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Abstract

Balogh, Barát, Gerbner, Gyárfás, and Sárközy made the following conjecture.
Let G be a graph on n vertices with minimum degree at least 3n/4. Then for every 2-
edge-colouring of G, the vertex set V (G) may be partitioned into two vertex-disjoint
cycles, one of each colour.

We prove this conjecture for large n, improving approximate results by the afore-
mentioned authors and by DeBiasio and Nelsen.

Mathematics Subject Classifications: 05C55, 05C38, 05C70

1 Introduction

1.1 History

While undergraduates in Budapest, Gerencsér and Gyárfás [11] proved the following sim-
ple result: for any 2-edge-colouring of the complete graph Kn, there exists a monochro-
matic path of length at least d2n/3e. It is easy to see that this statement is sharp. In
their paper, Gerencsér and Gyárfás observe that a weaker result, asserting the existence
of a monochromatic path of length at least n/2, can be deduced from the following simple
observation: for any red and blue colouring of Kn, there is a Hamilton path which is the
union of a red path and a blue path. The latter observation, simple as it is, inspired
intensive research.

In a later paper, Gyárfás [12] proved that, in fact, more is true. He showed that for
any red and blue colouring of Kn the vertices may be covered by a red cycle and a blue
one sharing at most one vertex. Lehel went even further: he conjectured that for every
2-colouring of Kn the vertex set may be partitioned into two monochromatic cycles of
distinct colours. We remark that in our context, the empty set, a single vertex and an
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edge are considered to be cycles. This conjecture first appeared in [2], where it was proved
for some special colourings of Kn.

In 1998, almost twenty years after this conjecture was made,  Luczak, Rödl and Sze-
merédi [22] proved it for large n, using the regularity lemma. Ten years later, Allen [1]
proved it for large n avoiding the use of the regularity lemma. Finally, Lehel’s conjecture
was fully resolved in 2010 by Bessy and Thomassé [5] with an elegant and short proof.

1.2 Conjectures and progress

In the hope of generalising the above result of Gerencsér and Gyárfás, Schelp [26] con-
sidered 2-colourings of graphs which are not necessarily complete. In particular, he con-
jectured that given a graph G on n vertices with δ(G) > 3n/4, there is a monochromatic
path of length at least 2n/3. Benevides,  Luczak, Skokan, Scott and White [4] and Gyárfás
and Sárközy [16] proved approximate versions of this conjecture.

Inspired by Schelp’s conjecture, Balogh, Barát, Gerbner, Gyárfás, and Sárközy [3]
proposed the following conjecture: given a graph G on n vertices with minimum de-
gree δ(G) > 3n/4, for every 2-colouring of G the vertex set can be partitioned into two
monochromatic cycles of distinct colours. We note that there are examples of 2-coloured
graphs G on n vertices with δ(G) = d3n/4e − 1 which do not admit such a partition (see
Section 2).

In their paper [3], the authors prove the following approximate version of their con-
jecture. For every ε > 0 there exists n0 such that for every 2-coloured graph G on n > n0

vertices with minimum degree δ(G) > (3/4 + ε)n, there exist vertex-disjoint monochro-
matic cycles of distinct colours covering all but at most εn of the vertices.

Recently, DeBiasio and Nelsen [8] proved the following stronger approximate version
of the latter conjecture: for every ε > 0 there exists n0 such that, for every 2-coloured
graph G on n > n0 vertices and δ(G) > (3/4 + ε)n, the vertex set may be partitioned
into two monochromatic cycles of distinct colours.

1.3 The main result

Our main result proves that the conjecture of Balogh et al. [3] holds if n is large enough.

Theorem 1. There exists n0 such that if a graph on n > n0 vertices and minimum degree
at least 3n/4 is 2-coloured then its vertex set may be partitioned into two monochromatic
cycles of different colours.

In 1999,  Luczak [21] introduced a technique that uses the regularity lemma to reduce
problems about paths and cycles into problems about connected matchings, which are
matchings that are contained in a connected component. This technique, which we shall
describe in more detail in Section 5, has become fairly standard and can be used to prove
the approximate result of Balogh et al. [3]. The second result by DeBiasio and Nelsen
[8], requires further ideas, most notably the ‘absorbing technique’ of Rödl, Ruciński and
Szemerédi (see [25] and [20]). Nevertheless, the stronger conditions on the minimum
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degree make their proof a great deal easier than ours. In order to prove Theorem 1, we
use a variety of additional ideas and techniques.

We remark that Theorem 1 is sharp. Indeed, for every n > 4, there exists a 2-
coloured graph on n vertices with minimum degree d3n

4
e−1 admitting no partition into two

monochromatic cycles of distinct colours. We give such extremal examples in the following
section. These examples disprove the conjecture from [8], that a slightly stronger version
of Theorem 1 may hold, namely that the conclusion holds for graphs with minimum degree
at least 3n−3

4
.

The following section consists of some extremal examples for Theorem 1. In Section
3 we give an overview of the proof as well as the structure of the rest of this paper.

2 Sharpness

Before we turn to the proof of Theorem 1, we give some extremal examples showing that
the theorem is sharp. More precisely, we give examples of 2-coloured graphs on n vertices
with minimum degree d3n

4
e − 1 admitting no partition into two monochromatic cycles of

distinct colours. Figures 1, 2, 3a and 3b depict several families of such examples differing
in the values of n (mod 4) for which they work.

mm

mm

m m

m m

Figure 1: Examples of black and gray coloured graph on n ∈ [4m − 1, 4m + 2] vertices,
with minimum degree at least b3n/4 − 1/4c, whose vertices cannot be partitioned into
two disjoint monochromatic cycles of distinct colours.
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Figure 2: More examples
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Figure 3: Even more examples

3 Overview

Suppose that G is a graph on n vertices and minimum degree 3n/4 with a red and blue
colouring of the edges. In what follows, we outline our proof that V (G) may be partitioned
into a red cycle and a blue one.

Given an edge coloured graph, a monochromatic connected matching is a monochro-
matic matching which is contained in a connected component of the same colour. Similarly
to the earlier results on our problem (by Balogh et al. [3] and DeBiasio and Nelsen [8]),
as well as many other results in the area, one of the key tools is the technique of reduc-
ing problems about cycles to problems about connected matchings using the regularity
lemma. This technique was introduced by  Luczak [21] and since then has become fairly
standard. In our setting, the basic idea, which is described in more detail in Section 5, is
as follows. We are given a 2-coloured graph G and consider the reduced graph obtained by
applying the regularity lemma. If the reduced graph has a perfect matching consisting of
a red connected matching and a blue connected matching, we may use the blow-up lemma
[17] (or in fact, a much simpler special case), to find two vertex-disjoint monochromatic
cycles, a red one and a blue one, which cover almost all of the vertices.

The next ingredient is the ‘absorbing method’ of Rödl, Ruciński and Szemerédi (see
[25] and [20]). As in [8], in order to apply this method, we use a notion of ‘robust sub-
graphs’, which are defined to be graphs with certain expansion properties (see Section 4
for the exact definition). Such graphs can be shown to contain short ‘absorbing paths’,
which are paths that can absorb small sets of vertices. We observe (see Section 5) that
monochromatic connected components in the reduced graph (obtained from the regularity
lemma) correspond to monochromatic robust subgraphs in the original graph. This obser-
vation allows us to obtain information about the rough structure, by using the regularity
lemma and finding the corresponding robust subgraphs (see Section 7).

After a study of the some properties of the rough ‘robust structure’ of the graph, we
aim to apply the regularity lemma again, in order to find a suitable perfect matching,
namely a perfect matching consisting of a connected red matching and a connected blue
matching. This matching is used to find two vertex-disjoint cycles, a red one and a blue
one, which cover most of the vertices and have the additional absorbing property implying
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that the leftover vertices can be inserted into one of these cycles (see Sections 8 - 13).
We should like to emphasize that as we prove the sharp result, namely the minimum

degree is at least 3n/4, rather than (3/4 + ε)n as in the previous results, new difficulties
arise. Firstly, we have to deal with several different cases for the rough robust structure,
some of which do not arise when δ(G) > (3/4 + ε)n. Interestingly, these cases require a
variety of ideas and techniques, making the proof of the general theorem rather intricate.
Secondly, when applying the regularity lemma we cannot guarantee that the minimum
degree would be at least 3n/4, thus it may not be possible to find a suitable matching in
the reduced graph directly.

The combination of the following two ideas helps us with these challenges. The first
idea is to use stability versions of results promising a perfect matching. These enable us
to conclude that if the reduced graph does not have the required perfect matching, it has
some specific structure which we can further analyse to find the required monochromatic
cycle partition.

The second idea is the following simple yet important observation: given two robust
components of the same colour, if they can be connected with two vertex-disjoint paths,
they may essentially be treated as one larger component. In several parts of the proof (see
Sections 9, 11 and 12), we use this observation to conclude that either we may join two
robust components to obtain a larger one, or the graph admits some restrictive structure,
for which the desired partition may be found ‘by hand’ (see Sections 14 and 15). We
remark that even at this stage, the proof is rather hard due to the fact that our result is
sharp.

3.1 Notation

We use mostly standard notation. Write |G| for the order of a graph G and δ(G) and
∆(G) for its minimum and maximum degrees respectively. The neighbourhood of a vertex
x ∈ V (G) is denoted by NG(x) and its degree by dG(x) = |NG(x)|. Given A ⊆ V (G),
we write NG(x,A) = NG(x) ∩ A and dG(x,A) = |NG(x,A)|. We will write, for example,
d(x,A) for dG(x,A) if this is unambiguous. Given a set of vertices X ⊆ V (G), we write
G[X] for the graph induced by G on X. Similarly, for disjoint subsets X, Y ⊆ V (G), we
write G[X, Y ] for the bipartite graph with bipartition {X, Y } induced by G. We denote
eG(X, Y ) = |E(G[X, Y ])|.

Given a graph G, we denote a 2-colouring of G by E(G) = E(GB) ∪ E(GR), where
GB, GR are graphs on vertex set V (G) (in proper colouring, the graphs GB, GR are edge-
disjoint). The edges of GB are called blue edges and the edges of GR are red edges. We
sometimes use B or R for a subscript instead of GB or GR. For instance, NB(x) is a
shorthand for NGB

(x).
We denote by (u1u2 . . . uk) the path on vertices u1, . . . , uk taken in this order. We

use the same notation to denote the cycle obtained by adding the edge (uk, u1) to the
given path. It should be clear from the context if we are dealing with a path or a cycle.
Given paths P1, P2 which share an end and are otherwise disjoint, we denote by (P1P2) the
concatenation of the two paths. Similarly, if the paths share both ends but are otherwise
disjoint, the same notation denotes the cycle obtained by joining the two paths.
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Throughout this paper we omit floors and ceilings whenever the argument is unaf-
fected. The constants in the hierarchies used to state our results are chosen from right
to left. For example, the claim that a statement holds for 0 < a, 1

n
� b � c � 1 means

that there exist non-decreasing functions f, g : (0, 1]→ (0, 1] and a constant c0 such that
the statement holds for all 0 < a, b, c 6 c0 and integers n with b 6 f(c), a 6 g(b) and
n > 1

g(b)
. We normally do not specify the functions in question.

3.2 Structure of the paper

In the next section, Section 4, we define our notion of robustness and prove some properties
of robust components, most notably the existence of absorbing paths. In Section 5, we
state the version of the regularity lemma that we use here. We also prove some results
about the correspondence between connected components of the reduced graph and robust
subgraphs of the original graph and describe the method of converting connect matchings
in the reduced graph into cycles in the original graph. In Section 6, we list some results
which will be used throughout the proof.

Sections 7 - 15 are devoted to the proof of Theorem 1. In Section 7, we obtain some
information about the rough structure and point out how to prove Theorem 1 using the
results in subsequent lemmas. In each of Sections 8 - 13, we consider one of the cases
arising from the structural result in Section 7. These cases vary in difficulty and we have
to use various techniques used to deal with them. In Sections 14 and 15, we prove Lemmas
29 and 30, which are used in earlier sections and prove the main theorem under certain
restrictive conditions on the colouring and the structure of the graph. We conclude the
paper in Section 16 with our final remarks.

4 Robust subgraphs

Similarly to the proof of DeBiasio and Nelsen [8], one of the main tools in our proof is
the notion of robust subgraphs. As we shall see, these are graphs with certain expansion
properties. The role of robust subgraphs in our proof is similar to their role in [8], but
our definition is different and is often easier to apply. Nevertheless, the two definitions
are, in some sense, equivalent, as can be seen in Lemma 5.4 in [8]. After defining robust
subgraphs, we state and prove some simple properties they possess. Finally, we prove
that robust subgraphs contain ‘absorbing paths’, which may absorb small sets of vertices.

4.1 Definitions

We define two notions of robustness: strong and weak. The difference between the two
is that strong robust subgraphs are far from being bipartite. It will be easier for our
application, though not essential, to define a robust subgraph relative to a fixed ground
graph. The precise definitions are as follows. Given a graph G, vertices x, y ∈ V (G) and
an integer l, denote by conG,l(x, y) the number of paths of length l + 1 in G between x
and y.
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Definition 2. Let G be a graph on n vertices.
A subgraph F of G is called (α, k)-strongly-robust if there exists l 6 k such that for

every pair of vertices x, y in F we have |conF,l(x, y)| > αnl.
A subgraph F of G is called (α, k)-weakly-robust if there exists a partition {X, Y } of

V (F ) such that for some l 6 k and every x ∈ X, y ∈ Y we have |conF ′,l(x, y)| > αnl,
where F ′ = F [X, Y ].

As a shorthand, we often omit the parameters α and k when they are clear from the
context. From now on, we use the term ‘robust’ to signify either strongly robust or weakly
robust with suitable parameters. We point out that in our context α and k are fixed and n
tends to infinity. We remark that an (α, k)-robust subgraph F of a graph G on n vertices
has δ(F ) > αn. In particular, robust subgraph are always dense.

Before discussing some properties of robust subgraphs, let us give a few examples.
Any graph of minimum degree at least (1/2+α/2)n is (α, 1)-strongly-robust, because any
two vertices have at least αn common neighbours. Similarly, the random graph G(n, α),
is with high probability (α2/2, 1) strongly robust. Furthermore, the blow-up of a path
of length k > 2, where every vertex is replaced by a complete graph on n/k vertices, is
(α, k − 1)-strongly-robust for a suitable α. Similarly, the blow-up of a path of length k,
where the vertices are replaced by independent sets of size n/k, is an (α, k − 1)-weakly-
robust graphs.

4.2 Simple properties

We shall make use of some simple properties of robust graphs. The following lemma states
that a robust subgraph remains robust after removing a small number of vertices.

Lemma 3. Given α > 0 and k an integer, the following holds for small enough β. Let
G be a graph on n vertices and let F be an (α, k)-robust subgraph. Suppose that F ′ is
obtained from F by removing at most βn vertices. Then F ′ is (α/2, k)-robust.

Proof. We prove the lemma under the assumption that F is strongly robust; the proof
in case F is weakly robust is analogous. Let l 6 k satisfy |conF,l(x, y)| > αnl for every
x, y ∈ V (F ). For every x, y ∈ V (F ), the number of paths of length l + 1 between x and
y containing at least one vertex from V (F ) \ V (F ′) is at most lβnl 6 α

2
nl. It follows that

| conF ′,l(x, y)| > α
2
nl for every x, y ∈ V (F ), i.e. F ′ is (α/2, l)-strongly-robust.

The next lemma shows that a robust subgraph remains robust after removing a graph
of small maximum degree.

Lemma 4. Given α > 0 and k, the following holds for suitably small β and large n. Let
G be a graph on n vertices and let F be an (α, k)-robust subgraph. Suppose that F ′ is a
subgraph of F such that for every vertex v ∈ V (F ) we have degF ′(x) > degF (x) − βn.
Then F ′ is (α/2, k)-robust.

Proof. We prove this lemma for F strongly robust; the proof for F weakly robust is
similar. Let l 6 k be such that |conF,l(x, y)| > αnl for every x, y ∈ V (F ). Fix some
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x, y ∈ V (F ). We consider the family of paths in F of length l + 1 between x and y
which contain at least one edge outside of F ′. There are at most lβnl such paths, i.e.
|conF ′,l(x, y)| > |conF ′,l(x, y)| − lβnl > α

2
nl (for small enough β). It follows that F ′ is

(α/2, l)-strongly-robust.

The following lemma states that a robust subgraph F remains robust after the addition
of vertices which have a large neighbourhood in F .

Lemma 5. Given α > 0 and k an integer, the following holds for large enough n. Let G
be a graph on n vertices and let F be an (α, k)-robust component. Let F ′ be a subgraph of
G containing F , such that every vertex in V (F ′) \ V (F ) has at least αn neighbours in F .
Then F ′ is (α3/2, k + 2)-robust.

Proof. We prove the statement assuming that F is strongly robust; the proof in case F ′ is
weakly robust is very similar and we omit the details. Let l 6 k satisfy |conF,l(x, y)| > αnl

for every x, y ∈ V (F ). Fix some x, y ∈ V (F ′). For every z, w ∈ V (F ) such that z ∈ N(x)
and w ∈ N(y), we have |conF,l(w, z)| > αnl. Thus, since every vertex in V (F ′) has at
least αn neighbours in F , we have that the number of walks between x and y in F ′ with
l + 2 interior vertices is at least α3nl+2 for large n. Since there are at most O(nl+1) such
walks which are not paths, we have that |conF ′,l(x, y)| > α3

2
nl+1. It follows that H ′ is

(α3/2, k + 2)-strongly-robust.

So far we listed and proved several simple properties of robust subgraphs. In the
following subsection we state and prove a more interesting property.

4.3 Absorbing paths

The main reason robust subgraphs are so useful in our context, is the fact, which was
proved by DeBiasio and Nelsen [8] that they contain short ‘absorbing paths’, which we
define below. We conclude this section with a proof of this fact.

Definition 6. Let P be a path in a graph G. We say that P is a k-absorbing path, for
every set W of at most k vertices, there is a path in G whose vertex set is V (P )∪W and
whose ends are the ends of P .

Given a partition {X, Y } of V (G), we say that P is k-weakly-absorbing (with respect
to the partition) if for every set W , which is disjoint of V (P ) and satisfies |W ∩ X| =
|W ∩ Y | 6 k/2, there is a path whose vertex set is V (P ) ∪W and whose ends are the
ends of P .

Lemma 7. Let 1
n
� ρ � α, 1

k
� 1, let G be a graph on n vertices and let F be an

(α, k)-robust subgraph of G. Then there exists a path Q in F , of length at most ρn, such
that the following holds.

1. If F is strongly robust, then Q is ρ2n-absorbing (in F );

2. If F is weakly robust, then Q is ρ2n-weakly-absorbing (in F , with the bipartition of
F ).
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The proof is an adaptation of DeBiasio and Nelsen’s proof of Lemma 5.6 from [8]; we
present the proof here as the terminology in [8] is quite different from ours. The main tool
is absorbing method of Rödl, Ruciński and Szemerédi [25]. We shall use ‘gadgets’, which
we will define to be Hamiltonian graphs that are can absorb a single vertex under the
condition that it is adjacent to some of the vertices in the gadget. By a simple application
of the probabilistic method and the robustness of the given graph, we show that there
exists a not too large collection of vertex-disjoint gadgets, such that every vertex may be
absorbed by a rather large number of them. From there it will be easy to construct the
required path Q.

Proof of Lemma 7. We start by proving the first part of Lemma 7. Suppose that F is
(α, k)-strongly-robust. In particular, δ(F ) > αn so we may apply the following claim.

Claim 8. Let p, 1
n
� α� 1 and let F be a graph on at most n vertices with δ(G) > αn.

Then there is a family F of disjoint pairs of vertices of V (F ) with the following conditions.

• |F| 6 pn;

• For every u ∈ V (F ) there are at least 1
16
pαn2 pairs (x, y) ∈ F such that x, y are

adjacent to u.

Proof. Let F be the family of pairs obtained by choosing each pair of vertices in V (G) in-
dependently with probability p

n
. By Chernoff’s bound, we have that with high probability,

the following properties hold.

• |F| 6 2 p
n

(
n
2

)
6 pn;

• For every u ∈ V (F ), F contains at least 1
2
p
n

(
αn
2

)
> 1

8
pα2n pairs (x, y) such that

x, y ∈ N(u).

The expected number of pairs of intersecting pairs in F is at most ( p
n
)2n3 6 p2n. It

follows by Markov’s inequality that with probability at least 1/2, the number of pairs of
intersecting pairs in F is at most 2p2n. In particular, we may pick a family F which
satisfies the above conditions and which has at most 2p2n pairs of intersecting pairs. We
obtain a subfamily F ′ of F containing no intersecting pairs by deleting at most 2p2n pairs
from F . It is easy to verify that if p is suitably small, F ′ satisfies the requirements of the
claim.

Let F = {(xj, yj)}Nj=1 be a family of pairs as in Claim 8 (so N 6 pn). We use the
following simple technical claim, to avoid divisibility issues.

Claim 9. Let β be suitably small and n suitably large. Then for some 1 6 l 6 k, there
are at least βn4l−2 paths of length 4l − 1 between each pair of vertices in F .

Proof. Since F is (α, k)-strongly-robust, there exists l 6 k such that between every u, v ∈
V (F ) there are at least αnl−2 paths in F of length l − 1. We conclude that for every
u, v ∈ V (F ) there are at least α10n4l−2 walks of length 4l − 1 between u and v. Indeed,
given u, v ∈ V (F ), there are at least (αn)6 ways to pick edges e1, e2, e3 ∈ E(F ), since we
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may pick one end of each edge in at least |F | > αn ways, and then there are at least αn
ways to pick a neighbour. Denote ei = (ai, bi). There are (αnl−2)4 ways to pick paths
P1, P2, P3, P4 in F of length l − 1 with ends u and a1, b1 and a2, b2 and a3, b3 and v
respectively. It follows that there are at least α10n4l−2 walks in F between u and v. At
most O(n4l−3) of them are not paths, so for large enough n, there are at least α10

2
n4l−2

walks of length 4l − 2 between u and v.

We shall build vertex-disjoint paths Qj of length 8l2−4l+1 one by one for j = 1, . . . , N
as follows. Suppose that Q1, . . . , Qj−1 are already defined. We would like to pick paths
P and Pi as follows.

P = (u1, . . . , u4l) a path with ends xj, yj,

Pi a path of length 4l − 1 with ends ui, ui+3, for i = 1, 3, . . . 4l − 5,

P4l−3 a path of length 4l − 1 with ends u4l−3, u4l−1.

It is easy to see, by the choice of l according to Claim 9, that if p is small enough, we may
pick such paths to be vertex-disjoint of all previously defined paths and to have pairwise
disjoint interiors. Define Qj as follows.

Qj = (u2u1P1u4u3P3u6 . . . u4l−2u4l−3P4l−3u4l−1u4l).

