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Abstract
The main objective of this thesis is to develop and analyse mathematical models 

of the regulation of the ovulation cycle in mammals. Specifically, we are interested 
in understanding the mechanisms that control the number of follicles ovulated in 
each cycle. In humans, a failure of such control mechanisms can lead to Polycystic 
Ovary Syndrome (PCOS), which accounts for a substantial fraction of all cases of 
anovulatory infertility found in women of reproductive age. Although treatm ent is 
available, it is highly desirable to improve it. Thus, a better understanding of the 
selection process of the ovulatory follicle is still required.

The thesis begins with a biological description of the terminal phase of the ovarian 
cycle. This provides the necessary background for the understanding and formulation 
of the mathematical models presented in later chapters. Next, a review of existing 
models found in the literature is given and their relevance to the regulation process 
is analysed. Of these, the one due to Lacker (also referred as the symmetric model) 
is the best understood in terms of the control of ovulation and PCO. It is given by a 
system of non-linear differential equations and assumes the same growth rate for each 
follicle. This assumption is biologically implausible and leads the model to exhibit 
unrealistic behaviour in some cases. A non-symmetric generalisation is therefore 
developed and Lacker’s theoretical analysis of the symmetric model is extended to 
this case. The non-symmetric model exhibits behaviour which more closely reflects 
that observed in PCO. The thesis then goes on to present a theoretical and numerical 
analysis of another version of the symmetric model which has been proposed by 
Mariana et al. This incorporates a variable representing the ageing of the follicle in 
the same framework as that of Lacker’s original model.

Finally, all of the above models use a somewhat arbitrary function to describe a 
follicle’s sensitivity to hormonal stimulation. In order to provide a more biologically 
motivated basis for our analysis we therefore develop a model in terms of the go­
nadotropic receptors of follicular cells. It is believed that the degree of sensitivity of 
a follicle to pituitary hormones is one of the factors determining its selection. This 
model is studied using numerical techniques, since its mathematical structure is too 
complicated to allow a theoretical analysis.

Tentative conclusions underlying the mechanisms that select the ovulatory fol­
licle are given in terms of the different models described in this thesis. Some of 
these are rather speculative due to the greatly simplified nature of the models in 
comparison to the real biological system. Nevertheless, since the behaviour of the 
models is qualitatively consistent with the results obtained from experimental data, 
they provide useful insights into the mechanisms that control the ovulation number 
in mammals.
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Chapter 1

INTRODUCTION

The production and fertilisation of mammalian eggs is now understood to be regu­

lated by different elements of the reproductive system. The complete stock of oocytes 

in the ovary is formed during early fetal development. Only very few of these eggs 

will be selected for ovulation during the mammal’s reproductive age. In the particu­

lar case of primates the number of eggs that are ovulated is fixed, being usually one 

every month. For the case of humans, out of the 250 000 eggs present at menarche 

in the ovary, less than 500 will be ovulated (approximately 0.2%) [Faddy and Gos- 

den, 1995]. The remaining oocytes will end up regressing and disappearing from the 

ovary through an atretic process. In most mammalian species, a female dies before 

the complete reservoir of oocytes is exhausted, though for humans egg exhaustion 

normally happens at menopause.

In each ovarian cycle a group of follicles undergoes terminal development. This 

last phase of ovarian dynamics corresponds to the estrous cycle and is also referred to 

as the menstrual cycle in the particular case of primates. Although much is known 

about how follicles ovulate and the ways this procedure is controlled, it remains 

unclear when and under which circumstances ovulating follicles are selected from 

tha t group. Furthermore, it is also uncertain how the number of ovulating follicles 

is regulated.

It has been shown in humans that ovulating follicles develop from both ovaries 

in a random manner. Moreover, when one of the ovaries is removed, the remaining 

one takes over and is able to ovulate every month. This fact strengthens the idea 

that the control mechanism partly operates outside the ovaries. It is now well known 

tha t this control process involves the endocrine system including the hypothalamus, 

the pituitary glands and the ovary itself [Hodgen, 1982; Hillier, 1994; Spears et al.,
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1996]. Therefore, follicular growth takes place as a response to a signalling network 

incorporating these organs and the follicles themselves. All of these factors, which 

interact either in an endocrine, paracrine or autocrine way result in a cascade of 

interrelated events, which are able to select and ovulate healthy mature oocytes at 

the optimal time for fertilisation.

However, such a mechanism of selection and ovulation can go wrong with the 

result that no follicle is able to release an egg. In the case of humans, the selection 

process can fail and instead of having one follicle ovulating every month, a consider­

able number of follicles are selected and reach pre-ovulatory maturity. Subsequently, 

they never ovulate but rather stay in the ovary for some time. This feature is re­

ferred to as a Polycystic Ovary (PCO), which together with its adjacent consequences 

accounts for the Polycystic Ovary Syndrome (PCOS).

Although this syndrome was first defined in 1935, very little is known about its 

underlying causes [Chang, 1996]. Since there are many factors which are thought to 

contribute to its occurrence, it has not even been possible to give a precise defini­

tion of the syndrome [Dewailly, 1997]. However, it occurs in approximately 20% of 

women of reproductive age, and in its most severe form is the most common cause 

of anovulatory infertility [Pranks et a/., 1996]. An understanding of this failure is 

im portant medically; while many women suffering from anovulatory PCOS can be 

successfully made to ovulate by treatment with appropriate hormones, this can easily 

result in multiple ovulation, leading to multiple pregnancies with all their attendant 

adverse side effects. Whilst modern treatment protocols have to some extent over­

come this problem, a better understanding of mechanisms leading to PCOS is still 

highly desirable.

Therefore, it is the main objective of this thesis to study the basic features 

that regulate the selection dynamics during the estrous/m enstrual cycle from the 

mathematical viewpoint. It would be very ambitious to try to determine precisely 

all the actual factors that are involved in the follicle selection process, or to ascertain 

the causes of PCOS. Instead, it is our aim to develop models that qualitatively agree 

with experimental data, which may provide useful insights to the control mechanism 

of the selection process.

After describing the basic biology required to understand the cycle and follicular 

development, we review some of the existing mathematical models in the literature. 

These models try to describe, in a descriptive or functional way, the most im portant
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features of the control system within the cycle. The descriptive models focus on 

an understanding of folliclegenesis in terms of follicular population and in terms of 

follicular cells. On the other hand, functional models range from an attem pt to 

only reproduce the cyclic behaviour of estrogens to models of the whole system of 

interacting hormones, follicular growth and steroid production at each stage of the 

cycle.

All of these models relate biological to mathematical knowledge to obtain qual­

itative information about the different elements of the regulation process. In this 

thesis they were primarily analysed from the perspective of the control of the follicle 

selection.

In the early eighties Lacker was the first to publish a mathematical model which 

reflects the dynamics of many growing follicles during the follicular phase of the 

cycle. Many assumptions are made about the complex pituitary-ovary system and 

about follicular development in order to obtain a manageable system of differential 

equations. In chapter 4 we reproduce the analysis of this system in order to properly 

understand the way it is able to reflect the basic features of the cycle. Such features 

involve the emergence of pre-ovulatory and ovulatory follicles, control of the selection 

number, and atresia of the remaining non-selected follicles.

Furthermore, Lacker’s model is the first to simulate anovulation either by ma­

nipulation of the relevant parameters or by changes in the initial conditions of the 

system. His model is able to select many pre-ovulatory follicles tha t never ovulate, 

but rather remain stuck with a fixed size. Although this may suggest features of 

PCOS in humans, Lacker’s model is not accurate in reflecting this syndrome. This is 

mainly because the number of ovulatory follicles his model produces is always larger 

than the number of pre-ovulatory follicles selected in PCO. In reality this is not the 

case for there are women who ovulate one follicle in one cycle and in the next may 

present PCO with many pre-ovulatory mature follicles that never ovulate. Thus in 

reality, the number of ovulatory follicles is usually less than the number of PCO 

follicles, and not the other way around.

This particular issue and some others lead us to the generalisation of such a 

model, which is described in chapter 5. The symmetry assumed by Lacker in which 

all of the follicles grow in exactly the same manner is broken, and each follicle is 

made to have different parameter values. This is more biologically realistic since 

these parameters are assumed to account for the follicle sensitivity to hormone stim-
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illation. Allowing such parameters to vary from follicle to follicle is consistent with 

experimental observations [Hartshorne et a l , 1994].

The generalised non-symmetric model that we develop and analyse leads to a 

number of new conclusions about follicle selection dynamics. In particular, this non- 

symmetric model reflects PCO more accurately than the symmetric one. In the 

following chapter we study another interesting modification of the symmetric model 

published a few years later by Mariana et al. A thorough theoretical and numerical 

analysis is developed leading to a number of new conclusions. This model proposes 

a new maturity variable that involves a decaying factor also considered as the ageing 

of the follicle. When such a decaying factor is large enough with respect to the initial 

size of the follicle, the selection dynamics is disturbed and the follicle will always be 

atretic. Moreover, when such an ageing parameter is larger for one follicle than for 

the remaining ones, the number of selected follicles is not predictable and the type 

of cycle may be also altered.

Unfortunately, all of these models have a somewhat arbitrary function for the 

follicle growth rate. In fact, very little is known about the way follicles react to 

hormone stimulation, which regulates their growth and steroid secretion during the 

terminal phases of the ovarian cycle. It is believed that this follicular sensitivity is 

the main factor determining the selection of pre-ovulatory follicles [Gougeon, 1984], 

It appears that follicles compete for the hormone resources in terms of their capacity 

to react to them. However, it is difficult to measure such sensitivity experimentally.

Although many biological studies on the follicular micro-environment have been 

considered (e.g. [Austin and Short, 1982; Richards, 1975; Gougeon, 1986; For­

tune, 1994; Mason and Franks, 1997; Misrahi et al., 1996; Rainey et al., 1996]), the 

signalling network taking place inside the follicle during folliclegenesis is extremely 

complex. Follicles react to gonadotropins throughout protein-like receptors attached 

to their cell membranes. Once the binding reaction happens, a signalling trans­

duction pathway develops inside such cells that ends up in cell proliferation and 

steroidogenesis. However, other kind of steroids, growth factors and cytokines have 

been detected in the follicle, which modulate the pathway [Adashi and Hsueh, 1982; 

Alouf et al., 1997; Armstrong et al., 1996; Bao et al., 1995; Erickson et al,  1979]. 

In particular, some individuals presenting PCOS suffer from obesity suggesting that 

insulin growth factors acquired from the blood stream arrest follicular development 

at some stage of the cycle [Rosenfield, 1997; McGee et al,  1996].
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Due to this complexity we need to focus only on the im portant factors to have 

any base of developing a biologically based growth function for follicles. We therefore 

choose to only consider the concentration of bound receptors of follicle cells. This 

allows the basic framework first proposed by Lacker to be maintained, and hence we 

can use most of the results provided by the three main models described in previous 

chapters.

It is also im portant to mention that the way follicles atrophy has been carefully 

studied for the development of this last model. Some biological studies have sug­

gested that not only growth, steroidogenesis and selection of follicles is hormonally 

controlled, but also follicle atresia. It appears that the lack of gonadotropins not 

only stops follicular growth and steroid production, but at the same time triggers 

atresia [Brailly et al, 1981; Garrett and Guthrie, 1996; Hillier and Tetsuka, 1997; 

Jablonka-Shariff et al., 1996]. Atretic demise is believed to begin with the start of 

apoptotic cell death of follicular cells. Such apoptotic cells appear in both healthy 

and atretic follicles, although in the latter in a much larger proportion since it is be­

lieved that apoptosis has overcome cell proliferation and differentiation [Jolly et al., 

1997b; Jolly et al,  1997a; Tsonis et al,  1984]. Therefore, in the last model we 

investigate how such effects may be explicitly incorporated into the equations.

The final part of this thesis discusses and compares the results obtained from all 

of the above. The relevance of the models to the actual biology of the control of 

ovulation in mammals is considered as well as possible hypotheses that may suggest 

new mechanisms that determine and affect the selection process. Finally, some 

suggestions are made for future research in terms of mathematical modelling.
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Chapter 2

THE BIOLOGY

2.1 Introduction

The selection of the ovulatory follicle within a mammalian ovary is a complex en­

docrine process of great medical importance. Prom an initial subset of recruited 

follicles developing towards terminal maturation, the number selected for ovulation 

is relatively small and remains fairly constant from cycle to cycle. Furthermore, the 

vast majority of follicles tha t do not ovulate degenerate through a process known as 

atresia. This suggests tha t a remarkably robust control scheme is involved. More­

over, it is thought that these selection and atretic procedures are associated with the 

parts of endocrine system consisting of the hypothalamus and pituitary glands as 

well as the ovary itself. The main purpose of this chapter is to describe the biological 

features of the ovulation cycle in primates. We do this at the level of detail required 

in later chapters to develop mathematical models of the regulation process.

2.2 Folliclegenesis and hormone stim ulation

Prom the stock of oocytes formed during fetal development in the mammal, many 

thousands of primordial follicles are formed and remain scattered through the cortex 

of the ovary. It is not yet clear how individual oocytes are recruited to join the pool 

of growing follicles. However, once they initiate their m aturation process they induce 

changes in the surrounding stroma cells which then differentiate into the granulosa 

and theca cells that form the follicle itself. The follicle is at this stage a unit built 

of two main types of cells tha t protect and support the oocyte in its development 

towards its eventual ovulation and fertilisation [Eppig, 1991].

In the case of humans, follicular cells continue to differentiate and proliferate for
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2.2. FOLLICLEGENESIS AND HORMONE STIM ULATIO N

approximately 120 days. During the early growing stage of folliclegenesis, granulosa 

cells aggregate around the oocyte and the follicle increases its diameter from 0.04 mm 

to 0.1 mm approximately. On the other hand, theca cells proliferate just outside a 

thick basement membrane containing the granulosa cells. When the follicle diameter 

is between 0.1 and 0.2 mm, the follicle is considered to be in the pre-antral stage of 

the cycle. When it is around 0.2 mm large, gaps of follicular fluid start appearing 

between the granulosa cells; this is defined as the antral phase. It is strongly believed 

that up to the end of the antral phase, the follicle is able to grow without essentially 

any hormonal stimulation. This is also known as basal follicular growth and usually 

lasts for about 65 days in humans. When the follicle is about 2 mm in size, it is 

then referred to as Graafian follicle. It is at this stage that the oocyte is immersed 

within a fluid cavity known as the antrum, and that the granulosa cells reach their 

proliferation peak. Granulosa cells are distributed in three to four layers surrounding 

the antrum  and the vascularised network of theca cells is well established outside the 

basement membrane [Gougeon, 1996b; Gougeon, 1996a], see figure 2.1. Although

C apillary
n e tw o rk

F ig u re  2.1: Graafian follicle structure. A capillary network of theca cells surrounds the basement 
membrane which, in turn , surrounds the three to four layers of granulosa cells. The oocyte is 
immerse w ithin the antrum  (follicular fluid) and is attached to the granulosa of the follicle through 
out the cumulus oophorus [Austin and Short, 1984].

i f  G ran u lo sa  cells

F o llicu la r fluid

Oocyte

C um ulus
o o p h o ru s

T h e c a  in te rn a  cells

B asem ent
m em b ran e
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2.2. FOLLICLEGENESIS AND HORMONE STIMULATION

antrum formation also increases follicular size, follicle diameter is well correlated with 

the number of granulosa cells, especially during the follicular phase of the cycle. It 

is believed that during the terminal part of follicular development, vascularisation of 

the theca cells increases, whilst granulosa cells progressively lose their proliferative 

ability and acquire a high steroidogenic activity.

It is at this stage that the follicle is believed to begin its endocrine develop­

ment; tha t is the moment when it becomes sensitive and responsive to hormone 

stimulation. This endocrine function of the ovary ensures the regular production 

of healthy oocytes at a time when it is best for them to be ovulated and fertilised. 

The hypothalamus and pituitary glands are in charge of releasing specific hormones 

that help the Graafian follicles continue their m aturation towards the pre-ovulatory 

stage. The follicle m aturation process is now also affected by its estrogen production 

in response to gonadotropin stimulation, meaning tha t this steroidogenesis also con­

tributes to the follicle’s own development. These Graafian follicles are then ready to 

be recruited to the last part of follicular development, which is the ovulation cycle. 

Once selected, the human early pre-ovulatory follicle is around 5 mm in diameter 

and is able to ovulate under gonadotropin stimulation. From this stage onwards, the 

follicle increases its size mainly due to the growth of its antrum. In the case of a 

non-selected follicle, its atretic regression starts by the onset of apoptosis within its 

granulosa. Furthermore, this gonadotropic regulation proceeds to the formation of 

the corpus luteum once the oocyte has been extruded from the ovary at a size of 1 0  

to 20 mm in diameter [Gougeon, 1996b; Gougeon, 1996a].

The primary endocrine system involved in follicular growth and m aturation from 

the Graafian state up to the pre-ovulatory state is a negative feedback mechanism 

involving the hypothalamus, pituitary glands and the ovary. The hypothalamus re­

leases Gonadotropin Releasing Hormone, GnRH. This acts on the pituitary gland 

which in response releases Follicle Stimulating Hormone, FSH, and Lutenizing Hor­

mone, LH. FSH acts on the granulosa cells of the follicle to transform androgens 

into oestradiol. These androgens are transformed from progestins within the follicle 

theca cells with the help of LH (see figure 2.2). When certain oestradiol levels are 

reached in the blood stream, the pituitary responds by almost completely stopping 

the release of FSH. It is at this moment when the follicles that have not reached 

pre-ovulatory maturity start atrophying and ultimately dying [Hsueh et al., 1994]. 

After the extrusion of the oocyte (ovulation) the remaining theca and granulosa cells
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F ig u re  2.2: Steroidogenesis within the Graafian follicle. The theca interna cells produce androgens 
such as androstenedione and testosterone with the help of bound LH signal stim ulation. These 
androgens get through the follicle basement membrane and reach granulosa cells. Once inside the 
granulosa cells, these steroids are inter-converted into oestradiol. Such a process is stim ulated by 
the signalling process produced once FSH binds the granulosa cells receptors [Austin and Short, 
1984],

within the ovary form the corpus luteurn. The number of corporea lutea found in the 

ovaries is directly related to the number of eggs delivered and varies with the species 

[Austin and Short, 1984].

A more detailed characterisation of the cycle, also referred as the menstrual cycle 

for primates and as the estrous cycle for other mammals is explained in terms of the 

following four phases [Baird, 1983]:

a) Early follicular phase: both ovaries contain multiple immature follicles, so 

that secretion of oestradiol is minimal. Since the negative feedback effect from the 

previous cycle has finished, secretion of FSH and LH is raised. This heightened level 

of FSH stimulates the development of medium sized follicles and subsequently their

23



2.3. POLYCYSTIC OVARY SYNDROME

production of oestradiol.

b) Late follicular phase: selection of the pre-ovulatory follicle has taken place 

which monopolises the production of oestradiol within the ovary. Such follicle oestra­

diol production exerts a negative feedback control upon the pituitary production of 

FSH and a positive feedback control upon the pituitary production of LH th a t trig­

gers the mid-cycle LH surge [Austin and Short, 1984]. The first of these has the 

consequence of atretic regression of the non-selected follicles, and the second one is 

also thought to increase the aromatisation of androgens into oestradiol within the 

granulosa cells of the pre-ovulatory follicle. Such cells axe now able to react to LH 

stimulation thanks to their acquisition of LH receptors at this stage of their differ­

entiation [Monniaux et al, 1997]. Moreover, the positive feedback effect upon LH 

pituitary secretion triggers the mid cycle LH surge, which a short while later induces 

ovulation of the pre-ovulatory follicle.

c) Early luteal phase: after the surge of the ovulation-inducting gonadotropin 

(LH), oestradiol and progesterone produced by the corporea lutea induce a negative 

feedback in the pituitary in order to terminate LH secretion. Corporea lutea also 

produce inhibin which in synergy with oestradiol continues to suppress pituitary 

FSH release; the surviving medium sized follicles do not keep growing but regress.

d) Late luteal phase: if pregnancy is not initiated corporea lutea regress. There­

fore, the negative feedback of luteal steroids (oestradiol and progesterone) and in­

hibin stops. Finally, adequate levels of gonadotropins are restored to permit the 

growth of the new medium sized follicles. The cycle starts once again (see figure 

2.3).

The ovulation cycle duration and the number of follicles ovulated varies amongst 

species. For the particular case of humans, the menstrual cycle ideally lasts 28 days. 

The follicular phase starts at the beginning of the menstrual period up to the LH 

surge tha t induces ovulation of the selected follicle -  since for this case it is usually 

only one -  after approximately 14 days. We are mainly interested in analysing and 

reproducing this first half of the cycle which is where selection takes place.

2.3 Polycystic Ovary Syndrome

There are many different causes of infertility in mammals originating at different lev­

els of the reproduction cycle. In the case of humans these include genetic mutations,
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F igu re 2.3: The four main phases of the endocrine feedback mechanism of the human menstrual 
cycle, a) Early follicular phase: both ovaries contain multiple immature follicles with small steroido­
genic activity. Both gonadotropic hormones stimulate follicular growth and oestradiol production, 
b) Late follicular phase: the negative feedback of oestradiol upon the pituitary FSH production has 
started and selection of the ovulatory follicle has occurred, c) Early luteal phase: after the LH surge 
and ovulation, the corpus luteum produces progesterone to stop the LH pituitary secretion, d) Late 
luteal phase: if pregnancy is not initiated the corpus luteum regresses so its feedback effects upon 
the pituitary gonadotropic production ceases; the cycle is ready to start once again [Baird, 1983].

nutritional deficiencies, emotional disturbances, systemic diseases and disturbance 

of the ovary and pituitary gland [Taymor, 1996]. In particular, failure may occur in 

the endocrine feedback mechanism leading to anovulation. The form of anovulation 

caused by the condition known as Polycystic Ovary Syndrome (PCOS) accounts for 

some three-quarters of anovulatory infertility. However, PCOS may not affect the 

reproductive cycle in such a drastic way, but be present in ovulatory cycles. Indeed 

this is a quite common condition, which affects, in different degrees of severity, up 

to twenty percent of women of reproductive age [Poison et a/., 1988]. It is possible 

for women to only have a polycystic ovary (PCO) without other apparent clinical or 

biochemical symptoms which characterise the syndrome. Although it has been very
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difficult to give a proper clinical definition for PCOS throughout the years, Mason 

suggests the following “...the presence of polycystic ovaries in conjunction with at 

least one other manifestation of the syndrome such as anovulation or evidence of 

androgen excess” ([Mason, 1994], p.48).

One of the main characteristics of PCOS is that the ovary contains a substantial 

number of large follicles which reach 5-10 mm in diameter but fail to ovulate. A 

reasonable interpretation is that this is caused by a failure of the selection mechanism; 

instead of one follicle coming to dominate and the remainder degenerating through 

atresia, a large group become arrested at some intermediate stage.

The underlying cause for the failure of the hormonal feedback mechanism leading 

to PCOS is basically unknown. The main reason for this is the lack of a precise 

understanding of the selection process of the pre-ovulatory follicle. This is due to 

the number of interacting elements leading to a complex signalling network during 

the cycle. Therefore, it is important to identify whether the problem is at a global 

level, local level or both. By global level we mean the signalling between the p ituitary 

and ovary through circulating hormones and steroids. In contrast, by a local level 

we mean the signals exchanged amongst the different follicular cells and different 

follicles inside the ovary.

Nevertheless, a number of explanations of PCOS have been proposed based on the 

many different studies that have taken place since the syndrome was first described 

in 1935. One of the most popular is that once selection has occurred, circulating 

FSH levels are not high enough to permit the selected follicles to keep on growing 

towards ovulation. This is why treatm ent with appropriate hormones can make some 

PCOS women ovulate. On the other hand, it has also been observed that there are 

cases of ovulatory or anovulatory PCO (ovPCO and anovPCO respectively) with 

normal serum FSH concentrations [Mason et al., 1994]. Furthermore, FSH follicular 

levels can even be high enough to promote oestradiol production by granulosa cells 

and yet, the follicle does not ovulate. One plausible explanation for this is tha t as a 

result of abnormal thickening, FSH is not able to permeate the basement membrane 

of the follicle.

Another potential explanation for PCOS is the inability of granulosa cells to 

respond to gonadotropins due to an abnormal expression of some unidentified in­

hibitory factor within the follicle, which is also needed to enable cell differentiation 

and proliferation. The lack of estrogen creation due to a failure of granulosa cells
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to respond to FSH also causes a rise in androgen follicular levels. This in turn, 

may affect either the hypothalamus or pituitary hormonal production or lead to the 

thickening of the follicular basement membrane.
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Chapter 3

MATHEMATICAL MODELS 
OF OVARIAN DYNAMICS: A 
REVIEW

3.1 Introduction

Many mathematical models of the ovarian cycle in mammals have been developed 

since the 1940s. The basic purpose of all of them has been to understand the different 

types of regulatory procedures that are involved in the dynamics of the ovaries. 

Therefore, most of these mathematical and theoretical models have been concerned 

with evolution of the follicular population, folliclegenesis and hormonal interactions 

during the endocrine behaviour of the cycle.

After classifying the models into two main approaches according to the way they 

reflect the ovarian cycle, it is the aim of this chapter to give a brief chronological 

description of the models found in the literature. We shall particularly highlight to 

what extent each model deals with the processes tha t regulate the number of follicles 

that ovulate per cycle.

3.2 M orphology vs. physiology

The present review classifies the mathematical models of the ovarian cycle into mor­

phological and physiological categories. The main emphasis in the study of the 

regulation of the ovarian cycle has been physiological rather than morphological. In 

other words the main focus has been on the different types of hormones circulating 

through the cycle and the functional features of follicular development, rather than a 

description of the shape and general appearance of interacting follicles. However, it
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is difficult to completely disconnect these two points of view when describing follicle­

genesis. Moreover, it is strongly believed that the process of follicular development 

can be divided into two main stages according to both criteria, namely those of basal 

and endocrine growth. As can be seen in section (2 .2 ), for each of these stages the 

morphology and physiology of the follicle are very different.

A comparative analysis of many published mathematical models has been pre­

sented in [Clement, 1997]. Nevertheless, it is im portant for the development of this 

thesis to analyse such models in terms of the selection procedure of the ovulatory fol­

licles. In fact, some of these models have served as the basis of the models analysed, 

improved and developed in subsequent chapters.

3.3 Descriptive models

Most of the descriptive models are an attem pt to explain the mechanism used in 

folliclegenesis to control the number of ovulating follicles in each estrous cycle in 

terms of the follicular population. First of all follicular development is discretised into 

a number of stages (compartments). Then, the transition rates of follicles evolving 

from one stage to the next, and the atresia rates from each stage are estimated from 

data on follicular populations measured first from mice ovaries and then from human 

ovaries.

The first attem pt to model follicular dynamics in terms of the granulosa tissue 

of the follicle is also described below. The authors divide the granulosa cell popula­

tion of a single follicle in three different kinds according to their physiologic status 

as, proliferating, differentiating and apoptotic cells. Then a compartmental model 

which describes the transition dynamics of proliferating to differentiating cells, and 

differentiating to apoptotic cells is described for pre-ovulatory and atretic follicles.

3.3.1 Compartmental models

Since 1976, Faddy et al. have been developing and refining an analytical model for the 

change of follicular number in the ovary throughout the life of a mammal. Initially 

they worked with mice [Faddy et al., 1976; Faddy, 1976; Faddy and Jones, 1988], 

but subsequently have applied their model to the human ovary [Faddy and Gosden, 

1995]. They were particularly motivated by trying to explain how ovulation number 

could possibly remain constant despite the fact that the initial number of growing

30



3.3. DESCRIPTIVE MODELS

follicles decreased with the age of the mammal.

They investigated the relationship between follicles of different sizes in order 

to understand the control procedure that keeps ovulation number constant. They 

classified the follicular growth into five different compartments and applied this to 

measured follicular populations in mice [Faddy et al,  1976]. Classification begins 

with Group I containing follicles with an incomplete or complete layer of flattened or 

cuboidal granulosa cells; these follicles are also referred to as small follicles. Follicles 

in Groups II and III are referred to as medium follicles, and they have one layer 

of columnar cells and two layers of granulosa cells respectively. Groups IV and 

V+ comprise large follicles, Group IV follicles have three layers of granulosa cells, 

whereas Group V+ follicles have four or more granulosa cell layers. Besides, Group 

V+ contains follicles with and without an antrum. This latter group was divided 

into Group V and Group VI in previous studies, but was subsequently amalgamated 

into only one since follicles within both groups were responsive to gonadotropins. 

This amalgamation avoided an unmanageable number of variables in the equations.

Once this classification was established, data of the follicular populations in each 

group was used to calculate the age dependent migration rates for follicles moving 

from one group to the other. In the same manner the time dependent death rates for 

each follicular compartment were also computed since atresia was observed to occur 

in all of them. They proposed a stochastic compartmental model for the group mean 

sizes at any time t.

Let A (̂f) for i = 1 , • • ■, 5 be the mean sizes of Group I, II, III, IV and V+ respec­

tively. Also, let Vi(t) and ^ { t )  for all z =  1, • • •, 5 be the corresponding transition 

and death rates for each group. The corresponding time dependent migration and 

death rates were assumed to have a simple probabilistic interpretation. For instance, 

given a follicle in say Group I, then for v\(t) and at age £, such a follicle would 

become a member of Group II at age t +  S(t) with probability fj,i(t)S(t). Since fol- 

liclegenesis is a continuous development, 8(t) was considered to be an infinitesimal 

age increment. Furthermore, the authors also assumed tha t at age 0, all follicles are 

in Group I and nowhere else, and for any time t > 0 they considered a multinomial 

probability distribution of the follicular population in all groups.

However, although the initial follicular population size N  can be known in terms 

of the model, it is unknown for the ovary. Therefore, if such an initial follicle popu­

lation is being originated in Group I following a Poisson probability distribution, the
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above mentioned multinomial distribution reduces to independent Poisson counts of 

the group sizes at any time t. Such Poisson distributions are characterised by the 

mean sizes of the follicular population for each group, which are given by

Ai =  A exp f  [v i{x)+ii i  (a;)]d^ (3.1)

and

A i{t) = Vi-i{x) exp J  [vi(y] +  m{y)\dy^ \ i ^ i {x )dx  (3.2)

for i =  2, • • •, 5, where A is the initial mean size of Group I. Note that v${t) = 0 since 

no emigration takes place from Group V+ (apart from atresia).

Nonetheless, this turns out to be an extremely difficult task when considering 

atresia and transition rates as variables. Thus, they regarded them as constants and 

only changed their value after 30 days, which accounts for the approximate age for 

puberty in mice.

Although they obtained interesting results about the change of follicular migra­

tion and death rates between pre-pubertal and post-pubertal mice, they could not 

give a functional explanation for the conservation of the ovulation number. For in­

stance, a significant reduction of the Group I atresia rate from ovaries older tha t 

30 days was registered. This means that the decrease in the follicular population 

in Group I of pre-pubertal mice is mainly due to substantial follicular degeneration, 

rather than follicles emigrating to Group II. However, this kind of argument turns 

out to be insufficient to explain why the ovulation number remains constant despite 

the fact that there are fewer follicles available after 30 days of age. This may be be­

cause their classification was merely based on morphological terms and no hormonal 

interaction was considered.

