves ahead of the vortex decay. Note also the pseudoimage, i.e the non-dispersive part of the
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Figure 4.9: FFT evaluation of the regular solution over y = 0, for a radiating weak vortex. The 
parameter values used are T — +1, e =  0.1 and L = 0.5. The times are (a) £ =  7 and (b) t = 30. 
The non-dispersive pseudoimage is evident, and the waves ahead of it are the dispersive wave. The 
waves in the wake of the vortex are the steadily propagating radiated waves.
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wavetrain which propagates with the vortex. The waves are radiated from the pseudoimage, which 

must decrease in size, and which in turn must affect the vortex drift velocity.

In summary, in the radiating cases (anticyclone located on the shallow side or cyclone located on the 

deep side of the escarpment) the topographic waves decay like £-1 / 2 except for the particular short 

waves with wavenumber k = ± 7 , which have phase velocity equal to the vortex zonal drift velocity. 

A wave train of finite length forms in the wake of the vortex. The trailing edge of this wave train 

moves at the group velocity of the radiated waves. Thus there is no disturbance for x > cgt, and in 

particular the fluid is at rest at the initial position of the vortex.

Since the radiating waves have non-zero energy flux, they must exert a drag on the vortex, which in 

turn must respond to this loss of energy. Bell (1989) argued that a weak singular barotropic vortex 

moves perpendicular to a potential vorticity interface due to wave radiation. In the following section 

global momentum arguments are used to calculate the effect of wave radiation upon the vortex drift 

velocity.

4.2.4 Large time vortex trajectory

For the case of an intense singular vortex, McDonald (1998) calculates the response of the vortex to 

the radiating waves by equating the energy flux of the wave tube to that of the vortex to derive an 

ODE for L , the distance of the vortex centre from the escarpment. In the present case an analogous 

equation is obtained by equating the momentum flux of the vortex to the pseudomomentum (see 

McIntyre (1981), Lam and Dritschel (1998)) of the wave tube. This has the advantage that the 

calculations are simpler; however the momentum and energy flux arguments are equivalent and 

yield the same result. The energy density in the wave tube (4.86) is

P — 2 +  ^i)>

r2 e x p f - a l f f l ) ,  (4.89)
72(cu)4 \  M

where the overbar denotes the average over one wave period. Note that by <j>i in this equation is 

meant the large time asymptotic solution given in (4.86). The wave power (i.e. the total energy 

flux), F1, of the radiated waves is found by integrating p over all y and multiplying the result by 

the group velocity. The “appropriate” group velocity is the rate of growth of the wave tube given 

by(4.88). This gives the wave power,
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F  =  r 2e " |2L/eu|. (4.90)

The rate of change of the wave pseudomomentum is then the wave power divided by the phase 

velocity,

— =  —  e- l2L/ eul. (4.91)
eu eu

This quantity is also the drag on the vortex, which must respond by losing momentum. See e.g 

McIntyre (1981). The leading order ar-momentum of the vortex is, by a generalisation of the result 

for barotropic vortices in Batchelor (1967),

Mn = -  J  j  7/(V2V» -  \!))dA = TL, (4.92)

the integral being taken over all space. Note that dT/dt =  0, (i.e. conservation of circulation), so 

any change in the vortex momentum is manifested only by a change in L. Taking the time derivative 

of (4.92) and equating it with the wave momentum flux (4.91) yields the differential equation for L

^  =  - L e - I 21̂ ! .  (4.93)
dt 2 eu

Note that u < 0, so both shallow water anticyclones and deep water cyclones drift towards the 

escarpment in response to topographic wave radiation. The drift is very slow,

f ; =  0 ( e - 1/ ') . (4.94)

This might be expected for two reasons. First, the energy density of the radiating waves is localised 

near the escarpment. This is evident in the expression (4.89). Second, the wave energy is concen

trated in the long topographic waves, and which propagate rapidly away from the vortex centre. 

Thus, the west traveling vortices radiate only the less energetic, short topographic waves. This in 

turn is a consequence of the weak vortex assumption, which constrains the vortex velocity to be 

0(e) on the topographic wave time scale. The topographic waves whose phase speed matches the 

vortex drift speed are the short waves.

It has been shown in this subsection that the pseudoimage description of the vortex motion is valid 

on the long advective time scale, for so long as linear theory is valid on that time scale. In the 

following subsection the validity of the linear theory is tested numerically by contour dynamics 

experiments.
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4.2.5 Contour dynamics results

The numerical algorithm, which integrates the full nonlinear equation (4.15), has been described in 

Chapter 2. Before proceeding to describe and discuss the results two points should be made. First, 

the infinitely long topographic contour necessarily has a finite representation during computational 

runs. The contour length must be chosen so that its ends remain undisturbed during the computa

tions. Given that the time scale employed for the contour dynamics algorithm is the advective time 

scale, this is hampered by the fact that the waves travel rapidly away from the vortex centre and 

introduce end effects during the numerical runs. For small values of e runs up to t  = 10 are possible 

before end-effects become important.

The time step used in all the runs presented here is A t  = 0 .1. Several of the runs have been repeated 

with a time step of A t  = 0.05, which resulted in no difference in the vortex trajectories. Also, surgery 

is carried out at a spatial cut-off scale of n  =  0.15. Several of the runs were repeated with a spatial 

resolution of /x =  0.1, and also with no surgery. In each case there was no difference in the computed 

vortex trajectories.

In the preceding sections linear theory was used to predict the evolution of a weak vortex on the 

advective time scale. The main focus of the numerical investigation is to test the hypothesis that 

the evolution of the vortex is well described by the linear theory, for times beyond that for which 

that theory is formally applicable. In particular, for what range of values of e is the linear theory 

applicable? Indeed, what is the appropriate time scale for the applicability of the linear theory? Of 

further interest is the effect of wave radiation on the path of the west travelling vortices.

Attention is restricted to the case L  > 0, i.e. to vortices (of both signs) located on the shallow side of 

the escarpment. There is no loss of generality here, since the governing equation (4.15) is invariant 

under the transformation

ip{x,y) -► - i){x , - y ) .  (4.95)

Analogous results for vortices located on the deep side of the escarpment may be deduced by symme

try. The behaviour of anticyclones differs from that of cyclones, and each case is treated separately.

A n ticyclon es

Experiments were carried out for values e =  0.1, 0.2 and 0.4, with L = 0.5 in each case. Figure
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(4.10a) shows a plot of the vortex zonal drift velocity compared with the linear theory prediction 

given in equation (4.53). It is apparent that the prediction agrees well with the numerical results, 

even up to e =  0.4.

Figure (4.10b) shows a plot of the vortex trajectory, again compared with the linear theory prediction. 

Note the initial southward movement in all cases presented. This observation is consistent with the 

linear theory, which stated that anticyclones initially move south as the result of the establishment 

of a secondary dipole (see the earlier discussion).

Figure (4.11) shows a plot of the evolution of the advected contour for e =  0.1. The west travel

ling dispersive waves are evident. Note also the disturbance which propagates with the vortex. The 

steadily propagating disturbance consists of fluid originally located on the shallow side of the escarp

ment, and which has crossed the escarpment to the deep side gaining net cyclonic relative vorticity 

of magnitude 2e_1. In the limit of small e the circulation of this patch has precisely the correct 

magnitude to advect the primary vortex in the sense of its pseudoimage in the escarpment. Put 

another way, the steadily propagating cyclonic relative vorticity is the pseudoimage, and as noted 

in the analytical discussions above forms a non-dispersive part of the topographic wave train. There 

is no visible evidence of topographic wave radiation in this plot, and this observation is reinforced 

by the vortex drift, which, after the initial southward movement is predominantly zonal.

However, consider Figure (4.12), which shows the evolution of the contour for e =  0.4. Here, 

the topographic waves and the pseudoimage are also apparent. Note the radiating waves, of larger 

amplitude than for the weaker vortex, in the wake of the pseudoimage. This behaviour is qualitatively 

the same as that shown in the FFT plot of the analytical solution shown in Figure (4.9). Enhanced 

meridional drift is the response of the vortex to topographic wave radiation. Given that the vortex 

is singular, and so cannot change its shape, escarpment-ward meridional drift is the only response 

that the vortex can have to wave radiation.

C yclones

Again experiments were carried out for values e =  0.1, 0.2 and 0.4, with L =  0.5 in each case. Figure 

(4.13a) shows a plot of the vortex zonal drift velocity compared with the linear theory prediction 

given in equation (4.53). The prediction is in good agreement with the numerical results for small 

values of e, but it is evident that the linear theory predicts the vortex motion for a smaller range of
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Figure 4.10: The drift of anticyclonic singular vortices, for 0 < t < 10. The parameter values 
used are L = 0.5, e =  0.1 (dotted line), e = 0.2 (dashed line) and e =  0.4 (dot-dashed line). The 
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67



0.10

0.05

-0.00

-0.05

-0.10

-0.15
-2 0 2-6 -4■10 -8-12

t=LO
0.10

0.05

-0.00

■0.05

-0.10

■0.15 2-2 0-6 -4-10 -8•12

t= 15

o 2-2-8 -6 -4-10•12
t=19

0.10

0.05

-0.00

-0.05

-0.10
-0.15 0 2-2-6 -4•10 -8•12

Figure 4.12: as Figure (4.11), except e =  0.4.

68



values of e for cyclones than it does for anticyclones. This statement is reinforced in Figure (4.13b), 

which shows the trajectory of the vortex centre. For e =  0.4 the cyclone has undergone substantial 

meridional drift. This cannot be the result of wave radiation, since the cyclone propagates in the 

opposite direction to the topographic waves. Therefore, the meridional drift must be the result of 

nonlinear effects.

To understand why nonlinear effects are more pronounced for cyclones than anticyclones consider 

Figure (4.14), a plot of the evolution of the contour for e =  0 .1. As for the anticyclones the dispersive 

topographic waves axe evident. The pseudoimage is also evident, this time consisting of a  patch of 

fluid which had crossed the escarpment from deep to shallow water, gaining net anticyclonic vorticity, 

and which, in the limit e -> oo, has precisely the right circulation to advect the cyclone as if the 

escarpment were a plane wall.

Next consider Figure (4.15), which shows the contour evolution for a cyclone with e = 0.4, and 

illustrates a fundamental difference between a near weak cyclone and a near weak anticyclone. The 

initial disturbance “wants” to move west, dispersing as topographic waves. However, in this case the 

sense of the vortex circulation is such as to counter this tendency and is sufficiently strong to prevent 

the initial disturbance from moving away from the vicinity of the vortex. In contrast an anticyclone 

reinforces the westward propagation of the initial disturbance. For a cyclone a dipole consisting of 

the primary vortex together with the newly formed anticyclonic relative vorticity is formed, and by 

t «  6 this dipole propagates northeast, away from the escarpment. It will be shown below that for 

moderate intensity cyclones located on the shallow side of the escarpment, the formation of dipoles 

is a generic feature.

4.2.6 Discussion

It has been shown that, in the limit e —> 0, linear theory predicts that a weak singular vortex near 

an escarpment drifts in the sense of its image in the escarpment. Whilst an explicit definition of a 

pseudoimage is new, the phenomenon has been noted in two previous works. Bell (1989) and Stern 

and Flierl (1987) investigated the motion of a singular barotropic vortex near a potential vorticity 

interface and a shear flow respectively, and found that weak vortices move parallel to the interface 

in the image sense.
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West travelling anticyclones (resp. cyclones) located on the shallow (deep) side of the escarpment 

radiate short topographic waves as t —> oo. Global momentum arguments were used to estimate the 

meridional drift of the vortex centre due to the wave radiation. This drift is exponentially slow since 

the energy flux associated with the short waves is small. It should be emphasised that meridional 

drift is the only possible response of a singular vortex to wave radiation, since its’ shape is fixed. 

Thus “vortex breakdown” has no meaning in the present context. It is anticipated that a patch 

of vorticity may change its shape in response to wave radiation, and decay at large times. The 

problem of a vortex patch near an escarpment is the subject of the following chapter. McDonald 

(1996) investigated the motion of a modon near an escarpment. The modon moves parallel to the 

escarpment by self advection, and the west travelling modons decrease in radius in response to wave 

radiation. It is worth highlighting that there is no /3-plane analogy for a weak singular vortex, since 

the Bessel function structure of the singular vortex dictates that the circulation is necessarily strong 

near the vortex centre. That is, near the vortex centre the P contours will be strongly wrapped 

up, even for a “weak” vortex. The present results are a consequence of there being some distance 

between the vortex and the topographic gradient.

Contour dynamics experiments have shown that for small e linear theory does indeed describe the 

drift of the vortex centre for many eddy turnover times. Both anticyclones and cyclone drift parallel 

to the escarpment at the velocity due to the pseudoimage. The physical meaning of the pseudoimage 

was identified as a non-dispersive path of relative vorticity in the deflected topographic contour.

For anticyclones located on the shallow side of the escarpment, linear theory is accurate up to e =  0.4 

and beyond. The wave induced meridional drift of the vortex centre increase with increasing e, and 

the amplitude of the radiated waves also increases with e.

On the other hand it has been shown that nonlinear effects are important for cyclones at smaller 

values of e. The primary mechanism for the breakdown of the linear theory for cyclones is the accu

mulation of anticyclonic relative vorticity near the vortex centre. This is a result of the circulation 

of the primary vortex driving fluid against the preferred direction of the topographic waves. This 

anticyclonic relative vorticity is then able, through a dipole mechanism, to advect the primary vortex 

northeast. At large times the cyclone leaves the vicinity of the escarpment, a process which Zaval 

Sanson et. el. (1999) refer to as “back-reflection”. A more thorough discussion of this phenomenon 

is given below, in the investigation of the behavior of moderate intensity vortices.
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4.3 An intense singular vortex: a review

In this section a review of the results of McDonald (1998) is presented, for completeness of de

scription, and more importantly to understand how the asymptotic analysis for the intense singular 

vortex limit breaks down. In solving the full nonlinear equation (4.15), in the limit S  1, McDonald 

(1998) showed that the leading order vortex drift velocity components are (Su, Sv) where, u and v 

are given by the integral expressions

cy POO
u = — (cosb(r)t — l ) K i (ir)y/r2 — L2 dr (4.96a)

v — — /  sinb(r)t K i{r)\Jr2 — L2 dr. (4.96b)
*J\L  I

where b(r) — —TKi(r)f27rr is the angular velocity of the vortex. This solution is formally valid for 

t < 0 (S -1). Asymptotic results show that anticyclones follow a curved southwest trajectory, whilst 

cyclones follow a curved northwest trajectory. As t -* S _1, the vortex drift is purely zonal, with

u =  - e x p (—|T|), (4.97)

for both anticyclones and cyclones. As t -> oo global momentum arguments show that the intense 

vortices have a wave radiation induced meridional drift, and have “rest-latitudes” about a Rossby 

radius from the escarpment. It is interesting to consider how the analytical results for S  <C 1 

breakdown as 5  is increased.

First consider the case of intense anticyclones. Figure (4.16) shows a comparison of contour dynamics 

trajectories with the analytic prediction for S = 0 .01, 0.1 and 0 .2. The analytical trajectory has 

been calculated by fourth order Runge-Kutta, with the vortex drift velocity components given by 

(4.96a,b). The prediction is exceptionally good for small S. However, for S  = 0.2 the vortex centre 

initially drifts further west, and less far south. Significantly at later times the westward drift velocity 

begins to retard, whilst the southwards drift velocity increases.

Consider Figure (4.17), which shows the evolution of the contour for S = 0.01. Note the initial 

dipolar structure of the front as the vortex circulation deflects the contour. The flow is later char

acterised by strong axisymmetrisation near the vortex centre. The vortex winds up the contour and 

build a shield of weak anticyclonic relative vorticity around itself. At later times the dipole axis has 

tilted, and the vortex trajectory curves to the west.
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Compare this with Figure (4.18), which shows the contour evolution for 5  =  0.2. The initial front 

is stronger than that formed for smaller 5, accounting for the initial increase in both the meridional 

and zonal drift speeds. The weaker vortex is less able to wind the contour. As the dipole crosses 

the escarpment the cyclonic part of the dipole increases in size and has more influence on the vortex 

centre than the anticyclonic relative vorticity. It is the vortex centre and the cyclonic relative 

vorticity forming a dipole that retards the westward drift velocity and increases the southward drift 

velocity.

Next consider the case of intense cyclones. Figure (4.19) shows a comparison of the vortex drift 

produced by the contour dynamics experiments compared with the analytical prediction. Once 

again the analytical prediction is good for small 5. Note with increasing S  the theory underpredicts 

the westward drift speed, and at later times, for S  = 0.2 the vortex centre begins to drift east

Figure (4.20) shows the evolution of the contour for S  = 0.01. Again, note the initial dipolar 

structure of the front as the cyclones deflects the contour, and later the strong winding of the 

contour near the vortex centre. Next consider Figure (4.21), a plot of the evolution of the contour 

for 5  =  0.2. In this case the initial dipole is still evident, but the vortex, being weaker than it is for 

small 5  is less able to wrap up the contour. A patch of anticyclonic relative vorticity forms to the 

east of the vortex centre. The dipole consisting of the primary vortex and this anticyclonic patch 

the begins to move north and east.

The formation of dipoles seen here becomes much more pronounced for moderate intensity vortices. 

This issue is covered in more depth in the following section.

4.4 A moderate singular vortex: contour dynam ics results

To complete the study of the motion of a singular vortex near an escarpment contour dynamics 

results are presented in this section for moderate vortices. There is no theory available for the 5  «  1 

regime, since the magnitude of the circulation of the relative vorticity produced due to deflection of 

the topographic contour is of the same order as the circulation of the primary vortex.

Attention is restricted to the cases S  = 2 (moderately weak vortex), 5  =  1 (moderate vortex) and 

5  =  0.5 (moderately intense vortex). Once again only vortices located on the shallow side of the
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escarpment are considered and the cases of anticyclones and cyclones are considered separately.

4.4.1 Anticyclones

Figure (4.22) shows a plot of the trajectories of the moderate anticyclones. For 5  =  2, the moderately 

weak anticyclone appears to still be well modelled by the linear theory. At large times the drift is 

purely zonal. For the moderate anticyclone (5 =  1), the initial response also appears to be linear. 

However the vortex centre later turns south and crosses the escarpment, traversing a large arc 

before finally turning east. The moderately intense anticyclone (5 =  0.5) also moves sharply south, 

crosses the escarpment and turns east a t later times, with the exception that the initial westward 

displacement is much reduced.

Figure (4.23) show the contour evolution for 5  =  2. The response does indeed appear linear. The 

pseudoimage and radiated waves are apparent. It must be concluded that linear theory predicts the 

motion of anticyclones even for 5  =  2 (i.e. e =  0.5), for at least forty eddy turnover times.

Next consider Figure (4.24). At short times the topographic waves are linear and the vortex centre 

is advected by the pseudoimage. The wave radiation appears strong enough to  cause the vortex to 

reach and cross the escarpment. At this stage the vortex begins to wrap the topographic contour, 

and has a small but significant patch of cyclonic relative vorticity nearby. The dipole mechanism 

then turns the vortex from its westward drift and the vortex centre moves east at large times.

Figure (4.25) show the evolution of the contour for 5  =  0.5. At short times the vortex wraps the 

contour up, and then crosses the escarpment. As for the previous case a patch of cyclonic relative 

vorticity accompanies the vortex in its evolution and the dipole mechanism turns the vortex east at 

later times.

4.4.2 Cyclones

Figure (4.26) shows a plot of the trajectories of the moderate cyclones. For 5  =  2 , the moderately 

weak cyclone follows a generally north east path. For the moderate anticyclone (5 =  1), the initial 

motion is also northeast, but path of the vortex centre then “loops” . However the net migration of 

the vortex centre is north and east. The moderately intense (5 =  0.5) cyclone exhibits the same
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behaviour except that the drift is more east and less north.

Figures (4.27) -(4.29) show the contour evolution for the moderate anticyclones. The behaviour 

is qualitatively the same in all cases. The cyclone pinches off some of the topographic contour. 

This anticyclonic relative vorticity together with the primary cyclonic vortex form a dipole, and 

the general migration of the dipole is northeast. In particular the vortex propagates away from the 

escarpment, and is only affected by the anticyclonic path at later times. The looping motion is 

characteristic of a dipole with differing magnitude poles.

4.4.3 Discussion

It has been shown that for moderate singular vortices the characteristic of the motion is the formation 

of dipoles, and curiously, both cyclones and anticyclones drift east at large times. The process by 

which this happens differs slightly for anticyclones compared with cyclones.

The anticyclone crosses the escarpment. A large patch of fluid initially located on the shallow side 

of the escarpment accompanies the vortex as is crosses the escarpment. This fluid gains cyclonic 

relative vorticity, and forms a dipole with the primary vortex. The dipole mechanism curves the 

path of the vortex to the east at large times.

On the other hand the cyclones draw fluid from the deep side of the escarpment. This fluid has 

anticyclonic relative vorticity, and the dipole formation proceeds more quickly than the case of 

anticyclones. The cyclones move northeast from the outset, and at large times move away from the 

escarpment. The process of dipole formation occurs for cyclones over a larger range of parameter 

values than for anticyclones. This was indicated in the discussion of the weak cyclones, where, even 

for relatively large values of S  the circulation of the vortex competes with the topographic wave 

mechanism, causing a build up of anticyclonic relative vorticity near the vortex centre.

