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MANY H-COPIES IN GRAPHS WITH A FORBIDDEN TREE\ast 
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Abstract. For graphs H and F , let ex(n,H, F ) be the maximum possible number of copies of
H in an F -free graph on n vertices. The study of this function, which generalizes the well-studied
Tur\'an numbers of graphs, was initiated recently by Alon and Shikhelman. We show that if F is
a tree, then ex(n,H, F ) = \Theta (nr) for an (explicit) integer r = r(H,F ), thus answering one of their
questions.
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1. Introduction. Given graphsH and F with no isolated vertices and an integer
n, let ex(n,H, F ) be the maximum possible number of copies of H in an F -free graph
on n vertices. This function was introduced recently by Alon and Shikhelman [1]. In
the special case where H = K2, this is the maximum possible number of edges in an
F -free graph on n vertices, known as the Tur\'an number of F , which is one of the
main topics in extremal graph theory (see, e.g., [21] for a survey).

A few instances of ex(n,H, F ), with H \not = K2, where studied prior to [1]. The first
of these is due to Erd\H os [5] who determined ex(n,Kr,Ks) for all r and s (see also [2]).

A different example that has received considerable attention recently is ex(n,Cr,
Cs) for various values of r and s. In 2008 Bollob\'as and Gy\H ori [3] showed that
ex(n,K3, C5) = \Theta (n3/2), and their upper bound has been improved several times
[1, 6]. Gy\H ori and Li [17] obtained upper and lower bounds on ex(n,K3, C2k+1) that
were subsequently improved by F\"uredi and \"Ozkahaya [7] and by Alon and Shikhelman
[1]. Moreover, the number ex(n,C5,K3) was calculated precisely [14, 18]. Very re-
cently, Gishboliner and Shapira [13] determined ex(n,Cr, Cs), up to a constant factor,
for all r > 3, and, additionally, they studied ex(n,K3, Cs) for even r. Some additional
more precise estimates for ex(n,Cr, Cs) are known (see [15, 9]).

There are, unsurprisingly, many more instances of studies of the function ex(n,H,
F ) or variations of it (e.g., when F is replaced by a family of graphs, or when the
objects of interest are hypergraphs or posets rather than graphs); see, for example,
[8, 4, 12, 19, 20, 11, 10, 22].

In this paper we shall be interested in the value of ex(n,H, T ) when T is a tree.
Alon and Shikhelman [1] showed that if H is also a tree, then the following holds:

(1) ex(n,H, T ) = \Theta (nr) for some (explicit) integer r = r(H,T ).

See also [16] for the study of the special case where T and H are paths. Alon and
Shikhelman asked if (1) still holds if only T is required to be a tree (and H is an
arbitrary graph). Our main result answers this question affirmatively.
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H-COPIES IN GRAPHS WITH A FORBIDDEN TREE 2361

U U

Fig. 1. A graph H and a subset U \subseteq V (H) and the (U, 2)-blow-up of H.

Theorem 1. Let H be a graph, and let T be a tree. Then there exists an integer
r = r(H,T ) such that ex(n,H, T ) = \Theta (nr).

We note that, as in Alon and Shikhelman's result for the case where H is also a
tree, the integer r = r(H,T ) can be determined explicitly in terms of H and T ; see
Definition 3.

We present the proof in section 2 and conclude the paper in section 3 with some
closing remarks.

2. The proof. Our aim is to prove that ex(n,H, T ) = \Theta (nr) for a certain integer
r. In order to describe this integer, we need the following two definitions.

Definition 2. Given a graph H, a subset U \subseteq V (H), and an integer t, the
(U, t)-blow-up of H is the graph obtained by taking t copies of H and identifying all
the vertices that correspond to u, for each u \in U (see Figure 1 for an example).

Definition 3. Given graphs H and T , let r(H,T ) be the maximum number of
components in H \setminus U over subsets U \subseteq V (H) for which the (U, | T | )-blow-up of H is
T -free.

In the following theorem we estimate ex(n,H, T ), where T is a tree, in terms of
the value r(H,T ). Note that Theorem 1 follows immediately.