Nevertheless, in later work Faddy and Jones highlighted atresia as an im portant 

mechanism involved in follicular development [Faddy and Jones, 1988]. A multi- 

compartmental model was again established, but in a deterministic way. For the 

general case of m  different compartments the number of follicles y%{t) in compartment 

i at time t is assumed to satisfy a linear system of differential equations,

f t = A y  (3.3)

where y( t ) =  . . .  , ym(£)), and the m  x m  matrix A  contains the transfer rates

of follicles from compartment i to j  and the death rates for each compartment.
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Considering similar assumptions, this is the equivalent version for the mean size 

formulae of the stochastic model given in (3.1) and (3.2). This can be observed since 

for the corresponding Vi{t) and fii(t) for i =  1 , • ■ •, m, the number of follicles per unit

the size of Group i at age t. Similarly, the number of follicles per unit of time dying 

in Group % at time t is This deterministic interpretation corresponds to

a simpler way of describing the follicular emigration dynamics than that given by 

the stochastic version. In both cases, it is clearly seen how different compartments 

are interdependent. Solutions (3.4) and (3.5) form the basis for fitting parametric 

curves to temporal data for the m  different compartments of the model. This can 

be achieved by computing the elements of matrix A(t)  in a similar way to tha t in 

the stochastic model.

A solution of equation (3.3) given an initial condition ?/(0) is given by,

for i =  2 , • • ■, m.

They also applied this model to data obtained for five different follicle sizes from 

a mice population. In this case, some temporal variations of the transition rates 

were considered which were biologically justified by the observed changes in the 

granulosa cell mitotic index with respect to mice age. However, the discussion in this 

paper concentrated on the interplay of parametric and non-parametric approaches to 

fitting curves to data, rather than on trying to give an explanation of the regulatory 

processes in folliclegenesis.

In the last published study of the multi-compartmental model, Faddy and Gosden 

applied these ideas to the human [Faddy and Gosden, 1995]. Follicle sizes were 

divided into three different compartments and the mathematical model was used 

to estimate the growth (or transition) and death rates in human ovaries in women 

between the ages of 19 and 50. This model indicated such rates were age dependent 

with a strong transition at 38 years of age.

Despite the particular problems of obtaining experimental data from human 

ovaries, reflected in the possibility of only getting three different groups from adult

of time leaving Group i and entering Group i +  1 at age t is Vi(t)n(t), where n(t) is

(3.4)

and,

yi(t) = f  a,i-i(u) exp f  au(v)dv yi- i(u)du
J 0 U u

(3.5)
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women, there was a good fit of the model to the data. One of the motivations of 

this study was the fact that during the approximately 36 years of reproductive life 

of women, less than 500 follicles are able to ovulate from a population of 250 000 

follicles present at menarche. However, instead of explaining such a waste in terms of 

the selection process, they justified it in terms of the continuous loss of follicles tha t 

eventually leads to complete follicular depletion of the ovaries before death. They 

were more interested in understanding how the ovaries age with time by losing their 

follicular population, than by how the selection process works in each cycle. This 

follicular depletion accounts for the menopause, which is a unique characteristic of 

humans.

They found that the daily egress rate of follicles leaving stage III, which corre­

sponds to those follicles ready for selection, steeply decreased from women around 

24-25 years old to women older than 38 years of age. Moreover, significant follic­

ular loss was found within stage I of folliclegenesis for ovaries older than 38 years 

due to a great increase in the death rate. These results are consistent with those 

experimentally obtained by Gougeon et al. [Gougeon et al., 1994]. Faddy and Gos­

den argued the possibility of follicles belonging to stage I of old ovaries atrophying 

more than follicles of young women, due to structural damage acquired during their 

prolonged wait in their primordial stage. W hether or not this is the case, they did 

not clarify the effects of the diminished number of stage III follicles on the control 

of the ovulation number.

Although the follicular population of each compartment is described in terms of 

the preceding one, this representation, either stochastic or deterministic, does not 

give a functional explanation for the changes observed in such transition and atresia 

rates during the reproductive age of the mammal. Moreover, such compartmental 

models are not able to offer any plausible explanation for the constant number of 

ovulating follicles every cycle. For instance, in the particular case of the human, 

changes in transition rates from the last compartment of follicular development in 

women older than 38 years old gave a plausible cause for menopause, rather than a 

justification for a single ovulating follicle. This strongly suggests that estimating the 

number of follicles within each stage of folliclegenesis is insufficient to understand 

the control of ovulation number, but rather factors external to the ovary itself must 

intervene.

In conclusion we see that since the multi-compartmental model is more a de­

34



3.3. DESCRIPTIVE MODELS

scriptive than a functional model, it fails to explain the regulatory procedures of 

the ovulation number in each cycle during the reproductive life of a mammal. This 

may strengthen the idea that such a control process relies more on physiological 

factors, rather than on any kind of auto regulation mechanism involving the number 

of follicles at different stages of follicular development.

3.3.2 A descriptive model in terms of granulosa cells

As more comes to be known about the follicle micro-environment, the first attem pt 

to build a mathematical model of folliclegenesis based on the perspective of the 

granulosa cell dynamics was recently published by [Clement et al., 1997]. They 

derived a model in terms of the number of proliferating, differentiating and apoptotic 

granulosa cells from the time of peak of granulosa proliferation until ovulation. A 

deterministic system of three linear differential equations for the change rate of the 

number of each granulosa cell type was derived:

^ 1  = (M-i(t))JVp(i)

=  6(t)Np( t ) - a ( t ) N d(t) (3.6)

HN (t) I s
■ - j -  = a( t)Nd{t) -  u)(r)a(t -  r ) N d(t -  r)dr

The age dependent parameters <5(£) and a( t ) were experimentally estimated for ewe 

follicles. They correspond respectively to the rate of cell cycle exit of the proliferating 

cells and the rate of differentiating cells entering apoptosis. The cell division rate, //, 

was assumed to be constant, and the rate of phagocytosis for apoptotic cells, a»(s), 

was considered for cells that had entered apoptosis s hours previously.

The model was analysed for two different kinds of follicles, ovulatory and atretic. 

For the former, a  and hence uj were considered to be zero. The solution for the total 

number of granulosa cells was well fitted by experimental data and was observed 

to reach a temporary equilibrium point. This was the result of proliferating cells 

tending to zero and the differentiating cells reaching a constant number just before 

the LH surge. Furthermore, they argued that the number of differentiated granulosa 

cells is directly related to their oestradiol secretion capacity at this stage of follicular 

development.

35



3.4. FUNCTIONAL MODELS

For the case of atretic follicles the authors used the same 5 as for the ovulatory 

follicles and the occurrence of apoptosis was added. Cell entry into apoptosis was 

considered to start after the follicle has reached a fixed age t&. Before tA there are 

no apoptotic cells within the follicle granulosa, and after tA the apoptotic process 

quadratically accelerates with time. Different solutions were computed for different 

follicular ages for the onset of apoptosis (tA)• These solutions were obtained by fixing 

the value of tA before and after the follicle has exhausted its proliferating granulosa 

cells. Then, the different atretic curves obtained were analysed and discussed.

Neither the estimation of 5 nor a  were in terms of the FSH concentration. Hence, 

the physiological dependence of follicular growth on gonadotropins was not explicitly 

introduced into the model. However, what was explained in terms of the model was 

the causes of different ovulatory rates between monovulatory and polyovulatory ewes. 

It has been observed that the selected follicles of a multi-ovulatory ewe are smaller 

than those observed in monovulatory ewes. The difference in size is in both diameter 

and total granulosa cells number. The justification was based on the difference in 

the cell cycle duration and FSH sensitivity of the granulosa between the two types of 

ewes. They finally concluded that since the selection process governing the ovulation 

rate arises from the interplay of proliferating, differentiating and apoptotic granulosa 

cells, it would be useful to develop a model which couples the changes in the granulosa 

cell population in different interacting follicles. Although they were able to depict 

ovulating and atretic follicles in terms of their granulosa cells, they did not describe 

this difference in terms of the feedback mechanism which selects one from the other.

3.4 Functional models

The first model interested in studying any kind of control process within ovarian 

dynamics was the one developed by Lamport in 1940. His attem pt was a strictly 

functional description to show the periodicity of the human menstrual cycle in terms 

of gonadotropin and estrogen serum levels. However, his approach was somehow 

incomplete, so his model was not able to fit the existing experimental data reflecting 

a 28-periodic cycle.

In the following few years Thompson et al. as well as Schwartz and Waltz showed 

that the dynamics of a dominant follicle had to be explicitly coupled to the endocrine 

system in order to produce oscillations of the circulating blood levels of oestradiol.
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The former used FSH concentration interacting with estrogens and the follicle, whilst 

the latter described their model in terms of LH concentration levels. Instantaneous 

changes in both models were introduced. Thompson and collaborators fixed an 

ovulatory size, and Schwartz and Waltz introduced the LH surge dynamics as a 

decision function. In such a way, the system was able to produce periodic behaviour, 

not only in the levels of estrogens and gonadotropins but also in the size of the 

dominant follicle.

A relatively dramatical change in the interest in modelling the control of ovar­

ian dynamics occurred during the seventies. The motivation became more medical 

since by that time, some treatments for anovulatory women, principally amenor- 

rheic women, were already in use. However, as Vande-Wiele and other collaborators 

commented, the majority of these treatments were only able to produce sponta­

neous ovulation in the cycles during which treatm ent was administrated. Once such 

treatm ent stopped, the cycle went back to its anovulatory behaviour. Hence, more 

information about the actual control mechanisms tha t the ovarian cycle uses to main­

tain ovulation was needed. Therefore, four models are described below which study 

in more depth the various functional and even morphological features that regulate 

the cycle.

As a consequence, by the end of the seventies little attention was given to de­

scribing the selection procedure that keeps the ovulation number constant in terms of 

functional models. Instead, interest was focused on trying to describe the regulation 

procedures that makes one follicle actually ovulate in the human menstrual cycle. 

However, at the beginning of the eighties the first mathematical models considering 

more than one follicle within the cycle emerged. As a result, some insight into how 

the selection of the number of ovulating follicles occurs could be offered in terms of 

mathematical models.

Scaramuzzi and other collaborators gave a theoretical model to explain this char­

acteristic in ewes. The off-spring of these particular mammals is usually fixed at 

three, however there are cases of monovulatory ewes. This situation can be inconve­

nient for agricultural purposes. In contrast, the case of more than one follicle being 

selected is potentially very dangerous for humans. In particular, Lacker and some 

other workers tackled the particular case of PCOS in women, which has already been 

described in section 2.3.

Although the models developed during the eighties and nineties had particularly
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focused on the ovulation rate, Selgrade and Schlosser [Selgrade and Schlosser, 1999] 

went back to reproduce the periodicity within the menstrual cycle. They have very 

recently produced a mathematical model which theoretical analysis was able to prove 

the existence of a periodic solution of the ovulation cycle. They related the functional 

dynamics of gonadotropins and steroids with different stages of the cycle. Thus, by 

describing folliclegenesis as a succession of several ovarian states the mathematical 

demonstration was achieved.

3.4.1 A functional compartmental model

A particular study of the selection procedure and the determination of the ovulation 

number (also referred to as the ovulation rate) in the ewe was studied by [Scara- 

muzzi et al., 1993]. The reproductive endocrinology of the sheep has been the subject 

of extensive experimental investigation in the last 25 years. A considerable amount 

of information about the particular feedback relationship between LH pulsatile se­

cretion and FSH secretion by the pituitary has been gathered for the 17-day sheep 

estrous cycle during this period.

Although Scaramuzzi et al. classify follicular development into different stages, a 

functional description rather than a morphological one is given since follicles within 

the same physiological stage may be anatomically very different. The authors di­

vided folliclegenesis into five different physiological stages. The first is the stage of 

primordial follicles followed by the stage of committed follicles (pre-antral follicles 

with several granulosa cells layers). Gonadotropin-responsive follicles belong to the 

th ird  stage, followed by gonadotropin-dependent follicles in the fourth, and ovulatory 

follicles in the fifth stage.

The mechanism that controls the ovulation rate is suggested to be mainly due 

to the somehow restricted viability of class four follicles. This restriction has many 

possible reasons. It could be due to the increasing requirement for FSH, it could 

also be due to the inhibitory feedback activity of the ovulatory follicle and/or due 

to the limited number of follicles available from the previous class. The authors also 

suggested that the pituitary sensitivity to oestradiol and inhibin secreted from the 

ovulatory follicles also affects the availability of class four follicles.

They also proposed that the viability of gonadotropin dependent follicles is in­

directly regulated by the hypothalamus-pituitary system by influencing the FSH 

production rate. Thus, a rapid fall of FSH plasma levels may be associated with
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a shorter period of class 4 follicle viability and would favour the development of a 

single ovulatory follicle. On the other hand, for the case of multiple ovulatory sheep, 

they suggested two plausible mechanisms. One of them describes the situation where 

viability of class 4 follicles is increased by extending the length of exposure to FSH 

or by increasing the follicle sensitivity to FSH stimulation. The other mechanism 

explains multiple ovulation by an increase of class 3 follicles, possibly achieved by 

an increase of class 1 follicles.

Despite these results produced by their model, the authors concluded tha t little 

is known about the actual effects of FSH on folliclegenesis. In particular despite 

the central importance of FSH in determining the ovulation rate, there is a poor 

association between blood FSH concentration and the latter.

3.4.2 Periodicity of the ovarian cycle

The first mathematical model to deal with the cyclical behaviour of the dynamics 

involving the pituitary (also known as hypophysis) and the ovary is tha t of [Lamport, 

1940]. At tha t time, the endocrine feedback mechanism between the pituitary and 

ovary was not biologically completely understood. Therefore, Lamport seems to be 

the first to try to give a mathematical approach to the field and show tha t such a 

mechanism was the cause of the monthly periodicity of the human menstrual cycle.

He developed a mathematical explanation for the previously stated “push/pull” 

theory of Corner, which in turn was based in former studies by himself and other 

workers during the thirties. This theory was the first attem pt to understand the 

endocrine feedback loop involved in the cycle. It considers the pituitary gland as the 

driving force of the clock like see-saw mechanism between hormones produced by 

the pituitary and the ovary. The theory states in old terminology: “The hypophysis 

starts the production of oestrin... The rise in oestrin then checks the production of 

pituitary hormone, which begins to fall as estrous occurs. The oestrin is used up or 

excreted, or both, and as it falls to a low ebb in the diestrous interval, the hypophysis 

begins again to produce its hormone.” ([Lamport, 1940], p.673).

From four main assumptions, Lamport produced a second order differential equa­

tion for what he supposed to be the damped harmonic motion of the circulating 

estrogen hormone, E.  Let r be the secretion rate of the estrogen amount used by 

the pituitary, and let k be the secretion rate of estrogen produced by the ovary. On 

the other hand, let q be the production rate of the amount of blood FSH used by
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the ovary and let, J  and c respectively represent the secretion and clearance rates of 

effective blood FSH produced by the pituitary. Thus, the equation obtained is

j 2  rp j p

~dt? +  ^  +  ^ ~ d i  +  ^  +  Ck>}E = U ' ^

The constant parameters in this equation may also be interpreted as mechanical 

terms of elasticity (qr +  ck) and friction (q +  r ) of the oestradiol dynamics. In 

theory, simple and damped harmonic motions are possible solutions of this equation. 

However, non-damped oscillations cannot be obtained for the particular case of the 

human menstrual cycle since the parameters q and r  are non-zero. Otherwise, tha t 

would mean that there is no interaction at all between the pituitary gland and 

the ovary. Hence, Lamport tried to show that the damping q +  r  was light in 

order to fit a solution of equation (3.7) to the 28 day period curve that is observed 

experimentally. However, he failed to prove the existence of cyclic estrogen behaviour 

for parameter values that were thought to be realistic. Nevertheless, his work served 

as an im portant motivation for later mathematical studies published around the 

seventies.

After a brief discussion and analysis of previous work on modifications to Lam­

p o rt’s model during the fifties, Thompson et al  improved the pituitary-ovary system 

to produce estrogenic monthly oscillations [Thompson et al., 1969]. Their improve­

ment was mainly due to implementation of the growth rate of one dominant ovarian 

follicle. They also incorporated the luteal phase of the cycle and derived a system of 

three coupled linear differential equations for the FSH and estrogen blood amounts, 

and the size of the dominant follicle

d X  . E .  X  . .
-at =  ki{Bi~v;)+k2- k3vx {a)
-§■ =  A  “ d S  = 0 when S  > Smax (6) (3.8)
dt Vx

dE E  . .
—  =  keS  + k7 - k s - .  (c)

For this case, X  and E  correspond to the quantity of FSH and oestradiol respec­

tively. Vx  and V# represent the serum volumes which homogeneously contain FSH 

and oestradiol respectively, and S  stands for the size of the dominant follicle. The 

FSH dynamics is directly proportional to an initial standard concentration of oestra­

diol, E\.  As the total oestradiol amount increases, in equation (3.8 .a) we observe
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the negative feedback effect of oestradiol concentration on FSH plasma levels. The 

constant value &2 accounts for a minimal FSH production rate existing even though 

E i =  E / V e - Furthermore, the dominant follicle growth rate is proportional to FSH 

concentration, whilst the oestradiol secretion rate is proportional to such a follicle 

size (see equations (3.8.b) and (3.8.c)). Also, the oestradiol contribution of the re­

maining non-dominant follicles is considered by the constant production rate ki  in 

(3.8 .a).

The authors argued that since a complete mathematical analysis of system (3.8) 

was too complicated, they just studied its behaviour for some particular cases. There­

fore, given the corresponding values for the dimensional parameters obtained from 

physiological data, they were able to show periodic behaviour of the three variables 

during computer simulations of their equations for the equivalent of 90 days. This 

model was able to produce oscillatory behaviour for oestradiol by making FSH affect 

its dynamics in an indirect way. The ovulatory size of the dominant follicle was fixed 

to a finite value, Smaxi so that when the follicle reached ovulation it was instanta­

neously excluded from the system, and a new follicle would start growing again. In 

such a way, the cycle starts again, and they were able to produce three cycles in 90 

days.

A year later, Schwartz and Waltz developed a theoretical model of the rat es- 

trous cycle focusing on blood levels of estrogen and LH, and the timing of ovulation 

[Schwartz and Waltz, 1970]. The four to five day rat estrous cycle was described 

biologically and in terms of the theoretical system. Decision functions were used 

to represent the signalling behaviour of the LH surge. In general terms, decision 

functions often used in control systems theory [Mesarovic, 1968] are signalling func­

tions, which are triggered whenever certain conditions are satisfied, i.e. if a certain 

condition is accomplished the system follows a given path, otherwise it follows a 

different one. A system of three non-linear differential equations was established for 

LH and estrogen blood concentrations, L H  and Es  respectively, as well as for the
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follicle radius dynamics , Fr,  as

^  =  - ( 3 L H - A 2E s + A o + S u
at

^  =  - a 2E s  + A 3L H  (3.9)
a t

dFr  _ _. __ „  .
- j — =  7  L H (F r min + Fr).

Here, /3 is the LH loss rate, A 2 represents the negative feedback rate of oestradiol 

on LH production, Aq is the tonic constant LH secretion rate, and Su  is non-zero 

when the surge system is activated. Parameter a.2 accounts for the oestradiol loss 

rate, and A3 is the gain rate of oestradiol as a result of LH stimulus. Finally, 7  is 

the constant growth rate of the follicle radius.

Since the experimental procedures so far used were not able to distinguish the 

controlling effects of FSH and LH in the rat estrous cycle, they regarded them as one 

single hormone. Although dynamics of the dominant follicle was also considered, this 

time it was not directly affecting the estrogen production rate as in the Thompson et 

al. model. However, the cyclic motion of the system was also artificially introduced 

by events occurring at discrete points in time after continuous changes of estrogens 

have reached certain threshold values. As in the previous model, after this threshold

was reached, estrogen levels were set at a low rate and the cycle began again.

In this manner, Schwartz and Waltz’s model suggested that the process of ovula­

tion itself is crucial for generating the periodicity since the drop of estrogen secretion 

accompanying ovulation allows the next cycle to commence. This is because of the 

removal of the negative feedback effects of estrogens on the pituitary gland. However, 

the usage of decision functions for modelling the LH surge dynamics complicated the 

system to the extent that it was no longer possible to give any theoretical analysis 

of its behaviour. The periodic behaviour could thus only be shown by simulation for 

particular parameter values.

It is im portant to highlight tha t the principal topic of interest in ovarian dynamics 

at the beginning of the forties was that of finding the causes of periodicity of the 

estrogen dynamics. Lamport intended to show the periodic behaviour of oestradiol 

was the result of a “light” endocrine feedback mechanism between the pituitary gland 

and the ovary. He was unsuccessful in doing this since the parameters reflecting such 

interactions were larger than the maximum his equation required to allow harmonic
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solutions.

However, just very recently, Selgrade and Schlosser gave a mathematical demon­

stration of the periodicity of the human menstrual cycle [Schlosser and Selgrade, 

1997]. They were able to analytically prove the existence of a unique solution of the 

model they derived, which is globally asymptotic with a period of 30 days. Although 

their model tackles the issue of external effects that could disrupt the cycle, they do 

not study such a failure at the level of the selection of the ovulatory follicle.

The authors started by developing two different models, one for gonadotropin 

synthesis and release, and the other for the ovarian production of oestradiol (E2 ), 

progesterone (P4 ) and inhibin (Ih). These models are given by coupled systems of 

non-autonomous linear differential equations. Although the dynamics of pituitary 

storage of LH and FSH, and the dynamics of gonadotropin plasma levels were treated 

as different in the models of [Shack et al., 1971; Bogumil et al., 1972a], Selgrade and 

Schlosser’s innovation was to describe gonadotropin synthesis and secretion dynamics 

separately. In fact, ovarian steroids have different effects on each of these dynamics, 

e.g. for the particular case of LH pituitary synthesis and secretion, oestradiol has 

positive and negative effects respectively. Moreover, ovarian hormone control of go­

nadotropin production was introduced by input functions that describe how ovarian 

hormones change with time. Such functions fitted experimental data reasonably well, 

and included a delay between steroid changes in the ovary and steroid dynamics at 

the pituitary level.

For the model of ovarian hormone dynamics, gonadotropin effects were given 

through input functions explicitly depending on time. The form of these functions 

was obtained from data provided by [McLachlan et al., 1990], and is given by,

FSfl«) -  250 -  I *  1 ,s" p ( - t t )  + 1S0“ P ( ' T

Despite the fact they did not explicitly introduce a variable describing any kind of 

follicle measure, the authors described the dynamics of the ovarian hormone capacity 

for the follicular and luteal phases of the cycle. Hence, the ovarian dynamics for each
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stage of the cycle is given by

d „ , „— M s F
dtt

=  bFSH(t)  +  [ciFSH (t)  -  c2(LH(t) )a]M sF

d „  „  — GrF  
dt

= c2{LH{t))aM s F  +  [c3(LH(t))a -  cALH(t)]GrF

d „  „— P r F
dt

= c4LH ( t )G rF  -  c5{LH(t))aP r F

d c
d t SC1

= cs(LH(t))aP r F  — diSci

— Sc2 
dt 2

=  d\Sc\ — d2Sc2

d r— Lut\
dt

=  d2Sc2 — k\Lut\

d
— Lut2
dt

=  k\Lut \  — k2Lut2

d r
T tL u h

=  k2Lu t2 — k3Lut3

d T— LutA
dt

-= k2L u t2 — k3Lut3

where M s F  represents the hormone capacity variable during the menstrual stage, 

i.e. early follicular stage, G rF  is the variable for the follicle growth stage, th a t is 

before selection takes place, P r F  describes the pre-ovulatory follicular stage, Sc\  

and Sc 2 describe the transition from the follicular to the luteal phase when the 

follicle has ovulated leaving an ovulatory scar, and each of the Luti  for i = 1, • • • ,4 

represent four different stages of the luteal phase. Such luteal stages are chosen to 

put capacity peaks at times which correspond to experimental data. In this way 

they avoided the need to incorporate delay effects in the differential equations which 

would complicate subsequent analysis of the model.

The authors assume that E2 , P 4 and Ih serum levels were constant since their 

clearance rates are fast enough. Thus, they considered them proportional to the 

hormone capacity of the appropriate stage of the cycle as follows,

E 2{t) =  eo +  e\GrF(t)  +  e2PrF(t )  +  e3LutA(t)

PA(t) = piLuts(t)  + p2LutA{t)

Ih(t)  = ho +  h \P rF { t ) +  h2Lut2(t) +  h3Lu t3(t) -1- hALutA(t)

Although system (3.10) could be solved analytically, its solutions did not give any
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insight into the qualitative behaviour of ovarian dynamics. Furthermore, they were 

not useful for parameter estimation. Thus, parameters were estimated numerically. 

The authors also gave a mathematical proof to show that the system has a unique 

globally asymptotic solution with a period of 30 days. This period was the same as 

that used for the input gonadotropin functions in system (3.10). This means that 

women having the same gonadotropin profile will have the same ovarian hormone 

behaviour.

Once these two models were established the idea is to merge them together to 

obtain a non-linear system of differential equations describing the five hormones 

involved in the whole cycle. The main motivation for the development of this model 

was to predict the effects of hormonally active environmental substances on the 

menstrual cycle. Such environmental effects may disrupt the cycle at several levels, 

however the authors did not mention any kind of failure at the level of selection 

of the ovulatory follicle. Hence, their model does not describe the control of the 

ovulatory number. However, for the transition between the follicular growth stage 

and the pre-ovulatory stage shown in the second and third equations of system (3.10), 

they proposed a process entirely depending on the full effects of LH. Even though 

they did not give any kind of justification for this assumption, we suppose tha t they 

considered this transition step to be solely dependent on LH because sufficient FSH 

is no longer available by that time of the cycle.

3.4.3 Folliclegenesis and hormonal interactions

During the seventies, the mathematical models developed were not interested in 

“proving” the periodic behaviour of estrogens anymore. Rather, they tried to reflect, 

as accurately as possible, the different control mechanisms that relate the various 

endocrine hormones and follicular development within the cycle. Like the preceding 

models, their complexity increased to a great extent, and their analytical study was 

minimal.

Specifically, four mathematical models for the particular case of the human men­

strual cycle were developed in these years [Vande-Wiele et al., 1970; Shack et al., 

1971; Bogumil et al,  1972a; Bogumil et al,  1972b; Feng et al,  1977]. Most of them 

were refinements of earlier models, and concentrated on describing the regulation 

mechanisms within the cycle in a more robust way. All of them were determin­

istic models incorporating both follicular development of one or more follicles and
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hormonal interactions.

For Vande-Wiele et al. one of the most im portant reasons tha t justified the 

formulation of their model was the numerous cases of anovulatory women. Although 

many clinical treatments had been able to produce spontaneous ovulation in women 

with anovulatory cycles, in most of these it was observed tha t after treatm ent the 

cycle became anovulatory once again. Therefore there was a real need to understand 

the way in which the most im portant features involved in the cycle interact resulting 

in the spontaneous ovulation of one follicle.

To start their analysis, they were interested in studying the particular relationship 

between FSH and estrogens [Vande-Wiele et al,  1970]. The FSH and LH blood 

concentrations with respect to oestradiol concentration were fitted from experimental 

data as
F S H  = a i e - a' EST + a2e - a2EST + a3

L H  = i  (a1e~0llEST +  a2e~a2EST +  a3) +  S U R G E  L H

([Shack et al., 1971], p.838). Notice that the FSH and LH concentrations identically 

decrease with respect to the oestradiol concentration before the LH surge takes place. 

In the experimental data obtained for the changes of both LH and FSH with respect 

to oestradiol levels in regular menstrual cycles, they considered LH to vary just 

like FSH before the surge takes place. However, the variation in LH concentration 

throughout the cycle is about 1/2 of that of FSH. This negative effect of oestradiol 

upon LH tonic secretion is questionable since now a days it is believed that the

frequency of pituitary pulsatil LH secretion increases during the follicular phase of

the cycle due to the positive effects of oestradiol [Austin and Short, 1984].

Since the ovarian response to gonadotropins is even harder to analyse, the authors 

introduced the measure of a follicle to represent changes of follicular sensitivity to 

LH and FSH during its maturation process. They postulated growth rate equations 

for two kinds of follicles, the pre-ovulatory large follicles and the remaining smaller 

ones. No atresia was incorporated for the small non-selected follicles. To model the 

effects of gonadotropins on ovarian hormone levels they also considered the complex 

ovarian local behaviour of androgens. Functions of oestradiol and androgen serum 

concentration with respect to FSH and follicle measures were given as,

E S T  = E S T t  + F s i F S H
(3 . 12)

A N D  = A N D a + F s2F SH ,
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([Shack et al., 1971], p.838), where E S T t  represents tonic levels of estrogens ob­

tained from the contribution of androgens from the adrenal gland, And,A represent 

the androgens secreted by the adrenal gland, and Fsi,  for i = 1 , 2 , stands for the 

functions with respect to the two follicle measures considered. These are given as

Fsi  =  ai (MFi -  1.0) 2 +  25(MF{ -  0.008)2.

Furthermore, the growth rate equation for the two kinds of follicles is given by, 

=  [a3(F SH )(LH )  +  aA(BST)  -  a i ( A N D ) ] ( M F t f  -  a6{MFi)3 (3.13)
at

for i =  l ,2  ([Vande-Wiele et al., 1970], p .73). If we interpret the follicle measure by 

its radius, we observe that follicular radius rate is proportional to the effects of both 

gonadotropins and oestradiol concentration distributed on the surface of the follicle. 

At the same time, androgen concentration on the follicle area has a negative effect, 

and to avoid the dominant follicle from reaching explosive values, its growth rate is 

restricted by its own volume.

Although the regulation mechanisms during pre-ovulatory and post-ovulatory 

stages were analysed, the authors only developed a mathematical model valid up 

to ovulation. Specifically, for this complicated model a threshold dynamics was in­

troduced for the LH surge with an example of the resulting behaviour due to two 

different threshold values. Although this model was able to qualitatively explain 

the regulatory mechanism during the first part of the menstrual cycle in humans, it 

was unable to produce quantitative information about the functional relationships 

amongst the different variables. The right combination of the time of the LH surge 

and of the follicle acquiring maturity were shown to be the key for successful ovula­

tion. While numerical simulations of this model were able to explain the functional 

relationships amongst the variables considered (gonadotropins, follicular hormones 

and follicle size) in a qualitative way, quantitative information could not be derived.

Moreover, despite the fact that the authors mentioned amenorreha as a failure in 

spontaneous ovulation present in the human menstrual cycle, their model does not 

exhibit such abnormal behaviour.

The primary variables used in the model of Shack et al. are similar to those of 

Vande-Wiele et al., but different assumptions were made for the derivation of their 

model [Shack et al., 1971]. The whole ovarian cycle is modelled and interactions be­

tween gonadotropins, estrogens, progesterone, one follicle and one corpus luteum are
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described in a system of five first order differential equations. Gonadotropin plasma 

levels and pituitary storage are considered separately. Additionally, estrogen and 

progesterone produced by the adrenal gland are also taken into account. Ovulation 

time, LH surge and transition of the ovulatory follicle into a corpus luteum are in­

troduced by decision functions. Furthermore, the follicle is also assumed to produce 

estrogens and the contribution to the follicular estrogen production of selected and 

regressing follicles are represented separately. The resulting equations for the model 

are

- Ff ~  = F S H t  -  c h F S H  -  EST i  -  Prodi (PROG) + dSFf f H

dLH  _ „  _ „  „ _,_ _ . , _ _ _ d S L H
—-— =: L H t  ~  CI2 L H  — E S T 2 ~  Prod2 {PROG) -\------ -—

dt dt

d F L S  ( 0 if F S H  < F S H C

[  F(  1 -  exp(—/  * F S H  * LH))  if F S H  > F S H C

P R O G T - c l 3PR O G  + C P L

dt

dPROG

(3.14)

dt

d E S T
= E S T T - c h E S T - F L E S T +  E(CPL).

dt
Variables L H , F S H , PR O G  and E S T  represent plasma levels of the correspond­

ing hormones. P ituitary tonic secretion of gonadotropins is represented by F S H t  

and L H t  respectively. Parameters cli for i = 1, - • - , 4 describe clearance rates of 

FSH, LH, progesterone and oestradiol respectively. Prodj(PROG),  for j  — 1,2 are 

functions describing the negative feedback effect of progesterone on FSH and LH 

production respectively, and d S F S H / d t , d S L H /d t  are surge FSH and surge LH 

contribution to the FSH and LH dynamics respectively. Follicular growth is given 

by the F L S  equation, where the threshold value F S H C  is the FSH serum level at 

which follicles start growing. C P L  represents the corpus luteum contribution to pro­

gesterone production, while E(CPL)  corresponds to the corpus luteum oestradiol 

production. The adrenal contribution of steroids is depicted by P R O G t  and E S T t , 

and F L E S T  is the follicular oestradiol production.

