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ABSTRACT

The aim of this work is to establish whether the addition of

three body interactions are by themselves sufficient to ensure 

mechanical stability of a particular crystal structure or whether 

higher multibody interactions are needed also.

The criteron chosen to establish such stability is namely the 

positive definiteness of the elastic energy, which can be calculated 

from the elastic constants. The elastic constants can in turn be

calculated from values of the atomic force constants which are 

obtained by fitting theoretical dispersion curves to experimental

data.

A summary of the general theory of lattice dynamics as well as 

atomic elasticity theory is presented with additional comments on the 

various types of elastic constants often found in the literature. A 

parallel account of elasticity theory by including a general three

body potential function instead of the usual two body (central force) 

potential is given where most of the simplifications found in previous 

works vanished so that some of the consequential results such as the 

Cauchy relations where found not to be valid. A new set of three body 

parameters are developed and used to work out expressions for the 

elastic constants and also to test whether in a cubic lattice a three 

body potential confers stability.

We test the usefulness of such parameters when we use them to 

write down the elastic constants for the diamond crystal lattice. The 

expressions are then compared to those arrived at by the use of 

valence bond potentials. Calculations using general force constant
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parameters to describe atomic interactions show that we need to go to 

fifth nearest neighbours (at least) before the crystal stability 

conditions are fulfilled. This problem of stability is readdressed 

here by the inclusion of possible three body interactions amongst 

atoms.

We also use an analytical expression based on a Morse potential 

function which describes the interactions amongst three carbon atoms. 

This potential comes from considering the spectroscopic data of the C3 

molecule. We use such a potential as an example of how the elastic 

constants of diamond might be calculated.
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1.1 LATTICE DYNAMICS

Since the pioneering work of Born and von Karman (Born and Th. 

von Karman 1912) the majority of the theoretical work done on 

vibrational properties of solids has been based on force constants 

models in which the values of the atomic force constants have been 

obtained by fitting theoretical dispersion curves to experimental 

data.

The dispersion curves of long wavelengths acoustic phonons can be 

fitted to the predictions of elasticity theory, while the frequencies 

of long wavelength optical phonons can be fitted to the results of 

infrared absorption or Raman scattering.

The phenomenological approaches to lattice dynamics suffer from 

two major deficiencies. The first is that they are not predictive: the 

values of the atomic force constants and of the resulting dispersion 

curves are inferred from experimental data rather than predicted by 

some more fundamental approach to their determination. The second is 

that they are not unique: often more than one model can reproduce the 

experimental curves equally well.

The general theory of lattice dynamics has been described in 

detail by several authors (Born and Huang 1954, Maradudin et el 1963, 

Horton and Maradudin 1974). The theory is based on two approximations. 

First the adiabatic approximation is used to postulate that the total 

energy of the solid is the sum of the kinetic energy of the atoms and 

a potential energy depending only on the instantaneous nuclear 

positions. This is tantamount to the assumption that the electrons are 

always able to adapt themselves completely to the instantaneous 

nuclear positions. Then the potential energy of the lattice may be
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written in a general Taylor series in terms of the displacements
r i

u . of the k atom in the 1 unit cell as

l ka lk a 8 l' k»

f 1
/

. M  - . “P. + ...

[1.1.1]

For small displacements only the leading quadratic term is considered, 

i.e. the harmonic approximation. Though the other higher terms are 

small they are responsible for thermal resistance and thermal 

expansion. Thus we write

<I>
- . ■ i l llk (XB 

1 '  k '

* J  I "«( J
N f \ 1 '

The parameters (coefficients of the Taylor expansion) of the 

potential;-- function cannot be determined in a unique way from the 

macroscopic properties. From the equations of motion we have

QW = C(q)W,

[1.1.3]

where C(q) is the force constant matrix and W are its eigenvectors 

corresponding to the normal modes with associated frequencies 0,

The force constants cannot be deduced from the frequencies alone. 

If a set of force constants agrees with the frequencies exactly there
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is no guarantee that the force constants are correct. A solid has many 

more force constants than frequencies so that the lattice frequencies 

can be satisfied by very different force constants. The knowledge of 

these frequencies is not sufficient for calculation of the force 

constants (Former and Lomer 1957, Cochran 1971, Leigh et al 1971) and 

the eigenvectors W must also be measured (Strauch et al 1990).

Restrictions on the atomic force constant come from the 

translational and rotational invariance of the potential energy. The 

translational invariance condition is (Born and Huang 1954) given by

I
1 k

= o, I
1 k

4>OC0
1 1 = 0 ,

The rotational invariance condition is

[1.1.4]

4> l
&r>

r  > 1
- f ‘ 1a kV. J 0 . k J L  P > k , a I k .

lkE 1 k

4>a/3
l

-3B r  i ’l
-  8  .4> f 1 )  =  )  4>

' i f 1 *1 - 5  4).
l

k k ’J 7 k ’^ J a 0  u  k J  L i , k k \ n  k \ a y  0 , k ,
1 * k

[1.1.5]

Further restrictions are placed by the symmetry of the crystal 

structure also. If we write equation [1.1.3] explicitly we have

!V k > = - I  I  c«0
q

k k w ^ k ’).
k' /3

[1.1.6]
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where Ca^(q:kk’) is the dynamical matrix in reciprocal space (the 

Fourier transform of 11 ’: kk’) • The vibrational frequencies <*> are 

the roots of the secular equation

| C(q) - u2I | = 0,

[1.1.7]

where I is the unit matrix of order 3s*3s. For a particular wave 

vector q, the characteristic equation [1.1.7] has 3s roots u where s 

is the number of atoms in the unit cell. These roots (the acoustic 

modes) tend to zero as q — » 0 while the remaining 3s-3 roots (the 

optical modes) tend to finite values as q — » 0. These 3s-3 limiting 

frequencies may contibute to the first-order Raman spectrum of the 

lattice.

When the wave vector q lies along one of the symmetry directions 

of a particular crystal structure then the secular equation [1.1.7] 

factorises and may therefore be solved directly. The physical 

interpretation of this is that along a symmetry direction the wave 

propagating corresponds to the vibrations of complete planes of atoms 

so that the mathematical problem becomes one of a linear chain of 

particles, each connected to its neighbour by harmonic forces and 

where each particle represents a plane of atoms.

The solution of the secular equation for a particular value of q 

gives rise to dispersion relations that is the frequency given as a 

function of the wave vector q. These dispersion curves can be 

determined experimentally (Cochran 1973) by the use of radiation 

comparable with the interatomic distances. The most powerful method of
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studying lattice vibrations uses a beam of mono-energetic neutrons. 

The changes in wavelengths of the scattered neutrons lead directly to 

the dispersion relations between the frequencies and wave vectors of 

normal modes of vibrations of the crystal.

1.2 PARAMETRIC THEORY OF ELASTICITY

The microscopic theory of elasticity is built on the concept of 

interatomic forces. These are derived from an atomic potential energy 

usually taken in the adiabatic approximation. The second derivatives 

of the potential are the force constants. Huang (1950) and Born and 

Huang (1954) have derived a relation between the force constants and 

the elastic constants by comparing the microscopic equations for long 

waves with the equation for homogeneous deformation.

It is usual in standard treatments of lattice theory of crystals 

to assume some specific types of atomic interactions, such as central 

forces, interactions between oriented molecules, etc. In view of the 

great diversity of binding forces which are known to occur in 

different types of solids, then no such assumption will prove 

generally valid. Much that is basic in the lattice theory is, however 

common to all types of crystalline solids independent of the 

particular nature of the binding forces. The work of Born and Huang 

(1954) on lattice dynamics as given in previous section 1.1 can be 

thought of in two ways: the first describes the existence of a

potential energy function which is assumed but not specified. The 

crystal properties are expressed in terms of the Taylor expansion 

coefficients of $ and these coefficients are regarded as parameters in 

the theory. In the second a function is assumed for the potential
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energy so that the crystal properties are now expressed in terms of 

the parameters of the potential itself. We usually assume that the 

potential is a two body (central force) potential which Born and his 

co workers follow through in their analysis. If we focus on the first 

assumption it was found (Born 1954) that complications arise when we 

try to write down expressions for the elastic coefficients. Elastic 

properties are macroscopic and the corresponding theory is expressed 

in terras of the energy density (i.e. energy per unit volume) and its 

expansion are in terms of small displacements from equilibrium. The 

relationships of this to the Taylor expansion of the potential energy 

is not simple and the method of long waves discussed later in the 

chapter, was introduced to deal with this problem. The resulting 

expressions for the stresses and the elastic constants in terms of the 

potential energy coefficients are complicated and also it is actually 

not possible to express the hydrostatic pressure in these terms.

Since in this thesis we pay most attention to the elastic 

properties it is useful to recognise that parametric form of lattice 

theory is possible, which unlike the Born approach begins with the 

assumption of an energy density function and examines the possibility 

of expressing the results in terms of the coefficients in an 

appropriate expansion. We can identify those results which are general 

and which do not depend on the form of the potential assumed. The 

potential energy density is denoted by 'P and we go on to find 

expressions for the change in value of this function when departures 

from the initial atomic configurations are made. Any generalized 

displacement will be composed of changes in the Cartesian coordinates

i.e. the same coordinates as used in the lastof the atoms u, a



- 17-

section.

The displacements are restricted as in the homogeneous

deformations to small displacements. Homogeneous here is equivalent to 

the macroscopic sense that is that there is no departure from uniform 

density. At the atomic level this can be taken to be equivalent to the

requirement that the initial unit cell remains a unit cell of the

deformed lattice. In this way the atomic displacements in a

homogeneous deformation, can be written as

more detail in section 1.5). The strain coefficients specify the

coordinates of the atom with respect to some crystal fixed origin. The 

shape and size of the unit cell is not sufficient to determine the 

atomic positions completely. Changes in atomic position may take place 

within the cell as a result of the deformation and these changes are 

represented by ua (k) and called internal strains (Cousins 1978). The 

unit cell index 1 does not appear since the displacement is clearly 

the same for all unit cells. It is recognised at this point that the 

unit cell shape changes and the atomic displacements are not totally 

independent. In the extreme case of one atom per unit cell, the atomic 

coordinates determine the size and shape of the unit cell.