Theorem 4. Let H be a graph, and let T be a tree. Then ex(n,H, T ) = \Theta (nr),
where r = r(H,T ).

The lower bound follows quite easily from the definition of r(H,T ), so the main
work goes into proving the matching upper bound. In [1] Alon and Shikhelman proved
the same statement under the additional assumption that H is a tree. In order to
prove the upper bound, they showed that a graph G which is T -free and has at least
c \cdot nr copies of H (for any integer r and a large constant c) contains a (U, | T | )-blow-up
of H, for some U \subseteq V (H) such that H \setminus U has at least r+ 1 components. Since G is
T -free, it follows that the (U, | T | )-blow-up is also T -free, which implies, by definition
of r(H,T ), that G has fewer than c \cdot nr(H,T ) copies of H, as required. Our ideas are
somewhat similar, but we do not prove that G contains such a blow-up. Instead, we
find a subgraph G\prime of G with many H-copies that behaves somewhat similarly to a
(U, | T | )-blow-up of H, for some U for which the number of components of H \setminus U is
larger than r. We then show that if the blow-up contains a copy of T then so does
G\prime . It again follows that the number of H-copies in G is smaller than c \cdot nr(H,T ).

Proof of Theorem 4. Let r = r(H,T ), h = | H| , t = | T | , and m = ex(n,H, T ).
Our aim is to show that m = \Theta (nr).
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2362 SHOHAM LETZTER

We first show that m = \Omega (nr). Indeed, let U \subseteq V (H) be such that H \setminus U has
r components and the (U, t)-blow-up of H is T -free. Let G be the (U, n/h)-blow-up
of H. Note that G is T -free; indeed, otherwise, since any T -copy in G uses vertices
from at most t copies of H, it would follow that the (U, t)-blow-up of H is not T -
free. Additionally, the number of H-copies in G is at least (n/h)r since, for every
component in H \setminus U , we can choose any of the n/h copies of it in G, and together
with U this forms a copy of H.

The remainder of the proof will be devoted to proving the upper bound m =
O(nr). Suppose to the contrary that m \geq c \cdot nr, for a sufficiently large constant c.
Let G be a T -free graph on n vertices with m copies of H.

Instead of studying G directly, we will consider a subgraph G\prime of G that has many
H-copies and is somewhat similar to a (U, t)-blow-up of H for an appropriate U . We
obtain the required subgraph in three steps.

First, we find an r-partite subgraph G0 of G that has many H-copies. To achieve
this goal, pick a label in V (H) uniformly at random for each vertex in G. Denote by
X the number of H-copies in G for which each vertex u \in V (H) is mapped to a vertex
in G that received the label u. It is easy to see that the \BbbE (X) = m/hh. It follows that
there exists a partition \{ Vu\} u\in V (H) of the vertices of G for which X \geq m/hh. Fix
such a partition, and denote by \scrH 0 the family of H-copies for which every u \in V (H)
is mapped to Vu (so | \scrH 0| \geq m/hh). Let G0 be the subgraph of G whose edge set is
the collection of edges that appear in some H-copy in \scrH 0.

Next, since G0 is T -free (as it is a subgraph of G), it is t-degenerate; fix an
ordering < of V (G0) such that every vertex u has at most t neighbors that appear
after u in <. Each H-copy in \scrH 0 inherits an ordering of V (H) from <. Denote by
<H the most popular such ordering, and let \scrH 1 be the subfamily of H-copies in \scrH 0

that received the ordering <H (so | \scrH 1| \geq | \scrH 0| /h! \geq m/(hhh!)).
We now turn to the final step towards obtaining the required subgraph of G.