It is worth highlighting that the results of this subsection are entirely in keeping with the exper

imental results of Zavala Sanson et. al. (1999) who have recently investigated the behaviour of 

barotropic vortices near an escarpment, both experimentally and numerically. In that investigation 

the escarpment lay in the meridional direction on a /3-plane. The (3 effect was small in comparison 

to the topography, and mainly served to bring a vortex near to the escarpment. The strength of the
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Figure 4.26: A plot of the trajectories for the moderate intensity cyclones for 0 < t <  30. 
param eter values used are L =  0.5, S  =  2 (dotted line), S =  1 (dashed line) and S  =  0.5 
dashed line).
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Figure 4.28: As Figure (4.27’) except 5 = 1 .
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vortices was of the same order of magnitude as the relative vorticity produced by fluid crossing the es

carpment, or, in the terminology of the present work, S  «  1. It was found that anticyclones situated 

on the shallow side of the escarpment were able to “climb” the topographic gradient, whilst cyclones 

were “back-reflected”, precisely the behaviour observed in these contour dynamics experiments.

Lam and Dritschel (1998) find that maximum meridional displacement of a circular vortex on a 

/3-plane occurs for moderate intensity vortices. They describe the mechanism for this process in 

terms of a “trailing eddy” , i.e. a part of the radiated Rossby wave train that has circulation in 

the opposite sense to the primary vortex. Put another way, for the moderate intensity /3-plane 

vortex, a dipole forms between the primary vortex and the shed vorticity. This is precisely the same 

mechanism that has been observed in the present case. It might be expected that dipole formation in 

more general moderate intensity vortex-wave interactions is common. For example dipole formation 

maybe extremely important in cross-frontal mixing, something which needs to be understood and 

parameterised in General Circulation Models.

4.5 Conclusions

In this chapter a study of the motion of an intense singular vortex near an escarpment has been 

carried out for the full range of values of vortex intensity. Several important conclusions may be 

drawn.

First, analytic results for a weak vortex have predicted that the escarpment act like a plane wall. 

This phenomenon was dubbed the “pseudoimage of the vortex” , since there is no true image vortex. 

In the case where the vortex travels in the same direction as the topographic waves, expressions for 

vortex drift induced by wave radiation and based on pseudomomentum arguments, were found. This 

drift is purely meridional and negligible for times of order unity. Contour dynamics confirmed the 

analytical predictions and revealed that the pseudoimage is a steadily propagating, non-dispersive, 

patch of relative vorticity in the deflected topographic contour. It might be anticipated that more 

realistic models of weak vortices near an escarpment, or indeed any sharp topographic gradient such 

as a seamount, might evolve in the sense of its image in the potential vorticity interface.

Second, contour dynamics show that dipole formation is generic for moderate intensity vortices.
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This is fully in keeping with experimental results, and directly analogous to numerically observed 

dynamics of a vortex on the /3-plane.

Third, the model doesn’t account for changes in vortex shape. For a more realistic model vortex 

shape changes may be of great import, and as a first step in understanding the evolution of a 

continuously distributed vortex near an escarpment, an initially circular patch of uniform relative 

vorticity is considered in the following Chapter.

A p p en d ix  A: Secular grow th in singular p erturbation  so lution

In this appendix it is shown that a perturbation series solution for the weak singular vortex problem 

contains secular terms. Seek a solution to equation (4.2) in the form,

0  — 0o +  £0 i +  ••• (4-A.l)

As noted above the vortex velocity is 0(e), so expanding $ v about (X , Y ) = (0 , L) gives

V v(x -  X , y  - Y )  = $ v( x , y -  L) -  e u t^vx(x,y -  L) + 0 (e 2), (4.A2)

anticipating that X  = eu. Substituting (4.A1) into (4.2) and equating the 0(1) terms yields the 

problem for <f>0

(V20o — 0o) ̂  +  0o xdy — ~^vxdy, (4. A3)

with initial and boundary conditions identical to (4.20a)-(4.20d). The first order solution is then 

the same as the short time solution above:

00 =  _  2^-^°  ̂ ] +  0wave• (4.A4)

Since <j)wave decays rapidly near the vortex take

00 =  ~ K a [(* 2 +  (\y\ + |£ |)2) 1/2] , (4.A5)

so X  =  eut. Noting that 0o solves the nonlinear terms, the 0(e) equation is

(V201 -  <j>i)t + (f>ixdy = ut^fvxxdy, (4.A6)

with initial condition (4.20a) and boundary conditions (4.20b) and (4.20c). The solution is of the 

form

0! (*, y, t) =  A l (k , t)e~'/w +l  l»l. (4.A7)

The remaining boundary condition is

[0iyt] +  20ix =  2u t$ vxx(x, -L ) , y = 0 (4.A8)
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giving the differential equation

—y /k 2 +  lA i t  +  ikAi — —utk2&v(x,y — L), (4.A9)

with solution

Ax (k, t) = JL£e-\L\'AF+i [UuJ +  (1 _  ei ? (4.A10)
&

where u  = k/y/k2 +  1, as before. After some manipulation this gives the 0(e) solution,

0 i =  77— /  e~ ^ y \+ \L ^ ^ k:2+1 (cos kx — cos(kx +  u t )) dk — ^7— f  s inkx dk.
27T J0 2ir J0

(4.A11)

This has terms of 0(f), and so grows secularly; i.e. 0i -> oo as f oo. This suggests the need to

rescale the time variable, a la Herman et. al (1989). This is done above in subsection 4.2.3.
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Chapter 5

Evolution of an initially circular 
vortex patch near an escarpment

A limitation of the singular vortex model of Chapter 4 is the inability of the singular vortex to change 

its shape as it evolves. The Bessel function structure of the singular vortex is preserved for all time, 

and so the velocity field associated with the vortex is always radially symmetric. Consequently 

the process of vortex deformation is absent in the singular vortex model, and this, in turn, has 

two implications regarding the ability of that model to describe the physical mechanisms of a more 

realistic vortex-topography model. First, the contribution of vortex deformation to the velocity 

field are excluded, so that a description of both the vortex drift and the advection of the ambient 

potential vorticity by the vortex is incomplete. Second, the possibility that the vortex responds to 

wave radiation by deforming is excluded. A more realistic model of vortex motion near an escarpment 

should examine the effects of vortex deformation on the evolving flow. This chapter investigates the 

motion of an initially circular patch of uniform potential vorticity near an escarpment. Of particular 

interest is a comparison of the motion with the singular vortex model, i.e. how well does the singular 

vortex model describe the motion of the vortex patch centroid, and what features of the motion of 

the vortex patch model are absent in the singular vortex model?

The evolution of a vortex patch on the /3-plane has received considerable attention, and a literature 

review was presented in Chapter 3. The approach to the present problem is adapted from the now 

standard formulation of Sutyrin and Flierl (1994), where the equation for the production of relative 

vorticity by advection of the ambient potential vorticity (the so-called “regular” field) is written in 

a form independent of vortex deformation. This latter effect (the so-called “singular field”) is then
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described by an equation forced by the leading order regular field. The particular formulation given 

below is adapted from the formulation of Reznik and Grimshaw (1998), which explicitly includes an 

equation for the drift of the vortex centroid. A further work which has influenced the present study 

is that of Lam and Dritschel (1998), in which the evolution of an initially circular vortex patch on 

the /5-plane is investigated using a contour advective semi-Lagrangian (CASL) algorithm. The high 

resolution results obtained by Lam and Dritschel (1998) are discussed below in comparison to the 

results for the motion of a vortex patch near an escarpment.

The effect of the topography on the vortex is of primary interest, so the question of how the vortex 

came to be near the escarpment is ignored. It could have, for example, been carried by a background 

mean flow, or arrived due to the drift induced by the /5-effect. In the following, it is assumed that no 

part of the vortex straddles the escarpment at the initial time, i.e. the vortex radius is less than the 

distance of the vortex centre from the escarpment. This assumption greatly simplifies the analysis.

The chapter is organised as follows. First the leading order solution on the topographic wave time 

scale for a weak vortex patch is obtained by Fourier analysis. The large time behaviour for a weak 

vortex is investigated by contour dynamics. Second, the leading order solution for an intense vortex

patch is obtained by the Green’s function method. The large time behaviour for the intense vortex

is also investigated by contour dynamics. Finally the case of a moderate intensity vortex patch, for 

which no analytical theory is available, is investigated by contour dynamics.

5.1 Problem  formulation

The /-plane quasigeostrophic governing equation, with the same scalings (4.1) as in Chapter 4 is, 

for convenience, rewritten as,

Qt + J[ip,Q] = 0 , (5-1)

where

Q = V 2-ip-i/j + ShB(y). (5.2)

Here S  is the ratio of the eddy turnover time to the topographic vortex stretching time,



and the topography

M lf )  =  ^sgn(y), (5.4)

i.e. an infinite escarpment aligned along y = 0 , is also the same as the previous chapter, except for 

the factor of a half. This factor has been included so that when S = 1 the the ambient potential 

vorticity jump across the escarpment has the same magnitude as the relative vorticity of the primary 

vortex.

The initial condition is a circular patch of uniform relative vorticity, which with the Rossby radius 

as the characteristic length scale, can be written,

V2^o ~ f p o -  -o tH (o -  r), (5.5)

where a is the patch radius, r is the radial distance from the vortex centre and a = ± 1  gives the 

sense of the circulation. For a  > 0 it is clockwise (anticyclonic) and for a  < 0 it is anticlockwise 

(cyclonic). The solution, derived in Chapter 2 (see equation (2.34)), is

: i :  »■«»
and the angular velocity of the vortex is

h(r\ _ 1 ^ o _ 1 f -a flK i(q )fi(r) , r < a  ,
{ } ~  r dr ~  r \  -aa/i(a)R Ti(r), r >  a

Figure (2.3) shows a plot of the profiles of the streamfunction and the angular velocity.

The present problem considers the evolution of an initially circular vortex patch near an escarpment. 

The topography is “switched on” near a pre-existing vortex at time t = 0. In a frame of reference 

with the origin attached to the vortex centroid (to be defined), the governing equation is

^ ( V V - V ')  +  ^ ,V V - V > ]  +  5 ^ ^  =  0 (5.8)

where ip = tp — uy + vx  and u  =  (u , v) is the drift velocity of the vortex centroid {xc(t),yc{t)). The 

initial relative vorticity is

flo =  V V o -  4>o =  - a H ( a  -  r), (5.9)

and the initial potential vorticity is

Qo = Q0 +  ^sgn(y +  L), (5.10)

for a vortex of radius a with centroid initially located at (0,L). Figure (5.1) shows the initial 

condition.
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The boundary between the two different values of fto represented in (5.9) by the Heaviside function 

is a material line and is advected with the flow, so subsequently the relative vorticity must have the 

form

ft =  V2V> — V’ — -ocH (ro —r) + q(x, y , t). (5.11)

Here q is the correction to the relative vorticity, and ro = ro(9,t) is the equation of the evolving 

patch boundary, so initially ro(0,i) =  a. Substituting (5.11) into (5.8) and equating to zero the 

regular and singular parts in the resulting expression1 leads to

-  °  « '* *>

a - ^ -  + J[4>,ro - r ]  = 0. (5.12b)
Ot  r—ro

These equations describe the two processes which contribute to the motion. The first equation 

(5.12a) describes relative vorticity production due to advection of the ambient potential vorticity. It 

does not contain advection of the relative vorticity H(ro — r ) of the vortex patch, which is instead 

described by the second equation (5.12b), which states that deformation of the vortex shape is due 

to advection of the vortex boundary. To leading order then, advection is due to relative vorticity 

production. It is the appearance of the vortex shape in the problem which was missing from the 

singular vortex model, and which complicates the solution.

To close the problem a definition of the vortex centroid is required. It is now standard (e.g. Reznik 

and Grimshaw (1998) or Lam and Dritschel (1998)) to choose the geometric centroid of the evolving 

patch, i.e. the centre of vorticity for a patch with uniform vorticity. This choice is not necessary since 

obtaining the solution in any coordinate frame yields all of the information about any characteristic 

point associated with the vortex. The centroid location (xc(t),yc(t)) is

_  f  f v xdxdy _  f  f v  ydxdy

I  I v  dxdv ’ 0 I  f v  dxdy ’

where V  is the vortex patch bounded by the curve ro(9,t). Using Green’s theorem these axe, in 

polar coordinates,

x c(t) = / r%(9,t) cos9d9, (5.14a)

1 f 2n
yc(t) =  -̂ — 5  J  ro(0>*) sin 9d9. (5.14b)

xB y which is meant the following. The Heaviside function leads to terms 6(ro — r ) upon substitution into the 
governing equation. The terms that are multiplied by the delta function are equated to zero and all remaining term s 
are similarly equated to zero. Hence the names “regular” and “singular” , despite the fact that the equations are in 
fact both regular. This is standard practice for vortex patch analysis.
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Here the fact that the area tv a2 of the initial patch is conserved has been used. In the moving frame 

x c(t) =  yc(t) = 0 so the problem is closed by the condition

/Jo

2ir
r le iedB = 0. (5.15)

Equations (5.12a), (5.12b) and (5.15) together with the initial conditions

0) =  tpa(r), (5.16a)

q{x,y, 0) =  0, (5.16b)

r0(M )  =  a, (5.16c)

(®c(0),lfc(0)) =  (0,X), (5.16d)

describe the evolution of the vortex patch. A complete study of the problem requires consideration 

of the three parameters 5 , a and L. The leading order solutions for S  1 (a weak vortex) and 

for S  -C 1 (an intense vortex) axe obtained analytically. The case of a moderate intensity vortex 

(5 «  1) is investigated numerically by contour dynamics. The investigation of the dependence of the 

motion on the vortex radius, a, and its distance from the escarpment, L, is limited to the question 

of whether the motion of the vortex patch is well approximated by a singular vortex as a /L  —»■ 0. 

Also L «  1, so that the vortex is close enough to the escarpment to interact with it.

5.2 A weak vortex patch

For a weak vortex, S  »  1, set e =  S -1  and rescale the time variable r  =  ei, so that the unit of 

time is Tw, the topographic wave time scale. Under this rescaling the equations (5.12a) and (5.12b) 

become

^  + + =  0, (5.17a)
n

a - p -  +  e J[Vs r0 -  r] =  0, (5.17b)
U T  r=ro

which express the fact that advection is O(e) on this time scale. In particular, for times r  e_1, 

deformation of the patch boundary, which is due to advection, is O(e). Thus, the parameter ro can 

be taken to be constant, at least on the topographic wave time scale Tw. In the following subsection 

the leading order solution to this problem is obtained by Fourier analysis.
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5.2.1 Leading order solution

For times T « e  *, ignoring the advection terms in (5.17a) and (5.17b) yields

dq dhB dip
+ =  0 ,dr dy dx

r0 =  a.

(5.18a)

(5.18b)

This implies that for times r  <  e-1  the singular part of the flow (i.e. the flow due to the vortex) is 

steady at its initial value ipo. The regular field (i.e. the secondary circulations) can be obtained by 

writing

ip =  ipo +  0. (5.19)

The magnitude of the regular field (p can be 0(1) or greater since S  1 is the magnitude of the 

relative vorticity, q, acquired by a fluid particle crossing the escarpment. Substituting this into 

(5.11), with ro (0 ,r) =  a for all r , leads to

q =  V20  -  0 .

Equation (5.18a) is then a forced topographic wave equation,

d a\ , dhB d(p dhB dipo

(5.20)

(5.21)

where for convenience the frame of reference is the inertial frame with the escarpment aligned along 

y = 0, i.e. hB(y) = sgn(t/)/2. This problem is very similar to the weak singular vortex problem 

of Chapter 4, and may be solved in precisely the same fashion. Matching the solution across the 

escarpment, as in section (4.1), the problem for (p is

V20 - 0  =  0

0 (3 , y, 0) =  0

V 0->  0

[0] =  0 

[0yr] "h 0x ~  — V’Ox

x 2 + y2 —> oo

y  =  0 

y  =  o.

(5.22a)

(5.22b)

(5.22c)

(5.22d)

(5.22e)

Apart from the additional factor of a half in the equation for the topography, this differs from the 

weak singular vortex problem only in the form of the forcing term ipQX in the right hand side of 

(5.22e). Since a circular vortex doesn’t contribute to its own drift, the advection of the vortex centre
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{xciVc) is due to the regular field, i.e. the vortex drift velocity components are

^  =  - e 0 J  (5.23a)dT ^V'x=xc,y=yc V >

—  = €<j>x I (5.23b)^  ^ t X \ X — X c ̂ y—y  c V )

Hence, for times up to r  =  0 (e_1), x c = 0(e) and yc = L  +  0(e), and the vortex term is, to leading 

order

0o =  0o { x , y -  L), (5.24)

on this time scale.

The leading order solution is obtained by standard Fourier analysis. Denote the Fourier transform 

of 0  by
/ OO

<j>e~ikxdx. (5.25)
-OO

In Fourier space (5.22a), (5.22c) and (5.22d) are

0i/y -  (fc2 +  1)0 — 0 > V 0, (5.26a)

0 -* 0 , y —y ±oo, (5.26b)

[^] =  0 , y = 0, (5.26c)

with solutions of the form

0 =  H (fc,r)e-vT O K  (5.27)

The matching condition (5.22e) together with the initial condition (5.22b) give the initial value 

problem for B ,

2\ A 2 +  1 B t — ikB  =  — i&0o|y=o (5.28a)

B(k,0)  =  0. (5.28b)

For L > a, so that no part of vortex patch crosses the escarpment2, the forcing term evaluated at 

the escarpment is,

j/>o(x, 0) =  a a h  (a)Ko((x2 + L 2)I/2). (5.29)

Making use of identity (4.30) the Fourier transform of this is

i>oU=o = (5.30)
V k 1 +  1

2This is consistent with the idea described in the introduction that the vortex has approached the escarpment from  
elsewhere. W ithout this assumption the Fourier transform of the forcing is more difficult.
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Substitution of this expression in (5.28a) gives

with solution

where

B t + iuB  = |L|VF+T (5>31)

B(k,  t ) =  VP+T (e~iwT -  l ) , (5.32)

a;  ------—, (5.33)
2v/F T T  V '

is the frequency of the topographic waves. Note the appearance of the factor of two in the denomi

nator of uj, which is due to the chosen form for the escarpment topography (5.4). The solution for

the regular field consists of a steady term and a topographic wave term,

0  =  000 + 0 («O, (5.34)

where

0 («) =  —aaIi(a)Ko ((x2 +  (|y| +  \L\)2)1/2^ , (5.35a)
rOO

0 (UJ) = aal \(a) /  A(k,y)  cos{kx — UT)dk, (5.35b)Jo
with

- Q y \  +  \ L \ ) y / & + i

A {k,y) = ------ 7=5= = ---- • (5.36)

The topographic wave term is identical with the topographic wave term for the weak singular vortex 

(4.38), with the exception of the factor before the integral. Immediately then it is apparent that 

the waves decay like r -1 / 3 at the wavefront, like r -1 / 2 in the wavetrain and importantly like r -1  at 

the ar-location of the vortex centre (see Chapter 4 for details). Figure (5.2) illustrates the decaying 

nature of the dispersive topographic waves.

The steady part of the solution, ipo +  (p̂ , is analogous to the pseudoimage of the weak singular 

vortex. For sgn(y) — — sgn(L), (i.e. across the escarpment from the vortex) the fluid is at rest. On 

the other hand for sgn(y) =  sgn(L), (on the same side of the escarpment as the vortex), the fluid 

behaves as if there were an equal and opposite circular patch of relative vorticity centred at (0, — L). 

On the fast topographic wave time scale, this pseudoimage remains circular to within values of 0(e).

The fact that both the wave term and the steady term in this solution are identical to the leading 

order solution for a singular vortex is to be expected, since the flow exterior to a  circular vortex
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shallow
deep

Figure 5.1: The initial condition for the present problem. A circular patch of uniform relative 
vorticity of radius a is initially located with its centre distance L  from the escarpment.
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Figure 5.2: The topographic wave term <f>̂  evaluated over y = 0 at times r  =  10 (solid line) and 
r  = 60 (dotted line). The parameter values used are a = 1, o =  1 and L  =  1.2.

103



patch is identical to that of a singular vortex. However, the vortex may deform for longer times and 

so the question as to whether the pseudoimage description is meaningful on the slow advective time 

scale is discussed below in the contour dynamics investigation.

The vortex drift velocity components as r  ->• 0, obtained from equations (5.23a) and (5.23b), via a 

leading order expansion of the solution (5.35a) and (5.35b) are

rOO
u = 0, v = eaali (a)r /  u>A(k, L)dk, (5.37)Jo

whilst as t  ->• oo, the advection of the vortex centre is solely due to the pseudoimage, giving

v = 0, u = eaaIi(a)Ki(2\L\)sgnL. (5.38)

The integral in (5.37) converges, since \A(k,y)\ < e~k , and is negative. Hence, for r  <  1 the 

vortex moves linearly in the ^-direction. Cyclones (a < 0) drift north and anticyclones (a: > 0) drift 

south, the same short-time behaviour as a weak singular vortex and the mechanism is precisely the 

same. Figure (5.3) shows the evolution of the regular solution, tp = (p^ +  <p(w  ̂ for a weak vortex 

patch. The initial response to the advection of fluid across the escarpment by the swirl velocity of 

the vortex is the establishment of a secondary dipole, seen in Figure (5.3a) which advects cyclones 

(resp. anticyclones) north (south). The dispersive topographic waves rapidly propagate away from 

the vortex, as in Figure (5.3b,c), and as r  —> oo only the solitary non-propagating disturbance (the 

pseudoimage) remains. The relative vorticity of the pseudoimage is 0 (e -1 ), and is precisely strong 

enough to advect the weak primary vortex as if the escarpment were a wall. Thus, the weak cyclones 

move east when located on the shallow (deep) side of the escarpment and anticyclones drift west 

(east) when located on the shallow (deep) side of the escarpment.