The authors particularly argued that since the mechanisms that determine when 

ovulation occurs as well as when the follicle starts changing into a corpus luteum 

are basically unknown, the model should consider three im portant features. First of 

all, ovulation will not occur without an LH surge as the follicle approaches its full
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maturity. Therefore, if the LH surge does not happen, the growing follicle regresses 

without transforming into a corpus luteum. Finally, the follicle begins its proges­

terone production before ovulation, a function which had been mainly observed from 

the corpus luteum. Although the authors did not compare the results of their simu­

lations with experimental data, parameter values used for the model were obtained 

from data found in the literature. And as we have said before, results obtained 

for parameter values experimentally observed gave rise to functional relationships 

between hormonal levels and these three signalling procedures.

The model developed by Bogumil et al. is probably the most complete of all since 

it involves morphological and physiological representations of most of the different 

components of the whole menstrual cycle [Bogumil et al., 1972a]. They are modelled 

using 34 equations involving nonlinear terms and time dependent coefficients. In 

particular, FSH dynamics, tonic LH and LH surge dynamics are depicted by three 

different equations. Storage and plasma LH levels are again considered separately 

and besides, there are two different LH pituitary compartments with different change 

rate dynamics.

As far as folliclegenesis is concerned, the physiology and anatomy of two different 

kinds of follicles is considered. The authors particularly described the number of 

follicles at a given time as an equilibrium number of recently growing follicles and 

atretic follicles. Such a balance was thought to be induced by FSH accumulated in 

the preceding days. The dynamics of antrum formation in the follicle is also taken 

into account as a function of gonadotropin and oestradiol levels. For a description 

of the luteal phase, four different kinds of follicular cells are used as the selected 

follicle develops to form the corpus luteum after the LH surge and ovulation. Such 

a follicular transformation is reflected in the corresponding differential equations for 

the four kinds of cells.

Finally, the physiological role of follicles during the menstrual cycle is also in­

corporated. A steroid secretory potential is introduced for large and small follicles. 

The follicular conversion of androgens into oestradiol is also considered, and the con­

trolling mechanisms for androgen and oestradiol secretion are similarly represented. 

Androgens and progesterone secretion during the luteal phase is influenced by the 

morphological dynamics of follicular cells as well as by LH plasma levels during that 

particular period of the cycle.

The analysis of the numerical results produced by this model was published in
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a subsequent paper [Bogumil et al., 1972b]. The agreement of their model to ex­

periment is shown to be good. However, they made the following comment: “... it 

is not difficult to write equations which have solutions that fit an arbitrary curve. 

The value of simulation lies not in programming a computer to plot a curve but 

rather in the ability to analyse the mechanisms and conditions which yield the re­

sultant response.” ([Bogumil et al., 1972b], p.48). Therefore, they also investigated 

some stochastic variations of their model which led them to other interesting results 

regarding the control mechanism itself. They showed tha t short duration random 

effects may influence the model to an extent that the length of the pre-ovulatory 

period may change as well as the LH surge characteristics. More importantly, these 

effects may alter the selection process causing transient anovulatory episodes, which 

are independent of any kind of pathology.

Therefore, a new control mechanism within the cycle tha t had not been previously 

considered was also proposed. This suggested that instead of the control mechanisms 

depending on hormonal levels or on the rate of change of such hormonal levels at a 

given time in the cycle (as had been conventionally assumed until then), the authors 

proposed such control mechanisms were the result of a low amplitude and short 

duration incremental changes in the hormone levels occurring many times a day. 

Moreover, artificial external random alterations implemented in their model revealed 

interesting behaviour in terms of the selection process.

Five years later, Feng et al. discussed the work of Bogumil et al. and derived a 

modified improved model based on specific problems occurring in Bogumil’s model 

[Feng et al., 1977]. They established a family of simultaneous differential, algebraic 

and logical equations for the definition of the model, and produced some numerical 

solutions. They were concerned with modelling physiological features more than 

morphological ones. Also, they thoroughly studied the feedback mechanism between 

pituitary LH production and ovarian oestradiol secretion. Hence, their major im­

provement was the introduction of a “hypothalamic-pituitary clock” that regulated 

the pulsatile secretion of LH in response to oestradiol stimulation. Therefore, the 

superimposed random fluctuations suggested by Bogumil and collaborators was sub­

stituted by inherent pulsatile LH secretion. They also introduced delayed responses 

of the LH and FSH induced ovarian production of oestradiol.

From these four models developed during the seventies we could say tha t Vande- 

Wiele et al. and Bogumil el at. were the only ones which described any kind of
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failure in the spontaneous ovulation process. In the former this was due to bad 

synchronisation between appropriate follicular development and LH surge timing. 

In the latter this arose as a result of external random fluctuations affecting the 

system. Such variations could be interpreted as any kind of external physiological 

effect (including any kind of pathology) or behaviour that could interfere with the 

metabolism. However, neither of these gives any insight into the regulation of the 

number of ovulating follicles.

Furthermore, it is observed that the implementation of artificial decision func­

tions for the simulation of events like the LH surge, ovulation and follicular transition 

into the corpus luteum is a way to overcome the lack of knowledge of the actual phys­

iological and morphological development of these events. This fact only perm itted 

the derivation of computational more than mathematical models since the analytic 

analysis was impossible. However, these models were a strong motivation for fur­

ther mathematical modelling of ovarian dynamics. Moreover, they served as way of 

clarifying some of the basis in which the relevant hormones interact and the role of 

folliclegenesis in the control of spontaneous ovulation.

3.4.4 Control of the ovulation number

Despite the high level of biological information incorporated into such mathematical 

models during the seventies, they were largely unable to give any insight into the 

control of the ovulation number. This is mainly because the primary motivation 

behind these models was the accurate description of the dynamics of hormone levels, 

rather than that of follicle selection.

This problem was first addressed by Lacker and various collaborators. He devel­

oped a much simpler model than the extremely complicated systems published in 

the seventies. Despite the fact that its equations were not biologically justified and 

the great extent of the simplification of the endocrine system, they were able to offer 

insight into the selection procedure. Results of this model were shown to be consis­

tent with experimental observations [Meuli et al., 1987]. The selection process was 

regarded as a kind of competition amongst many interacting follicles. This model 

has been an im portant motivation for new research of the ovulation cycle. Thus at 

the beginning of the nineties, Mariana et al. discussed and modified this model and 

Thalabard et al. developed the stochastic version of the selection of the ovulatory 

follicle.
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During the eighties Lacker and various collaborators published a number of pa­

pers focusing on this problem [Lacker, 1981; Lacker et al., 1987; Lacker and Akin, 

1988; Lacker and Percus, 1991]. In Lacker’s first paper of 1981, he developed a de­

terministic model that for the first time reflected the dynamics of many interacting 

follicles. This is given by a system of non-linear differential equations assuming the 

same growth rate for each follicle. Such a growth rate implicitly involved the effects 

of FSH and LH, which were considered as a single hormone. Further papers were 

about the analysis and improvements of the model.

However, the symmetry assumed for his model has the consequence of the largest 

follicles being always the ones selected to ovulate. This hierarchy is not necessarily 

kept for all mammals. Furthermore, Lacker’s model is able to produce non-ovulatory 

mature follicles that despite being selected they remain with a stable pre-ovulatory 

m aturity and never ovulate. Although this feature can be interpreted as PCOS, it 

does not reflect the behaviour observed in reality. Therefore, in chapter 5 detailed 

description of Lacker’s model is given to the case of non-identical growth functions 

as well as a generalisation of the stability analysis (also look at [Chavez-Ross et al., 

1997]). Moreover, due to its relevance to the aims of this thesis, the particular 

modification subsequently published by [Mariana et al., 1994] is also analysed and 

discussed in chapter 6 .

In 1989, Thalabard et al. produced a model described by a set of stochastic dif­

ferential equations, which also simulated the interaction of many follicles during the 

follicular phase of the cycle. Emergence of the ovulatory follicle from a population of 

follicles with identical initial maturities was also seen in this model. Unlike Lacker’s 

model, the ovulatory follicle that emerges is not necessarily the one tha t starts grow­

ing fastest. Differences between follicles which obey the same deterministic growth 

law were introduced via random fluctuations once the cycle had been initiated. This 

randomness may be a reflection of the unknown way in which follicles react to go­

nadotropin stimulation or could be a stochastic feature inherent in the biological 

system as has been proposed by Baird in [Ledger and Baird, 1995]. Furthermore, 

the feedback control of the cycle was established by making the growth rate of the 

follicles dependent on FSH concentrations. Although proportional to each other, 

follicle size and oestradiol production were described by different variables. Due to 

the stochastic nature of the model, a numerical simulation was the only possible way 

of analysing the system. This model gave a good stochastic approach to the selection
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process at a global macroscopic level.

3.5 Discussion

The review of the mathematical models of the ovarian cycle developed in the present 

chapter has classified them into two basic categories. The first one includes descrip­

tive models, which are based on morphological criteria, and the second one describe 

functional models mainly based on physiological representations of the cycle.

Descriptive models are basically compartmental models which either classify fol­

licular population or granulosa cells of a single follicle into different stages of devel­

opment. In the former, stochastic and deterministic approaches are given, which are 

used to determine the migration and death rates from each compartment. Interest­

ing results about migration rates to the compartment of selectable follicles and death 

rates of follicles from the first compartment are obtained for mammals of different 

ages.

Particularly, for the case of humans, a considerable reduction of migration rate 

from the selectable stage is registered for women older than 38 years of age. Moreover, 

an increase of the atresia rate of stage one follicles is also observed for these women. 

However, all of these results regard atresia as an im portant factor regulating follicular 

population rather than a factor providing an insight into the control mechanism that 

keeps the ovulation rate constant.

For the model in terms of granulosa cells of the follicle, migration and death rates 

are experimentally measured from ewes’ follicles. However, no apoptosis is considered 

at all when describing growth of follicles that reach pre-ovulatory size. Whereas in 

the case of atretic follicles, a discrete function for the apoptosis rate is considered. 

This model is the first mathematical description of follicular development in terms 

of granulosa cells, but no suggestions are made about the selection process itself. It 

appears, that once some apoptosis appears within the granulosa of the follicle, there 

is no chance of surviving and atresia is the fate of the follicle. Although it is clear 

tha t selection of pre-ovulatory follicles is the result of a dynamic equilibrium between 

proliferating, differentiating and apoptotic granulosa cells, this is not expressed in 

terms of any kind of endocrine feedback mechanism.

We may conclude that descriptive models are insufficient to understand the regu­

lation of the selection of pre-ovulatory follicles, so functional models are considered.
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Functional models relate physiological and morphological changes of the different 

components of the menstrual cycle. The central importance of the dominant follicle 

within the system in order to produce a periodic behaviour of estrogens is shown by 

Thomson et al. Schwartz and Waltz also introduce an explicit variable for follicular 

development to show that ovulation is crucial to produce periodicity of the cycle. 

However, the introduction of instantaneous or decision functions complicate the sys­

tem to an extent that no theoretical analysis is provided. It is not until very recently 

when Selgrade and Schlosser are able to theoretically demonstrate the approximately 

30-day period of the human menstrual cycle.

W ith the basic aim to improve anovulation treatments more complicated models 

are developed. They try to incorporate as many factors as possible tha t are thought 

to generate spontaneous ovulation every cycle. The results are extremely complicated 

models that at best can give qualitative insight into the problem. Only the models 

of Vande-Wiele et al. and Bogumil et al. describe a failure in spontaneous ovulation.

The functional compartmental model of Scaramuzzi et al. investigates the num­

ber of ovulating follicles in terms of the pituitary-ovary feedback system. They dis- 

cretised folliclegenesis in physiological conditions, and explain the mechanism that 

regulates the ovulation rate in terms of the availability of follicles of the different 

classes, and their exposure to FSH concentrations. They analyse the particular cases 

of monovulatory and multi-ovulatory ewes. It is worth mentioning tha t Clement et 

al. also provide some suggestions for possible causes of follicle number variation in 

these types of ewes. They do this in terms of the granulosa cell proliferation rate 

and granulosa cell sensitivity to FSH stimulation.

However, the first model incorporating folliclegenesis and gonadotropin feedback 

mechanism in a system of N  > 1 interacting follicles is provided by Lacker. There­

fore, pre-ovulatory follicles are selected from atretic follicles in a functional way. This 

suggests how follicles’ sensitivity to gonadotropins interfere in the feedback loop, and 

cannot only produce variations in the number of selected follicles, but can either pro­

duce anovulation or ovulation depending on the parameter or initial condition of the 

system.

Although all of the above models have contributed a great deal to the under­

standing of ovarian dynamics and most of all, provide fruitful ways of relating m ath­

ematical with biological knowledge, Lacker’s model is the one that best addresses 

the control of the number of selected follicles problem. Therefore, we consider it to
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be the starting point of our study, and the basic motivation for the models analysed 

and developed later on.
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Chapter 4

LACKER’S SYMMETRIC 
MODEL

4.1 Introduction

From the number of models of the control of ovulation rate which have been described 

in the previous chapter (e.g. [Lacker, 1981; Akin and Lacker, 1984; Lacker et al., 

1987; Lacker and Akin, 1988; Lacker and Percus, 1991; Thalabard et al., 1989; 

Scaramuzzi et al., 1993; Mariana et al., 1994]), those developed by Lacker and his 

group are by far the most studied and best understood, and will be the starting 

point of our analysis. Based on simple qualitative assumptions about the primary 

hormonal feedback loop involving the pituitary, Lacker’s model is able to reflect most 

of the basic physiological features of the ovulation cycle in mammals, including the 

regulation of the ovulation number, the fact that almost all of the follicles th a t start 

a given cycle atrophy and die, and the fact that it is possible for follicles to arrest at 

an intermediate stage, neither ovulating nor degenerating through atresia.

However Lacker’s model in its present form is incapable of successfully modelling 

the qualitative features of polycystic ovaries (PCO) in humans. As we shall see 

later in this chapter, if the model’s parameters are set to values appropriate for 

humans (i.e. one follicle ovulating per cycle) it is impossible to obtain a situation 

where more than a single follicle can arrest. One can of course achieve the arrest 

of a larger number of follicles by drastic changes in the parameters. However, this 

pushes the model into regimes characterised by a large number of follicles ovulating 

in each cycle, and is hence unrealistic in the human case. Since PCO covers a whole 

spectrum of conditions, ranging from almost normal ovulation to the most severe 

cases of anovulation, we do not expect to have to make large changes to the model
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to move from normal to PCO behaviour and vice versa. Indeed, since it is possible 

to find individuals who switch between approximately normal ovulatory cycles and 

anovulation apparently at random, it should be feasible to observe both types of 

behaviour for a single set of parameters, just by changing the initial conditions at 

the start of a cycle (i.e. the number and precise maturity of the follicles entering 

that cycle).

Lacker’s model has also been criticised [Thalabard et al., 1989; M ariana et al., 

1994] because it maintains a strict hierarchy amongst the follicles developing in a 

given cycle. Thus, follicles which start out largest remain the largest and hence are 

the ones that ovulate. This feature is unrealistic, and it has been biologically pro­

posed that the selected follicles are amongst the largest ones they are not necessarily 

the largest [Gougeon and Lefevre, 1983; Ledger and Baird, 1995]. Since the m atu­

rity of the follicle is determined by both size and oestradiol production, its selection 

seems to depend on the right combination of these two characteristics. Besides, the 

way follicles react to hormone stimulation has not yet been well determined, and 

it cannot be only thought to be proportional to its oestradiol secretion. Therefore, 

although it is possible to assume that the largest follicle produces the largest amount 

of oestradiol it is not necessarily the one being selected. Therefore, the largest folli­

cles are not always the ones selected. Both Thalabard et al. [Thalabard et al., 1989], 

and Mariana et al. [Mariana et al,  1994] have proposed models which overcome this 

restriction, but neither of these appears to be amenable to the same level of rigorous 

analysis as it is possible with Lacker’s model. We shall particularly discuss this for 

the Mariana model in chapter 6 .

4.2 Lacker’s symmetric model of the ovulation cycle

In this section we briefly describe the model developed and analysed by Lacker and 

his collaborators (e.g. [Lacker, 1981; Akin and Lacker, 1984; Lacker et al., 1987; 

Lacker and Akin, 1988; Lacker and Percus, 1991]). The model seeks to describe 

the m aturation of a group of N  follicles, and their interaction via oestradiol and 

the gonadotropins with the pituitary using a system of N  non-linear differential 

equations which are the same for each follicle.
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4.2.1 Assumptions and formulation of the model

We start by describing the assumptions behind the model and the formulation of 

the model. Each maturing follicle produces oestradiol which is released into the 

blood circulation. The larger and more mature the follicle is the more oestradiol it 

produces. The oestradiol levels in the blood stream have a negative effect on the rate 

of release of gonadotropins (FSH and LH) by the pituitary, and these gonadotropins 

in turn  stimulate the growth of the follicles and their production of oestradiol (FSH 

and LH do play somewhat different roles, but this is ignored in Lacker’s model). 

Overall, therefore the feedback loop is a negative one: the larger and more m ature 

the follicles are, the less FSH and LH is released by the pituitary, which serves to 

limit the further growth of the follicles. However, because more mature follicles are 

more sensitive to FSH and LH their growth is restricted less. This serves to amplify 

differences between follicles with the larger and more mature ones being selected to 

ovulate, and the others first arresting their growth, and then becoming atretic.

For the purposes of the models described here the effect of GnRH in the pituitary 

is assumed to be constant in time, and hence can be ignored in the selection process. 

Furthermore, the pulsatile behaviour of the LH secretion is also ignored. Note also 

tha t just prior to ovulation the sign of the feedback in the pituitary changes, leading 

to the so called LH surge. This again is not incorporated in Lacker’s model, since 

by the time of the surge the ovulating follicles have already been selected.

In summary, the model is based on the following simplifying assumptions:

a) Follicle size, maturity and oestradiol secretion are all proportional.

b) The rate of release of FSH and LH is a function of the blood concentration of 

oestradiol.

c) The growth rate of a follicle is determined by the blood concentration of FSH 

and LH, and the follicle’s own maturity.

d) All follicles respond identically to FSH and LH and obey the same growth law.

e) No distinction is made between the effects of FSH and LH, which are repre­

sented implicitly through their assumed control by a single hormone.

f) The effect of GnRH is ignored.
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g) Hormonal clearance rates as well as pituitary response to circulating oestradiol 

are relatively fast compared to the selection process, and hence hormone levels 

and pituitary response are always assumed to be in equilibrium.

Each follicle is therefore modelled by a single variable Xi which reflects its size and 

hence its m aturity and oestradiol production. Follicles interact among themselves 

via their contribution to the total blood concentration of oestradiol. In a way, they 

compete between each other in order to be the ones able to ovulate. The growth 

rate of the zth follicle is thus some function g ( x i , X ) of the follicle size Xi and the 

total circulating oestradiol concentration X, where

The function g incorporates both the response of the pituitary to oestradiol and 

the follicle response to the resulting levels of FSH and LH. Since follicles are assumed 

identical, we have the same function g for each one of them. The dynamics of the 

zth follicle is therefore given by

This was first deduced by Lacker in 1981, [Lacker, 1981]. Considering hi and /12 as 

FSH and LH blood concentrations respectively, and <ti and <72 as their correspondent 

secretion rates, the dynamics of FSH and LH concentrations are given by,

where V  is the blood or serum volume and 7 1  and 7 2 , the FSH and LH serum 

clearance rates respectively. On the other hand, the dynamics for the total amount 

of oestradiol is:

where Sj is the oestradiol secretion rate of each follicle z and 7 3  the corresponding 

oestradiol serum clearance rate.

It has been observed that hormone serum dynamics is much faster than tha t 

of folliclegenesis [Cargille et al.: 1969]. Whilst hormones take just a few minutes 

to reach their corresponding target organs, the time required for a follicle to pass

N
(4.1)

(4.2)

(4.3)

(4.4)
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through different steps of maturity is on the order of weeks. Thus, it is assumed 

that:
dh1  = dh1  = d X = o 
dt dt dt

Therefore, from (4.4) and (4.1) we get,

N  N

X ! Si =  73 ^ 2  Xi => Xi =  — .

In contrast, the dynamics suggested for the oestradiol production of a follicle is a 

function of the follicle’s own oestradiol secretion rate and of FSH and LH concen­

trations, such that:

d S' —
= f ( s i , h l t h2). (4.6)

Hence, from (4.3) and the equilibrium assumption (4.5) we get,

dS{ dX i (7\ <72 N
~TT =  73-7“  =  /(7 3 * i, — , — ), dt dt 7 1  7 2

redefining,

f ( x h X )  = — / ( 7 3 ^ ,  — , — ).
73 7 i 72

Therefore, Lacker also considered each ratio Gi/'yi for i = 1,2 as functions of X \

thus, he obtained the system

f  =  / ( * „ * ) ,

for all i = 1 ,- • •, N,  which he re-wrote as (4.2). Initial conditions of each follicle 

m aturity value are chosen essentially arbitrarily.

Given that the selection process may be viewed as a competitive one it is not 

surprising that the above model has much in common with models of competition 

used in ecology or evolution (e.g. [Hofbauer and Sigmund, 1988]).

4.2.2 Analysis of the model and results

Since the above model is far too general to be analysed, Akin and Lacker make the 

assumption that the growth function g can be separated in the following way [Akin 

and Lacker, 1984]:

g(xi , X )  = S ( X M X ) + ^ { p i)} (4.7)

where
Xi 

p i  -  x
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is the relative maturity of the «th follicle, i.e. the oestradiol production of the zth 

follicle relative to the total oestradiol concentration. Note tha t without loss of gen­

erality we may assume £(0 ) =  0 , as otherwise we may replace £ by £ — £(0 ) and p by 

p +  £(0) without changing the dynamics. The function p is assumed to be monotone 

decreasing for X  > 0 and p{X)  -» — D  for some constant D > 0 as X  —> oo, and 

p(A) —̂ oo as X  —t 0.

When g  is of the form (4.7), the dynamics of p i  can be w ritten as:

where, p = (p i , . . .  ,pw) and

N
£(p) =
N i =1  (4-9)

I > *  =  !■
i — 1

This new system is referred as the interaction dynamics where r  is the new 

rescaled time defined in terms of the rescaled time function d(X) as,

%  = s{-x ) - (4-10)

The derivation of these equations can be found in for instance [Akin and Lacker, 

1984], and is also given in the more general case of non-identical follicles in the next 

chapter.

System (4.8) can be transformed into a gradient system on the unit N  — 1 sphere

S , which implies that all initial conditions ultimately tend to some equilibrium point

of the system. This means that there is neither oscillatory nor any other kind of 

complex behaviour within the dynamics (see Appendix (4.A)). The conditions for 

this equilibrium point in terms of the interaction dynamics are either:

P i  =  0

or (4-11)

Z(Pi) = £(p)-

Thus at an equilibrium point all non-zero pi must have the same value of £. The 

stability for the resulting equilibrium point is determined by the common value £ (p) 

which we shall denote as A, and by the interaction function £(p^). More precisely,
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if the equilibrium point is non-degenerate then it is stable if and only if A >  0 and 

£'{pi) < 0  for all non-zero pi or £'(pi) > 0  for exactly one non-zero pi and

[Akin and Lacker, 1984], see below.

An equilibrium point of the interaction dynamics can correspond to ovulatory 

and anovulatory cases depending on the value of A, and the behaviour of the intensity 

dynamics

which governs the total concentration of circulating oestradiol. The ovulatory case is 

characterised by p(X)  +  £(p) > 0, so tha t X  grows without bound (in the biological 

system it of course cannot grow infinitely, and one assumes tha t when it reaches 

a sufficiently large value an LH surge is triggered, followed by ovulation). The 

anovulatory case occurs when the intensity dynamics has a fixed point, i.e. a value of 

X  > 0 such that p ( X ) + ( (p ) =  0; follicles can then grow to a given size but no further. 

Akin and Lacker also analyse the dynamics of the time rescaling function 5(A) for 

both situations, finding that under reasonable conditions on 5, in the ovulatory case 

there is a finite value of T  in which X  grows to infinity; this is interpreted as the 

time taken to ovulate [Akin and Lacker, 1984].

The fact that the growth function £ is the same for all follicles, results in a 

symmetric situation for which the symmetric point that satisfies both equilibrium 

conditions of the interaction dynamics is:

0 M  < i < N\

for some 0 <  M  < N.  The above stability analysis shows tha t this is stable if 

£(1/M ) > 0 and £ '(1/M ) <  0.

The particular growth function proposed by Lacker is:

where Z), AT, M\  and M2 are parameters. W ith out loss of generality M\ < M 2 and

—  = X \ p ( X ) + f y ) ]

g(xh X )  = K -  D ( X  -  M lXi) (X  -  M 2Xj) (4.12)

(4.13)
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(by rescaling we may assume K  = 1). In this case

f  (pi) =  Dpi(Mi  +  M2 -  M i M 2Pi)

PPO  = D  (4 1 4 )

6 (X) = X 2.

The symmetric equilibrium is then stable for all M  such that:

1 1 2

where M h is the harmonic mean of Mi and M2:

_ L  -  I  ( J -  M
M h  2 V Mi M 2 /

Thanks to assumption (4.13) it can be shown geometrically that non-symmetric 

equilibria are never stable [Akin and Lacker, 1984; Lacker and Percus, 1991]. Given 

the parameter values Mi and M2 there can be as many different M-fold stable

equilibrium points as there are different integer values of M  within the interval

(M //-/2,M #). Prom the intensity dynamics we see that these M  follicles will even­

tually ovulate if £(1/M ) > D  or they will get stuck if M  is such that £(1/M ) <  D. 

If D = 1 and Mi < M2 it can easily be verified that M # /2  < M  < M \  corresponds 

to anovulation, and Mi < M  < M h  corresponds to ovulation.

We therefore see that if the interval (M #/2, M i) contains an integer, the model 

will exhibit anovulatory states, and if both (M # /2 ,M i) and (M i,M # ) contain inte­

gers then we can get both ovulatory and anovulatory behaviour in the same model 

starting with different initial conditions (i.e. different initial maturities for the N  

follicles). This might appear to be the behaviour precisely corresponding to PCOS. 

However, the above analysis immediately shows that in such a situation the num­

ber that can arrest must always be less than the number that can ovulate. Thus 

if we set the parameters to values appropriate to the human, anovulation cannot 

occur, and very drastic changes to the parameters are required to achieve large 

numbers of follicles getting stuck. Thus to see normal human ovulation, we want 

0 < M i < 1 < M2 < 2 (so that 1 is the only integer between Mi and M h ), while 

to get say 10 follicles to get stuck we require Mi > 1 0  and hence, M 2 > 1 0 . As we 

argued in the introduction of this chapter this does not give a very realistic picture 

of PCOS.
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Figures 4.2 and 4.1 show a numerical simulation of this model for the two cases 

of ovulation and anovulation. Both of these were carried out at the same parameter 

values D = K  =  1 and M\ = 2.9 and M2 =  3.9, but with different initial conditions. 

The values of M i and M 2 are such tha t M  lies within the interval (Mh / 2 , M / H )  

for M  =  2 and M  =  3. For M  =  2 we have that £(1 /M ) <  D, therefore there are 

two follicles that get stuck (see figure 4.1). For M  =  3 we have tha t £(1/M ) > D  

which means that three follicles may ovulate (see figure 4.2). Therefore, for these 

very particular examples we can see that by changing the initial conditions of the 

system we can either get three follicles to ovulate or two to arrest. However, no 

possible set of initial conditions at these parameter values will lead to more than two 

follicles arresting. Of course, this argument is only valid for the precise m aturation

3.5

2.5

0.5

40 2 3 5

time

F igu re 4.1: A numerical simulation of eight follicles interacting according to Lacker’s original 
model given by equations 4.2 and 4.12. A 4th order Runge-Kutta numerical method with a step 
size of 0.001 was programmed in C language to simulate the cycle. The parameter values used are 
K  =  5.0, D  =  0.5, Mi =  2.9, M 2 =  3.9. Follicles X7 and xs  have relatively large initial sizes and the 
remainder x i , . . . , xq have smaller initial sizes. The two largest follicles tend to a constant maturity 
value as t  —> 0 0  and the rest atrophy by atresia.

function (4.12), and one might hope that other choices of £ would lead to more 

realistic anovulatory behaviour. It turns out however that functions which can give 

the right spectrum of ovulatory and anovulatory cases are rather complex and appear 

rather contrived. Certainly none of the broad class of functions considered by Akin 

and Lacker in 1984 can lead to the desired behaviour [Akin and Lacker, 1984]. In 

particular, we see tha t if £ is to allow a one follicle ovulatory state (and no other 

ovulatory states) and an anovulatory state involving more than one follicle then it 

must have at least two maxima in the unit interval, with the left maximum being 

lower than the right. For the particular example given in figure 4.3, we can see that

65



4.2. LACKER’S SYMMETRIC MODEL OF THE OVULATION CYCLE

16 

14 

12 

10

a
■a 8 

6 

4 

2 

0
0 0.1 0.2 0.3 0.4 0.5

time

F igu re 4.2: Simulation using the same method, step size and parameter values as in figure 4.1, 
but different initial conditions. Three follicles X7  and xs  have similar and relatively large initial 
sizes with the remaining five follicles x i , . . .  , £ 5  having small initial sizes. Follicles x&, xy  and x% 
ovulate in a finite time and the remainder die by atresia.

for M  =  4, M  =  3 and M  = 1, £(1 /M )  > 0 and £'(1/M )  <  0. However, £(1/3) <  D  

and £(1/4) <  D,  whereas £(1) > D  (where D  is still assumed to be equal to one). 

Thus, just by changing the initial follicular distribution, this would be the case for 

exactly one follicle to ovulate or for three to four follicles to remain stuck in the 

ovary. We are not aware of any kind of biological argument which might even begin 

to justify such a form for the follicle response, and hence such a model of PCOS type 

behaviour would be tenuous at best.
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F igu re 4.3: An example of a positive function £(pi) in the unit interval with two maxima. In 
particular for M  =  3 and M  =  4, £'(1/M ) < 0 and given D  =  1, £(1 / M )  <  D.  On the other hand, 
£'(1/M ) <  0 and £(1 / M )  >  D  for M  =  1. This means such an interaction function allows three 
to four follicles arresting inside the ovary, and only one follicle ovulating. Either situation would 
depend on the initial maturity distribution of the interacting follicles.
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4.3 Discussion

The current model ignores a number of important aspects of the real system, such as 

the modulation of the behaviour of the pituitary by the hypothalamus, the pulsatile 

nature of the release of the relevant hormones, the mechanisms controlling atresia, 

and the different roles played by FSH and LH. These are likely to be im portant, since 

the roles played by these two main gonadotropins, is quite different [Watson et al., 

1993; Mason et al,  1994; Franks et al,  1996].

We also notice that due to the fact that all the follicles respond in the same way 

to oestradiol concentrations, a strict hierarchy is preserved amongst the follicles. 