Suppose that w ∈ V (G) is a neighbour of xj = u1 and yj = u2l. The following path
is a path in F with vertex set V (Qj) ∪ {w} and with the same ends as Qj (this path is
illustrated in Figure 4 together with Qj).

(u2u3P3u6u7P7 . . . u4l−5P4l−5u4l−2u4l−1P4l−3u4l−3u4l−4P4l−7 . . . u5u4P1u1wu4l).

u2 u1 u4 u3 u6 u5 u7 u8

w

P1 P2 P3

Figure 4: An illustration of the absorbing structure for l = 2. The path Qj is represented
by the straight line between u2 and u8 which is marked in grey, and the path absorbing
w is represented by the bold black path.

Finally, we let Q be a path that contains Q1, . . . , QN by connecting the ends of the
Qj’s with paths of length 4l − 1. Denote ρ = 8pk2, and note that we may pick p small
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enough such that ρ2 6 1
16
pα2. The length of Q is at most ρn and for every vertex

z ∈ V (F ) \ V (Q), there are at least ρ2n values of j ∈ [N ] such that xj, yj ∈ N(z). We
show that Q has the desired absorbing property. Let W be a set of at most ρ2n vertices
in V (F ) \ V (Q) and denote W = {w1, . . . , wM}. We may pick distinct j1, . . . , jM ∈ [N ]
such that xji , yji ∈ N(wi). Recall that for each i ∈ [M ], there is a path Q′ji in F on vertex
set V (Qji) ∪ {wi} with the same ends as Qj. By replacing the occurrence of Qji by Q′ji
in the path Q, we obtain a path on vertex set V (Q) ∪W with the same ends as Q.

We now turn to the proof of the second part of Lemma 7. Let F be an (α, k)-weakly-
robust subgraph with bipartition {X, Y }. The proof will use similar ideas, with some
variations which take into account the bipartition of F . A similar argument as in Claim 8
implies that for small enough p we may find a family F of disjoint quadruples of vertices
of F with the following properties.

• |F| 6 pn;

• For every x ∈ X, y ∈ Y the number of quadruples (a, b, c, d) such that a, c ∈ N(x)
and b, d ∈ N(y) is at least 1

16
pα4n.

Denote F = {(xj, yj, zj, wj)}j=Nj=1 . For j = 1, . . . , N we pick a path Qj as follows. As

before, there exists 1 6 l 6 k such that | conF,4l−2(x, y)| > βn4l−2 for every x ∈ X, y ∈ Y .
Assuming that Q1, . . . , Qj−1 were already chosen to be paths of length at most 10l2, we
may pick paths as follows, that are pairwise vertex-disjoint and disjoint of previously
defined paths.

(a1b1 . . . a2lb2l) a path with ends a1 = xj, b2l = yj,

(c1d1 . . . c2ld2l) a path with ends c1 = zj, d2l = wj.

We may further pick paths Pi, Ri, S of length at most k as follows (as usual they may be
chosen to be disjoint of previous paths).

Pi a path with ends


a1, c2l if i = 1
ai, bi+1 if 2 6 i 6 2l − 2
a2l−1, a2l if i = 2l − 1,

Ri a path with ends

{
d2, d1 if i = 2
di, ci−1 if 3 6 i 6 2l,

S a path with ends c1, b2.

Let

Qj =(b1a1P1c2ld2lQ2lc2l−1 . . . d3Q3c2d2Q2d1c1Rb2a2P2b3 . . . a2l−2P2l−2b2l−1a2l−1P2l−1a2lb2l).

Suppose that u, v satisfy xj, zj ∈ N(u) and yj, zj ∈ N(v). Then the following path is a
path in F with vertex set V (Qj) ∪ {u, v} with the same ends as Qj (See figure 5).

(b1a2P2b3a4P4b5 . . . a2l−2P2l−2b2l−1a2lP2l−1a2l−1b2l−2P2l−3a2l−3 . . . b4P3a3b2Sc1x

a1P1c2ld2l−1R2l−1c2l−2 . . . d3R3c2d1R2d2c3R4d4 . . . c2l−1R2ld2lyb2l).

We proceed as before to complete the proof of Lemma 7.
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x

y

b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6

d6 d5 d4 d3 d2 d1

c6 c5 c4 c3 c2 c1

Figure 5: An illustration of the absorbing structure for l = 3. The black lines represent
edges, whereas the grey ones represent paths. The dashed blue line represents the path
Qj and the dotted red one represents the path obtained from Qj by absorbing w.

The proof of Lemma 7 concludes our introduction of the notion of robust subgraphs
and their properties. In order to make use of the properties we established, we shall use
Lemmas 12, 16 and 17 (stated below), which establish the connection between connected
components of the reduced graph (given by the regularity lemma) and robust subgraphs.

5 The regularity lemma

In our proof, we shall use Szemerédi’s regularity lemma extensively. We first introduce
the relevant notation. Let U,W be disjoint subsets of vertices of a graph G. The density
d(U,W ) of edges between U and W is defined to be d(U,W ) = e(U,W )

|U |W | , where e(U,W ) is
the number of edges between U and W . A bipartite graph with bipartition U,W is said
to be ε-regular if for every U ′ ⊆ U and W ′ ⊆ W with |U ′| > ε|U | and |W ′| > ε|W |, the
density d(U ′,W ′) satisfies |d(U ′,W ′)− d(U,W )| 6 ε.

We use the so-called degree form of the regularity lemma (see [18]), adapted to a 2-
coloured setting. Furthermore, it will be useful for our purpose to start with a cover of the
vertices of a graph and require that the partition obtained by the lemma is a refinement
of the initial cover.

Lemma 10. For every ε > 0 and integer l there exists M = M(l, ε) such that the following
holds. Let G be a 2-coloured graph on n vertices, C a cover of V (G) with at most l parts
and d > 0. Then there exists a partition {V0, . . . , Vm} of V (G) and a subgraph G′ of G
with vertex set V (G) \ V0, such that the following conditions hold.

(R1) m 6M ;

(R2) Every Vi (i ∈ [m]) is contained in one of the parts of C;

the electronic journal of combinatorics 26(1) (2019), #P1.19 12



(R3) |V0| 6 εn and |V1| = · · · = |Vm| 6 dεne;

(R4) degG′(v) > degG(v)− (2d+ ε)n for every v ∈ V1 ∪ . . . ∪ Vm;

(R5) e(G′[Vi]) = 0 for i ∈ [m];

(R6) All pairs (Vi, Vj) are ε-regular in both colours in G′, with density in each colour
either 0 or at least d.

It is often useful to work with the reduced graph, obtained from the partition given
by the regularity lemma as follows. Let {V0, . . . , Vm} be a partition of V (G) and let G′ be
a subgraph of G, obtained by applying the above lemma to G. Define a graph Γ whose
vertex set is {V1, . . . , Vm}. A pair ViVj is a t-coloured edge in Γ if it has density at least d
in colour t in G′. Note that an edge of Γ can have more than one colour. We shall often
use the following observation.

Observation 11. Let G be a 2-coloured graph on n vertices with δ(G) > cn and let Γ
be the (ε, d)-reduced graph obtained by applying Lemma 10. Then δ(Γ) > (c − 2d − ε)m,
where m = |Γ|.

The rest of this section is divided into two parts. In Subsection 5.1, we establish the
connection between robust subgraph and connected components of a reduced graph. In
Subsection 5.2, we describe the interplay between connected matchings in a reduced graph
and cycles in the original graph.

5.1 From connected components of the reduced graph to robust subgraphs

One of our main tools in the proof of Theorem 1 is the following lemma. It gives us the
means to obtain a robust subgraph from a connected subgraph of the reduced graph.

Lemma 12. Let α, 1
k
, 1
n
� ε, 1

l
� 1 and d > 4ε. Let G be a graph on n vertices and

let Γ be the (ε, d)-reduced graph obtained by an application of Lemma 10. Suppose that
Φ is a connected subgraph of Γ. Then there exists a subgraph F of G with the following
properties.

1. V (F ) contains at least (1− ε) of the vertices of each cluster in V (Φ);

2. F is (α, k)-robust. If Φ is bipartite, F is weakly robust, otherwise it is strongly
robust.

In order to find the required robust component F , we consider the clusters represented
by V (Φ), and for each of the clusters we remove vertices with low degree. The regularity
of pairs of clusters which are connected by an edge, together with the choice of d, implies
that the number of low degree vertices in each cluster is small. We show that the sub-
graph induced by the remaining vertices has the required expansion properties, using the
regularity of the pairs of clusters.
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Proof of Lemma 12. Denote I = {i ∈ [m] : Vi ∈ V (Γ)}, so U =
⋃
i∈I Vi. For every i ∈ I,

denote by Ii the set of indices j ∈ I such that ViVj ∈ E(Φ) and let Ni =
⋃
j∈Ii Vj. Let G′

be the subgraph of G given by Lemma 10). Let

Wi = {v ∈ Vi : degG′(v,Ni) 6 3ε|Ni|}.

Claim 13. |Wi| 6 ε|Vi| for every i ∈ I.

Proof. Suppose otherwise. Recall that for every j ∈ Ii, (Vi, Vj) is an ε-regular pair in
G′ with density at least 4ε. It follows that dG′(Wi, Vj) > dG′(Vi, Vj) − ε > 3ε. Hence,
eG′(Wi, Vj) > 3ε|Wi||Vj| for j ∈ Ii and eG′(Wi, Ni) > 3ε|Wi||Ni|. It follows that there
exists a vertex in Wi which is incident to at least 3ε|Ni| edges into Ni, a contradiction to
the choice of Wi.

Define W =
⋃
i∈IWi and F = GB[U \W ]. Note that F satisfies Property 1 in Lemma

12. It remains to show that Property 2 holds. We suppose that Φ is non-bipartite, the
proof for the bipartite case follows similarly. We use the following simple claim.

Claim 14. Let G be a connected non-bipartite graph on n vertices. Then there exists
k 6 3n such that between every two vertices of G there is a walk of length k.

Proof. We first show that between every two vertices of G there is a walk of odd length
not exceeding 3n. Indeed, let x, y ∈ V (G). Let C be an odd cycle, and pick some z ∈ C.
Pick some path from x to z and a path from z to y. Combining the two paths, we obtain
a walk from x to y of length at most 2n. If this walk has even length, we add the cycle C
to it. In any case we obtain an odd walk of length at most 3n. Let k be the length of the
longest of these walks. By possibly adding 2-cycles, we obtain walks of length k between
each pair of vertices.

Fix some k 6 3n as in the previous claim. In the following claim, we show that the
existence of a walk of length k in Φ implies the existence of many paths of the same length
in F .

Claim 15. Let k 6 3m. There exists β = β(l, ε) such that the following holds. Suppose
that Vi1 , . . . , Vik is a walk in Φ. Let U1 and Uk be subsets of Vi1 ∩ V (F ) and Vik ∩ V (F ),
respectively, of size at least 2ε|V1|. Then there exists at least βnk+1 paths of length k in
F between U1 and Uk.

Proof. Let Xj = {v ∈ Vij : degH(v, Vij+1
) 6 3ε|V1|} for j ∈ [k − 1]. As before it is easy to

show that |Xj| 6 ε|V1|. Let

Yj =

{
U1 \X1 j = 1
Vij \ (Xj ∪Wij) j ∈ [2, k − 1].

Recall that |Wj| 6 ε|V1| for every j. It follows that for j ∈ [k − 1] and v ∈ Yj, we have
degH(v, Yj+1) > ε|V1|. Thus there are at least (ε|V1|)k−2 walks of length k− 3 between Y1

and Yk−2. Fix any such walk (v = v1, . . . , vk−2). Denote by A the neighbourhood of vk−2
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in Yk−1. Then |A| > ε|V1| and recall that |Uk| > ε|V1|. Since (Vik−1
, Vik) is an ε-regular

pair in H with density at least 4ε, we have e(A,Uk) > 3ε|A||Uk| > 3ε3|V1|2. Each such
edge completes the above walk into a distinct walk in H between v1 and Uk of length
k − 1.

We conclude that the total number of walks of length k − 1 between U1 and Uk is at
least εk+1|V1|k > εk+1(1−ε

M
)knk, where M is as in Lemma 10. Note that the number of

such walks which are not paths (namely, a vertex appears more than once) is O(nk−1).
It follows that indeed, there are at least βnk paths between U1 and Uk of length k − 1,
where β is a suitable constant.

Let x, y ∈ V (F ) and suppose that x ∈ Vi and y ∈ Vj. Note that the definition of
F implies the existence of t, s ∈ I such that (Vi, Vt), (Vj, Vs) ∈ E(Φ) and x and y have
at least 2ε|V1| neighbours in H in Vt and Vs respectively. It follows from Claim 15 that
there are at least βnk paths from the neighbourhood of x in Vt to the neighbourhood of
y in Vs. This shows that |conF,k(x, y)| > β

2
nk for every x, y ∈ V (F ), implying that F is

(β/2,m)-strongly-robust, as required.

In fact, we need a stronger version of Lemma 12. In our application, since we deal with
2-coloured graph, we will typically have two collections of connected subgraphs of Γ, one
for each colour, and it would be useful to obtain collections of robust subgraphs which
preserve containment. For example, if in the reduced graph we have blue components
Φ1,Φ2 and red components Φ3,Φ4 satisfying V (Φ1) ∪ V (Φ2) = V (Φ3) ∪ V (Φ4), we would
like the corresponding robust subgraphs F1, F2, F3, F4 to satisfy the corresponding equal-
ity, namely V (F1)∪ V (F2) = V (F3)∪ V (F4). This is achieved by the following lemma. It
can be proved similarly to the previous lemma; we omit further details.

Lemma 16. Let α, 1
k
, 1
n
� ε, 1

l
� 1 and d > 6ε. Let G be a graph on n vertices with

a 2-colouring E(G) = E(GB) ∪ E(GR). Let Γ be the (ε, d)-reduced graph obtained by an
application of Lemma 10 and let {V0, . . . , Vm} be the corresponding partition of V (G). Let
PB and PR be collections of disjoint connected subgraphs of ΓB and ΓR,respectively. Then
there exist subsets Ui ⊆ Vi satisfying the following properties.

(i) |Ui| > (1− 2ε)|Vi| for i ∈ [m];

(ii) Let Φ ∈ Pt, where t ∈ {B,R} and denote I = {i ∈ [m] : Vi ∈ V (Φ)}. Then the graph
F = Gt[

⋃
i∈I Ui] is (α, k)-robust. If Φ is bipartite, F is weakly robust, otherwise it

is strongly robust.

In our proof we shall find robust subgraphs and then apply the regularity lemma.
Therefore we need the following result, stating that given a robust subgraph F in G, the
corresponding subgraph of F in the reduced graph Γ is connected.

Lemma 17. Let ε, 1
n
� α, 1

k
, 1
l
� 1 and let G be a graph on n vertices with a 2-colouring

E(G) = E(GB) ∪ E(GR). Suppose that F is an (α, k)-robust subgraph of Gt, were t ∈
{B,R} and let C be a cover of V (G) with at most l parts refining {V (F ), V (G) \ V (F )}.
Let Γ be the (ε, d)-reduced graph obtained by an application of Lemma 10. Then the
t-coloured subgraph Φ of Γ spanned by the clusters contained in V (F ) is connected.
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Proof. Let G′ be the corresponding subgraph of G obtained by applying Lemma 10. Let U
be the set of vertices of F which belong to sets Vi contained in V (F ). Denote F ′ = G′t[U ].
Recall that by Lemma 10, we have that |V (F ) \ U | 6 εn and degG′(v) > degG(v)− 9εn.
In particular degF ′(v) > degF (v) − 9εn for every v ∈ V (F ′). Hence F ′ is obtained by
removing at most εn vertices of F and then removing a subgraph with maximum degree
at most 9εn. By Lemmas 3 and 4, we have that F ′ is (α/4, k)-robust in G′. In particular,
F ′ is connected and it follows that Φ is connected.

5.2 From connected matchings to long cycles

We shall use the technique of converting connected matchings in the reduced graph into
cycles in the original graph. This was introduced by  Luczak [21], and since then has
become fairly standard (see [3], [8] and [14], [15], [16] and [22]). We shall use the following
lemma, which we state here without proof.

Lemma 18. Let ε > 0 and d > 3ε and let n be suitably large. Let G be a graph on
n vertices and let Γ be the (ε, d)-reduced graph obtained by an application of Lemma 10.
Suppose thatM is a connected matching in Γ and denote by U the set of vertices spanned
by the clusters ofM. Then G contains a cycle covering at least (1−6ε)|U | of the vertices
of U .

In fact, we shall need a slight generalisation of Lemma 18. The usual setting in which
we apply the described technique is as follows. We consider the reduced graph obtained
by applying the regularity lemma. In the reduced graph, we find a perfect matching
consisting of a connected blue matching and a connected red matching, and we use the
described technique to find two disjoint cycles, one blue and one red, which together cover
almost all of the vertices. This two coloured version of Lemma 18 can be proved similarly,
but the constants change slightly: we need d > 6ε and are able to cover (1− 9ε)n of the
vertices of each cluster in the matchings.

Finally, we point out that we often first find ‘absorbing paths’ in the original graph
and then apply the regularity lemma to the remaining graph. When building the cycles
obtained by the connected matchings, we would like them to contain these predefined
paths. This is obtained by the same method, enabling us to find a path (rather than a
cycle) between the neighbourhoods of the two ends of the absorbing path.

This concludes the introduction of the tools we shall need for our proof of Theorem
1. To complete the preliminary material needed for our proof, we list several extremal
results in the next section.

6 Extremal results

In this section we list extremal results that we shall use in our proofs. They concern
mainly with the existence of matchings, paths and cycles in graphs with certain structural
conditions.

The following is Chvátal’s theorem [7] giving sufficient conditions on the degree se-
quence of a graph for containing a Hamilton cycle.
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Theorem 19 (Chvátal [7]). Let G be a graph on n > 3 vertices and let d1 6 · · · 6 dn be
the degree sequence of G. Suppose that di > i+ 1 or dn−i > n− i for every i 6 n/2. Then
G contains a Hamilton cycle.

In some cases it is easier to use the following version of Chvátal’s result for bipartite
graphs.

Corollary 20. Let G be a balanced bipartite graph on 2n vertices with bipartition {X, Y }.
Let x1 6 · · · 6 xn be the degree sequence of X and let y1 6 · · · 6 yn be the degree sequence
of Y . Suppose that xi > i + 1 or yn−i > n − i + 1 for every i ∈ [n]. Then G contains a
Hamilton cycle.

Proof. Consider the graph G′ obtained from G by adding all edges with both ends in X.
By Theorem 19, G′ contains a Hamilton cycle C. As |X| = |Y |, the cycle C contains no
edges with both ends in X, i.e. C is a Hamilton cycle in G.

The following is a simple result by Erdős and Gallai [9], giving an upper bound on the
number of edges in a graph with no path of a given length.

Theorem 21 (Erdős, Gallai [9]). Let G be a graph on n vertices with no paths of length
at least l + 1, then e(G) 6 nl/2.

A graph on n vertices is called pancyclic if for every l 6 n, G contains a cycle on
l vertices. The following result by Bondy [6] is a generalisation of Dirac’s Theorem,
asserting that graphs with large enough minimum degree are pancyclic.

Theorem 22 (Bondy [6]). Let G be a graph on n vertices with δ(G) > n/2. Then G is
pancyclic.

In the following two subsections, we use the well known theorem of Tutte, which gives
a necessary and sufficient condition for having a perfect matching.

Theorem 23 (Tutte). Let G be a graph on an even number of vertices. Then G has a
perfect matching if and only if for every set of vertices U , the number of odd components
of G \ U is at most |U |.

6.1 Matchings in tripartite graphs

In section 13 we shall analyse conditions for certain tripartite graph to have a perfect
matching. Here we describe the extremal results we shall need for the analysis. We use a
stability version of the following lemma of DeBiasio and Nelsen [8].

Lemma 24 (DeBiasio, Nelsen [8]). Let n be even, and let G be a tripartite graph on n
vertices with tripartition {X1, X2, X3}. Suppose that |Xi| 6 n/2 and deg(x) > 3n/4−|Xi|
for every x ∈ Xi, i ∈ [3]. Then G has a perfect matching.

The following lemma is a stability version of Lemma 24. We prove it by applying
Tutte’s theorem (Theorem 23).
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Lemma 25. Let 1
n
� ε � 1, where n is even. Let G be a graph on n vertices with

tripartition {X1, X2, X3} such that |Xi| 6 (1/2 − 4ε)n and deg(x, V (G) \ Xi) > (3/4 −
ε)n− |Xi| for i ∈ [3] and x ∈ Xi. Then one of the following holds.

1. G has a perfect matching;

2. There is an independent set Y such that Y ⊆ Xi ∪ Xj and |Y ∩ Xi|, |Y ∩ Xj| >
(1/4− 5ε)n for some 1 6 i < j 6 3.

Proof. We assume that G has no perfect matching. By Tutte’s theorem, Theorem 23,
there exists a subset S ⊆ V (G) such that the number of odd components of G\S is larger
than S.

Denote G′ = G \ S. We show first that δ(G′) 6 εn. Suppose not. Then the number
of components of G′ is at most 1/ε, thus |S| 6 1/ε. We show that G′ is connected,
contradicting the choice of S. Given u, v ∈ Xi, they have at most (1/4 + ε)n non-
neighbours in V (G) \ Xi. But |V (G) \ Xi| > (1/2 + 4ε), hence u, v have at least 2εn >
1/ε common neighbours. It follows that indeed, G′ is connected, so |S| > εn. By the
assumptions on G, δ(G) > (3/4 − ε)n − max{|X1|, |X2|, |X3|} > (1/4 + 3ε)n. Since
δ(G′) 6 εn, we have |S| > (1/4 + 2ε)n.

Note that |S| 6 n/2, because the number of odd component of G′ is at most n− |S|.
Denote X ′i = Xi \ S. We show that |X ′i| 6 (1/4 + 2ε) for i ∈ [3]. Indeed, suppose
that |X ′1| > (1/4 + 2ε). Then for every vertex u ∈ X ′2 ∪ X ′3 we have degG′(u) > εn. In
particular, u is in a component of G′ order at least εn. Furthermore, every non-isolated
vertex of X ′1 is adjacent to some vertex in X ′2 ∪X ′3, and thus is in a component of size at
least εn. Since X ′2 ∪X ′3 is non-empty (e.g. because |S| 6 n/2), it follows that G′ has at
most (1/4 + ε)n isolated vertices, and the rest of the vertices are in components of order
at least εn. Hence the number of odd components of G′ is at most (1/4 + ε)n+ 1/ε 6 |S|,
a contradiction.

Denote Si = Xi ∩ S, i ∈ [3]. Consider the three quantities |X1| + |S2| + |S3|, |X2| +
|S1| + |S3|, |X3| + |S1| + |S2|. Their sum is n + 2|S| 6 2n. Without loss of generality, it
follows that |X1|+ |S2|+ |S3| 6 2n/3. Thus for every u ∈ X ′1,

degG′(u) > (3/4− ε)n− |X1| − |S2| − |S3| > (1/12− ε)n.