Elasticity theory focuses on the strains and the changes in

u

[1 .2 .1 ]

The coefficients u ^  are constants which may be identified with 

components of the strain in elasticity theory (strain is described in

change in shape of the unit cell. The symbol -SBg k represents the ̂V j
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atomic position ua(k) would be taken as zero. When we generalise this 

idea we can see that only relative changes in atomic positions 

contribute to [1.2.1].

A formal expansion for the change in energy density in terms of 

the coefficients in [1.2.1] is written down as

^= Z {«K<k) + Z <ap)v + s E Z {«p}u«(k)up(k,)
ka a|3 ka k'|3

+ Z Z { « K(k)upy + I Z Z { apyX }w-
ka a0 yX

[1.2 .2]

The linear coefficients of u ^  may be identified with the elastic 

stresses in the initial configuration. If we require that the system 

is initially stress free then the linear coefficients must vanish

{«£} = 0.

[1.2.3]

Correspondingly the linear coefficients of ua(k) represent the force 

acting on the atom must also be zero if the system is initially in 

equilibrium then

[1.2.4]



- 19-

Bo rn has discussed this in detail and points out that for an infinite 

crystal system, both conditions are necessary for equilibrium.

As with the potential energy parametric theory, AT must be 

rotationally invariant. At the level of the homogeneous deformation

[1.2.1], this implies that the antisymmetric part of u ^  which is 

wholly rotational gives no change in the energy density. In 

consequence all coefficients are symmetric to interchange of a and 0.

{a0} = {0a},

[1.2.5]

{a0,y\} = {0a,?X} = {a0,\?},

[1.2 .6]

[1.2.7]

For a system initially at equilibrium the linear terms in [1.2.2] 

vanish. The quadratic terms now lead the expansion. They involve not 

only the macroscopic but also the internal strains which do not appear 

directly in the macroscopic theory. It would be expected that the 

atomic displacements within the unit cell would be such as to minimise 

the rise in energy density. In this way

6AT

dua(k) i a 0 h s (k,) I
[1.2.8]



so that the internal strains and external strains are related. Since 

only relative atomic displacements contribute (this can be thought of 

as a consequence of translational invariance), the matrix of 

coefficients of internal strain is of rank (3n-3). A convenient 

procedure is to fix ua(l)=0 and to invert the square matrix of order 

(3n-3). This leads to

[1.2.9]

i*Where k,k’= 2,3...n and {ka:k’0} is the inverse matrix. Substituting

corresponding coefficients can be identified with the elastic moduli 

of conventional elasticity theory

ua

back into [1.2.2] leads to a term quadratic only in uap* The

[1.2.10]
in which

k k * jJLV

[1.2.11]

The coefficients {ka:k’j5} may be discussed in terms of lattice
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vibrations. It has been stated that ^ is the potential energy density 

and 0 (in section 1.1) is the potential energy. The two may be related

<D = Nva'P,

[1.2.12]

in which v is the volume of the unit cell and N the number of unita

crystals. In the development of T described in this section, attention 

is confined to displacements in which the unit cell is preserved i.e. 

a homogeneous deformation. The quadratic terms in the expansion of the 

potential energy are from [1.1.1]

illlk afl 1 ' k ’ r

1 1 \ f >l f \ 1 '
uaJ . k ,U0 k ' v. J

[1.2.13]

which becomes (if attention is restricted to homogeneous deformations 

and account taken of lattice translational invariance of the force 

constants)

ka k'p l
[1.2.14]

Comparing [1.2.12] and [1.2.2]

= v I 4)

[1.2.15]
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In this way, the internal strain coefficients can be identified with a 

block of force constants in the lattice vibration problem. Furthermore 

in terms of translation symmetry, the force constants block 

corresponds to zero wave vector. The corresponding vibrations are 

potentially allowed in optical transitions and hence information about 

the internal strain parameters is in principle obtainable from 

spectroscopic measurements. The vibrations corresponding to the force 

constant block [1.2.15] always include three zero frequencies 

representing lattice translation. This is in line with the general 

result from solid state physics that for there to be optical branches 

in the lattice vibration dispersion curves at least two atoms per unit 

cell are required. In a favourable case such as diamond, there is only 

one non-vanishing force constant, the value of which may be deduced 

from the Raman spectrum.

In the expression for the elastic constant [1.2.11], it is the

inverse of the force constant matrix which appears, an element of

which is known as a compliance constant.

1.3 CENTRAL FORCES AND THE METHOD OF LONG WAVES

When a specific assumption is made about the form of the 

potential function 4>, it becomes possible to write down the energy 

density ¥ and hence determine explicitly expressions for the 

coefficients in the homogeneous deformation expansion. The most usual

choice has been the two atom (central) interaction (Epstein 1946,

Zener 1947).

In this case, the potential energy has the form
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4>■ill’ 1 l 
k k

1 k 1 » k
[1.3.1]

where T(lk:l,k’) is the pair potential for the two atoms indicated. 

The factor one half appears because each pair is counted twice. If 

attention is restricted to homogeneous deformations, the value of the 

sum over 1 for a fixed value of 1’ is independent of the value of 1’. 

Hence in the case of a homogeneous deformation

4) 1 o
k k

1 k
[1.3.2]

and the energy density from [1.2.12] is

2v XX- L 0 
k k

1 k k
[1.3.3]

As described in the last section, in a homogeneous deformation each 

atom is displaced by an amount depending on both the internal and 

external strain. Each pair potential depends on only one independent 

variable which will be taken as the square of the distance separating 

the two atoms. Expansions will be written in terms of derivatives with 

respect to this variable with the dependence on atomic Cartesian 

coordinates being written explicitly. In this way, the first two terms
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in an expansion describing atomic displacements for a single pair 

potential term may be written

r(|x|2)[2V * a A*a + V W ) 2] + 2r'(|x|Z)[ y « aA*a ],
a a a

[1.3.4]

and by extension, the total energy change per unit cell to the same 

degree of approximation has the form

r
k k

f
1

s
1 '

f > 
0 1 2 IX -  X1

V k 1
>

a

\ / > 2
| 0

-  u
ocl kJ  \ .

+ 2V' 'k k

IWM
r
1

f  > 
1 ' f 0  | . 2

x -  X1
V k * I K , k J ‘ >

-  'SB
(X OC - u.a

[1.3.5]

where ¥ , , refers to the potential function between particles of theb k '

type k and k ’. For a homogeneous deformation, the substitution

s f >
l ' 0

U -  Ua
V

k 'V. a k ) = V k’) - V k> + Y u
0

[1.3.6]
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leads to an expression for the energy density given below

u = - - 2

X E ua (k)up(k,)
kOC k ’0

+ 25kk- 1  :)
\ / j > \ J.

-4

I w* I [r'wA]x(i:»)
a07^ 1 ' k' k

[1.3.7]

To shorten this very complicated expression, the convention is adopted 

that all items within square brackets refer to the atom pair specified 

immediately after the brackets

The equilibrium conditions (corresponding to [1.2.3] and [1.2.4]) 

have the explicit form
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[1.3.8]

By comparison with [1.2.2], expressions for the various elastic 

coefficients can be deduced. In particular, it is noticed that for the 

particular case of central interactions, the coefficients have 

additional symmetry properties. They are in fact symmetric to exchange 

of all Greek indices in contrast to [1.2.5] to [1.2.7].

It has already been mentioned that the Born theory starts from 

the potential energy function <E> and expresses crystal properties as 

far as possible in terms of the Taylor expansion coefficients. A 

connection is made with elasticity theory by noting that acoustic 

branch lattice vibrations and elastic waves become identical in the 

limit of long wavelength. For a particular direction of wave vector, 

the elastic dispersion curve is a straight line to be identified with 

the limiting slope of the corresponding acoustic branch. The theory is 

set as a perturbation expansion and known as the method of long waves.

The equation of motion is written as

1 ' k ' 0

[1.3.9]

and becomes after taking the Fourier transform of the above equation
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“\(k) =' 11 q
k k Wp(k’).

k »  0

[1.3.10]

Where the coefficients are defined as

«0
q

k k m. in. ) 1/2V  $k k
i —i 
k k

exp< -2Tttq.
f f  >

1
r  y 

1 J >
& -  -0E

, k > k 'V. J >

[1.3.11]

The coefficient Ca^(q:kk’) is expanded in powers of the magnitude of q 

for a particular direction of the wave vector. A perturbation 

parameter X is introduced by writing Xq in place of the wave vector. 

The perturbation expansion is

q
k k ,) = c ^ ’(kk’) t ^ ’|7(kk>)qy + x2C«^yX<kk,)V x  +

[1.3.12]
in which the coefficients are

(V k ' )  7
C (kk’> = 7 7 7 - 7 1 / 2  Z  v = < £ > • » ,

c (1> ( k k M  ~2TtL'ap,y 'kK ' - , ,i/2 Z k k’.& = -c^ , V k’k>-

-4ft
t \1/2

k k * 1

y  * „f 1 i« f 1 i*.f 1 ) =/  , a | 3 [  k k ’ J k k ' J  k k ’ J

= Ca|!xy (kk’> = Cp«!7X(k’k)-

[1.3.13]
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From the above equations the zero, first and second order equations 

are obtained. The zero order equations are satisfied by making an 

arbitrary choice for the three independent polarization vectors of the 

plane waves. The first order equations give the relative displacements 

of the various atoms in any unit cellj these are known as the inner 

strains which occur when the crystal is deformed homogeneously. The 

second order equations provide the characteristic determinant from 

which the vibration frequencies and the corresponding directions of 

particle polarisation can be deduced (Huntington 1958).