Thus, if the ith  follicle is initially larger that the j th , then it will remain so through 

out the ovulation cycle. Hence in the context of this model the largest follicles will 

always either ovulate or get stuck and the smallest ones will atrophy.

As has already been pointed out by other authors [Thalabard et al., 1989; Mari­

ana et al., 1994], such perfect ordering amongst the follicles does not always happen 

in real life. Particularly, Thalabard et al. argue that the data  obtained from the 

ultrasound studies of normal or stimulated cycles in primates shows great variability 

in the growth curve profiles, and involves some curve crossing during the early stages 

of folliclegenesis [Thalabard et al,  1989].

Even more explicit evidence is provided by Gougeon and Lefevre [Gougeon and 

Lefevre, 1983] who performed a careful study of the conditions required for a follicle 

to be selected in the human menstrual cycle. In their attem pt to determine the 

stage of the cycle when the ovulatory follicle is selected, they found out tha t for 

the particular case of large healthy follicles smaller than 13 mm, a size criterion 

was insufficient. They also found that during the early follicular phase, there are no 

morphological differences amongst the largest healthy follicles which would guarantee 

the features of a pre-ovulatory follicle. Therefore, they proposed two basic conditions 

needed to be satisfied to determine whether a large healthy follicle is selected: 1 ) its 

diameter should be significantly larger than other large healthy follicles, and 2 ) the 

granulosa cell mitotic index of smaller healthy follicles should not exceed tha t of the 

largest one. Therefore, this may imply that if a healthy growing follicle is amongst 

the largest, and its granulosa cell mitotic index is the largest of all, then it will be 

the selected follicle.

Moreover, quite recently Baird et al. argued that there is no biological evidence
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that could confirm the criteria by which a follicle is selected, hence they assume it 

to be a random choice [Ledger and Baird, 1995]. Nevertheless, this also strengthens 

the idea that it is not the largest follicles that are automatically selected. However, 

since Lacker makes many strong assumptions about the system, and in particular 

he considers follicular size and steroidogenesis as proportional, the fact th a t the 

selected follicles are the largest may be consistent with this assumption. Nevertheless, 

biologically speaking, the precise criteria of selection is not well defined, so we cannot 

be satisfied by Lacker’s approach.
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4.A Appendix

D efin itio n  4.A .1 Let U be an open subset o f R n and V  £ C 2 (U). A system of the 

form

x  =  — W ( x )

where,

X 7 V - ( d V  d V \  

is called a gradient system on U.

The function V (x) is referred to as the potential of the system

i  =  f ( x )  (4.A.1)

if

v (*) = ~  [  f ( s )d s ,
Jx o

for a smooth integrable vector field /  : U —> Rn on an open subset U £ Mn [Perko, 

1991].

D efin itio n  4. A .2 If f  E C 1^ ) ,  V  G C^CJ) and ipt is the flow of the differential 

equation (4 -A.l), then for x E U the derivative of the function F(x) along the 

solution is

V W  =  =  (w (x )> /(x )) •

Furthermore, since V  is such that

V  = (V F(x),x) =  - ( V 7 ( x ) , W ( x ) )  =  —norm(V(x ) ) 2 < 0, 

it is a strict Lyapunov function [Glendinning, 1994].

D efin itio n  4.1.3 Let V  : U —> R be a continuously differentiable function. Let 

g : U -A R be a differentiable function such that S  = {a;|^(a:) =  0} C U. Then for 

x G S , V (x) is a strict minimum restricted to S  if V (x) < V (a;) for all x  E S.

T h e o re m  4.1.4 [Lang, 1987] Let g be a continuously differentiable function on an 

open set U . Let S  = {x\g(x) = 0} C U such that Vg(x)  ^  0. Let V  be a continuously 

differentiable function on U and assume x  E S  is an extremum for V , subject to the 

constrain g. Then there exists a number /3 such that

W ( x )  =  /JV0(x).
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Let L ( x ) =  V(x) — /3g(x), such that VL(x) =  0. Thus we have the following 

theorems:

Second order necessary condition:

T h e o re m  4.1.5 [Avez, 1986', Fletcher, 1981] Let L  : U —)■ R be twice differentiable 

a t x ^ S .  I f  L has a local minimum at x, then D 2 L(x)(v,v)  > 0 for all v G TxS.

Second order sufficient condition:

T h e o re m  4.1.6 [Avez, 1986', Fletcher, 1981] Let L : U —» M be twice differentiable 

at x  G U. I f  x  is a non-degenerate critical point of L, and if  D 2 L(x)(v,v)  > 0 for  

all v G  TkS, then L has a strict minimum at x.
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Chapter 5

A NON-SYMMETRIC 
GENERALISATION

5.1 Introduction

We believe that the root cause of the problems found in Lacker’s model is the symme­

try inherent in the system: every follicle is presumed to have identical characteristics 

and to respond to hormonal signals in exactly the same way. This is unrealistic: it is 

almost impossible to find two biological systems which behave in absolutely identical 

fashions. Our aim in this chapter is therefore to remove this assumption of symmetry 

from Lacker’s model. It transpires that we can do this in a way which still permits 

Lacker’s mathematical analysis to hold essentially unchanged. The behaviour of the 

resulting model is, however, much more general, and in particular it is possible to 

obtain a more realistic model of the behaviour of follicles in PCO in this way. We 

would like to mention that the analysis of this chapter has already been published 

in [Chavez-Ross et a l , 1997].

5.2 A generalisation of the sym m etric m odel

Basically, the symmetry assumption is broken by making each follicle grow in a 

different way. In particular we shall assume that the interaction function £ is different 

for each follicle, but the intensity and time functions p and S remain the same for all 

follicles. This allows the follicles to be sufficiently different to give us the behaviour 

we desire, but maintains sufficient common structure to separate the dynamics in 

the same way as in the symmetric model (if we were to allow each follicle its own p 

and 5 then we can see no hope of analysing the resulting model). The effect is to
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replace (4.7) by the following system:

=  (5-1)

Then, if as before

Xi
Pi -  x

we have,
dpi d . X{.
~dt =  J v X ]

1 dxi Xi ^  dxj 

3=1
N

= j ( x , S ( X ) [ p ( X )  +  fcfa)]) -  E  * iS(X M X ) + O fe ) l
3 = 1

j'= i

=  <*PQp»K»(p») — f(p)]
where now £ is defined by

N

£(p ) =
3 = 1

Rescaling time by

as before, we obtain the interaction dynamics

^  =PiK»(Pi) - f (p )] -  (5-2)

This is identical to the symmetric case (4.8), apart from the fact that replaces

£. Similarly the intensity dynamics is given by

dX. i  ̂ j 
dt r- i dt

3 = 1  

N

= ' £ x i s (x M x ) + i i ( P j ) ]
3 = 1

and hence,

as before.

=  «(X )X [p(A ;)+f(p)]

^  =  A M X )+ £ (p )]
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5.3 Stability analysis

The equilibrium condition for this interaction dynamics is similar as in the symmetric

Thus just as before, all the non-zero coordinates have to take a common value. 

By permuting the follicles if necessary we can always assume tha t the non-zero 

coordinates are the first M , and hence will denote an M-fold equilibrium as pe = 

(pi , . . .  ,pa/>0, . . .  ,0). Following Lacker’s analysis, we obtain a gradient system on 

the unit sphere by making a variable transformation:

and hence, y = (y i , . . . ,  yjsr) lies on the unit N  — 1 dimensional sphere S.  Now 

consider the following potential function:

case, i.e.

Pi  =  0

or

&(P») =  f  (p)-

Vi =  \ / p i

which implies that
N

Then the dynamics of (5.2) is given by the gradient dynamics on S

where V s V  is the gradient restricted to S,i.e.

V SV  = V V - { V V , y ) y .

Here W  is the usual gradient of V

dyi  ’ ’ dyN
dV  d V
o 5 ' ’ ' > o ;

and (,) is the usual inner product
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Hence the ith  component of the VV is such that:

[W]i = - \ y U v h -

Therefore,

(W ,y>  =  - £ £ > & ( ! / ? )

thus,

i  N

2 f=i

[VV -  (VV,y)v]i =  - \ y M V i )  ~  £ > & (» * )]
J = 1

ie .  the «th component of the projection of VV" onto the tangent plane of S  a t y. An 

equilibrium point of (5.2) will be a critical point of the potential function V , i.e. a 

point such that V 5 V =  0. Let ye — ( a i , . . . ,  ajif, 0 , . . . ,  0) be such critical point, then 

extending Akin and Lacker’s stability theorem we get the following result:

T h e o re m  5.3.1 An M-fold non-degenerate equilibrium ye of the gradient system

T t = - V s V

for y £ S  is stable if and only if the common value A >  £j(0) for all i = M  + 1 , . . . ,  N  

and either < 0  for all nonzero co-ordinates a\ , . . . ,  or £i(aj) > 0  for exactly

one non-zero co-ordinate and
M i

iS £ iK ?)

We prove this in a similar way to Lacker and Akin’s original demonstration of 

the analogous result for the symmetric case [Lacker and Akin, 1988]. Note than 

in Lacker’s symmetric version the condition on A is simply A >  0 which is difficult 

to interpret biologically. On the other hand, our formulation A >  ti (0 ) makes this 

condition much clearer: recall that A =  £(p), and hence at the equilibrium the 

relative growth rate, of the zth follicle is just [&(Pi) — C(p)] — [&(Pi) — ^]-

For follicle i = M  +  1 , . . . ,  TV, we have pi = 0, and hence the growth rate is exactly 

^(0) — A. Thus, the condition A > ^(0) for i = M + 1 , . . . ,  N  is simply saying tha t at 

a stable equilibrium those follicles for which pi = 0  have a negative growth rate, in 

other words such pi cannot grow. Such a condition is of course intuitively obvious. 

We begin the proof of the above result by defining the function a : RN —> R by

°(y) = Y , y 2 i~ l
i= 1
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thus, S  = a 1 (0). Then if y is a critical point of V  restricted to S', there exists a 

Lagrange multiplier such that

VL(y) -  0

where,

L(y) = V(y)  + j3a(y).

Now, by above [VV(y)]i = —yi£i{yj) / 2 and [Vcr(y)]i =  2 yi and hence, the condition 

for a critical point of L  is that — 4(3\ = 0 for all i. Thus, £i(yj) = 4(3 for all

i such tha t yi ^  0 , and hence we see that

p  = \ m -

Furthermore recall that

§*=ft[6(ft)-C (p)]

and y 2 = pi. Thus, dpi/dr = 0 if and only if yj[£i(yi) — 4/?] =  0, in other words if 

and only if [VL(y)]i = 0. Thus, y is a critical point of V  restricted to S  if and only 

if it is an equilibrium point of the follicle interaction dynamics.

Furthermore, if such an equilibrium point is non-degenerate, then it is stable if 

and only if it is a local minimum of V  on S. Now, a non-degenerate critical point y of 

a constrained function V  on S  is a local minimum if and only if Q(v) =  D 2 L (v , v) > 0 

for all non-zero v G  TyS, where TyS  is the tangent space of S  at y [Fletcher, 1981]. 

So to prove the above stability theorem it remains to show that Q(v) > 0  if and only 

if A > £j(0) for all i = M  +  1 , . . . ,  N  and either ([{a2) < 0 for all i =  1 , . . . ,  M  or 

€i(ai ) >  0 for exactly one i = 1 , . . . ,  M  and

M

y  * >  o .
& K?)

In component form we have

N  N  p n T

M  1 N

= - Y , vi aH'i(ai) + 2  £  v?[A -& (° )]
i= 1 i= M + 1

(recall tha t a* =  0 for i = M  +  1 , . . . ,  iV and £ i ( a 2 ) =  A for i = 1 , . . . ,  M ). Note tha t

N
E « . 2 ^ o
i= l
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and since v lies in the tangent space of S  at y, it must be orthogonal to y , and hence

N M
{y, v ) aiVi = aiVi = °-

i=l i—1

First consider v G TyS  such that Vi = 0 for alH  =  1 , . . . ,  M  and Vi = 1 for all 

i = M  +  1 , . . . ,  N . Then,

Q{
* i=M+1

H0 nc0 j if ^  0 for all u £ TyS  W0 must hav0 A ^  ^  (0) for a l l i = M + l , . . . ,  iV.

Conversely, suppose that A > &  (0) for all i = M + l , . . .  ,N .  We then immediately 

see tha t if £[(a2) < 0 for i = 1 , . . . ,  M  then Q(v) >  0 for all v G TyS. On the other 

hand, suppose tha t S(«?) > 0 for more than one non-zero co-ordinate. W ithout 

loss of generality we may assume £[(a ?) > 0  and g ( a |)  > 0. Then consider v — 

(a,2 , — a i, 0, . .  •, 0); this is nonzero and satisfies (y , v ) = 0. Then,

Q{v) = - ( a i a 2 )2 ( ^ ( fli) + 6 (^2 ))-

Hence if £Ua i) =  £2 (^2 ) =  0, then Q(v) = 0 and so y is a degenerate critical 

point, and if one or both of ^ ( a f ) ,  £2 (+2) are positive, then Q(v) < 0 and y is 

not a minimum. Thus, if y is a non-degenerate minimum at most one of £i(a2) for 

i = 1 , . . . ,  M  can be non-negative or all of them have to be negative.

It remains to consider the case of exactly one «(«?) >  0  (still assuming that 

A > £i(0) for all i = M  +  1 , . . . ,  N).  W ithout loss of generality we may assume 

£i(a i) >  0 - Let
U =  { v e T yS : v  1 =  0}

W =  {v  (E TyS : vi =  } .
a\

Then TyS  = U U {cw : w G W, cGM}.  Since Q(cw) = c2 Q(w) the stability of y 

is determined by the sign of Q on U and W.  First observe tha t if v G U then,

M , N
Q(v) = - Y , Vi a2 i&(ai) + 0

i=2 i=M+1

Thus, since ^[{a2) <  0 for all i = 2 , . . . ,  M  then Q(v) >  0 for all v G U such that

v /  0. On the other hand if v G W, then

M 1 N
Q{v) = - ( [ { a l ) - J 2 vi aUi(ai) + 9  iL, » ? [ A - 6 (0 )].

i—2 i—M+1

«) =  5  £  ^ - 6 (0 )].
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Let
M

QW = “ f l f a l )  “  J 2 Vi ai&(ai)-
i —2

We want to show that Q{v) > 0  for all v E W.  On W, we can regard Q as a function 

of U2 , . . . ,  vm  and hence, we want to determine the minimum of Q{v) subject to the 

constraint (y,v) = 0, or in other words G(v) = 0 where

M

G (v) =  I Z aiVi ~  1'
i = 2

As in Lacker and Akin [Lacker and Akin, 1988], we do this using a standard 

Lagrange multiplier approach though the precise argument we use is somewhat dif­

ferent to that used there. Let H(v,  7 ) =  Q{v) + 7 G(v). Then completing the square 

we have
M  /  \  2 M  2

B(v , 7 ) =  -  £ « & (« ? )  ( *  -  +  £  4 ^ ^ -

Since ^ (a f )  <  0 for i = 2 , . . . ,  M , we see that for a fixed 7 , the function H  takes its 

minimum when

In order to satisfy G(v) = 0, we must have

M

i M
Together (5.4) and (5.5) determine the global minimum of Q(v) subject to the 

constraint G(v) = 0, in particular if v' also satisfies G(v') = 0 we have,

Q(v) — Q(v) + 7 G(u) =  H ( v , 7 ) <  H (v ' , 7 ) =  Q(v') + 7 G(v') = Q(v').

The value that Q takes at this minimum is

M

Q =  - f » « ? ) - £ ( 5 - 7 ^ ) V 2£(a?)
i—2

1

2 >
S  6  W )

Thus, since
M

§ £ R ) >0 (5-6)
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we have that
1 ^  1

which implies that

and hence, Q(v) > 0  for all v E W  as required. Finally to complete the proof of 

Theorem 5.3.1, we have to show that if (5.6) does not hold, then y  is not stable. By 

above, if (5.6) is not satisfied, we have Q(u) < 0 for some v E W ,  with V{ /  0 for 

at least one i = 2 , . . . ,  M  and Vi = 0 for all i = M  +  1 , . . . ,  N.  But if Vi = 0 for 

a lH =  M  +  1 , . . . ,  N  we have Q{v) = Q(v) and hence for this v we have Q(v) <  0, 

and since y is assumed non-degenerate this implies tha t it cannot be stable, which 

contradicts the hypothesis, therefore (5.6) holds as required.

We have analysed the stability conditions for the interaction dynamics so far. 

Now, suppose that we have a stable fixed point y on the unit sphere satisfying the 

conditions of the above theorem, what can we say about its stability for the full 

dynamics (4.2). To answer this, we have to study the stability of the intensity 

dynamics, recall that this is given by:

^  = X[P(X) + lip)].

Also recall that p is monotone decreasing for X  > 0 and p{X) —> — D  as X  -A- oo, 

and p{X) —> oo as X  —> 0. This in particular implies that p(X)  > —D  for all X  > 0. 

If p is an equilibrium point then £(p) =  A, and if p is tending to such an equilibrium 

point then £(p) —>■ A as r  —> oo. Then if A > D  we have

. .
—  > (A -  D )x

with (A — D) > 0 and hence X  —Y oo as t —Y oo. The total oestradiol concentration 

thus tends to infinity, and as already mentioned this corresponds to ovulation: one 

assumes that when X  reaches a sufficiently large value this triggers an LH surge. 

Looking at the dynamics of the individual follicles, we have

fl'T •
- ^  = x i [ p ( X ) + ( i {pi)}

with £i(pi) —Y A as r  —Y oo for i = 1 , . . . ,  M,  and &(pi) —Y 0 as r  —Y oo for i = M  +

1 , . . . ,  N.  Hence xi —Y oo for i = 1 , . . . ,  M , i.e. for those follicles which have non-zero
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relative maturity at the equilibrium point, and Xi -A 0 for % = M  +  1 , . . . ,  TV, i.e. for 

those follicles which have zero relative maturity. This case therefore corresponds 

to the first M  follicles growing (and by implication ovulating) and the remainder 

ultimately dying by atresia.

On the other hand if A < D  then there exists an X e such tha t p(Xe) = — A. 

Such an X e is then a stable equilibrium point of the intensity dynamics (the stability 

follows from the fact that p(X) > p (Xe) for X  < X e and p(X) < p{Xe) for X  > X e). 

This situation thus corresponds to the total oestradiol concentration, and hence 

the total size of the N  follicles limiting to some finite value, and hence may be 

interpreted as an anovulatory case. As before, if a follicle relative maturity tends to 

zero then it will eventually die (i.e. follicles M  +  1 to N),  but now if the follicle has 

a non-zero relative m aturity a* (follicles 1 to M)  then its size tends to a finite size 

X eai , corresponding to that follicle getting stuck and neither ovulating nor becoming 

atretic.

Finally it is left to analyse the dynamics of the time rescaling function S ( X ),

i.e. what happens to r(t)  when t —> oo where r  satisfies the dynamics

£  =  *<*>•

Since S(X)  is assumed strictly positive, r(t)  is invertible. Then if A > D  we have

dr  1 1  

d X  < A - D X

and hence,
roo

limM o o t(r) =  ^

f X ( o o ) 1

Sx(0 ) 6 ( X j d X

1 °) l
<  A -  D Jx(o) S ( X ) X dX '

Thus if £(X) grows faster than X e for some e > 0 , the above integral is finite 

and t(r)  tends to a finite value T  as r  —> oo, hence r  goes to oo in finite time, 

corresponding to ovulation in finite time.

On the other hand, if A < D,  we have £(A") —> 6 (X e) > 0, and hence

dt 1

s(xey
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Follicle Mi m 2

Xl 0.9 1.9
7.1 7.9
7.1 7.8

X4 7.1 7.7
x 5 7.1 7.6
xe 7.1 7.5
x 7 7.2 7.9

7.3 7.9

Table 5.1: Parameter values Mi and M2 for each of the follicles for the non-symmetric 
model

Thus t(r)  —v 0 0  as r  —»■ 0 0 , corresponding to the anovulatory case, i.e. the follicle 

size converges to a finite limiting value and stays there for all time.

To summarise, the dynamics of the model as r  —> 0 0  can be classified into two 

different cases:

i) A > D: ovulation

a) xi —> 0  if pi —» 0

b ) Xi -A- 0 0  if p i  —> a f  ̂  0

c) t T

ii) A < D: anovulation

a) Xi -> 0  if pi -A- 0

b )  Xi -A X eaf if pi -A- of ^  0

c) t —y 0 0

5.4 Numerical simulations and new results

We give an illustration of the dynamics of the non-symmetric model in figures 5.1, 

5.2 and 5.3. In all these figures function gi is Lacker’s original function (4.12), but 

with different values of M\  and M 2 for each i. The actual values used are given in 

Table (5.1). The parameters D  and K  were set to 1, as in figures 4.1 and 4.2.

Follicle x \  thus has parameter values appropriate for normal human ovulation, 

while the other follicles x<i, . . . ,  x% have parameters corresponding to the anovulatory
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case. We see that in the non-symmetric case we can obtain a much greater variety 

of behaviours for the same parameter values just by changing the initial conditions 

of the system. Thus in 5.1 we consider a situation where the normal follicle x \  has a 

relatively large initial size compared to the abnormal ones . In this case, X2 , .. • , ^ 8  

are too small to affect the development of x\  which goes on to ovulate normally. 

Although on their own X2 , • ■ • > ^8  would arrest at a finite size, the presence of x\  

suppresses their development and they die by atresia.

•c
e

0.8

0.6

0.4

0.2

0 4 5 72 3 6
time

F ig u re  5.1: A numerical simulation for the non-symmetric model. The function pi is given by 4.12 
with D  =  K  =  1 and different values of Mi  and M 2 for each i, according to Table 5.1. Follicle x\  has 
parameter values appropriate for normal human ovulation, and a relatively large initial size. The 
other follicles X2 . . . ,  xs  have parameters corresponding to the anovulatory case, and much smaller 
initial sizes. In this example their development is suppressed by xi ,  and they die by atresia.

0.5

0.45

0.4

0.35

0.3

a  0.25

0.2

0.15

0.05

0 0.5 1.5 2 2.5 3 4 53.5 4.5
time

F igu re 5.2: A simulation of the non-symmetric model with identical parameters to figure 5.1, 
but different initial conditions. The normal follicle xi  now has the smallest initial size, with an 
increasing range of initial sizes for the remaining seven follicles. In this example five of the subgroup 
of seven abnormal follicles £ 4 , • • •, xs  arrest at a fixed size as t —> 0 0 , and the remainder die together 
with x\ .

By contrast, in 5.2, we take x\  to have the smallest initial size with an increas-
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ing range of initial sizes for the remaining seven follicles. The abnormal follicles 

X21 • • • , % 8  now dominate and prevent the ovulation of x\ .  Instead the largest five 

abnormal follicles arrest at a finite size leading to anovulatory behaviour with the 

ovary containing a number of large follicles. This situation is thus consistent with 

the type of anovulation seen in PCOS. The comparison with 5.1 shows tha t we can 

move from a normal ovulatory case to an anovulatory one with a large number of 

arrested follicles just by changing the initial sizes of the follicles at the start of the 

cycle. This is something which cannot be achieved in Lacker’s symmetrical model.

0.5

0.45

0.4

0.35

0.3

3 0.25

0.2

0.15
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F igu re 5.3: A simulation of the non-symmetric model with identical parameters to figures 5.1 and 
5.2. The initial conditions are similar to figure 5.2 but with the order of sizes reversed: x\  thus 
now has the largest initial size, identical to x$ in figure 5.2, and x& the smallest. In this example, 
despite the fact the normal follicle xi  is initially the largest, the presence of other abnormal follicles 
X2 , . . .  , X 8  prevents it from ovulating, and it dies by atresia together with the smallest abnormal 
follicles X7  and x%. The remaining abnormal follicles X2 , ■ ■ ■ ,x$ arrest at a fixed size.

Finally in 5.3, we reverse the order of sizes compared to 5.2, so that x \  has an 

initial size identical to xs in 5.2, and # 8  an identical initial size to x\  in 5.2. We 

see tha t even though just as in 5.1, x\  is initially the largest follicle, the overall 

behaviour is similar to tha t in 5.2, and x\  dies by atresia, with the largest five 

abnormal follicles arresting as before. We thus have a situation where the presence 

of a group of abnormal follicles suppresses the ovulation of a normal follicle, despite 

the fact that the latter is initially the dominant follicle. This illustrates the fact 

that, unlike in Lacker’s symmetrical model, the strict dominance of follicle sizes is 

broken, and the overall behaviour of the system does not just depend on the follicles 

with the largest initial size.

83



5.5. DISCUSSION

5.5 Discussion

In this chapter we have therefore generalised Lacker’s model to the case of non­

identical follicle growth functions. The resulting generalised model is able to suc­

cessfully display PCOS type behaviour where a number of follicles arrest at a pre­

ovulatory size, but fail to ovulate. Such behaviour can be seen at identical param eter 

values where for different initial conditions normal ovulation of a single follicle occurs.

Although highly simplified, our model does suggest a number of tentative con­

clusions about the nature of PCOS:

1 . The primary cause of PCOS does not lie in a failure of the pituitary, or the 

ovary as a whole, but rather in the response of individual follicles to gonadotropins. 

This is in broad agreement with observations in clinical practice (e.g. [Yen, 1980; 

Franks et al., 1996]).

2. Those follicles which arrest at pre-ovulatory stages but fail to either ovulate 

or atrophy have significantly different properties compared to normally ovulating 

follicles. The potential for the type of anovulation seen in PCOS thus appears to be 

already determined at the pre-antral stage of the follicle.

3. Although a number of different classes of abnormal response by a follicle 

can probably lead to the type of anovulation observed in PCOS, the most likely 

possibility within the context of our non-symmetric model appears to be a heightened 

sensitivity to gonadotropins. This is consistent with experimental evidence that 

follicles of PCOS patients are much more sensitive to FSH than those of normal 

women [Mason et al., 1994].

4. The presence of follicles with abnormal gonadotropin response can (but need 

not) suppress the ovulation of normal follicles. The mechanism behind this is tha t the 

abnormal follicles, being more sensitive to gonadotropins produce a sufficiently high 

level of oestradiol to suppress the production of gonadotropins by the pituitary to a 

level so low that normal follicles cannot grow. In the presence of a mixed population 

of normal and abnormal follicles, therefore, the factor determining whether ovulation 

will, or will not occur, is the relative proportions of the two types of follicles, and 

their relative maturities at the start of the cycle.

Due to the simplified and rather abstract nature of both the symmetric and non- 

symmetric models discussed in this thesis, it is difficult, and perhaps even dangerous, 

to extrapolate from behaviour observed in such models to conclusions about the
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real biological systems they represent. Nevertheless, the analysis and numerical 

simulations carried out in this chapter appear to offer some tentative insight into the 

mechanisms underlying PCO. Thus, within the context of this model the primary 

cause of PCO lies in the response of follicles to hormonal stimulation, rather than 

in the functioning of the pituitary or the ovary as a whole. This is consistent with 

clinical thinking about the nature of PCO (e.g. [Yen, 1980; Franks et al,  1996]).

In particular, for an ovary to become polycystic in our model, it must con­

tain a sub-population of follicles which have a significantly different response to 

gonadotropins from those follicles involved in normal ovulation. Given the simplic­

ity of the model, it is difficult to be too specific about the types of abnormal go­

nadotropin response required to induce “PCO type” behaviour. One may tentatively 

conclude that such abnormal follicles should either achieve their maximal response 

to gonadotropins at earlier stages of their maturity (which is measured by their size 

in this model), or at a given size achieve their maximal response at lower levels of 

circulating gonadotropins. The model is too simplistic to distinguish between these 

two cases, and certainly other response patterns can lead to “PCO type” behaviour 

as well.

However, it should be pointed out that some kind of heightened sensitivity to 

gonadotropins which both of the above interpretations imply is in line with recent 

experimental observations that follicles of PCOS patients are much more sensitive 

to FSH than those of normal women [Mason et al., 1994]. The model here may 

therefore help to explain the somewhat paradoxical nature of these observations.

A further interesting aspect of our model is that in certain circumstances the 

presence of follicles with abnormal gonadotropin response can suppress the ovulation 

of a normally functioning follicle. This appears to happen because such abnormal 

follicles, being more sensitive to gonadotropins, can produce a sufficiently high level 

of oestradiol to reduce the production of gonadotropins by the pituitary to a level 

so low that normal follicles cannot grow. In the presence of a mixed population of 

normal and abnormal follicles, therefore, the factor determining whether ovulation 

will, or will not occur, is the relative proportions of the two types of follicles, and 

their relative maturities at the start of the cycle. One can thus envisage tha t in 

marginal cases of PCO the determining factor of whether ovulation occurs in a given 

cycle or not is the number and maturity of abnormal follicles present at the start of 

the cycle.
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Of course, since our model ignores many im portant aspects of the real system, 

such as the mechanisms controlling atresia, or the modulation of the behaviour 

of the pituitary by the hypothalamus, the above conclusions must be regarded as 

highly speculative. It would however be interesting to see whether any can be tested 

experimentally, or even duplicated in more complex and biologically realistic models.
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Chapter 6

THE SYMMETRIC MODEL 
WITH AN AGE DECAYING 
FACTOR

6.1 Introduction

The modification of Lacker’s symmetric model given by Mariana et al. a few years 

later [Mariana et al., 1994] also avoids the strong hierarchy amongst the growing 

follicles, and the initial largest ones are not always the selected follicles. Just like the 

non-symmetric generalised version described and discussed in the previous chapter, 

this model is dynamically more interesting since the selected follicles are not deter­

mined in such an obvious manner; i.e. we do not know which follicles are going to 

be selected.

M ariana et al. basically agree that the interaction between the growing follicles 

happens in the way suggested by Lacker, but additionally suggest that these follicles 

also have the capacity of individually ageing. This is achieved by incorporating 

another variable that reflects an intrinsic deterioration of each follicle, independently 

of its response to any sort of hormone stimulation. Although the biological nature 

of this ageing process is not clearly specified, it is plausible and also leads to a more 

realistic model for the selection of the ovulatory follicle.

However, Mariana et al. have not published any kind of theoretical analysis for 

this model. Instead, they only presented a few numerical examples in order to show 

their model is still able to reflect the basic features of follicle selection, and its new 

advantages in terms of the regulation of ovulatory follicles. Since the study of the 

control of ovulation is the main interest of this thesis, we considered it im portant to



6.2. DESCRIPTION OF THE MODEL

develop a more rigorous analysis of the behaviour of this ageing model.

6.2 Description of the model

For each follicle in a population of N  follicles interacting in a given cycle, let yi 

represent the follicle age. The former variable for the m aturity of the ith  follicle, 

is now renamed Z{. Therefore, the new modified m aturity variable, Xi, is proportional 

to the former one and to the follicle age, i.e. Xi = Ziyi. Moreover, the rate of change 

for the previous maturity variable and the ageing of the follicle are given by

^  = Xig(xi:X )

and
dyi

respectively. Note that yi is not the chronological age of the follicle since its magni­

tude is decreasing with time. Rather, it represents the age as a deteriorating capacity 

of the follicle to grow and ovulate. Here y  is the ageing parameter and the function 

g ( x i , X ) is the one originally proposed by Lacker, i.e.

g (x i ,X )  = K  -  D { X  -  M lXi){X -  M 2Xi) (6.1)

where,
N

X  = ' £ x i . (6 .2 )
i= 1

Consequently, the modified dynamics for the follicle growth proposed by M ariana 

et al. is

= yiXig{xi,X) -  yxi
(6.3)

dyi 
^  =

6.3 The simplified system

The first step we choose for analysing the basic features of this model is to simplify 

the system by considering a number of follicles having the same initial maturity.