The results of this subsection could have been obtained by replacing the vortex patch by a singular 

vortex of strength

r  =  (5.39)

initially located at (0, L). That is, for as long as the linear theory is valid, the motion of a weak 

vortex patch is adequately modelled by the linear theory for a weak singular vortex. Formally, the 

linear theory is only valid on the topographic wave time scale, i.e. t  = O(e). Further analysis is 

possible if the vortex patch is assumed to remain circular for times t = 0(1). Such an approach 

is reasonable for o < I ,  but amounts to little more than modelling the vortex patch by a singular 

vortex. Since the effect of vortex shape changes is of particular interest in the present study, the
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Figure 5.3: The advection of the vortex, here an anticyclone, by the regular field, (a) evaluation of 
(f> at r  = 0+ . Note the initial advection is south, along the dipole axis, (b) (f> evaluated at r  =  4 
and (c) evaluated at r  =  7, from equation (5.34), (d) is the pseudoimage term, the regular field as 
r  oo. The vortex is shown by the circle and its centre by the dot. The parameter values used are 
a = 1, a = — 1 and L = 1.2.
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large time behaviour is examined numerically by contour dynamics in the following subsection.

5.2.2 Contour dynamics results

In Chapter 4 it was shown that linear theory described the evolution of a weak singular vortex 

for many eddy turnover times, far beyond the formal time of the applicability of the theory. This 

leads to the main question of this section: does the pseudoimage of the linear theory describe the 

evolution of the weak vortex patch for times t > 0(1)? That is, does the weak vortex patch near an 

escarpment evolve as if the escarpment were a wall? The problem of the motion of a vortex patch 

near a wall is itself difficult; the changing vortex shape due to interaction with its image has to 

be tackled numerically3. The plots of the evolution of a vortex patch near a wall presented below 

were obtained by contour dynamics, and are used for comparison with the vortex shape changes 

for a vortex patch near an escarpment. The vortex drift is compared with the velocity predicted 

by the singular vortex linear theory, i.e. with the drift predicted by (5.38). Two further issues are 

considered in detail. First, the effect of topographic wave radiation on the shape of a west travelling 

vortex patch is discussed. Second, the hypothesis that the singular vortex linear theory is more 

accurate for smaller vortex patches is considered.

Following the observation in Chapter 4 that the governing equation (5.1) is invariant under the 

transformation

y) - ip(x, -y ) ,  (5.40)

attention is restricted to the case L  > 0, i.e. the vortex is initially located on the shallow side of 

the escarpment. The evolution of a vortex on the deep side can then be deduced by symmetry. The 

cases of an anticyclone and a cyclone are treated separately.

A n ticyclon es

Figures (5.4), (5.5) and (5.6) show comparisons between the evolution of an anticyclonic vortex patch 

near an escarpment with that of an equivalent anticyclonic vortex patch near a wall, for e =  0 .1, 0.2 

and 0.4 repectively. In each case a  =  1, a — 1 and L — 1.2. The patch near the escarpment is 

shown in the solid line, and its centroid by a cross. The evolving patch near a wall, also computed

by contour dynamics, is shown by the dashed line and its centroid by a dot.

3There are a class of steadily propagating solutions, the so-called V-states, o f Pierrehumbert (1980). In the 
term inology of the present work these are circular for a L and approach the singular vortex solution in the limit 
djh —>■ 0.

106



1=3 t=6 t=10
4

2

0

■2

-4
-4 -2 0 2 4

4

2

0

-2

-4
42-2 0-4

4

2

0

-2

-2 0 2 4-4

1=13 t=16 t=20
4

2

0

-2

-4 2 4>2 0-4

4

2

0

-2

-4
•2 0 2-4 4

4

2

0

-2

-4
-2 0 2-4 4

1=23 t=26 1=30
4

2

0

-2

-4 2 4-2 0-4

4

2

0

-2

-4 0 2-4 -2 4

4

2

0

-2

-4
-2 2-4 0 4

Figure 5.4: Comparison of the evolution of a vortex patch near an escarpment (solid line) with that 
of a vortex patch near a wall (dashed line). The centroid locations are shown by a cross (escarpment) 
and a dot (wall), and the parameter values used are a = 1 (anticyclone), a — 1, L = 1.2 and e =  0.1.
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Figure 5.5: As Figure (5.4) except e =  0 .2 .
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Figure 5.6: As Figure (5.4) except e = 0.4.
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In Figure (5.4) it is clear that the weak vortex patch evolves almost precisely in the sense if its 

pseudoimage as e -» 0. Both the patch boundary and the centroid are practically coincident with 

those of the patch evolving near a wall. For e =  0.05 (not shown) the two patches are coincident 

at the resolution of the plot. This feature is robust, the calculation proceeding to 30 eddy turnover 

times without any significant deviation. The computation was stopped at t = 30 due to large 

distortions near the left end of the topographic contour, here located at x = —15.

Figure (5.5) shows the evolution of the contours for e =  0 .2. There are some small deviations 

in the vortex boundary, compared with the pseudoimage prediction, and the beginning of some 

filamentation. This process is more clear in Figure (5.6), which shows the contour evolution for e — 

0.4. Whilst, the centroid location is still well predicted by the pseudoimage theory, the filamentation 

of the patch boundary, and its deformation from the shape predicted by the pseudoimage theory is 

clear. At later times the vortex patch is ripped apart. To understand this process it is useful to 

consider the evolution of the topographic contour.

Figure (5.7) shows a close up of the contour which initially lay over the escarpment, for e =  0.1. 

The west travelling dispersive waves are clearly evident, as is the nondispersive disturbance (the 

pseudoimage), which travels with the vortex in its evolution. As for the singular vortex, this non

dispersive part of the topographic wave train consists of cyclonic relative vorticity, and in the limit 

e -> 0 its circulation has precisely the correct magnitude to advect the vortex in the sense of its 

image in the escarpment.

Next, consider Figure (5.8), which shows the topographic waves for e =  0.4. Initially, the pseu

doimage dominates the motion, and the vortex evolves according to the pseudoimage description. 

However, at later times topographic waves are radiated in the wake of the pseudoimage. The plot 

shows clearly that the circulation associated with the relative vorticity of the radiated waves is 

strong enough to attract the vortex boundary into the wave train. Consequently the relatively weak 

anticyclone is eroded as a result of wave radiation.

To compare the drift of the anticyclonic patches with the singular vortex model, consider Figure(5.9), 

which shows the drift of an anticyclone for values of e =  0.1, 0 .2, and 0.4. The linear singular vortex 

prediction (5.38) is in good agreement with the contour dynamics results for the ^-velocity, and 

the agreement improves as e 0, as is shown in Figure(5.9a). The net drift in the y-direction is
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Figure 5.7: A close-up of the evolution of the topographic contour, for an anticyclone. The parameter 
values used are a = 1, L = 1.2 and e =  0.1.
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small, as can be seen from the scale of the y ordinate in Figure(5.9b) but nonetheless increases with 

e as topographic wave radiation induces escarpment-ward meridional drift, in addition to vortex 

filamentation. The singular vortex prediction improves with smaller o, at fixed L, as can be seen 

in Figure(5.10), which is identical with Figure(5.9), except that a =  0.25, i.e. the vortex is small 

compared with the Rossby radius. The contour plots (not shown) indicate that for the small vortices 

the vortex shape remains approximately circular.
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Figure 5.9: Comparison of the drift of the weak anticyclones with the singular vortex prediction. 
The analytic prediction given in equation (5.38) is shown by the solid line. The parameter values 
used are a = 1, L = 1.2 and e =  0.1 (dotted line), e =  0.2 (dashed line) and e =  0.4 (dot-dashed 
line). The a;-velocity is shown in (a) and the centroid trajectories in (b).
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C yclones

Figures (5.11)-(5.13) show comparisons between the evolution of a cyclonic vortex patch near an 

escarpment with that of an equivalent vortex patch near a wall. The parameter values are e =  0.1, 0.2 

and 0.4 as in the case of an anticyclone presented previously. Once again in each case a = 1, a =  1 

and L = 1.2. The patch near the escarpment is shown in the solid line, and its centroid by a cross. 

The evolving patch near a wall, is shown by the dashed line and its centroid by a dot.

For e =  0.1, shown in Figure (5.11) it it can be seen that the linear pseudoimage description of 

the vortex evolution is in excellent agreement with the contour dynamics results. For e =  0.05 (not 

shown) the boundary of the vortex patch near an escarpment is coincident with the boundary of a 

vortex patch near a  wall to within the resolution of the plot.

However, for e =  0 .2 , shown in Figure (5.12) it can be seen that the pseudoimage description is 

good for about 20 eddy turnover times, but then begins to breakdown. By t = 30 neither the vortex 

patch boundary, or its centroid are accurately predicted by the pseudoimage theory. This is in 

contrast to the anticyclone for the same parameter values, where the linear theory still describes the 

vortex evolution well. The failure of the linear theory becomes even more pronounced for e =  0.4, 

shown in Figure (5.13), where it can be seen that the contour evolution differs significantly from 

the pseudoimage prediction. The linear description of the vortex patch evolution is less robust for 

cyclones than anticyclones.

To understand the difference between the cases of anticyclones and cyclones, consider the close 

ups of the topographic contour evolution for e =  0.1 and 0.4, shown in Figures (5.14) and (5.15) 

respectively. In the case e =  0.1, the dispersive topographic waves propagate away from the vortex. 

Also note the nondispersive disturbance (the pseudoimage), travelling with the vortex. This patch 

consists of fluid which has crossed the escarpment from the deep side to the shallow side, thus gaining 

cyclonic relative vorticity. In the limit e —> 0 the circulation of the pseudoimage is of precisely the 

correct magnitude to act as an image of the vortex in the escarpment. The weak circulation of the 

vortex is dominated by the strong cyclonic pseudoimage.

For the case e =  0.4, the initial displacement of the topographic contour is greater, as the circulation 

of the vortex patch is stronger. The pseudoimage is closer to the vortex that in the case of an 

anticyclone. The initial disturbance of the contour “wants” to disperse to the west, in the form of
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Figure 5.11: Comparison of the evolution of a vortex patch near an escarpment (solid line) with that 
of a vortex patch near a wall (dashed line). The centroid locations are shown by a cross (escarpment) 
and a dot (wall), and the parameter values used are a — 1 (cyclone), a =  1, L — 1.2 and e =  0.1.
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topographic waves. This tendency is counteracted by the increased swirl velocity of the primary 

vortex, which acts to advect the disturbance to the east. The result of these competing tendencies is 

a build up of anticyclonic vorticity near the primary vortex, and this accumulation has a significant 

effect on both the deformation of the vortex shape and its drift velocity. This doesn’t happen for an 

anticyclone, since in that case the swirl velocity associated with the vortex pushes fluid in the same 

direction as the topographic waves, and so there is no local build up of relative vorticity near the 

vortex.

Figure (5.16) shows a comparison of the vortex drift with the linear singular vortex prediction given 

in (5.38). Note the initial northward motion, consistent with the initial dipole formed by advection 

of fluid across the escarpment. The eastward drift is well described by the analytical prediction for 

30 eddy turnover times and beyond for e < 0.2. However, for e =  0.4, the zonal drift speed exceeds 

that predicted by the linear theory. Moreover the meridional drift is significant for e =  0.4.

Finally, consider Figure (5.17), which shows the drift of a small (a =  0.25) cyclone, compared to the 

linear singular vortex prediction, for various values of e. As for the case of anticyclones the singular 

vortex approximation is more accurate for smaller vortices. However, note that for e =  0.4 both the 

zonal and meridional drift differs significantly from the theory.

5.2.3 Discussion

It has been shown that as e ->■ 0 the vortex patch evolution is described by the pseudoimage for many 

eddy turnover times. This statement holds for both cyclones and anticyclones. It has been shown 

that the vortex patch boundary deformation is accurately predicted by the pseudoimage theory 

by comparison with an equivalent vortex near a wall. Moreover, the vortex patch drift velocity is 

equally well described by the linear singular vortex approximation given in equation (5.38), and this 

agreement improves for a/L  ->■ 0.

Wave radiation for the west propagating anticyclones appears insignificant for small e. This is be 

expected, given the singular vortex results in the previous Chapter. It was shown that wave induced 

drift is 0 (e -1/ e), (see equation (4.93)), for a weak singular vortex, which is a result of the vortex 

travelling at the topographic short wave velocity. The same is true in the present case, and since the 

short waves are least energetic it is reasonable that the effects of wave radiation are not evident for
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Figure 5.16: Comparison of the drift of the weak cyclones with the singular vortex prediction. The 
analytic prediction given in equation (5.38) is shown by the solid line. The parameter values used 
are a =  1, L = 1.2 and e =  0.1 (dotted line), e =  0.2 (dashed line) and e =  0.4 (dot-dashed line). 
The a;-velocity is shown in (a) and the paths in (b).
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the times of the runs given. For larger values of e it has been shown that wave radiation is significant 

and causes enhanced escarpment-ward. It is worth highlighting that the singular weak anticyclone is 

unable to change its shape, and for values of e comparable to those discussed here, the weak singular 

anticyclone responds to wave radiation through meridional drift only. The anticyclonic vortex patch, 

on the other hand, decays via stripping. This stripping is due in part to wave radiation, but this 

type of vortex filamentation is associated with the local shear in the flow.

The linear theory is less robust for cyclonic vortex patches, and breaks down for e «  0.2. Nonlinear 

effects are far more significant for cyclones than anticyclones, and is due to the circulation of the 

vortex competing with the preferential direction of propagation of the topographic waves. The 

circulation of the vortex patch induces a secondary anticyclonic circulation in its vicinity, and the 

dipolar nature of this structure causes a northeastward drift of the primary vortex. It is shown later 

that for moderate cyclones the dipole formation is characteristic of the motion and dominates the 

drift of the primary vortex.

Linear theory, and in particular the linear singular vortex approximation to the vortex patch evo

lution, describes well the drift of the vortex centroid for e —>• 0, for both anticyclones and cyclones. 

The linear singular vortex approximation improves with decreasing vortex patch size.

Finally, note that there is no /3-plane analogy for the evolution of a weak vortex patch near an 

escarpment; the pseudoimage description is an artefact of the discontinuous topographic gradient, 

and weak vortices near an escarpment are long lived, by comparison with weak vortices on the (3- 

plane, which drift west, regardless of the sense of the circulation, and which decay rapidly as the 

result of Rossby wave radiation. The figures of Lam and Dritschel (1998) illustrate this process 

well.

5.3 An intense vortex patch

In the case of an intense vortex, 5  -C 1 is a small parameter. To reformulate the problem note that

the secondary circulations scale like 5, and seek a solution to (5.12a) and (5.12b) in the form

ip{r,0,t) = ^o(r) +  50i +  ..., (5.41a)

q = Sqi +  S 2q2 +  ..., (5.41b)

125



r 0 =  a +  S ri +  ..., (5.41c)

(u,t/) =  S(ui, !*) +  ..., (5.41d)

The initial conditions (5.16a)-(5.16d) become, for the leading order quantities,

</>i =  Qi = f*i =  ui = v\ = 0, t = 0 (5-42)

The leading order solution, obtained below is valid for t < 0 (S -1 ).

5.3.1 Leading order solution

Substitution of (5.41b) into (5.12a) gives the initial-value problem for the leading order vorticity 

correction,

8 qi dqi dhB \
- m + b ir)W  = - b{r)- d F ’ (5'43a)

qi{r,9,t) = 0. (5.43b)

Hence changes in the leading order vorticity correction, qi are due to the advection of the ambient 

potential vorticity and qi itself by the axisymmetric circulation of the primary vortex. Equation 

(5.43a) is easily solved by the method of characteristics. The complimentary function is

qi = qi (0 -  b(r)t, r ) , (5.44)

and the particular integral is

p(r, 6 ) = -  isg n (r  sin 0 +  yc), (5.45)

since h s  = sgn(rsin0 +  yc) / 2 in the moving polar coordinate frame. The initial condition (5.43b) 

leads to

qi (r, 6 ) =  ^sgn(r sin(^ -  b{r)t) +  L), (5.46)

so that the solution for the leading order vorticity correction is

Qi = \  [sgn(r sin(0 -  bt) + L) -  sgn(r sin 6 +  2/c)] . (5.47)

Apart from the additional factor of 1/2 (due to the particular choice of representation for the 

escarpment topography), this is formally the same as the leading order vorticity correction obtained 

by McDonald (1998) in the case of an intense singular vortex near an escarpment, differing only in 

the form of the angular velocity b(r). The reason that this is the case is discussed below.
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The equations governing the next order quantities are

V20i ~ 0i =  Qi (r > *) (5.48a)

+  +  wiacos^ +  via sin 6 =  0 (5.48b)
ut UU U\7

I

27T

n (d , t)e ied9 = 0 (5.48c)

+  = ~ J ^>1 +  UlV ~ VlX' qi  ̂~  (5.48d)

The piecewise continuous form of the vorticity correction, (ft, appearing as a forcing term in the 

equation for the streamfunction correction 0i in (5.48a), inhibits progress. To proceed, it is assumed 

that the response for short times is dominated by azimuthal mode-1, since, according to equation 

(5.48b), the leading order vortex drift velocity components (ui,?ft) are controlled by this dipolar 

mode. This is analogous to the motion of an intense vortex on the /3-plane where the mode-1 

component is termed the /3-gyres. See Chapter 3 for a review of results for vortex motion on the 

/3-plane.

First, writing

ri (3, t) =  (t) sin 9 -I- r[ĉ  (£) cos 3, (5.49)

and substituting into (5.48c), leads to

ri =  0, (5.50)

i.e. the patch boundary remains circular to this order of approximation.

It is straightforward to obtain the azimuthal mode-1 Fourier coefficients for qi . The derivation is 

given in Appendix A, and the result is quoted here,

(ft =  q[8̂ (r, t) sin 3 + q[ĉ  (r, t) cos 3, (5.51)

where

_  — yjr2 — L 2(cosbt — 1), r > \L\ (5.52a)
7rr

q*f* = -  —  y/r2 — L 2 sin bt, r > \L\ (5.52b)
7rr

and, importantly

9<c> =  9{*> =  0, r  < |L|. (5.53)

In obtaining this approximation it has been assumed that yc = L  + 0 (5 ). Details can be found in

Appendix A. This cut-off at r  =  \L\ implies that there is no secondary relative vorticity production
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near the vortex, at least for short time, and will become apparent later in the contour dynamics 

investigation. The deflected topographic contour remains isolated from the vortex boundary, due to

the dominance of the strong azimuthal circulation of the intense vortex. Note however, that qi is

continuous at r = \L\.

Next, seeking a solution to (5.48a) in the form

0i (r, 0,t) = 0i^ (r, t) sin 6 +  0 ^  (r, t) cos 3, (5.54)

leads to

( £  + ^ - ( ^  + 1 ) ) ^  = ^ .  (5-55)

where the superscript (v) can be either (s) or (c) for the sin or cos components respectively. The 

Greens function for the operator in the right hand side of (5.55), which is regular at the origin is 

well known (see e.g. Sutyrin and Flierl (1994) or Lam and Dritschel (1998)) and is

■=<«-{ :£$£!; : t :  «
so that

rO O

0i*/) =  /  G(r\p)q[u)dp, (5.57)
Jo

or, rather less appealing,
/  pO O

~ h  (r) /  pq[v) (p, t)Ki (p)dp, r  < \L\
J \L\

(5.58)
/ o o  p r

pq[v) (p, t)Ki  (p)dp -  K i  (r) /  pq[v) (p, t)11 (p)dp, r > \L\
r  J \L\

Note that the solution is continuous on r  =  |L|. Now, according to (5.50), equation (5.48b) becomes

^^■(o,3, t ) +  uiocos3 +  t>iasin3 =  0. (5.59)
0(7

4kr) =  •!

But,

in turn implying that

=  <f>[8̂ cos 3 — 0 ^  sin 3, (5.60)
0(7

u\a  =  -<j)[8\ a ,  t) (5.61a)

via = <f>[c\a , t ) .  (5.61b)

As for the weak vortex patch the constraint a < \L\ is adopted, for which the vortex drift velocity 

components are

o  rO O

ui =  — 7i(a) /  (cosbt — l )K i{ r ) \ f r ^ ^ L ? d r ,  (5.62a)
TTO J\L |
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2
Vi = —

7 T O  J  | L |
Ji(a) [°° s i n b t K ^ y / r 2 -  L 2dr. (5.62b)

•/ ILI

These are the same expressions obtained by McDonald (1998) for an intense singular vortex near 

an escarpment (cf equations (4.96a,b)), except for the constant multiplying the integrals, and the 

particular form for the vortex angular velocity b(r). Moreover, as a —>• 0, I\{a)/a  —>■ 1/2, so the

singular vortex drift velocity components are recovered from (5.62a) and (5.62b) in this limit.