The macroscopic equation describing elastic waves is given as

and we substitute the expression back into [1.3.14] then we have

[1.3.14]

where p is the mass density. If we consider an elastic wave

u(x,t) = u exp{2rctq.r - hwi}t

[1.3.15]

0
[1.3.16]

We can compare this equation to that obtained by the method of long
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waves which is given as

a)(l) Ua (j)

in which

and

= 4 n [of0,yX]q^qx + ^  (ay,0X)qyqx ^(j).
yx

[1.3.17]

[«/5,-yX] = (87i2v J _1 )  / ( m kmk J C ^ ^ k k *

k k
[1.3.18]

(onr.pxj = - (4K2vm)-' £  £  V (kk,){ & « ! > (ks)/m.}
k k '  flV

[1.3.19]

Where s=k’’ and t=k’’’. Matrix r (kk’) in Born’s notation is
r t

identical with the compliance matrix {kp:k’̂ } in [1.2.11].

The brackets satisfy the the symmetry relations

[ a 0 ,y X ]  = [ 0a ,yX ]  = [a /3 ,Xy] ,  

( a 0 ,y X )  = (0 a ,y X )  = ( y X , a 0 ) ,

[1.3.20]

For the two expressions [1.3.16] and [1.3.17] to be identical we must 

have
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Y Ccry,0Xq y qX "  Y + (oQf’ 0X ) f qy qX*
yX yX ^ '

[1.3.21]

The solution to the equation above is

c«y^x = + [?0>aX] - [?a >0x] + (ay>Px),

[1.3.22]

where the solution holds subject to the following conditions

[oc£,yX] = [ y X , a £ ] .

[1.3.23]

The treatment given by Born and Huang does not yield an explicit 

expression for the pressure, since it cannot be expressed in terms of 

the derivatives of the total crystal potential energy. Hence the 

second equilibrium condition for a crystal (that the equilibrium 

configuration correspond to vanishing stress) cannot be incorporated 

into the general theory of lattice dynamics, in which only the 

derivatives of the crystal potential energy appear. A specific lattice 

model, e.g. one in which the atoms interact through central forces, is 

required before an expression for the pressure can be obtained.

1.4 CRYSTAL STABILITY

A structure cannot exist unless it is mechanically stable, 

(Born 1940) that is, unless any small distortion raises its energy. 

There may be more than one structure which is mechanically stable for
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a given force law, and one of these is the structure of lowest energy. 

The usual method of investigating such stability of a crystal lattice 

consists of comparing its lattice energy with that of other possible 

lattices built from the same particles. This method is not very 

reliable because of the small energy differences between the different 

lattice configurations.

Monatomic lattices are generally face centered cubic or 

hexagonally close packed, there occur only a few body centered ones 

while simple cubic lattices seem not to exist. There is another 

stability criterion in which we can distinguish between absolute and 

relative stable configurations namely the positive definiteness of the 

elastic energy. From our expression for the homogeneous deformation 

the energy density [1.2.10] depends only on the symmetrised 

parameters

uaf3+u(?a-
[1.4.1]

By making a Voigt cotraction we use instead of u^:

s = u D+u0 p ap pa

= U«0

0*oc

0=a

[1.4.2]

where the indicies where p=l,2,...,6 are related to the tensor 

indices «,0 as follows:
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p 1 2 3 4 5 6

(<x,p) 11 22 33 23(32) 31(13) 12(21)

[1.4.3]

Hence the energy density becomes a quadratic expression in s^, which we 

may write as

¥ - - c s s ,2 L, po p o ’
pa

[1.4.4]

where p=a|3 and o=y\, The coefficient of the above equation are the 

elastic constants which can be written into a matrix form

C11 C12 ° 1 3 C1 4 ° 15 ° 16
C21 °22 °23 °24 C25 °26
C31 °32 C33 C34 C35 °36
C41 C42 C43 ° 4 4 C45 C46
C51 °52 C53 C54 °55 °56
C61 °62 C63 C64 °65 C66

[1.4.5]

Then the above quadratic form is positive definite if the determinants 

of the matrices of successive orders (principle minors) are all 

positive. Cubic symmetry leads to three independent elastic constants 

which are taken as c.„, c„„ and c, - The Cauchy relations which give1 1 1 2  4 4
the result that c„ =c , so that we only have two such elastic12 4 4
constants.

The matrix of the coefficient has then the following form
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C11 C12 C12 0 0 0

CM

o

C11 C12 0 0 0

° 1 2 ° 12 °11 0 0 0
0 0 0

c 4 4
0 0

0 0 0 0
C 4 4

0
0 0 0 0 0 c

[1.4.6]

We can split the matrix above into characteristic determinants into 

two products

C 1 1 C  1 2 C 1 2 ° 4 4
0 0

C 1 2 C 1 1 C  1 2
0

° 4 4
0 =

C1 2 C 1 2 C 1 1
0 0

° 4 4

[1.4.7]

For these to be positive definite we must have that

c + 2c. > 0 c - c._ > 0 c =  c > 0
1 1  1 2  1 1  1 2  4 4  1 2

[1.4.8]
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Inflexion point

A typical curve for the potential function is depicted above in 

fig. [1.4.1]. We suppose that the potential is of the usual form 

assumed for explaining the binding energy of a diatomic molecule : it 

has a sharp minimum at r=PQ, at which repulsive and attractive

forces balance out and tp'=0.

If we consider as Born does the grouping of lattice points 

according to their distances from the origin then different groups 

will lie on successive shells with an associated radii. The nearest 

neighbour distance which is equal to the innermost non-vanishing shell 

of a lattice is in general very close to pQ, since the particles 

interact predominantly with their nearest neighbours. If the shell 

next to the to the innermost one falls beyond the inflexion point 

where y>'' (r ) is negative then it will contribute a negative force



-35-

constant value.

The size of the contribution of this next shell will then 

determine whether the elastic constants [1.4.8] obey the inequalities 

so that the matrix [1.4.6] is then positive definite and hence the 

crystal structure stable.
2Since the gap between PQ and the inflexion point is very narrow 

for central force potentials some lattice structures such as the 

simple cubic will always find themselves unstable since the second 

shell is always found to lie beyond the inflexion point and hence give 

a large negative contribution so that the inequalities are no longer 

valid. This is not found to be the case for the b.c.c. or f.c.c. where 

the contributions by the second shell of atoms although still negative 

are not large so that the inequalities are still obeyed.

1.5 ELASTIC CONSTANTS

When we are considering the problem of finding formal relations 

between elastic constants of a crystal and the interatomic forces 

through which the atoms are supposed to interact the question arises 

as to the choice of whether to use infinitesimal or Lagrangian strain. 

We can make a distinction between three different types of elastic 

constants (Martin 1975) depending on whether we use the infinitesimal 

or Lagrangian description of strain these are:

C C' CIJ i j k l  i j k l

Brugger Linear Effective
Elastic Constant Elastic Constant Elastic Constant
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(i) The Brugger constants are coefficients in the expansion of the 

energy density in powers of the Lagrangian strain. Wallace (1972) in 

his definitions has these constants written down in his expansion as 

the C . , coefficients.ijkl
(ii) The linear elastic constants are the coefficients in the

corresponding expansion in the infinitesimal strain. Wallace has these 

written down as the A. , coefficients.i j k 1

(ii) The effective elastic constants are the coefficients determined 

from the velocity of sound waves whose theoretical values come from 

the method of long waves.

The thermodynamic definitions of the Brugger elastic constants are:

6F r _ d2F
i~ ^0 drjj ’ i-i” drjj

[1.5.1]

The isothermal constants are found by taking F as the Helmholtz

free energy and differentiating at constant temperature. The major

advantage of using the Brugger constants over the linear constants is

that they have the symmetry properties associated with rotational 
iinvariance.

If we have a vector r° in the unstrained crystal then under a 

strain the vector r° goes to r and we can write down the change in the 

vector as

lIn h i s  d i s c u s s i o n  S t a k g o l d  ( S t a k g o l d  1950) n e v e r  a c k n o w l e d g e s  the
e x i s t e n c e  of s t r a i n  t e n s o r s  o t h e r  th a n  L a g r a n g i a n  or B r u g g e r  e l a s t i c  
c o n s t a n t s  a n d  c o n s e q u e n t l y  in d i s c u s s i n g  B o r n ' s  w o r k  he i n t e r p r e t s  his 
r e s u l t s  as a p p r o x i m a t e  to t h a t  of the B r u g g e r  c o n s t a n t s  n e v e r  as the 
e x a c t  r e s u l t s  of the l inear c o n s t a n t s  t h a t  t h e y  are.



-37-

2 , 0,2 n V  0 0r - ( r )  = 2 }  H. .r.r ..
L a 1 j
i j

[1.5.2]

2Where the derivatives of r is (we also make a Voigt contraction ij=I)

% r ~  = 2r°r° = 2X , ^  ■ = 0.d Hj 1 J i* 3 ^ 3 ^

[1.5.3]

We can see that the first derivatives are independent of the final 

state of strain while the second derivatives are zero. This is true 

for both final state of zero or finite strain. We can write down the 

derivatives of the many body potential $ asM

-M(M-1)2

■ E
ŝ.

3s. 3rj = 2X,
ao__i
3s

i = 1
[1.5.4]

The derivatives with respect to s. are taken with other components of 

s fixed and the derivatives with respect to with other components 

of rj fixed. We simplify the notation slightly by defining the operator

D. 2X 3s

[1.5.5]
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The expression for the elastic constants may be written as

00
C = y  L DM$ , i m  I m ’

M= 2

00

[1.5.6] 

C = Y  L DMD %  .I J M I J M
Ms 2

[1.5.7]

Where L is the inverse volume of the unit cell which is defined laterM
on in [2.1.7], The rotational invariance reduces the number of elastic 

constants from 81 to 21 and the crystal symmetry reduces the number 

further still. The second order elastic constants have the following 

symmetry properties

[1.5.8a]

[1.5.8b]

[1.5.8c]

The first order elastic constants are also symmetric under interchange 

of indices

C. .= C...
1J j 1

c = cijkl j ikl

c = Cijkl i j 1 k

C = Cijkl k 1 i j

[1.5.9]

This reduces the number of independent first order constants from nine 

to six. Examining the Brugger, linear and effective constants will



show that the elastic constants do not always have the symmetry 

properties of [1.5.8] and [1.5.9] and certain specific conditions have 

to be met before any of the elastic constants can have such symmetry.