Ideally, we would have liked to find a graph F , which is the union of \Omega (m) distinct
copies of H in \scrH 1, and satisfies the following: for every uw \in E(H), either all vertices
in Vu have small degree into Vw, or all vertices in Vu have much larger degree into Vw.
Such a property would allow us to show that if a suitable (U, t)-blow-up of H contains
a copy of T , then so does F . However, it is not clear if such a family of H-copies
exists. Instead, we aim for a sequence of graphs F1 \supseteq \cdot \cdot \cdot \supseteq Ft (each of which is a
union of a large collection of H-copies in \scrH 1) such that for every uw \in E(H), either
all vertices in Vu have small degree into Vw in the graph F1, or all nonisolated vertices
in Fi have much larger degree into Vw in the graph Fi - 1 for every 2 \leq i \leq t. Such a
sequence still allows us to find a copy of T in F1, under the assumption that a certain
(U, t)-blow-up of H contains a copy of T , using the fact that T is a tree. In order to
find the required sequence of graphs, pick constants t \ll c0 \ll \cdot \cdot \cdot \ll ce(H) \ll c, and
follow Procedure 1 below (see Figure 2 for an illustration of this procedure).

Note that the procedure ends either with b = e(H) and Eb = \emptyset , or with b \leq e(H),
i = t, and | Eb| = e(H) - (b - 1). Let b be the value of b at the end of the procedure.
In the next claim we show that the latter case holds, i.e., b < e(H) (in other words,

there is a pair (Vu, Vw) whose maximum degree in \scrH (t)
b is unbounded).

Claim 5. b < e(H).

Proof. Let \scrF := \scrH (1)

b
, and let F be the corresponding graph. Note that, as c is

large,

| \scrF | \geq 
\biggl( 

1

2e(H)

\biggr) t\cdot e(H)

| \scrH 1| \geq 
\biggl( 

1

2e(H)

\biggr) t\cdot e(H)
1

hhh!
\cdot m >

1\surd 
c
\cdot m.
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H-COPIES IN GRAPHS WITH A FORBIDDEN TREE 2363

Procedure 1 Modifying \scrH 1.

Set \scrH (1)
0 = \scrH 1.

Set E0 to be the set of ordered pairs \{ uw : uw \in E(H), u >H w\} (so | E0| = e(H)).

Set b = 0 (b counts pairs (Vu, Vw) with bounded maximum degree in an appropriate

graph).

Set i = 1 (i denotes the position in the sequence of t graphs we wish to generate).

while b < e(H), i < t do

For every e = uw \in Eb, let Be be the set of vertices in Vu whose degree into Vw,

with respect to \scrH (i)
b , is at most cb.

if at least half the H-copies in \scrH (i)
b avoid

\bigcup 
e\in Eb

Be then

Set \scrH (i+1)
b to be the family of H-copies in \scrH (i+1)

b that avoid
\bigcup 

e\in Eb
Be.

i\leftarrow i+ 1.

else

Let e \in Eb be such that at least 1
2| Eb| of the H-copies in \scrH (i+1)

b are incident

with Be.

Set \scrH (1)
b+1 to be the family of H-copies in \scrH (i)

b that are incident with Be.

Set Eb+1 = Eb \setminus \{ e\} .
b\leftarrow b+ 1, i\leftarrow 1.

end if

end while

a b c
T = ≤ c0≤ c0

Bcb

Bba

Va Vb Vc

G1

Bcb

Bba

Va Vb Vc
type 1

type 3

type 2

G1

Fig. 2. A simple example to illustrate Algorithm 1. T is a path on three vertices, with vertex
order a <T b <T c; the vertices of G1 are partitioned into sets Va, Vb, Vc, and we are interested in
T -copies where x is mapped to Vx for x \in \{ a, b, c\} . By definition of G1, vertices in Va have degree
at most t into Vb, and vertices in Vb have degree at most t into Vc. The set Bba consists of vertices
in Vb with small degree (at most c0) into Va; Bcb is defined similarly. In the first iteration of the
procedure (when b = 0), we distinguish three types of T -copies: copies that avoid Bcb\cup Bba (type 1);
copies that are incident with Bcb (type 2); and copies that are incident with Bba (type 3). We keep
T -copies of one of the types, depending on which one is most common. We either repeat this step
(if we chose to keep the type 1 vertices) or we proceed to the next iteration of the procedure (with
b = 1).