If, in addition, |X ′1| + |X ′2| > (1/4 + 2ε)n, then every vertex in X ′3 is in a component of
order at least εn. But the number of isolated vertices in X ′2 is at most (1/4 + ε)n, so the
number of odd components in G′ is at most (1/4 + ε)n + 1/ε 6 |S|. We conclude that
|X ′1|+|X ′2| 6 (1/4+2ε)n. Recall that |X ′3| 6 (1/4+2ε)n, implying that |G′| 6 (1/2+4ε)n,
i.e. |S| > (1/2− 4ε)n.

If X ′1 6= ∅, G′ contains a component of order at least (1/12 − ε)n in G′, so there are
at most (5/12 + 5ε)n + 1 6 |S| components in G′, a contradiction. The set Y , obtained
by picking one vertex from each component of G′, is an independent set in X ′2 ∪ X ′3 of
size at least |S|. Let Yi = Y ∩ X ′i. Then there are no Y2 − Y3 edges, implying that
|Y2|, |Y3| 6 (1/4 + ε)n, and so |Y2|, |Y3| > (1/4− 5ε)n.
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6.2 Matchings in bipartite graphs

In Section 13, we shall also need the following stability result for graphs with a bipartition
satisfying certain conditions. The proof is again an application of Theorem 23.

Lemma 26. Let 1
n
� ε� 1, where n is even. Let G be a graph on n vertices, and suppose

that {X1, X2} is a partition of V (G) such that |Xi| > (1/2 − ε)n and deg(u,X3−i) >
(3/4− ε)n− |Xi| for i ∈ [2], u ∈ Xi. Then one of the following conditions holds.

1. G has a perfect matching;

2. G is not 2-connected;

3. There exists an independent set Ai ⊆ Xi (for some i ∈ [2]) of order at least (1/4−
4ε)m such that |N(Ai)| 6 (1/4 + 3ε)n;

4. |Xi| > |X3−i| and Xi contains an independent set of size at least (1/2− ε)n;

5. There is an independent set A satisfying |A| > (1/2−6ε)n and |A∩Xi| > (1/4−9ε)n
for i ∈ [2].

Proof. Suppose that G has no perfect matching. It follows from Tutte’s theorem that
there is a set S such that the number of odd components in G′ = G \ S is larger than S.
Denote Si = S ∩Xi and X ′i = Xi \ S.

If δ(G′) > εn, the number of components of G′ is at most 1/ε, implying that |S| 6 1/ε.
It follows that G′ consists of at most two connected components, implying that |S| 6 1, so
G is not 2-connected, as required. We now assume that δ(G′) 6 εn, so |S| > (1/4− 2ε)n.

Suppose that X ′1 and X ′2 are non-empty and |X ′1|, |X ′2| 6 (1/4 + 3ε)n, so |S| >
(1/2−6ε)n. Then G′ has at least |S| connected components, implying that there is an in-
dependent set A ⊆ X ′1∪X ′2 of size at least (1/2−6ε)n. It follows that |A∩X ′i| > (1/4−9ε),
and thus the fifth condtion holds.

Suppose now that X ′1 and X ′2 are both non-empty and |X ′1| > (1/4 + 3ε)n. Denote
by A1 the set of isolated vertices in X ′1. Then every vertex in X ′2 ∪ (X ′1 \ A1) belongs
to a component of G′ of size at least εn. Furthermore, |A1| 6 (1/4 + 2ε)n. It follows
that the number of components is at most |A1| + 1/ε 6 (1/4 + 3ε)m, implying that
|S| 6 (1/4 + 3ε)m. But |S| > (1/4 − 2ε)n, so |A1| > |S| − 1/ε > (1/4 − 3ε)n. Since
N(A1) ⊆ S, the third condition holds.

It remains to consider the case where, say, X ′2 = ∅, so X2 ⊆ S, implying that |S| >
(1/2−ε)n. Thus G[X ′1] consists of at least (1/2−ε)n components, in particular it contains
an independent set of size at least (1/2− ε)n, and the fourth condition holds.

6.3 Hamilton cycles in bipartite graphs

The following result is a stability version of a special case of Corollary 20, which we shall
use in Section 14, for the proof of Lemma 29 below.
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Lemma 27. Let 1
n
� ε � 1 and let G be a balanced bipartite graph on n vertices with

bipartition {X1, X2}. Suppose that δ(G) > (1/4−ε)n and between every two subsets of X1

and X2 of size at least (1/4− 3ε)n there are at least εn2 edges. Then G is Hamiltonian.
Furthermore, there is a Hamilton path between every pair of points x1, x2 where x1 ∈ X1

and x2 ∈ X2.

We prove this result by a relatively simple application of the absorbing method of of
Rödl, Ruciński and Szemerédi [22]. In fact, all we need for this proof is Lemma 7, asserting
the existence of short absorbing paths in robust subgraphs, and the regularity lemma. A
graph G as in Lemma 27 is (ε, 2)-weakly-robust, thus by Lemma 7, it is possible to find
an absorbing path P in G. We consider the reduced graph Γ, obtained from applying the
regularity lemma on the graph G \ V (P ). We deduce from the conditions of the lemma
that Γ has an almost perfect matching, implying that G contains a cycle extending P and
spanning almost all vertices. The remaining vertices may be absorbed by P .

Proof of Lemma 27. It is easy to check from the conditions that G is (ε, 2)-weakly-robust
with bipartition {X1, X2}. It follows from Lemma 7, that for ρ > 0 is small enough, there
exists a ρ2n-absorbing path P in G of length at most ρn. Namely, if W ⊆ V (G) \ V (P )
is such that |W ∩ X1| = |W ∩ X2| 6 ρ2n, then G[V (P ) ∪W ] contains a Hamilton path
with the same ends as P . Note that we may assume for convenience that P has one end
in X1 and the other in X2.

Pick η > 0 suitably small. Apply the regularity lemma, Lemma 10, with the graph
G \ V (P ), the bipartition {X ′1, X ′2}, where X ′i = X \ V (P ) and parameter η. Let G′ be
the subgraph of G promised by Lemma 10 and let {V0, . . . , Vm} be the given partition.
We may assume that V0 has the same number of vertices in X1 and X2. Let Γ be the
corresponding (η, 4η)-reduced graph. Then Γ is a balanced bipartite graph. Let m = |Γ|.
Claim 28. Γ has a perfect matching.

Proof. Note that Γ has minimum degree at least (1/4− 2ε)m (using Observation 11 and
assuming that η is sufficiently small). Furthermore, if {U1, U2} is the bipartition of Γ,
then there is an edge between W1 and W2 for every choice of sets Wi ⊆ Ui of size at least
(1/4 − 2ε)m (this follows from the assumption on G). Suppose that Γ has no perfect
matching. Then, by Hall’s theorem, there is a set S in U1 for which |N(S)| < |S|. But
|N(S)| > (1/4−2ε)m (by the minimum degree condition), so |S| > (1/4−2ε)m. Similarly,
|S| 6 (1/4 + 2ε) (otherwise, every vertex in U2 has a neighbour in S). It follows that the
set T , defined as T = U2 \ N(S), has size at least (1/4 − 2ε)m. But then there are no
S − T edges in Γ, a contradiction.

Consider a perfect matching M in Γ. Then M is a connected matching as Γ is con-
nected. By Lemma 18, we obtain a cycle C in G, containing the path P and spanning
all but at most 6ηn 6 ρ2n vertices. Denote W = V (G) \ V (C). Since G is a balanced
bipartite graph, we have |W ∩ X1| = |W ∩ X2| 6 ρ2n. It follows from the absorbing
property of P that the vertices of W may be absorbed into P and thus into C to obtain
a Hamilton cycle. It is easy to modify the proof to obtain a Hamilton path between any
given vertices xi ∈ Xi.
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6.4 Monochromatic cycle partitions in 2-coloured graphs with the red graph
almost disconnected

The following two lemmas, Lemmas 29 and 30, state that a 2-coloured graph G has the
desired partition into a red cycle and a blue one if G admits some restrictive structural
property. We shall use these results several times in the following sections and delay their
proofs to the ends of the paper. In Sections 14 and 15 we Lemmas 29 and 30 respectively.

Lemma 29. Let 1
n
� ε � 1 and let G be a graph on n vertices with δ(G) > 3n/4 and

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that S, T ⊆ V (G) satisfy the following
conditions.

• S, T are disjoint and |S|, |T | > (1/2− ε)n;

• δ(GB[S, T ]) > (1/4− ε)n;

• For every S ′ ⊆ S, T ′ ⊆ T with |S ′|, |T ′| > (1/4 − 100ε)n, we have e(GB[S ′, T ′]) >
25εn2.

Then V (G) may be partitioned into a red cycle and a blue one.

Lemma 30. Let 1
n
� ε� 1 and let G be a graph on n vertices with δ(G) > 3n/4 and a

2-colouring E(G) = E(GB) ∪ E(GR). Suppose that there exists a partition {S, T,X} of
V (G) with the following properties.

• |S|, |T | > (1/2− ε)n;

• |X| 6 2 and if |X| = 2, there exists u ∈ X such that degR(x, S) 6 εn or
degR(x, T ) 6 εn;

• The sets S and T belong to different components of GR \X.

Then V (G) may be partitioned into a red cycle and a blue one.

This concludes the preliminary material needed for the proof of Theorem 1. We are
now finally ready to turn to the heart of the proof.

7 Rough structure

In this section we make the first step towards our proof of Theorem 1. We use the
regularity lemma, Lemma 10, to obtain information about the rough structure.

Lemma 31. Let 1
n
� α, 1

k
� ε � 1 and let G be a graph with δ(G) > 3n/4. Let

E(G) = E(GB) ∪ E(GR) be a 2-colouring of G. Then one of the following assertions
holds, where a robust component refers to an (α, k)-robust subgraph, possibly with the
roles of red and blue reversed.
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1. There exists a monochromatic strongly robust blue subgraph on at least (1 − ε)n
vertices.

2. There exists a weakly robust blue subgraph of order at least (1 − ε/4)n and a red
strongly robust subgraph of order at least (1/2 + ε/2)n.

3. There exists a weakly robust blue component with bipartition {X1, X2} where |X1|,
|X2| > (1/2 − ε)n and for each i ∈ [2], e(GB[Xi]) 6 εn2 and one of the following
holds.

(a) GR[Xi] is strongly robust;

(b) GR[Xi] is weakly robust with bipartition {Yi,1, Yi,2} satisfying |Yi,j| > (1/4−ε)n
and e(GR[Yi,j]) 6 εn2;

(c) There exists a partition {Yi,1, Yi,2} of Xi such that |Yi,j| > (1/4− ε)n, GR[Yi,j]
is strongly robust and e(GR[Yi,1, Yi,2]) 6 εn2.

Furthermore, if Condition 3b holds for i = 1, 2, then, in addition, e(GR[Y1,j, Y2,j]) 6
εn2 for j ∈ [2].

4. There exist a blue strongly robust subgraph and a red robust subgraph, each has order
at least (3/4− ε)n and together the span all but at most εn of the vertices.

5. There exist sets X1, X2, Y1, Y2 of order at least (1/2− ε)n such that

(a) X1, X2 are disjoint, Y1, Y2 are disjoint and X1 ∪X2 = Y1 ∪ Y2;

(b) |Xi ∩ Yj| > (1/4− ε)n for i, j ∈ [2];

(c) GB[Xi] is robust and GR[Yi] is strongly robust.

We remark that in light of the variety of extremal examples for Theorem 1 (see Section
2), it should not be surprising that there is a large number of cases to consider for the
rough structure. Furthermore, it is perhaps useful to note that many of the above cases
describe the structure of the extremal examples we gave in Section 2. For example, the
left-hand graph in Figure 1 corresponds to Condition 5, Figures 2 and 3a correspond to
Condition 3 and Figure 3b corresponds to Condition 4.

This lemma, technical as it seems, is a simple application of Lemmas 12 and 16,
which imply that monochromatic components in the reduced graph correspond to robust
subgraphs in the original graph. After applying the regularity lemma, we obtain a reduced
graph Γ, which has minimum degree close to 3m/4 where m = |Γ|. It is a routine check
to verify that either there is a spanning monochromatic component, or there are two
monochromatic components of size almost 3m/4 spanning the whole vertex set, or for
each colour there are two almost half-sized components spanning the whole vertex set. In
the case where there is a bipartite spanning monochromatic component, further analysis
is needed to show that one of Conditions 1, 2, 3 holds.
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Proof of Lemma 31. Set η = 48ε. Let Γ be a (η, 6η)-reduced graph obtained by applying
Lemma 10 to the graph G. Note that δ(Γ) > (3/4− 13η)m, where m = |Γ|. Without loss
of generality, we assume that the largest monochromatic component is blue and denote it
by Φ1.

Suppose first that Φ1 is a spanning subgraph of Γ. If it is non-bipartite, by Lemma
12, there is a strongly robust blue subgraph F1 of order at least (1−2η)n, as in Condition
1.

Thus we assume that Φ1 is bipartite, with bipartition {X1, X2} where |X1| > |X2|.
If |X1| > (1/2 + 26η)m, then δ(Γ[X1]) > (3/4 − 13η)m − |X2| > |X1|/2. It follows that
Γ[X1] is a red non-bipartite component. By Lemma 16, we obtain a weakly robust blue
subgraph F1 on at least (1 − 3η)n vertices and a red strongly robust subgraph F2 on at
least (1/2 + 23η)n vertices, as in Condition 2.

We assume now that |X1| 6 (1/2 + 26η)m. Then (1/2− 26η)m 6 |X1|, |X2| 6 (1/2 +
26η)m. Denote Γi = Γ[Xi] for i ∈ [2]. Γi contains only red edges and δ(Γi) > (1/4−39η)m.
Then one of the following holds for i ∈ [2].

1. Γi is connected in red and non-bipartite;

2. Γi is connected and bipartite. Furthermore, it has minimum degree at least (1/4−
39η)m;

3. Γi consists of two red components, each of order at least (1/4− 39η)m.

By the definition of a reduced graph and our choice of parameters, the number of blue
edges of G which are not present in G′ is at most 14ηn2 and similarly for the red edges.
It follows from Lemma 16 that one of the conditions in 3 holds. Suppose that Condition
2 holds for both Γ1 and Γ2. Denote the bipartition of Γi by {Yi,1, Yi,2}. If there are no
edges between Y1,j and Y2,j for j = 1, 2, Condition 3 is satisfied. Otherwise, without loss
of generality, there is an edge between Y1,1 and Y2,1. Then the red graph ΓB is connected.
But we assumed that there Γ has no spanning non-bipartite monochromatic component,
so there are no edges between Yi,1 and Y3−i,2 for i ∈ [2]. Thus, up to relabelling of Yi,j,
Condition 3 holds.

We assume now that Φ1 does not span Γ. Denote s = |Φ1|. Suppose first that
s > (1/2 + 26η)m. Denote U = V (Γ) \ V (Φ1). Then every vertex u ∈ U , is incident to at
least (3/4− 13η)m− (m− s) > s/2 neighbours. It follows that every two vertices outside
of V (Φ1) have a common red neighbour, implying that U is contained in a red component
Φ2 of order at least (3/4− 13η)m. Indeed, pick u ∈ U . Then the red neighbourhood of u
in Γ is contained in Φ2 as well as U .

By the choice of Φ1 as the largest connected monochromatic subgraph, we have that
|Φ1| > (3/4−13η)m. The components Φ1,Φ2 cover Γ and intersect in at least (1/2−26η)n
vertices. By the following claim, at least one of Φ1,Φ2 is non-bipartite, implying that
Condition 4 holds, by Lemma 16.

Claim 32. At least one of the graphs Φ1,Φ2 is not bipartite.
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Proof. Suppose otherwise. Denote Xi = V (Φi) \ V (Φ3−i) for i ∈ [2] and Y = V (Φ1) ∩
V (Φ2). Then for every x1 ∈ X1, x2 ∈ X2, the vertices x1, x2 are non-adjacent in Γ. Thus,
x1 sends at least (3/4 − 13η)m − |X1| (blue) edges to Y and similarly x2 sends at least
(3/4− 13η)m− |X2| red edges into Y . If both Φ1 and Φ2 are bipartite, it follows that Y
contains a set A1 of (3/4− 13η)m− |X1| vertices spanning no blue edges and a set A2 of
(3/4 − 13η)m − |X2| spanning no red edges. It follows that Y contains an independent
set of size at least |A1|+ |A2| − |Y | > (3/2− 26η)m− (|X1|+ |X2|+ |Y |) > (1/2− 26η)m.
This is a contradiction to the minimum degree condition on Γ.

It remains to consider the case where s = |Φ1| 6 (1/2 + 26η)m. An argument similar
to a previous one shows that if s < (1/2−26η)m, every two vertices of Φ1 have a common
red neighbour outside of Φ1, contradicting the choice of Φ1 as the largest monochromatic
component. Thus we have that (1/2−26η)m 6 s 6 (1/2+26η)m. Note that we may find
u1, u2 ∈ V (Φ1) which have no common red neighbour outside of Φ1 (otherwise there is a
red component of order larger than |Φ1| contradicting our choice of Φ1). Denote by Xi

the set of red neighbours of ui outside of V (Φ1). Let Yi be the red neighbourhood of Xi

in Φ1. It follows from the minimum degree condition and the order of Φ1 that |Xi|, |Yi| >
(1/4− 39η)m. Furthermore, the sets X1, X2, Y1, Y2 are disjoint, there are no red edges in
between X1∪Y1 and X2∪Y2 and no blue edges between X1∪X2 and Y1∪Y2. In particular,
there are no edges between Xi and Y3−i. Considering the minimum degree conditions and
the size of the various sets, it follows that the blue subgraph Φ2 = ΓB\V (Φ1) is connected.
Similarly, ΓR[Xi ∪ Yi] is connected. Moreover, of the four components, there cannot be
both a red and a blue bipartite component. Condition 5 follows.

Proof of the main theorem

We now prove Theorem 1, using Lemma 31 and other results which we shall state and
prove in subsequent sections.

Theorem 1. There exists n0 such that if a graph on n > n0 vertices and minimum degree
at least 3n/4 is 2-coloured then its vertex set may be partitioned into two monochromatic
cycles of different colours.

Proof of Theorem 1. Let 1
n
� ε � 1 and let G be a graph on n > n0 vertices with

minimum degree at least 3n/4 and a red and blue colouring of the edges. By Lemma 31,
we may assume that one of Conditions 1 to 5 from the statement of the lemma hold. It
remains to conclude that in each of these cases, we may find a partition of V (G) into a red
cycle and a blue one. We prove this for each of the above cases using lemmas appearing
in Sections 8 to 13.

We start by resolving the easiest conditions, namely Condition 2, in Lemma 33 in
Section 8. Condition 3 is dealt with in Sections 9, 10. Lemmas 36, 37 and 38 share
some similarities and are used to prove all possible combinations of Conditions 3a, 3b, 3c
except for the case where Condition 3b holds for both graphs in question. The proof of
Theorem 1 in the latter case can be deduced from Lemma 39 and is of different nature.
Condition 4 can be resolved by Lemma 42 in Section 11. It shares some ideas with the

the electronic journal of combinatorics 26(1) (2019), #P1.19 24



proofs in Section 9, but requires further analysis. Condition 5 is dealt with by Lemma 45
in Section 12. Condition 1 turns out to be hardest, thus we prove it last in Lemma 48 in
Section 13.

8 Almost spanning weakly robust blue, large strongly robust
red

In this section we resolve Condition 2 of Lemma 31. We recommend the reader to follow
the proof here carefully, since the methods appearing here will be used in later sections,
often in less detail.

In order prove Theorem 1 in Condition 2, we prove the following lemma. In this case
we make the further assumption that the given robust subgraphs cover all the vertices of
G (rather than almost all of them). This can be easily be justified by the fact that every
vertex sends many edges to the intersection of the red and blue robust graphs (denoted
below as F1 and F2), due to the size of the robust graphs and the minimum degree contions,
and by Lemma 5, which states that given a robust subgraph F , the graph obtained by
adding vertices of large degree into F remains robust.

Lemma 33. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4 and a

2-colouring E(G) = E(GB)∪E(GR). Suppose that F1, F2 satisfy the following conditions.

• F1 ⊆ GB is (α, k)-weakly-robust with bipartition {X, Y } and |F1| > (1− ε)n;

• F2 ⊆ GR is (α, k)-strongly-robust and |F2| > (1/2 + 2ε)n;

• V (G) = V (F1) ∪ V (F2).

Then V (G) may be partitioned into a blue cycle and a red cycle.

This case is the most straightforward of the cases arising from Lemma 31. We ap-
ply Lemma 7 to find vertex-disjoint absorbing paths Pi in Fi for i ∈ [2]. Then, using
the regularity lemma and the connected matching method, we find two vertex-disjoint
monochromatic cycles containing the paths P1, P2 and covering almost all of the vertices.
Finally, we use the absorption property to insert the remaining vertices into the paths
P1, P2 so as to obtain the desired monochromatic cycle partition.

Proof of Lemma 33. We use Lemma 7 to build absorbing paths for F1 and F2. More
precisely, given a suitably small ρ > 0, there exists vertex-disjoint paths Pi ⊆ Fi for
i ∈ [2] satisfying the following conditions, where U = V (P1) ∪ V (P2).

• |Pi| 6 ρn;

• P1 is ρ2n-weakly-absorbing in F1 (with respect to the bipartition {X, Y });

• P2 is ρ2n-absorbing in F2.
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Indeed, by Lemma 7, we may find a ρ2n-weakly-absorbing path P1 in F1 of length at most
ρn. By Lemma 3, the subgraph F ′2 = F2 \ V (P1) is robust (with suitable parameters),
thus we may find a ρ2n-absorbing path P2 in F ′2 of length at most ρn.

Using the regularity lemma, we shall find vertex-disjoint monochromatic cycles, con-
taining the paths P1 and P2 and covering almost all vertices of G. We then cover the
remaining vertices using the absorption properties of the paths P1 and P2. However,
the fact that P1 is weakly-absorbing presents a technical difficulty which we overcome as
follows.

Recall that {X, Y } is the bipartition of F1. Without loss of generality, suppose that
|X ∩ V (F2)| > n/8. Note that |Y | > αn by the minimum degree condition on F1[X, Y ].
Pick subsets A1 ⊆ X ∩ V (F2) and A2 ⊆ Y , disjoint of U , such that |A1| = ρ2n/2 and
|A2| = ρ2n/4, and denote A = A1 ∪ A2.

Apply Lemma 10 to the graph G \ (U ∪ A) with parameter η = ρ2/16 and the cover
{V (F1), V (F2)}. Let Γ be the corresponding (η, 6η)-reduced graph. Note that δ(G \ (U ∪
A)) > (3/4− 3ρ)n. It follows from observation 11 that for a suitable choice of ρ we have
δ(Γ) > (3/4− ε/2)m, where m = |Γ|.