The asymptotic behaviour of the integrals is derived in Appendix B and is quoted here. As t  -» 0,

A a 2t2 .
Ul a  ( 5

01 M (5.63b)

where A  and B  are positive constants which depend on L. For t~S> 1 but less than 0 ( 5 _1)

Ul ,s +  (5.64a)

Oi fts 0 ^ ! ^ " )  (5.64b)

Since sgnv = —sgna and sgnu =  — 1 in (5.63a,b), it is apparent that for small times anticyclones 

(a > 0) move south and west, whilst cyclones (a < 0) move north and west. Equations (5.64a,b) 

indicate that after the initial meridional acceleration there is a slow decay in the meridional velocity. 

The zonal drift approaches the steady westward speed of 2SIi(a) exp(—|L|)/2a. These features 

are clear in Figure (5.18), which shows plots of the drift velocity components, and the centroid 

trajectory for a cyclone with a — 1 (solid line) and a = 0.5 (dotted line). Note that the smaller 

vortex experiences increased meridional drift and decreased zonal drift.

This behaviour is qualitatively that of an intense vortex on the /9-plane4. The mechanism for this

behaviour is illustrated in Figure (5.19), which shows the evolution of the streamlines calculated

from (5.58). Initially the vortex (here a cyclone) pushes fluid columns lying to its west (resp.

east) from the shallow (deep) side of the escarpment to the deep (shallow) side. Potential vorticity

conservation demands that these fluid columns acquire net cyclonic (anticyclonic) relative vorticity.

This secondary dipole is initially symmetric about x = 0, as can be seen in Figure (5.19a), and

results in an initial northwards drift of the cyclone. At later times, Figures (5.19b,c) the strong

cyclonic circulation of the vortex rotates the secondary dipole anticlockwise, which results in the

vortex following the curved northwest trajectory. At large times, Figure (5.19d), the flow in the

vicinity of the vortex approaches a uniform westward stream.
4And indeed of an intense singular vortex near an escarpment.
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Figure 5.18: The drift of an intense vortex patch near an escarpment, (a) is a plot of the zonal drift 
velocity, (b) is a  plot of the meridional drift velocity and (c) is a plot of the trajectory of the vortex 
centroid. The parameter values use are L  =  1.2, a  =  — 1 (i.e. a cyclone), and a = 1 (solid line) and 
a = 0.5 (dashed line). See text for further comments
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Figure 5.19: Plots of the streamlines for the leading order solution, evaluated numerically by equa
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The flow near the dipole axis is approximately uniform, and this can be seen from the large time 

asymptotics for fa (see Appendix B for details). The residual flow faea is

(pre8 = 0! +  U\T sin # — ViV cos #

— [<Aî (r^ )  — ~ 0 i^ (a >O] sin# +  | ^ c)(r,£) — ^ 0 ^ (a ,£ ) j  cos#. (5.65)

The coefficients of sin# and cos# are plotted in Figure (5.20) at times t = 20 and t = 100. Note that 

in some region near the vortex the residual flow practically vanishes. This can also be seen from 

the asymptotics of fae8. As t -> oo and for r  < \L\ the results of Appendix B imply that near the 

vortex,

fa e8 «  2/i(r) — 2 exp( - | L| ) s i n# +  0  ^  . (5.66)

The coefficient of sin# is small in practice. For example, for a =  1 and L = 1.2, the maximum 

modulus of fa e8 in the interval 0 < r  < |L| is approximately 0.021. Apart from explaining the leading 

order behaviour these asymptotic results reveal some of the features of the long time evolution of 

the vortex.

First, consider equation (5.48d) describing the evolution of the second order vorticity correction q^. 

According to equations (5.52a,b) the spatial derivatives of q\ grow with time (the first Jacobian 

term in the left hand side). However, the exponentially decreasing nature of the angular velocity 

far) implies that the region of most rapid growth of qi occurs near the vortex centre. The smallness 

of the residual flow fa e8 compensates for this growth and the first Jacobian term in the right hand 

side of (5.48d) grows slowly. Similarly the spatial derivatives of fa are slow to grow, implying in 

turn that the second Jacobian term in the right hand side of (5.48d) also grows slowly. The right 

hand side of (5.48d) multiplied by S 2 is the remainder obtained when substituting the leading order 

solution fa  +  Sfa  into the governing equation (5.8). This fact, together with slow growth of the 

second order vorticity correction q-i means that the leading order solution fa  +  Sfa  may describe 

the vortex evolution beyond t =  0 (S -1 ).

Near the vortex centre, the solution fa + Sfa  tends to

0oo =  fa  (((z +  S u i t )2 +  y2)1/2 ĵ + Suiy.  (5.67)

In obtaining this solution the approximation I\ (r) «  r /2  for sufficiently small r has been used5. 

Reznik and Grimshaw (1998) obtained a similar result for the leading order solution for an intense

’In practice h ( r )  »  r /2  even for r =  2.
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Figure 5.20: The coefficients of sin# and cos# in equation (5.65) : (a) the coefficient of sin# and (b) 
the coefficient of cos#. The parameters used are L = 1.2, a =  1 and a  = — 1 at times t = 20 (solid 
line), t  — 100 (dotted line) and t = 200 (dashed line).
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/3-plane vortex. There is however a crucial difference with the present case. The steadily propagating 

vortex on the /3-plane has westward drift velocity that precisely matches the Rossby long wave phase 

speed. The solution analogous to tpoo is then an exact solution of the governing equation, and the 

authors are justified in saying that the nonlinearity “kills the /3-effect”, and the vortex adopts a 

non-radiating state. In the present case (5.67) is not a solution of (5.12a). Moreover the vortex 

always travels with westward drift velocity of magnitude less than unity, i.e. at a velocity matching 

a possible phase speed of the topographic waves. Wave radiation must become important at large 

times. The large time behaviour is investigated by contour dynamics in the following subsection.

5.3.2 Contour dynamics results

There are two considerations made in the contour dynamics investigations for the intense vortex 

patch. First, the accuracy of the leading order solution in describing the vortex trajectory is con

sidered. Second, changes in the vortex shape due to topographic wave radiation is of interest.

Figure (5.21) shows the trajectory of an anticyclone, with a = 1, L = 1.2 and for 5  =  0.05, 0.1 

and 0.2. The displacement of the vortex centroid divided by 5  is plotted to enable comparison with 

the analytic prediction. The analytic prediction, shown by the solid line is calculated by fourth 

order Runge-Kutta and numerical integration of (5.62a,b). As S  is decreased it is evident that 

the centroid trajectories obtained by contour dynamics approach the theoretical prediction. Note 

that the contour dynamics trajectories are displaced further to the west than the theory predict, 

and this feature is enhanced as 5  is increased. This is to be expected, since an anticyclone moves 

southward, i.e. towards the escarpment, and, since the westward drift increases exponentially as 

|L| decreases. This feature is not captured by the theory, where |L| is assumed to be constant for 

t < 0 (S -1 ). Figure (5.22) shows a similar plot for the trajectory of a cyclone produced by contour 

dynamics simulations. In this case the numerical calculations produce centroid trajectories which 

axe less displaced in the y-direction than the theory predicts. Again, this is expected since cyclones 

move away from the escarpment, in turn implying that the magnitude of the along-escarpment 

velocity decreases. Finally, note in both the cases of an anticyclone and a cyclone, the trajectory 

for S  = 0.05 has a slight ‘bump’ in comparison with the analytic trajectory. This is likely to be due 

to the assumption that the vortex remains circular.

The evolution of the contours for S  = 0.1 are shown in Figures (5.23) and (5.24) for the case of an
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Figure 5.21: The trajectory of the vortex centroid for various values of S, for 0 < t <  30. The 
parameter values used are a = 1, L  =  1.2 and a  =  1, i.e. anticyclones. The analytical prediction 
(5.62a,b) is shown by the solid line and the contour dynamics results by the dotted line (S  — 0.01), 
dashed line (S  = 0.1) and dot-dashed line (S  = 0.2).
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Figure 5.22: As Figure (5.21) except here a = — 1, i.e. cyclones.
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anticyclone and a cyclone respectively. Note that the vortex shape remains approximately circular, 

even up to time t = 180. The slight deviation of the patch from circular accounts for the error in the 

prediction of the vortex trajectory. Importantly the vortex remains an isolated coherent structure, 

and there is little evidence that wave radiation distorts the vortex even on long time scales.

The flow for the intense vortex patch is characterised by a strong axisymmetrisation of the flow near 

the vortex. In the language of Lam and Dritschel (1998) this tendency defines a “trapped region” , 

which accompanies the vortex in its evolution. Also note, at large times there is a “trailing eddy” in 

the wake of the vortex. For the cyclone this eddy consists of fluid which has crossed the escarpment 

from the deep to the shallow side, and thus consists of anticyclonic relative vorticity. Similarly, the 

trailing eddy in the case of the anticyclone consists of fluid with cyclonic relative vorticity.

Figure (5.25) shows the trajectories of a cyclone and an anticyclone with equal magnitudes, for S  = 

0.1 (solid lines), 0.2 (dotted lines), and for 0 < t < 180. First note that the anticyclones experience 

further zonal drift than the cyclones. This is simply a consequence of them being closer to the 

topography and thus more susceptible to the effects of relative vorticity generation as fluid columns 

cross the escarpment. Second, both cyclones and anticyclones experience enhanced meridional drift 

as S  increases.

Figures (5.26) and (5.27) show the contour evolution for S  = 0.2 for an anticyclone and a cyclone 

respectively. At this parameter value, there is a marked difference between the behaviour of vortices 

of different signs. In the case of an anticyclone there is still strong wrapping of the topographic 

contour. The vortex drifts toward the escarpment, and at large times dipole formations is evident. 

In contrast, the cyclone doesn’t wrap the topographic contour so strongly, and the dipole formation 

is apparent at earlier times. The vortex drifts away from the escarpment, accounting for the weaker 

interaction of the vortex with the topographic contour.

5.3.3 Discussion

It has been shown that for times up to t = 30 the analytic results for the drift of an intense vortex 

patch near an escarpment predict very well the drift produced by contour dynamics experiments. 

This agreement improves as S  -> 0. The large time results produced by contour dynamics simulations 

reveal two important facts. The first is that the intense vortex patch remains approximately circular
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Figure 5.23: The contour evolution for an intense anticyclone (c* =  1). The parameter values used 
are a = 1, L = 1.2 and S  = 0.1.
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Figure 5.24: As Figure (5.23), except a = —1, i.e. a cyclone.

139



1.5

1.0

0.5

cc ■**-*
j '
•w'

0.0

-0.5

-1.0
02

x/S

Figure 5.25: Contour dynamics trajectories for 0 < t <  180. The parameter values used are a = 1, 
L = 1.2 and 0.2 (dotted line) and S  =  0.1 (solid line). The cyclones are northwest moving and the 
anticyclones are southwest moving.
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Figure 5.26: The contour evolution for a near-intense anticyclone (a =  1). The parameter values 
used are a = 1, L  =  1.2 and S  = 0.2. The plots shown axis scaling —8 < x < 2  and — 5 < y < 5.
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for many eddy turnover times. The second is that the meridional drift of the intense vortices increases 

with 5. These two statements hold for both intense cyclones and intense anticyclones.

Why does the vortex remain circular for the large times in the contour dynamics runs presented 

here? For short times azimuthal mode-1 dominates the flow, and it was shown in the theory that 

this mode has no leading order effect on the vortex shape. However, it is expected that, at large 

times, the distortion of the vortex might be significant due to the interaction of higher order normal 

modes and/or topographic wave radiation. The reason that this does not occur is the existence of 

the “trapped zone” around the vortex periphery. In the present case a  small trapped zone exists 

from the outset of the motion, and is described by the theory. Specifically, equation (5.53) indicates 

that, to leading order, there is no production of relative vorticity in the annulus of radius |L| around 

the periphery of the vortex. This feature is apparent in the contour dynamics plots for the intense 

vortex patches, where the topographic contour is isolated from the vortex periphery. In the region 

r <\L\  the strong axisymmetric swirl of the vortex dominates the motion.

However, it is evident from Figures (5.23) and(5.24) that the trapped zone is larger than |L| at large 

times. This feature can also be predicted from the theory. Consider equation (5.48d), which can be 

rewritten as

^  +  b(r) ^  =  F(r, t) +  G «  (r, t) sin 29 +  G<c> (r, t) cos 29, (5.68)
ot oa

where F  and depend on (f>[v\  U\ and Vi, and contain ^-functions from the second Jacobian term 

in (5.23). Specifically, the second order vorticity correction consists of an axisymmetric component 

and a quadrupole component. In the study of Reznik and Grimshaw (1998), it was found that 

the axisymmetric part of the second order vorticity correction for an intense vortex patch on the 

/3-plane fills a growing region near the vortex centre, whilst the quadrupole component decays with 

time. This results in a region of axisymmetric flow, the size of which grows in time near the vortex 

centre, and the differential rotation, due to relative vorticity production, in the growing annulus 

around the vortex, serves to preserve the circular shape of the vortex. The trapped region for 

the /3-plane vortices has been well-described by Lam and Dritschel (1998). In the present case the 

contour dynamics simulations indicate that a trapped zone develops in the region r  < rdiv say, where 

I'div > |L|. Figure (5.20) offers evidence that the trapped zone grows with time, with the further 

effect of shielding the primary vortex from radiated topographic waves.

In addition to the trapped zone, the contour dynamics simulations show the existence of a “trailing
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eddy”, which is of opposite sign to the primary vortex. The trailing eddy is in fact a part of the 

radiated topographic wave train. The strength of the trailing eddy increases with S, and enhances 

meridional motion in the primary vortex. For small values of S  the trailing eddy is very weak, and 

is shielded from the vortex by the trapped zone. As S  increases, the strength of the trailing eddy 

increases, and the size of the trapped zone appears to decrease. Hence weaker vortices experience 

greater meridional displacements. Distortion of the vortex shape is also greater for larger S', since 

the trapped zone is less able to shield the primary vortex from the trailing eddy.

The final point to make in this discussion regards the ability of the singular vortex to describe well 

the trajectory of the vortex centre. This is a simple consequence of the Bessel function structure 

of the vortex patch, and the assumption made throughout that a < \L\. The swirl velocity of the 

vortex patch at the escarpment is then proportional to K i(r ) / r , i.e. is the same as for a singular 

vortex. Moreover there is no relative vorticity production inside the annulus r  < |L|, and the circular 

structure of the vortex swirl velocity is preserved inside this annulus. In short, in the region r  > |T|, 

the flow “sees” the vortex patch as a singular vortex. Although it was not made explicit in McDonald 

(1998), it is the case that for the intense singular vortex there is also no relative vorticty production 

inside r < \L\. Hence, as fax as the topographic contour is concerned, the vortex patch, so long as 

it remains circular, may as well be a  singular vortex.

5.4 Contour dynamics investigations for 5 ^ 1

To complete the investigation of the evolution of a vortex patch near an escarpment, this section 

considers contour dynamics results for the case 5  «  1, i.e. a moderate intensity vortex. For brevity 

results axe presented for three particular parameter values: S  = 2 (a moderately weak vortex), 

S  = 1 (a moderate vortex) and S  — 0.5 (a moderately intense vortex). As for the weak and intense 

limits described above the discussion is further limited to vortices located on the shallow side of the 

escarpment; the analogous results for vortices situated on the deep side of the escarpment may be 

obtained via the transformation (5.40).

There are three main questions under consideration. First, are there any qualitative general state

ments that can be made regarding the vortex evolution? In particular, the long time drift of the 

vortex is investigated. Second, what physical mechanisms govern the processes of the vortex evolu
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tion? Third, under what conditions does a singular vortex representation describe the evolution of 

the vortex patch?

5.4.1 Anticyclones

Figure (5.28) shows the trajectories of the centroid for the moderate anticyclones. The moderately 

weak (5 =  2) anticyclone undergoes predominantly zonal motion, but the escarpment-ward drift 

is greater than that seen for the weak anticyclones. The moderate (5 =  1) anticyclone undergoes 

the greatest meridional drift, crosses the escarpment and begins to turn east at later times. The 

moderately strong (S  = 0.5) anticyclone follows a generally southwestward trajectory, similar to an 

intense anticyclone.

Figures (5.29), (5.30) and (5.31) show the contour evolution for the cases S  = 2, 1 and 0.5 re

spectively. At early times the moderately weak anticyclone appears to move in the sense of its 

pseudoimage. However, the radiated topographic waves begin to cause the patch to filament. By 

t = 36 a substantial part of the vortex has been entrained into the topographic waves, and patch 

distortion is significant. The vortex also drifts towards the escarpment, and at later times it is 

destroyed by topographic wave radiation.

This behaviour is also demonstrated by the moderate (5 =  1) anticyclone, but happens from the 

outset of the motion. The vortex is rapidly distorted and the trailing cyclonic relative voticity 

induces significant meridional drift of the vortex. By t = 54 the vortex has ceased to exist as a 

coherent structure, and has merged with the topographic contour.

The moderately strong anticyclone is less susceptible to wave radiation. The trailing cyclonic eddy 

causes escarpment-ward drift of the vortex, but the vortex remains a relatively coherent structure. 

At later times a dipole has formed, and this dipole continues the general southwest migration.

5.4.2 Cyclones

Figure (5.32) shows the trajectories of the centroid for the moderate cyclones. In all cases a  northeast 

drift is observed. For the moderately strong cyclone (5 =  0.5) the trajectory of the centroid begins 

to loop. As in the case of a moderately intense singular cyclonic vortex this looping motion is
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Figure 5.28: The trajectories of the moderate anticyclones for 0 < t < 60. the parameter values 
used are a =  1, L  =  1.2 and 5  =  2 (solid line), 5  =  1 (dotted line) and 5  =  0.5 (dashed line).
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Figure 5.30: As Figure (5.29) except S  =  1, a moderate anticyclone.
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Figure 5.31: As Figure (5.29) except S  =  0.5, a moderately intense anticyclone.
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characteristic of a dipole with different magnitude circulations in its constituent cells.

Figures (5.33), (5.34) and (5.35) show the contour evolution for the cases S  =  2, 1 and 0.5 respec

tively. In all cases the motion is characterised by the formation of a dipole as the primary cyclonic 

vortex becomes associated with the patches of anticyclonic relative vorticity, produced due to fluid 

columns crossing the escarpment from the deep to the shallow side.

Finally, consider Figure (5.36) which shows a comparison of the trajectories of the vortex patch centre 

with that of a singular vortex. The singular vortex plots were obtained using a singular vortex of 

strength T =  2naali(a)  initially located at (0,L). In each case shown a = 1, L = 1.2 and S  = 1. 

Note that for both (a) anticyclones and (b) cyclones the singular vortex trajectory only predicts the 

vortex patch trajectory for very short times. At large times the singular vortex approximation fails 

to predict the vortex patch motion. The distortion of the vortex patch boundary contributes to the 

drift velocity of the vortex, and it is this essential feature which the singular vortex approximation 

fails to capture.

5.4.3 Discussion

In the case of the anticyclones wave radiation is important. The moderate and moderately weak 

anticyclones decay as a result of being torn apart by the radiated topographic waves. This feature 

is, of course, not captured by the singular vortex model of Chapter 4. For the moderately strong 

anticyclone however, the dipole formation that was characteristic of the moderate intensity singular 

anticyclones is observed. The moderately strong anticyclone moves southwest, and at large times 

crosses to the deep side of the escarpment.

In contrast, the moderate cyclones exhibit precisely the same features as the moderate singular 

cyclones. The primary vortex remains a coherent structure, and is steered away from the escarpment 

as a result of dipole formation. The dipole formation seems more robust for cyclones and is a result 

of the motion away from the escarpment, and hence away from the influence of the topography.

The moderate vortex patch undergoes greater meridional drift than either the weak or intense 

vortices. A similar conclusion for moderate intensity /3-plane vortices was reached by Lam and 

Dritschel (1998). There is however an important exception. The moderate vortex near an escarpment
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Figure 5.32: The trajectories of the moderate cyclones for 0 < t < 60. the parameter values used 
are a = 1, L  — 1.2 and 5  =  2 (solid line), 5  =  1 (dotted line) and 5  =  0.5 (dashed line).
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Figure 5.33: The contour evolution for a moderately weak cyclone (a = 1). The parameter values 
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Figure 5.34: As Figure (5.33) except S  = 1, i.e. a moderate cyclone.
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Figure 5.35: As Figure (5.33) except S  = 0.5, i.e. a moderately strong cyclone.
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Figure 5.36: Comparison of the trajectory of a vortex patch with that of an equivalent singular 
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anticyclone and (b) shows the drift of a  cyclone. The singular vortex approximation was made using 
a singular vortex of strength T = 27ra/i(a) initially located at (0, L).
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doesn’t  have an associated trapped zone, except for, arguably, the moderately strong cyclone. This 

is due to the vortex being a finite distance from the topography, and thus being unable to wrap 

up the contour efficiently. Instead the trailing eddy dominates the motion and causes the enhanced 

meridional motion.

5.5 Conclusions

A study of the motion of a vortex patch near an escarpment has been studied for the full range of 

values of the vortex intensity, S. The leading order solution for the weak and intense limits was 

obtained. In both cases the singular vortex model accurately predicts the trajectory of the vortex 

centre.