Suppose that b = e(H). Then, for every uw \in E(H), every vertex in Vu sends at
most cb edges into Vw (with respect to F ).

Let a be the number of connected components in H. Note that the (\emptyset , t)-blow-up
of H is T -free (it is a disjoint union of copies of H, and we may assume that H is
T -free, as otherwise m = 0 and we are done immediately) and has a components.
Thus, by Definition 3, we have a \leq r.
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2364 SHOHAM LETZTER

In order to upper-bound the number of H-copies in \scrF , let U be a set of vertices
in H that contains exactly one vertex from each component. Trivially, there are at
most na ways to map each vertex u \in U to a vertex in Vu. Fix such a mapping.
Let w be a vertex in H with a neighbor u \in U , and suppose that u is mapped to
x \in V (F ). Since w is mapped to one of the neighbors in Vw of x, there are at most
cb vertices that w can be mapped to. Similarly, if w is in distance d from a vertex
u \in U , there are at most (cb)

d vertices that w can be mapped to. By choice of U ,
every vertex in H is in distance at most h from some vertex in U , hence there are at
most (cb)

h2

ways to complete the embedding of U to an H-copy in \scrF . In total, we

find that | \scrF | \leq (cb)
h2 \cdot na <

\surd 
c \cdot na.

Putting the two bounds on | \scrF | together, we havem < c\cdot na \leq c\cdot nr, a contradiction
to the assumption on m. It follows that b < e(H), as desired.

From now on, we may assume that b < e(H), which means that \scrH (i)

b
has been

defined for every i \in [t]. Write \scrF i = \scrH (i)

b
, and denote by Fi the graph formed by

taking the union of allH-copies in \scrF i. LetD be the directed graph on vertex set V (H)
with edges \{ uw,wu : uw \in E(H)\} (so each edge in H is replaced by two directed
edges, one in each direction). We 2-color the edges of D: color the edges in Eb red
and color the remaining edges blue. (Note that if uw is red then wu is blue.) Denote
the graph of blue edges by DB and the graph of red edges by DR. By definition of
\scrF i using Algorithm 1, one can check that

(a) G \supseteq G1 \supseteq F1 \supseteq \cdot \cdot \cdot \supseteq Ft.
(b) If uw \in DB , all vertices in Vu have degree at most cb - 1 into Vw in F1.
(c) If uw \in DR, all nonisolated vertices in Vu with respect to Fi have degree at

least cb into Vu in, for every 2 \leq i \leq t.
Indeed, (a) and (c) follow easily from the definition of the procedure. To see (b), if
uw is blue, then either u <H w which implies that vertices in Vu have at most t edges
into Vw in G1, or the edge uw was originally in E0 but was removed at some point
before the final iteration of the procedure, which implies that every vertex in Vu sends
at most cb edges into Vw in Fb, for some b < b.

We shall use the following properties of Fi and \scrF i.

Claim 6. The following two properties hold for 2 \leq i \leq t.
(i) Every nonisolated vertex in Fi is contained in an H-copy in \scrF i - 1,
(ii) Let uw be a red edge in D, and let S =

\bigcup 
v: there is a blue path from v to w Vv.

Then for every nonisolated vertex x \in Vu there is a collection of t copies
of H in \scrF i - 1 that contain x and whose intersections with S are pairwise
vertex-disjoint.

Proof. The first property follows immediately from the definition of Fi as the
union of H-copies in \scrF i: if a vertex is nonisolated in Fi it is also nonisolated in Fi - 1,
and thus it must be contained in some H-copy in \scrF i - 1.