Therefore, suppose that from N  follicles starting the cycle M  have the same initial

maturity X / M ,  whereas the remaining N  — M  follicles have zero initial maturity.

89



6.3. THE SIMPLIFIED SYSTEM

Moreover, suppose that all follicles have the same initial age y , this gives the simpli­

fied system
d X
dt

dy_
dt

= y ( K X  +  D j X s) — fj,X {a)

(b)= ~HV

where,

7  =  —(1 — M i/M )(l -  M 2 /M )

(6.4)

(6.5)

involves parameters M\  and M 2. Furthermore, (X, y) = (0,0) can be shown to 

be a local stable equilibrium point for any fj, > 0  by means of a linear stability 

analysis. It is worth highlighting that the ageing parameter, /z, is always positive and 

therefore, the dynamics of the ageing variable of the follicle, y , is always exponentially 

decreasing. For the particular case of /z =  0 we see that system (6.4) reduces to

d X
dt

= y { K X  + D ^ X 6) (6 .6)

where y remains constant for all t. If y =  1, equation (6 .6 ) is Lacker’s model.

By solving (6.4.b) and substituting into (6.4.a), we obtain the non-autonomous 

differential equation

d X
^  = y o e - ^ i K X  + D j X 3) -  y.X, (6.7)

where yo = y(0). The only equilibrium point possible is X  = 0, which is locally 

stable.

We were able to analytically solve this equation using Mathematical and compute 

the following solution

- 1 /2
X( t )  = _  _ £ 2L ue/*‘ _  

K  K*y0Me
+  fce(^ +2'“)

2 K*y?
(6 .8)

where,

k =
-2JCi/n

K  K^yo 2 K 3y l r  J 

and X q =  X (0 ). Furthermore, initial conditions X q and yo are strictly positive. 

Moreover, whenever 7  > 0 there exists a separatrix of the dynamics given by

1/2

* 0* =
(i(e _  l ) - F \  g J_

] K*yl K )D 1

(6.9)
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The separatrix is the boundary that splits the phase space in two domains of 

attraction or basins of attraction [Baker and Gollub, 1990]. For this particular case, 

it is possible to regard the space of solutions of the non-autonomous differential 

equation, (6.7), as the phase space of the following autonomous system:

^  =  y o e ^ i K X  + D y X 3) - /J.X
ar

(6 .10)

Hence, X q given in (6.9) is a separatrix of the phase space of (6.10).

For a) Xq > Xq, solution (6 .8 ) grows to infinity at a finite time, whereas if b) 

0 <  X q <  X q , X ( t )  tends to zero as time tends to infinity. As we can see in figure

6.1, the separatrix behaves as neither of these. Instead, it can be regarded as growing 

to infinity in indefinite time, or like a solution where a maximum value is reached in 

an infinite time since it never decreases.

120
M=3

100

X

0 5 10 15 20 25 30

F igu re 6 .1 : Phase space of system (6.10) for yo =  1.0, 7  =  0.01 >  0, // =  0.2 and Xq =  0.477106. 
Given e =  0.001, for a) Xox =  Xq  +  e, the solution grows to infinity at a finite time, while for b) 
X o 2 =  Xq  — e, the solution corresponds to an atretic follicle. The separatrix grows to infinity as 
t  —> 0 0 .

Let us calculate the time derivative of solution (6 .8 ), thus 

2 kexp(y t  +  -  K y 0) -  B g g .  -
X'( t)  = - KVo

K 2yo

(6 . 11)

In particular we can express X'( t)  = F ( t , X 0 ), where F  is given in (6.11). To show 

how the value (6.9) was obtained, suppose that

F ( t , X  0) =  0. (6 .12)
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The values t and Xo satisfying (6.12) give the initial condition and time for which 

solution (6 .8 ) reaches its maximum value. Therefore, if we solve equation (6.12) as

X 0 =
2g(t)(Ky0 -  fie*)

m m )
„2 _ 2i£a

K J,yo
3 L+ ^  Dr)

where

and

g(t) = e*5*'

H ( t ) = - 2 y0 -
2/i

Kyo K 2 y 2 ' \ K  K 2 y0 K*y 2 

For the particular case of the separatrix, we find X q such that the solution reaches 

its maximum in an infinite time. In other words, we find the limit of the expression 

above when t —> oo. In particular, limt^oo9 {t) = 1- Hence, for t very large we have

- 2 y e ^

|_ [ ( K +  +  K % ) e>“ -  1
D 7

= X l

It is possible to prove that X G exists for any y  > 0, i.e. given y  >  0 there will 

always be an initial condition value above which all solutions escape to infinity.

To show this, it is sufficient to prove that if

2-Kyo
e m — 1

K
(2 K3yl)  (IPyo) K

then, f ( n )  ^  0  for all y  > 0 , where f ( y )  is the square of the denominator of the 

separatrix value given in (6.9). This is also equivalent to proving that, a) f { y )  < 0 

for all y  > 0 , and that b) l imil^ OQf{y )  =  0 . 

a) We have

f ' M  =
2Kyn

2 (e M K zyf 1 ) -
1

(e /* + 1 ).
/o K 2yo

Suppose that f ' {y )  >  0 for some y >  0. This implies that

e /* ( y -  K y 0) > (y + K y 0).

Hence, if (y — Kyo) < 0 then e2Kyo^  < (y +  K yo) / (y  — Kyo)  <  0, which is a 

contradiction since e2Ky°/fJ‘ > 0 for y  >  0. On the other hand, if (y — Kyo ) >  0,
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then e2Kyo^  > (y +  Kyo) /{y — Kyo). Now suppose, h(y)  =  e2Kyo^  and j{y)  = 

(y +  K yo) / (y  — Kyo ), then we have that h(Kyo)  =  e2 <  h(y) for all y  > K yo . But 

j (y )  —>■ oo as y  —y Kyo  implying that h(Kyo) < j(Kyo).  Since both, h and j  are 

monotone decreasing functions such that l i m ^ o o ^ y )  = l imtJL̂ 0 0 j ( y )  = 1 , we can 

conclude h(y)  <  j ( y ) for all y  > Kyo . Thus, e2^ 0/^ >  (y +  Kyo)/ {y  — Kyo)  is also 

a contradiction. Therefore, f '{y)  < 0 for all y  >  0.

b) We have e2Kyo^  — l + 2Kyo/ y  + l /2(2Kyo)2+ ip(y) such tha t ip{y) = 0 { y ~3). 

Thus,

/ M  = _  H _  J L  
2 K h %  K 2y0 K+ +  o ( n ~ 3)

=  Ttfa  +  Tt +  °(m_1) -  ^

=  O fp-1)

Hence, 0(/^-1 ) —>• 0 as y  —> oo.

Biologically speaking, Xq represents a threshold value for the total follicle size 

tha t did not appear in the models of chapter 4 and 6 . Hence, if at the beginning 

of the cycle the initial sum of follicle sizes does not exceed such a threshold, there 

is no hope for any follicle to ovulate, and all of them rather atrophy and die. This 

may imply that this model is in fact reflecting the cycle dynamics even before the 

follicular phase.

In contrast, for the case when X(t )  does not grow to infinity at a finite time, it 

is possible to compute a critical value for y , which marks whether such a solution is 

either strictly decreasing or reaches a finite maximum and then decreases. For this 

case it is easier to explore the time derivative of X  given in (6.7) than the one given 

in (6.11). In fact, if we substitute the value of X  given in (6 .8 ) into d X /d t  = G(t , X ), 

where G is given in (6.7), we have that G = F.  Thus, let us derive a value t c such 

that G{tc, X )  = 0 for any X  >  0, i.e.

1
tc =  In A*

1 (1  +  D y X ^ K y o .

Therefore, given any X  > 0 the maximum of solution X (i) exists as long as t c > 0. 

Moreover, given 7  as in (6.5) and yo > 0 , if 7  > 0  and 0  <  X q X q , there is a 

critical value y* = (l-hjXo)yo,  such tha t if 0  < y  < y* a maximum exists, i.e. t c > 0 , 

otherwise the solution is strictly decreasing. This means that although the follicle 

is doomed to die since its initial size is smaller than the minimum size required to
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ovulate, if y  < y* it will be able to grow at first, and then decrease. In contrast, if

never grows but immediately regresses.

In the case of 7  <  0, the follicle, no matter its initial size, will end up atrophying

a maximum exists since for those conditions, 0 < fi < /i*, i.e. tc > 0. Otherwise, the 

solution is strictly decreasing. Such a maximum can also be obtained from equation 

(6.7) when d X /d t  = G ( t ,X )  = 0 and is given by,

Finally, we also have that for 7  < 0, if y  > Kyo  and y  > /x*, the solution is 

also monotone decreasing. Although we discuss this in greater detail below, it is 

worth saying that such a critical value y* is an ageing param eter threshold, which

infinity at a finite time, i.e. ovulation, we can say tha t in general terms, once an 

initial oestradiol concentration is given, follicles manage to grow at the beginning of 

the cycle, as long as 0  < y  < y*, i.e. as long as its decaying parameter is not too 

strong for it to die.

varying 7  and y  and their corresponding biological interpretation are also described. 

As far as the parameter 7  is concerned, we are basically interested in studying the

conditions respectively marked the ovulatory and anovulatory situations. Moreover, 

although units of follicular maturity or size are not specified, we work within a 

certain range of small values to be in agreement with previous models. Thus, we fix 

Xo = 1 .0  as a maximum initial condition, and analyse different kinds of behaviour 

when varying y  > 0  and 7  for Xo =  1 .0 .

Given yo = 1.0 so that y* =  I + 7  and y  =■ 1.1 we have tha t if 7  <  0.1 then y  > y* . 

Hence, the solution is a monotone decreasing function, see figure 6.2. This reflects 

the situation of a follicle with such a large ageing parameter that it just cannot grow

y  > y*, the follicle’s atretic parameter is so large for its initial size that the follicle

and dying, i.e. X ( t )  —> 0 as t —>■ 0 0 . However, whenever y  < Kyo  and Xo < X$ such 

that,

iD K y o
(6.13)

max 'yDKyoe~vt<
(6.14)

determines different types of behaviour. Except for the case when X  (t ) tends to

Some examples are shown for different types of behaviour for this solution when

behaviour for 7  >  0 and 7  < 0 since for the models of chapter 4 and 6 , these two
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at all when the cycle begins, instead it starts degenerating and eventually dies.

M =2 ---------
M=3 ---------

0.6X

0.4

0.2

83 4 5 6 720
time

F igu re 6.2: Solution (6 .8 ) for K  =  1.0, g  =  1.1, yo =  1.0 and Xo  =  1.0. For 7  =  0.01 >  0 and 
7  =  —0.4275 <  0, fj, >  g * . Hence, for both parameter values the solution is monotone decreasing, 
meaning that in either case the follicle is not able to grow at all.

By decreasing the value of g  sufficiently enough, e.g. to g = 0.4, the solution has 

a maximum for 7  =  0.01 or 7  < 0, see figure 6.3. This means the follicle is able 

to grow in the first place, but eventually atrophies through atresia since its ageing 

param eter does not allow it to carry on growing.

M=3 —  
M=3 —■

X
0.8

0.6

0.4

0.2

0 2 4 86 10 12 14

F igu re  6.3: Solution (6 .8 ) for K  =  1.0, g  =  0.4, yo — 1.0 and Xo  =  1.0. For 7  =  0.01 >  0, 
0 <  g  <  g*\ thus, the solution is unimodal. On the other hand, for 7  =  —0.4275 <  0 , Xq =  1.185, 
such that Xo <  X^; hence, the solution also has a maximum value.

So far, regardless of the sign of 7  the follicle always atrophies. Whenever its 

ageing parameter is not too large, it may be able to grow at first, but it will eventually 

decrease and atrophy. Decreasing the ageing parameter to an even smaller value, 

g  =  0 .2 , we get to the point where the sign of 7  determines two different kinds of 

behaviour within the initial maturity interval (0 , 1] that we arbitrarily have fixed.
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If 7  0  there is a critical initial maturity value 0  ^  ^   ̂ such that,

a) if Xo < Xq the follicle grows reaching a maximum from which it degenerates 

and ultimately atrophies, i.e. the follicle regresses by atresia (see figure 6.4).

b ) if Xo > X q the follicle grows to infinity at a finite time, which corresponds to 

the ovulatory case (see figure 6.4).

F igu re  6.4: Solution of the non-autonomous equation (6 .8 ) where K  =  1.0, yo =  1.0, 7  >  0 and 
H =  0.2. For this case, X q =  0.477106. Thus, for Xo =  0.3 the follicle reaches a maximum value 
and then atrophies, while for Xo =  1 .0  it ovulates.

In contrast, if 7  <  0 the solution reaches a maximum

for a particular value of y. This X max is exactly the same as in (6.14) when y = 

yoe~tit. Comparing this situation with the case shown in figure 6.3, we observe X ( t ) 

decreases slower (see figure 6.5).

Furthermore, if we decrease y  even more for this particular case of 7  < 0, we see 

in figure 6 .6  tha t the follicle appears to get stuck inside the ovary. This means that 

the follicle remains at almost the same size in the ovary as time goes by. It can also 

be noticed that whenever y  is very small, the maximum of the function approximates 

to the equilibrium point value for Lacker’s simplified model, i. e.

This does not surprise us because whenever y  —»• 0 we also approach Lacker’s sim­

plified growth equation given in (6 .6 ).

50

45
M=3 —  
M=3 —

40

35

30

X 25

20

15

10 //
5

0
0 2 4 6 10 12 14 16 18 20

time

max

max

96



6.3. THE SIMPLIFIED SYSTEM

M=2

X
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4 6 8 10 12 140 2
time

F igu re 6.5: Solution (6 .8 ) for /i =  0.2, 7  =  —0.4275 <  0, yo =  1.0 and X o  =  1.0. The follicle 
reaches a pre-ovulatory maturity and decreases slower than the equivalent solution in figure 6.3.
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F igu re 6 .6 : Anovulation for fj. =  0.05, 7  =  —0.4275 < 0, yo =  1.0 and X o  =  1.0. The follicle 
appears to tend to the equilibrium value of the simplified Lacker’s model, X m a x  =  1.53.

Therefore, features observed in figures 6.5 and 6 .6 , represent anovulation where 

the stuck follicle eventually disappears from the ovary. This is more realistic than 

the type of anovulation reflected in the models of previous chapters since the ovary 

does not hold the stuck pre-ovulatory follicle for ever. Instead, it disappears after 

some time despite the fact that its response to gonadotropins is adequate for initially 

maintaining a pre-ovulatory size.

We may deduce that ovulation occurs in the same fashion as ovulation in Lacker’s 

model. However, we cannot conclude the same for the case of anovulation. For 

Lacker’s anovulation case, the follicle reaches a non-trivial stable equilibrium point 

remaining there as time goes by. In contrast, for this revised model, the only equilib­

rium point is zero meaning that, due to its ageing factor the stuck follicle eventually 

dies rather than remaining indefinitely at a fixed large size.
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6.4 Analysis for many interacting follicles

In this section we study and discuss the dynamics of many interacting follicles. 

Initially, we only consider them to be different in size, but having the same age. 

Later, we shall extend our analysis to the case where they differ in both, age and 

size.

6.4.1 Dynamics of follicles with different initial sizes but same age

We develop a theoretical and numerical analysis for the study of the dynamics for 

the situation where all follicles start with different initial maturities but they have 

the same initial age.

For this particular case, the follicle growth function is given by

g ( x i , X , y) = yg{xi ,X)  -  p

for all follicles, and it can also be separated into three different functions, so tha t we 

get the following system:

^  =  Xi{y5{X)[p(X) + Opi)] -  p)

dy
dt =

where the separated functions are the same as those that Lacker proposed and that 

were used in (4.14) of chapter 4. We also consider the same rescaling equation

£ = 4<*>-
(6.15)

The resulting interaction and intensity dynamics are 

dpi
dr

dy_
dr

d X
dr

=  ypi [f (pO -  f  (p)]

6 (X) y

= x yp(X) + ?X (p) -
S(X)

(a)

(&)

(c)

(6.16)

where pi is the zth follicle relative size and p arid £(p) are just as in the interaction 

equation (4.8) of Lacker’s symmetric model.
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For the stability analysis of this system we start by analysing equation (6.16.a).

Consequently, for equation (6.17) we have the same equilibrium condition as for 

the corresponding interaction dynamics for Lacker’s model, which leads to the same 

M  — fo ld  equilibrium point

Once again, it is possible to express equation (6.17) as a gradient system on the unit 

sphere, and then prove that its symmetric equilibrium point (6.18) is stable.

Therefore, as in the symmetric model of chapter 4, we observe tha t for the case 

of different interacting follicles with the same age, there is a stable equilibrium point 

towards which the M  largest follicles tend to, while the remaining N  — M  smaller 

follicles regress and die by atresia. W hat happens to the M  — fo ld  equilibrium point

(6.18) outside the unit sphere is determined by the corresponding intensity dynamics 

given by equations (6.16.b) and (6.16.c).

By substituting back the values of the rescaled function, S(X)  as well as expressing 

(6.16.b) and (6.16.c) in terms of t, we see that these two equations are equivalent 

to the ones describing the simplified system (6.4), for which a thorough stability 

analysis was already carried out in section 6.3.

Finally, to prove that the ovulation time is a finite value T, we study the dynamics 

of the rescaled time given in (6.15) for the case when X  is large. First of all let us 

re-scale equations (6.16.b) and (6.16.c) by r'  such that dr ' /d r  =  y. Hence, we obtain

Thus, for X  sufficiently large and p «  p m  we have that dy/dr '  «  0, which implies 

that y «  yc, for yc a constant value, and

We choose to re-scale it by defining r'  such tha t dr ' /d r  = y. Hence, we obtain the 

following interaction dynamics

<f z , = P i  K(Pt) -C(P)] • (6.17)

N —M

(6.18)

M

dy ji
dr' 5(X)



6.4. ANALYSIS FOR M A N Y  INTERACTING FOLLICLES

since £(1/M ) > D.  Therefore, following the demonstration for the rescaled time 

dynamics of the non-symmetric model of chapter 6 , we conclude that there exists a 

0 <  T  <  oo, such that t -A T  as t ' —> oo. And since dr  «  1 / y cdr', we have that 

r  —> oo as t ' —> oo.

We present a number of numerical examples to show the kinds of behaviour 

obtained when we have follicles with different sizes but the same age. From the 

simplified model in (6.4), it was observed that the number of follicles ovulating is 

determined by the parameter values M\  and M 2 just as in Lacker’s model. Therefore, 

we start with a simple case where according to the initial size distribution, there 

would be either three ovulating, or two “stuck” follicles. Figure 6.7 shows tha t from 

a population of N  =  8  follicles starting the cycle with different maturities chosen 

from a uniform distribution, follicles behave in the same way as in the original 

Lacker’s symmetric model. This means tha t the three largest follicles ovulate and 

the remaining smaller ones die by atresia.

8 

7

6 

5

|  4

3 

2 

1 

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time

F igu re 6.7: Numerical example similar to that of the symmetric model shown in figure 4.2 of 
chapter 4. The parameter values are K  =  5.0, D  =  0.5, y  =  0.2, Mi =  2.9, M 2 =  3.9, yo; =  1 0  Vi =  
1, . . . ,  8 . The three largest follicles x&, £ 7  and x& have relatively similar initial size, and are the ones 
ovulating. The rest, follicles x\  to £ 5 , are the smaller ones which die by atresia.

Then, if we change the initial size distribution of the system, figure 6 .8  indicates 

that the two largest follicles are selected and reach a pre-ovulatory size, yet they do 

not manage to ovulate but rather appear to remain at a fixed size. However, it is 

possible to observe that these pre-ovulatory follicles slowly decrease with time.

Moreover, we have also run the corresponding numerical simulations for the in­

teraction dynamics given in system (6.16) for the two previous examples. Figure 6.9 

shows the fact that for both situations, the three selected follicles for the ovulatory
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3.5

2.5

x2 —a

0.5

4.51 2.5 3 3.5 4 50 0.5 1.5 2
time

F igu re 6 .8 : Numerical simulation equivalent to that shown in figure 4.1 of chapter 4. Parameters, 
K ,  D,  fi, M i, M2 , and initial conditions yoi Vi =  1, . . .  , 8  are the same as in figure 6.7, but the 
initial maturity distribution changes. Follicles X7 and xs  reach the same pre-ovulatory maturity, 
but then decrease very slowly, while the reminding five follicles, x i ,  • • •, £ 5 , atrophy and die.

case and the two selected ones for the anovulatory case tend to the same fixed rela­

tive m aturity value. Despite follicles X7 and xs decreasing in size, figure 6.9.b shows 

that their corresponding relative maturity, pi  and p$, tends to a fixed value 1 / 2 , as 

expected according to (6.18) and the stability Theorem (5.3.1).

Finally, we remark that although anovulation may occur in a biologically more 

realistic fashion in this ageing model, it is still possible to predict the number of 

follicles selected. This means that just by looking at the initial size distribution, we 

know how many and which follicles will be selected for either ovulation or anovula­

tion. This is because the hierarchy of the largest follicles is still maintained.

0.4

0.35

0.3

0.25
P2 --

0.2

0.15

0.05

0.1 0.40.2 0.3 0.5

0.6

0.5

0.4

> 0.3
■3

0.2

0.1

20 3 4 5
time time

F igu re 6.9: Solutions of follicles relative oestradiol secretion for K  =  5.0, D  =  0.5, p  =  0.2, 
M i  =  2.9, M 2 =  3.9, yo i  =  1.0 Vi =  1, . . . ,  8 . a)Initial follicle sizes axe the same as in figure 6.7; the 
relative maturity (oestradiol production) of p&, P7 and ps  tend to the same value 1/3, the smaller 
ones, p i  to ps  regress and die. b)Initial follicle sizes similar to those of figure 6 .8 , follicles for which 
relative size are p 7 and ps,  reach the equilibrium value of 1 / 2 , the rest smaller follicles p i ,  - • • ,pe 
regress.
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6.5 Dynam ics of different follicles in size and age

Now we discuss the case when there are N  follicles interacting with different initial 

maturities (sizes) and ages, with dynamics given by (6.3). However in this, the most 

general case of the three considered in this thesis, it is not possible to get a proper 

separated dynamics in order to obtain a gradient system on the unit sphere. Hence 

we started by investigating some numerical examples for the param eter values used 

in previous simulations.

Thus, for the same parameter values used in figures 6.7 and 6 .8  of the previous 

section (6.4.1), we observe in figure 6.10 that for both situations, ovulation and 

anovulation, the selected follicles are amongst the largest, yet they are not necessarily 

the largest ones. Thus, although we can still predict the number of selected follicles, 

it is no longer true that they are always the largest ones.

4.5

3.5

2.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

8

7

6

4
x2 —

3

2

0 0.1 0.2 0.3 0.4 0.5 0.6

F igu re 6 . 1 0 : Simulation for the general situation where follicles interact with different initial size 
and age for the cases of either three or two follicles selected. The parameters, K  =  5.0, D  =  0.5, 
fi =  0.2, M i =  2.9, M 2 — 3.9, and initial age distribution is uniformly decreasing from yoi =  8.0 
to yo8 =  1.0. a) The initial sizes are x i0 =  0.1, ••■,xoB =  0.5, X06  =  1.0, X07  =  1.1, xo8 =  1.2. 
Ovulating follicles xq and X7 grow faster than the initial largest one xs- b) Initial sizes have the 
same value as in figure 6 .8 . Follicles X5 and X6 grow till a pre-ovulatory size, whereas the two largest 
follicles, X7 and xs, atrophy and die.

For the particular.case shown in the previous figure 6.10, a numerical investigation 

was carried out to give some evidence that in fact, system (6.19) tends to the fixed 

point p m  in the space of the follicle relative size. An example of the results is shown 

in figure 6 .1 1  where we see, for the ovulatory and anovulatory situations respectively, 

tha t the selected follicles tend to the same fixed equilibrium value in each case. This 

means that, although we are not able to determine which follicles reach pre-ovulatory 

maturity when starting with similar sizes and ages, the system appears to be stable 

in terms of the ovulation rate.

Therefore, since we are not able to prove that the interaction dynamics tends to
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0.45

0.4

0.35

0.25

0.2

p4 ----

0.05

0 0.2 0.60.1 0.3 0.4 0.5

0.6

0.5

0.4

>a 0.3

P2 —
0.2

0.1

0.2 0.4 0.6 0.80
time time

F igu re 6.11: Simulation for the general situation where follicles interact with different initial size 
and age for the cases of either three or two follicles selected. The parameters, If, D , p,  M i  and 
M 2 , have the same value as figures 6.10. a) The three largest follicles tend to the same equilibrium 
point 1/3, and b) the follicles relative maturities ps and p& tend to a fixed value 1/2.

a stable equilibrium point by means of a gradient system, a linear stability analysis 

around a particular orbit is developed below.

In spite of the disadvantage of not obtaining a separated dynamics suitable for 

a gradient system analysis, we are able to derive an interaction dynamics and an 

intensity dynamics for system (6.3), where all follicles are different in size and age. 

Thus, considering g(x i ,X)  = 6 (X)[p(X)  +£(pi)] we get,

dpi
dr

dyi
dr

d X
dr

=  Pi
N  N

y ip(x )  +  yi(ipi) -  p {x )  ^ 2  yjPj -  yjpj tipj)
j = 1 j = 1

p
6 (X) Vi

= X
N

Vip(x) -  yjPji ipj ) - p

j = 1 <5(X)

(a)

W

(c)

(6.19)

Notice that equation (6.19.a) depends explicitly on X , which does not occur 

in any of the interaction equations obtained in previous models (refer to (4.8) and

(5.2)). For the case of (6.16) of the previous section, we see X  does not appear 

explicitly in equation (6.16.a), but rather indirectly through y. However, we can 

re-scale this equation in order to get rid of y , and therefore we can analyse the 

interaction equation independently of X .

Also note that if we simplify system (6.19) by supposing yi = yj = y , we also 

obtain the same interaction dynamics system as in (6.16). Hence, we see that (6.19.a) 

is a direct generalisation of (6.16.a). For the interaction dynamics of system (6.16), 

the equilibrium point Pm  described in (6.18) is stable.

103



6.5. DYNAMICS OF DIFFERENT FOLLICLES IN SIZE AND AGE

We can also say, that the solutions of system (6.16) lie along the lines of symmetry 

of the M-dimensional coordinate hyperplane in the AT-dimensional space of follicle 

relative sizes, and along the lines of symmetry of the iV-dimensional space of follicle 

ages. Therefore, we consider an orbit ys = (y, ■ ■ •, y) for any y > 0 such that

(P m ,V s ) (6.20)

is the orbit around which we would like to develop a stability analysis of system

(6.19). However, system (6.19) has an extra equation for X  compared to system (6.3). 

Hence, system (6.19) is over-determined, which in fact complicates the analysis. 

This is because instead of computing a Jacobian of size 2N  x 2N  for system (6.3), 

for which the dynamics of X  is implicitly determined, we obtain a larger Jacobian 

of size (2N  +  1) x (2N  +  1). Its corresponding eigenvalues are more difficult to 

estimate. Therefore, we return to (6.3) and develop a linear stability analysis for the 

corresponding orbit in this system.

Let us establish then the corresponding orbit to (6.20) for system (6.3). Note that 

for Pm  given in (6.18), pi = 1 /M  implies that X i /X  = 1/M.  Therefore, Xi = X / M  

for a l i i  =  1, • • •, M and Xi = 0 for alH  =  M  +  1, • • •, N  is the equivalent point for 

system (6.3) for any X  > 0.

Hence,

f ( X / M , X , y )  V i =  1,■ • • ,M
Pe = (Xi ,X,y)  = { (6.21)

[ (0, X , y )  V i =  M  + 1 , - - - , N

for any X  > 0 and any y > 0 is the orbit around which we develop a linear stability

analysis below.

6.5.1 Linear stability analysis of the system of interacting follicles 
which are different in size and age.

Let us consider the original system 

doc ‘
= yiXi[K -  D ( X  -  M xXi){X -  M 2X i ) \ - p x i  = Gi (x i , X, y i )

(6 .2 2 )

=  ~ m  =  G 2 {xi ,X,yi) ,

where X  depends explicitly on Xi for all i as we see in (6.2).

Now we make a small perturbation x = (aq, • • •, x n ) and y = (yi, • • •, Pn ) so tha t 

e =  (x , y ), around the solution for which all follicles have the same age y, i.e. around
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pe given in (6.21). Thus, let us consider the first order Taylor expansion,

F(x  + x , y  + y) = F(x,  y) +  D {x,y)FeT + o(||e||2)

N

where, x = (aji, • • •, x ^ ) ,  y  = (yi, • • •, yjy) and F  = (G , • • •, G ), is the symmetric 

vector field of the system, for G = (Gi, G2 ) where G\  and G2 are given in (6 .2 2 ).

To compute the Jacobian J  =  D(X̂ F ,  we need

dGk = dGk | dGk d X
dxi dx{ d X  dxi

dGk = dGk
dyi dyi

for every k = 1, 2 and i = 1, • • •, N.  Therefore, J  is a 2N  x 2N  matrix such that:

[dGi dGi\
dx  * d X .

r d G i l
ij . dy . ij

r dG2 dG2 

. dx d X  .
r a c 72 i

ij . dy . ij .

for i = 1 , • • •, N  and j  = 1, • • •, N.  Computing the various terms we have:

yi[K -  D ( X  -  M lXi){X -  M 2Xi)\ -  p  +  x iyi [D(Ml +  M 2) X  -  2D M 1M 2x i] 

Xiyi[-2D X  +  D(M\  +  M 2)xi]

Xi[K -  D X 2 +  D(M\  +  M 2)Xxi  -  D M ^ x ? ]

0  

0

- V

i) for i = j ,

dGi
dxi

dGi
d X

dGi
dyi

dG2

dxi

dG 2

d X

dG 2

dyi
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ii) for i ^  j ,
dGi
dxj

dGi
d X

dGi
dyj
dG 2

dxj

dG 2

d X

dG 2

dy.i

= 0

=  Xiyi[-2D X  +  D(Mi  +  M 2)xi] 

= 0  

=  0  

=  0  

=  0 .

We can now evaluate the Jacobian at pe. Evaluating the non-zero terms for i = j ,  

we have,

=  1 ,. . . , M

dGi
r

dxi Pe
y K

dGi
-

d X Pe
y D

dGi X
dyi Pe M

dG 2

dyi Pe
- y

X 2
K  -  D X  +  2D (Mi +  M2)—  -  3D M iM 2- ^M

X 2

M 2

X 2 »__
M

X 2 X 2
K  -  D X 1 + D (M i +  M2) — r -  D M 1M2—^

M

— M — a i

bi

= ci

(6.23)

dG i
dxi

dGi
d X

dGi
dyi

dG 2

dyi

Pe

Pe

Pe

Pe

= y[K  — D X 2] — p = a2

= 0

=  0

(6.24)
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On the other hand, for i ^  j  we have, 

a) i = 1 , . . . ,  M  and j  = 1 , . . . ,  M:

dGx
d X

b)  i = M  +  1 , . . . ,  N  and j  = 1 , . . . ,  M

dGi

Pe

d x

c) i = 1 , . . . ,  M  and j  = M  +  1 , . . . ,  N

dGx

= h

= 0
Pe

d X = 6 i
Pe

d)  i = M  +  1 , . . . ,  N  and j  = M  +  1 , . . . ,  N

dGx
d X

= 0 .
Pe

Therefore, the resulting Jacobian evaluated at pe is the block matrix,

c b\U c i i 0

0 <22 ̂ 0 0

0 - p i
J

j \v.  =  -̂------------------̂----  • (6-25)

Here, C  is the (M  x M)  circulant matrix

C = circ(a\ +  b\, 6 i, • • • ,&i).
'   '

M

This means that for alH  =  1, • ■ •, M , the zth row of C  is obtained by shifting the 

(i — l ) th  row one entry to the right and the last element to the first, where the first 

row is given by the 1 x M  vector, (a\ +  &i, &i, • • •, £>i) (see 6.5.1).