The blue subgraph of Γ determined by the clusters contained in V (F1) is connected,
by Lemma 17. Let Φ1 be the connected component of ΓB containing that subgraph.
Similarly, let Φ2 be the connected component of ΓR containing the clusters which are
contained in V (F2). Note that Φ1 and Φ2 cover V (Γ). Furthermore, |Φ1| > (1− 3ε/2)m
and |Φ2| > (1/2 + 3ε/2)m. Let Γ′ be the union of these graphs.

Claim 34. Γ′ has a perfect matching.

Proof. Denote V1 = V (Φ1) ∩ V (Φ2) and V2 = V (Φ1)4V (Φ2). Note that V1, V2 partition
V (Γ) and |V1| > m/2. Recall that δ(Γ) > (3/4− ε/2)m. It follows that for every v ∈ V1,
we have degΓ′(v) > (3/4− ε/2)m, because all edges of Γ incident to v are in Γ′. Vertices
not in Φ1 have blue degree at most 3

2
εm. Similarly, vertices not in Φ2 have red degree at

most (1/2 − 3ε/2)m. It follows that for every v ∈ V2, we have degΓ′(v) > (1/4 + ε)m.
We conclude from Theorem 19 that Γ has a Hamilton cycle and in particular a perfect
matching.

Remark 35. In the last claim, we implicitly assumed that m is even. It is indeed possibly
to make this further assumption in the regularity lemma. We shall make this assumption
whenever convenient without stating so explicitly.

By Claim 34, Γ has a perfect matching consisting of a blue connected matching in Φ1

and a red connecting matching in Φ2. Thus, we may use Lemma 18 to obtain a blue cycle
C1 and a red cycle C2 which are disjoint, each Ci contains the respective absorbing path
Pi and together they cover all but at most 7ηn 6 ρ2n/4 vertices of V (G) \ A.

We now show how to absorb the leftover vertices into the cycles C1, C2. Let B be the
set of vertices which are not contained in the cycles C1, C2 or in the set A, so |B| 6 ρ2n/4.
Denote B1 = X ∩ B, B2 = Y ∩ B, and B3 = B \ V (F1). Recall that A1 ⊆ X ∩ V (F2)
and A2 ⊆ Y are disjoint of the cycles C1, C2 and have sizes ρ2n/2 and ρ2n/4 respectively.
It follows that ρ2n/4 6 |A2 ∪ B2| 6 ρ2n/2. Thus we may choose A′1 ⊆ A1 such that
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|A′1 ∪ B1| = |A2 ∪ B2| 6 ρ2n/2. Recall that the path P1, which is contained in C1, is
ρ2n-absorbing in F1, so the vertices in these sets can be absorbed by P1 and thus by C1.
We remain with the vertices (A1 \ A′1) ∪ B3. There are at most ρ2n of them and they
belong to F2, so we may absorb them into P2 and thus into C2. This completes a partition
of V (G) into a red and a blue cycle.

Now that we have proved Theorem 1 for Condition 2 of Lemma 31, we are ready to
consider harder cases.

9 Almost spanning, almost balanced, weakly robust blue

In this section we consider Condition 3 of Lemma 31, where we have a large weakly robust
blue subgraph with an almost balanced bipartition {X1, X2}. There are three possibilities
for each of the red graphs GR[Xi]. In this section we focus on the case where at least one
of these red subgraphs satisfies Conditions 3a or 3c. The remaining case, with both red
graphs GR[X1], GR[X2] satisfying Condition 3b requires a proof of different nature and is
thus postponed to the following section.

The main idea in the various cases arising here is that if two red robust subgraphs may
be joined by two vertex-disjoint red paths, then they can essentially be treated as one
bigger component, in which case we may use the argument of the previous section to finish
the proof. If that is not possible, we deduce that the red graph GR may be disconnected
by removing a small number of vertices into two almost half-sized subgraphs. This case
may be resolved by Lemmas 29 and 30.

The following lemma resolves the case where one of the red graphs in question satisfies
Condition 3a and the other satisfies 3a or 3b.

Lemma 36. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4

and a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that F1, F2, F3 satisfy the following
assertions.

• F1 ⊆ GB is (α, k)-weakly-robust and with bipartition {X, Y }, where |X|, |Y | >
(1/2− ε)n and e(GB[X]), e(GB[Y ]) 6 εn2;

• F2 ⊆ GR is (α, k)-strongly-robust and V (F2) = X;

• F3 ⊆ GR is (α, k)-robust with V (F3) = Y .

Then V (G) may be partitioned into a blue cycle and a red cycle.

To prove this lemma, we show that we may either join the two robust subgraphs F2, F3

and then continue similarly to the proof of Lemma 33, or we can finish using Lemma 29.

Proof of Lemma 36. By Menger’s theorem, one of the following holds.

1. There are two vertex-disjoint red paths P2, P3, each with one end in F2 and the
other in F3;
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2. There exists u ∈ V (G) such that F2 \ {u} and F3 \ {u} are disconnected from each
other in GR \ {u}.

In Case 2, it is easy to deduce that the required monochromatic cycle partition exists
from Lemma 30. It remains to consider Case 1. The idea is to use the paths P2 and P3 so
as to essentially connect the two subgraphs F2, F3 into one large component. We achieve
this as follows.

Note that we may assume that the internal vertices of P2, P3 belong to V (G)\(V (F2)∪
V (F3)). It follows that |P2|, |P3| 6 2εn and the subgraphs F1, F2, F3 remain robust after
removing the vertices of the paths P2, P3. Note that every vertex has either large (say,
at least αn) blue degree into F1, or large red degree into either F2 or F3. It follows that
we may extend these subgraphs to cover the remaining vertices. Namely, using Lemma
5, we obtain (α/2, k + 2)-robust subgraphs F ′1, F

′
2, F

′
3 which extend the given subgraphs

and cover V (G) \ (V (P2) ∪ V (P3)). Denote by {X ′, Y ′} the bipartition of F ′1.
By Lemma 7, F ′i contains a ρ2n-absorbing path P ′i of length at most ρn for each

i ∈ [3]. We may assume that the paths P ′1, P
′
2, P

′
3 are vertex disjoint. For i ∈ {2, 3}, we

may connect Pi with P ′i in Fi to a path Qi using at most k + 2 additional vertices. For
convenience, we denote Q1 = P ′1. To conclude, the paths Q1 ⊆ GB and Q2, Q3 ⊆ GR are
vertex-disjoint paths, such that Qi is ρ2n-absorbing in F ′i . Furthermore, each of Q2, Q3

has one end in F ′2 and one in F ′3.
Recall that F1 is weakly robust and that F2 is strongly robust. It is perhaps not

evident from the definitions that a strongly robust graph is weakly robust, but for our
purpose, the place where the difference is important is in the definition of an absorbing
path. But clearly, an absorbing path is weakly absorbing. Thus, it suffices to consider
the case where F ′3 is weakly robust with bipartition {Z1, Z2}.

Similarly to the proof in Section 8, in order to overcome the technical issues arising
when dealing with weakly robust subgraphs, we pick sets A1, A2, A3 such that the following
holds.

• A1, A2, A3 are pairwise vertex-disjoint and do not intersect V (Q1)∪V (Q2)∪V (Q3);

• A1 ⊆ Z1 ∩ Y , A2 ⊆ Z2 ∩ Y and A3 ⊆ X ∩ V (F2);

• |A1| = ρ2n/16, |A2| = ρ2n/4 and |A3| = ρ2n/2.

We now consider the (η, 6η)-reduced graph obtaining by applying Lemma 10 to the
graph obtained from G by removing the vertices in the Qi’s and Ai’s (with the cover
{V (F ′1), V (F ′2), V (F ′3)}). The reduced graph Γ consists of a large blue component Φ1

(containing almost all vertices) and two disjoint almost half-sized connected red subgraphs
Φ2,Φ3. It is easy to verify, similarly to the proof of Claim 34, using Theorem 19, that Γ
has a perfect matching consisting of edges in Φ1,Φ2 and Φ3.

By Lemma 18, there exist a blue cycle C1 and a red cycle C2 with the following
properties.

• C1 and C2 are vertex-disjoint and do not intersect A = A1 ∪ A2 ∪ A3;
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• They cover all but at most 4ηn vertices of V (G) \ A;

• C1 contains the path Q1 and C2 contains the paths Q2, Q3.

Let us elaborate slightly more on how to obtain the required cycles by pointing out that
C2 may be obtained by connecting the ends of Q2, Q3 by two paths, one in F ′2 and the
other in F ′3. Let B be the set of vertices which do not belong to the cycles C1, C2 or to A
(so |B| 6 7ηn 6 ρ2n/16). We define sets Bi as follows.

B1 = B ∩ Z1, B2 = B ∩ Z2,

B3 = (B ∩X ′) \ (B1 ∪B2),

B4 = (B ∩ Y ′) \ (B1 ∪B2),

B5 = B \ (B1 ∪ . . . ∪B4).

We perform the following steps in order to absorb B.

• We have |B2| 6 ρ2n/16 6 |A1∪B1| 6 ρ2n/8 and |A2| = ρ2n/4. Thus we may choose
A′2 ⊆ A2 such that |A1 ∪ B1| = |A′2 ∪ B2|. The vertices A1 ∪ B1 ∪ A′2 ∪ B2 can be
absorbed into Q3.

• Similarly, we may choose A′3 ⊆ A3 such that |(A2 \ A′2) ∪ B3| = |A′3 ∪ B4|. The
vertices (A2 \ A′2) ∪B3 ∪ A′3 ∪B4 can be absorbed into Q1.

• The remaining vertices (A3 \ A′3) ∪B5 can be absorbed into Q2.

This completes the partition of V (G) into a blue cycle and a red one.

The following lemma resolves the case where one of the red graphs in question satisfies
Condition 3c in Lemma 31 and the other satisfies one of the other two conditions.

Lemma 37. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4 and

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that F1, F2, F3, F4 satisfy the following
assertions.

• F1 ⊆ GB is (α, k)-weakly-robust and with bipartition {X, Y }, where |X|, |Y | >
(1/2− ε)n;

• F2 ⊆ GR is (α, k)-robust and V (F2) = X;

• F3, F4 ⊆ GR are (α, k)-strongly-robust subgraphs of order at least (1/4− ε)n whose
vertex sets partition Y . Furthermore, e(GR[V (F3), V (F4)]) 6 εn2.

Then V (G) may be partitioned into a blue cycle and a red cycle.

The proof of this lemma is similar to the previous one. Either F2 may be joined to
one of F3, F4 or we may finish using Lemma 29.

Proof of Lemma 37. Similarly to the previous case, two possibilities arise.
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1. There exist vertex-disjoint red paths P1, P2 with one end in F2 and either both have
the other end in F3 or both have the other end in F4;

2. There exists a set U of size at most 2 such that F1 \ U and (F2 ∪ F3) \ U are
disconnected in GR \ U .

In Case 2, the required monochromatic cycle partition exists by Lemma 29. Indeed,
we may find S ⊆ X \ U and T ⊆ Y \ U such that the three conditions in the lemma
hold, for some parameter η = η(ε). In particular, the third condition holds because most
vertices in Y have degree at most (1/4 +

√
ε)n in G[Y ], and thus have degree at least

(1/2−√ε)n into X. If Case 1 holds, we may continue as in the proof of Lemma 36.

We now consider the last remaining case in this section, where both red graphs satisfy
Condition 3c in Lemma 31.

Lemma 38. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4 and

with a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that F1, F2, F3, F4, F5 satisfy the
following conditions.

• F1 ⊆ GB is (α, k)-weakly-robust and with bipartition {X, Y }, where |X|, |Y | >
(1/2− ε)n, and e(GB[X]), e(GB[Y ]) 6 εn2;

• F2, F3 ⊆ GB are (α, k)-strongly-robust subgraphs of order at least (1/4− ε)n whose
vertex sets partition X, and e(GR[V (F2), V (F3)]) 6 εn2;

• F4, F5 ⊆ GB are (α, k)-strongly-robust subgraphs of order at least (1/4− ε)n whose
vertex sets partition Y , and e(GR[V (F4), V (F5)]) 6 εn2;

• e(GR[V (F2), V (F3)]), e(GR[V (F4), V (F5)]) 6 εn2.

Then V (G) may be partitioned into a blue cycle and a red cycle.

To prove this lemma we follow similar ideas to the previous results in this section. We
show that either at least three of the four components F2, F3, F4, F5 may be joined or we
may finish using Lemma 29 or Lemma 30.

Proof of Lemma 38. We consider four cases. In order to be able to distinguish between
them, we define a graph H on vertex set {2, 3, 4, 5} with an edge (i, j), where i ∈ {2, 3}, j ∈
{4, 5} if e(GR[Fi, Fj]) > εn2 (so H is a bipartite graph on four vertices with bipartition
{[2, 3], [4, 5]}. Clearly, one of the following conditions.

1. H contains a path of length 2;

2. H consist of two vertex-disjoint edges;

3. H has exactly one edge;

4. H has no edges.
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In Case 1, without loss of generality, (2, 4), (2, 5) ∈ E(H), so e(GR[F2, F4]), e(GR[F2, F5]) >
εn2. In particular, there exist four vertex-disjoint edges e1, e2 ∈ GR[F2, F4], e3, e4 ∈
GR[F2, F5]. We deduce that the components F2, F4, F5 may be joined to form a red com-
ponent of size at least (3/4− 3ε)n. We may now finish the proof of Lemma 38 similarly
to the previous lemmas in this section.

Suppose that Case 2 holds. Without loss of generality, E(H) = {(2, 4), (3, 5)}. If
there are two vertex-disjoint red paths P1, P2 between V (F2)∪V (F4) and V (F3)∪V (F5),
we conclude that the four component F2, F3, F4, F5 may be joined. Otherwise, there is a
vertex u ∈ V (G) such that GR \ {u} is disconnected, with F2, F4 in one component and
F3, F5 in another. The proof of Lemma 38 can be completed by Lemma 30.

We now consider Case 3. Without loss of generality, e(GR[V (F2), V (F4)]) > εn2. Note
that in this case, almost all edges between F2 and F5, F5 and F3, F3 and F4 are blue.
Additionally, almost all edges within the Fi’s are red. Thus the proof follows from Lemma
29, unless almost all edges between F2 and F4 are red. In the latter case, we may find
the required cycle partition by hand, as can be seen by the following sketch. Note that
all but cεn (for a suitable constant c) vertices in F2 have red degree into F2, red degree
into F4 and blue degree into F5 at least 3n/16. Let A2 be the set of such vertices. A
similar statement holds for F3, F4, F5, we denote by A3, A4, A5 the corresponding subsets.
We note that each of the remaining vertices either red or blue degree at least n/16 into
A2 ∪ A4. It is easy to see that there exist a red path P1 with ends in A2 ∪ A4 and a blue
path P2 with end in A3 ∪ A5 whose length is at most c′εn that cover all the vertices not
in A2 ∪ A3 ∪ A4 ∪ A5. In fact, we may assume that the number of vertices remaining in
A3 is equal to the number of vertices remaining in A5 (by using blue edges between A3

and A4 or between A5 and A2). It easily follows that P2 may be extended to a cycle C2

that covers A3 ∪ A5. Using the high minimum red degree in A2 ∪ A4, we may extend P1

to a red cycle C1 whose vertex set is V (G) \ V (C2), thus we obtain the required cycle
partition.

If Case 4 holds, the proof may be completed by 29, as almost all edges between X and
Y are blue.

In order to finish the proof of Theorem 1 under the assumption that Condition 3 from
Lemma 31, we need to consider the case where both graphs in question satisfy Condition
3b. This is done in the next section, Section 10.

10 Almost spanning weakly robust blue, two half-sized weakly
robust red

In this section we consider Condition 3 from Lemma 31, where both graphs GR[X1] and
GR[X2] satisfy Condition 3b. Namely, we have a large weakly robust blue subgraph with
an almost balanced bipartition {X1, X2}. Furthermore, GR[Xi] is weakly robust for i ∈ [2]
with an almost balanced bipartition {Yi,1, Yi,2} such that e(GR[Yi,1, Yi,2]) 6 εn2.
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Lemma 39. Let 1
n
� ε� 1 and let G be a graph of order n with δ(G) > 3n/4 and with

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that there exists four disjoint sets Yi,j,
i, j ∈ [2] with the following properties.

• |Yi,j| > (1/4− ε)n for i, j ∈ [2];

• e(G[Yi,j]) 6 εn2;

• e(GB[Yi,1, Yi,2]) 6 εn2 for i ∈ [2];

• e(GR[Y1,j, Y2,j]) 6 εn2 for j ∈ [2].

We notice that a graph with the given conditions has a rather specific structure.
Namely, the sets Yi,j span few edges, whereas the graphs GR[Yi,1, Yi,2] and GB[Y1,j, Y2,j]
are almost complete. By Lemma 29, we conclude that we may finish the proof unless say
GR[Y1,1, Y2,2] and GB[Y1,2, Y2,1] are almost complete. In the latter case we construct the
required partition into a red cycle and a blue one ‘by hand’.

Proof of Lemma 39. The conditions imply that for some η = η(ε), we can find disjoint
sets S1, S2, T1, T2 with the following properties.

• |Si|, |Ti| > (1/4− η)n for i ∈ [2];

• δ(GR[S1, S2]) > (1/4− η)n and δ(GR[T1, T2]) > (1/4− η)n;

• δ(GB[Si, Ti]) > (1/4− η)n for i ∈ [2];

• e(G[Si]), e(G[Ti]) 6 ηn2.

Denote S = S1 ∪ S2 and T = T1 ∪ T2. Consider the graph GB[S, T ]. If for every
S ′ ⊆ S and T ′ ⊆ T with |S ′|, |T ′| > (1/4−200η)n we have e(GB[S ′, T ′]) > 50ηn2, Lemma
29 implies that G may be partitioned into a blue cycle and a red one. Thus we may
assume that there exist subsets S ′ ⊆ S and T ′ ⊆ T of size (1/4 − 200η)n such that
e(GB[S ′, T ′]) 6 50ηn2.

Claim 40. Either |S1 ∩ S ′|, |T2 ∩ T ′| 6 10
√
ηn or |S2 ∩ S ′|, |T1 ∩ T ′| 6 10

√
ηn.

Proof. Suppose to the contrary that |S1 ∩ S ′|, |T1 ∩ T ′| > 10
√
ηn. For every u ∈ S1,

the number of vertices in T1 which are not blue neighbours of u is at most 4ηn. If
S ′ ∩ S1 and T ′ ∩ T1 both have size at least 10

√
ηn, we deduce e(GB[S ′, T ′]) > 90ηn2, a

contradiction.

By the above claim, without loss of generality, |S2∩S ′|, |T1∩T ′| 6 10
√
ηn, so GB[S1, T2]

is almost empty, and GR[S1, T2] is almost complete. Similarly, GB[S2, T1] is almost com-
plete. We deduce that for some ρ = ρ(ε) there exist disjoint sets A1, A2, A3, A4 satisfying
the following conditions.

• |A1|, |A2|, |A3|, |A4| > (1/4− ρ)n;
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• δ(GB[A1, A2]), δ(GB[A2, A3]), δ(GB[A3, A4]) > (1/4− ρ)n;

• δ(GR[A1, A3]), δ(GR[A1, A4]), δ(GR[A2, A4]) > (1/4− ρ)n.

We obtain a partition {A′1, A′2, A′3, A′4} of V (G) by adding each vertex u ∈ V (G) \
(A1 ∪ A2 ∪ A3 ∪ A4), to one of the sets A1, A2, A3, A4 as follows.

If

degB(u,A2) > n/32
degB(u,A3) > n/32
degR(u,A2) > n/32
degR(u,A3) > n/32

add u to

A3

A2

A4

A1.

Note that every vertex will be added to one of the Ai’s. We first consider the case where
n is even; the case where n is odd is similar but there is small added technicality.

Case 1: n is even

Denote mi = |A′i|. We will find values k1, k2, k3 and l1, l2, l3 and a partition of G into a
blue cycle C1 and a red cycle C2 such that the following holds.

|V (C1) ∩ A′i| =


k1 i = 1
k1 + k2 i = 2
k2 + k3 i = 3
k3 i = 4.

|V (C2) ∩ A′i| =


l1 + l2 i = 1
l3 i = 2
l1 i = 3
l2 + l3 i = 4.

More precisely, the blue cycle C1 will be comprised of paths P1, P2, P3, P4 (so C1 =
P1P2P3P4) with the following properties.

• P1 ∈ GB[A′1, A
′
2], its ends are in A′2 and it has k1 vertices in A′1;

• P2, P4 ∈ GB[A′2, A
′
3], both have one end in A′2 and the other in A′3 and together they

have k2 + 1 vertices in A′2;

• P3 ∈ GB[A′3, A
′
4], its ends are in A′3 and it has k3 vertices in A′4.

Similarly, we find red paths Q1, Q2, Q3, Q4 forming a red cycle C2 = Q1Q2Q3Q4 with
the following properties.

• Q1 ∈ GR[A′1, A
′
3], its ends are in A′1 and it has l1 vertices in A′3;

• Q2, Q3 ∈ GR[A′1, A
′
4], both have one end in A′1 and the other in A′4 and together

they have l2 + 1 vertices in A′1;

• Q4 ∈ GR[A′2, A
′
4], its ends are in A′2 and it has l3 vertices in A′2.

the electronic journal of combinatorics 26(1) (2019), #P1.19 33



The values k1, k2, k3 and l1, l2, l3 clearly need to satisfy the following system of equa-
tions.

m1 = k1 + l1 + l2
m2 = k1 + k2 + l3
m3 = k2 + k3 + l1
m4 = k3 + l2 + l3.

Which may be solved as follows.

k1 = k3 +
1

2
(m1 +m2 −m3 −m4)

l1 = l3 +
1

2
(m1 −m2 +m3 −m4)

k2 = −(k3 + l3) +m4

l2 = −(k3 + l3) +m3 −
1

2
(m1 −m2 +m3 −m4).

Since n is even, if k3, l3 are integers then so are k1, k2, l1, l2. Note that the following
inequalities hold.

k3 − 2ρn 6 k1 6 k3 + 2ρn
l3 − 2ρn 6 l1 6 l3 + 2ρn

k2 > (1/4− ρ)n− (k3 + l3)
l2 > (1/4− 3ρ)n− (k3 + l3).

We pick l3 = k3 = d12ρne. It follows that 10ρn 6 l1, k1 6 14ρn+ 1.

Claim 41. The required cycle partition exists.

Proof. It is not hard to see that there exists a blue path P , that can be written as
P = P1P2P3 such that P has one end in A′2 and one in A′3, and it has k1 vertices in A′1,
k1 + 1 vertices in A′2, k2 + 1 vertices in A′3 and k2 vertices in A′4.