Now let us see why the second property holds. Note that the directed edge uw
is in Eb as uw is a red edge in D. Thus, by definition of \scrF i, any nonisolated vertex
x \in Vu sends at least cb edges into Vw in the graph Fi - 1. This means that there is
a collection of at least cb copies of H in \scrF i - 1 that contain x, each of which uses a
different edge from x to Vu; denote this family of H-copies by \scrF . We claim that every
H-copy in \scrF intersects at most h \cdot (cb - 1)

h other H-copies in \scrF in S. Indeed, there
are at most h ways to choose an intersection point; suppose that the intersection is
in y \in Vv \subseteq S. By choice of S, there is a path (v0 = v, v1, . . . , vk = w) from v to w
in DB . This means that the degree into Vvj+1

(with respect to Fi - 1) of any vertex
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H-COPIES IN GRAPHS WITH A FORBIDDEN TREE 2365

in Vvj is at most cb - 1. Thus, there are at most (cb - 1)
k \leq (cb - 1)

h vertices in Vw that
can be in the same H-copy in \scrF as y. Since each H-copy in \scrF uses a different vertex
of Vw, it follows that at most (cb - 1)

h copies of H in \scrF contain y, and in total there

are at most h(cb - 1)
h copies of H in \scrF that intersect any single H-copy in \scrF . Since

the total number of H-copies in \scrF is cb \geq t \cdot (h \cdot (cb - 1)
h + 1), there is a collection of

t copies of H in \scrF whose intersections with S are pairwise disjoint, as required.

We now wish to find a particular subset U \subseteq V (H) such that the (U, t)-blow-up
of H behaves similarly to the sequence of graphs F1, . . . , Ft. The set U will be defined
in terms of a certain set A \subseteq V (H), which we define now. Let \scrP be a partition of
V (H) into strongly connected components according to DB . Pick a set A \subseteq V (H)
that satisfies the following properties.

(a) Every vertex in DB is reachable from A; i.e., for every u \in DB there is a blue
path from A to u,

(b) | A| is minimal among sets that satisfy (a),
(c) among sets that satisfy (a) and (b), A maximises

(2)
\sum 
u\in A

(\# vertices reachable from u).

Let W be the set of vertices in V (H) that are in the same part of \scrP as one of the
vertices in A, and let U = V (H) \setminus W . In the following two claims we list some useful
properties of A, U and W .

Claim 7. The following properties hold.
(i) A contains at most one vertex from each part of \scrP ,
(ii) there are no edges of D between distinct parts of \scrP that are contained in W ,
(iii) there are no blue edges from U to W .

Proof. Property (i) clearly holds because of the minimality of | A| and the fact
that for every part X \in \scrP the set of vertices reachable from X is the same as the set
of vertices reachable from any individual vertex x \in X.

For (ii), suppose that there is an edge uw in D with u and w belonging to distinct
parts of \scrP that are contained in W ; without loss of generality uw is blue. If we remove
from A the vertex from the same part of \scrP as w, we obtain a smaller set that still
satisfies (a) above, a contradiction to the minimality of A.

Now suppose that property (iii) does not holds; i.e., there is a blue edge uw with
u \in U and w \in W . Let A\prime be the set obtained from A by removing the vertex w\prime that
is in the same part of \scrP as w and adding u. Note that every vertex that is reachable
from A is also reachable from A\prime . Moreover, every vertex that is reachable from w\prime 

is also reachable from u, but u is not reachable from w\prime , because otherwise u and w\prime 

would have been in the same strongly connected component and hence in the same
part of \scrP . It follows that\sum 

u\in A\prime 

(\# vertices reachable from u) >
\sum 
u\in A

(\# vertices reachable from u),

a contradiction to the maximality property of A.

Claim 8. | A| > r.

Proof. Suppose that | A| \leq r. As in the proof of Claim 5, there are at most n| A| 

ways to embed A in V (F1) in such a way that every a \in A is sent to Va. Fix such an
embedding, and let u \in V (H). Because there is a blue path from A to u (by (a) in the
definition of A), there are at most (cb - 1)

h vertices that u could be mapped to which
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may form an H-copy in \scrF 1 together with the vertices that A is mapped to. Thus, in
total there are at most (cb - 1)

h2 \cdot nr copies of H in \scrF 1. As in the proof of Claim 5,
this implies that there are fewer than c \cdot nr copies of H in G, a contradiction.