D efin itio n  6.5.1 A circulant matrix is a N  x N  matrix

(  Co C l • • • C jV - 1  \

c a t - i  co  • • • c a t - 2
C =

V  C l c 2 Co J

such that each of its rows, apart from the first, can be obtained by shifting each 

element of the previous row one place to the right, and the last element to the first.
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Matrix U is an M  x (N  — M ) matrix such that all its entries are equal to one. 

Furthermore, C12I  is such that I  is the identity matrix of size (N  — M )  x (N  — M ), 

and ci I  is such tha t I  is the (M  x M)  identity matrix. Finally, —p i  is such that I  

is the identity matrix of size (N  x N).

Since J\Pe is an upper triangular block matrix, it is possible to analytically com­

pute its eigenvalues. The set of such eigenvalues is referred as the spectrum of J\Pe, 

and it is given by

Spec(J\Pe) — |J  [Spec(C), Spec(a2 I),  Spec(-pl)] .

Spec(C) is then given by,

Ai =  ai -1- Mb\  with multiplicity 1 

A2 =  a\ with multiplicity M — 1.

The general formula for the j th  eigenvalue of C  is given by

M —l
Xj =  ai +  61 +  b\rj +  b\r'j H h bir™ ~ 1 =  a\ +  b\ +  61 ^  r!- (6.26)

fc=i

(see (6.5.2)).

P ro p o s itio n  6.5.2 [Bellman, 1960] The eigenvalues Xi of a circulant matrix C are

Xi =  c0 +  c m  -I 1- C iv -irf-1 ,

where ri is the ith root of 1. The associate eigenvector then is

( l . n . - . r ? - 1).

Here, r^  = 1 for all j  =  1 i.e. each rj is one of the M th  roots of 1.

Suppose that r i  =  1, i.e. 6  = 0 (see figure 6.12). This implies that r \  = 1 for all

k = 1, • • •, M  — 1 such that

M —l
V r f  =  l +  1 +  --- +  1 =  M  —1.—' v-------- V-------- '
k=1 M —l

Hence from (6.26) we get Ai =  ai +  61 -I- b\(M  — 1) =  ai +  Mb\.

For j  = 2, • • • ,M  we have that 0 /  0, such that r k is equivalent to rotating rj

through an angle k0.. Then, we have that

M

E r ?  =  °
k=1
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k3  m(r)

2 k/M

F igu re 6.12: Diagram of M  =  6  roots of 1, each of which can be associated with a vector on the
complex plane. For the particular case of n ,  6 =  0.

(see figure 6.13). This is also true since r j 1 = 1, we have that

0  =  r f  -  1 =  ( r f - 1 +  r f ~ 2 +  • • • +  1 )(rj -  1 ).

Hence, YJk=Q r f  =  0 s n̂ce rj ^  Then, rj Sfclo1 rj = Sifcli rj — 0- Therefore,
this implies

M - 1 M

E r * =  E r * - rf  =  o - i  =  - i .
k-i k=l

Thus, from (6.26) we obtain

202 n = r.
5 e ;

F igu re 6.13: Two different examples of r f  =  0, where rj  is the jth  root of 1. Evaluating r f  
is equivalent to rotating the vector associated to rj  with corresponding angle 9 ^  0, an angle k9.  In 
this diagram the particular cases of r i  and r% of figure (6 .1 2 ) are depicted.

A 2  =  cli +  6 1  —  6 1  =  a\.

Let A3 and A4 be the corresponding elements of S p e c f a l )  and Spec(—p l ) re­

spectively, where
A3 =  <22 with multiplicity N — M

A4 =  —p with multiplicity N.
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Hence, substituting the values of ai,&i and 0 2  from (6.23) and (6.24), we get

~  I*Ai =  y 

A2 = y

\ k  — 3 D X 2 +  +
V M  M 2 J .

K _ D X 2 L _ m 1 + m  + s M M \
\  M  M 2 J

A3 =  y [ K - D X 2) - n

A4 =  At?

which are dependent on (X, y). Moreover, considering 7  given in (6.5), we can rewrite

the eigenvalues as,

Ai =  y \ K  + Z D ^ X 2

A2

A3

A4

= y K  + D h + (M' + M* K 2J W i ) x >
M

y[K -  D X 2} -  y

M 2 J

(a)

fj, (6)

(c)

(d)

(6.27)

lam bdal —  
lambda2 —  
lambda3 ....

o
’rt>Cu.2?‘S -10

-20

-30

-40
0 0.05 0.15 0.25 0.35 0.40.1 0.2 0.3

F igu re 6.14: Eigenvalues evaluated for function X ( t )  given in (6 .8 ). Here M  =  3, yo =  1.0 and 
the parameter values K ,  D ,  y ,  M \  and M2 are the same as for the ovulating case of figure 6.10. The 
initial value Xo =  4.8 is the sum of the initial follicles sizes given in figure 6.10. For this particular 
example, Ai(t) —> 0 0 , and A kit) —> — 0 0  for k =  2,3 as t  —► T.

Thus we observe that Ai, A2 and A3 are time dependent. If we evaluate each 

eigenvalue on X (t ) given in (6 .8 ) as t increases, we see that whenever 7  > 0 , Ai (t ) >  0 , 

and in fact X\(t) —> 0 0  as t —> T  (see figure 6.14), where T  is the fixed ovulation 

time, whereas \k( t)  —> — 0 0  for k = 2,3. Since for 7  >  0 we know that X ( t ) «  e^ 1
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and y( t ) =  y $ e then X 2y «  eM<. Therefore, —> — oo for both k = 2,3 as t —>• T

(see figure 6.14).

For the case when 7  < 0, we observe that since X ( t ) —> 0 and y(t) 0, \ k { t )  -A- 

—y  for all k = 1,2, 3 as figure 6.15 shows.

-0.2
lambda 1 —  
Iambda2 —
Iambda3 .....

-mu=-0.2 —-0.4

-0.6

-0.8

5 10 15 20 25 30 35 40 45 50

lambda) —  
lambda2 —
lambda3 .....

-mu=-0.2 —

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

40 45 5020 25 30 350 5 10 15
time time

F igu re 6.15: Eigenvalues evaluated for function X ( t ) given in (6 .8 ). Here yo =  1.0 and the 
parameter values K , D,  //, Mi and M 2 axe the same as for the ovulating case of figure 6 .8 , and 
7  <  0. In both examples A*, —> —/i =  —0.2 as t  —> 0 0  for all k =  1, 2,3. a) For this case the initial 
size distribution is such that M  =  2, and all of the three eigenvalues axe always negative, b) For 
this case the initial size distribution is such that M  =  1, and A3 >  0 at the beginning of the cycle.

Notice that for the particular case shown in figure 6.15.b, the three eigenvalues 

are not all always negative. Here, the eigenvalues were evaluated for the anovulatory 

situation, where the parameter values are the same as in figures 6.7 and 6 .8 . However, 

by changing the initial size distribution so that we get one follicle relatively larger 

than the rest, we also obtain two anovulatory follicles as we see in figure 6.16. 

However, by the time the two pre-ovulatory follicles have been already selected, 

A3 (£) >  0 (see figure 6.16 and 6.17). This may be intuitively contradictory, so let us 

compute the corresponding eigenvector for each eigenvalue to see in which directions 

the dynamic is either expanding or contracting.

Let us analyse the behaviour of the corresponding eigenvectors for each eigenvalue 

given in (6.27) along the orbit X(t ) .  Thus, let us solve system

C - X I c \ I

for the four different eigenvalues given in (6.27). Notice tha t v = (x , y ) G R2N and 0
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4.5

3.5

2.5oN

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1

F igu re 6.16: Numerical simulation of eight interacting follicles for parameters, K  =  5.0, D =  0.5, 
p. =  0.2, M i =  2.9, M 2 =  3.9, and initial conditions yo{ Vi =  1 , . . . , 8  axe the same as in figure 
6.10.b). The initial maturity distribution is such that follicle xs  initial size is relatively larger than 
the rest seven follicles. Follicles X5 and x& are the ones reaching the same pre-ovulatory maturity, 
while the reminding five follicles, x i , ••• ,X4 ,X7 and X8 , atrophy and die.

is the null vector also in R2N. Thus, we obtain the following system,

[C — A I] x m  +  b \U xN - - M  +  ci I y M =  0  m (a)

(<*2 -  X) I x n - m

£1£10II (b)

( - / i  -  A)Iy =  On (c)

(6.28)

where, x m  and x n - m  are the vectors obtained from the first M  and the remaining 

N  — M  coordinates of x  respectively, and yM is the vector obtained from the first 

M  entries of y. The same notation is used for the vector 0.

Hence, for A i we get xj\j- m  =  0n - m  and y  =  On  implying tha t yM  =  0m - From

(6.5.2) we know that, x m  — um  where um  is such tha t its all M  coordinates are 

equal to one. This means that such a vector gives the direction of the M  identical 

non-zero follicle sizes. Define V\ = { ( 3 u m  : G M} C Rn . For A2 we get N  — M

eigenvectors v = x m  such that,
M

'52vk = 0

k= 1

(see (6.5.2)). Observe that v X um  for all u, so we define

M

: X >  = °} ■

Finally, for A3 , we see that from (6.28.c) y = On and from (6.28.b) we get 

% N - M  7  ̂ 0n - M -  First suppose x n - m  — u n - m , where u n - m  is the vector for which
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lambda 1 
lam bda! —
lambda3 —

-10

-15

-20
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

time

F igu re 6.17: Eigenvalues obtained for the particular anovulation case shown in figure 6.16. We 
have evaluated function X ( t )  given in (6.8) but in this case, M  =  1, yo =  1.0 and Xo  =  3.7, which 
happens to be the sum of the initial follicles sizes given in figure 6.16. Then, Ajt(f) is evaluated as t 
increases. For this particular case, Ai(f) <  0,A2(£) <  0 and \ s ( t )  >  0 as t  increases.

all its N  — M  entries are equal to one. Thus, from (6.28.a) we have to find x m  such 

that, [C — A3 I]x m  +  h U u N - M  =  0m - If we take the 2-th row, we get

i—th

( 61,  • • • , & i , a i  +  61 -  \ 3 , h ,  - ■ ■ , bi ) (xi ,  - ■ ■ , x M) +  ( 61,  - • • , 6 i ) ( l ,  - - - ,  1)  = 0

Thus, for the zth equation we obtain,

M
(0 1  -  \ 3)xi + b1 '$2xj  + ( N - M ) b i = 0 .  (6.29)

3 = 1

Since U is an M  x (N  — M)  matrix and u n - m  is (N  — M )  x 1 , notice that 

biUuiy-M = {N  — M)b\UM £ Vi, then x m  £ Vi, i.e. x m  = Pum  for a certain (3 € M. 

To compute such a (3 we get from equation (6.29),

(ai -  A3)0 +  pMbx + (N  — M)b\  =  0 

for alH  =  1, • • •, M.  Thus,
( N - M ) b i  

P (Ai -  As) '

Substituting the values of Ai, A3 , from (6.27), where we see tha t Ai 7  ̂ A3 for all X  

and y, and substituting the value of b\ from (6.23), we get

( N - M ) (M1 +M 2 ) ___2_
M5 M

37 +  1

We thus see that (3 does not depend on t.

P = --------------- ^ (6. 30)
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Now, let us suppose x n - m  = v, such that v G V ^, where is of dimension 

N  — M , i.e. Y.k=iM vk =  0, so that u n - m  -L v . Then, from system (6.28) we get 

[C — A3 I ] x m  =  0M i  which implies that x m  — 0m-

Since for the eigenvectors that we have computed for Ai, A2 and A3 , we have 

y = 0, we analyse their behaviour only in the space of sizes x G RN. Hence, for the 

m atrix
c biU
0 (12I

the eigenvectors are,

*>2 = (yT i ®n-m)’ such that v G Vf1
(6.31)

y 3a =  (^ u M iu 5 - m )

ylb = (0m> yT)i such that v G V^,

where we notice that none of them depend on time. Note tha t all together, these 

eigenvectors give a basis for the whole space of follicular maturities. In particular, 

v\ gives the direction of the M  identical non-zero follicle sizes. Moreover, changes in 

the direction of v\ correspond to changes in the follicles total size X .  On the other 

hand, V2 corresponds to the direction of the M  — 1 vectors perpendicular to vi,  and 

any change in V2 does not affect the dynamics of X .  Finally, v^a and U3& give two 

different directions for the remaining N  — M  follicles. In particular, changes in v^a 

give the dynamics of the total size of corresponding follicles, and any change in £36 

does not change X .

Therefore, the sign of Ai would determine whether we are in an ovulatory (Ai > 0) 

or anovulatory (Ai < 0 ) situation because its corresponding eigenvector, vi,  points 

in the direction of the total oestradiol dynamics X(t ) ,  which is equivalent to the 

dynamics of the M  follicles having the same size or oestradiol production X / M .  

On the other hand, the sign of A2 determines whether the orbits approach or move 

away from the diagonal in the direction of v\. And finally, the sign of A3 indicates 

the behaviour in the remaining N  — M  subspace of follicles with small initial size. 

Dynamics on the direction of v^a gives the behaviour when all of the N  — M  smallest 

follicles have the same initial size, whereas v^b describes the dynamics in the direction 

perpendicular to vsa.
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To study the local stability of the trajectory, let us apply the original linearised 

system to each of the eigenvectors, i.e. let us compute dvk/dt = Av^ for all k = 

1,2,3a, 36, and see how each Vk varies along X(t) .

Prom the eigenvectors given in (6.31) we obtain the following systems,

dv i 
dt

dv 2 

dt

Av  i =  Ai^i (a)

Av 2 = A2^2  {b)

(6.32)

dt V 3̂UN-M J V OiV-M
dV3b 
dt

Then, for the non-zero coordinates of V2 , vsa and v ^ ,  we obtain the following

— Avs b =  A3U3 b- (d)

system
v\j  =  Ai^ij for all j  = 1, ■ • •, M  (a)

V2j — A2U2j  for all j  = 1, • • •, M  (6 ) (6.33)

6363 =  A3U3bj for all j  =  M  +  1 , • • •, N  (c)

v 3 a j  — (6.34)
A1V3aj  +  (N  -  M)b\ (t)v\j for all j  = 1, • • •, M  (a)

\ 3 v3aj for all j  =  M  +  1, • • •, N.  (6)

However, the solution for the eigenvectors, v\ and V2 is given by,

Vk(t) =  f’fc(O) exp Ak{s)ds

for k = 1,2. Similarly for v^b we have

V 3 b ( t )  =  V3b(0)exp As(s)di

And for the j  = M  +  1, • • ■, N  entries of £30 we also have

V3 a j ( t )  =  V 3 a j ( 0 )  e x p  A 3 ( s ) d s ^  .

Therefore, from (6 .33.a) and (6 .34.a) we observe that when 7  >  0, since Ai ( t )  > 0 

the first M  coordinates of v\ and v>3a grow to infinity. In contrast, the first M

coordinates of V2 converge to zero since A2 ( t )  —> —0 0 . Moreover, from (6.33.c) and

(6.34.b) we respectively notice that the N  — M  coordinates of V3b and vsa tend to

zero as A3 —> —0 0  (see figure 6.18).
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On the one hand this means, that the corresponding vectors in Vi formed by 

the M  identical non-zero components of vectors vi and vsa point towards the same 

direction in which the orbit grows to infinity at a finite time, i. e. towards the direction 

given by % .  On the other hand, for the first M  components of vector V2 , the 

corresponding vector which points in a direction perpendicular to tha t given by the 

vectors in Vi contracts with time. In other words, when M  different but similar large 

follicles start the cycle, they will tend to the line along the direction given by um,  

and then grow to infinity at a finite time.

The N  — M  non-zero coordinates of ^3a and v^b describe the dynamics of initial 

small follicles. Thus, when small different follicles start the cycle they will tend 

towards the line in the direction of ^3a, and then tend to zero maturity.

10

v2 —
v3aj .....

v3ak —  
v4aj —

8

6

4

2

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

time

F igu re 6.18: Dynamics of the different eigenvectors obtained from the eigenvalues computed for 
7  >  0 shown in figure 6.14. Dynamics of v i ,  V3 aj  and vaaj  represent the behaviour of v i ,  and the 
behaviour of the first M  non-zero coordinates of vza and V4 a respectively. All of them grow to 
infinity at a finite time. In contrast, V2 and v$ak represents the dynamics of V2 and the N  — M  
non-zero coordinates of vza, which tend to zero.

In the case of 7  < 0, we have that since A* —> —fj, for all k = 1,2,3, the M  

identical coordinates of the three different eigenvectors converge to zero as we see 

in figure 6.19.a. For the particular example given in figure 6.17, where As(t) > 0 

during the cycle, we observe in figure 6.19.b that also the first M  coordinates of 

v\ and £ 3  tend to zero. This means that the dynamics along the line generated by 

um  tends to zero. Furthermore, the M  non-zero coordinates of V2 which generate 

a vector perpendicular to um  also tend to zero. Thus, whenever the cycle starts 

with M  different but similar large follicles, they will tend to the same size and then 

decrease and die.

For the dynamics of the N  — M  coordinates of v^a we have that since A 3  (t ) > 0
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F igu re 6.19: Dynamics of the different eigenvectors obtained from the eigenvalues computed for 
7  <  0 shown in figure 6.15. Dynamics of vi ,  V2 , vzaj  and v±aj  represent the behaviour of v i ,  V2 , 
and the first M  non-zero coordinates of v^a and Via respectively. All of them tend to zero in both 
figures a) and b). Moreover, v$ak represents the dynamics of the N  — M  coordinates of v^a, which 
also tends to zero in figure a), whilst grow in figure b).

during the cycle, as is seen in figure 6.17, the N  — M  initially identical small follicles 

would grow to a large size. Nevertheless, although such coordinates grow to a very 

large value, they eventually tend to zero as expected since A3 (t) —> —ji as t —> 0 0  

(see figure 6.20). At the same time, the N  — M  follicles tha t initiate the cycle with 

different small sizes will tend to the line in the direction given by vsa, and then 

eventually tend to zero.

2e+07

v3ak ---------
1.5e+07

>c

le+07o
2c
aoOhBoCJ 5e+06

0 5 10 15 20 25 30 35 40 45 50

time

F igu re 6.20: Dynamics of the N  — M  coordinates of U3aObtained from A3 computed for 7  < 0 
shown in figure 6.15.b). Although such coordinates increase to a large value, they eventually tend 
to zero since \ z ( t )  —¥ — p, as t  —► 0 0 .

Finally, it remains to compute the eigenvectors for A4 =  — /j, corresponding to 

perturbations in y. For that we consider the whole 2N  dimensional space and solve 

system (6.28) for A4 . Thus, from equation (6.28.c) we obtain tha t y ^  Ô r, and from 

(6.28.b) we get x ^ - m  = 0n - m - To find the corresponding x m  we consider two
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cases:

a) If y = un  (the vector for which its N  coordinates are equal to one) corre­

sponding to the same perturbation to all ages, then from (6.28.a) we obtain

[C — \±I]x m  +  c\ I um  = 0 m - 

We find that for each i = 1, ■ • •, M ,

M
(ai — A4 )xi +  bi ^ 2  Xj +  ci =  0 .

3=1

Note that since c\ Ium  = c\um  £ Vi, then xm  £ Vi, s o  let xm  =  olum• Thus, for 

each i we obtain

(Ai — A4)a +  ci =  0

where,
ci

°  A4 - A i ’ 
such tha t A4 7  ̂ Ai for all X  > 0 and y > 0.

Prom the values of ci and 7  given in (6.23) and (6.5) respectively, we get

c1 = ^ [ K  + 'YD X 2].

Therefore, from the eigenvalues given in (6.27), we finally obtain

X( t )[K  + j D X ( t ) 2] 
y ( t ) M [ K  + 3' ,DX(t )2]'

thus, a  — a(t).  Therefore,

vja — (a ( ^ M i  Oat-Mi &n ) e  ^ 2N,

which varies with time.

b) If y = v e  Vic, where = {v : vk = 0 } such tha t un  _L v for all

v e V-2- Let vT = where vm is the first M  entries of v, and ujv-m the

remaining N  — M  coordinates. Then, from (6.28.a) we get,

[C — A4 I]xm +  CiI vm =  0 M,

from which we consider two sub-cases:

b .l) If xm  £ Vi, then let xm = otum  for a given a 1 7  ̂ 0. Thus for i — 1, • ■ •, M  

we get

(Ai -  A4)a/ +  c\Vi =  0.
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From which,
_  (A 4 -  A i)o ; ' _  a ,

Vi — — PiCl
(6.35)

meaning tha t vm — P'umi  which implies vm  £ V\. Hence the eigenvector obtained 

is,

vjb = (a 'u\I ^ , ( 3 ' u TM,v 1t i_M). 

b.2) If xm  £ Vf1-, the zth equation in (6.28.a) is

(ai -  A4)rri +  c\Vi = 0 .

Hence,

Vi =
Cl

which implies that vm  £ Vi~ since Y i L i  x i — 0 , and

M  ,  M
£ „ i =  ^ ! £ Xi =  °.
1= 1 Cl 1 = 1

(6.36)

Therefore, the eigenvector is

where x m i Vm  £ Vi~.

Let us discuss the behaviour of Vk for the linearised dynamics vk = J\PeVk, for 

k — 4a, 46,4c and the matrix J\Pe given in (6.25). Just considering the non-zero 

terms of the resulting matrix, for f>4a we obtain,

a(t)CuM +  ciI um

—pun

Since C um  = A4umi  for the non-zero coordinates we get the following system,

f Aiv^aj +  ci {t)vij for all j  = 1, • • •, M
V4 aj  —

A 4V4a j for all j  = 1, • • •, N.
(6.37)

For V4b we get
a'CuM +  ciI(3'um 

(  (3'um

Vn - M

119



6.5. DYNAMICS OF DIFFERENT FOLLICLES IN SIZE AND AGE

Again, since C um  = Ai um  and by substituting the value of ' given in (6.35) we get

Ai a'uM +  (A4 — Ai )a’uM

)
\  V N - M  J

Thus, for the non-zero coordinates we obtain the system,

{A4U4bj for all j  = 1, • • •, M

A4 v^bj for all j  = 1, • • •, N.

Finally, for v^c when considering v n - m  — 0n - m  the non-zero terms of the re­

sulting matrix are given by
C x m  +  ciI vm

- f l V M

We have tha t C x m  = A2%m , and from (6.36) we see that vm  = (A4 — u i)^ m /c i, thus 

we get
A2 x m  +  (A4 — ai)xM 

-(IVm

Hence, since A4 — ai =  A4 — A2 as we can see from (6.23) and (6.27), we finally get 

the following system in coordinate form,

{A4U4Cj for all j  = 1, • • •, M

A4U4cj for all j  = 1, • • •, N.

for the non-zero terms.

The dynamics of vectors the v ^  and V4C, which were the ones obtained when 

considering y = v G V-^ is given by,

Vk(t) = Ufc(0 )e-A1*

for k = 46,4c. This means that within both subspaces, the one of follicular sizes and 

the one of follicular ages, the dynamics along those two directions is contractive.

In more detail, the dynamics of coordinates v^j for j  =  1 and k =

4a, 46,4c, within the space of follicular age is given by,

V k j ( t )  = vkj( 0)e_/if

Hence, it is clear tha t for the subspace of follicle ages, the dynamics of all of the 

eigenvectors vk exponentially tends to zero at a rate given by —fi. In particular for
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the cases when y =  v for v £ V^, this implies that when the cycle starts with follicles 

with different initial ages, their age values will tend to the diagonal given by y — um  

within the age subspace, since the dynamics in the direction perpendicular to it is 

contractive. At the same time, the follicles’ ages will tend to zero as the dynamics 

in the direction of y = um  also tends to zero as time goes by.

As for the dynamics of the follicle sizes, this analysis tells us tha t when 7 > 0, 

the first M  coordinates of u*a tend to infinity at a finite time (see figure 6.18). For 

the first M  coordinates of vectors v45 and v±c the dynamics tends to zero at the 

same rate — fi. In contrast, when 7 < 0, v^aj for j  = 1, • • • ,M  tend to zero as we 

see in both examples of figure 6.19. Furthermore, for 7 < 0, the first M  entries of

and V4C also tend to zero maturity. This means tha t the dynamics along the line 

generated by um  is the same as the dynamics of the total amount of oestradiol X , 

and it would be either ovulatory, when 7 > 0  or anovulatory, when 7 < 0 .

So far we have only considered linear stability. For the case of ovulation our 

analysis is about an unbounded trajectory. Hence, to decide stability of the nonlinear 

equations we require to prove that the second order term of the dynamics grows 

slower than the contracting eigenvalues. For the particular case of anovulation, this 

is pretty straight forward since X(t )  -A- 0 as t -A 00. However, a better analysis needs 

to be developed for the ovulatory situation, where X(t )  —> 00 as t —> T.  Nevertheless, 

for the purposes of this thesis we just consider the linear stability analysis as well 

as the numerical examples described to show that the system is locally stable at a 

linear and a non-linear level.

Therefore, we can just suggest that when the cycle starts with different follicles 

in size and age, the dynamics is at least locally stable. Hence, when the cycle begins 

with different follicles but similar in both age and size, the basic behaviour of the 

cycle is stable, and the number of follicles selected can still be predicted.

6.5.2 Further results

New results from this model can be observed when the initial conditions of the 

system are not similar. For example, in the cases where there are either three follicles 

ovulating or two stuck follicles, drastic alterations in the selection process may be 

obtained by sufficiently large perturbations of the initial conditions of the system. 

In this case the largest follicle’s initial age was reduced to a value much smaller than 

the age of the remaining interacting follicles. Figure 6 .2 1  shows for the particular
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3015 20 25100 5

time

F igu re 6.21: Simulation of the ageing model where K  =  5.0, D  =  0.5, /x =  0.2, Mi =  2.9 
and M 2 =  3.9. Initial age values do not decrease uniformly as in previous examples, but yo, =  
8.0, . . . y o 6 =  3.0 while, yo7 =  0.2 and yos =  0.1. The three largest follicles, X6 ,X7 and x& reach 
pre-ovulatory maturity, yet they start to atrophy so slowly that it appears they remain stuck in the 
ovary. Rather than ovulatory, these three follicles get stuck inside the ovary.

situation where previously the largest three follicles would ovulate, now such follicles 

demonstrate anovulatory behaviour, and eventually tend to zero. Although these 

three follicles decrease in size, they are not atretic when we compare their decrease 

rate with smaller follicles x \  to x$. In fact, from the separatrix value given in (6.9) 

for the simplified model, we observe that X*  is inversely proportional to the initial 

age value yo. Thus, for the case of follicles starting the cycle with different ages, 

the ‘oldest’ ones, may start growing with an initial size lower than the minimum 

threshold required to ovulate, which is given by X*.
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0.6

0.5t>>
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F igu re 6 .2 2 : Numerical simulation of follicles relative oestradiol production corresponding to that 
of figure 6.21. Parameter values K ,  D , /x, Mi and M2 axe the same and, the initial age distribution 
is also the same. Follicles with the largest relative maturity, do not tend to the equilibrium value of 
1/3, instead follicle ps  tends to zero and follicles p& and p 7 tend to different equilibrium points.
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Therefore, this means that it does not m atter that the largest follicles have the 

opportunity to ovulate in terms of their hormonal sensitivity, if two of them are 

old enough at the beginning of the cycle, they would not ovulate and would also 

obstruct other follicles from ovulating. Hence, the symmetric ageing model gives the 

possibility of getting the same number of follicles ovulating or arresting only by a 

change in the initial conditions of the system. This is another feature that Lacker’s 

model is unable to exhibit since, for that model, the number of ovulating follicles 

is always strictly larger than the number of stuck follicles. Therefore, incorporating 

the ageing factor into Lacker’s original model suggests that such a decaying capacity 

may be the reason for anovulation when hormonal levels are at the correct levels for 

a normal selection process.

3.5

2.5

x5 —

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
time

F igu re 6.23: Anovulatory ovary for parameter values K  =  5.0, D  =  0.5, p  =  0.2, Mi =  2.9 
and M2 =  3.9, and initial age distribution like in previous figure 6.22. There is not a significant 
qualitative difference from that of figure 6 .1 1 , where the.same follicles £ 5  and x& are again selected. 
However, follicles £ 7  and x& atrophy slower than follicles x^ and x& of figure 6.11.

Furthermore, it is also observed in this example that the relative maturity of the 

selected follicles does not tend to the same fixed value as in figure 6.11. In contrast, 

we observe follicles pj  and p$ tending to a different equilibrium point, whereas the 

largest follicle relative maturity, ps , tends to zero (see figure 6.22). This fact reflects 

that we can only guarantee local stability for the model of follicles with different size 

and age.

However, on the other hand, we would not get a significant alteration to the 

selection process if for the anovulatory case, the initial age of the two largest follicles 

is greatly reduced. For this situation figure 6.23 shows that follicle five and six are 

again selected and remain stuck, but the two largest follicles decrease much more
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slowly than in the case shown in figure 6.11.b. However, we would not consider 

follicles seven and eight as being anovulatory since they still decrease much faster 

than follicles five and six. Furthermore, figure 6.24 shows follicles five and six are 

still the selected ones. This agrees with the fact that for the anovulatory case, there 

is no minimum threshold required for follicles to be able to reach a pre-ovulatory 

size.
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F igu re 6.24: Corresponding numerical simulation of follicles relative oestradiol secretion to that 
of the previous figure. The two selected follicles tend to the same relative maturity value 1/2.

6.6 Discussion

The implementation of the ageing variable complicates the mathematical expression 

of the system, but it is still possible to develop a relevant theoretical analysis. The 

theoretical and numerical analysis that this chapter gives of M ariana’s et al. model 

is able to give new tentative conclusions about the control of ovulation cycle in 

mammals.

The analysis begins with the most simplified case of many growing follicles with 

initially the same size and age, or which would be the same, only one growing follicle. 

The resulting equation is analytically integrable, and three possible behaviours are 

detected when the ageing parameter is not too large with respect to the initial size of 

the follicle. Thus, whenever the ageing parameter is small enough so tha t it does not 

beat the selection process, the dynamics of a single follicle may present ovulatory, 

anovulatory and atretic behaviour for different values of the relevant parameters.

However, a modified feature for the particular case of anovulation is reflected 

by this model. Instead of getting an indefinitely stuck follicle with a fixed size, it
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eventually regresses due to its deteriorating capacity. Nevertheless, this regression 

occurs in a much slower manner so that there is a visible difference between this 

follicle and an atretic one. This suggests that the pre-ovulatory follicle tha t did not 

manage to ovulate does eventually disappear, so that it does not remain inside the 

ovary for the next cycle. However, since the model does not specify any time units, 

it is not possible to actually determine when the stuck follicle finally dies.

When complicating the system further by supposing that many follicles grow 

with different initial sizes, but still retaining the same initial age, the model can 

still be studied analytically. The growth rate function can be separated into three 

different functions, leading to three different dynamics. A gradient system for the 

relative maturity of the follicles can be found, for which there exists a stable M -fold 

equilibrium point. However, for this particular case, the pre-destination of having 

the largest follicles selected is still maintained.

Finally, for the most general case of many interacting follicles with different 

size and age, it is not possible to get a non-linear stability analysis. For this case 

the dynamics cannot be separated and therefore, it is not possible to find a gradient 

system for the interaction dynamics. However, a linear stability analysis is developed 

to show that, at least locally, the system for different follicles in age and size can 

still control the number of selected follicles.