Similarly, there is a red path Q whose ends are in A′1 and A′4, and it has l1 vertices in
A′3, l1 + 1 vertices in A′1, l2 + 1 in A′4 and l2 in A′2. Furthermore, we may choose Q to be
disjoint of P .

Let A′′i be the set of vertices in A′i that are not in the interior of P or Q. Then
|A′′1| = m1 − k1 − l1 = l2, and, similarly, |A′′2| = |A′′3| = k2 and |A′′4| = |A′′1| = l2. It follows
from Corollary 20 that P may be completed into a blue cycle C1 by a Hamilton cycle in
GB[A′′2, A

′′
3] with the same ends as P . Q can be similarly completed into a red cycle C2,

and the required cycle partition exists.

Case 2: n is odd

It remains to consider the case where n is odd. Without loss of generality, |A′1| > n/4.
By the minimum degree condition, this implies that there is an edge uv in A′1. We
assume here that this edge is blue; the proof in case the edge is red is very similar. We
obtain the required cycle partition by picking a blue cycle C1 = P1P2P3P4 and a red cycle
C2 = Q1Q2Q3Q4 where the Pi’s and Qi’s are chosen as before, except for P1 which is
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required to consist of edges in GB[A′1, A
′
2] and the edge uv, to have its ends in A′2, and

have k1 + 1 vertices in both A′1 and A′2.
We obtain the same system of equations for ki, li, except that m1 is replaced by m1−1.

As n is odd, we find an integer solution with l3 = k3 = d12ρne, 10ρn−1 6 l1, k1 6 14ρn+2.
We proceed as before (it is easy to make sure that P1 satisfies the new requirements).

The proof of Lemma 39 completes the proof of our main Theorem under the assump-
tion that Condition 3 from Lemma 31 holds.

11 Red and blue robust subgraphs, size almost 3n/4

In this section, we consider Condition 4 from Lemma 31. Similarly to Section 8, we may
assume that the given robust subgraphs cover V (G).

Lemma 42. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4 and a

2-colouring E(G) = E(GB)∪E(GR). Suppose that F1, F2 satisfy the following assertions.

• F1 ⊆ GB is (α, k)-strongly-robust and |F1| > (3/4− ε)n;

• F2 ⊆ GR is (α, k)-robust and |F2| > (3/4− ε)n;

• V (G) = V (F1) ∪ V (F2).

Then V (G) may be partitioned into a blue cycle and a red cycle.

We proceed as before, building absorbing paths, and considering the reduced graph
on the remaining vertices, where we have a blue component and a red one, each with
almost 3/4 of the vertices. If a perfect matching can be found using the edges in these
component, we continue as before to obtain the required partition into cycles. If no such
perfect matching exists, we conclude that the graph G satisfies some structural conditions
which enable us to either find the required partition ‘by hand’, or to join two components
in a similar way to previous cases.

Proof of Lemma 42. Let Q1, Q2 be disjoint ρ2n-absorbing paths in F1, F2, respectively, of
length at most ρn. As pointed out in Section 9 we may assume that F2 is weakly robust.
Denote its bipartition by {X, Y }.

Without loss of generality, |X∩V (F1)| > n/8 and |Y | > αn. Fix sets A1 ⊆ X∩V (H1)
of order ρ2n/2 and A2 ⊆ Y of order ρ2n/4. Finally, apply Lemma 10 (after removing the
vertices in Q1, Q2, A1, A2) with small enough η. Consider the (η, 6η)-reduced graph Γ.
Note that, assuming ρ, η are small enough, we have δ(Γ) > (3/4 − ε)m, where m = |Γ|.
Furthermore, there is a blue component Φ1 and a red component Φ2 which cover V (Γ)
and are of order at least (3/4− 2ε)m each. We consider the subgraph Γ′ of Γ spanned by
the blue edges in Φ1 and the red ones in Φ2.

Claim 43. One of the following conditions holds.

1. Γ′ has a perfect matching;
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2. There exist subsets V1 ⊆ V (F1)\V (F2), V2 ⊆ V (F2)\V (F1) and V0 ⊆ V (F1)∩V (F2)
with the following properties (where η, β, l depend only on ε, α, k).

(a) |V1|, |V2| > (1/4− η)n and the graphs GR[V1], GB[V2] are (β, l)-strongly-robust;

(b) |V0| > (1/2 − η)n and GB[V1 ∪ V0] and GR[V2 ∪ V0] are (β, l)-robust, with at
least one of them being strongly-robust.

Proof. Let U1 = V (Φ1)\V (Φ2), U2 = V (Φ2)\V (Φ1) and U0 = V (Φ1∩Φ2). Note that the
vertices in U1∪U2 have degree at least (1/2−4ε)m in Γ′, whereas |U0| > (1/2−4ε)m and
the vertices in U3 have degree at least (3/4 − 2ε)m in Γ′. If Γ′ has no prefect matching,
it follows from Theorem 19 that |U1 ∪ U2| > m/2 and that the set W of vertices U1 ∪ U2

with degree at most (1/2 + ε)m has size at least (1/2− 4ε)m. Denote W1 = W ∩ U1 and
W2 = W ∩ U2.

We claim that |W1|, |W2| > (1/4− 13ε)n. Indeed, the vertices in W1 have blue degree
at most (1/2 + ε)m, so they have red degree at least (1/4 − 5ε)m. Note that the red
neighbourhood of W1 is contained in U1. It follows that |U1| > (1/4− 5ε)n and similarly
|U2| > (1/4−5ε)n. Since |U0| > (1/2−4ε)m, we have that |U1|, |U2| 6 (1/4+9ε)m. Thus
|W1|, |W2| > (1/4 − 13ε)m. It is easy to verify that ΓR[W1] and ΓB[W2] are connected
and non bipartite (in fact, they are almost complete).

Let W0 be the intersection of the blue neighbourhood of W1 in U0 and the red neigh-
bourhood of W2 in U0. By the definition of the sets Ui, there are no edges between U1

and U2, there are no red edges between U1 and U0 and no blue edges between U2 and U0.
It follows that the each vertex in U1 has at least (1/2− 10ε)m blue neighbours in U0, and
by the analogous argument for U2, we have |W0| > (1/2− 20ε)m. Note that ΓB[W0 ∪W2]
and ΓR[W0 ∪ W2] are connected and it is not hard to see that at least one of them is
non-bipartite. It follows from Lemma 16 that Condition 2 holds.

If Γ′ has a perfect matching, we may find the required cycle partition as before (see,
e.g. Section 8). We thus assume that the second condition holds. Similarly to the proofs
in Section 9, one of the following holds.

1. There are two vertex-disjoint blue paths between V2 and V1 ∪ V0;

2. There are two vertex-disjoint red paths between V1 and V2 ∪ V0;

3. There exists a set X of size at most 2 such that the sets V2 and V1 ∪ V0 are not
connected to each other in GB \X and the sets V1 and V2 ∪V0 are not connected to
each other in GR \X.

In the first two cases we proceed as in Section 9 to join, say, the two blue component
to form an almost spanning component, which together with the large red component
(V2 ∪ V0) may be used to find the required cycle partition. Thus we assume that Case 3
holds.

Consider the graph G′ = G \X. Let U1 be the component of V1 in G′R and let U2 be
the blue component of V2 in G′B. Then e(G[U1, U2]) = 0, so |U1|, |U2| 6 n/4− 1.
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Denote W = V (G′) \ (U1 ∪ U2) (so |W | > n/2). We define U ′1, U
′
2 as follows. For each

x ∈ X, if degB(x,W ) > n/8, put x into U1. Otherwise we have degR(x,W ) > n/8, and
we put x into U2. Note that e(G[W ]) > n2/16. We may assume without loss of generality
that e(GB[W ]) > n2/32. Denote |W | = |U ′1|+ |U ′2|+ k and note that 0 6 k 6 5ηn.

Claim 44. There exists θ = θ(ε) such that W may be partitioned into sets W1,W2 satis-
fying the following conditions.

• |W1| = |U ′1|+ k and |W2| = |U ′2|;

• GB[W1] contains a blue path of length k;

• The graphs GB[U ′1,W1] and GR[U ′2,W2] have minimum degree at least n/32 and all
but at most θn vertices have degree at least (1/4− θ)n.

It is easy to conclude from Claim 44 that G may be partitioned into a blue cycle and
a red one. Indeed, the graph GR[U ′2,W2] is Hamiltonian (e.g. by Corollary 20). We claim
that GB[U ′1 ∪W1] is also Hamiltonian, completing the partition of V (G) into a red cycle
and a blue one. Indeed, take any path P in GB[W1] of length k. Denote its ends by
u, v and let W ′

1 be the set obtained from W1 by removing the interior vertices of P . It is
easy to see (e.g. by Corollary 20) that GB[U ′1,W

′
1] has a Hamilton path with ends u, v. It

remains to prove Claim 44.

Proof of Claim 44. Recall that (1/4− η)n 6 |U1|, |U2| 6 n/4− 1. Denote by W ′ the set
of vertices which have at least

√
ηn non-neighbours in either U1 or U2. Note that each

vertex in U1 has at most ηn non-neighbours in W . It follows that |W ′| 6 √ηn.
Let W ′

1 be the set of vertices in W ′ with (blue) degree at least n/16 into U ′1, and
let W ′

2 = W ′ \W ′
1. So the vertices in W ′

2 have degree at least n/16 into U ′2. Note that
e(GB[W \W ′]) > n2/64. It follows from Theorem 21 that W \W ′ contains a blue path
P of length k.

Pick any partition {W1,W2} with the following properties.

• |W1| = |U ′1|+ k and |W2| = |U ′2|;

• W ′
1 ∪ V (P ) ⊆ W1 and W ′

2 ⊆ W2.

Such a partition satisfies the required conditions of Claim 44 with θ =
√
η.

12 Four half-sized robust subgraphs

In this section we consider Condition 5 from Lemma 31.

Lemma 45. Let 1
n
� α, 1

k
� ε� 1 and let G be a graph of order n with δ(G) > 3n/4 and

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that F1, F2, F3, F4 satisfy the following
conditions.
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• F1, F2 ⊆ GB are vertex-disjoint (α, k)-robust subgraphs on at least (1/2−ε)n vertices;

• F3, F4 ⊆ GR are vertex-disjoint (α, k)-strongly-robust subgraphs on at least (1/2−ε)n
vertices;

• V (F1) ∪ V (F2) = V (F3) ∪ V (F4);

• |V (Fi) ∩ V (Fj)| > (1/4− ε)n for i ∈ [2], j ∈ [3, 4].

Then V (G) may be partitioned into a blue cycle and a red one.

We follow similar ideas to previous sections. If there exist four vertex-disjoint paths,
two of which are blue and connect F1 with F2 and two are red and connect F3 with F4,
then we may continue as in previous sections, by essentially having two robust subgraphs,
one red and one blue, which both span almost all the vertices. The main effort in this
case goes into showing that if such paths do not exist, the desired partition may be found
by Lemma 30.

Proof of Lemma 45. We extend the components Fi as follows. For every vertex v not in
any of the components, if there exist i ∈ {1, 2} and j ∈ {3, 4} such that v sends at least
αn blue edges to Fi and at least αn red edges to Fj, we add v to Fi and Fj. Note that
if no such i, j exist, then v either blue degree at least (3/4 − 3ε)n or red degree at least
(3/4− 3ε)n.

Note that the obtained components satisfy the conditions above (though with relaxed
parameters α, k in the definition of robustness and with say 2ε instead of ε). We abuse
notation by denoting the modified components by F1, F2, F3, F4. So in addition to the
above conditions, we have that every vertex not in V (F1) ∪ V (F2) has either blue degree
or red degree at least (3/4− 3ε)n.

We claim that one of the following assertions holds.

1. There exist vertex-disjoint paths P1, P2, P3, P4 such that P1, P2 are blue paths from
F1 to F2 and P3, P4 are red paths from F3 to F4;

2. There exist two vertices u, v such that F1, F2 belong to different connected compo-
nents of GB \ {u, v}. Furthermore, v sends at most εn blue edges to either F1 or
F2;

3. There exist two vertices u, v such that F3, F4 belong to different connected compo-
nents of GR \ {u, v}. Furthermore, v sends at most εn red edges to either F3 or
F4.

Condition 1 implies that we may connect F1 and F2 using P1, P2 to obtain a large
robust blue subgraph, and similarly we may connect F3 and F4 using the paths P3, P4 to
obtain a large strongly robust red subgraph. We may continue as in Section 9 to obtain
the desired partition of V (G) into a red cycle and a blue one. If one of Conditions 2 and
3 holds, we may find the desired partition into a red cycle and a blue one by Lemma 30.
It remains to prove that one of the above three conditions holds.
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We call a vertex blue if it sends at least four blue edges to both F1 and F2. Similarly,
a vertex is red if it sends at least four red edges to both F3 and F4. We show that either
one of the above three conditions holds, or there are at least four vertices that are either
blue or red. This would complete the proof of Lemma 45, due to the following claim.

Claim 46. If there are four vertices that are either red or blue then one of Conditions 1
to 3 holds.

Proof. It is easy to see that if there are two red vertices and two different vertices that are
blue, then Condition 1 holds (take paths of length 2 through the red and blue vertices).
Thus we may assume that there is at most one red vertex.

Suppose that Condition 3 does not hold. We claim that this implies that there are
three vertex-disjoint red paths P1, P2, P3 between F3 and F4. Indeed, if no such paths exist,
then there are two vertices u, v such that F3, F4 belong to distinct connected components
of GR \{u, v}. Without loss of generality, v is not red, so it sends at most three red edges
to one of F3, F4, implying that Conditions 3 holds, a contradiction.

From now on we assume that such paths do exist. We also assume that the interiors
of P1, P2, F3 do not intersect F3 or F4. If there are four blue vertices u1, u2, u3, u4, without
loss of generality, u1, u2 /∈ V (P1) ∪ V (P2) and we may find two vertex-disjoint blue paths
between F1 and F2 which are disjoint of P1, P2 using the blue vertices u1, u2 (take them
to be of length 2 and centred at u1 and u2). If there are three blue vertices u1, u2, u3 and
a different red vertex v, without loss of generality, the path P1 has length 2, is centred at
v and avoids u1, u2, u3. We may further assume that P2 does not contain u1, u2. It follows
that we there are two vertex-disjoint blue paths, disjoint of P1, P2, between F1 and F2. It
follows that Condition 1 holds, as required.

It remains to show that, if Conditions 1 to 3 do not hold, there are at least four vertices
which are either red or blue. Clearly, each vertex v ∈ V (G) \ (F1 ∪ F2) is either red or
blue. Let l be the number of these vertices. Denote

A1 = V (F1) ∩ V (F3)

A2 = V (F1) ∩ V (F4)

A3 = V (F2) ∩ V (F3)

A4 = V (F2) ∩ V (F4).

Consider the following claim.

Claim 47. Suppose that |Ai| > n/4 − 1 + k where 1 6 k 6 4. Then either one of the
Conditions 1 to 3 from above holds or Ai contains at least k vertices which are either blue
or red.

Suppose that the claim holds and the above conditions do not. If there are at most
three red or blue vertices, then the total number of vertices is at most 4(n/4− 1) + (3−
l) + l 6 n− 1, a contradiction. The proof of Lemma 45 thus follows from the proof of the
aforementioned claim.
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Proof of Claim 47. Without loss of generality, i = 1. Note that if G[A1, A4] has a match-
ing of size 7, Condition 1 holds. Indeed, let M be such a matching. If at least two edges
in M are red and at least two are blue, Condition 1 holds, since each edge connects F1

and F2 as well as F3 and F4. Thus we may assume that at most one edge is red.
Recall that there are vertex-disjoint red paths P1, P2 between F3 and F4 (otherwise

Condition 3 holds). We assume that their interiors do not intersect V (F3 ∪F4) = V (F1 ∪
F2), so each of P1 and P2 intersects at most two edges of M . It follows that there exist
blue edges e1, e2 ∈M that are disjoint of P1 and P2, so Condition 1 holds.

It remains to consider the case where G[A1, A4] has no matching of size 7. We deduce
by König’s theorem that there is a set U ⊆ A1∪A4 of at most six vertices which intersects
each of the edges of G[A1, A4]. Note that by the minimum degree conditions, every vertex
in A4 has at least k neighbours in A1. Hence, |U ∩ A1| > k. Denote A′4 = A4 \ U . Then

e(G[A1, A
′
4]) > k(|A4| − 6).

We conclude that at least k vertices in U∩A1 have at least n/25 neighbours in A4. Indeed,
otherwise we have

e(G[A1, A
′
4]) 6 (k − 1)|A4|+ 6n/25 < k(|A4| − 6),

a contradiction. Each of the vertices in A1 with at least n/25 neighbours in A4 is either
red or blue.

13 Almost spanning blue

In this section, we resolve Condition 1 from Lemma 31, which is the last remaining case.

Lemma 48. Let 1
n
� ε, α, 1

k
� 1 and let G be a graph of order n with δ(G) > 3n/4 and

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that F is a blue (α, k)-strongly-robust
subgraph on at least (1 − ε)n vertices. Then V (G) may be partitioned into a blue cycle
and a red cycle.

To prove Lemma 48, we extend F to include all vertices that send a fairly large number
of blue edges into F , and denote the set of remaining vertices by Z. We consider two
cases, according to the size of Z.

If Z is large, the reduced graph can easily be seen to have a perfect matching consisting
of a connected blue matching and a connected red matching. We have to be slightly more
careful than usual when obtaining cycles from the connected matching so as to cover Z.
The leftover vertices of F can be absorbed as usual.

If Z is small, we apply the regularity lemma to F and prove a structural result on
the reduced graph, focusing on ways to obtain perfect matchings. In each of the cases for
the structure of the reduced graph, we can partition almost all of the vertices into a red
cycle and a blue one. The vertices of Z may be covered using their large degree and the
leftover vertices of F may be absorbed as usual.
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Proof of Lemma 48. Let F1 be the graph obtained by adding to F the vertices in G with
at least αn blue neighbours in F , so F1 is (α3/2, k+ 2)-strongly-robust by Lemma 5. Let
Z = V (G) \ V (F1), then

degR(z) > (3/4− ε− α)n > (3/4− 2ε)n for every z ∈ Z.
It follows that every two vertices in Z have at least (1/2−4ε)n red neighbours in common.
We consider two cases according to the size of Z. Pick β > 0 by Lemma 3 so that F1

remains (α3/4, k + 2)-strongly-robust after removing at most βn vertices.

Case 1: |Z| > βn

Let Q be a ρ2n-absorbing path in F1 of length at most ρn. Pick a suitably small η, and let
Γ be the reduced graph obtained by applying the regularity lemma to G with parameters
η and d = 6η. As usual, δ(Γ) > (3/4− 2ε)m, where m = |Γ|.

Let Φ1 be the blue subgraph spanned by the clusters in V (F1). Then |Φ1| > (1−2ε)m
and Φ1 is connected by Lemma 17. The vertices in clusters contained in Z have red degree
at least (3/4 − 4ε)m in Γ (note that since |Z| > βn > 2ηn, there are such clusters). In
particular, Γ has a red component Φ2 of order at least (3/4 − 4ε)m. It is easy to check
that Φ1 ∪ Φ2 has a perfect matching M , e.g. by Theorem 19.

Let U1 be the set of vertices in clusters of the blue edges in M and let U2 be the set
of vertices in clusters of the red edges. Note that U1 does not intersect Z (since Φ1 does
not contain clusters in Z). We obtain the required partition into a blue cycle and a red
cycle as follows.

Suppose first that |U2| 6 3n/8. Fix two vertices z1, z2 ∈ Z. Let W be a set consisting
of 3η of the vertices of each cluster in V (F1). Clearly, z1 and z2 each have many neighbours
in the set of vertices belonging to the clusters of Φ2. Thus, by Lemma 18, there is a red
path P1 in G′ between z1 and z2 spanning at least (1− 6η) of the vertices of U2 \W and
using at most m2 other vertices.

Denote by Z ′ the set of vertices in Z which are not covered by this path. Note that
|Z ′| 6 9ηn. Furthermore, every two vertices of Z ′ ∪ {z1, z2} have at least n/16 common
red neighbours in V (G′)\U2. It is thus possible to find a path in G′\(V (P1)∪U1) between
z1 and z2, containing Z and using at most 200η of the vertices of each cluster. Indeed,
such a path can be constructed greedily. Suppose Z ′ = {z3, . . . , zt}. For i = 2, . . . , t we
find a common red neighbour of zi, zi+1 (where subscripts are taken modulo t) which was
not used before and which does not belong to a cluster in U2 with at least 200η of its
vertices already used. In each step, there are at least n/16 possible choices, out of which
at most 9ηn were already used, and at most 9ηn/200η < n/20 belong to clusters for which
at least 200η of its vertices are used. Thus it is possible to choose a suitable vertex.

We now construct a blue cycle which is disjoint of C, contains Q and misses at most
210η of the vertices vertices of each cluster in U1, using Lemma 18 (we use the vertices of
W to connect cluster pairs). The missing vertices can be absorbed by Q, completing the
desired cycle partition.

Suppose now that |U2| > 3n/8. By Lemma 18, there is a blue cycle C1 and a red
cycle C2, which are disjoint, and Ci covers all but at most 9η of the vertices of Ui. In
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particular, the red cycle has length at least 5n/16. Let Z ′ be the set of vertices of Z which
are not covered by either of the cycles. We show how to obtain a red cycle C ′2 such that
Z ⊆ V (C ′2) ⊆ V (C2) ∪ Z and |V (C ′2) \ V (C2)| 6 60ηn. To that end, we claim that the
vertices of Z ′ can be inserted one by one, such that in each step at most 20 of the original
vertices of C are removed, none of them from Z. If z cannot be inserted as explained,
the number of red neighbours of z in the cycle is at most 40|Z|+ n/20. But every vertex
z ∈ Z ′ has at least (1/16− 3ε)n red neighbours in the cycle obtained from C2, as long as
it has length at least (5/16− 60η)n, implying that z may be inserted. There are at most
20|Z ′| + 9ηn 6 ρ2n vertices missing from V (C1) ∪ V (C ′2), all of them from V (F1). They
can be absorbed by Q.

Case 2: |Z| 6 βn

Let P be a path that alternates between Z and F1 and covers all but three vertices in
Z (if |Z| < 3, we take P to be empty). Denote by Z ′ the set of vertices in Z that are
uncovered by P . Let F2 = F1 \ V (P ), so F2 is (α/4, k + 2)-strongly-robust by the choice
of β. Apply Lemma 7 to obtain a ρ2n-absorbing path Q in F2 of length at most ρn, and
denote F3 = F2 \ V (Q). F3 is (α3/8, k + 2)-strongly-robust, by Lemma 3. Furthermore,
|F3| > (1− 2ε)n and the vertices of Z ′ have at least (3/4− 4ε)n red neighbours in F3.