The weak vortex solution was found on the topographic wave timescale. For 5 ^ 1  the vortex 

remains circular to leading order for times t < 0 ( 5 -1), and it is for this reason that the singular 

vortex model accurately predicts the drift. For longer times contour dynamics results indicate that 

the escarpment acts like a wall, i.e. the pseudoimage description of Chapter 4 generalises to a 

uniform vortex patch. It is anticipated that a distributed weak vortex near an escarpment may 

also be well described by the pseudoimage. At large times east travelling vortices (i.e. anticylones 

located on the shallow side of the escarpment or cyclones located on the deep side) are stripped as 

a result of topographic wave radiation. This feature was lacking in the singular vortex model.

The leading order solution on the advective time scale was found for the intense vortex. It was 

suggested by the theory that the singular vortex model would predict the trajectory of the vortex 

centre, a  result arising from the fact that the vortex remains circular to leading order. Contour 

dynamics results confirmed this to be the case, and it was found that cyclones (resp. anticyclones) 

drift northwest (southwest) as a result of the formation of a secondary dipole. The westward drift 

speed is within the range of possible phase speeds of the topographic waves. However, for small 

values of 5  wave radiation appeared to have a negligible effect on either the vortex shape or the 

meridional velocity.

In contrast the singular vortex approximation fails when S  «  1, since for moderate intensity vortex 

patches distortion of the patch boundary is important. The motion of the moderate vortices is
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characterised by the formation of dipoles. Anticyclones (cyclones) located on the shallow side of 

the escarpment drift toward (away from) the escarpment as a result of the dipole formation. This 

is qualitatively the same behaviour observed previously for singular vortices, and reinforces the 

conclusion reached in Chapter 4. In particular these results are in agreement with those of Zavala 

Sanson et al (1999), who, recall, showed in laboratory and numerical experiments that an anticyclone 

approaching an escarpment from the shallow side proceeded to cross the escarpment, and a cyclone 

approaching an escarpment from the shallow side is “back-reflected” as a result of dipole formation. 

Moreover, the trailing eddy of the /3-plane vortex of Lam and Dritschel (1998) is a further example 

of dipole formation in a vortex-topography interaction. One may speculate that dipole formation 

as a result of vortex interaction with potential vorticity gradients is a generic feature of geophysical 

fluid dynamics.

A p p en d ix  A: D erivation  o f  th e Fourier series coefficients for q\

In this appendix the m =  1 Fourier series coefficients for q\ in subsection 5.3.1 are derived. First, 

for times t < 0 ( 5 _1), the meridional drift velocity Vi = 0 (5 ), so that

yc = L + 0{S).  (5.A1)

Hence for t <  0 ( 5 -1), equation (5.47) can be written

<7i =  ^ [sgn(sin(0 — b(r)t) +  L/r)  — sgn(sin0 +  L / r )]. (5.A2)

Next note that if r  < |L| then q\ =  0. For r > \L\ the Fourier series for qi is

OO

qi = a>o +  ^ 2  am cos m6 -I- bm sinmfl, (5. A3)
m — 1

The constant term is

Oq — J  qi{r,6,t)dB

I F  I F= — sgn(sin (6 — bt) + L /  r)d6  /  sgn(sin 9 +  L/r)dB
7T 7T J_n
^  nTT — b t  ^  /*7T

= — sgn(sin 6 + L/r)dJd /  sgn(sin 9 + L/r)d9
^  J — 7T — bt "ft J — 7T

=  0, (5.A4)

since the two integrands are periodic with period 27t, and the integrals are each over an interval of 

length 27t.
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Writing oi =  q[ĉ  and &i =  <7̂ ,  the m =  1 terms are

q[8\ r , t )  = — [  qisinOdd
Tf J — 7r
i  r  i  r

— —  I sgn(sin(0 -  bt) +  L/r)  sin 9d9 — —  I sgn(sin# +  L/r)  sin Odd
27t J_v 2n J_n

|  /*7T — b t  J  / * ^

= 7T I  sgn(sin0 +  L/r)  sin(0 +  bt)dd — —  I sgn(sin0 +  L/r)  sin Odd 
27r J—x-bt 2tt J_n

J  sgn(sin 9 + L/r)  sin 6d9 +  J  sgn(sin 9 + L/r)  cos 9dB,
2n

and similarly

q[ĉ  (r, t) = — f  qi cos 9dB
7T J _7r
cos bt — 1 

2n
f  sgn(sin 9 + L/r)  cos 9d9 — f  sgn(sin 9 +  L/r)  sin 9d9.

JI  27T Jj

where I  is an interval of length 2n. To calculate the integrals in these two expressions denote by 

9C the (two) values of 9 in the interval I  where the sgn function changes sign, i.e. sin 9C = —L/r.

By dividing the integrals into three intervals according to whether the sgn function is positive or

negative it is straightforward to show, for r  > |L|

f  sgn(sin 9 + L/r)  sin 9d9 = | cos9C\ — - y j r 2 — L2, (5.A5)
Jl r

J  sgn(sin# + L/r)  cos9d9 = 0 . (5.A6)

Hence, the leading order behaviour of q\ is

qi = sin 9 +  <7̂  cos 9, (5.A7)

where

<7i^  =  — yjr2 — L2(cosbt — 1), (5.A8)
nr

q[ĉ  = ------\ / r 2 — L 2 sin bt, (5.A9)
nr

for r > \L\ and <7̂  =  q[ĉ  = 0 otherwise.

A p p en d ix  B: A sym p totic  resu lts for drift velocity  com pon en ts for intense vortex .

(a) Behaviour as t —► 0.

For t «  1 approximate
1 ^  (bt)2 a2a2I f  (a)t2 „  fK1 -  cos(6t) »  —  = ---------—2------Ki  (r), (5.B1)

158



so that

_ a 2o /f(a )t2 r°° K ? p . ^  2 _  L2d (5.B2)
2tt Jl  r2 '

The integral converges and the integrand is positive definite for L < r < oo. Hence the integral is a 

positive constant, say A, which depends on L, i.e.

(5.B3)
In

as t 0. Similarly, approximating

sin (bt) &bt  = — aa^1 â^  K  i (r), (5.B4)

for t  >C 1, leads to

(5.B5)n

as t  0, where B  is a positive constant which depends on L.

(b) Behaviour as t ->• oo.

It is useful to approximate the large time behaviour of <f>i in the near field of the vortex, from which 

the asymptotic drift velocity components can be deduced. Consider for r  < \L\. From (5.58) 

this may be written

^  =  - -A (r ) [A  + P 2 + P 3], (5.B6)n

where

/
OO

s / p  -  V K M d p ,  (5.B7)

P2 = j  ̂  cos bty/p2 -  I ? K x{p)dp, (5.B8)

/ OO

cos bty/p2 -  L 2K i  (p)dp (5.B9)
n

Here r\ is large but fixed. First note that

Pi =  -7 rexp(-|L |). (5.BIO)

See e.g. McDonald (1998). Next consider P2. Write the angular velocity of the vortex

b(r ) = (5.B11)
r

where T = a a l \ (a). From Abramowitz and Stegun (1972) the derivative of K\{r)  is

K'l (r) = - K 2(r) + - K 1(r), (5.B12)
r
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so that

&'(r) = r ^ i .  (5.B13)
r

Hence b'(p) /  0 on the interval L < p < r\. Moreover, \Jp1 — L 2K\{p) is integrable on this interval. 

The Riemann-Lebesgue Lemma then implies that

P2 = O ( t - 1), (5.B14)

as t —̂ oo. For r\ L approximate \Jp2 — L 2 «  p and K n(p) m e-p / v/p for n = 1,2. Then

/
OO

cos btpKi (p)dp

=  f J i r ( t p K M dp

«  F / 0 - s ^ l o g 2^ ,

since for large p, £ «  e-p . Here fi =  |r|/G. ( r i) /r i.  Making a further change of variable leads to

p3 ^  f~t j  sin z log2 ( ! )  dz. (5.B15)

Integration by parts implies that the leading order behaviour of the integral is 0(log21) as t -»■ oo. 

That is, for large t

Pz =  0  • (5.B16)

Hence it follows that

<S<4) =  2Ji(r) exp(—|L|) +  O f  !2 £ l)  , (5.B17)

as t -* oo. A similar treatment for the component leads to

4 C) =  o  , (5.B18)

as t -> oo. Finally the vortex drift velocity components may be obtained from (5.62a), (5.62b), 

(5.B17) and (5.B18) and are

t*i »  — exp(—|L|) +  O , (5.B19)

Vl ~  ° ( h P ) *  (5,B20)
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Chapter 6

The motion of a vortex near 
coastal topography

In this chapter the motion of a singular vortex near coastal topography is investigated. The choice of 

topography is an infinite escarpment running parallel to a plane wall. The interaction of the vortex 

with the topography is of primary interest, and the means by which the vortex came to be near the 

escarpment is ignored. An off shelf vortex could, for example, have been advected towards a western 

boundary under the /3-effect, and a vortex on the shelf could have been formed near a river outlet.

The /-plane quasigeostrophic governing equation, with the same scalings (4.1) as in Chapter 4 is

^  (V2v -  VO + -W, v v  -  V] + ^  =  0. (6.1)

Here S  is the ratio of the eddy turnover time to the topographic vortex stretching time,

L/U _  6 _  Ta 
<5-1 / -1 Ro Tw  ̂ )

The choice of topography is

hii{y) =  sg n (W -y ), (6.3)

i.e. an infinitely long escarpment aligned along y = W.  The wall is parallel to the escarpment, and 

is aligned along y = 0, so the shallow side of the escarpment is in the region 0 < y < W  and the 

deep side of the escarpment is y > W . Figure (6.1) shows the fluid domain, which is an attempt to 

model the shoaling topography which occurs near continental margins. In the following section the 

properties of the topographic waves are discussed.

161



Figure 6.1: The geometry of the domain under consideration. There is an escarpment at y =  W  
parallel to a plane wall aligned along y = 0. The vortex is initially located at (0,L).

6.1 Linear waves

For 5  »  1, set e =  S -1 and introduce the new time variable r  =  et, so that the unit of time is Tw, 

the topographic wave time. For r  e-1 , the linearised governing equation is

(6.4)

The boundary conditions are

9- i  = o
dx y = o (6.5a)

Vip -»■ 0 , y -> oo (6.5b)

[ip\ = 0 y = W (6.5c)

oIIH-S-
<MI y = w (6.5d)

Condition (6.5a) is the requirement of no normal flow at the wall, (6.5b) is the condition that the

fluid is at rest in the far-field, (6.5c) is continuity of ip across the escarpment and the final condition,

(6.5d) is the matching condition found by integrating (6.1) across the escarpment as in the previous 

chapters. Linear waves have the form

ip(x,y,r) = A(y)e^kx~UT\  (6.6)

Denote the solution in the two parts of the flow by

f ipi = 0 < y < W
iP =  ̂ (6.7)

{ ip2 = A 2{y)e^kx- ^  y > W,
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On the shelf

ip i =  B  sinhyy/k2 +  1 c*(fc* -wr)} (6.8)

satisfies boundary condition (6.5a), whilst off the shelf,

ip2 = Ce~yy/WTl e^ kx- UT\  (6.9)

satisfies boundary condition (6.5b). Matching condition (6.5c) is satisfied for tpi = ip2 at y = W,

i.e. whenever

C = j  (e2wVFq^  -  l )  . (6.10)

The solution is then, ignoring the constant factor,

sinh yy/k2 +  1 cos(kx — ur)  0 < y < W
t p = \  (6.11)

l | e2wVP+T _  -jJ g-i/v'F+T cos(kx  _  UTj y  > w

Hence the waves have maximum amplitude over the escarpment. The dispersion relation is obtained

from (6.5d) which, after a little work leads to

Note that

lim u  = k (6.13)
W—>QO y/k2 + 1

so that in the limit of the wall being infinitely far from the escarpment the dispersion relation for 

topographic waves in the absence of the wail is recovered. A further interesting limit is the case 

W  <  1, for which the leading order frequency of the waves is given by

u  »  2kW. (6.14)

That is, for the escarpment very close to the wall the waves are, to leading order, non-dispersive.

This has some interesting consequences in the weak vortex interaction described below. Plots of 

dispersion curves for various values of W  are shown in Figure (6.2a). If W  is greater than about 

1, so that the escarpment is more than a Rossby radius from the wall, the dispersion curve is 

indistinguishable from the limiting case (6.13).

The phase and group velocities are

" W - f  ■ |MS>
dw 1 e- 2WVfca+l /    \

= ~dk (,k2 + l )3/2 +  (.k2 + 1)3/2 {2W k *y/ k2 + 1 “  1)  (6-16)
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Figure 6.2: The (a) dispersion curve, (b) phase velocity and (c) group velocity for W  = 1/4 (dotted 
line), W  = 1/10 (dashed line) and for W  -* oo (solid line).
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The wave phase and energy both propagate toward positive y, i.e. with shallow water to the right. 

Figures (6.2a,b) show plots of the phase and group velocities. The maximum value of each occurs 

for k = 0, whilst the maximum value itself decreases with W . Moreover,

cp(0) =  c„ (0) =  1 — e~2W, (6.17)

so in particular the maximum phase and group velocities are near unity for W  ->• oo, whilst the 

maximum value is approximately 2W  for W  <C 1.

The presence of the wall modifies the frequency of the topographic waves. For fixed k the frequency 

u  is a decreasing function of W.  In the limit W  0 the frequency is linear, and cp cg, i.e. the 

waves are non-dispersive and the wave phase and energy propagate at the same velocity.

6 . 2  A weak singular vortex

In the absence of topography, the streamfunction for a singular vortex located at a distance L  from 

a wall aligned along y = 0 is the sum of the streamfunctions for the vortex and its image in the wall,

$ = ^  ( K° ( ( ( i - x ) 2 + i v  ~  y)2)1/2)  -  K ° ( ((*  - x )2+ {y+ y)2 )1 /2 ) )  • (618) 

Here (X(t) ,Y( t ) )  is the position of the vortex centre, and r  =  ±1 gives the sense of the circulation. 

For T < 0 it is anticlockwise (cyclonic) and for T > 0 it is clockwise (anticyclonic). Suppose at 

t = 0 there is a vortex of the form (6.18) with initial location (0,L). The aim is to determine the 

subsequent drift of the vortex centre (X(t) ,Y( t) ) .  Seek a solution of the form

= $  +  <f>, (6.19)

so that the governing equation is

9 rn 2 j. u.\ , rrji t7 2 xi , a d<t> dhB c dV dhB fc- ( V f - 0  +  J f c V d  + S g g - g ^ - S ^ - g p  (6.20)

In the following subsection the solution on the fast topographic wave time scale is obtained by 

Fourier analysis.

6.2.1 Leading order solution

The solution on the topographic wave time scale can be found by Fourier transform methods. For 

a weak vortex, S  1, set e =  5 -1 and rescale the time variable r  =  et. The governing equation
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(6 .20) is then

For times r < e  1 the advection term in (6.21) is negligible, so that, on this time scale, the governing 

equation is a linear forced topographic wave equation,

9 /rrtj. ^  , 9<t>9 hB d V d h B_ ( V * - 0  +  (6.22)

where the fact that V2$  — $  =  0 has been used. It will be justified a posteriori that the vortex drift 

in the ^/-direction is 0(e2) on this time scale. Denote by u and v the components of the vortex drift 

velocity in the x  and y directions respectively, on the long advective time scale, so that

dX_ 
dr 
dY

, = eu, (6.23a)
dr

=  ° ( f2)> (6.23b)

The vortex is advected by its image and the Afield, i.e.

u = ^ K l ( 2 \ L \ ) - ^ - ( X , L , t ) .  (6.24)

Note that u can take the full range of values since L  is free to vary over the range of values. In 

particular if L = 0(e) then u =  0(e-1 ), and the vortex drift is order unity on the topographic wave 

time scale. This has interesting consequences, outlined later, because the possibility arises that the 

vortex can travel at the velocity of the topographic long waves. Assume further that u is constant1, 

so for times r  e-1

X  = eur, (6.25a)

Y  = L. (6.25b)

Under the above assumptions the streamfunction for the vortex and image on this time scale is

® [Kq (((® -  eur)2 + (y -  L)2)1/2) -  K 0 (((a  -  eur)2 + (y + L)2)1/2)]  . (6.26)

The topography, given by (6.3) is “switched on” near a pre-existing vortex at r  =  0, so the initial- 

boundary value problem for r  e_1 is

V20 - 0  =  0 , y ^ W ,  (6.27a)

^  =  0 , y =  0, (6.27b)

V0 —̂ 0 , y - » oo, (6.27c)

1This is also justified a posteriori, since it is found that the leading order prediction of u is constant.
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M = 0  , y =  W, (6.27d)

[(f>yT] -  2(f>x = 2VX , y = W, (6.27e)

0(* ,y ,O )=O  , r  =  0. (6.27f)

Note that in (6.27e) d h s /d y  =  -2<5(W — ?/) has been used. The solution is found by Fourier 

transforms. Denote the Fourier transform by 4> as in (4.21). The solution satisfying (6.27a-c) is

( A(k , r)  sinh yyjk2 +  1, 0 < y < W,
4>=l  (6.28)

{ £(fc,r)e1'v'p +T, y > W.

Condition (6.27d) implies [4>] = 0 at y = W, which in turn gives

B  = ^ A  ^  (6 29)

Condition (6.27e) transforms to the ordinary differential equation for A,

A r + iwA = 4
V W T i

where u  is the topographic wave frequency given by (6.12). Now

r

y = W
(6.30)

v=w 2y/k2 +  1
y e- ik€UT, (6.31)

where,

$  =  (e~\w-L\ViF+i _  e-|w+L|VP+i^ (6 32)

is obtained from identity (4.26). Note that if the vortex lies off the shelf (L  > W)  then (6.32) can 

be rewritten

§  = 2 e 'Lv/FTTsinh W \ / k 2 +  1, (6.33)

and if the vortex lies on the shelf (L < W ), then (6.32) can be rewritten

$  =  2e~wV**+I sinh L y /k2 +  1. (6.34)

Using the integrating factor method, together with the initial condition (6.27f), which implies that 

A{k , 0) =  0, leads to

A {k,r)  =  ( e - -  -  e— ) 4 . (6.35)

The solution consists of a steadily propagating term and a topographic wave term,

<£ =  «£(*)+ «/>("), (6.36)
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where

0 «  =

and

4,^1 = ,

' ~  j  A 1(k,y) ,e ik(*-""-\  0 < y <V  

. I  M k , y ) , e ,k^ - ' UT), y > W

f  A1(/fc,y)ei<*I - " T\  0 < y < W ,  
J c

 ̂ L  j  Ai(k ,y)e«k* -“r\  y > W,

(6.37)

f T_
2?r j c

(6.38)

with

u e- w V W +T _ _____
M k ' y) = ( g  +  1) M- « t  g s in h y V 'P T I ,  (6.39a)

-  * smhWVfc2 +  1,j. - „ y p + r-  (Jt2 +  1) u _ €uk We (6.39b)

Note that the integrands in (6.37) and (6.38) have singularities when u / k  = eu, i.e. whenever the 

vortex velocity matches a topographic wave phase speed. In these cases the inversion contour, C, 

must be indented to pass below the singularities.

6.2.2 Behaviour as r —> 0

Below it is shown that the quasisteady term can be interpreted as a pseudoimage of the vortex in 

the escarpment, i.e. the escarpment acts like a plane wall. This is true for both the vortex and its 

true image in the wall, and is discussed below. There is a short spin-up time associated with the 

establishment of the pseudoimage, and this can be seen as follows. For 0 < y < W,  cf>i = +  <f>̂

can be written

01 =  J  A ^ k ’V){e~ik'U T dk

«  — —  f  Ai (fc, y) (—ikeUT + iur) elkx dk, (6.40)
27T Jc

where the integrand has been written to leading order in the Taylor series about r  =  0 for r  <C 1. 

This in turn can be written

T i t  f
(j)i =  — —— /  Ai(k,y)(u) — euk)etkx dk 

27T J c

T t
= —  /  Ai(k ,y )(u  — euk)smkx dk. (6.41)

47T Jq
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The second equality follows by noting that Ai (to — euk) is analytic (cf equation (6.39a)) and odd. 

Precisely the same argument leads to the approximation

Tt
02 «  —  / A 2(k, y)(uj — euk) sinkx dk. (6.42)

47T Jq

The velocity components of the vortex due to the 0-field axe then

d<j>
u = ~ aoy

d<f> 
V ~  dx

= 0, (6.43a)
(o.z,)

=  77-  /  A(k,L)(uj — euk) dk, (6.43b)
( 0 , L)  2 ? r  JO

where A = Ai  or A 2 according to whether 0 < L < W ’ o r L > W  respectively. For r  «  1 the 

0-field induces a drift in the ^/-direction. Anticyclones ( r  > 0) move toward deep water and cyclones

( r  < 0) move toward shallow-water. The mechanism for this process is the initial advection of fluid

across the isobaths, and the consequent generation of secondary circulations, which in turn advect 

the vortex. See Chapter 4, and in particular subsection 4.2.2 and Figure (4.3).