The pre-destination of the system from the initial size of the follicles no longer 

holds. This means that when the cycle begins with different follicles, but with 

similar size and age, the selected follicles are amongst the largest, but they are not 

necessarily the largest ones. Therefore, some crossing between the follicles’ growth 

curves can result from this model. This is in better agreement with biological data 

since it has been shown that size is not the only factor determining selection.

Some numerical examples produced in this thesis show that the symmetric model 

with an ageing decaying factor is not globally stable. Therefore, when the system 

begins with, for instance, one “very old” follicle compared to the remaining follicles, 

the number of expected ovulatory follicles is not maintained. Nonetheless, this could 

present new insight into the selection of the control dynamics. This example in par­

ticular breaks the hierarchy of the number of ovulating follicles being strictly larger 

than the number of pre-ovulatory stuck follicles. For this case, from a certain num­

ber of ovulating follicles, there could be exactly the same number of stuck follicles. 

This could therefore suggest, that there are other local factors that affect follicular
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sensitivity to gonadotropins, and produce a polycystic ovary.

Nevertheless, the biological interpretation of such an ageing factor is not really 

specified. Although many biological entities decay at an exponential rate, the par­

ticular mechanisms through which the follicles deteriorate are not defined through 

the ageing variable of this modified version of the symmetric model. Therefore, it 

can only be concluded that this model supposes an atretic potential for all growing 

follicles. This atresia dynamics, also present in pre-ovulatory follicles, may interfere 

with the ovulation rate dynamics. Thus, whenever some of the largest follicles en­

tering the follicular phase of the cycle are old enough, they will not be selected and, 

furthermore, they may affect the response of the remaining large follicles to hormone 

levels. Therefore, no other pre-ovulatory follicle may ovulate, but will rather remain 

within the ovary for a period of time. This is another way, the models suggests, of 

obtaining PCO in the human ovary.

It would be of great interest to be able to discern the origins of such an ageing 

factor in order to provide a better biological understanding of the regulation of the 

ovulation number in terms of this model. However, the most im portant hypothe­

sis this model actually suggests is that follicle sensitivity to gonadotropins can be 

strongly affected by this deteriorating capacity. As a consequence, the system may 

no longer control the ovulation rate of pre-ovulatory follicles. Therefore, a PCOS 

can be due to the ageing factor of the follicle, which overcomes follicle sensitivity to 

gonadotropins.
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Chapter 7

FOLLICLE GROWTH AND 
GONADOTROPIC 
RECEPTORS OF 
GRANULOSA CELLS

7.1 Introduction

Although the models analysed in the previous two chapters are biologically motivated 

and reflect the overall feedback loop via the pituitary, the specific response functions 

used in these models are somewhat arbitrary. This makes it impossible to give a 

reliable biological interpretation to the parameters in these models. Effects resulting 

from the manipulation of such parameters on the behaviour of the model may suggest 

a biological interpretation, but nothing beyond that can be asserted. Therefore, these 

models cannot be tested against real biological data. This is basically due to the fact 

that the way follicles react to gonadotropin stimulation is not expressed explicitly 

within the follicle growth function.

In the present chapter we develop a new model based on the same framework 

as the symmetric, non-symmetric and symmetric ageing models, but using a more 

biologically motivated follicle growth function. It is well known that follicular cells 

have protein-like receptors on their plasma membranes which bind to gonadotropins. 

This binding process signals the follicle cells to initiate a series of internal transduc­

tion pathways, which culminate in follicle growth and steroid production [Mason, 

1994]. We base our follicle growth function on this process.

Despite the different kinds of follicular cells involved in the process of gonadotropin
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stimulated development, we start by describing a simple interaction between the 

granulosa cells (GCs) and FSH. In fact, it has been shown tha t once the follicle has 

reached its hormonal dependent maturity, it is able to reach pre-ovulatory status by 

mainly reacting to FSH through the GCs [Zelinski-Wooten et al., 1995]. In chap­

ter 2, we have briefly described the LH influence on follicle growth. However, in 

spite of the LH contribution through the theca interna cells (TICs), estrogen pro­

duction is basically due to the FSH influence just before the LH surge. Moreover, 

it is also known tha t the follicle grows due to continuing GC proliferation strongly 

promoted by a FSH signalling process [Monniaux et al., 1994]. Therefore, there is 

a direct relationship between the FSH binding process and GC steroidogenesis and 

proliferation.

In order to develop a mathematical model, we describe how the process of FSH 

binding leads to the production of estrogens within the GCs. The FSH coming 

from the blood stream gets to the GCs through the basement membrane. Such FSH 

binds to FSH receptors on the GCs until an equilibrium of FSH density is established. 

This equilibrium assumption is valid since the time taken for the binding reaction is 

much shorter than that of changes of FSH levels. At equilibrium there exists both 

bound and unbound receptors as well as bound and unbound FSH molecules. Since 

equilibrium has been reached, the unbound concentration of FSH molecules is the 

same inside and outside the follicle.

7.2 The kinetics of the binding process

The binding process can be described by

H  + R ^ H R  (7.1)

where H  denotes an FSH molecule, R  a GC free receptor and H R  the FSH-GC 

bound complex. Consider h to be the concentration of FSH unbound molecules, r 

as the concentration of free GCs receptor molecules and c as the FSH-GC bound 

complex concentration. We assume that FSH binds to its GC receptor by the Law
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of Mass Action [Becker et a l , 1996]. Therefore the corresponding equations are

dh i l l  / \—  =  —k\rh  +  k - \ c  (a)
at

~  —k\rh + k - \ c  (b) (7-2)
dt

^  =  k\rh  — k - i c  (c)
dt

where k\ and fc_i are the binding and disassociation rate constants respectively. The 

dynamics for the FSH and receptor concentrations are exactly the same. Moreover, 

since dr/dt  + dc/dt = 0  and dh/dt-\-dc/dt = 0 , the total concentration of both bound 

and unbound FSH molecules is conserved, and the same happens for the receptors. 

This can also be written as

r{t) =  r(0) — c(t) and h(t) = h(0) — c(t) (7.3)

for all t, and for some initial free receptor concentration, r ( 0 ) =  ro ̂  0 , and initial

free FSH concentration, h(0) =  ho ^  0. Substituting (7.3) in (7.2.c) we get

dc
— =  kiroho — kihoc — kihoc + fcic2 — fc_ic. (7.4)
dt

Now, considering the following change of variables:

r  =  k\rot , w ( t ) = c/ho a n d  v(r) =  c/ro;

we obtain the non-dimensional equation

di )
e—  = 1 — w — ( 1 —w + K)v,  (7.5)

dr

where e =  ro/ho and K  = A:_i/(A:i^o)- The latter is known as the intrinsic disas­

sociation constant, or Michaelis-Menten constant [Segel, 1980; Segel, 1984; Murray,

1993]. Consequently, the equilibrium value for the bound receptor dynamics is

( 1 ~ w) .
(1 - w ) + K

Let u be the proportion of free FSH molecules, i.e. u = 1 — w , then the equilibrium 

is also given by

V =  (7.6)u +  K
In the following section, we describe how such a term is incorporated into the follicle 

growth equation.
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7.3 M athem atical model for the follicle growth in term s 
of the granulosa cell FSH receptors

Prom the simple reaction described in (7.2), it is clear tha t the concentration of

FSH molecules bound to a GC receptor is equal to the GC bound receptor density.

Therefore, the average number of FSH molecules associated with each GC is

_  total number of FSH molecules bound to GC receptors ^
total number of GCs.

On the other hand, if we define b to be the equilibrium density of GC bound

sites, and X i  the total density of GCs of the «th follicle, then according to definition

(7.7) the mean association function is

v = — . (7.8)
Xi

As in previous models we assume that the dynamics of the FSH serum levels is 

much faster than that of follicular growth, so we may use the same rescaled variable 

u for the circulating and follicular FSH levels. Furthermore, let us define X  as 

the total concentration of oestradiol as in Lacker’s model. Thus, the rescaled FSH 

concentration is such that

u =  f ( X )  (7.9)

for some particular function /  that will be defined below.

Then, the follicle growth rate equation proposed is

d x i
—  =  7 1 2 ^ 6  -  7 2 x u

for al l? =  1,2, . . .  ,1V. Thus, from (7.6) and (7.8) we find the GC bound receptor 

density is
X i U

b = Xiv = ■ -- (7.10)
u +  K

If K  is given by K  = k - i / k i ,  from (7.9) and (7.10), we get the follicle growth rate

dxi x ^ f ( X )  . .
~ d t = l l f ( X )  + K ~ l2Xi ' 7̂' n )

where again
N

X  =  £ > ;
1 = 1

for all i =  1 , 2 , . . . , AT. The constant values of 71  and 7 2  respectively correspond

to the proportionality parameters for follicular exponential growth and linear decay

terms.
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This expression corresponds to the simplest growth equation we are able to for­

mulate in terms of the bound receptors. A linear decay term is first considered for 

simplicity. The positive growth term is the only one being regulated by the pituitary 

hormone, explicitly introduced by f { X) .  This function should be decreasing in order 

to reflect the negative feedback of the total oestradiol serum concentration X  upon 

the pituitary FSH secretion.

7.3.1 Stability analysis

Let us apply Lacker’s stability analysis to the general equation,

dXi 2 ( -y-X
—  =  7 i Z i i ; ( A )  - 7 2 Xi
at

for all i = 1 , 2 , . . . ,  N.  This is clearly a system of standard Lacker type, i.e.

dxi
—  = Xig(xi,X).

Separating g as in previous cases we get,

g(xi>X ) = 5 ( X ) K ( p j) - p ( X ) l  (7.12)

where pi is the relative oestradiol production of the «th follicle, and

f(P*) = tfP* 

p(X)  = 72
X v ( X )

6(10  =  X v ( X )

Hence, as in chapter 4 from (7.12) we obtain the same interaction dynamics,

(4.8), and the same rescaled time dynamics, (4.10). For the intensity dynamics, we 

get the equation

^  =  *[«(P) -  P(X)]. (7.13)

As far as the interaction dynamics is concerned, we observe tha t £(0) =  0 and obtain 

the same equilibrium condition as in (4.11). Thus, the only possible stable M-fold 

equilibrium point Pm  is

pi =  (1, 0 , . . .  , 0).

This is because

iiPi)  =  ^  =  £ > £ ( P i )  =  f(p)>
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and furthermore, £'(pi) = J i / K  >  0 for at most one pi ^  0, as well as
A T

Therefore, for pi  the equilibrium point for the interaction dynamics, £(pi) =  A, and 

if any point p  tends to p\  then, £(p) —> A as r  —>■ oo.

This is saying that the only behaviour that this model is able to produce is that 

of a monovulatory ovary. Although, this is the case for primates, as we have stressed 

throughout the thesis, we also wish to model some kind of anovulation or PCO. 

Furthermore, there is no evidence that the selection mechanism in other mammalian 

species is significantly different, and hence any reasonable model should be capable 

of multiple ovulation. Nevertheless, we shall complete the stability analysis for the 

whole dynamics of this model, and see what other kind of information we can obtain.

Since very little is known about a specific quantitative relationship between FSH 

levels and the total amount of oestradiol during the early follicular phase and the 

mid follicular phase period, we assume a simple rational decreasing function such as,

Therefore, in this case, p is monotone decreasing for all A  > 0  so tha t p(X)  —> 7 2  for 

some 7 2  >  0 as X  —> 0 0  and p(X)  —> 0 0  as X  —>• 0. We also notice tha t 5(0) = 0  and

two functions satisfy the same characteristics, except for limx->oo p{X)  = —D < 0 

and 5(A) —» 0 0  as X  —> 0 0 .

For the analysis of the total oestradiol concentration dynamics, it is easier to 

re-write equation (7.13) as

(7.14)

5(A) —> 7 2  as X  —> 0 0 ; in fact p(X)  = 7 2 $ ^ X ). In the case of Lacker’s model, these

d X X 2
— 7 2  A  =  G(X) . (7.15)

[1 +  A (A  +  1)]

The two possible equilibria are

X{  =  0

7 2 ( 1  +  K)  
71  -  A 72
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so tha t the non-trivial equilibrium, exists as long as K  < 7 1 / 7 2 - 

Now, given
27iX[1 +  K ( X  +  1)] — 7 1 X 2 ..

G {X)  = --------- [1 +  K ( X  +  1)]------------ T2’

we observe that G' (X{)  =  —7 2  and G 'p fJ ) > 0. Therefore, this implies X {  is always 

a stable equilibrium point, while X% >  0 is unstable as long as K  < 7 1 / 7 2 , which is 

equivalent to the condition, A > 7 2  for the rescaled intensity dynamics (7.13), where

g  * X ( A - 72)

for X  sufficiently large.

Figure 7.1.a shows the phase portrait for the intensity dynamics, where X£  > 

0  represents a minimum oestradiol concentration required for the follicles to start 

growing. Whenever 0 < X q < X |  the solution decreases to zero as we see in figure 

7.1.b. On the other hand, if Xq > X \  the total oestradiol concentration exponentially 

increases to infinity as figure 7.1.b also shows.

0.3

0.25

1.50.2

0.15

sO X

0.05

0.5

-0.05

-0 .1
0.05 0.15 0.2 0.25 0.3 0.35 0 2 3 4 5 6 70.4 1

F igu re 7.1: a) Phase space of the simplified dynamics of the model in terms of the GCs bound 
receptors for f ( X )  =  1 / ( X  +  1). Parameter values are such that 7 1  =  5.0, 7 2  =  1.0 and K  =  0.1. 
b) Solutions corresponding to the growth rate function depicted in figure a). Whenever the initial 
condition is smaller then X I  ^  0 such that ^ ( ^ 2 ) =  0, X ( t ) —»• 0, otherwise X ( t )  -A 0 0 .

On the other hand, if K  >  71/72 there is no positive equilibrium point and 

G( X)  < 0 for all X  > 0  as we see in figure 7.2. Hence, no follicle is able to grow 

what ever the value of its initial size.

To finish the stability analysis, we see that for this particular rescaled function 

5(X)  we have that for A < 72 there exists X e >  0 such that p( Xe) =  72<5(Xe) =  A; 

thus, dt/dr  «  1 / 5 ( Xe), which implies,

t{r) « y T  +  c;
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o

-3
0 2 4 6 10

X

F igu re 7.2: Phase space of the simplified dynamics of the model in terms of the GCs bound
receptors for f ( X )  =  1 / ( X  +  1). Parameter values are such that K  >  7 1 / 7 2 , in particular 7 1  and 
7 2  are just like in figure 7.1, but K  =  6.0. Hence, G ( X )  <  0 for all X  >  0.

hence, t  tends to infinity as r  grows. On the other hand, if A > 7 2  we have,

Consequently, for the ovulation case the selected follicle grows to infinity as time 

grows to infinity. Therefore, the intensity function is in fact different to tha t of 

Lacker since the ovulatory follicle does not grow to infinity in finite time.

Prom the stability analysis we may assert that whenever the system starts with 

enough initial oestradiol concentration to allow the interaction dynamics to reach

(7.16)

for every X  > 0. Furthermore,

and from (7.16) we have,

which implies,
1 f x  M  d X

However, £(AT) does not grow faster than X s for some e > 0. Thus,

does not converge implying that,

r —>00
lim t ( r )  = 0 0 .r 1 v '
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its equilibrium point p i, the total amount of oestradiol monopolised by the single 

selected follicle grows to infinity at an exponential rate. To observe a numerical 

example of such a behaviour we fix a maximal follicular size in order to allow the 

remaining smaller follicles to complete their atretic regression (see figure 7.3). There­

fore, we integrate the system for eight growing follicles and once the ovulating follicle 

reaches or exceeds a size of x max =  1 0 3, we fix its size to that maximum until the 

remaining follicles finish their atretic regression. In this way, we are in fact altering 

the dynamics of the system in an artificial manner.

10
x 1 ------- ; xl -------
x 2 ------- j x 2 -------

j x3 ......... i ^ x3 .........
I x4 -------  . 8 x4 -------  .

x5 ------- 1 j  \ x5 -------
! x6 ------- x6 -------
1 x7 ......... x 7 ..........
i x8 -------  . 6 11 \ x 8 -------  .

siz
e l» \  

lj \
ji 4 I: \  

l i \
/ /•'

It

.  i 2 . It

/ /
/  S — /•  .........

.............
0

..............— ................

0 0.5 I 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 I 1.5 2 2.5 3 3.5 4 4.5 5
time time

F igu re 7.3: Dynamics described in system (7.11) for eight growing follicles with relatively similar 
initial sizes, where f ( X ) =  1 / ( X  +  1). Parameter values are such that K  <  7 1 / 7 2 , in particular 
7 1  =  5.0, 7 2  =  1.0 and K  =  0.1. a) Initial conditions are x\  =  0.1, • • • , 2 7  =  0.7, and x& =  0.9. 
Only the largest follicle, xs, is selected for ovulation, i.e.  it reaches a maximum size of x-max =  103, 
whilst the remaining smaller ones, 2 1 , • • • , 2 7 , degenerate through atresia, b) Initial conditions are 
2 1  =  0.1, • • • , 2 6  =  0.6, and 2 7  =  0.85, xg =  0.9. Again, only one follicle, xg, is the one ovulating.

However, some interesting features can be observed, e.g. if the maximum size of 

the pre-ovulatory follicle is lowered a little, we observe tha t if the two largest follicles 

start growing with very similar sizes, both of them can reach a pre-ovulatory m atu­

rity, i.e. both of them are selected as figure 7.4 reflects. This of course contradicts 

the theoretical analysis, but we shall explain below to what conclusions this artificial 

alteration to the model has led us to.

In Lacker’s original model each of the selected follicle’s rates is auto regulated 

since the positive growth rate of follicle Xi has a maximum for any X , as we can see 

in figure 7.5. This allows a follicle just below the minimum size to escape atresia to 

have a positive growth rate when the total oestradiol concentration rises even more. 

This is so since the monopolised oestradiol produced by the first selected follicle does 

not grow at an infinite rate.

For the case of the model we have developed so far, however, the situation is 

very different. For this model, once the largest follicle passes the minimum size
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F igu re 7.4: Dynamics for eight growing follicles as in figure 7.3. However, in this case the maximum  
size fixed for the numerical simulation is smaller than in figure 7.3, here it corresponds to x max =  102. 
In this way, the two largest follicles £ 7  and xg are selected for ovulation, whilst the remaining smaller 
ones, £ 1 , • • •, X6, degenerate through atresia.

x* required for a positive growth rate, it grows exponentially and nothing stops it. 

Furthermore, it does not allow any other follicle to pass the minimum size. Therefore 

an artificial way was chosen to diminish such a rapid growth, and once the follicle 

reached a pre-ovulatory size its velocity was made zero. In this way, a second largest 

follicle which is not much smaller than the largest one has time to escape beyond the 

minimum value x* and grow exponentially. In this way it is possible to have more 

than one follicle to be selected. So far, we do not have any biological evidence to 

support this artificial method.

Furthermore, it is possible to change the model growth equation so the follicle 

selected to a pre-ovulatory maturity does not grow to infinity, and the model nat­

urally fixes its pre-ovulatory maturity. This is achieved by changing the function 

/  to f ( X ) = 1/(1 +  X 3). For this particular case, when the initial follicle size is 

larger than the minimum to escape immediate atresia, the follicle grows to a fixed 

equilibrium value (see figure 7.6).

It is im portant to notice that by changing the function / ,  the interaction func­

tion is not affected meaning that there is still only one follicle that is theoretically 

selected. However, we would expect that since the pre-ovulatory follicle does not 

grow to infinity we would obtain more than one chosen follicle. Figure 7.7 shows the 

two different growth rate functions for the two particular models considered in this 

chapter. Observe that the minimum follicle m aturity x* required to escape atresia 

increases much faster for the second model (see figure 7.7.b) as X  increases than

• 1 . .
x l ---------
x2 ---------  '
x3 ............
x4 ---------  .

I ; x5 ---------
; ; x6 —........

x7 - ...............
i / 

! *

x8 ---------
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1.5

f(xi,0.0) ---------
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f(xi,2.0) ............
f(xi,2.5) ---------

0.5

0
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1.60.4 0.6 0.8 1.2 1.40 0.2
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F igu re 7.5: Follicular growth rate space for Lacker’s original model. Different curves Xi =  f ( x t , X )  
vs Xi for different oestradiol concentration values X .  For each curve, there is a minimum and 
maximum follicle sizes in order to have a positive growth rate. As X  increases, each minimum and 
maximum also increase.
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F igu re 7.6: a) Growth rate function of the total oestradiol concentration for the simplified dynamics 
of the model in terms of the GCs bound receptors. Here, f ( X )  =  1 / (J\T3 +  1). b) Solutions 
corresponding to the growth rate function depicted in figure a). Whenever the initial condition 
is smaller that X£ ±  0 such that GfXJ) =  0, X ( t ) —► 0. Otherwise, X ( t )  —» Xmax,  such that 
G( Xmax)  =  0, which is a stable finite equilibrium point.

for the first model (see figure 7.7.a). The fact that for the second model the largest 

follicle monopolises the total oestradiol concentration up to a certain fixed value 

does not help other follicles reach a pre-ovulatory size. Two numerical examples are 

shown in figure 7.8 to illustrate that no m atter how close the two largest follicles 

start the cycle, only one is selected.

Prom the results obtained for these two models we believe tha t such a follicle 

growth equation is still not good enough to describe the dynamics of follicular se­

lection by itself. It is true that a selection process takes place, but only one follicle 

is chosen. Therefore, as long as K  < 7 1 / 7 2 , only one follicle is selected and the rest 

atrophy. The alternative behaviour given by K  > 7 1 / 7 2  is that all of the interacting
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2.5 f(xi, 1.0) 
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F igu re 7.7: Follicular growth rate space for two different models in terms of GCs bound receptors. 
Different curves Xi =  f ( x i , X )  vs Xi for different oestradiol concentration values X  are plotted 
in both cases, a) This corresponds to the model for which f ( X )  =  l / ( X  +  1). The minimum  
size required for a follicle to have positive growth rate increases linearly as X  increases, b) This 
corresponds to the model for which f ( X )  =  1 / ( X 3 +  1). The minimum size required for a follicle to 
have positive growth rate increases as X 3.
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F igu re 7.8: Numerical example of eight growing follicles for the model in terms of GCs bound 
receptors, where f ( X )  =  1 / ( X 3 +  1). The parameter values are such that K  <  7 1 / 7 2 , where 
7 1  =  10.0, 7 2  =  1.0, and K  =  0.1. In both figures only the largest follicle reaches ovulatory size, the 
rest smaller ones atrophy and die.

follicles atrophy and die.

Therefore, there is no other way of either manipulating the parameters of the 

equation or the initial conditions of the system, in order to obtain any other type of 

behaviour. In particular we are interested in being able to reflect the possibility of 

having more than one follicle selected. We believe that just to consider the number 

of bound FSH receptors of GCs is insufficient.

As we have mentioned in chapter 2, LH effects have an im portant role during 

the follicular phase of the cycle. In the particular case of pre-ovulatory follicles, 

LH stimulates their granulosa to the aromatisation of oestradiol. We believe that 

a failure of GCs of pre-ovulatory follicles in responding to LH signalling input may 

prevent those follicles from ovulating. This failure can be due to irregular secretion
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of LH associated with PCO [Watson et al., 1993]. Therefore, we think it is im portant 

to consider FSH and LH effects separately.

7.4 Developm ent and effects of LH receptors of granu­
losa cells during terminal folliclegenesis

In order to improve the follicle growth function we have decided to also consider the 

concentration of LH bound receptors of GCs. By the time the follicle has reached 

the Graaphian state, it is thought that its GCs start developing LH receptors on 

their plasma membranes [Baird, 1983]. Since the follicle will soon be lacking FSH 

signalling stimulation, LH receptors are believed to take over. Therefore, during the 

last stage of the follicular phase the selected follicles oestradiol production within 

their granulosa is stimulated by LH. As we have described in chapter 2, the follicle 

oestradiol production has a positive feedback effect upon pituitary LH secretion. 

Therefore, at the same time FSH decreases, LH is still available from the blood 

stream.

It is also thought, however, tha t the LH serum concentration basically remains 

constant during the follicular phase of the menstrual cycle. By the end of the follic­

ular phase, the LH surge takes place as a sudden and rapid pituitary discharge. It 

is difficult to relate these two LH dynamics since the pituitary control of tonic levels 

of LH and the pituitary control of the LH surge are thought to be due to different 

mechanisms. Moreover, progesterone has an im portant role in the latter. By the 

time of the LH surge, pre-ovulatory follicles have developed enough LH receptors on 

their GCs, which help them to ovulate a few hours later.

Nevertheless, since we are basically interested in modelling the selection pro­

cedure, we thus propose a follicle growth rate function in terms of a constant LH 

contribution, and an increasing concentration of LH bound receptors of GCs in the 

follicle.

7.4.1 M athematical models of follicle growth in terms of FSH and 
LH receptors of granulosa cells.

As in the previous model, we consider the GCs to be the only follicular cells interact­

ing within the cycle. Let us suppose LH bound receptors of granulosa cells increase 

with the number of GCs in a hyperbolic manner, i.e. if V2 denotes the concentration
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of LH bound receptors we have

Although we know tha t the disassociation parameter K  would in reality be different 

for each of the GCs type of receptors, for simplicity we consider both of these types 

as having the same disassociation constant.

Let t’i(A ) =  v ( X ), where v(X) is the same function for the FSH bound receptors 

described in the previous section. Let 7 0  be the constant LH contribution, and a  

the constant atretic parameter. Therefore, the model proposed is

^  =  (v ipO  +  7 0 ^2 (art) -  a)xi.  (7.17)

For this model we are not considering the follicle exponential growth rate (7 1  Xj) 

times the concentration of FSH bound receptors as in the models of previous section. 

Hence, the positive terms of the follicle growth rate function only depend on the 

concentration of the two kinds of GC receptors.

7.4.2 Simplified model analysis

We also propose to use f ( X ) = 1/(1 +  X)  for the function of FSH in terms of the 

total oestradiol concentration. Thus, we proceed by analysing the model for a single 

follicle. This means that if Xi = X  for all i =  1, • • •, N  we get,

dX X  X 2 „ . v .
dt ~  l + K ( X  + l) l a X  + K  “  “  (

Therefore, the equilibrium points obtained are,

X I  = 0

_  - l + a ( l + K + K 2 ) - ' y 0 ( l + K ) ± \ 4 K 2 ( - l + a ( K + l ) ( - a + ' y 0 ) + ( l - a ( l + K + K 2 ) + ' Y o ( l + K ) ) 2 ] ?
2 ,3  ~  2 K ( 7 0 - a )  ’

for 7 0  7̂  a.  Let us analyse the behaviour for the different possibilities considered for 

the relative value of the parameters.

a) If 7 0  > a  and K  +  1 <C 1 /a : we have that X^  3 are complex. However as we 

see in figure 7.9.a. G(X)  > 0 for all X  > 0. This represents an ovulatory feature, 

where X  grows at an exponential rate.

b) If 7 0  > a  but K  +  1 > 1 / a , then X |  > 0, whilst X£ < 0. Hence, as figure 

7.9.b reflects, for this case there is a minimum non-zero follicle size, or total oestradiol 

concentration required to grow just like in the models of section (7.3) This means
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that, if 0  X 2 there is 110 chance of surviving atresia since the to tal oestradiol

concentration drops to zero. On the other hand, if X  >  X£ we also have an ovulatory 

situation, where the total oestradiol concentration of the selected follicle grows at 

an exponential rate (see figure 7.9.b).

0.16
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0.6
0.08><a><o 0.06
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-0.02
0.82.5 0 0.2 0.4 0.60 0.5 1.5 2 31

X X

F igu re 7.9: Growth rate function of a single follicle or of the total oestradiol concentration for the 
model in terms of FSH and LH bound receptors of GCs. Both cases correspond to an ovulatory 
condition, a) Parameter values satisfying condition (a) with 7 0  =  1.0, K  =  5.0, and a  =  0.1. There 
are no non-trivial equilibria and G ( X )  >  0 for all X  > 0. b) Parameter values satisfying condition 
(b) with 7 0  =  1.0, K  =  1.5, and a  =  0.5. There is only one positive equilibrium point, X% =  0.28, 
such that G ( X )  <  0 for X  <  X%,  and G ( X )  >  0 for X  >  X \ -  Therefore, there exists a non-zero 
minimum size or total oestradiol concentration initially required to escape atresia.

c) If 7 0  <  a  and K  +  1 l/ot, then X 2 ^  0 and X 3  0. Figure 7.10.a shows 

that X | is unstable, whilst X% is a stable equilibrium point. This represents the 

anovulation situation, where once the follicle starts with a size larger than  X |,  it 

grows until a maximum pre-ovulatory fixed size given by X£  (see figure 7.10.a). 

However, when 7 0  =  1.0, a  = 1.5 and K  = 1.0, although they satisfy this condition, 

there are no positive equilibria and G(X)  < 0 for all X  > 0  (see figure 7.10.b). 

For these particular parameter values the negative influence on follicular growth 

overcomes any positive term. Therefore, the cycle is atretic for any initial size or 

any initial oestradiol serum concentration.

d) If 7 0  < a  and i^  +  l < l / a w e  have only one positive equilibrium point 

which happens to be stable as we see in figure 7.11. Hence, whatever the initial size 

of the follicle or the total oestradiol concentration at the beginning of the cycle, it 

grows till a fixed pre-ovulatory size or concentration given by X^.

Therefore, by changing the relevant parameter values, this model is able to reflect 

the basic features of the menstrual cycle.
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Figu re 7.10: Growth rate function of a single follicle or of the total oestradiol concentration for the 
model in terms of FSH and LH bound receptors of GCs. a) Parameter values satisfying condition (c) 
with 7 0  =  1.0, K  =  0.1, and a  =  1.5. There are two positive equilibria X £  =  0.152 and X% =  8.55, 
such that G ( X )  <  0 for all 0 <  X  <  X£ ,  whilst G ( X ) >  0 for all X £  <  X  <  X£ .  This corresponds 
to the anovulatory condition. If the follicle starts growing with a size larger than , it will reach a 
pre-ovulatory fixed size given by X £ . b) Parameter values also satisfying condition (c) with 7 0  =  1.0, 
K  =  1.0, and a  =  1.5. There is no positive equilibrium and, G ( X )  <  0 for all X  >  0. The follicle 
atrophies and dies for any positive initial size.

7.4.3 Numerical analysis for different follicles

If we express equation (7.17) as X{ = Xig(xi ,X),  it is possible to observe tha t we 

cannot separate the function g as in Lacker’s model or model (7.11). Therefore, 

it is not possible to obtain separated functions that would lead us to a separated 

dynamics of the system. Thus, there is no obvious way to theoretically analyse the 

ovulation rate dynamics for the case of many growing follicles. Hence, we restrict 

ourselves to a numerical exploration of a number of examples tha t reflect different 

types of behaviour in this model.

As before, a maximum pre-ovulatory size is fixed for the numerical experiments. 

Once again, when the first pre-ovulatory follicle is selected it grows so fast tha t it is 

not possible to numerically observe the terminal fate of the remaining follicles.

For the parameter values of condition (a) of the simplified model analysis, when 

the cycle begins with a relatively large follicle, that particular follicle is the only one 

ovulating, and the reminder die by atresia (see figure 7.12.a). However, figure 7.12.b 

shows tha t if the cycle starts with a uniform size distribution, two follicles are able 

to ovulate.