Apply the regularity lemma to the graph G[V (F3)] with a suitably small parameter η.
Let Γ be the corresponding (η, 4η)-reduced graph. We have δ(Γ) > (3/4 − 2ε)m and by
Lemma 17, ΓB is connected. We shall use the following proposition.

Proposition 49. One of the following assertions holds.

1. ΓB has a perfect matching;

2. There is a red component Φ of order at least (1/2− 30ε)m such that ΓB ∪ Φ has a
perfect matching;

3. There are disjoint subsets X1, X2 ⊆ V (G) of size at least (1/4− 80ε)m such that

(a) X1 ∪X2 is independent in ΓB;

(b) ΓR[Xi] is connected and ΓB ∪ ΓR[Xi] has a perfect matching for i ∈ [2];

4. There exist disjoint subsets X1, X2, Y1, Y2 of size at least (1/4− 200ε)m such that

(a) ΓR[Xi ∪ Yi] is connected and non-bipartite for i ∈ [2];

(b) ΓB[X1 ∪X2] and ΓB[Y1 ∪ Y2] are connected.

Before proving Proposition 49, we show how to complete the proof of Lemma 48 using
the proposition.
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Perfect matching in ΓB

Suppose that ΓB has a perfect matching. Recall that ΓB is connected, so this matching
is connected. We complete Z ′ ∪ V (P ) to a red cycle C1 using at most four additional
vertices of F3 (recall that P is the red path defined at the beginning of the subsection).
By Lemma 18, there exists a blue cycle C2, disjoint of C1 which extends the absorbing
path Q and contains all but at most 6ηn 6 ρ2n vertices of F3. The remaining vertices can
be absorbed by Q to obtain a blue cycle C ′2. The cycles C1, C

′
2 form the required cycle

partition.

Perfect matching in union of ΓB with a half-sized red component

Suppose that Φ is a red component of size at least (1/2− 30ε)m and ΓB ∪Φ has a perfect
matching. First extend P to a path P ′ that contains Z ′ and has both ends in Z ′ (we can
do this using at most six additional vertices; if Z ′ is empty we take P ′ to be empty and
if Z ′ consists of a single vertex we let P ′ be that vertex). Note that every vertex of Z ′

sends many red edges to the set of vertices contained in the clusters defined by V (Φ).
By Lemma 18, there exist vertex-disjoint cycles C1, C2 such that C1 is blue and contains
the absorbing path Q and C2 is red and contains the path P ′. Furthermore, the cycles
C1, C2 cover all but at most ρ2n vertices belonging to F3, which may be absorbed by Q,
completing the desired partition into a red cycle and a blue one.

Perfect matching in union of ΓB with either of two quarter-sized red compo-
nents

Let X1, X2 ⊆ V (Γ) be disjoint sets of size at least (1/4 − 80ε)m satisfying the following
conditions.

• X1 ∪X2 is independent in ΓB;

• ΓR[Xi] is connected and ΓB ∪ ΓR[Xi] has a connected matching for i ∈ [2].

Note that we may assume that ΓR[X1 ∪ X2] is not connected, since otherwise we may
proceed as in the previous case.

Let Ui be the set of vertices contained in the clusters in Xi. Note that |Ui| > (1/4−
81ε)n. We define a path P ′ as follows. If |Z ′| = 3, denote Z ′ = {z1, z2, z3}. Then without
loss of generality, z1, z2 send at least 2ηn red edges into U1. Extend P to a path P ′

containing Z ′ with ends z1, z2 (using at most three additional vertices). If |Z| = 1, denote
Z = {z} and take P ′ = (z), and suppose without loss of generality that z has at least
2ηn red neighbours in U1. If Z = ∅, take P ′ to be the empty path. As before, since
ΓB ∪ ΓR[X1] has a perfect matching, Lemma 18 implies that there exist disjoint cycles
C1, C2 such that C1 is blue and contains Q and C2 is red and contains P ′, and together
they cover all but at most ρ2n vertices of F3, which may be absorbed by C1.

It remains to consider the case where |Z ′| = 2. Denote Z ′ = {z1, z2}. If for some
i ∈ [2], both z1, z2 have at least 2ηn red neighbours in Ui, we may continue as before by
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taking P ′ to be a path of length 2 connecting z1, z2. Thus we assume that

degR(z1, U2), degR(z2, U1) 6 2ηn 6 εn.

Since degR(zi) > (3/4 − 4ε)n, it follows that |U1|, |U2| 6 (1/4 + 5ε)n. Let W be the set
of common red neighbours of z1 and z2 in V (G) \ (U1 ∪ U2). Then |W | > (1/2− 20ε)n.

Suppose that there is a vertex w1 ∈ W with at least 4ηn red edges into U1∪U2. Without
loss of generality, w1 has at least 2ηn red neighbours in U1. Take P ′ = (w1z2w2z1) for some
w2 ∈ W and continue as before (when |Z ′| 6= 2) to conclude that the desired partition
exists.

We now assume that every vertex in W has at most εn red neighbours in U1 ∪ U2.
Furthermore, by the definition of the reduced graph, every vertex in U1 ∪ U2 has at most
9ηn 6 εn red neighbours inW . Note that since e(Γ[X1, X2]) = 0, the graphGB[U1∪U2,W ]
is almost complete. It follows from Lemma 29 (with parameter 162ε) that the required
cycle partition exists.

Four half-sized monochromatic components

Suppose thatX1, X2, Y1, Y2 are disjoint sets of size at least (1/4−200ε)m with the following
properties.

• ΓR[Xi ∪ Yi] is connected and non-bipartite for i ∈ [2];

• ΓB[X1 ∪X2] and ΓB[Y1 ∪ Y2] are connected.

We conclude from Lemma 16 that there exist sets U1, U2,W1,W2 ⊆ V (G) of order at least
(1/2− θ)n, where θ = 202ε, such that

• U1, U2 are disjoint, W1,W2 are disjoint and U1 ∪ U2 = W1 ∪W2;

• |Ui ∩Wj| > (1/4− θ)n for i, j ∈ [2];

• GB[Ui] is (γ, l)-robust and GR[Wi] is (γ, l)-strongly-robust for i ∈ [2], where γ =
γ(ε, α, k) and l = l(ε, α, k).

By Lemma 45, V (G) may be partitioned into a red cycle and a blue one. This completes
the proof of Lemma 48, under the assumption that Proposition 49 holds. We prove it in
the following subsection.

Proof of Proposition 49

In this subsection, we prove Proposition 49. We shall consider four cases according to the
sizes of the red components in Γ. In each of these cases, we apply Lemmas 25 or 26 to
gain additional structural information about the graph Γ if ΓB has no perfect matching
(otherwise we are done).

Proof of Proposition 49. The following claim reduces the proof to the following three
cases.
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Claim 50. One of the following conditions holds.

1. ΓR has a component of order at least (1/2− 8ε)m;

2. There is a tripartition {X1, X2, X3} of V (Γ) such that |Xi| 6 (1/2−8ε)m and every
red component is contained in one of the sets Xi;

3. There is a partition {X1, X2, X3, X4} of V (Γ) such that |Xi| > (1/4 − 20ε)m and
every red component is contained in one of the Xi’s.

Proof. Let {X1, X2, X3} be a partition of V (Γ), such that every red component is in one
of the parts, |X1| > |X2| > |X3| and |X1| is minimised under these conditions (and |X2|
is minimised under these conditions).

We may assume that |X1| > (1/2 − 8ε)m (otherwise the second condition holds). It
follows that |X3| 6 (1/4 + 4ε)m. We conclude that X1 has no red component of order at
most (1/4− 12ε)m. Indeed, suppose that U is the vertex set of such a component. Then,
by considering {X1 \U,X2, X3∪U}, we reach a contradiction to the choice of X1, X2, X3.

We may also assume that X1 consists of at least two components (otherwise the first
condition holds). It follows that |X2|+ |X3| > (1/2−8ε)m; indeed, otherwise we obtain a
contradiction to the choice of Xi by considering the partition {X1 \U,U,X2 ∪X3}, where
U is the vertex set of some component in X1.

So X1 consists of two red components. Let U1 and U2 be their vertex sets, and
suppose that |U1| > |U2|. So |U1|, |U2| > (1/4 − 12ε)m and |U2| 6 (1/4 + 4ε)m. Hence
|X2|, |X3| > (1/4 − 12ε)m; indeed, otherwise consider {U1, X2, X3 ∪ U2}. The partition
{U1, U2, X2, X3} satisfies the third condition.

We prove Proposition 49 in each of the three cases in Claim 50. The proof for the first
case, where there is a large red component, is the longest and we leave it to the end of
the proof.

Tripartition

In Case 2 of Claim 50, there exists a tripartition {X1, X2, X3} of V (Γ) such that |Xi| 6
(1/2− 8ε)m and every red component is contained in one of the red sets Xi. We assume
that ΓB has no perfect matching. By Lemma 25, without loss of generality, there exist
subsets Y1 ⊆ X1, Y2 ⊆ X2 such that |Y1|, |Y2| > (1/4− 10ε)m and Y1 ∪ Y2 is independent
in ΓB.

It follows that
δ(ΓR[Yi]) > |Yi| − 12εn. (1)

In particular, ΓR[Yi] is connected. We show that ΓB ∪ ΓR[Yi] has a perfect matching for
i ∈ [2]. Suppose to the contrary that Φ = ΓB∪ΓR[Y1] has no perfect matching. By Lemma
25, it follows that there exist subsets Zi ⊆ Xi and Zj ⊆ Xj of size at least (1/4 − 10ε)n
such that Z1 ∪ Z2 is independent in Φ, for some 1 6 i 6= j 6 3.

Suppose first that i = 2. Then the intersection of Y2 and Z2 is non-empty. Let
u ∈ Y2 ∪ Z2. Note that u has at most (1/4 + 2ε)m non-neighbours (in Γ) in X1 ∪X3, at
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least (1/4− 10ε)m of which belong to Y1, so |Z1 ∩ Y1| > (1/4− 22ε)m, a contradiction to
(1) and the assumption that Z1 ∪ Z2 is independent in Φ.

It remains to consider the case i = 1, j = 3. As before, we may pick u ∈ Y1 ∩Z1. But
u has at least |Z3|+ |Y2| > (1/2− 20ε)m non-neighbours in Γ, a contradiction.

Almost equipartition into four parts

In Case 3 of Claim 50, {X1, X2, X3, X4} is a partition of V (G) such that every red com-
ponent is contained in one of the parts Xi and |Xi| > (1/4− 12ε)m.

Apply Lemma 26 to the graph ΓB, with the bipartition {X1 ∪ X2, X3 ∪ X4} and
parameter 24ε. Assuming that ΓB has no perfect matching, it is easy to verify that the
first three conditions cannot hold. It follows that ΓB has an independent set Y of size at
least (1/2 − 72ε)m. This implies that δ(ΓR[Y ]) > (1/4 − 74ε)m, implying that ΓR[Y ] is
the union of two red connected subgraphs of order at least (1/4 − 74ε)m. Without loss
of generality, Y ⊆ X1 ∪X2. Denote Yi = Y ∩Xi.

If |X1|+ |X2| > |X3|+ |X4|, it is not hard to deduce from Lemma 26 that ΓB ∪ΓR[Yi]
has a perfect matching for i ∈ [2]. Otherwise, ΓB[X1 ∪X2, X3 ∪X4] is almost complete,
and, again, by Lemma 26, if ΓB has no perfect matching, X3∪X4 contains an independent
set Z ′ of size at least (1/2 − 72ε)m. Denoting Zi = Z ∩ Xi for i ∈ [3, 4], we conclude
as before that |Zi| > (1/4 − 74ε)m, ΓR[Zi] is connected and ΓB ∪ ΓR[Zi] has a perfect
matching for i ∈ [3, 4]. The third assertion of Proposition 49 holds.

Large red component

We now consider the last remaining case where Condition 1 of Claim 50 holds. Let Φ1

be the largest red component, so it has order at least (1/2− 8ε)m. Denote X1 = V (Φ1),
X2 = V (Γ) \X1 and Γ1 = ΓB ∪ Φ1. By Lemma 26, either Γ1 has a perfect matching, in
which case we are done, or one of the following holds (note that if |Φ1| > (1/2+4ε)m then
Γ1 has a perfect matching by Theorem 19, so we may assume that |X2| > (1/2 − 4ε)m
and Lemma 26 is applicable with parameter 8ε).

1. There is a subset A2 ⊆ X2 of size at least (1/4 − 32ε)m that is independent in Γ1

and its neighbourhood in Γ1 has size at most (1/4 + 24ε)m.

2. |X2| > |X1| and X2 contains an independent set (with respect to Γ1) A of size at
least (1/2− 8ε)m.

If the first condition holds, then, in particular, X2 contains a red component of order at
least (1/2 − 26ε)m (as any vertex in A2 has red degree at least (1/2 − 26ε)m). If the
second condition holds, then δ(GR[A]) > (1/4−10ε)m. It follows that either A consists of
two red connected subgraphs of order at least (1/4−10ε)m or GR[A] is connected. In the
former case, we have that GB[X1, X2] is almost complete and GR[Yi] is almost complete
for i ∈ [2], where Y1 and Y2 are the vertex sets of the two red components in A. It is easy
to show that GB ∪GR[Yi] has a perfect matching for i ∈ [2], hence the third condition of
Proposition 49 holds.
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It remains to consider the case where X2 contains a red component Φ2 of order at
least (1/2− 26ε)m. Denote Γ2 = GB ∪Φ2. Note that |Φ1| > |Φ2|, by our assumption that
Φ1 is the largest red component. Now, by applying Lemma 26 to Γ1 with the bipartition
{V (Φ2), V (Γ) \ V (Φ2)} and parameter 30ε, we conclude that the following holds.

There is an independent set B2 ⊆ V (Φ2) of size at least (1/4− 120ε)m such that

|NΓ1(B2)| 6 (1/4 + 90ε)m.

Similarly, if Γ2 has no perfect matching, one of the two following conditions holds.

1. V (Φ1) contains an independent set (in Γ2) Y1 of size at least (1/2− 30ε)m.

2. There is an independent set B1 ⊆ V (Φ1) of size at least (1/4 − 120ε)m such that
|NΓ2(B1)| 6 (1/4 + 90ε)m.

In the latter case, denote Z1 = B1 ∪ NR(B2). Then |Z1| > (1/2 − 92ε)m and ΓR[Z1] is
connected and non-bipartite. Now let W1 be Y1 if the first condition holds, and Z1 if the
second condition does. Denote

B1 = W1 ∩NΓ1(B2)

C1 = W1 \NΓ1(B2)

W2 = NΓR
(B2)

C2 = W2 ∩NΓ2(B1).

It is easy to verify that |Bi|, |Ci| > (1/4 − 182ε)m, and that ΓR[Bi, Ci] is connected and
non-bipartite for i ∈ [2]. Furthermore, ΓB[B1, B2] and ΓB[C1, C2] are connected. Hence
Condition 3 of Proposition 49 holds, completing the proof in this case.

The proof of Lemma 48 concludes our proof of Theorem 1. We remind the reader that
Lemmas 29 and 30 were used several times in the proof, and we have yet to prove them.
The next two sections, Sections 14 and 15 are devoted to the proofs of Lemmas 29 and
30 respectively.

14 Proof of Lemma 29

In this section, we prove Lemma 29. Before turning to the proof, we remind the reader
of the statement.

Lemma 51. Let 1
n
� ε � 1 and let G be a graph on n vertices with δ(G) > 3n/4 and

a 2-colouring E(G) = E(GB) ∪ E(GR). Suppose that S, T ⊆ V (G) satisfy the following
conditions.

• S, T are disjoint and |S|, |T | > (1/2− ε)n;

• δ(GB[S, T ]) > (1/4− ε)n;
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• For every S ′ ⊆ S, T ′ ⊆ T with |S ′|, |T ′| > (1/4 − 100ε)n, we have e(GB[S ′, T ′]) >
25εn2.

Then V (G) may be partitioned into a red cycle and a blue one.

The main tool we use in the proof is Lemma 27, which is a stability version of a special
case of Corollary 20. Our aim would be to find a short red cycle C and a short blue path
P , whose removal from G leaves a balanced bipartite graph. We then apply Lemma 27
to deduce that P may be extended to a blue cycle with vertex set V (G) \ V (C).

Proof of Lemma 29. We start by modifying the sets S, T as follows.

S1 = S ∪ {v ∈ V (G) \ (S ∪ T ) : degB(v, T ) > 24εn}.
T1 = T ∪ {v ∈ V (G) \ (S1 ∪ T ) : degB(v, S) > 24εn}.
X = V (G) \ (S1 ∪ T1).

Remark 52. The vertices in X have red degree at least (3/4− 50ε)n in G.

We will find a red cycle and a blue path with one end in S1 and one in T1, which are
disjoint, cover X and their removal from G leaves a balanced bipartite graph with a large
number of vertices. We will then use the following claim to obtain the required partition
into a blue cycle and a red one.

Claim 53. Let S ′ ⊆ S1, T
′ ⊆ T1 be such that |S ′| = |T ′| > (1/2− 12ε)n. Then GB[S ′, T ′]

is Hamiltonian. Furthermore, for every s ∈ S ′ and t ∈ T ′, the graph GB[S ′, T ′] contains
a Hamilton path with ends s and t.

Proof. Denote G′ = GB[S ′, T ′] and Y = (S ′ ∪ T ′) \ (S ∪ T ). We claim that there exists
a path P of length at most 12εn whose vertex set contains Y . Indeed, we may construct
P greedily, by adding a vertex of Y one at a time. Suppose that we want to add the
vertex y1 ∈ Y to a path P in G′ of length at most 12εn, one of whose ends is y2 ∈ Y . We
may pick z1, z2 ∈ ((S ∪ T ) ∩ V (G′)) \ V (P ) such that zi is a neighbour of yi in G′. We
have NG′(zi) > (1/4− 11ε)n. In particular, by the third assumption of the lemma, there
exists a path of length at most 2 between NG′(z1) and NG′(z2). Thus we may add y1 to P
using at most five additional vertices. Using this process, we obtain the desired path P ,
containing the vertices of Y . Denote by s, t the ends of P and assume that s ∈ S, t ∈ T
(we may need to extend P slightly).

Let G′′ be the graph obtained from G′ by removing the interior vertices of P and
denote n′′ = |G′′| and η = 25ε. Then δ(G′′) > (1/4 − η)n′′. Let S ′ ⊆ S, T ′ ⊆ T be
subsets of size at least (1/4 − 3η)n′′ > (1/4 − 75ε)(1 − 20ε)n > (1/4 − 80ε)n. Then by
the assumptions of Lemma 29, e(G′[S ′, T ′]) > ηn2. By Lemma 27, it follows that G′ is
Hamiltonian. The same argument may be used to show that G′ contains a Hamilton path
with ends s, t for every s ∈ S ′, t ∈ T ′.

We consider several cases, depending on the size of X and the behaviour of the vertices
in X.
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Case 1: X = ∅

Without loss of generality, |S1| > |T1|. Denote k = |S1|−|T1|; note that k 6 2εn. Suppose
first that k is even. We use the following claim.

Claim 54. The graph G[S1] either contains a blue path of length k, or it contains a red
cycle of length k.

Proof. Suppose that GB[S1] has no path of length k. It follows from Erdős and Gallai’s
theorem, Theorem 21, that e(GB[S1]) 6 kn/2 6 εn2. Setting η =

√
2ε, there are at most

ηn vertices in S1 of blue degree at least ηn in S1. Denote by U the set of vertices in S1

with blue degree at most ηn. Then δ(GR[U ]) > (1/4− 2η)n.
We show that GR[U ] contains a cycle of length k. We may assume that k > 4 because

this assertion is trivial for k ∈ {0, 2}. Pick u ∈ U and denote A = NR(u) ∩ U (so
|A| > (1/4 − 2η)n). If GR[A] has a path of length k − 2, together with the vertex u it
forms a red cycle in S of length k.

Thus, we assume that GR[A] contains no path of length k−2. It follows from Theorem
21 that e(GR[A]) 6 |A| · εn. We deduce that at most |A|/2 vertices in A have red degree
at least 4εn in A. In particular, we may pick a set B of k/2 vertices in A with red degree
at most 4εn in A. For every v ∈ B we have degR(v, U \ A) > (1/4− 4ε− η)n. It follows
that every two vertices in B have at least say n/8 common red neighbours in U \ A.
In particular, if B = {b1, . . . , bk/2}, we may pick distinct c1, . . . , ck/2 ∈ U \ A such that
(b1, c1, . . . , bk/2, ck/2) is a red cycle in S of length k.

By Claim 54, either S1 contains a blue path P of length k or it contains a red cycle C
of length k. In the first case, it is easy to verify that P may be extended to a Hamilton
cycle of GB by Claim 53. Indeed, consider the bipartite graph GB[S1 \ U, T1] where U
is the set of interior vertices of P1. This graph is almost balanced (namely the first set
has one more vertex than the other), so it contains a Hamilton path whose ends are the
ends of P . In the second case, we may conclude directly from Claim 53 that the graph
GB \ V (C) is Hamiltonian.

We now suppose that k is odd. If S1 contains a blue path P of length k, we continue as
before. Otherwise, if S1 contains a blue edge uv, we may find a red cycle C in S1 \ {u, v}
of length k − 1, by the argument of Claim 53. It follows that the graph GB \ V (C) is
Hamiltonian. Finally, if S1 has no blue edges, we have δ(GR[S1]) > |S1| − n/4 > |S1|/2,
since |S1| > (n + 1)/2. It follows from Bondy’s theorem (22) that GR[S1] is pancyclic,
in particular it contains a cycle C of length k. We proceed as before to conclude that
GB \ V (C) is Hamiltonian.

Case 2: |X| = 1

Denote X = {x}. Again, we assume that |S1| > |T1| and denote k = |S1| − |T1|. Suppose
first that k is odd. We shall use the following claim, whose proof is similar to the proof
of Claim 54.
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Claim 55. Either G[S1] has a blue path P of length k, or G[S1 ∪ {x}] has a red cycle C
of length k + 1 containing x.

Proof. If G[S1] contains no blue path of length k, we consider the set A = NR(x, S1).
Recall that |A| > (1/4 − 25ε)n. As in Claim 54, we conclude that either G[A] contains
a red path of length k − 1, or G[A, S1 \ A] contains a red path of length k − 1 with both
ends in A.

If G[S1] contains a path of length k, the graph GB \ {x} is Hamiltonian and we may
take (x) to be the red cycle. Otherwise, let C be a red cycle of length k + 1 in S1 ∪ {x}
containing x and we again find that GB \ V (C) is Hamiltonian by Claim 53.

We now consider the case where k is even. Note that if k = 0, we can take (x) to
be the red cycle and GB[S1, T1] is Hamiltonian. Thus, we assume that k > 2. Denote
A = NR(x, S1).

Claim 56. One of the following conditions holds.