6.2.3 The quasisteady term

The quasisteady term of the solution is i p ^  =  i&+<j>(a\  and represents a disturbance that propagates 

with the vortex at velocity eu in the ar-direction. To interpret this term consider the expansion 

2  k e~wV1**+T u  1
^ T= =  +  O ( — )  . (6.44)’v'FTT \ u  J y 'y / W T l  oj — euk sinh W  oj — euk sinh W V &

This approximation is valid for r  =  0(1), but still less than e"1. To this order of approximation the 

amplitudes (6.39a,b) may be rewritten

M{k, y )  =  +  1^ sinh yy /k2 + 1, (6.45a)

A2(k,y) = l e wVJ^ V e - yV*T+I, (6.45b)

both of which are analytic and even functions of k , so

r  1 ~ sinh y V k 2 + 1  .
— — I . ^   . cos k(x  — eur) dk, 0 < y < W,2tt J 0 y / t f T l  sinhWVFTl 7

0<s) =  (6.46)
r  f°° (>W'Jk2+1 _ /r-5__

— —  /  . e~y^  +1 cos k(x — eur) dk y > W.
< 2tt Jo y k  -(- 1

There are two cases to consider, according to whether the vortex lies on the shelf, i.e. in the region 

0 < L < W,  or off of it.
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Case 1: Vortex off the shelf

If the vortex lies off the shelf, then L  >  W  and use of (6.33) implies that (6.46) can be rewritten as

~ 2 ~ J   ̂(e L̂ y^ k*+l ~  e (y+LW k2+l^ cos k(x — eur) dk , 0 < y < W,

|  ̂J  ^ 2  + i  (e~(y~(2W~L^ k2+1 — e_ ^ +L V̂fc‘i+1 j  cos k(x — eur) dk, y > W.

(6.47)

Use of identity (4.26) shows that on the shelf 0 < y < W  (6.47) is — i.e. (6.47) cancels with the 

vortex and image terms on the shelf. In the region y >  W,  off the shelf, the second term of (6.47) 

cancels with the image term of \&. Hence the quasisteady term, =  ij/ +  0(«) for a vortex lying 

off the shelf is,

0 W =  <

‘ 27T
where

f 0, 0 < y < W ,
(6.48)

[K0( r i ) - K 0(r2)], y > W,

r\  = (x — eur)2 +  (y — L )2, (6.49a)

r 2 =  (x ~  ewr)2 +  (y -  (2W  -  L ))2. (6.49b)

Expression (6.48) thus represents the vortex and its pseudoimage in the escarpment. After the initial

spin up of the pseudoimage the true image of the vortex in the wall no longer contributes, i.e. the

vortex “forgets” about the presence of the wall, which is “blocked” by the escarpment. The velocity 

of the vortex due to this term is

u = — W))  (6.50a)
27T

v = 0. (6.50b)

After the initial small onshore drift of the vortex, the motion becomes purely longshore, and the 

magnitude increases from its initial value, Uq =  —T/2nKi(2L).

Case 2: Vortex on the shelf

In this case L < W  and substitution of (6.34) in (6.46) leads to 

T e-Wv/F+r sinh Ly/k?^+\

0 (*) =

T f  e~yvvK +L sinh T v  A:2 + 1  .  ̂ r— —  w n
— —  / — ....................... f = =  sinh y y k * + 1 cos k[x — eur) dk, 0 < y < W ,

2tt J0 V & T l  s in h lV V P T l

, f e~(y~LWk'2+i _  e-(y+L)Vk*+i\ cosk(x  _  eUf ^  y > W.
k 2tt Jq y k  -(-1 ' 7

(6.51)

Off the shelf, y > W,  and in this region (6.51) cancels with the vortex and image term \£. In the 

appendix to this chapter a vortex pair in the middle of a channel of width 2W  is considered. By
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comparing the first term of (6.51) with (6.A18) it can be seen that this term is in fact the infinite 

set of images of a vortex pair in a channel of width 2W . Writing the quasisteady part of the full 

solution ipW = Vfr + <j) ^  leads to

= a

Y oo
—  Y ,  (K0(r„+) — K 0(r„-)) , 0 < p < W27r

n = — o o (6.52)

k 0, y > W,

where

r2n+ = ( x -  X )2 + { y -  (2nW  +  L))2, (6.53a)

r2_ = ( x -  X )2 + ( y -  (2nW  -  L))2. (6.53b)

In this case, then, the escarpment acts as a plane wall, leading to an infinite set of pseudoimages. 

The velocity at the vortex centre is then due to the true image of the vortex and the pseudoimages,

r r 00
u =  - — K l ( 2 L ) -  —  Y ( K i ( 2 n W ) - K l ( 2 ( n W - L ) ) ,  (6.54a)

71=1

v = 0, (6.54b)

so the vortex drift velocity decreases from its’ initial value.

It has been show that, to leading order, the quasisteady term represents a pseudoimage of the vortex 

in the escarpment. The large time behaviour is deduced in the following section.

6.2.4 Large tim e behaviour

Each of the inversion integrals (6.37) and (6.38) have singularities whenever 0 <  eu < cp(0), i.e. 

when

0 < eu < 1 -  e~2W, (6.55)

Note that only cyclones move in the direction of positive x, so unlike the case of a singular vortex 

near an escarpment with no wall nearby, wave radiation can only occur when the vortex is a cyclone. 

There are three cases to consider.

C ase 1 eu < 0 or eu > 1 — e~2W

In this case the integrands are analytic and the inversion contour C can be deformed back to the 

real line. The points of stationary phase are given by the solution, k8, of

^  = cg(k). (6.56)
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By considering Figure (6 .2), it is evident that there are two solutions to (6.56) whenever 0 < x / t  < 

1 — e~2W. However the solution having k8 < 0 must be ruled out since r  > 0. Hence there is a 

single point of stationary phase, and by the argument given in Chapter 4 the topographic waves 

decay like t -1/2, and so have no influence on the vortex for large times. In this case the vortex is 

moving at a  velocity outside of the range of possible phase speeds, and the behaviour for r  =  0 (e-1 ) 

is dominated by the pseudoimage term .

Figures (6.3) and (6.4) show plots of the solution evaluated over y = W  by Fast Fourier Transforms, 

for two different cases where the vortex is an anticyclone. The plots were obtained by FFT of 

equations (6.18), (6.37) and (6.38). In Figure (6.3) the parameter values used are W  = 0.5 and 

L = 1, and the times shown are r  =  20 and r  = 160. The pseudoimage term which moves with 

the vortex is evident, and the topographic waves which propagate in the opposite direction to the 

vortex decay with time. In Figure (6.4) the parameter values used are W  = 0.03 and L = 0.6 and 

the times shown are r  =  60 and r  =  160. The pseudoimage is again evident, but note that the 

waves, whilst smaller in amplitude than the previous case, are slow to decay and appear to be only 

slowly dispersive. This is in agreement with the behaviour of the topographic waves in the limit 

W  —> 0 , discussed previously in section 6 .1, where it was shown that in this limit the waves are non 

dispersive to leading order. In both cases the vortex drift velocity in the x-direction was calculated 

using equation (6.50a).

Case 2 0 < eu < 1 — e~2W

In this case there are singularities on the real axis whenever,

£  =  «* (6.57)

i.e. whenever the vortex drift velocity matches a possible topographic wave phase speed. From the 

graph in Figure (6.2) it is clear that there are two poles on the real axis at A; =  ± 7  where 7  satisfies

eu = , 1 (1 -  e~2Wv ^ + i )  . (6.58)
v/T r + l ' '  >

The large time behaviour is dominated by the behaviour near the poles. To proceed with the residue 

calculations write

- w V P T T  p ( k \  _ -----------
A i ( K y) = ^ fc2 +  1 fc2 _ 7 2 ^ (*0sinhyy/k2 +  1, (6.59)

A 2(k,y) = ®(fc)e-»V F+i, (6.60)
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Figure 6.3: FFT evaluation of the solution over y = W,  for a non-radiating weak vortex. The 
parameter values used axe T = +1, e =  0.1, W  = 0.5 and L = 1. The times are (a) r  =  20 and (b) 
r  =  160. The dispersive waves, propagating in the opposite direction to the vortex are evident, and 
the non dispersive disturbance propagating with the vortex is the pseudoimage.
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Figure 6.4: FFT evaluation of the solution over y = W,  for a non-radiating weak vortex. The 
parameter values used axe T = +1, e =  0.1, W  = 0.03 and L = 0.6. The times are (a) r  =  60 and 
(b) r  =  160. The waves, propagating in the opposite direction to the vortex appear to be almost 
non dispersive, and the nondispersive disturbance propagating with the vortex is the pseudoimage.
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where

1 (« .)» (*  +  1) -  (1 -  e - ^ V ^ )  /  l e u . / i p T n  (6 611
F W  "  (eu)’ («)»(*» +  1) -  (1 -  e -w V P T I) I 1 6 +  euV* +  l j  • (6.61)

Equations (6.59) and (6.60) indicate that the poles axe simple. The inversion contour is indented to 

pass below the poles, (see Figure (4.7) in Chapter 4 for a diagram of the contour). Note that

P ( ±  7 ) =  v V  +  1- (6-62)eu

First consider

0 W =  f  dk. (6.63)
Jc

There is no contribution from the semi-circular arcs as x — eur —► — oo, and the contribution due to 

the branch cut is also exponentially small as x — eur —> oo. The residue of the integrand, making 

use of (6.62), at k = 7  is

g -w yV + i --------
/  » ■, sinhyv/7 r +Te*^1- ' - )

V 72 +  1 ^7

=  - 7-V -e ~ wv/^ + r ^ ( 7 ) sinh y y f i f T l  ei7<*-ettr>. (6.64)
(eu)7

Similarly, the residue at k = —7  is

_ L e- iv V ^ + i$ (7 ) s in h y V y T l  e - ^ - e u r ) .  (6 65)
(eu) 7

Thus, a s r - > e  x,

0 ^  »  — ^ e $ (7 ) s inh t/\/7 2 +  1 sin7 (x — eur) H(x  — eur). (6 .66)
(eu) 7

The same arguments lead to

9 1
0 ,^  «  — 7—r -  sinh W -v/7 2 +  1$ (7 )e-1'v 72+1 sin7 (0; — eur) H(x — eur). (6.67)

(eu)7

Next consider the wave term, <ĵ w\  Near the poles k = ± 7  a Taylor expansion gives

u(k)  =  ± 7 eu +  (k =p 7 )c<?(7 )> (6 .68)

so near the poles

ei{kx-ut) ^  etfc(x-cfl(7)r) eTi7(cc(7)-«i)r > (6.69)

Hence, there is no contribution to the integral as x -  cgr  — oo. Moreover, a;(7 ) =  7 0 *, so it is 

clear that the residues of (j>^ at k = ± 7  are the same as those of <̂ 8\  Hence, as t -> e-1 ,

(j>(x, y , r) »  g(y) sin 7 (3; -  eur) [H(x -  eur) -  H(x  -  cg (7 ) r ) j , (6.70)
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where

9(y) = <

7 —t -  e w y/^2+1 $ ( 7 ) sin h y i/7 2 +  1 , 0 < y < W,
(eu) 7

(6.71)OP  ̂  ̂ .
sinh 7 \ /7 2 +  1 ^(7) e_yv'r2+1> y > IF.

I (eu) 7

Equation (6.70) represents a wavetube growing like the difference between the phase and group 

velocities of the radiated waves. Figures (6.5) and (6 .6) illustrate the process of the wavetube 

formation. The plots were obtained by FFT of the solution as in Figure (6.3). In Figure (6.5) the 

parameter values used are W  = 0.5, L = 1 and T =  — 1 (i.e. a cyclone), and the times shown are 

r  = 20 and r  =  160. The pseudoimage is the non dispersive disturbance which propagates with the 

vortex. The waves ahead of the vortex are the dispersive topographic waves which decay with time, 

whilst the wavetube grows in the wake of the vortex due to radiation. In Figure (6 .6) the parameter 

values used are W  = 0.03, L  =  0.6 and T =  —1 and the times shown are r  =  20 and r  =  200. In 

this case the waves ahead of the vortex are of small amplitude and are not resolved in the plot. The 

wavetube growing due to topographic wave radiation is evident.

Equation (6.70) representing the growth of the wavetube is analogous to the large time response of 

a weak vortex near an escarpment in Chapter 4. There are, however, some important differences. In 

the absence of the wall the radiated waves were the short waves, with low energy density. This in turn 

was due to the vortex velocity being an O(e) quantity, a result of its advection by its pseudoimage 

occuring on the long timescale r  =  et. Consequently the momentum loss to the radiated topographic 

was exponentially small, and the effect on the vortex trajectory was negligible, even for t  «  e-2 . In 

the present case there is no such constraint on the vortex velocity. The longshore velocity of the 

vortex induced by its true image can take the whole range of values, and for fixed T is a function 

of the distance of the vortex from the wall (and thus the distance from its image). Here then is the 

possibility of interaction with the long topographic waves, i.e. those with high energy density. The 

momentum loss through wave radiation may be more significant.

There are two particular limits that are discussed below in detail. First, if L = O(e) so that eu is 

an 0(1) quantity, and if W  «  0(1), then consideration of Figure (6.15) shows that the wavenumber 

of the radiated waves can take arbitrarily small values. Second, if W  1 and if eu =  O(e) which 

is possible for L  =  0(1), then the vortex can travel at the group velocity of the topographic long 

waves.

176



(a)
0 . 2 0

0.15

0.10

0.00

- 0 .0 5

- 0.10
- 1 0 0 10 20

x

(b)
0.20

0.15

0.10

0.00

- 0 . 0 5

- 0.10
- 1 0 0 10 20

x

Figure 6.5: FFT evaluation of the solution over y = W , for a radiating weak vortex. The parameter 
values used are T =  —1, e =  0.1, W  — 0.5 and L — 1. The times axe (a) r  =  20 and (b) r  =  160. 
Note the dispersive waves ahead of the vortex which decay and the wave tube growing in the wake 
of the vortex as a result of wave radiation.
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Figure 6 .6 : FFT evaluation of the solution over y = W , for a radiating weak vortex. The parameter 
values used are T = —1, e =  0.1, W  = 0.03 and L  =  0.6. The times are (a) t  =  20 and (b) r  =  200. 
The topographic wave ahead of the vortex are not resolved in this plot.
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Case 3: eu = 1 -  e~2W'/k*+I

For a given value of W  there is a particular value of L  for which a cyclone travels with precisely the 

velocity of the waves with k = 0. In this case the two poles coalesce at k =  0 to form a second order 

pole. Moreover, these are the waves with maximum group velocity (see equation (6.17) and Figure 

(6 .12)), and which therefore correspond to a second order point of stationary phase. McDonald 

(1996) considered a similar case for a modon travelling at the group velocity of the topographic long 

waves near an escarpment, and applied the method of Akylas (1984) to the Fourier integral to show 

that, for a given value of x  linear theory predicts that the response becomes unbounded at large 

times. In particular 0 pa r 1/ 3 as r  —► oo. Figure (6.7) illustrates that this behaviour also occurs 

in the present case. The plot was obtained by FFT, and for fixed W  =  0.3 numerically finding the 

value of L  (here L pa 1.67) such that eu = 1 — e~2Wy/k2+1, for a vortex off the shelf. The vortex 

drift velocity was calculated using equation (6.50a). The physical reason for this behaviour is that 

the large time response is dominated by the waves with vanishing group velocity, so energy can not 

escape from the vortex. This in turn implies that energy can not escape from the vortex and so the 

response must eventually become nonlinear.

McDonald (1996) introduces long wave scales into the nonlinear governing equations (6.20) and finds 

that to leading order the wave amplitude is governed by a forced Kortweg de Vries equation. This 

procedure is difficult in the present case and the nature of the vortex-wave interaction in the case 

that the vortex travels at the topographic long wave group velocity is examined by contour dynamics 

below.

6.2.5 Vortex trajectory

The arguments used in Chapter 4 can be used to equate the momentum flux in the radiated wave 

tube with the rate of change of the r-momentum of the vortex. The energy density in the wavetube 

is

P — 2 M  +  +  ^2) ’ (6.72)

where 0 is given by (6.70), and the average value over a wavelength is taken. Denote the on shelf 

and off shelf components of p by

{ pi 0 < y  < W
(6.73)

P2 y > W  
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Figure 6.7: FFT evaluation of the solution over y = W , for a weak vortex travelling at the topo
graphic long wave speed. The parameter values used are T = —1, e =  0.1, W  = 0.3 and L  «  1.67. 
The times are (a) r  =  20 and (b) r  =  60. The amplitude of the waves grows with time.
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The required averaged quantities axe

2 r2

<& = {
(eu)2

2 r2 
I W

e 2W's/t,2+1 $ 2(7 ) sinh2 y \J 7 2 +  1 0 < y < W

sinh2 § 2(7) e- 2j/\ /^ + r  y > W

(6.74)

e 2VVV t2+i ^ 2(7 ) cosh2 y \J 7 2 +  1 0 < y <  W
[euy

sinh2 W y / 7 2 +  1 $ 2(7 ) e - 2I'^/:̂ + ^ y > W 
I M 272

(6.75)

and

02 -<!

k (eu)27 2

These lead to, after some manipulation

f OF2 .-----  --------
e- 2Wy/y2+i $ 2(/y) sinh2 y \ f 7 2 +  1 0 < y < W

sinh2 § 2(7 ) y > W.

(eu)27 2

2T2
(6.76)

Pl = ^(eu)27 ^  6 2W^ 72+1 ^ ( 7 )  cosh 2yy/'y2 +  1

P2 =  r2/ 7 ^9+ 9-  ̂ sinh2 W y f i f T l  ^ 2 (7 ) e- 2» \/^ + r .

(6.77)

(6.78)
(eu)27 2

The wavepower (i.e. the total energy flux), F , is found by integrating p over positive y and multi

plying the result by the rate of growth of the wavetube (i.e. the group velocity of the radiated waves 

a  frame moving with velocity cg(7 ),

POO

F = { e u - c g{ 7 ) ) /  pdy.
Jo

(6.79)

It is straightforward to show

=  +  1 e-2W y / ^ l  ^ 2^  sinh 2W y/72 +  1,
P Y V

I  * *  =  2

and

=  r 2/ T :  t 1 e - 2M'v /^ + I  $ 2(7) sinh2
POO

/  P2 dy =  T . e 
(eu)27 2

(6.80)

(6.81)

so that

POO

/  p d y  
Jo

r2 x/72 +1 -2wv/'r2+i
(eu)27 2

* 2(7) ^ sinh 2 W - v / 72 + 1  +  sinh2 W  x / 72 +  1

=  " V ? : t 1 * 2(7 ) [sinh2 W y /i1 +  1 +  cosh2W v V  +  1 - 12 [euy  7^ L J
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l r V ^ T I  . 2  h _ e-2n,VT5+ r  
2 fe u lV  w  L2 (eu)2 72

' t 2(7) (6.82)1T2(72 + 1) Aa,
2 (eu)7 2

where equation (6.58) has been used to make the final substitution. Thus the wave power in the 

wavetube is

F  =  §2(7) [e“  “ Cs(7)1 ’ (6’83)

and the rate of change of the wave pseudomomentum is this quantity divided by the phase velocity:

M = l  =  * (7 )]. (6-84)

This is also the drag on the vortex, which must therefore respond by losing momentum. The 

leading order x-momentum of the vortex is, by a generalisation of the result in Batchelor (1967) for 

barotropic singular vortices

p o o  p o o

M x = -  I /  2/ (V 2$ - t f )  d x d y
JO  J — o o

= TL (6.85)

Finally, equating the rate of change of M x with M  yields the differential equation for L

dL 1 r ( 72 +  1) y-2/ \ / / w m n/i\
T t  = 2 W  * (7) (e“ " c»(7)) • (6-86)

Figure (6.8) is a plot of cp — cg for various values of W.  Note that eu =  cg(7 ), and so eu — cg(7 ) > 0.

The maximum occurs for 7  near to zero (i.e. the topographic long waves), but if 7  =  0 then

eu — gg (7 ) =  0 and linear theory predicts that there is no meridional drift due to wave radiation. 

This is consistent with the fact that since cp(0) =  c5 (0) energy can’t escape from the vortex. The 

response in this case must become nonlinear. There are two cases to consider, and in each case there 

is a subcase of interest, namely when the vortex travels at a velocity near the topographic long wave 

group velocity. These subcases are investigated by contour dynamics simulations in the following 

subsection.

C ase 1: V ortex off th e  sh elf

In this case L > W  and substitution of (6.33) in (6 .86) leads to

= 2~(euj27 ^  sinh2 W v V  +1 (eu -  cg(7 )). (6.87)
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Figure 6.8: A plot of the difference cp — cg, between the phase and group velocities for W  =  1/4 
(dotted line), W  = 1/10 (dashed line) and W  oo. Note that cp — cg >  0 for all values of W  and 
k.

Note that all of the factors in (6.87) are positive, which in turn implies that dL/dr  has the same 

sign as T. Here the vortex is a cyclone, so T < 0 and the vortex drifts towards the escarpment as a 

result of topographic wave radiation.

Case 2: Vortex on the shelf

In this case L  < W  and substitution of (6.34) in (6.86) leads to

57 = 2T( % ^  6 sinh2 L ' f F + 1 («* - c ,(i) )
Again, all of the factors in (6.88) are positive, so that dL/dr  has the same sign as T; i.e. the on 

shelf cyclone migrates towards the wall in response to wave radiation.

6.2.6 Contour dynamics results

To apply the contour dynamics algorithm in the present case the influence of the image of the vortex 

and the contours in the wall was taken into account. The velocity at the vortex centre is due to its 

image, the contours and the images of the contours. The velocity at the contour nodes is due to the 

vortex, the image of the vortex, the deflected contour and the image of the deflected contour.