The Brugger elastic constants always have all the above symmetry 

properties, that is the use of the Lagrangian strains automatically 

ensures that the symmetry properties [1.5.8a] and [1.5.8b] hold. Also 

from the definition of the operator in [1.5.5] we see that the 

operators and d” commute so that C * so that condition

[1.5.8c] is also -'fulfilled.

The linear elastic constants are defined analogously to the 

Brugger constants [1.5.1]

Where the energy density ¥ is defined later on in [2.1.8]. We have the 

differential of the configuration vector s analogous to [1.5.4]

a2-?
ijkl du dui j k 1

[1.5.10]

[1.5.11]

Which is in agreement with the Lagrangian strain result at zero strain



MAgain we define an operator D _  so that for the first order linear 

constants at zero strain order we have the analogous result of [1.5.6]

VJU

c- •= y lhd" v»J L a  H ij M
M = 2

[1.5.13]

MThe operator D is symmetric under interchange of indices, i and j 

and hence at zero strain only

c: .= C' .. 1 j 1 j

[1.5.14]

Hence from [1.5.11] we can see that this symmetry is destroyed at 

finite strain except in the special case of a uniform dilation 

u..= X5.. then the symmetry still holdsi j i j

2(6 +u )«0«0 = 2(6 +X)«°«° = 2(1+X)«°«°.k i k i  k j  ki k j  ij

[1.5.15]

For the second order linear constants we require the evaluation of the 

equation
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324> 3$ 32s 324> 3s 3sm M 1 M i j
3u 3u, , 3s. * 3u. ,6u, + 3s.3s. * 3u.. * 3ui j k l  l i j k l  i j  ij kl

[1.5.16]

The derivative with respect to the strain of the configuration vector 

is

3 s
r—  = 26. X. . .3u. ,3u, , ijkli j k 1

[1.5.17]

At zero strain only we can use [1.5.12] to obtain.

324>
-75--- ■£—  = (DM DM + 6  DM )4> .3u 3u i j k l  i k j l  Mi j k 1

[1.5.18]

Hence we have an expression for the second order linear elastic 

constants (at zero strain only)

co
C' : V  L (DM D %  + 6 DM *ijkl M v ij kl M i k j l  M

M = 2

[1.5.19]

M MThe first term in [1.5.19], D. .D, corresponds at zero strain to thei j k 1 M

Lagrangian expression [1.5.7] and has therefore all the associated



Msymmetry. The second term 6 D.,$ has a more restricted symmetryl k j l M

which is the interchange of i and k and of j and 1. For the full set 

of symmetry properties to apply the condition of zero strain is 

identified as the equilibrium state of the crystal as well as the 

state of zero stress. At zero stress the first order elastic constants 

Cj are zero (from the equilibrium condition) so that the term
M [1*5.19] also vanishes so that under this condition sox k j 1 M

that

C' CTT. (at zero strain, at zero stress)i j k 1 I J

[1.5.20]

Hence under the condition of zero strain and zero stress all the 

symmetry properties of the linear elastic constants become equivalent 

to those of the Brugger elastic constants. The effective elastic 

constants are defined by (Hedin 1960)

C = C' + C' 6 - C' 6 .ijkl ijkl il jk i j k l

[1.5.21]

At zero strain, u= 0, which need not correspond to the state of zero 

stress, we can use [1.5.19] to obtain

C = CB + (CB 6 + CB 6 - CB 6 ).ijkl ijkl v i 1 jk j 1 ik ij kl'

[1.5.22]

Where the subscript B indicates a Brugger elastic constant. We can see 

that from [1.5.21] that the effective elastic constants posses only



the symmetry property [1.5.8a]. In the state of zero stress or under 

uniform pressure the full set of symmetries [1.5.8a], [1.5.8b] and

[1.5.8c] are recovered.



CHAPTER 2

THREE BODY POTENTIAL I

2.1 Introduction

2.2 Definition of Energy Density

2.3 Force Constants and Internal Strain

2.4 Homogeneous Deformation
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2.1 INTRODUCTION

The potential energy of an assembly of N identical atoms at 

positions R„,R --.R„ can be written as a sum of contributions from1 2  N

different orders of many body interactions. Thus quite generally we 

can write

where the summations are restricted so that no two indices take the 

same value. Terms and are only included for generality, since 

can be set to zero by suitable choice of arbitrary origin of energy 

while $ accounts for the potential changes due to external fields. 

The terms $ , etc are contributions to the energy from two atoms 

three atoms etc.

Each term in the expansion has a simple interpretation; $2 is the 

interaction of two isolated atoms and $3 is the excess energy of an 

isolated triplet of atoms, not accounted for by the pair term $ . In 

general $ is that part of the energy of an isolated cluster of MM
atoms not accounted for by lower order terms. This definition is an 

extension of the concept of a test particle to measure the field 

strength of a field corresponding to term $ . Here we employ 2,3...N 

particles to measure the strengths of the many body interactions 

$ .0 There are other ways in which many-body interaction terms2 3 N

may be defined, examples are valence potentials and expansions of the

N N N

i = i i = l j = i

N N N

i = 1 j = 1 n = 1

[2.1.1]
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lattice energy in terms of displacements.

The geometry of a cluster of M atoms is completely specified by M 

vectors R .R_...RU that is by 3M real numbers. However, it is1 2  M
desirable to specify the cluster configuration in a way which is 

manifestly invariant under rotation and translations. In this work we 

are interested in the three body term and hence if we consider a 

triplet of atoms, where M=3

3

Fig. [2.1.1]

we can see that three numbers are needed to describe this triplet 

sufficiently to determine the energy and these numbers are clearly 

those required to specify the triangle formed by the three atoms. From 

the geometry of the triplet we have three possible sets to choose 

from:

i. the lengths of the three sides R12> R23 and R31>

ii. the lengths of the two sides and included angle eg- R R „ and Q
°  °  1 2  1 3  1

iii. two angles and the length of one side, e.g. R , 0 and &2■

The first set (i) has coordinate system which treats the three atoms 

as equivalent and hence exhibits symmetry between the indices while 

set (ii) is preferable when valence potentials are used to describe 

the triplet of atoms.

If we use relative coordinates R12> R23 and R of the atoms and
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take scalar products of these vectors we can see that the lengths R12» 

R , R and angles 0 , 0 and 0 are expressible in terms of scalar
2 3  3 1  * 2  3

products of the three vectors. There are six such scalar products of 

which only three are independent, since any cross term can be written 

in terms of the square of the vectors.

For example

Thus the three body interaction term 4> can be written as a function

which is a point in a three-dimensional scalar product space. Each 

term in the cluster expansion [2.1.1] can be written as a function of 

a configuration vector s

[2.1.2]

2 2 2of R„. R„„ and R„„ which in turn is describes a vector s in a
1 2  2 3  1 3

configuration space

S = (s,, s2> s3) = (R^2, R23, R31).

[2.1.3]

N N N N N

i = 1 j = 1 k= 1

N N N

i = 1 j = 1 n = 1

[2.1.4]



where s(i,j...) is the vector describing the configuration of the 

atoms i,j....

When we take the special case of the general assembly of N atoms,

where the atoms occupy the lattice sites 1 of a space lattice then the

cluster expansion becomes

1 1  1 1 11 2  1 2  3

•••♦;£-I v»> + ■•••
i i1 M

[2.1.5]

The number of terms is allowed to tend into infinity, and each term is 

summed over labels 1̂ , 1 etc. which run over the entire lattice. In

each summation the lattice site 1 can be used as the origin of 

coordinates. We can thus rewrite $ as a potential energy per atom:

4./N = $2

la

•••+ 5 , 1  •••! V s> + ••••
1 12 M

[2.1.6]

It is assumed that the interaction terms are such that [2.1.6] 

converges. We can make the notation simpler by denoting the operator
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'M = »!v, Y. " Z  '

[2.1.7]

where v is the volume of the unit cell. Then the energy density ¥a

becomes

f = L $ + L 4> + L $ + _
2  2  3  3  4  4

[2.1.8]

and this series can be extended to an infinite number of terms. This

reduction in the number of summations is possible only in a perfect

lattice, since in that case the sumands can be expressed in a form

independent of 1 .

One such term is the L which is2 2

L2 2 (s) = —2 2v I 4> (l2) = —2 2 2V I
[2.1.9]

This gives the bond energy per unit volume of a crystal, assuming a
2pair potential *&2(r ) interacting between atoms a distance r apart. 

The label j labels all the atoms of the crystal: r is the distance of 

the atom j from the origin, which is some lattice site.

2.2 DEFINITION OF ENERGY DENSITY

If an elastic body is considered as a continuum, the existence of
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a "strain energy density" can be ascertained.

From the atomic theory of elasticity, we can deduce the existence 

of an energy function of the internal forces between particles. This 

energy function can be expressed as a function of a defined strain. In 

the case of a monatomic crystalline body, this energy function 

corresponds to the strain energy density of a continuous body. We can 

write the energy density as

* =
[2.2.1]

We assume the existence of a suitably convergent series expansion for

m = V + ^ 0 u 0 + A 0 u 0u . +

[2 .2.2]

A feature of a two-body interaction is that special relationships 

apply. Examples are the Cauchy relations between the elastic constants 

(of which the coefficients °f the quadratic term in our

expansion are involved) which lead in an appropriate cubic crystal 

case to their being two independent elastic constants instead of 

three. These features are not expected to persist for three atom 

interactions and it is part of the objective of the present work to 

give a full account, parallel to that of Born and Huang (1954), for 

the three body case. Ostoskii and Efros (1961) write down general
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expressions for the energy density in a lattice with respect to such 

non central interactions.

Extending our previous notation to include different atoms in the 

unit cell the two body interactions lead to a potential energy 

function of the form

Here 1 denotes a unit cell and k labels the atom within the unit cell. 