1. G[S1] has a blue path of length k.

2. G[S1 ∪ {x}] contains a red cycle C of length k going through x and a blue edge e
which is disjoint of C.

3. G[S1 ∪ {x}] has a red cycle C of length k + 1 going through x.

4. G[S1] has no blue edges and G[A] has no red edges.

Proof. It is easy to conclude, as in Claims 54 and 55, that if G[S1] has at least one blue
edge, one of the first two conditions holds. Thus we assume that G[S1] has no blue edges.
Assuming the fourth condition does not hold, we may further assume that G[A] has a red
edge uv. We prove that the third condition holds under these assumptions. As before, we
may assume that e(GR[A]) 6 εn2, because otherwise G[A] contains a red path of length
k − 1 and the third condition holds.

Note that we have δ(GR[S1]) > |S1| − n/4 > n/4. Thus we may construct a red path
in G[S1] on k− 2 vertices P = (v = v1, . . . , vk−2). If there exists a vertex vk−1 ∈ S1 which
is a common red neighbour of vk−2 and x, we obtain the red cycle C = (v1, . . . , vk−1, x, u).
Otherwise, the sets A′ = A \ (V (P ) ∪ {u}) and B = NR(vk−2, S) \ (V (P ) ∪ {u}) are
disjoint. Note that |A′|, |B| > (1/4− 60ε)n. Since e(GR[A′]) 6 εn2 and δ(GR[S1]) > n/4,
we conclude that GR[A′, B] contains an edge vk−1vk (where vk−1 ∈ B, vk ∈ A′). It follows
that (v1, . . . vk, x) is a red cycle in S1 of length k.

In each of the first three conditions of Claim 56, we may proceed as before to conclude
that G has the desired partition into a red cycle and a blue one. Thus we may assume that
S1 spans no blue edges and that A spans no red edges. In particular, degR(x, S1) 6 n/4,
hence x has at least two blue neighbours in S1, since deg(x, S1) > |S1| − (n/4 − 1) >
n/4 + 1/2 + k/2 > n/4 + 3/2. We consider the cases k = 2, k = 4 and k > 6 separately.
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Suppose first that k = 2. Let u, v ∈ S1 be two blue neighbours of x in S1. Let C1 be a
(red) cycle consisting of a single vertex in S1 \ {u, v}. We may find a blue cycle spanning
V (G) \ V (C1) by Claim 53.

Suppose now that k = 4. We have |S1| = n/2 + 3/2. Thus x has at least three blue
neighbours u, v, w ∈ S1. Pick an edge ab in S1 such that a and b are distinct from u, v, w.
Since degR(a, S1) > |S1|−n/4 > n/4 + 3/2, we conclude that a and b have a common red
neighbour c ∈ S1. Let C1 be the red triangles (abc). Without loss of generality c 6= u, v.
We proceed as before, to show that the graph GB \ {a, b, c} is Hamiltonian.

It remains to consider the case k > 6. Fix u, v to be blue neighbours of x in S1 and
denote S2 = S1 \ {u, v}. Note |S2| > n/2 + 1/2 and δ(GR[S2]) > |S2| − n/4 > |S2|/2. It
follows from Theorem 22, that GR[S2] is pancyclic. In particular, it contains a red cycle
of length k − 1. We proceed as before.

From now on, we may assume that |X| > 2. Set η = 3
√
ε.

Case 3: there exist x1, x2 ∈ X with degR(x1, S), degR(x2, T ) > (1/4 + 10η)n

Denote X = {x1, . . . , xr}. Recall that degR(xi) > (3/4−50ε)n. Thus we may pick distinct
yi ∈ V (G) \ X such that yi is a common red neighbour of xi and xi+1 for i ∈ [2, r − 1].
Denote Y = {y2, . . . , yr−1}. Let S2 = S1 \ Y and T2 = T1 \ Y .

Claim 57. The graph G[S2] either contains a blue path of length 5εn or for every 2 6
l 6 5εn it contains a red path of length l − 1 whose one end is a red neighbour of x1 and
the other is a red neighbour of xr.

Similarly, the graph G[T1] either contains a blue path of length 5εn or for every 2 6
l 6 5εn it contains a path of length l − 1 a red neighbour of x1 as one end and a red
neighbour of x2 as the other end.

Proof. We prove the first part of Claim 57; the second part of follows similarly. Suppose
that G[S2] has no blue path of length 5εn. It follows by Theorem 21 that e(G[S2]) 6
3εn2. Denote by U the set of vertices in S ′ with blue degree at most ηn (recall that
η = 3

√
ε). Then |S2 \ U | 6 ηn and δ(GR[U ]) > (1/4 − 3η)n. Pick u ∈ NR(xr, U).

Greedily construct a red path P = (u = u1, . . . , ul−1) in U . Denote A = NR(x1, U \V (P ))
and B = NR(ul−1, U \ V (P )). As |Y | + |P | 6 ηn, we have |A| > (1/4 + 6η)n (by the
assumption on x1) and |B| > (1/4−4η)n. Thus |A∩B| > |A|+ |B|− |U | > ηn. It follows
that we may pick ul ∈ A ∩ B. The path (xr, u1, . . . , ul, x1) satisfies the requirements of
Claim 57.

Without loss of generality, we assume that |S2| > |T2|. Denote k = |S2| − |T2|, so
k 6 4εn. It is easy to conclude from Claim 57 that we may find vertex-disjoint paths
P1 ⊆ GB[S2] and Q1 ⊆ GR[S2] such that the following holds.

• Either P1 has length k and Q1 is a singleton, or P1 is the empty path and Q1 has
length k.

• One end of Q1 is a red neighbour of x1 and the other end is a red neighbour of xr
(if Q1 is a singleton, then it is a common red neighbour of x1, xr).
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Indeed, if G[S2] contains a blue path of length 5εn, we may find such P1, Q1 where P1

has length k − 1 and Q1 is any common red neighbour of x1, xr in S2 (note that such a
common neighbour exists). Otherwise, G[S2] contains a red path of length k − 1 whose
ends are a red neighbour of x1 and a red neighbour of x2.

Similarly, we may pick P2, Q2 to be a blue and a red path in G[T2] as follows.

• Either P2 is the empty path and Q2 has length 1 or P2 has length 1 and Q2 is a
singleton.

• Q2 has one end which is a red neighbour of x1 and the other is a red neighbour of
x2 (if Q2 is a singleton then it is a common red neighbour of x1 and x2).

We take C to be the red cycle (Q1x1Q2x2y2x3 . . . xl). The paths P1, P2 may be extended
to a Hamilton cycle of GB \ V (C) by Claim 53.

Without loss of generality, we may now assume the following.

degR(x, T ) 6 (1/4 + 10η)n for every x ∈ X. (2)

It follows that degR(x, S) > (1/2− 11η)n for every x ∈ X.

Case 4: some x1, x2 ∈ X have at least 3ηn common red neighbours in T

We proceed similarly to the previous case. For 2 6 i 6 r− 1, pick yi to be a common red
neighbour of xi and xi+1 such that the yi’s are distinct and do not belong to X.

Let S2 = S1 \ Y and T2 = T1 \ Y . Note that degR(xi, S1) > (1/2− 11η)n for i ∈ [r] by
(2). Consider the setD of common red neighbours of x1, xr in S ′. Then |D| > (1/2−23η)n.
Clearly, D has either a blue path or a red one of length 5εn.

Claim 58. The graph G[T2] either has a blue path of length 5εn or it contains a red path of
length l with ends which are neighbours of x1, x2 respectively, for every even 2 6 l 6 5εn.

Proof. Suppose that G[T2] has no blue path of length 5εn. Denote by U the set of vertices
of T2 with at most ηn blue neighbours. Then |T2 \ U | 6 ηn and δ(GR[U ]) > (1/4− 3η)n.
Denote A = NR(x1, U) and B = NR(x2, U). Note that |A|, |B| > (1/4 − 2η)n and
U ∩ A ∩B 6= ∅, by the assumptions on x1 and x2; let u1 ∈ U ∩ A ∩B.

If |A ∪ B| > (1/4 + 10η)n, we may find a red path of length l as follows. Greedily
pick a red path P = (u1, . . . , ul) in U . As in Claim 57, there exists ul+1 ∈ (A ∪B)\V (P )
which is a red neighbour of ul. The path (u1, . . . , ul+1) satisfies the requirements.

If |A∪B| 6 (1/4 +10η)n, it follows that |A∩B| > |A|+ |B|− |A∪B| > (1/4−14η)n.
If A ∩ B contains a red path of length l, we are done. Otherwise, we may continue as in
Claim 54 to conclude that the graph GR[A ∩ B,U \ (A ∩ B)] has a path of length l with
ends in A ∩B.

Denote k = |S2| − |T2|. Pick 2 6 l1, l2 6 5εn such that l2 is even and l1 − l2 = k.
Similarly to the previous case, we may pick vertex-disjoint paths P1 ∈ GB[S2], Q1 ∈
GR[S2], P2 ∈ GB[T2] and Q2 ∈ GR[T2] with the following properties.
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• One end of Q1 is a red neighbour of x1 and the other end is a red neighbour of
xr. Similarly, one of the ends of Q2 is a red neighbour of x2 and the other is a red
neighbour of x1.

• Either Pi = ∅ and Qi has length li or Pi has length li and Qi is a singleton, for
i ∈ [2].

As before, we take C to be the red cycle (Q1x1Q2x2y2x3 . . . xr). The paths P1, P2 may
be extended to a Hamilton cycle in GB \ V (C).

Note that if |X| > 3, one of Cases 3 and 4 holds (perhaps with the roles of S and T
reversed). Thus we may assume that |X| = 2, and denote X = {x1, x2}.

Case 5: degR(xi, T ) 6 (1/4 + 10η)n and |NR(x1, T ) ∩NR(x2, T )| 6 3ηn

Denote

A = NR(x1, T1), B = NR(x2, T1) and D = NR(x1, S1) ∩NR(x2, S1).

Note that |D| > (1/2− 23η)n.
If |S1| > |T1| + 2, denote k = |S1| − |T1|, so 2 6 k 6 2εn. As usual, G[D] either

contains a blue path P or a red path Q of length k − 2. In the former case, pick C to be
a 4-cycle consisting of x, y and two vertices in D \ V (P ). In the latter case, extend Q to
a cycle C through x, y using an additional vertex of D. For convenience denote P = ∅.
In both cases, the path P may be extended to a Hamilton cycle of GB \V (C). From now
on, we may assume the following.

|S1| 6 |T1|+ 1.

Denote k = |T1| − |S1| (so −1 6 k 6 2εn). A path forest is a collection of vertex-
disjoint paths. If GB[T1] contains a path forest H with k + 2 edges, we can finish the
proof as follows. Pick C to be any red 4-cycle consisting of x1, x2 and two vertices from
D. Then GB \ V (C) has a Hamilton cycle extending H. This can be seen by connecting
the paths of H with paths in GB[S1, T1] of length at most 6 and using Claim 53. Thus
we may assume the following.

GB[T1] has no path forest with k + 2 edges. In particular, e(GB[T1]) 6 εn2. (3)

Suppose that GR[T1] contains a path P with one end in A and the other in B, of
length l, where max{0, k} 6 l 6 3εn (by a path of length 0 we mean a single vertex).
Then we may find the desired cycle partition as follows. G[D] contains a path Q of length
l − k which is either red or blue. If Q is red, take C to be the red cycle (x1Px2Q), and
the remaining graph GB \ V (C) is Hamiltonian. If Q is blue, take C = (x1Px2u) where
u ∈ D \ V (Q). The leftover graph GB \ V (C) has a Hamilton path extending Q. Thus
from now on we assume the following.

GR[T1] has no path of length l, where max{0, k} 6 l 6 3εn, with ends in A and B. (4)
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In particular, e(GR[A,B \ A]) 6 εn2, implying that GR[A], GR[B] are almost complete
(recall that A ∩ B have a small intersection and that T1 spans few blue edges). Suppose
that x1 has two blue neighbours u, v ∈ T1. It follows from the previous assumption that
GR[B] contains a path P on k + 1 vertices. Form a red cycle C by adding the vertex x2

to P . Then the graph GB \V (C) is Hamiltonian, since the graph GB \ (V (C)∪{x1}) has
a Hamilton path with ends u, v. Thus we may assume that both x1 and x2 have at most
one blue neighbour in T1. In particular,

|A|, |B| > |T1| − n/4. (5)

We can now finish the proof if k ∈ {−1, 0}. Note that we have e(GB[T1]) 6 1 by
Assumption (3). It is easy to conclude, using Assumption (5) that one of the following
conditions holds.

• A ∩B 6= ∅.

• A ∩B = ∅ and e(GR[A,B]) > 1.

• There exists a vertex u ∈ T1 which has red neighbours in both A and B.

It follows that there exists a red path in T1 with one end in A and the other in B of
length at most 2, contradiction Assumption (4). Thus the desired monochromatic cycle
partition exists.

We may now assume k = |T1| − |S1| > 1. Denote Y = {u ∈ T1 : degB(u, T1) > ηn}.
Then

|Y | 6 (k + 1)/2 (6)

because otherwise GB[T1] contains at least (k + 2)/2 vertex-disjoint paths of length 2,
contradicting Assumption (3).

Denote A′ = A\Y and B′ = B \Y . If there exists a path of length at most 2 in GR[T1]
with one end in A′ and the other in B′, this path may be extended to a red path between
A′ and B′ of length k + 2, contradicting assumption (4). Thus we assume the following.

A′ ∩B′ = ∅. (7)

e(GR[A′, B′]) = 0. (8)

No vertex in T1 has red neighbours in both A′ and B′. (9)

It is not hard to reach a contradiction from here, thus finishing the proof. By (7), A∩B ⊆
Y . In particular,

|Y | > |A ∩B| > |A|+ |B| − |T1| > |T1| − n/2 = (k − 2)/2. (10)

Also, by (6),
|A′|, |B′| > |T1| − n/4− |Y | > n/4− 3/2. (11)
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If |Y | 6 (k−1)/2, it follows that |A′|, |B′| > n/4−1/2. By the minimum degree condition,
we have that δ(G[A′, B′]) > 1, and it is easy to deduce that G[A′, B′] has a (blue) path
forest on at least four edges. By (10), we may complete this into a blue path forest in T1

with at least k + 2 edges, a contradiction to (3).
Thus we assume that |Y | > k/2. It follows from (3) that

e(GB \ Y ) 6 1. (12)

If |A′| > n/4− 1, the graph G[A′, B′] has at least two (blue) edges, a contradiction. Thus
we assume that |A′|, |B′| 6 n/4−1. It follows that |A∪B| 6 |A′|+ |B′|+ |Y | < |T1|. Pick
u ∈ T1 \ (A∪B). By (11), (8), (12), all but at most two vertices of A′ ∪B′ are connected
to u, contradicting (9).

15 Proof of Lemma 30

In this section, we prove Lemma 30. We first remind the reader of the statement.

Lemma 59. Let 1
n
� ε� 1 and let G be a graph on n vertices with δ(G) > 3n/4 and a

2-colouring E(G) = E(GB) ∪ E(GR). Suppose that there exists a partition {S, T,X} of
V (G) with the following properties.

• |S|, |T | > (1/2− ε)n;

• |X| 6 2 and if |X| = 2, there exists u ∈ X such that degR(x, S) 6 εn or
degR(x, T ) 6 εn;

• The sets S and T belong to different components of GR \X.

Then V (G) may be partitioned into a red cycle and a blue one.

The idea of the proof is as follows. By Lemma 29, we may assume that there exist
subsets S ′ ⊆ S, T ′ ⊆ T of size almost n/4 such that G[S ′, T ′] is close to being empty,
implying that the subgraphs GB[S ′, T \ T ′] and GB[S \ S ′, T ′] are almost complete. We
aim, similarly to the proof of Lemma 29 to find a red cycle C, and two blue paths P1, P2,
whose removal from G leaves two balanced bipartite subgraphs of the aforementioned
graphs. We then find Hamilton paths in the remainder subgraphs which together with
P1, P2 form a blue cycle with vertex set V (G) \ V (C). We remark that we run into some
technical difficulties when X is non-empty.

Proof of Lemma 30. We abuse notation and slightly change the definition of S, T and X
as follows. Denote

X = {x, y} (13)

(if |X| < 2, add vertices to X arbitrarily). Recall that by the conditions of Lemma 30,
we may assume that degR(x, S) 6 εn or degR(x, T ) 6 εn. If the former holds, we move x
from X to T , otherwise we move x from X to S. Similarly, if degB(y, S) > n/32 we move
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y from X to T and otherwise, if degB(y, T ) > n/32, we put y in S. After the modification,
we have either X = ∅, or X = {y} and degB(y) 6 n/16. Furthermore, the only red edges
in G[S, T ] are adjacent to x or y.

We may assume that there exist subsets S ′ ⊆ S, T ′ ⊆ T of size at least (1/4− 100ε)n
such that e(G[S ′, T ′]) 6 25εn2, because otherwise the proof can be completed immediately
by Lemma 29. It is easy to deduce the following claim (we omit the exact details of the
proof).

Claim 60. The following holds for some η = η(ε) > ε. There exist partitions {S1, S2} of
S and {T1, T2} of T with the following properties.

• |S1|, |S2|, |T1|, |T2| > (1/4− η)n.

• All but at most ηn vertices of S2 ∪ T1 have degree at most ηn in GB[S2, T1].

• The graphs GB[Si, Ti] have minimum degree at least n/64. Furthermore, all but at
most ηn vertices in these graphs have degree at least (1/4− η)n.

• All but at most ηn vertices in the graphs G[S1, S2] and G[T1, T2] have degree at least
(1/4− η)n.

We shall also use the following claim which may be easily verified by Theorem 19.

Claim 61. Let S ′ ⊆ Si and T ′ ⊆ Ti be sets of equal size such that |(Si ∪ Ti) \ (S ′ ∪ T ′)| 6
10ηn. Then H = GB[S ′, T ′] is Hamiltonian. Furthermore, for every s ∈ S ′, t ∈ T ′, H
contains a Hamilton path with ends s and t.

Without loss of generality, we assume |S| > |T |. Denote k = |S| − |T |. We consider
two cases according to the size of X.

Case 1: X = ∅

Let A be the set of red neighbours of x in G[S, T ] and B the set of red neighbours of y in
G[S, T ]. Then

|A| 6 n/16 and |B| 6 (1/2− 1/64)n. (14)

If k 6 1, we may find a partition of V (G) into a blue cycle and a red one as follows.
Pick any red cycle C1 in S of length k, so C1 is either the empty set or a vertex. Denote
S ′ = S \ V (C1) and consider the balanced bipartite graph H = GB[S ′, T ]. Then

degH(u) >


n/64 u ∈ {x, y}
(n− k)/2− (n/4− 1)− 2 = n/4− k/2− 1 u ∈ A
n/4− k/2 u ∈ B \ A
n/4− k/2 + 1 otherwise

It follows by Corollary 20 that H is Hamiltonian (note that B is a subset of either S or
T ), implying that the desired partition of V (G) into a red cycle and a blue exists.
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Case 1.1: |T1| < |S1| and |T2| < |S2|

Recall that k > 2, so
|S| = (n+ k)/2 > n/2 + 1. (15)

Claim 62. The graph GB[S1, T2] ∪GB[S2, T1] contains a (blue) matching of size 2.

Proof. If |S2| > n/4 + 1, then every vertex in T1 has at least three neighbours in S2,
thus every vertex in T1 \ (A ∪ {x, y}) has at least two blue neighbours in S2, implying
that we may find the desired matching. Similarly, if |S1| > n/4 + 1, the graph GB[S1, T2]
contains a matching of size 2. Thus we may assume that |S1|, |S2| 6 n/4 + 1, implying
that |S1|, |S2| > n/4.

Without loss of generality, |S1| > n/4, |S2| > n/4. Hence every vertex in T1 \ (A ∪
{x, y}) has at least two neighbours in S2. If y /∈ S2, these two neighbours are both blue,
and we may find the required matching in GB[S2, T1]. If y ∈ S2, we conclude similarly
that both G[S1, T2] and G[S2, T1] contain at least one blue edge, implying that the desired
matching exists.

We shall assume the following; the other cases can be argued similarly.

{s1t1, s2t2} is a blue matching in G[S2, T1], where s1, s2 ∈ S2 and t1, t2 ∈ T1. (16)

It is easy to verify that one of the following holds.

1. GB[S1] contains a path of length 5ηn.

2. GB[S1, T2] contains a path of length 5ηn.

3. GB[S1, S2] contains a path of length 5ηn.

4. GR[S1] contains a cycle of length l for every l 6 5ηn, and GB[S2] contains a path of
length 5ηn.

5. For every l1, l2 6 5ηn, GR[S1, S2] contains a cycle with l1 vertices from S1 and l2
vertices from S1.

Indeed, if the first three conditions do not hold, by Theorem 21, the graphs GR[S1] and
GR[S1, S2] are almost complete, so either the third condition holds or GR[S] is almost
complete.

If Condition 1 holds, we conclude that GB[S1 ∪T1] has a Hamilton path Q1 with ends
t1, t2. Indeed, let P1 be a path in GB[S1] on |S1|−|T1|+2 vertices (note that this quantity
is smaller than 5ηn). By Claim 61, we may extend P1 to a Hamilton path of GB[S1 ∪ T1]
with ends t1 and t2. Now consider G[S2]. Note that G[S2] is almost complete (as G[S2, T1]
is almost empty), thus it either contains a blue path of length |S2| − |T2| − 1 or a red
cycle of length |S2| − |T2| − 1. In any case, we may partition S2 ∪ T2 into a red cycle C
and a blue path Q2 with ends s1, s2 (where in the former case the red cycle is empty). By
joining Q1 and Q2 using the edges s1t1 and s2ts, we obtain a blue cycle on the vertices
V (G) \ V (C).
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If Condition 2 holds, let P1 be a path in GB[S1, T2] with ends s ∈ S1, t ∈ T2 with
exactly |S1| − |T1|+ 1 vertices from S1. Denote by U the set of interior vertices of P1 and
let S ′1 = S1\U and T ′2 = T2\U . By Claim 61 the graph GB[S ′1, T1] has a Hamilton path Q1

with ends s, t1. Consider the graph G[S2 ∪ T ′2]. We conclude as before that G[S1, T
′
1] can

be partitioned into a blue path with ends s1, t and a red cycle, completing the required
partition of V (G) into a blue cycle and a red one.

We now assume that Condition 2 does not hold, so G[S1, T2] is almost empty and
G[T2] is almost complete. Suppose that Condition 3 holds. Let P1 be a path in GB[S1, S2]
with ends s3 ∈ S1, s4 ∈ S2 and exactly |S1| − |T1|+ 1 vertices from S1. Define U to be the
set of interior vertices of P1 and let S ′i = Si \U . It can be shown as before that GB[S ′1, T1]
has a Hamilton path with ends s3, t1 and that GB[S ′2, T2] can be partitioned into a blue
path with ends s1, s4 and a red cycle. Note that it may happen that |T2| > |S ′2| in which
case the red cycle is contained in T2 (here we use the assumption that G[T2] is almost
complete).