Let \Gamma be the (U, t)-blow-up of H (see Definition 2 and Figure 1). Denote its
vertices by U \cup (\cup i\in [t]Wi), where the Wi's are copies of the set W (so \Gamma [U \cup Wi]
induced a copy of H for every i \in [t]). For every vertex x in \Gamma , denote by \phi (x) the
vertex in H that it corresponds to. By Claim 7 (i) and (ii), H \setminus U consists of | A| > r
components. Because r = r(H,T ) (see Definition 3), \Gamma contains a copy of T .

Consider a specific embedding of T in \Gamma . Let \{ X1, . . . , Xk\} be a partition of V (T ),
such that for every i \in [k] the subgraph T [Xi] is a maximal nonempty subtree of T
that is contained either in Wj , for some j, or in U . We assume, for convenience, that
the ordering is such that there is an edge between Xi and X1 \cup \cdot \cdot \cdot \cup Xi - 1 for every
i \in [k]; in fact, there would be exactly one such edge as T is a tree. By choice of the
Xi's and by definition of \Gamma , this edge must be an edge between some set Wj and U .

Our final aim is to show that G contains a copy of T , a contradiction to the
assumptions on G. We reach the required contradiction by proving the following
claim.

Claim 9. For every i \in [k] there is a copy of T [X1 \cup \cdot \cdot \cdot \cup Xi] in Ft - (i - 1) such
that x is mapped to V\phi (x) for every x \in X1 \cup \cdot \cdot \cdot \cup Xi.

Proof. We prove the statement by induction on i. For i = 1, the statement can
easily be seen to hold, by picking any H-copy in \scrF t, and mapping each vertex of X1

to the corresponding vertex in the copy of H.
Now suppose that the statement holds for i; let fi : X1 \cup \cdot \cdot \cdot \cup Xi \rightarrow V (Ft - (i - 1))

be the corresponding mapping of the vertices. Now, there are two possibilities to
consider: Xi+1 \subseteq U or Xi+1 \subseteq Wj for some j.

Let us consider the first possibility. Let uw be the edge between X1 \cup \cdot \cdot \cdot \cup Xi

and Xi+1, where u \in U and w \in Wj for some j (so u \in Xi+1 and w \in X1 \cup \cdot \cdot \cdot \cup Xi).
We may assume that fi(w) is nonisolated in Ft - (i - 1). Indeed, if | X1 \cup \cdot \cdot \cdot \cup Xi| \geq 2,
this is clear since T [X1 \cup \cdot \cdot \cdot \cup Xi] spans a tree. Otherwise, we must have that i = 1
and | X1| = 1, but then we can choose f1(w) to be a nonisolated vertex in Vw with
respect to Ft. As fi(w) is nonisolated, by Claim 6 (and the fact that i \leq k \leq t) there
is an H-copy in \scrF t - i that contains fi(w); denote the corresponding embedding by
g : V (H)\rightarrow V (Ft - i). We define fi+1 : X1 \cup \cdot \cdot \cdot \cup Xi+1 \rightarrow V (Ft - i) simply by

fi+1(x) =

\biggl\{ 
fi(x) x \in X1 \cup \cdot \cdot \cdot \cup Xi

g(x) x \in Xi+1.

In order to show that fi+1 is an embedding with the required properties, we need to
show that it has the following three properties: it maps edges in T [X1 \cup \cdot \cdot \cdot \cup Xi+1]
to edges in Ft - i; fi+1(x) \in V\phi (x) for every x \in X1 \cup \cdot \cdot \cdot \cup Xi+1; and fi+1 is injective.

We first show that fi+1 preserves edges. This follows because fi and g preserve
edges (this holds for g by definition, and holds for fi because it sends edges of T [X1\cup 
\cdot \cdot \cdot \cup Xi] to edges of Ft - (i - 1) which is a subgraph of Ft - i) so edges inside X1\cup \cdot \cdot \cdot \cup Xi

and inside Xi+1 are mapped to edges in Ft - i, and moreover by choice of g the only
edge between these two sets is mapped to an edge of Ft - i.

Next, we note that for every x \in X1\cup \cdot \cdot \cdot \cup Xi+1, we have fi+1(x) \in V\phi (x). This is
because this holds for both fi (by assumption) and g (as g corresponds to an H-copy
in \scrF t - i).