Summing over all atoms in the crystal has the effect of counting all 

pairs of atoms twice. It simplifies the notation if the one atom term

is left in the sum but is formally regarded as a null function. This 

limitation on the potential function is sufficient to enable an energy 

density function to be defined for homogeneous deformations. For an 

assembly of N atoms the energy function is given as

k J
l ’ k ’ ik

[2.2.3]

[2.2.4]

o
k J

[2.2.5]

so that the energy density can be written down as
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V = O/Nv

[2.2.6]

where v is the volume of the unit cell. Combining [2.2.5] and [2.2.6]a

we have an analogous expression for [2.1.9] for more than one atom per 

unit cell

1 ’ k ’ k

[2.2.7]

The corresponding equations for three atoms interactions are readily 

written down

<D■till1 ' 'k'' l'k'

[2.2.8]

The corresponding energy density expression is given by

11'kJ'1'k'

[2.2.9]

The usual way of developing these functions involves a series

expansion for the energy density in terms of the Cartesian

displacement components of the individual particles. After such an
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expansion is obtained, the displacement is expressed in terms of the

local strain and then substituted in the expansion.

2.3 FORCE CONSTANTS AND INTERNAL STRAIN

In this section we collect some of the expressions for the

contribution of the three body interactions to the Taylor expansion of

the potential energy function $. These would be necessary for

calculations of lattice vibrations but they can also be related to the

internal strain constants which are of interest here.

Assuming for simplicity that only three body interactions

contribute, the potential energy may be written

Taking account of the fact that the triple potential depends only on 

the squares of the length s of the sides of the triangle

lk 1 ' k' 1 ' ' k ' '

[2.3.1]

A linear coefficient in the expansion is simply represented by

l'k' 1 ' ' k ' '

[2.3.2]

l'k' 1 "  k ' '

[2.3.3]

in which
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r i * * i * i 
( k k '  ) I k ' ’ k' k

[2.3.4]

For quadratic coefficients, only a term coupling two different 

atoms is written explicitly. In the notation of [2.3.2]

4> 1 1' .  \ 1 ' ' 1 ' 1 \
f > 

1 1 '
k k 7

J -  1 k ' ' k ' k J OC0 k k *
< j

1 ' ' k

and in the form corresponding to [2.3.3]

[2.3.5]

4> r , ,.-j 
I k k',

= -4
1 ' ' k

'

( k k ' ) ( kk [ 1"  * '  1 U  f 1 ' ’ W 1 ■' )k ' '  k ' k J OC k k ' J k k'

V "  f i ' * 1' i 'J f 1 I’"! f 1" lO
( k k '  ) ( k ' k '  ' ) [ k * ' k' k J k k ' J  k ' '  k ' J

+ r '
( k k " * ) ( k k f *”  *’ 1 U  f 1 ‘" U f i f 1 l'l» ) [  k ' ' k'  k J k k ' ' J  0^ k k' J

r # f l' 1 U  f 1 ‘" U  f( k k ' ' ) ( k ' k ' ' ) ^  k ' ' k'  k J k k ' ' J  0  ̂ k ' '  k'

- 26 V  r  f *' 1 ] 
a 0 Z-i  ( k k ' ) [  k "  k* k J ‘

1 ' ' k

[2.3.6]

Second derivative coefficients are indicated by an extension of the
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notation in [2.3.4].

r
f > 1 * ' 1 ' 1

f
2 ( 1 * * 1' 1  ̂8 1)(kk' ' ) k ' ' k ' k ■X _/J

[2.3.7]

The term in (l’k’)3(lk) may be deduced from the translation invariance 

condition [1.1.4]

a/3
l l 
k k = - V *  r 1 Li

L , aP l k k\1 ' k

[2.3.8]

In which the sum excludes (lk) i.e. the sum is taken over all 

atoms in the lattice except (lk).

In the context of this thesis, attention is being focused on the

elastic properties. In the general form of homogeneous deformation

theory developed in section 1.2, the internal stain parameters are 

defined in terms of force constants in [1.2.15] which is repeated

here.

= v I •*(i M
[2.3.9]

in which it is recalled that v is the volume of the unit cell. Whena

k^k* the complete expression is obtained by substitution of [2.3.6]
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in to [2.3.8]. When k=k*, a few elementary manipulations lead to

Examination of this expression shows that the sum is taken over atoms 

in all sublattices except that of the origin atom. Comparison of

[2.3.8] and [2.3.9] shows that the lattice invariance relation for 

internal strain parameters is

and this leads to a matrix of rank (3n-3) as expected.

2.4 HOMOGENEOUS DEFORMATION

The parametric theory of homogeneous deformation developed in 

section 1.2 is now given its specific form when three body 

interactions are assumed. The treatment will parallel that given in 

section 1.3 for the case of two body interactions.

The energy density is given by

1' k'7*k

[2.3.10]

[2.3.11]

lk  l ' k '  1 "  k "

[2.4.1]

and its change is determined for a homogeneous deformation in which



each atom is displaced by an amount

a , i ) = u« (k)  + I"
0

(:)■
[2.4.2]

As with the two body case, the expansion is expressed in terms of the 

derivatives of three body terms with respect to the square of a 

distance. For two bodies only one distance is concerned, but for three 

bodies there are three distances, the lengths of the sides of the 

triangle formed by the three atoms.

First, all terms derived from first derivatives are collected. 

These correspond to the first two lines of [1.3.7] in the two body 

case.

(k) +
k a

I v k> v )  I  I  & « ■ > (  ° H (  ° )
0  ^ ’k' ' l 'k' k

It
<*0

<*0 5 Ivin) [ i l l
•-19 9 \, 9 9

[2.4.3]

Careful examination of this expression shows that it is exactly 

parallel to the two body case except that there is an additional



lattice sum (over l ^ k ’’). It is also seen that the same coefficient

(in the large square brackets) multiplies the linear deformation and 

some quadratic terms. The equilibrium conditions demand that the 

system is both stress free and force free and this in turn leads to 

the condition that the sums in square brackets vanish corresponding to 

the earlier [1.3.8],

Assuming the system is initially in equilibrium, expressions for 

the general elasticity parameters using the notation of [1.2.2] may be 

written.

r ’ k ”  1 1 k * k

[2.4.4]

and for the cross term between external and internal strain
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a. py
1» k

( k ' k ) ( k , k)
1' 0

>
IB

f
i »

>
0

k ’ k
d y . k ' k

+ r ' r i> ° r ° u  { i”  ° i( k ' k ) ( k ' ' k ) ^  k'' k ’ k J k>' k j k'' k J

+ V
( k ' k ) ( k ' * k * )

1 ' ' 1 » 0 }  

k ’ ' k * k J
-SB,

1 ' ' 1 
k * * k

'SB 1 ' ' 1 ’’j
, k -  k ' J

[2.4.5]

The final coefficient, coupling the internal strains, has been given 

explicitly in the last section equation [2.3.9] and preceding 

expressions.

It will be seen that the coefficients satisfy the symmetry 

relations [1.2.5] to [1.2.7]. These arise from rotational invariance. 

Closer examination shows that the first term in both [2.4.4] and

[2.4.5] corresponds to a two body term and exhibits the characteristic 

additional symmetry in the Greek indices. In these terms the second 

derivatives is taken with respect to the same square distance twice 

and is multiplied by components of this distance with respect to 

coordinate axes. The three body interactions enters only through the 

numerical value assigned to the derivative and the effect is only to 

change the magnitude of the two body effect. On the other hand it is 

seen that the way in which three body effects are directly manifested 

is by the occurrence of products of Cartesian coordinates for different 

pairs.
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As in general parametric theory, expressions for the elastic 

moduli can be worked out using [1.2.11]. The three body contributions 

to the various parameters having been given in this and the preceding 

section.
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CHAPTER 3 

THREE BODY POTENTIAL II

3.1 Introduction

3.2 Definition of Energy Density

3.3 Calculation of A. . for Three Body Potentiali jkl

3.4 Translational Invarience

3.5 Definition of Three Body Parameters
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3.1 INTRODUCTION
For convenience we switch to a slightly different notation 

(Wallace 1972) than in previous chapters. We now label the atoms by 

the letters M,N..., the unit cell by the Greek letters and use

the subscripts i,j... for the Cartesian indicies. The equilibrium 

position of the atoms are given by the vectors R(M) and the 

displacement are denoted by U(M). The potential energy of the crystal 

due to the interactions amongst the atoms in a given configuration is 

0; this is presumed to be an analytical function of the positions of 

the atoms and hence it may be expanded in the displacement from an 

arbitary initial configuration

Here 0Q is the potential of the interaction among the atoms where they 

are all located at their initial equilibrium position R(M). The

0 = 0 +o
M i  MN ij

[3.1.1]

coefficients O.(M), 0 (MN)... are derivatives of the potential

defined at the equilibrium configuration

0.(M) = dU.(M) J o ’

0. (MN) = a2o
V au. (M)au.(M)Jo*i j j

[3.1.2]
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We now extend the above expression so as to include a general three 

body potential expression for the energy density. Before this is 

possible we need to choose a set of coordinates so that we define the 

geometry of a triplet of atoms in our crystal stucture. There are 

various sets of coordinates for defining the geometry of the triplet 

and for example spectroscopists will generally favour valence 

coordinates that is a mixture of bond length and bond angles. Our 

triatoraic system can have any of the three possible coordinate systems 

as shown below

B B A

Fig. [3.1.1]

In (a) and (b) one of the atoms has been placed in different context 

than the other two and only in (c) do we have a coordinate system 

which treats the three atoms as equivalent.

Coordinates (a) are most favoured for analysing the vibrational 

states of ABC triatomic molecule because for small displacements from 

equilibrium the potential energy can, to a first approximation be 

written as sum of quadratic terms in the displacements

2V = + k 2Ar  ̂ + k^Aoi2 .

[3.1.3]
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The force constants are now derivatives of the potential with respect 

to changes in bond lengths Ar1? Ar2 and angle changes Aa.