Let us now increase the value of parameter 7 0 , but still keep the relative values 

of the parameters as in figures 7.12. This means that since the cycle starts with a 

higher LH concentration than in the case of figure 7.12, more follicles ovulate (see 

figure 7.13.a). In order to obtain only one ovulatory follicle for the same parameter

143



7.4. GRANULOSA CELLS LH RECEPTORS

5

4

3

2

1

0

1

■2
80 10060400 20

X

F ig u re  7.11: Growth rate function of a single follicle or of the total oestradiol concentration for 
the model in terms of FSH and LH bound receptors of GCs. Parameter values satisfy condition (d), 
in particular 7 0  =  0.5, a. =  0.6, and K  =  0.1. There is only one positive stable equilibrium point 
X I  =  88.43.
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time time

F igu re 7.12: Numerical example of eight growing follicles for the model in terms of FSH and LH 
bound receptors of GCs. For this example the parameter values keep condition (a) of the previous 
subsection, i.e. 7 0  >  a  and K  +  1 <  1 / a .  In particular 7 0  =  0.6, K  =  5.0, and a  =  0.1. a) The 
initially largest follicle x& ovulates, the remaining seven smaller follicles atrophy, b) The cycle starts 
with a uniform size distribution and two follicles ovulate.

values, the initial largest follicle has to be even larger than the case of the ovulatory 

follicle shown in figure 7.12.b (see figure 7.13.b).

When the parameter values of the model satisfy condition (b) given in the sim­

plified model analysis, we observe that ovulation takes place. For this situation, the 

model is also sensitive to the initial size distribution and the ovulation rate varies as 

we see in figure 7.14.

For the particular case of anovulation we fix the parameter values so that they 

satisfy condition (c) of the simplified model analysis, and integrate the system for 

eight growing follicles. For the particular case of 7 0  =  1.0, K  =  0.1 and a  =  1.5 

figure 7.15.a shows that only one follicle is able to reach pre-ovulatory size, and
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F igu re 7.13: Numerical example of eight growing follicles for the model in terms of FSH and LH 
bound receptors of GCs. For this example the parameter values keep condition (a) of the previous 
subsection, i.e.  7 0  >  a  and K  + 1  <  1/ a .  In particular 7 0  =  1.0, K  =  5.0, and a  — 0.1. a) The cycle 
starts with a uniform size distribution and four follicles ovulate, whilst the remaining three smaller 
follicles atrophy, b) The initial significantly largest follicle x& ovulates, the remaining smaller ones 
die.
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F igu re 7.14: Numerical example of eight growing follicles for the model in terms of FSH and LH 
bound receptors of GCs. For this example the parameter values keep condition (b) of the previous 
subsection, i.e. 7 0  >  c* and K  +  1 >  1 / a .  In particular 7 0  =  1.0, K  =  1.5, and a  =  0.5. a) The 
cycle starts with a uniform size distribution and only one follicle ovulates, whilst the remaining 
seven smaller ones atrophy, b) The cycle begins with two relatively large follicles, X7 and x&, which 
ovulate with a difference of approximately one unit of time, whilst the remaining smaller follicles 
die.

the remaining seven smaller ones atrophy and die. If we change the initial size 

distribution so the cycle begins with three relatively largest follicles, in figure 7.15.b 

we observe tha t still only one follicle is the selected one.

In analogy to the models of section 7.3, we would expect tha t since the selected 

follicle does not grow to infinity at an exponential rate, some other follicles would 

manage to reach pre-ovulatory m aturity when starting the cycle with a similar size to 

that of the largest follicle. However, this appears not to be the situation. From figure 

7.16 we observe tha t the minimum size value required to escape atresia, increases 

much faster in the case of anovulation than in the case of ovulation as X  increases.

Since for parameter values satisfying condition (d) of the simplified model analysis
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F igu re 7.15: Numerical example of eight growing follicles for the model in terms of FSH and 
LH bound receptors of GCs. For this example the parameter values satisfy condition (c) of the 
previous subsection, i.e. 7 0  >  a  and K  +  1 >  1 /a , which correspond to the anovulatory condition. 
In particular 7 0  =  1.0, K  =  1.5, and a  =  0.1. a) The cycle starts with a uniform size distribution 
and only one follicle reaches a pre-ovulatory size with out ovulating, whilst the remaining seven 
smaller follicles atrophy, b) The cycle begins with three relatively largest follicles, x% and X7 and 
xg,  however only one of them, xg,  is selected, and the other two die some time after the smallest 
five follicles.
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F igu re 7.16: Examples of the follicular growth rate function i i  =  f ( x i , X )  given in (7.17), with 
respect to the follicle size Xi for different values of X .  a) Parameter values for the ovulatory condition 
given in figure 7.13. b) Parameter values for the anovulatory condition given in figure 7.15. The 
minimum size required to escape atresia increase faster in the anovulatory situation than in the 
ovulatory one.

the dynamics is basically the same as that of the previous case, we do not present 

any numerical examples for many interacting follicles.

Although model (7.17) reflects a more diverse dynamics than model (7.11) above, 

it still presents some limitations. In the first place, we need to fix a maximum 

pre-ovulatory size for the ovulatory condition, which artificially interferes with the 

dynamics. Secondly, we observe that the number of anovulatory follicles is usually 

less than the number of ovulatory ones, contrary of what it is often observed in a 

PCOS.

However, for the case of anovulation we notice that the time it takes for follicles, 

xq and x j  to atrophy (especially in the example of figure 7.15.b) is relatively longer
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than the time it takes for the smallest follicles x \, • • •, x$. Therefore, we could argue 

that at least for a considerable period of the cycle, there are three relatively large 

follicles within the ovary, although the only one presenting an actual pre-ovulatory 

condition is the largest follicle x%.

In view of these observations we continue to try to improve such a model.

7.5 Hormonal control of atresia

The study of atresia in follicles is in itself a subject of extensive research. Atretic 

follicles emerge at different stages of the ovarian cycle reaching a proportional peak 

during the last days of the follicular phase. As we have mentioned before, almost all 

of the Graafian follicles entering this last phase of the cycle end up as atretic follicles. 

Therefore, atresia is considered as the normal fate of the follicular m aturation process 

[Hsueh et al., 1994].

Strictly speaking, atresia is an antral follicle degenerative process, which closes 

the natural opening or antrum  of the follicle. However, it is now known that apoptosis 

of follicular cells marks the earliest stages of atresia [Jolly et al., 1997b; Jolly et al., 

1997a]. Moreover, apoptosis of GCs has been widely studied, and is thought to 

have a more significant role in atresia than apoptosis of TICs. Since proliferating, 

differentiating and apoptotic GCs are found within the same follicle, it has been 

proposed that atresia should be determined by a dynamic equilibrium between cell 

division, differentiation and apoptosis [Jolly et a/., 1997b; Clement et al., 1997].

However, it is as difficult to specify the way in which atresia is controlled within 

the ovarian dynamics as to specify the whole selection process of pre-ovulatory folli­

cles. Nevertheless, many studies have detected that, gonadotropins are survival fac­

tors that suppress apoptosis of GCs [Hsueh et al., 1994; Sites et al., 1994; Jablonka- 

Shariff et al., 1996]. At the same time, androgens have been shown to be atretogenic 

factors for follicles [Brailly et al., 1981; Hillier and Tetsuka, 1997].

As we have mentioned in chapter 2 , androgens are produced from progestins in 

response to LH signalling in TICs. Since GCs of atretic follicles are thought to have 

lower aromatisation activity than GCs of healthy follicles [Tsonis et al., 1984], they 

are not able to convert such androgens into oestradiol. As a result, the levels of 

androgens increase within GCs of atretic follicles [Brailly et al., 1981]. Moreover, 

an increase in androgen receptors within GCs has been detected in atretic follicles,
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whilst a decrease of these receptors is found in GCs of pre-ovulatory follicles [Garrett

and Guthrie, 1996; Hillier and Tetsuka, 1997].

It is the aim of this section to consider a follicular atresia rate, which is incorpo­

rated within the feedback mechanism of the menstrual cycle.

7.5.1 Mathematical model including a steroid controlled atresia

From the above introduction we have seen th a t atresia is actually a steroid controlled 

mechanism, basically through the local action of androgens. More specifically, andro­

gens are thought to induce apoptosis in GCs, a process which in different proportions 

is present in both healthy and atretic follicles.

In the following model we suggest a function for the androgen bound receptor 

concentration of GCs to depend on the total oestradiol concentration. In such a way, 

atresia is a hormonally controlled regression process.

Therefore, as in the previous section, let us consider the functions v i (X)  and 

V2 (x^  for the concentration of FSH and LH bound receptors of GCs respectively. 

Let us propose

to describe the concentration of androgen bound receptors. Then the resulting model

It is worth observing that here again, the follicle growth rate is considered to be 

proportional to the GCs concentration times the concentration of the FSH bound 

receptors, just as in model (7.11).

When simplifying the system for a single follicle we obtain the following equation

rate

is
Cl'T *

=  ( x i V i ( X )  + 7 0 ^2 ( Xi )  - v s ( X ) ) x i . (7.18)

d X
dt

Hence, the equilibrium points are

X {  =  0

1 — 7o(l +  K )

2 l - i f ( l - 70)'

Where, > 0 if and only if

K  < -— ^  and > 1 — 70
7o K

(7.19)
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or

K  >  and <  1 -  7 0 . (7.20)
7o K

If K  and 7 0  do not satisfy any of the conditions above we may have that <  0, 

so X I  = 0 is the only possible equilibrium point, which is unstable (see figure 7.17). 

On the other hand, if K  and 7 0  satisfy either condition (7.19) or (7.20), it can be 

proved that X* =  0  is a stable equilibrium point, whereas > 0  is unstable (see 

figure 7.17).

go
0.5

21.55 0
X X

F igu re 7.17: Growth rate function of a single follicle or of the total oestradiol concentration for 
the model including the gonadotropic dependent atretic decay, a) Parameter values axe 7 0  =  1.0, 
K  =  0.1, such that they do not satisfy condition (7.19) nor condition (7.20). Hence, zero is the only 
equilibrium point, which is unstable, b) Parameter values are 7 0  =  0.6 and K  =  0.1 such that they 
satisfy condition (7.19). In this case, X q =  0 is stable and X% =  0.35 is an unstable equilibrium 
point.

So far, this model does not show great difference from the previous ones, thus let 

us analyse the case for several growing follicles. However, before this, let us inspect 

the follicle growth rate space for different total oestradiol concentrations. For that, 

see figure 7.18.

Therefore, we do not expect any improvement for this particular model. When 

studying Lacker’s growth equation given in (4.12), we have observed tha t the cube of 

the follicle maturity variable is the one that makes the curves in the space of follicular 

growth rate reach a finite maximum for different total oestradiol concentrations. 

Therefore, we have decided to incorporate such a factor in the equation given in 

(7.18) and observe the dynamics.
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F igu re 7.18: Follicular growth rate space for model (7.18). Different curves Xi =  f ( x i , X ) vs Xi 
are plotted for different oestradiol concentration values X .  As in previous cases each curve grows 
to infinity for every value of X .

7.5.2 Mathematical model including a steroid controlled atresia 
rate and a cubic decay factor

Let us consider the new equation to analyse

^  =  {xiVi{X) +  7 0u2 (x^  -  v3 (X))xi  -  a x \ , (7.21)

which happens to be the same as equation (7.18) with a cubic decay factor. Although, 

we cannot derive any kind of biological interpretation for this term, once this cubic 

decay has been added, the space of follicles’ growth rate looks similar to tha t of 

Lacker’s shown in figure 7.5 (see figure 7.19).
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F igu re 7.19: Follicular growth rate space for model (7.21). Different curves Xi =  f ( x i , X ) vs Xi 
are plotted for different oestradiol concentration values X .  For each curve, there is a minimum and 
maximum follicle sizes in order to have a positive growth rate. As X  increases, the minimum size 
increases, whilst the maximum size decreases.

Nevertheless, for this case, the positive growth rate window shrinks as X  in-
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creases. In other words, as X  increases, the minimum size required for the follicle 

to escape atresia increases, whilst the maximum size needed in order not to start 

decreasing is smaller every time.

If we simplify the system for a single follicle, the equation we get is

d X  (  X 2 , „  X  \  v
dt ~  ( l  +  if (X  +  l)  7̂o ^ X  + K j  01 '

Although it is possible to analytically compute the non-zero equilibria of this equa­

tion, the expressions are complex. Therefore, we only give two examples of the main 

type of orbits this simplified model is able to produce (see figure 7.20).

In the first place, we set the parameter values such that 7 0  >  a  and 7 0  — 1 > 0. 

There is only one positive stable equilibrium point as we observe in figure 7.20.
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F igu re 7.20: Growth rate function of a single follicle or of the total oestradiol concentration for 
the model including the gonadotropic dependent atretic decay. The parameter values are 7 0  =  1.0, 
K  =  0.1, and a  =  0.1, such that they satisfy condition 7 0  — 1 >  0. There is one positive stable 
equilibrium point, hence a growing follicle tends to a fixed pre-ovulatory size given by X {  =  5.913.

Secondly, let us propose a smaller value for 7 0  so that 7 0  — 1 < 0, but still 

7 0  > a. In such a case, there are two positive equilibria 0 < X * <  X%, such that 

X * is unstable and X% is stable. This means that a minimum non-zero size or total 

oestradiol concentration is required in order to escape atresia (see figure 7.21).

It appears that this model does not simulate the same type of ovulation as the 

previous models. It could be argued that indeed this model is only reflecting the 

selection dynamics, i.e. from the early follicular till the mid-follicular phase of the 

cycle. This is mainly due to the fact that once the follicles are selected, their cor­

responding cubic terms do not let them grow to infinity. And moreover, the only 

possible dynamics for the total oestradiol concentration is that of reaching a stable
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F igu re 7.21: Growth rate function of a single follicle or of the total oestradiol concentration for 
the model including the gonadotropic dependent atretic decay. The parameter values axe 7 0  =  0.6, 
K  =  0.1, and a  =  0.1, such that they satisfy condition 7 0  — 1 < 0. There are two positive equilibria, 
X i  =  0.375 and X% =  5.376. When X  >  X f  the follicle is able to grow in the first place and tend 
to a fixed pre-ovulatory size given by X %, whereas if 0 <  X  <  X I  the follicle atrophies and dies.

equilibrium value as we see in figures 7.20 and 7.21. Therefore, the positive feed­

back effect of the monopolised oestradiol production of the selected follicles upon 

the pituitary LH secretion is not included in this particular model.

Let us study the dynamics of the ovulation rate when many follicles interact in 

the cycle.

7.5.3 Numerical analysis for different follicles

Since ±i =  f ( x i , X ) is even more complex than in the previous models (7.11) and 

(7.17), it is not possible to even separate it in different types of functions. Therefore, 

we only discuss some numerical examples we consider im portant to somehow reflect 

the way this model controls the number of selected follicles.

In figure 7.22 we observe how, when the cycle starts with a size uniform distribu­

tion of eight growing follicles, five of them reached the same pre-ovulatory maturity. 

On the other hand, when such initial distribution changes, and the cycle begins with 

four relatively large follicles, only those four are the ones selected.

When decreasing the initial LH concentration parameter to smaller values, it is 

also possible to obtain different numbers of pre-ovulating follicles without changing 

the initial distribution of follicle sizes (see figure 7.23).

Therefore, this model is able to select more than one pre-ovulatory follicle, either 

by changes in the parameter values or the initial conditions of the system. As we first 

suggested, this model is basically modelling the menstrual cycle from the early follic-
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F igu re 7.22: Numerical example of eight growing follicles for the model which includes a go­
nadotropic dependent atretic factor. For this example the parameter values are 7 0  =  1.0, K  =  0.1 
and a  =  0.1. a) The cycle starts with a uniform size distribution and the five largest follicles reach 
the same pre-ovulatory size, whilst the remaining three smaller follicles atrophy, b) The cycle begins 
with four relatively large follicles, which are the ones selected and reach the same pre-ovulatory size.
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F igu re 7.23: Numerical example of eight growing follicles for the model which includes a go­
nadotropic dependent atretic factor. In both cases the cycle starts with a uniform size distribution 
of follicle sizes, a) Parameter values are 7 0  =  0.6, K  =  0.1 and a  =  0.1, the two largest follicles 
reach the same pre-ovulatory size, whilst the six smaller ones atrophy, b) Parameter values are 
7 0  =  0.5, K  =  0.1 and a  =  0.1. Only one follicle reaches pre-ovulatory size, whilst the remaining 
seven atrophy and die. .

ular till the mid-follicular phase, before the LH concentration levels start increasing 

to trigger the mid-cycle LH surge. Although the particular cubic term of the folli­

cle GC concentration lacks a clear biological interpretation, it allows regulation of 

follicular growth without any need of artificial alterations to the dynamics.

7.6 Discussion

As a result of the symmetric, non-symmetric and symmetric ageing models, it is 

possible to suggest that follicle sensitivity to gonadotropins is a basic feature de­

termining the ovulation rate of the cycle. Moreover, such follicle sensitivity also 

distinguishes an ovulatory cycle from a PCO cycle in terms of these models. Nev­

ertheless, the explicit way of expressing follicular sensitivity to gonadotropins is not
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given in the growth function first proposed by Lacker. Therefore, this chapter pro­

vides four basic suggestions of how follicles react to hormone stimulation keeping the 

basic framework of the models previously analysed.

The first model considers the follicle growth rate proportional to the granulosa 

cell (GC) concentration times the equilibrium concentration of FSH bound receptors 

of GCs. A negative linear decay in terms of GC concentration is first considered for 

the atretic demise of the follicles. Two basic behaviours are obtained when analysing 

the system for a single follicle, which are either ovulation or atresia. As in the ageing 

symmetric model, a minimum oestradiol concentration (or follicle size) is required 

for any follicle to be able to grow in the first place. However, when analysing the 

system for several interacting follicles, the 1-fold equilibrium point of the interaction 

dynamics is the only stable equilibrium point found for this model.

Therefore, this model only reflects the ovulation cycle in primates, where there 

is usually only one follicle ovulating. Also, there is no possibility for this model to 

reflect any kind of PCOS, either by changing the relevant parameter values, or by 

manipulating the initial conditions of the system. An artificial method, however, is 

imposed when carrying out some of the numerical experiments for this model. In 

such a way, it is able to produce a cycle where more than one follicle may ovulate.

To avoid the use of this rather arbitrary method, a different response function of 

FSH to oestradiol concentration levels is proposed for the follicle growth function. 

A sigmoid rather than an hyperbolic decreasing function is now considered for the 

FSH vs. total oestradiol concentration function. However, such an alteration does 

not give a different M-fold equilibrium point for the interaction dynamics from that 

of the previous model. This means, that such an alteration to the follicle growth 

equation is not enough to allow more than one follicle to be selected.

Furthermore, for this model the selected follicle does not grow to infinity, but 

rather reaches a fixed size, which can be considered as an ovulatory size. Hence, 

there is no need for an artificial way of fixing the maximum size of the selected 

follicle when numerically integrating this system. Nevertheless, it does not m atter 

how similar the two largest follicles may be at the beginning of the cycle, only one is 

selected and the second largest one ends up atrophying. This is due to the fact that 

the minimum size required to escape atresia increases three times faster than the in 

previous model.

Therefore, this model in terms of the concentration of FSH bound receptors of
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GCs is not sufficient to exhibit more interesting dynamics. As a second step, a model 

also incorporating the effects of LH bound receptors is proposed. It is well known 

tha t just after follicles enter the gonadotropin dependent growth state, they start 

developing LH receptors on their GCs membranes. Thus, when the pre-ovulatory 

follicle is lacking of FSH signalling stimulation to aromatise oestradiol, LH takes over 

and the follicle is still able to secrete oestradiol into the blood stream.

However, for this particular model the follicle growth function is only considered 

in terms of the concentration of bound GC receptors. This means that the positive 

growth term being proportional to the GCs concentration per-se is now neglected. 

Moreover, since the LH concentration levels remain basically constant prior to selec­

tion, the particular concentration of LH bound receptors function depend on the size 

of the follicle in an hyperbolic manner, times a constant LH concentration parameter. 

Finally, the atretic factor of the follicle is again considered as a linear decay.

As in the previous model, the dynamics of a single growing follicle is analysed 

for different parameter values. Four main features are obtained when the parameter 

value of the LH constant concentration is manipulated with respect to the GCs 

receptor disassociation constant, and the atretic parameter. Therefore, atresia as 

the follicle size decreasing to zero, ovulation as the follicle size growing to infinity, 

and anovulation as the follicle size reaching a pre-ovulatory stable equilibrium point 

are results of this model.

Even though this model presents richer dynamics in terms of the different types 

of behaviour than the model that only considers FSH receptors, it does not seem to 

improve the selection dynamics itself. Since the mathematical expression of this new 

model is quite complicated, it is not even possible to separate the growth rate func­

tion to obtain an interaction dynamics equation. Therefore, numerical experiments 

are the only possible way of analysing the system.

Although a fixed maximum size of the ovulatory follicles is again artificially fixed, 

this model seems to allow more than one ovulatory follicle. On the other hand, when 

param eter values are set for an anovulatory condition, only one follicle appears to 

be able to reach pre-ovulatory maturity, independently of the follicles initial size 

distribution.

A comparison of the space of the z-th follicle growth rate with respect to the z-th 

follicle size between the ovulatory and the anovulatory situations is provided. It is 

observed tha t the rate at which the minimum size required for the follicle to escape
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atresia, increases much faster in the anovulatory situation than in the ovulatory one. 

Therefore, this model is in principle able to switch from a single stuck follicle to one 

or more ovulatory follicles by varying the pertinent parameter values. This model is 

qualitatively more interesting that the previous one, however, it is still not able to 

select more than one follicle.

Therefore, a final attem pt developed in this chapter is a model where a variable 

atretic parameter is considered. Some biological experiments suggest tha t andro­

gens are the steroid tha t enhances atretic regression [Hsueh et al., 1994; G arrett and 

Guthrie, 1996; Hillier and Tetsuka, 1997]. Therefore, not only follicular cell prolif­

eration and differentiation are hormonally controlled, but also apoptotic cell death, 

which triggers follicular atresia. A model in which the atretic parameter is propor­

tional to the concentration of androgen bound receptors is proposed. However, this 

atretic demise seems not to be enough, and as in Lacker’s model, an extra decaying 

term proportional to the cubic GCs concentration is added to the negative terms of 

the growth function.

In such a way, the only possible behaviour for a single growing follicle is tha t of 

growing to a pre-ovulatory fixed size. As in the previous model, it is not possible to 

separate the dynamics to produce a non-linear stability analysis. From the numerical 

experiments shown in this chapter, it is possible to see that the number of selected 

follicles changes according to the initial size distribution, and according to the initial 

LH concentration parameter. More importantly, it is possible to obtain more than 

one follicle selected.

It is puzzling that the arbitrary Lacker function works so well, whilst the bio­

logically motivated models work so poorly. The particular case of the model with 

the hormonally controlled atresia with the “extra” cubic decay seems to work much 

better. However, we were not able to derive any biological interpretation in accor­

dance to the variables proposed. It could be argued, that if Xi representing the GC 

concentration, is proportional to the radius of the follicle, then the follicle’s growth 

is limited by its volume. However, the way we have associated the concentration of 

bound receptors would not concur since receptors would at least be proportional to 

the surface of the follicle, not the radius.

Nevertheless, we could at least speculate that this particular function says some 

thing about how apoptosis and GC proliferation regulate follicle growth and take 

part into the selection of pre-ovulatory follicles. However, it would be very helpful
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if a biologist could find any basis for the function proposed here.

DISCUSSION
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Chapter 8

GENERAL CONCLUSIONS

This thesis presents some mathematical models of the ovarian dynamics tha t controls 

follicle growth, steroid production, atresia and selection of pre-ovulatory follicles 

during each estrous/m enstrual cycle in mammals. The fact that from the large 

follicle population present at menarche, only 0 .2 % of all follicles are selected to 

ovulate; together with PCOS often occurring in humans, is a strong motivation for 

investigating the mechanisms involved in the control of the ovulation number.

Since the control mechanism of the ovarian cycle is dynamically rich and ex­

tremely complex, a number of different mathematical models previously developed 

by other authors are described in this thesis. These models focus on different parts of 

the control system, and the extent to which they deal with the selection mechanism 

is therefore discussed.

Although descriptive models in terms of follicle populations or follicle cell num­

bers measured at different stages of the cycle accurately describe folliclegenesis, they 

give little insight to the selection process itself. Hence, functional models are re­

quired, which reflect the feedback dynamics of the most im portant hormones in­

volved. However, it is observed that an explicit equation for follicle growth is neces­

sary to adequately model the cyclic behaviour of estrogens, and to accurately produce 

instant ovulation after each LH surge.

Nevertheless, such functional models say very little about the actual control of 

ovulation number, and how the mechanism can fail leading to PCO or any kind of 

anovulation. The first models which reproduce the cycle for many growing follicles 

interacting within the endocrine feedback mechanism first developed in the early 

eighties. Although, the model of Thalabard and collaborators gives a good stochastic 

approximation of the selection dynamics, Lacker’s model serves as the main basis for
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a deterministic analysis.

Lacker’s model of the control of ovulation is based on simple assumptions about 

the properties of the primary feedback loop involving the ovary and the pituitary. 

Because of its simplicity, it is amenable to a complete mathematical analysis, and yet, 

despite this, it is able to exhibit many of the qualitative features of the mammalian 

ovulatory cycle and follicle selection process.

However, in its current form it makes the unrealistic assumption that all follicles 

behave identically, and in particular respond to gonadotropins in precisely the same 

way. One consequence of this is that Lacker’s model cannot correctly reproduce the 

spectrum of behaviour associated with human PCOS. Another im portant aspect of 

Lacker’s symmetric model which lead to further modification is the fact tha t the 

largest follicles are always those selected to reach pre-ovulatory maturity. This has 

been observed not to be always the case, or at least not to be the situation for all 

mammals.

We have dealt with these two particular issues in the non-symmetric generalisa­

tion and the symmetric model with an age decaying factor. In the former, a much 

better representation of PCO has been achieved since it is possible to jum p from a 

monovulatory to a PCO cycle or vice-versa just by changing the initial follicle distri­

bution. As mentioned before, this is the case for a significant proportion of women 

of reproductive age. Furthermore, the pre-destination of the largest follicles always 

being the selected ones no longer occurs and follicle growth curves may intersect. 

All of these results are due to the fact that the follicle growth equation is no longer 

the same for each follicle, which is something more biologically realistic.

On the other hand, the symmetric ageing model first proposed by Mariana et al. 

also breaks the hierarchy of the largest follicles being chosen to reach pre-ovulatory 

maturity. This was previously mentioned when this model was first published. How­

ever, due to the stability and numerical analysis developed in this thesis, this model 

has more to say about the selection dynamics. For the case when follicles interact 

with similar initial age and size the model still regulates the selection process and 

ovulation rate of the cycle. However, if the cycle begins with a considerable pertur­

bation in the age of one of the largest follicles, this may disrupt the cycle to an extent 

tha t no potentially ovulatory follicles will actually ovulate, but rather become stuck 

in the ovary. Moreover, the number of ovulatory and anovulatory follicles can be 

the same, whilst in Lacker’s model the number of ovulatory follicles is always larger
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than the anovulatory ones.

Up to this point, the symmetric, non-symmetric generalisation and the symmet­

ric ageing model are able to provide some insight in the control of ovulation rate, 

and some possible causes underlying PCOS. Particularly, the non-symmetric model 

suggests PCOS is a local problem regulated by the effects of abnormal responsive 

follicles interacting with healthy follicles. Whilst for the symmetric ageing model, old 

follicles interacting with healthy ones can affect follicle response to gonadotropins.

Although we may interpret the relevant parameters as being related to follicle 

sensitivity to gonadotropins, these parameters cannot be measured experimentally. 

This is because the growth function used in the models is arbitrary. Thus, the next 

main objective of this thesis was to give a biologically based growth function that 

could specify the parameters determining follicle sensitivity more precisely.

We have therefore considered follicle cell surface receptors binding to gonadotropins 

in terms of the Law of Mass Action. As a first step, we have only considered GC 

receptors for FSH. However, this appears insufficient to model the cycle for differ­

ent kinds of mammals since only one follicle is always selected. The model is still 

sufficiently simple for the stability of the corresponding interaction dynamics to be 

analysed in terms of a gradient system. This analysis actually proves the fact that 

only one follicle is selected.

This suggests tha t only considering FSH receptors in modelling the selection 

dynamics is insufficient. Hence, we have to incorporate LH receptors of GCs, which 

the follicle starts acquiring by the time it enters the follicular phase of the cycle. In 

this case, the model is too complicated to permit a theoretical analysis. Hence, based 

on the param eter values used for the simpler case of one growing follicle, numerical 

examples were used to show that this model can produce ovulation of one or many 

follicles, but anovulation of a single one. Thus, this still does not reflect the kind of 

control observed in the cycle.

The previous models in terms of GC receptors considered an atretic linear decay 

for the follicle. Hence, the next step was to study if hormonal control of atresia could 

intervene in the selection dynamics. Androgens are believed to trigger follicular atre­

sia, thus the atretic parameter of the model is now considered to be proportional to 

the concentration of androgen bound receptors. This bound receptor concentration, 

in tu rn  depends on the total oestradiol concentration. In such a way, the atresia 

rate is no longer constant and interacts in the feedback loop. However, not much
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improvement was achieved. Hence, the final step was to add an extra decaying factor 

proportional to the cubic GC concentration to the negative terms of the growth func­

tion of this model. In such a way, selected follicles could only reach a pre-ovulatory 

fixed size, but by changing the initial distribution of follicle sizes, different numbers 

of selected follicles were obtained.

For the symmetric model selection occurs once the initial total size of follicular 

population is greater than zero. In contrast, for the symmetric ageing model and 

for the general case of the models in terms of GCs receptors, a minimum positive 

total size is required, otherwise no follicle will ever reach pre-ovulatory maturity, but 

rather atrophy. It would be interesting to verify whether such “atretic” cycles are 

another kind of anovulatory infertility.

Moreover, since Lacker’s model is not biologically specified, we can only say that 

it reflects the follicular phase of the cycle up to ovulation. As mentioned before, 

it is believed tha t selection takes place some time during this phase, but the exact 

moment has not been yet accurately determined. However, it is suggested that 

selection occurs at the mid follicular phase. W hether selected follicles are ovulatory 

or remain stuck inside the ovary may be determined from the mid-follicular phase 

till the LH surge.

Rapid changes on pre-ovulatory follicles occur up to the time of ovulation. There­

fore, oestradiol serum levels increase rapidly from the mid follicular phase till the 

LH surge. Hence, LH levels are regarded as constant up to selection, but after that 

things change dramatically. In particular, the model with LH receptors considered 

LH serum levels as constant, thus we could say it is describing the first part of the 

follicular phase up to selection. However, it appears tha t the cubic term is necessary 

to slow down the selected follicles’ growth in order to have more than one follicle 

selected.

This cubic term implies tha t the controlled atresia rate proposed in this last 

model is still insufficient to control the selection number. It would be very useful if 

experimental biologists could provide better evidence to the way in which atresia is 

regulated, and to what extent it intervenes in the regulation of ovulation dynamics. 

Up to now, we believe this particular aspect of the cycle remains too obscure to 

develop appropriate mathematical models.

Finally, we conclude by saying that the models in terms of bound GC recep­

tors are just a first approximation to model follicle sensitivity to hormone stimu­
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lation. The complex signal transduction pathway triggered by this binding process 

is modulated by many other factors, such as the effects of steroids, growth factors 

and cytokines. For the particular case of understanding PCOS, it would be use­

ful to incorporate the effects of insulin growth factors on the follicle sensitivity to 

gonadotropins.

Furthermore, although these models are our first attem pt to incorporate the 

different roles of FSH, LH and atresia in the control of ovulation rate, they still 

ignore the modulation of pituitary gonadotropin secretion by the hypothalamus, as 

well as the pulsatile LH secretion by the pituitary. Further study in how these 

elements affect the cycle and the ways to incorporate them into a mathematical 

model are subject of extensive future research.
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