Now suppose that Condition 4 holds. It follows that G[S1 ∪ T1] may be partitioned
into a blue path with ends t1, t2 and a red cycle, and that G[S2 ∪ T2] contains a blue
Hamilton path with ends s1, s2.

Finally, if Condition 5 holds, let C be a red cycle consisting of |S1| − |T1|+ 1 vertices
from S1 and |S2| − |T2| − 1 vertices from S2. As before, the graphs G[S1 \ V (C), T1] and
G[S2 \ V (C), T2] have blue Hamilton paths with ends t1, t2 and s1, s2 respectively.

Case 1.2: |S1| = |T1| or |S2| = |T2|

Suppose that |S1| = |T1|. Similarly to Claim 62, we claim that G[S2, T1] contains a
blue matching of size 2. Indeed, if either |S2| > n/4 + 1 or |T1| = |S1| > n/4 + 1
we may find the required matching as in the proof of the claim. Otherwise, we have
n/4 6 |S2|, |S1| 6 n/4 + 1 (because |S| > n/2 + 1). If |S2| > n/4 and y /∈ S2, every
vertex in T1 \ (A ∪ {x, y}) has two blue neighbours in S2, and the required matching can
be found. A similar argument holds if |T1| > n/4 and y /∈ T1. So, we may assume that
|T1| = n/4, |S2| = n/4 + 1 and y ∈ S2, or |S2| = n/4, |T1| = n/4 + 1 and y ∈ T1. In
the former case every vertex in S2 \ (A∪{x, y}) has a blue neighbour in T1, and similarly
every vertex in T1 \ (A ∪ {x}) has a blue neighbour in S2, which implies the existence of
the desired matching. The latter case can be argued similarly. Given this matching, we
can proceed to find a partition of the vertices into a red cycle and a blue one as in Case
1.1.

Similarly, if |S2| = |T2|, it follows that G[S1, T2] contains a blue matching of size 2 and
we proceed as before.

Case 1.3: |S1| < |T1|

In order to obtain the required balanced subgraph of G[S1, T1], we use the following claim.

Claim 63. There exist vertex-disjoint paths Q1, Q2 in GB[S, T ] satisfying the following
properties.
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• |Q1|, |Q2| 6 32ηn.

• Qi has one end in S2 and the other in T1.

• Denote U = V (Q1) ∪ V (Q2). Then

|U ∩ T1| − |U ∩ S1| = |T1| − |S1|+ 1.

Proof. Consider the bipartite graph H = GB[T1, S
′] where S ′ = S \ {u} for some fixed

u ∈ S1. Recall that |S ′| = |S| − 1 > n/2 by (15). We show that we there exist two
edge-disjoint matchings M1,M2 of size |T1|− |S1|+1 in G[S2, T1] whose union contains no
cycles. To that end, we show first that H contains a matching saturating T1, by showing
that H satisfies Hall’s condition, namely that for every W ⊆ T1, we have |NH(W )| > |W |.

Recall that x, y are the vertices that were in X originally (13), and A,B are their red
neighbourhoods in G[S, T ]. We consider four ranges for the size of W .

• |W | 6 2. Here Hall’s condition holds trivially because the minimum degree of a
vertex from T1 is larger than 2.

• 3 6 |W | 6 n/4− 1. Recall that every vertex in T1, except for possibly x and y, has
degree at least n/2− (n/4 + 1) = n/4− 1 in H. Thus, in this case we have

|NH(W )| > n/4− 1 > |W |.

• n/4 − 1 < |W | 6 n/4. By the lower bound on the size of A, there exists w ∈
W \ (A ∪ {x, y}). w has at most one red neighbour in S ′ (namely y), thus

|NH(W )| > degB(w, S ′) > n/2− n/4 = n/4 > |W |.

• |W | > n/4. In this case, every vertex in S ′ \ (A ∪ {x, y}) has a neighbour in W , so

|NH(W )| > |S ′| − (n/16 + 2) > |T1| > |W |.

It follows that there is a matching in GB[S ′, T1] that saturates T1. We take M1 to be a
sub-matching in GB[T1, S2] of size |T1| − |S1|+ 1 6 5ηn (this is possible because at most
|S1| − 1 of the edges are incident with S1).

Consider the graph H ′ obtained from H by removing the edges of H spanned by
V (M1). It is easy to check by a similar analysis that H ′ contains a matching saturating T1.
Indeed, if 1 6 |W | 6 5ηn+2, we clearly have |NH(W )| > |W |. If 5ηn+2 < |W | 6 n/4−1,
we have |NH(W )| > n/4 − 1 > |W |. If n/4 − 1 < |W | 6 n/4, we may pick a vertex
w ∈ W \ (A ∪ V (M1) ∪ {x, y} and continue as above. Finally, if |W | > n/4, every vertex
in S ′ \ (V (M1) ∪ A ∪ {x, y}) has a blue neighbour in W , so |NH(W )| > |W |. So there
exists a matching M2 in GB[T1, S2], edge-disjoint of M1, of size |T1| − |S1|+ 1.

Let F be the graph (V (G), E(M1)∪E(M2)). Note that by the choice of H ′, F contains
is a path forest that consists of paths of length 1 or 2. We modify F as follows. If F
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contains at least one component that is a single edge, then remove any two edges from
F that do not belong to this component; otherwise, F consists only of 2-paths, pick any
two such paths and remove one edge from each. Denote the modified graph by F ′, and
let ri be the number of vertices in F ′ with degree i in T1. We have

|T1| − |S1| = |E(F ′)|/2 = r2 + r1/2. (17)

We now obtain paths Q1, Q2 as follows. We start with the collection of paths in F ′

and keep modifying it, as follows.

1. As long as there is a path P1 with both ends in T1, pick a path P2 with one end in
S2 and the other in T1 (we make sure that there is always such a path). Connect
P1 and P2 by a path in GB[S1, T1] of length at most 4, which is vertex-disjoint of all
other paths, and replace P1 and P2 with the extended path (note that this exteded
path has one end in S2 and one in T1).

2. Once there are no paths with both ends in T1, but there is a path with both ends
in S2, replace it and some path with one end in S2 and one in T1 with an exteded
one, obtained by connecting the two using a path of length at most 4 in GB[S2, T2].

3. Once there are only paths with one end in S2 and one in T1, pick three such paths
(if possible). Replace them with an extended path, obtained by connecting them
with paths in GB[S1, T1] and GB[S2, T2] of length at most 4.

We note that we start the process with an even (and positive) number of paths with one
end in S2 and the other in T1, and this number remains unchanged by Stages 1 and 2, and
drops by exactly 2 in each step of Stage 3. Hence we eventually reach a point when there
are exactly two paths, which we denote Q1, Q2, and both have one end in S2 and one in
T1. We claim that Q1, Q2 satisfy the requirements of Claim 63. Indeed, the first property
follows because the total number of edges is at most 4|E(F ′)| = 8(|T1| − |S1|) 6 32ηn.
The second property follows by choice of Q1, Q2. It remains to show that the last property
holds. One can check that

|U ∩ T1| − |U ∩ S1| = r2 + (r1 − 2)/2 + 2 = (2r2 + r1)/2 + 1

= |E(F ′)|/2 + 1 = |T1| − |S1|+ 1,

as required.

Let Q1, Q2 be paths as in Claim 63. Denote the ends of Qi by si ∈ S2, ti ∈ T1, let U ′

be the set of interior vertices of these paths, and let S ′i = Si \ U ′ and T ′i = Ti \ U ′. It is
easy to verify that GB[S ′1, T

′
1] has a Hamilton path with ends t1, t2 and that G[S ′2 ∪ T ′2]

may be partitioned into a blue path with ends s1, s2 and a red cycle (note that |S ′2| > |T ′2|,
and we use the fact that G[S2] is almost complete).

Case 1.4: |S2| < |T2|

Here we have |S1| > |T1| + 2. If G[S1, T2] contains a blue path of length 10ηn, we may
proceed as in Condition 2 from Case 1.1. Otherwise, G[S1, T2] has few edges, so G[S1]
contains many edges and we may proceed as in the previous case.
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Case 2: X = {y}

We start by showing that if k = |S| − |T | 6 2, we may partition V (G) into a red cycle
and a blue one. Consider A = NR(y, S) and recall that |A| > n/8. If k = 0, we pick the
red cycle C1 to be (y). If k = 1, we pick the red cycle C1 to be a red edge (yz), where
z ∈ A. If k = 2 and A contains a red edge uv, we pick the red cycle C1 to be the triangle
(uvy).

In each of these cases, the remainder graph H = GB[S ′, T ], where S ′ = S \ V (C1) is a
balanced bipartite graph. To obtain the desired partition of V (G) into a red cycle and a
blue one, we show that H is Hamiltonian. Indeed, let B be the set of red neighbours of
x in G[S ′, T ] (so |B| 6 n/16). Then

degH(u) >


(n− k − 1)/2− (n/4− 1)− n/16 = 3n/16 + 1/2− k/2 v = x
(n− k − 1)/2− (n/4− 1)− 1 = n/4− k/2− 1/2 v ∈ B
(n− k − 1)/2− (n/4− 1) = n/4− k/2 + 1/2 otherwise

It follows from Corollary 20 that indeed, H is Hamiltonian.
It remains to consider the case where k = 2 and A contains no red edges. Suppose

first that y has two blue neighbours in S. Consider the graph H = GB[S ′, T ′], where
S ′ = S \ {u} for some u ∈ S and T ′ = T ∪ {y}. We claim that H is Hamiltonian. The
desired partition may thus be obtained by letting (u) be the red cycle. Indeed, let B be
the set of red neighbours of x in G[S ′, T ′] (so |B| 6 n/16). Then

degH(v) >


2 v = y
(n− 1)/2− n/4− n/16 = 3n/16− 1/2 v = x
(n− 1)/2− (n/4 + 1) = n/4− 3/2 v ∈ B
(n− 1)/2− n/4 = n/4− 1/2 v ∈ S ′ \ (B ∪ {x, y})
(n− 1)/2− (n/4− 1) = n/4 + 1/2 v ∈ T ′ \ (B ∪ {x, y})

By Corollary 20, H is indeed Hamiltonian.
We may now assume that y has at most one blue neighbour in S. It follows that

degR(y, S) = |A| > |S| − n/4 = n/4 + 1/2. Hence, G[A] contains an edge uv. Recall that
we assumed that A contains no red edges, thus uv is a blue edge. Let w ∈ A \ {u, v}.
Consider the graph H = GB[S ′, T ] where S ′ = S \ {w}. We claim that H contains a
blue Hamilton path with ends u, v – this would imply that H \ {y} has a Hamilton blue
cycle. Indeed, let H ′ be the graph obtained from H by adding a vertex z to T which is
connected only to u, v. Clearly, H contains a Hamilton path with ends u, v if and only if
H ′ is Hamiltonian. As in the previous argument, it follows from Theorem 19 that H ′ is
Hamiltonian.

From now on, we assume that k > 3, so |S| > n/2 + 1. Denote

Ai = NR(y, Si) and Bi = NR(y, Ti). (18)

Recall that degB(y) 6 n/16. It follows that at most one of the sets A1, A2, B1, B2 has size
at most n/16.
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Case 2.1: e(GB[S1, T2]) > 10ηn2

Suppose first that |A2| > n/16. This case can be treated similarly to previous cases
where X = ∅. If |S1| > |T1|, we may continue similarly to Condition 2 from Case 1.1. If
|S1| = |T1| we continue similarly to Case 1.2 and if |S1| < |T1|, we continue as in Case 1.3.
The only difference in the arguments is that when considering the graph G[S ′2 ∪ T ′2] we
partition it into a blue path with suitable ends and a red path contained in A2 = NR(y, S2)
rather than a red cycle (by the lower bound on A2, we have that G[A2] is almost complete,
hence we may indeed do so). We now suppose that |A2| 6 n/16, so |A1|, |B1|, |B2| > n/16.

Suppose next that GB[S1, S2] contains a path of length 10ηn. We may pick vertex-
disjoint paths P1 ⊆ GB[S1, S2] and P2 ⊆ GB[S1, T2] of length at most 10ηn such that the
following assertions hold.

• P1 has ends s1 ∈ S1, s2 ∈ S2 and P2 has ends s3 ∈ S1, t3 ∈ T2.

• |Si \ V (P1)| < |Ti| for i ∈ [2].

• Denote by U the set of the interior vertices of the paths P1, P2 and S ′i = Si \ U ,
T ′i = Ti \ U . Then |S ′2| = |T ′2| (and thus |S ′1| < |T ′1|).

Indeed, to construct the paths P1, P2, first pick P1 ∈ GB[S1, S2] to be long enough so that
the second condition holds. Then by Theorem 21, the graph G[S1, T2] \ V (P1) contains a
path of length 10ηn, and we may take P2 to be a subpath satisfying the third condition.
We continue as above, by finding a Hamilton path in GB[S ′2, T

′
2] with ends s2, t3 and

partitioning G[S ′1, T
′
1] into a blue path with ends s1, s3 and a red path contained in B1.

We may now assume that GB[S1, S2] does not have a path of length 10ηn, so GR[S1, S2]
is almost complete. It follows that we may pick u, v ∈ A1 such that the setD = NR(u, S2)∩
NR(v, S2) has size at least n/8. Define S ′1 = S1 \ {u, v} and S ′ = S \ {u, v}. We shall now
continue as before, partitioning the graph G[S ′ ∪T ] into a blue cycle and a red path with
ends in D.

If |S ′1| > |T1|, we continue as in condition 2 of Case 1.1, but when we consider the
remainder of the graph G[S2∪T2], we partition it into a blue path with suitable ends and
a red path contained in D. Note that in order for this path to complete the path (uyv)
into a cycle, it has to contain at least one vertex. Recall that |S| > |T | + 3 so this is
indeed possible.

If |S ′1| = |T1|, we note that there are blue edges in GB[S ′1, T2] and GB[S2, T1]. We pick
one edge from each of these graphs, extend them by connecting them to a Hamilton path
in GB[S ′1, T1] and proceed as usual to find a partition of G[S2, T2] to a blue path with
suitable ends and a non-empty path in D.

Finally, we need to deal with the case |S ′1| < |T1|. Here we can follow the argument
of Case 1.3. Note that we need to ensure that a version of Claim 63 holds for the graph
G[S ′, T ]. Indeed, take H = GB[S ′′, T1], where S ′′ is obtained from S ′ by removing a
vertex from S ′1. We claim that H has a matching saturating T1. Indeed, let W ⊆ T1. We
consider four ranges for the size of W .

• |W | = 1. Clearly, |NH(W )| > |W |.
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• 2 6 |W | 6 n/4 − 2. Since any vertex of W other than x has at most one red
neighbour in G[S ′′, T ], we have

|NH(W )| > |S ′′| − n/4 = |S| − n/4− 3 > n/4− 2 > |W |.

• n/4 − 2 < |W | 6 n/4 − 1. There is a vertex in W which has no red neighbours in
G[S ′′, T ], thus |NH(W )| > n/4− 1 > |W |.

• |W | > n/4 − 1. Many vertices of S ′′ have at least one neighbour in W , implying
that |NH(W )| > |T1| > |W |.

Thus we may pick a matching M1 from in GB[S2, T1] of size |T1| − |S ′1| + 1. Repeating
almost the same argument, we deduce that the graph H ′ obtained from H by removing
all edges spanned by V (M), has a matching saturating T1. From here we may continue
as in Claim 63 to obtain paths Q1, Q2. Finally, as explained before, when considering the
graph remaining from G[S2, T2], we partition it into a blue path with suitable ends and a
red path, on at least one vertex, contained in D.

From now on we may assume that e(GB[S1, T2]) 6 10ηn2, so S1, S2 become practically
interchangeable, and all of G[Si], G[Ti] are almost complete.

Case 2.2: GB[S1, S2] has a path of length 20ηn

If |S1| > |T1| and |A2|, |B2| > n/16, we continue as in Condition 3 in Case 1.1, but when
considering the graph remaining from G[S2 ∪ T2] we partition it into a blue path with
the given ends and a red path (which may be empty) contained in either A2 or B2. If
|S1| = |T1| and |A2|, |B2| > n/16, it is easy to check that GB[S2, T1] is non empty, so we
may proceed as before. The case |S2| > |T2| and |A1|, |B1| > n/16 follows analogously.

Since at most one of the sets A1, A2, B1, B2 has size at most n/16, it remains to
consider the case where |S1| < |T1| or |S2| < |T2|. Without loss of generality, |S1| < |T1|,
so |S2| > |T2|. If |A1|, |B1| > n/16, we are done. Thus we may assume |A2| > n/16. But
then we may proceed as in Case 1.3, to partition V (G) into a blue cycle and a red path
contained in A2.

From now on, we may assume that GB[S1, S2] has no path of length 20ηn, implying
that GR[S1, S2] is almost complete. Also, without loss of generality, |A2| > n/16.

Case 2.3: |S1| > |T1| + 1 and |S2| > |T2| + 3

It is easy to check that in this case G[S1, T2] ∪G[S2, T1] contains a blue matching of size
2. Denote the matching by {e1, e2} and without loss of generality suppose ei has ends
si ∈ S2, ti ∈ T1. If G[S1] has a blue path of length 20ηn, the graph GB[S1 ∪ T1] has a
Hamilton path with ends t1, t2. We proceed as before, to partition G[S2 ∪ T2] into a blue
path with ends s1, s2 and a red path contained in A2.

We may thus assume that GR[S1] is almost complete. If e(GB[S2]) > 10ηn2, pick
u, v ∈ A2 such that the set D = NR(u, S1) ∩ NR(v, S1) has size at least n/8. Denote
S ′2 = S2 \ {u, v}. It is easy to verify that GB[S ′2, T2] has a Hamilton path with ends s1, s2.
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We form a red cycle by picking a red path P2 in D of length |S1| − |T1| and joining it to
(uyv) (note that this is indeed a cycle since |S1|− |T1| > 1). The graph GB[S1 \V (P2), T1]
has a Hamilton path with ends t1, t2, completing the required partition.

Finally, if e(GB[S2]) 6 10ηn2, we have that GR[S] is almost complete, hence we may
pick a red cycle C in S ∪ {y} with the following properties.

• y ∈ V (C).

• |V (C) ∩ S1| = |S1| − |T1|+ 1.

• |V (C) ∩ S2| = |S2| − |T2| − 1.

It is easy to verify that the graph GB \ V (C) is Hamiltonian.

Case 2.4: |S1| = |T1|, |S2| = |T2| + 2 or |S2| = |T2| + 1

These cases may be dealt with similarly to the previous one. Denote H1 = GB[S1, T2],
H2 = GB[S2, T1] and H = H1 ∪H2.

If |S1| = |T1|, if there is a 2-matching in H with at least one edge from H2, we may
continue as in the previous case. Namely, we need to show that H2 is non-empty. This
follows if |S2| > n/4 − 1 or |T1| > n/4 − 1, so we may assume that |S2|, |T1| 6 n/4 − 1,
implying that |S| = |S1|+ |S2| = |T1|+ |S2| 6 n/2− 2, a contradiction.

If |S2| = |T2| + 2 (so |S1| > |T1| + 1) we need to show that H1 is non-empty. If it is
empty, we have |S1|, |T2| 6 n/4− 1, implying that |S| 6 n/2, a contradiction.

If |S2| = |T2| + 1, we need to show that H1 contains a 2-matching. If not, we have
|S1|, |T2| 6 n/4, and in addition either |S1| 6 n/4 − 1 or |T2| 6 n/4 − 1. In particular,
|S1|+ |T2| 6 n/2− 1, hence |S| 6 n/2, a contradiction.

Case 2.5: |S1| < |T1|

We proceed as in Case 1.3, partitioning the graph remaining from G[S2 ∪ T2] into a blue
path with suitable ends and a red path contained in A2.

Case 2.6: |S2| 6 |T2|

We may continue as in the last part of Case 2.1. We pick u, v ∈ A2 such that |NR(u, v)∩
S1| > n/8 and proceed to partition G[S ′∪T ] (where S ′ = S \{u, v}) into a blue cycle and
a red path contained in the red neighbourhood of u, v in S1, using an analogue of Claim
63.

The proof of Lemma 30 concludes the proof of our main Theorem, Theorem 1. We
finish this paper with some concluding remarks.
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16 Concluding Remarks

As a further line of research, one may consider colourings of Kn with more than two
colours. Gyárfás [13] conjectured that for every r-colouring of Kn, the vertex set may
be partitioned into at most r monochromatic paths. Erdős, Gyárfás and Pyber [10]
considered partitions into monochromatic cycles rather than paths. They defined c(r) to
be the smallest t such that whenever a complete graph is r-coloured, it may be partitioned
into t monochromatic cycles. They proved that c(r) is bounded, and furthermore c(r) 6
cr2 log r for some constant c. Note that Bessy and Thomassé’s result [5], mentioned in
the introduction, implies that c(2) = 2. Erdős, Gyárfás and Pyber [10] conjectured that
c(r) = r for all r.

Gyárfás, Ruszinkó, Sárközy and Szeméredi [14] proved that c(r) 6 cr log r, which is
the best known upper bound on c(r) so far. The same authors [15] proved an approximate
result of the last conjecture for r = 3. Furthermore, they showed that for large enough
n, if Kn is 3-coloured, it may be partitioned into 17 monochromatic cycles. However, it
turns out that the full conjecture is false, even for r = 3, as shown by Pokrovskiy [24].
Nevertheless, in the same paper, he proved Gyárfás’s conjecture for r = 3, so it may still
be the case that this conjecture holds in general. In addition, the counter examples given
in [24] are 3-colourings of Kn for which all but one vertex may be covered by vertex-
disjoint monochromatic paths. This raises the following question: is it true that for every
r-colouring of Kn all but at most c = c(r) vertices may be covered by r vertex-disjoint
monochromatic paths? In a forthcoming paper [19], we use methods introduced in this
paper to answer this in the affirmative for r = 3, with c being about 60. Pokrovskiy [23]
recently proved the same result, using different methods, with c = 43000.

Finally, it is natural to consider the Schelp-type version of these problems, namely for
graphs with large minimum degree rather than for complete graph. An example for a
concrete question of this type is: what is the smallest value of c such that any 3-coloured
graph G on n vertices and minimum degree δ(G) > cn can be partitioned into three
monochromatic paths?

We believe that the methods we have employed for the proof of Theorem 1 may prove
useful in resolving the latter question, as well as many others, regarding partitions of
r-coloured graphs into paths and cycles.
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colored graphs by monochromatic paths and cycles, Combinatorica 34 (2014), 507–
526.

[4] F. Benevides, T.  Luczak, J. Skokan, A. Scott, and M. White, Monochromatic cycles
in 2-coloured graphs, Combin. Probab. Comput. 21 (2012), 57–87.
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[10] P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and
trees, J. Combin. Theory, Ser. B 51 (1991), 90–95.
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