If the coordinates (c) are used then because of the symmetry the 

most general expression for the expansion of the potential energy of 

the system in powers of the displacements of the nuclei from their 

equlibrium separation position is

where k and k2 are the force constants. In the central force 

approximation the cross terms vanish so that k2 is taken to be zero.

We can define the force constants from [3.1.4] in terms of the 

Taylor coefficients [3.1.2] such that for a three body potential ^(MNO) 

the coefficients can be written as

v = VQ+  ̂kt (Arl)2+ (Ar2)2+ (Ar3)2 +

+ k Ar Ar + Ar Ar + Ar Ar ,
2  1 2  1 3  2  3 ’

[3.1.4]

k1= <&. (MNO)(MN)(MN) = aZ4>(MNQ)
aU.(MN)3U (MN)’

k2= 4>. (MNO)(MN)(NO) = a23>(MN0)au.(MN)au.(NO)*

[3.1.5]

Where the force constants above correspond to k1 and k2 in

[3.1.4] respectively.



3.2 DEFINITION OF ENERGY DENSITY

The elastic moduli are now developed by a different route. This 

follows the ideas of Wallace (1972) who deals with the problems 

arising from infinite lattice model differently from Born, although 

the results ultimately have the same algebraic form as the method of 

long waves.

Wallace (1972) considers a finite crystal which has perfect 

lattice periodicity in the bulk, with departures from the regular 

structure near to the surface. It is assumed that the detailed effect 

of the surface is negligible in the bulk and that its overall effect 

can be represented in terms of a stress field arising from the 

external forces acting on the crystal surface.

In this way a strain expansion of the potential energy is made 

with only the surface forces assumed to be present. These surface 

forces represent arbitrary mechanical stresses applied to the crystal.

From the initial equilibrium configuration we let the ions 

undergo a homogeneous deformation given by the displacements

U.(M/i) = S.(/i) + y  u, .r .
L> 1 j J

[3.2.1]

Here the u _  are displacements gradients i.e. the strains and S(jLi) 

are the sublattice displacements which occur during the homogeneous 

strain. Because of the lattice distortions near the crystal surface, 

the displacement gradients may not be constant in the surface region, 

but this effect will be neglected so that we may consider the u _  

displacement gradients as constants. The crystal potential $ may be



expanded as

o I I
i j k l

[3.2.2]

This equation defines formally the A coefficients in terms of the 

potential energy coefficients.

To simplify the treatment, which is given in detail in this 

chapter, attention is confined to the example of one atom per unit 

cell. The homogeneous deformation is then given by

and from the expansion of the potential we place [3.2.2] into [3.1.1] 

so that

j

[3.2.3]

M  i j M N  i j k l

[3.2.4]

Comparing the above expression [3.2.2] the A coefficients are seen to
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We can interchange the origin of the coordinates within the crystal 

without altering the potential energy (this comes about as a 

consequence of the translational invariance) so that if we add an 

arbitrary vector we have

Y  $.(M)Rj(M) = ^  4>.(M)[Rj(M) - R.],
M M

[3.2.6]

where R. are the components of the vector. Hence it follows that A..,, j i j »< i
is independent of the origin.

We now wish to eliminate surface effects. This can be done from
'V

Aijki (Wallace 1972) by first calculating' $ per unit volume evaluated 

in the interior and then differentiating with respect to strain. 

Surface effects can be eliminated from A. , by taking the combinationi j k 1

symmetric in j,1 and evaluating in the interior. Defining this
A

combination as A. , we havei j k l

A., = - (A... + A.,, .),lkjl 2 ljkl llkj
[3.2.7]

so that from [3.2.5] we have

A ikjl= 5 V_1 T  4,ik(MN> [Kj (M)R1 (N) + B1(M)Bj(N)]
HN

=  -  \  V " 1 V V k ( M N )  EBj(N) - Rj ( M )  ] [E, (N) - R,(M)].
MN

[3.2.8]
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The last expression follows from the translational invariance 

conditions. If the volume per unit cell is V then V = V/N and thec c 0

expression for A. ., , can be written asi j k 1

l -1A = - - Vi k j 1 2 c

[3.2.9]

The above expression can be compared with Born’s expression which is
(2 )written for more than one atom per unit cell (substituting ^  from

[1.3.13] into [1.3.17])

[a*,*] = % ( i i]
1 0 f 1 0 1 fI'se.k k ' J y K k k'J X v

1 0 
k k

1 kk

[3.2.10]

We can express our original expansion [3.2.2] in terms of the

symmetric (Lagrangian strains) finite strain parameters which are

given by

ntJ= 5

[3.2.11]

We can see that the tensor rj. . is symmetric H. .= H . . • The crystal1 j 1 j j 1
potential can be expanded in n.j

0> = $ + v )  c i) + — v )  c n nO i j 1 j 2 i jkl 'i j 'kl
i jk 1

[3.2.12]
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The equation defines the C coefficients and because of the symmetry of 

these coefficients must have complete Voigt symmetry

'V  <"W

C. .= C..,1J J i

[3.2.13]

^ i j k 1 ^jikl ^klij

[3.2.14]

By substituting [3.2.11] into [3.2.12] we write out the expansion and 

compare it to the expansion [3.2.2], then comparing coefficients

[3.2.15]

[3.2.16]

The C and C , , are the mechanical analogs of the stress and secondi j i jkl
order elastic constants respectively.

Wallace (1972) describes three important symmetry properties of 

the A kl coefficients (as defined in [3.2.7]). These properties are 

equivalent to the Voigt symmetry of the second order elastic constants

[3.2.17]

[3.2.18]

[3.2.19]

A. — A. ...ij k 1 ljlk

A - i,i= A - ■ 'i jkl jikl

A + C 6 = A + C 6ikjl ikjl jlik jlik

A = C 8 + Ci jkl j1 ik i jkl



Also he defines the elastic constants C. . as a combination of forcel j k 1
constants such that

C = A + A - A  - C S - C S + C S .ijkl ikjl jkil ijkl jl ik il jk kl ij
[3.2.20]

Which is analogous to the result of Born and Huang (1954)

Where the round bracket gives the contribution of the internal strains 

to the elastic contants which is zero for the one atom unit cell 

considered here.

3.3 CALCULATION OF A FOR THREE BODY POTENTIAL i j k 1-------------------------
We now go on to calculate an expression for A . , using a generali j k 1

three body potential which describes the interactions amongst three 

particles in an arbitrary triplet configuration.

Following the general expression given in [3.2.9] and assuming 

throughout our calculation that the crystal under consideration has 

one atom per unit cell we go on to write down the general expression 

in which we label the three atoms as P, N and 0 so that we have
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Where the general three body potential $(P,N,0) has its derivatives 

taken over one of the sides of the triangle only, which we have chosen 

arbitrary as the side NO.

We now take as our origin the particle which we have labelled as

0, so that all other triplet configurations will have two of their

sides originating from the particle labeled 0. Thus we can write

[3.3.1] to include the side P0 in our expression for A. , (wei j k 1

multiply our expression by a factor of one half 1/2 so that we do not 

count both sides twice)

From fig. [3.3.1] we can see that there will be more than one such 

triplet with its apex at the origin.

N p

[3.3.2]

N

P Fig. [3.3.1]

Hence it is possible to write down the third side of our triplet in 

terms of the two sides originating from 0. We can also write down the 

potential energy function for all the triplets including the third
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side

4>(P,N,0) = 4>(P-N,-N,0) = 4>(N-P,-P,0).

+ 4>. .(P,N,0)(P,0) Rk(PO)R1(PO)

+ 4> (P-N,-N,0)(P-N,0) Rk(PN)R1(PN)

+ 4> (P-N,-Nf0)(-N,0) Rk(ON)R1(ON)

+ 4>. (N-P,-P,0)(N-P,0) Rk(NP)R1(NP) 

+ 4>. . (N-P,-P,0)(-P,0) Rk(OP)Rl(OP)

[3.3.3]

We now count over three triplets so that we now multiply our

expression by a factor of a third so that our expression for A.ijkl
written out in full is

a N P

[3.3.4]

We can use the translational symmetry of our crystal so that we can

rewrite the expression [3.3.4] in terras of the same triplet. The

translational symmetry allows us to rewrite the terms as

Rk(-P,0) = -Rk(P) + Rk(0) 

= Rk(0) - Rk(P)

Rk(N-P,0) = Rk(N-P) - Rk(0)

= Rk(N) - Rk(P) - Rk(0)

= R, (NP),k
[3.3.5]

= R,(OP)



so that if write A. .. , explicitly we havei j k 1

N p

+ $ (P,N,0)(P,0) Rk(P0)R1(P0)

+ . (P,N ,0) (P,N ) R (PN)R (PN)
1 J K 1

+ $ (P,N,0)(0,N) Rk(ON)R1(ON)

+ $ (P,N,0)(N,P) Rk(NP)R1(NP)

+ 3>. (P,N,0)(0,P) Rk(OP)R1(OP)

[3.3.6]

We now write down explicitly the terms (PNO)(NO), ^(PNO)(PO), and

j(PNO)(PN). The term 4> (PNO)(NO) is the second order differential 

of the general potential $(PNO) taken over the side NO. We calculate 

this term explicitly

(PNO)(NO) = 324>(PN0)
Ou.(N)du^(0)

[3.3.7]

Our potential function $(PN0) is written down as a function of the 

square of the distances making up the three sides of our triplet of
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s(NO) = R.(NO)j = Jr .(N) - R.(0)j.

[3.3.9]

From the definitions of [3.3.8] and [3.3.9] we can calculate [3.3.7] 

explicitly

4>. . (PNO) (NO) = — --- \ — --- 'J'̂ s(NO), s(PO), s{PN)
Ou .(N)  ̂dUj(0)

[3.3.10]

ay as(No) + ay as(pp) + ay as(PN)|
au;(n ) tas(N0 ) au (o) as(po) au^(o) as(PN) au^(o)J

[3.3.11]

In equation [3.3.11] all three sides of our triplet configuration are 

derivatives with respect to the side NO. Similarly we need to take the 

derivatives of 4>(PN0) for all three coefficients $ (PNO)(NO), 

$ (PN0)(P0) and <fr..(PNO)(PN).