The results presented here have been selected to illustrate the validity of the linear theory, and to 

investigate the onset of nonlinearity in the cases where the vortex travels at the group velocity of 

the topographic long waves. The cases of a vortex off the shelf and a vortex on the shelf are treated
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separately.

Off she lf anticyclone

The trajectory of the vortex centre for three different cases is shown in Figure (6.9). Here the 

shelf width is W  = 1, 0.5 and 0.1, but the distance of the vortex from the escarpment is fixed at 

L  — W  = 0.5. Also the value of e is 0.2, i.e. a weak vortex. This was the smallest value that could 

be used in practice since end effects occur rapidly for smaller values. Figure (6.9a) is a plot of the 

x  location of the vortex centre compared with the linear theory prediction given by (6.50a). The 

linear theory predicts well the longshore drift velocity for short times. At larger times the velocity 

in the ar-direction begins to retard.

Figure (6.9b) shows the displacement of the vortex centroid from its initial position. The drift in 

the ^/-direction is oscillatory but small, and the maximum displacement occurs for the case (VF, L) = 

(1,1.5).

Figure (6.10) shows the evolution of the contour for W  =  1 and L = 1.5. The topographic waves 

propagate away from the vortex. Note also the build up of cyclonic relative vorticity in the vicinity 

of the vortex. This is due to the swirl of the anticyclone competing with the preferred direction 

of the topographic waves. This process is also apparent in Figure (6.11) which shows the contour 

evolution for w = 0.1 and L = 0.6. Note also that in this case the topographic waves appear to 

be nondispersive. This is consistent with the analytic prediction and, in particular, equation (6.14) 

which says that the topographic waves are nondispersive to leading order for small W.

Off shelf cyclone

As for the anticyclone the trajectory of the vortex centre for three different cases is shown in Figure 

(6.12). Here the shelf width W  — 1, 0.5 and 0.1, but the distance of the vortex from the escarpment 

is fixed at L  — W  = 0.5. Also the value of e is 0.2. This was the smallest value that could be used in 

practice since end effects occur rapidly for smaller values. Figure (6.12a) is a plot of the x  location 

of the vortex centre compared with the linear theory prediction given by (6.50a). The linear theory 

predicts well the longshore drift velocity for short times. Figure (6.12b) shows the displacement of 

the vortex centroid from its initial position. The drift in the y-direction is oscillatory but small, and 

the maximum displacement occurs for the case (VF, L) = (0.1,0.6)
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Figure 6.9: A plot of the trajectory of the vortex centre for a weak (e =  0.2) off shelf anticyclone 
for various pairs (W ,L ). The dotted line is for (W,L ) =  (1,1.5), the dashed line is (W ,L ) = (0.5,1) 
and the dot-dashed line is (W,L) = (0.1,0.6). The plots are for 0 < t < 10. (a) is a plot of the x 
coordinate of the vortex centre compared with the prediction given in (6.50a) (solid line) and (b) 
shows the displacement of the vortex centre from its initial position.
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Figure 6.10: The evolution of the contour for a weak (e = 0.2) off shelf anticyclone. The parameter 
values used are W  = 1 and L = 1.5.
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Figure 6.11: The evolution of the contour for a weak (e =  0.2) off shelf anticyclone. The parameter 
values used axe W  =  0.1 and L = 0.6.
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Figure 6.12: A plot of the trajectory of the vortex centre for a weak (e =  0.2) off shelf cyclone for 
various pairs (W ,L ). The dotted line is for (W, L) = (1,1.5), the dashed line is (W ,L ) =  (0.5,1) 
and the dot-dashed line is (W, L) = (0.1,0.6). The plots are for 0 < t <  10. (a) is a plot of the x  
coordinate of the vortex centre compared with the prediction given in (6.50a) (solid line) and (b) 
shows the displacement of the vortex centre form its initial position.
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Figure (6.13) shows the evolution of the contour for W  =  1 and L — 1.5. The pseudoimage is 

apparent as axe the topographic waves which propagate away from the vortex. There is no evidence 

for wave radiation for the times of the runs shown here.

Figure (6.14) shows the contour evolution for the case W  = 0.1 and L = 0.6. As in the case of an 

anticyclone, the topographic waves appear to be nondispersive. Note also the nonlinear response of 

the pseudoimage at late times which is evident in the final frame.

Finally consider Figure (6.15) which is an example of an off shelf vortex moving at a  speed near 

the group velocity of the topographic waves. Here e =  0.1, W  = 0.3 and L  =  1.67 the same values 

used to obtain the FFT plot shown in Figure (6.7). The disturbance grows, but is unable to escape 

from the vicinity of the vortex even at large times. Eventually the response becomes nonlinear. The 

trajectory of the vortex is shown in Figure (6.16). Note the very slow drift of the vortex in the 

^/-direction.

On shelf vortex

Results are presented here for an on shelf vortex with W  = 1.5 and L = 0.5. Figure (6.17) shows 

the drift in the x-direction of the vortex centre for an anticyclone and a cyclone. In each case the 

solid line shows the position predicted by equation (6.54a) and where the calculation has included 

enough terms of the series to give accuracy to 6 decimal places. Once again the pseudoimage gives 

an accurate prediction of the vortex drift.

Figure (6.18) shows the contour evolution for the cyclone. Note the pseudoimage and the dispersive 

waves ahead of it. There is some evidence of wave radiation at later times.
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Figure 6.13: The evolution of the contour for a weak (e =  0.2) off shelf cyclone. The parameter 
values used axe W  = 1 and L = 1.5.
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Figure 6.14: The evolution of the contour for a weak (e =  0.2) off shelf anticyclone. The parameter 
values used are W =  0.1 and L = 0.6.
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Figure 6.15: The evolution of the contour for a weak (e =  0.1) off shelf cyclone moving at the 
topographic long wave speed. The parameter values used are W  =  0.3 and L = 1.67.

192



0.00

-0.02

- 0 . 0 4

I>-

- 0 . 0 6

- 0 .0 8

-0.10
0.20 0.30 0.500.00 0.10 0.40

X

Figure 6.16: The trajectory of the vortex centre for a weak (e =  0.1) off shelf cyclone moving at the 
topographic long wave speed, for 0 < t  < 60. The parameter values used are W  = 0.3 and L  =  1.67.
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Figure 6.17: The trajectory of the vortex centre for a weak (e =  0.2) on shelf vortex for 0 <  t <  10. 
The parameter values used are W  = 1 and L = 0.5. (a) anticyclone (b) cyclone.
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Figure 6.18: The evolution of the contour for a weak on shelf cyclone. The parameter values used 
are W  =  1.5, L = 0.5 and e =  0.2.
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6.3 An intense singular vortex

It is anticipated that some analytical progress is possible in the limit that the vortex is intense, 

i.e. S <  1. Here, however, an investigation of the problem is made using only contour dynamics 

simulations. Some of the important elements of the problem are highlighted.

Before proceeding some comments regarding the general features of the motion may be made. The 

velocity of the vortex due to its image in the wall is

« =  (6.89)

i.e. the image advects an anticyclone in the direction of decreasing x  (hereafter identified as east) and 

similarly a cyclone is advected in the direction of increasing x  (west). On the other hand the velocity 

induced at the vortex centre due to the deflected topographic contour is such that anticyclones drift 

southeast and cyclones drift northeast. Hence the secondary circulations enhance the eastward drift 

of a cyclone and retard the westward drift of an anticyclone. The magnitude of the velocity due 

to the image is a function of L, and the magnitude of the velocity due to the deflected contour is 

0 (5 ) and also a function of \L — W\,  i.e. the distance of the vortex from the escarpment. It is 

expected that if L  «  1, then the drift of the vortex will be dominated by the image, and if L  1 

but \L — W\  «  1 then the effect of the image (i.e. the wall) will be weak in comparison with the 

effect of the deformed contour.

6.3.1 An off shelf vortex

In this subsection results are presented for intense vortices with L > W,  i.e. vortices located off the 

shelf. The distance L — W  of the vortex from the escarpment is kept fixed at the value 0.5 and the 

width of the shelf W  varies. In all the case given here the value of the parameter 5  is 0.1. The cases 

of an anticyclone and a cyclone are treated separately.

Anticyclones

The results of three simulations are given here. The first has W  — 1 and L = 1.5, the second has 

W  = 0.5 and L = 1 and the third has W  = 0.1 and L = 0.6. Figure (6.19) shows a plot of the 

trajectories of the vortex centre in each of these cases. The displacement from the initial position 

(X, Y  — L) is plotted for easy comparison, and the solid line shows the analytic prediction of the
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trajectory in the absence of the wall, obtained by numerical integration of equations (4.96a,b). For 

L = 1.5 the vortex drift is close to that expected in the absence of the wall, and the eastward 

drift is only slightly retarded by the image. This is expected since the velocity due to the image 

vortex decreases exponentially with L, and so in this case the velocity due to the deflected contour 

dominates the motion. As L  is decreased the effect of the image becomes stronger, and for L = 0.6 

the vortex drift is mainly longshore and the effect of the deflected contour only slightly modifies the 

velocity due to the image.

Figures (6.20) - (6.22) show the evolution of the contour for the same cases. For W  = 1 and 

L = 1.5 the contour evolution is very similar to that in the absence of the wall. In Figure (6.21) 

the contour evolution for the case W  = 0.5 and L = 1 is plotted. Again the flow in the vicinity of 

the vortex is predominantly axisymmetric. In Figure (6.22), showing the evolution of the contour 

for W  = 0.1 and L = 0.6, the flow pattern resembles the atmosphere of a singular vortex dipole. 

This statement is reinforced by considering Figure (6.23) which shows the formation of a singular 

vortex dipole atmosphere2. The plot was obtained by placing a square array of 2500 points over the 

initial position (0, ±1) of the vortex pair. The points were advected by fourth order Runge-Kutta 

according to the velocity field due to the vortices.

Cyclones

Results are presented for off shelf cyclones for the same parameter values as the case of off shelf 

intense anticyclones, i.e. W  — 1 and L = 1.5, W  = 0.5 and L — 1 and W  =  0.1 and L = 0.6. Figure 

(6.24) shows a plot of the trajectories of the vortex centre in each of these cases. The displacement 

from the initial position (X , Y  — L) is plotted and the solid line shows the analytic prediction of 

the trajectory in the absence of the wall. The same general trends are apparent as for the case of 

an intense off shelf anticyclone described previously. For L — 1.5 the vortex drift is close to that 

expected in the absence of the wall, and the eastward drift is slightly enhanced by the image. As 

L  is decreased the effect of the image becomes stronger, and for L — 0.6 the vortex drift is mainly 

longshore and the effect of the deflected contour only slightly modifies the velocity due to the image.

Figures (6.25) - (6.27) show the evolution of the contour for the same cases. Exactly the same 

observations as for the anticyclones may be made. For W  = 1 and L = 1.5 the contour evolution

2N ote that the sense of the circulation of the dipole in Figure (6.23) is opposite to the anticyclones under consider
ation. The point made here is nonetheless the same. The use of the term ‘atmosphere’ for a dipole is due to Thom son  
(1867)
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Figure 6.19: A plot of the trajectory of the vortex centroid for various values of L  and W  for an 
intense anticyclone. The parameters used are S = 0.1 and T =  1 with L — W  — 0.5 fixed. The solid 
line shows the analytic prediction for a singular vortex located distance 0.5 from an escarpment in 
the absence of a wall. The other curves are for W  = 1, L = 1.5 (dotted line), W  =  0.5 and L = 1 
(dashed line), W  = 0.1 and L = 0.6 (dot-dashed line). The trajectories axe shown for 0 < t < 30. 
See text for further comments.
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Figure 6.20: The evolution of the contour for an intense off-shelf anticyclone. The parameter values 
used are 5  =  0.1, T =  1, W  = 1 and L = 1.5.
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Figure 6.21: As for Figure (6.20) except W  = 0.5 and L = 1.
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Figure 6.22: As for Figure (6.20) except W  = 0.1 and L = 0.6.
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Figure 6.23: The formation of a dipole atmosphere. See text for further comments.
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Figure 6.24: A plot of the trajectory of the vortex centroid for various values of L  and W  for an 
intense cyclone. The parameters used are 5  =  0.1 and T = — 1 with L — W  =  0.5 fixed. The solid 
line shows the analytic prediction for a singular vortex located distance 0.5 from an escarpment in 
the absence of a wall. The other curves are for W  =  1, L  =  1.5 (dotted line), W  = 0.5 and L  =  1 
(dashed line), W  = 0.1 and L = 0.6 (dot-dashed line). The trajectories are shown for 0 < t < 30. 
See text for further comments.
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is very similar to that in the absence of the wall. In Figure (6.21) the contour evolution for the 

case W  =  0.5 and L = 1 is plotted. Again the flow in the vicinity of the vortex is predominantly 

axisymmetric. In Figure (6.22), showing the evolution of the contour for W  = 0.1 and L  =  0.6, 

the flow pattern resembles the atmosphere of a singular vortex dipole, similarly to the case of an 

anticyclone with the same parameter values. It may be inferred that the leading order effect in the 

flow is that of the vortex and its image.
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Figure 6.25: The evolution of the contour for an intense off-shelf anticyclone. The parameter values 
used are 5  =  0.1, r  =  1, W  =  1 and L  — 1.5.
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Figure 6.26: As for Figure (6.25) except W  =  0.5 and L = 1.
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Figure 6.27: As for Figure (6.25) except W  = 0.1 and L = 0.6.
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6.3.2 An on shelf vortex

In this section results axe presented for just one set of parameters for an intense on shelf vortex. 

Specifically the case given is W  = 1 and L  =  0.5 and for the value S  = 0.1. The simple conclusion 

drawn here is that, as expected, the influence of the image on the vortex dominates the motion. 

Figure (6.28) shows the trajectory of the vortex centres. The drift is primarily long shore, and the 

deflected contour only induces a slight meridional motion.

The contour evolution for an anticyclone is shown in Figure (6.29) and for a cyclone in Figure (6.30). 

The anticyclone begins to capture and wrap the contour, but at later times the flow pattern once 

again resembles that of a dipole. The vortex entrains fluid from both sides of the escarpment and 

will transport this fluid far along the coast with little influence from the escarpment. The cyclone 

fails to capture the contour and moves away to the west, only entraining fluid initially located on the 

shelf. In other words the anticyclones ‘collides’ with the cross-escarpment fluid whilst the cyclone 

moves rapidly away from the cross-escarpment fluid.
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Figure 6.28: The trajectory of the vortex centre for an on shelf intense vortex. The parameter values 
used are W  =  1, L = 0.5 and 5  =  0.1, for 0 < t < 30. (a) is the trajectory for an anticyclone ( r  =  1) 
and (b) is the trajectory of a cyclone ( r  =  — 1)
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6.4 A m oderate intensity vortex

In this subsection some preliminary contour dynamics results for the case S  = 1 of a moderate 

intensity vortex are given. The values of W  and L  chosen are the same as those for the intense 

vortex described in the previous section.

6.4.1 An off shelf vortex

In this subsection results axe presented for moderate vortices with L  > IV, i.e. vortices located off 

the shelf. For consistency with the results presented for the intense vortex limit the distance L — W  

of the vortex from the escarpment is kept fixed at the value 0.5 and the width of the shelf W  varies. 

In all the case given here the value of the parameter S' is 1. The cases of an anticyclone and a 

cyclone are treated separately.

Anticyclones

The results of three simulations are given here. The first has W  = 1 and L  =  1.5, the second 

has W  =  0.5 and L = 1 and the third has W  = 0.1 and L =  0.6. Figure (6.31) shows a plot 

of the trajectories of the vortex centre in each of these cases. The displacement from the initial 

position (X , Y  — L) is plotted for easy comparison. In all cases the anticyclones migrate away from 

the escarpment in the looping motion characteristic of dipoles with cells of opposite but unequal 

circulations. The motion is very similar to that of the analogous case of cyclones located on the 

shallow side of the escarpment in the absence of the wall (see subsection 4.4.2 and figures therein).

The contour evolution in these three cases is shown in Figures (6.32) - (6.34) and confirms that 

dipoles are indeed formed between the primary vortex and fluid originally located on the shelf which 

has been advected off the shelf by the vortex and which has gained, via vortex stretching, net cyclonic 

relative vorticity as a result. The process of dipole formation appears to be the trend for all the 

values of W  presented here. Note however the difference between the present case and the analogous 

case of a moderate cycloe located on the shallow side of the escarpment in the absence of the wall. 

In particular, consider Figure (6.24). The cyclonic ‘blob’ of fluid that pairs up with the primary 

vortex turns back toward the wall and by t — 30 is sufficiently close to the wall that the effect of 

the images of both the primary vortex and the secondary patch of fluid is likely to dominate the
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Figure 6.31: A plot of the trajectory of the vortex for various values of L  and W  for a moderate 
anticyclone, for 0 < t < 30. The parameters used are S  = 1 and r  =  1 with L — W  =  0.5 fixed. The 
curves axe for W  =  1, L = 1.5 (solid line), W  = 0.5 and L = 1 (dotted line), W  = 0.1 and L = 0.6 
(dashed line). See text for further comments.
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influence of the primary vortex.

Cyclones

The results of three simulations are given here for the same parameter values as presented for the 

case of an off shelf moderate anticyclone. Figure (6.35) shows a plot of the trajectories of the vortex 

centre in each of these cases. The displacement from the initial position (X, Y  — L) is plotted for 

easy comparison. In all cases the cyclones migrate towards the wall and climb on to the shelf. Once 

on the shelf the image of the vortex becomes highly influential and the cyclones move parallel to the 

wall to the west.

The contour evolution in these three cases is shown in Figures (6.36) - (6.38). The general trend is 

for the vortices to move toward the escarpment. In doing so they come under the influence of the 

image which then carries them fax away from the initial disturbance in the contour.
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Figure 6.32: The evolution of the contour for a moderate off-shelf anticyclone. The parameter values 
used are § =  1, T =  1, W  = 1 and L = 1.5.
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Figure 6.33: As for Figure (6.32) except W  = 0.5 and L = 1.
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Figure 6.35: A plot of the trajectory of the vortex for various values of L  and W  for a moderate 
cyclone. The parameters used are S  = 1 and T =  1 with L — W  — 0.5 fixed. The curves are for 
W  = 1, L  =  1.5 (solid line), W  = 0.5 and L  =  1 (dotted line), W  = 0.1 and L = 0.6 (dashed line). 
The times shown in these plots are 0 < t < 20.
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Figure 6.36: The evolution of the contour for a moderate off-shelf cyclone. The parameter values 
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6.4.2 A n on shelf vortex

In this section results are presented for just one set of parameters for a moderate on shelf vortex. 

The case described is W  = 1 and L = 0.5 and for the value S  = 0.1. Figure (6.39) shows the 

trajectory of the vortex centres. The anticyclone initially moves northeast but then turns to move 

to the west. The cyclone rapidly approaches the wall where it comes under the influence of its image 

and it propagates rapidly to the west.

The contour evolution for an anticyclone is shown in Figure (6.40) and for a cyclone in Figure (6.41). 

The anticyclone pushes some of the fluid off the shelf, where it gains cyclonic relative vorticity. This 

then turns the anticyclone to the east, and resembles the pseudoimage. On the other hand the 

cyclone pulls fluid from the deep water on to the shelf where it gains anticyclonic relative vorticity. 

This then forces the primary cyclone towards the wall. The image dominates the motion at later 

times and the cyclone is carried to the west and away from the deflected contour.

6.5 Conclusions

A simple model of vortex motion near coastal topography has been studied for the full range of 

vortex intensities. Linear theory has been used to calculate the vortex drift velocity in the limit that 

the vortex is weak. In the intense and moderate vortex regimes some of the principle features of the 

motion have been identified in a contour dynamics study.

The main result from the linear theory is that, once again, the escarpment acts like a plane wall in 

the weak vortex limit. This is true for vortices located both on and off the shelf. Contour dynamics 

results confirm that linear theory describes well the motion for times larger than when it is formally 

applicable.

Although no theory has been presented for the intense vortex the key feature of the motion has 

been identified. The secondary circulations that arise due to the deflected contour compete with 

the influence of the image of the vortex. If the vortex is sufficiently far from the wall then the 

flow evolves as if the wall were not present. On the other hand if the vortex is sufficiently close 

to the wall then the vortex motion is dominated by the influence of the image and the secondary 

circulations only slightly modify the vortex drift. Both of these limits could be tackled analytically.
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Figure 6.39: The trajectory of the vortex centre for an on shelf moderate intensity vortex. The 
parameter values used are W  — 1, L = 0.5 and S  = 1, for 0 < t < 20. (a) is the trajectory for an 
anticyclone (T =  1) and (b) is the trajectory of a cyclone (T =  —1)
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Figure 6.40: The evolution of the contour for a moderate on-shelf anticyclone. The parameter values 
used are S  = 0.1, T = 1, W  = 1 and L = 0.5.
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Figure 6.41: The evolution of the contour for a moderate on-shelf cyclone. The parameter values 
used are S  =  0.1, T = 1, W  = 1 and L  =  0.5.
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The interesting case is when the secondary circulations and the image have compaxable influence on 

the vortex. This issue is not pursued here.