Finally, we show that fi+1 is injective. As both fi and g are injective, it suffices to
show that g(x) \not = fi(y) for every x \in Xi+1 and y \in X1 \cup \cdot \cdot \cdot \cup Xi. This holds because
\phi (x) \not = \phi (y) (since x is in U , it is the only vertex in X1 \cup \cdot \cdot \cdot \cup Xi+1 with \phi (x) = x)
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and because x and y are mapped to V\phi (x) and V\phi (y), respectively, and these two sets
are disjoint.

Now we consider the second possibility, namely, that Xi+1 \subseteq Wj for some j.
Let uw be the edge between X1 \cup \cdot \cdot \cdot \cup Xi and Xi+1, where u \in U and w \in Wj

(so w \in Xi+1). By Claim 7 (iii), the edge uw is red. Hence, by Claim 6, there is a
collection of t copies of H in \scrF t - i that contain fi(u) and whose intersections with S =\bigcup 

v: there is a blue path from v to w Vv are pairwise vertex-disjoint. As | X1 \cup \cdot \cdot \cdot \cup Xi| < t,
it follows that there is an H-copy in \scrF t - i that contains fi(w) and whose intersection
with S is disjoint of fi(X1 \cup \cdot \cdot \cdot \cup Xi); denote the corresponding embedding of H by
g : V (H)\rightarrow V (Ft - i). As before, define fi+1 : X1 \cup \cdot \cdot \cdot \cup Xi+1 \rightarrow V (Ft - i) by

fi+1(x) =

\biggl\{ 
fi(x) x \in X1 \cup \cdot \cdot \cdot \cup Xi

g(x) x \in Xi+1.

As before, fi+1 maps edges of T [X1 \cup \cdot \cdot \cdot Xi+1] to edges of Ft - i, and it sends every
x \in X1\cup \cdot \cdot \cdot \cup Xi+1 to V\phi (x). Moreover, by choice of g and since g(Xi+1) \subseteq S, we find
that g(Xi+1) and fi(X1 \cup \cdot \cdot \cdot \cup Xi) are disjoint. Since fi and g are both injective, it
follows that fi+1 is injective. This completes the proof of the induction step and thus
of the claim.

By taking i = k in the previous claim, we find that Ft - (k - 1) contains a copy of
T . But Ft - (k - 1) \subseteq F1 \subseteq G (note that k \leq t), so G has a copy of T , a contradiction.

It follows that the number of H-copies in G is at most c \cdot nr(H,T ), as required.

3. Conclusion. In this paper we determined, up to a constant factor, the func-
tion ex(n,H, T ) for any tree T . We note that the assumption that T is a tree was
crucial in our proof to work, but it was used only in the proof of Claim 9 (where we
made use of the fact that there is exactly one edge between X1 \cup \cdot \cdot \cdot \cup Xi and Xi+1).

It would, of course, be interesting to sharpen our result by determining ex(n,H, T )
completely, or at least asymptotically. While this may be hopeless in general, in some
special cases this task may not be out of reach. For example, Alon and Shikhelman [1]
consider the special case where H = Kh for some h < t and t = | T | . They ask if the
n-vertex graph, which is the union of \lfloor n/t\rfloor disjoint cliques of size t, and perhaps one
smaller clique on the remainder maximises the number of copies ofKh among all T -free
graphs on n vertices. This question generalizes a question of Gan, Loh, and Sudakov
[8], who considered the case where T is a star on t vertices. In other words, they were
interested in maximizing the number of cliques of size h among n-vertex graphs with
maximum degree smaller than t. They proved that the aforementioned construction of
disjoint cliques is the unique extremal example when n \leq 2t, thus proving a conjecture
of Engbers and Galvin [4]. The question whether this construction is best for larger
values of n remains open.

For other questions regarding the value of ex(n,H, F ), where F need not be a
tree, see [1].

Acknowledgments. I would like to thank the anonymous referee for their useful
suggestions.
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