Writing out $ (PNO)(NO) we have

4>. (PNO) (NO) = - 26. y(PN0 )(N0) + 4y(PN0) (PN) (NO) R.(PN) R.(NO)

+ 4y(PN0)(PN)(P0) R.(PN) Rj(PO)

+ 4y(PN0)(NO)(NO) R .(ON) R.(ON)

+ 4y(PN0)(N0)(P0) R. (ON) R^PO).

[3.3.12]

The remaining terms 4*. (PNO)(PO) and (PNO)(PN) are written



similarly and the remaining terms from [3.3.6] are given by simply by 

interchanging i and j so that

. (PNO) (ON) = <&. . (PNO) (NO). i j j 1

[3.3.13]

We then collect all coefficients 'T(PNO) (PN) (NO), 'P(PNO) (PN) (PO), 

¥(PNO)(NO)(NO) and 'P(PNO)(NO)(PO) in [3.3.12] and all the rest of the 

terms. If for example we take the coefficients of 'P(PNO)(PO)(NO) which 

are written out as

[R (PO)R (ON) + R (ON)R.(PO)] R,(NO)R,(NO),i j i j k 1

[R.(NO)R.(OP) + R.(OP)R.(NO)] R (PO)R (PO),i j i j

[R.(ON)R.(OP) + R.(OP)R.(ON)] R (PN)R (PN).
1 J  1 J  K i

[3.3.14]

We have six such coefficients, one from each of the terms from 

equation [3.3.4], We can rewrite the last of the terms in [3.3.14] 

which contains the third side not originating from the origin particle

0. The side R^(PN) is given by

Rk(PN) = Rk(P0) - Rk(N0)

[3.3.15]

so that [3.3.14] can be written as



- [R.(PO)R.(NO) + R.(NO)R.(PO)] R (NO)R (NO)i j i j k 1

- [R.(NO)R.(PO) + R.(PO)R.(NO)] R (PO)R (PO)i j i j k i

+ [R.(NO)R.(PO) + R.(PO)R.(NO)] R, (PO)R,(PO)i j i j k 1

+ [R.(NO)R.(PO) + R.(PO)R.(NO)] R (NO)R (NO)
i j i j k I

- [R.(NO)R.(PO) + R.(PO)R.(NO)] R, (NO)R,(PO)i j i j k 1

- [R .(NO) R (PO) + R (PO)R (NO)] R,(PO)R,(NO).1 J 1 J k 1

[3.3.16]

The first four terms cancel. The last two that are left and may be 

written as

-[R.(NO)R.(PO) + R .(PO)R (NO)][R, (NO)R,(PO) + R. (PO)R,(NO)].i j i j k 1 k 1
[3.3.17]

An equivalent procedure will give the remaining coefficients for the 

terms coming from T(PNO)(PN)(NO) and ¥(PNO)(PN)(PO). We have the 

remaining terms 'F(PNO)(NO)(NO), ^(PNO)(PO)(PO) and ^(PNO)(PN)(PN) 

whose coefficients are given by the term

'P(PNO)(NO)(NO) = R.(ON)R (NO) Rk(NO)R1(NO) + R.(NO)R (ON) Rk(NO)R1(NO)

= -2R.(N0)R (NO)Rk(NO)R1(NO).

[3.3.18]

Similarly we can write out the coefficients for T(PNO)(PO)(PO) and 

¥(PNO)(PN)(PN). Finally we are left with the coefficients of 

2¥(PNO)(NO) which are simply given by -26 ■ Hence gathering all the 

terms together A. , may be written as
i j k 1



?o 
* o

46. ,¥(PNO)(NO) Rk(NO)Rt(NO)
+ 46. .^(PNO)(PO) R, (PO)R,(PO)1 j k 1

+ 46.^(PNO)(PN) Rk(PN)Ri(PN)
+ 8^(PNO)(NO)(NO) R.(NO)R.(NO)Rk(NO)R1(NO)
+ 8T(PNO)(PO)(PO) R.(PO)R.(PO)Rk(PO)R1(PO)
+ 8^(PNO)(PN)(PN) R.(PN)R.(PN)Rk(PN)R1(PN)
+ 4^(PNO)(NO)(PO) [R.(NO)R.(PO) + R.(PO)R (NO)]

x [Rk(NO)Rl(PO) + Rk(PO)R1(NO)]
+ 4T(PNO)(NO)(PN) [R .(NO)R (PN) + R.(PO)R (NO)]

x [Rk(NO)R1(PN) + Rk(PN)R1(NO)]

+ 4T(PNO)(PO)(PN) [R.(PO)R.(PN) + R.(PN)R.(PO)]1 j 1 j ^

x [Rk(PO)Rl(PN) + Rk(PN)R1(PO)]l.

[3.3.19]

The first three terms in [3.3.19] collectively make up the terms 

, 5 . wherek 1 i j

!= 46. PNO) (NO) RJNOJR^NO)
3 N P ^

+ 46. ,'P(PNO)(PO) Rk(PO)Rl(PO)

+ 46. ¥(PNO)(PN) Rk(PN)R1(PN)}>.

[3.3.20]

If we assume that all three sums are identical (that is all three 

sides of our triangle are identical) then



c. = - ) > V..(PNO)(NO) R.(NO)R.(NO)v (__k [_L 1 j k i
N P

[3.3.21]

where we have counted over all triangles twice. We can now go on to 

simplify A . , to the final expressioni j k 1

Aijki = v X  Yu I ^(pN0^ N°)6ij Rk(NO)R1(NO)
N P

+ 2 (PNO)(NO)(NO) R.(NO)R.(NO)R (NO)R (NO)
1 J  K 1

+ T (PNO) ( NO) (PO) [R. (NO)R.(PO) + R. (PO)R . (NO) ]i J 1 J 'V

x [Rk(NO)R1(PO) + Rk(PO)R1(NO)]l.

[3.3.22]

The first term in the sum is recognised as S. C , - The elastic moduli
i  j  k  1 -v

can now be determined using [3.2.20]. The terms like 6. C, , cancel and
°  i  j  k  1

the remainder simplifies to

Ciki= f / ^(PNO)(NO)(NO) R l(NO)R.(NO)Rk(NO)R1(NO)
a * 4 • ^a NP

+ 2'f(PN0)(N0)(P0) R. (NO)R. (N0)R (P0)R (PO) .
1 J  K  1 J

[3.3.23]

This can now be connected with the previous treatments. A general 

expression for an elastic modulus in terms of energy density expansion 

parameters is given in [1.2.11]. In the case treated in this section, 

that of one atom per unit cell, there is no internal stress 

contribution and the equation reduces to
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[3.3.24]

This is given for the many atom per unit cell case [2.4.4], which on 

examination can be seen to be equivalent to [3.3.23].

3.4 TRANSLATIONAL INVARIANCE

For any given initial configuration of a crystal (or any 

particular configuration within the crystal structure such as a 

triplet of atoms) not necessarily coinciding with the equilibrium 

configuration, the ith component of the total force acting on an atom 

must remain unchanged when the crystal undergoes a uniform 

translation. So that if we let our system undergo the translation £,

i.e.

for all M the corresponding value of the derivative of the total 
potential d4>/dU.(M) in equation [3.1.1] is given by

[3.4.2] must vanish, leading to the translational invariance condition

U.(M) = £.,

[3.4.1]

N j
[3.4.2]

Since the £̂  is arbitrary, so the coefficients of each power of £̂  in



Which may be rewritten as

$..(M,M)i j - IM^N
[3.4.4]

So that the diagonal block force constant is expressed in terms of the 

off-diagonal block force constant. The term on the left hand side of 

equation [3.4.4] is sometimes called the "self force constant " which 

defines the force constant connecting two Cartesian displacements on 

the same atom. For our three body potential we have the expression for 

the potential energy

-HI I
m  p * m ,n

[3.4.5]

We now write down an analogous expression as in [3.4.5] which includes 

our three body potential [3.4.6]. For M^N, $ (M,N) can be written out

as

p * m , N

[3.4.6]

Substituting [3.4.6] in the right hand side of the equation [3.4.4]



the left hand side of the equation can be written for M^N as

<&. .(M,M) = - ^  4>. .(M,N,P)(M,M).
M ^ N  P ^ M , N

[3.4.8]

From using equations [3.3.7] to [3.3.11] we can calculate the right 

hand side of equation [3.4.4]

'I I  V h.n,p)(h,n) = 'Z I  {
M ^ N  P * M , N  M ^ N  P ^ M ,N '

- 26. . 4>(MNP) (MN) +

- 44>(MNP)(MN)(MN) R.(MN)R (MN)

+ 4$(MNP) (MN) (NP) R.(MN)R (NP)

* 4$(MNP)(MP)(MN) R.(MP)R (MN)

44>(MNP)(MP)(NP) R. (MP)R.(NP)

[3.4.9]

The left hand side of equation [3.4.4] is given by



26. ,4>(MNP)(MN) + 26. ,4>(MNP)(MP) +
+ 4$(MNP)(MN)(MN) R.(MN)R (MN)

+ 44>(MNP)(MN)(MP) R.(MN)R (MP)

+ 44>(MNP)(MP)(MN) R.(MP)R (MN)

+ 44>(MNP)(MP)(MP) R.(MP)R (MP)
[3.4.10]

Working out the remaining term 4>(MNP)(MP) in a similar way to [3.4.9] 
we can write out the terms explicitly and then add them together so 
that we have

4>. (MNP) (MM) = 26. [4>(MN) + 4>(MP)]
+ 44> (MNP) (MN) (MN) R.(MN)R (MN)
+ 44>(MNP) (MN) (MP) R.(MN)R (MP)
+ 44*(MNP) (MP) (MN) R.(MP)R (MN)
+ 44>(MNP) (MP) (MP) R. (MP)R.(MP),

[3.4.11a]
4>. . (MNP) (MN) = - 26 ,4>(MN)
i J i J

- 44> (MNP) (MN) (MN) R.(MN)R (MN)
+ 44>(MNP) (MN) (NP) R.(MN)R (NP)
- 44) (MNP) (MP) (MN) R.(MP)R (MN)
+ 44> (MNP) (MP) (NP) R.(MP)R (NP),

[3.4.11b]



4>. . (MNP) (MP) = - 26. $(MP)ij i j
- 4$(MNP)(MP)(MP) R.(MP)R.(MP)

- 4$(MNP)(MP)(NP) R.(MP)R (NP)

- 44*(MNP) (MN) (MP) R.(MN)R (MP)

- 4$(MNP)(MN)(NP) R.(MN)R (NP).