In the case of a moderate intensity vortex some results have also been presented. It appears that 

for moderate anticyclones located off the shelf the dipole formation witnessed in the previous two 

chapters is generic. The dipole moves away from the escarpment, the wall loses its influence and 

the vortex evolves as in Chapter 4. On the other had the initial dipole formation for the cyclone 

takes place, but the sense of the secondary circulation is such as to cause coastward motion of the 

cyclone. At later times the image of the cyclone takes over and the vortex moves far away from 

the influence of the deflected contour. For moderate intensity anticyclones located on the shelf the 

dipole formation is such as to compete with the image. For the parameter values shown here the 

anticyclone moves east at large times. On the other hand the dipole formation for the cyclone is 

such as to force the vortex closer to the influence of its image. The study of the moderate intensity 

vortices merits further consideration. Indeed, it should be emphasised that the study in this chapter 

is incomplete both numerically and analytically. A more extensive and quatitative study of the 

parameter space should be undertaken.

A ppendix A: Derivation of the Fourier transform for a singular vortex pair in a channel.

Consider a singular vortex dipole, located in the middle of a channel of width 2W , and where the 

walls are aligned along y = ± W . The vortices have ^/-coordinates ± L  and strengths ±T  respectively. 

See Figure (6.42). The images of the vortices comprise an infinite set of vortices, with the same 

r-coordinate X (t), and constant y-coordinates. The streamfiinction for the flow is
p oo

= ^  £  (Ko(rn+) - K 0(r„ -)), (6.A1)
n = — o o

where

r l+ = ( x - X f  + { y - ( 2 n W  + L ) ) \  (6.A2)

r l_  = ( x - X f  + ( y - { 2 n W - L ) f .  (6. A3)

To obtain the Fourier transform of (6.A1) in the required form rewrite tp as

Ip = ^  ^images j (6.A4)

where 4/ is the vortex pair given by (6.18), and
j'l OO

^ i m a g e s  = ^   ̂(Ao(rni) — ■^o0*n2) “H Ao(rn3) -^0( ^ 4)) ’  (6.A5)
n = l
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Figure 6.42: The system of images for a singular vortex pair in a channel of width 2W .
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is the system of images. Here

rni =

r 2 r n2

rn 3 =

(0x - X ) 2 + ( y - ( 2 n W  + L ))2, 

(0x - X ) 2 + ( y - ( 2 n W - L ) ) \  

((:x - X ) 2 + (y + ( 2 n W - L ))2, 

( ( x - X )2 +  (j/ +  (2nVF +  L))2.

(6.A6)

(6.A7)

(6 .A8)

(6.A9)

Making use of identity (4.26), the Fourier transform of the image term is

$ ,-ikX
i m a g e s

2x/ P T T

oo

£(•, - | ( » - ( 2 n W + i) |V P + r  _  _ |y -(2 n W -L )|V E a+T

n = l

+e-|y+(2niy-L)|vTO: _ e-|i/+(2nW+L)|Vfca+l^

In the weak coastward vortex problem the transform is required for y < W  for which

— \y ~  (2 nW  ± L ) \ = y -  (2 n W  ±  L).

(6.A10)

(6 .A11)

(6.A12)

It is straightforwaxd to show that the Fourier transform of the image term can then be rewritten,

r_ _ _ _ _ _ _ _ _ _ _ _ _  ( p ( v - L ) y / k * + l  _  J y + L ) V k i + 1 , p { - y + L ) Vfc2+1 _  J - y - L ) V k 2+ l \

,mas"  ~  v e J
OO ___

xe~ ikX e - 2nWVprfT (6.A13)
n=  1

The term in brackets is

2cosh(y — L )y /k2 + 1 — 2cosh(?/ +  L )y /k 2 + 1 =  4sinhy\/fc2 +  lsinhL \/fc2 +  1 (6.A14)

Moreover, note that

sinh ij

by the Binomial Theorem. Hence

1 =_ ^ = *q_
ev -  e-v  1 -  e~2r>

71 = 0

> 2  717/

0 0  1 -7 1
£ e-2m,=  ^ _ i ^ _ _ 1 =  «
71=1

1 -  e~2ri 2 sinh 7/

(6.A15)

(6.A16)

Use of (6.A14) and (6.A16), with 77 =  W y/k2 +  1 in (6.A13) leads to

,t, _  r  sinhyV*2 +  IsinhLVfc2 + 1 „-wVE*+i ~-ikx
ima5es sinh W  -v /PT T

(6.A17)

This term is even in k so finally, for 0 < y < W,

i m a g e s 27T Jo
e-wVk*+T s in h L i/F T T  sinhy^ T cosk{x_ x )  i K
y/k2 +  1 sinh W  y/k2 +  1 

which is the coastward term in equation (6.51) with X  = c u t .

(6.A18)
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Chapter 7

Conclusions

Several models of the interaction of a vortex with a topographic escarpment have been studied. The 

models are simplistic approximations to real geophysical vortices. Nonetheless it is anticipated that 

these models could offer insights into vortex behaviour in more realistic situations.

One the most important tenets of this thesis is the concept of the pseudoimage for weak vortices. 

In all cases studied here the linear theory for a weak vortex predicted that the escarpment will 

act as a plane wall. The pseudoimage description is very robust and in all of the cases studied 

contour dynamics solutions to the nonlinear equations show that the pseudoimage describes the 

vortex motion well for many eddy turnover times, i.e. well beyond the formal time for which 

linear theory is valid. It is expected that the pseudoimage description will be useful in other weak 

vortex interactions with sharp potential vorticity gradients. For example the study of a vortex near a 

seamount might begin with the image of a vortex in a cylinder to predict the motion. Stern and Flierl 

(1987) and Bell (1989) have noted the pseudoimage effect previously for a singular vortex moving 

near a potential vorticity interface. The phenomenon seems to be generic in weak vortex interactions 

with potential vorticity gradients and so it seems apt to name it the “pseudoimage” , as has been 

done throughout this thesis. It should be noted that the pseudoimage concept is unique to problems 

involving discontinuous potential vorticity gradient. On the /3-plane a weak vortex decays rapidly 

due to Rossby wave radiation. A weak vortex travelling parallel to an escarpment is a relatively 

long lived structure. Indeed vortices travelling in the opposite direction to the topographic waves 

will continue to do so until they meet another obstacle.

The pseudoimage also presents an interesting question in relation to the initialisation of vortex-
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escarpment interactions. In the /-plane models presented in this thesis, the initial condition is the 

presence of a vortex near un undeflected topographic contour. However a more physical situation is 

that of a vortex approaching an escaprment from infinity. If the vortex moves towards the escarpment 

on a time scale which is much slower the both the eddy-turnover time and the topographic wave 

time, then the contour will adjust to the pseudoimage whatever the strength of the vortex. It would 

be informative to investigate the range of values of the vortex strength for which this adjustment is 

stable, i.e. to seek equilibria of vortex shape and topographic contour adjustment, and assess the 

stability of such solutions.

In addition the contour dynamics results for the interaction of moderate vortices with sharp topogra

phy indicates that dipole formation may be a generic feature of the motion, and in keeping with the 

work of Zavala Sanson et al (1999) described previously. This process is not unique to discontinuous 

background potential vorticity gradients, having been rather well described for moderate /3-plane 

vortices by Lam and Dritschel (1998). It appears that dipole formation for moderate intensity vor

tices is the primary source of motion perpendicular to the gradient of potential vorticity. If this is 

a sharp gradient then the possibility arises that the vortex can cross the discontinuity and interact 

strongly with it, or else move away from the discontinuity as a dipole.

Further work in this area is plentiful. Recent studies of vortex motion on a multilayer /3-plane 

have indicated that the vertical structure of the vortex has important consequences on its evolution 

(see e.g. Sutyrin and Morel (1997)). It is believed that the Agulhas rings have a barotropic and a 

baroclinic component, so a more realistic model should take the effects of stratification into account. 

A good starting point would be a contour dynamics investigation of the motion of a heton (see Hogg 

and Stommel (1985)) near an escarpment. Modification of the quasigeostrophic contour dynamics 

scheme is straightforward for a 2-layer fluid and its implication is outlined in Davey et. al. (1993)

The quasigeostrophic assumption made throughout this thesis requires both Ro  and the amplitude 

of the interfacial disturbance compared to the layer depth to be small parameters. It is the latter 

assumption that is too restrictive. For example, as mentioned in Chapter 3, an Agulhas Ring has 

Ro «  0.1, but they can undergo interfacial disturbances which is of the same order of magnitude as 

the layer depth. Furthermore, there are regions in the ocean where the variation in topography is 

large enough to invalidate quasigeostrophic theory. For example the Walvis Ridge, which is known 

to greatly affect the trajectories of Agulhas Rings, and which lies in the southern Atlantic off the

230



east coast of Africa, rises up to 2000 km above the abyssal plain at 4000 km depth. Also, coastal 

surf zone vortices have large Rossby number and large topographic variations over the range of 

lengthscales of interest. Relaxing the quasigeostrophic assumption is of importance in developing a 

study of the interaction of vortices with topographic gradients.

The contour advective semi-Lagrangian algorithm of Dritschel and Ambaum (1998) is suited to 

a non-quasigeostrophic study. A barotropic, non-divergent (i.e. rigid lid) scheme also allows for 

both axbitraxy Rossby number and 0(1) variations in topography. However, for the barotropic, non 

divergent flow, Ro and 8 can not be combined into a single parameter 5  as in the present problem. 

Hence the dependence of the vortex dynamics on both the Rossby number and the height of the 

topography needs to be investigated to cover the whole parameter space. More realistic topography 

could also be considered. For example, an exponentially varying shelf abutting a flat ocean, where 

the step height could be 0(1) is a better model of a continental shelf than the quasigeostrophic 

model presented in Chapter 6. Also the effect of varing Ro and the topographic gradient over a 

linearly sloping bottom, could also be investigated.

It would also be desirable to use a shallow water code to investigate the effect of vortex stretching, 

absent in the non-divergent model, on the dynamics of vortices. A comparison with the non-divergent 

case is of interest. Finally a multi-layer shallow water code could be used to investigate the effects 

of vertical structure on the motion of the vortex.

231



A cknow ledgem ents

Above all I thank my PhD supervisors Ted Johnson and Robb McDonald, who took me on as a 

student with no background in fluid dynamics or programming. Thanks to their continued help and 

support and patient discussions I have been able to complete this thesis.

Thanks is also due to Sean Oughton and Marvin Jones, who have always been willing to discuss any 

aspects of this work, and who moreover have always been of great help in computatonal matters.

My thanks goes to Roger Grimshaw, David Dritschel and GertJan van Heijst who provided me with 

preprints Reznik and Grimshaw (1998), Lam and Dritschel (1998) and Zavala Sanson et. al. (1999) 

respectively, which have proved inspirational and invaluable in the preparation of this thesis. The 

code used for the contour dynamics was adapted from code supplied by David Dritschel.

Thanks are also due to my parents and my co-habitants Mike Girgis, Paul Dicker, Saxah Dulhanty 

and Sharon Castle, who have not only put up with my strange timekeeping during this work, but 

have also helped me through times of financial difficulty.

Finally, I would like to thank my examiners, Rupert Ford and David Dritschel, for discussions leading 

to many improvements in the final version of this thesis.

232



Bibliography

Akylas, T.R. On the excitation of long nonlinear water waves by a moving pressure distribution. 

J.Fluid Mech., 141:455-466,1984.

Ambramowitz, M and Stegun, I.A. (eds). Handbook of mathematical functions. Dover, 1972.

Aref, H. Motion of three vortices. Phys. Fluids, 22:393-400, 1979.

Aref, H. Integrable, chaotic and turbulent vortex motion in two-dimensional flows. 

Ann. Rev. Fluid. Mech., 15:345-89, 1983.

Aref, H. and Pomphrey, N. Integrable and chaotic motions of four vortices. I.the case of identical 

vortices. Proc.R.Soc.Lond., 380:359-387, 1982.

Aref, H., Kadtke, J.B, Zawadski, I. et. al. Point vortex dynamics:recent results and open problems. 

Fluid.Dyn.Res., 3:63-74, 1988.

Aref, H., Rott, N. and Thomann,H. Grobli’s solution of the three vortex problem. Ann. Rev. Flu. 

Mech., 24:1-20, 1992.

Batchelor, G.K. Introduction to Fluid Dynamics. Cam. Univ. Press, 1967.

Bell, G.I. Interaction between vortices and waves in a simple model of geophysical flow. Phys.Fluid. A, 

2:575-586, 1989.

Bender, C.M. and Orszag, S.A. Advanced mathematical methods for scientists and engineers. 

McGraw-Hill, 1978.

Davey, M.K., Hurst, R.G.A. and Johnson, E.R. Topographic eddies in multilayer flow. Dyn. Atmos. 

Ocean., 18:1-27, 1993.

233



Davis, C. S., and P. H. Weibe. Macrozooplankton biomass in a warm-core ring: Time series changes 

in size structure, taxonomic caomposition, and vertical distribution. J. Geophys. Res., 90:8871- 

8884, 1985.

Dritschel, D.G. The stability and energetics of corotating uniform vortices. J. Fluid Mech., 157: 

95-134, 1985.

Dritschel, D.G. Contour surgery: a topological reconnection scheme for extended integrations using 

contour dynamics. J. Comput. Phys., 77:240-266, 1988.

Dritschel, D.G. and Ambaum, M.H.P. A contour-advective semi-lagrangian numerical algorithm for 

simulating fine-scale conservative dynamical fields. Q.J.R. Met. Soc., 123:1097-1130, 1998.

Eckhardt, B. and Aref, H. Integrable and chaotic motions of four vortices.II.collision dynamics of 

vortex pairs. Phil.Trans.R.Soc.Lond., 326:655-696,1988.

Fiorino, M. and Elsberry, R.L. Some aspects of vortex structure related to tropical cyclone motion. 

J. Atmos. Sci., 46:975-990,1989.

Firing, E and Beardsley, R. The behaviour of a barotropic eddy on a /?-plane. J. Phys. Ocean., 6: 

57-65,1976.

Flierl, G.R. The application of linear quasi-geostrophic dynamics to gulf stream rings. J. Phys. 

Oceanogr., 7:365-379,1977.

Flierl, G.R. Rossby wave radiation from a strongly nonlinear warm eddy. J. Phys. Ocean., 14:47-58,

1984.

Gill, A.E. Atmosphere-Ocean Dynamics. Academic Press, 1982.

Gradshteyn, I.S. and Rhyzik, I.M. Tables of Integrals Series and Products. Academic Press, 1980.

Helmholtz, H. On integrals of the hydrodynamical equations which express vortex-motion. Phil.Mag., 

33:485-512,1867.

(translation by P.G.Tait of a paper of 1858).

Herman, A.J. and Rhines, P.B. and Johnson, E.R. Nonlinear Rossby adjustment in a channel:beyond 

Kelvin waves. J. Fluid Mech., 205:469-502,1989.

Hide, R. Origin of Jupiter’s Great Red Spot. Nature, 190:895-896,1961.

234



Hogg, N. and Stommel, H. The heton: an elementary interaction between discrete barolclinic 

geostrophic vortices, and it implications concerning eddy heat-flow. Proc. Roy. Soc. A, 397:1-20,

1985.

Johnson, E.R. Starting flow for an obstacle moving transversely in a rapidly rotating fluid. J. Fluid 

Mech., 149:71-89, 1984.

Johnson, E.R. and Davey, M.K. Free-surface adjustment and topographic waves in coastal currents. 

J. Fluid Mech., 219:273-289,1990.

Katok, A. and Hasselblatt,B. Introduction to the modern theory of dynamical systems. Cambridge 

University Press, 1995.

Lam, J.S-L. and Dritschel, D.G. On the beta-drift of an initially circular vortex patch. J. Fluid 

Mech., (submitted), 1998.

Lamb, H. Hydrodynamics. Dover, 6th edition, 1945.

Lighthill, Sir M.J. Waves in fluids. Cambridge Unversity Press, 1974.

Longuet-Higgins, M.S. On the trapping of waves along a discontinuity of depth in a  rotating ocean. 

J. Fluid. Mech., 31:417-434,1968.

McDonald, N.R. Topographic dispersal of bottom water. J. Phys. Ocean., 23:954-969, 1992.

McDonald, N.R. Topographic wave radiation and modon decay. Geophys. Astrophys. Fluid Dynam

ics, 83:51-77, 1996.

McDonald, N.R. Motion of an intense vortex near topography. J.Fluid Mech., 367:359-377,1998.

McDonald, N.R. The motion of geophysical vortices. Phil. Trans. Roy. Soc., (to appear), 1999.

McDonald, N.R. and Dunn, D.C. Some interactions of a vortex with a seamount. II Nuovo Cimento, 

(to appear), 1999.

McIntyre, M.E. On the wave momentum myth. J. Fluid Mech., 106:331-347, 1981.

McIntyre, M.E. The stratospheric polar vortex and sub-vortex: fluid dynamics and mid-latitude 

ozone loss. Phil. Trans. Roy. Soc. London, 352:227-240, 1995.

McWilliams, J.C. and Flierl, G.R. On the evolution of isolated, nonlinear vortices. J. Phys. 

Oceanogr., 9:1155-1182,1979.

235



Meleshko, V.V. et al. Advection of a vortex pair atmosphere in a velocity field of point vortices. 

Phys. Fluids A , 4:2779-2797,1992.

Meleshko, V.V. and van Heijst, G.J.F. On Chaplygin’s investigations of two-dimensional vortex 

structures in an inviscid fluid. J.Fluid Mech., 272:157-82, 1994.

Mied, R.SP. and Lindeman, G.J. The propagation and evolution of cyclonic gulf stream rings. J. 

Phys. Oceanogr., 9:1183-1206, 1979.

Morikawa, G.K. Geostrophic vortex motion. J.Meteorol., 17:148-54,1960.

Morikawa, G.K. and Swenson, E.V. Interacting motion of rectilinear geostrophic vortices. 

Phys.Fluids, 14:1058-67,1973.

Nof, D. Modons and monopoles on a 7  -plane. Geophys.Astrophys.Fluid Dyn., 52:71-87, 1990.

Ottino, J.M. Mixing, chaotic advection and turbulence. Ann.Rev.Fluid Mech., 22:207-53, 1990.

Pedlosky, J. Geophysical Fluid Dynamics. Springer, 1979.

Pierrhumbert, R.T. A family of steady, translating vortex pairs with distributed vorticity. J. Fluid 

Mech., 99:129-144, 1980.

Reznik, G.M. Dynamics of singular vortices on a beta-plane. J.Fluid Mech., 240:405-432,1992.

Reznik, G.M. and Dewar, W.K. An analytical theory of distributed axisymmetric barotropic vortices 

on the /2-plane. J.Fluid Mech., 269:301-322,1994.

Reznik,G.M. and Grimshaw, R. On the long term evolution of an intense localised divergent vortex 

on the /2-plane. J.Fluid Mech., (Submitted), 1998.

Rossby, C.G., et al. Relation between variations in the intensity of the zonal circulation of the 

atmosphere and the displacements of the semi-permanent centers of action. J. Marine Res., 2: 

38-55, 1939.

Rott, N. Constrained three and four vortex problems. Phys.Fluids A, 2:1477-1480,1990.

Salmon, R. Practical use of Hamilton’s principle. J.Fluid Mech., 132:431-444, 1983.

Spiegel, M. Theory and Problems of Theoretical mechanics. McGraw-Hill, 1967.

Stern, M.E. and Flierl, G.R. On the interaction of a vortex with a shear flow. J.Geo.Res., 92: 

10733-10744,1987.

236



Sutyrin, G.G. and Flierl, G.R. Intense vortex motion on the beta plane: development of the beta 

gyres. J. Atmos. Sci., 51:773-790, 1994.

Sutyrin, G.G. and Morel, Y.G. Intense vortex motion in a stratified fluid on the beta-plane: an 

analytical theory and its validation. J. Fluid Mech., 336:203-220,1997.

Sutyrin, G.G., Hesthaven, J.S., Lynov, J.P. and Rasmussen, J.J. Dynamical properties of vortical 

structures on the beta-plane. J. Fluid Mech., 268:103-131,1994.

Taylor, G.I. Experiments on the motion of solid bodies in rotating fluids. Proc. Roy. Soc. Lond., A 

104:213-218, 1923.

Thomson, Sir W. On the motion of vortex atoms. Proc.R.Soc.Edin., 6:94-105, 1867.

Velasco Fuentes, O.U. Propagation and transport properties of dipolar vortices on a 7  -plane. 

Phys.Fluids, 6:3341-3352,1867.

Velasco Fuentes, O.U. and van Heijst, G.J.F. Experimental study of dipolar vortices on a topot- 

graphic 0 -plane. J.Fluid Mech., 259:79-106, 1994.

Velasco Fuentes, O.U., van Heijst, G.J.F. and Cremers, B.E. Chaotic advection by dipolar vortices 

on a 0  -plane. J.Fluid Mech., 291:139-61,1995.

Velasco Fuentes, O.U.,van Heist, G.J.F. and van Lipzig, N.P.M.,. Unsteady behaviour of a topogra

phy modulated tripole. J.Fluid Mech., 307:11-41, 1996.

Whitham, G.B. Linear and nonlinear waves. Wiley, 1974.

Wiggins, S. Chaotic Transport in Dynamical Systems. Springer, 1992.

Zabusky, N.J. and McWilliams, J.C. A modulated point-vortex model for geostrophic, 0  -plane 

dynamics. Phys.Fluids, 25:2175-2182, 1982.

Zavala Sanson, I., van Heijst, G.J.F and Doorschoot, J.J.J. Reflection of barotropic vortices from a 

step-like topography. II Nuovo Cimento, (submitted), 1999.

237