[3.4.11c]

Adding terms together

. (MNP) (MM) + <*>. (MNP)(MN) + 4>. . (MNP) (MP) = 0.

[3.4.12]

Which satisfies equation [3.4.3] and hence the translational 

invariance conditions.

3.5 DEFINITION OF THREE BODY PARAMETERS

We take a closer look at the definitions of the three body force 

constants with a view at arriving at a more physical interpretation of 

the force constants. One such interpretation (as mentioned in section 

2.1) is to think of the sides of the triangle of particles as 

belonging to a three dimensional coordinate space. This way any 

derivatives of the potential energy are simply taken over the various 

coordinates of this configuration space.

The expression given in [3.3.12] may be interpreted schematically 

by considering each of the terms on the right hand side of the 

equation. The first term 'P(PNO)(NO) is the first derivative of the 

general potential taken over the side NO of the triangle
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0*
^(PNOXNQ) = - H ™ .

[3.5.1]

The second term ^(PNO)(PN)(NO) is the force constant (second 

derivative of the potential T'(PNO) which describes the interactions of 

two of the sides of our triangle in our triplet configuration)

N

'P(PNO) (PN) (NO) =
0* ’P

[3.5.2]

Similarly the third and fifth terms in [3.3.12] also describe similar 

force constants to the one described above and can also be interpreted 

schematically

¥(PNO)(PN)(PO) = a y(PNo)as(PN)as(por
0‘ •p

[3.5.3]



’y(PNO) (NO) (PO) = as^0)dsiP0)
0* *P

[3.5.4]

The fourth term is a force constant which describes interactions 

between two atoms in our triplet configuration

N

*?(PN0) (NO) (NO) - asS ) ! f iby- 
0 # *P

[3.5.5]

We can see that from [3.5.2], [3.5.3] and [3.5.4] that the force

constants describe the interactions amongst all three atoms 

simultaneously while in [3.5.5] we have a pseudo two body interaction 

since there we are describing the interaction between two particles 

under a three body potential.

If we take a more specific configuration then such as an 

equilateral triangular configuration then all three force constants

[3.5.2], [3.5.3] and [3.5.4] will be equivalent. We can use these

definitions of force constants when we go on to calculate the elastic 

constants (linear combinations of force constants) of such systems as 

the cubic lattice and then go on to the diamond lattice where the 

resulting expressions for the force constants using valence potential 

are well described. This will allow comparison between the resulting 

expressions of the elastic force constants.
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4.1 INTRODUCTION

The results from the previous chapter are now applied to two 

model systems: the square net and the simple cubic lattice. In fact, 

the two are closely related and the two dimensional system can be used 

as a stepping stone to the physically more realistic three dimensional 

crystal. At this stage, the constants arising from the three body 

interactions are parameters, the magnitudes of which are not readily 

estimated so that only general qualitative conclusions can be 

expected. As throughout this work, attention will be focused on 

elastic moduli and the corresponding stability conditions.

4.2 ELASTIC CONSTANTS FOR SQUARE and CUBIC LATTICES

Both the systems under consideration have only one atom per unit

cell, so that for three body interactions the simplified formula

[3.3.23] derived in the last chapter can be used as a starting point.

According to this an elastic constant is represented by

Examination of this equation shows that each triangle containing the 

atom 0 is summed over twice. The equation can be symmetrised with 

respect to N and P and the summation adjusted so that each triangle is 

summed over once.

[ 'J,(PNO)(NO)(NO)R.(NO)R.(NO)Rk(NO)R1(NO)
NP

+2'F(PN0)(N0)(P0)R.(N0)Rj(N0)Rk(P0)R1(P0)j

[4.2.1]



cijki= f E Z  [ '?(PNO)(NO)(NO)R.(NO)Rj(NO)Rk(NO)R1(NO)
3 N P > N

+ ,?(PNO)(PO)(PO)Ri(PO)Rj(PO)Rk(PO)R1(PO) 

+2't,(PN0)(N0)(P0)R.(N0)R.(N0)Rk(P0)R1(P0) 

+2'P(PN0)(P0)(N0)R. (PO)R.(PO)R (NO)R (NO)
1 J  K  1

[4.2.2]

In the case of the square net, two body interactions for first and 

second nearest neighbours will be included. In addition, three body 

terms arising from the smallest possible triangle will be taken into 

account.

t
y

.6 .2 .5

.3 .0 .1 x-»

.7 .4 .8

Fig. [4.2.1]

In terms of the diagram shown, there are four triangles such as (012) 

with the origin and two nearest neighbours and eight triangles such as 

(015) with the origin, one nearest and one second nearest neighbour. 

This illustrates the complication associated with three body 

interactions: the twelve triangles have the same shape and size and 

are therefore of potentially equal importance but there are two 

different arrangements when classified with respect to nearest



neighbour interactions.

With respect to the simple cubic lattice, it is seen that the 

figure is a section of this lattice. Moreover, to a first 

approximation, only those interactions included in the square net will 

be taken into account for the simple cubic case. In this way, the 

three dimensional crystal is built up by a sum of contributions from 

the xy, xz and yz planes.

Strictly, the expression written in [4.2.2] for the elastic

modulus contains the three atom contributions only. The corresponding 

two atom contribution was discussed in section 1.3 and may be written 

in a form corresponding to the notation in this chapter.

cijki= v ^ r / (N°) Ri(NO)Rj(NO)Rk(NO)1R(NO),
3 N

[4.2.3]

in which T"(NO) represents the value of the second derivative of the

pair potential with respect to the square of the interparticle

distance. The total elastic modulus is the sum of [4.2.2] and [4.2.3].

The results can be expressed in terms of a relatively small

number of parameters which are defined as follows for two body terms.

kF -Y"(10). kg s ¥"(50)•

[4.2.4]

Here k is the force constant for a first neighbour pair such asF
(10) and kg for a second neighbour pair such as (50).

In a similar way for three body terms
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k = r '(012)(01)(01)= '(015)(01)(01)F F

kss = 'F''(015)(05)(05) 

kF(. m f  ' (012)(01)(02) 

kps = V "  (015)(01)(05)

[4.2.5]

Here k r is the force constant for a first neighbour pair from theF F

triplet named. Note that the value is the same for triangles (012) 

and (015) because they have the same shape. In a similar way, kgs 

refers to second nearest neighbours. k__ is the cross term between twoF G

nearest neighbour pairs and k for a first and second nearest pair.F S

These cross terms do not arise for the two body interaction since this 

depends on only one distance.

The details of the derivation are given in an appendix at the end 

but the final results for the elastic moduli of the simple cubic 

atomic lattice are summarised below

c = 8 a ( k + 2 k + 4 k + 4 k + 8 k )  n  v f s ff ss FS
[4.2.6]

C12= 8a<kS+2kSS+2kFG+4kFS)
[4.2.7]

c. = 8a(k_+2k__)44 v s ssy
[4.2.8]

If a is the lattice constant, all force constant terms contain a
4factor a which partially cancels with the unit cell volume v whicha

3is a .



4.3 DISCUSSION

The elastic moduli for an atomic simple cubic lattice have been 

determined for two and three body interactions restricted to near 

neighbours. The precise expressions are summarised in [4.2.4] to

[4.2.6].

The three atom terms may be subdivided into two types. The 

constant kpF, for example, is the value of a second differential made 

with respect to the same distance squared twice. It is multiplied by 

relative cartesian coordinates of this same distance. In this way it 

refers to only one pair of atoms explicitly and hence is effectively 

only a two body contribution to the elastic modulus. The constant kFS, 

for example, on the other hand is the value of a second differential 

with respect to two different distances and is multiplied by cartesian 

coordinates referring to all three atoms. Constants of this type 

represent genuine three body contributions to the properties under 

consideration.

For elastic stability, following [1.4.8], three conditions are 

necessary for a cubic structure.

C 11+2C12>0 C i r C 12>0 C 1<>0
[4.3.1]

The simplest of these is the last: c,>0. Neglecting three body
4  4

potentials, this takes the value 8akg. A typical form for the two body 

potential is illustrated in fig [1.4.1]. The nearest neighbour

distance is likely to be in the region of the minimum where the value

of the second derivative (and hence k_) is positive. The secondF
nearest neighbour distance is root two times the nearest neighbour



distance. For the sort of potential functions used, the second 

derivative (and hence k ) is now negative. In this way, c isS 4  4

negative in the two body model and the lattice is unstable. This 

constant represents a shear deformation. It is noted that addition of 

more distant two atom terms does not confer stability as the second 

derivative of the potential remains negative for large values of the 

distance.

When the three body potential is taken into account, a term 

16ak is added to c . It is then essential for stability that k is4 4 uo

positive and that

[4.3.2]

It is noted that, to this level of approximation, the three body 

contribution consists of effective two body terms only.

For the second stability condition

c -c = 8a(k +k + 4 k + 2 k - 2 k + 4 k  ),11 12 F S FF SS FG FS7’

[4.3.3]

must be positive. For the two atom potential model, only k and kF S
survive. It has already been stated that the first of these constants 

is likely to be positive and the second negative. The same potentials 

on which these arguments are based give values of kF which are much 

greater in magnitude than kg. Hence this second stability condition is 

expected to hold for the central interaction model.
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The third stability condition is that

c +2c = 8a(k_+4k_+4k +8k__+4k +16k ),11 12 F S FF SS FG FS7’
[4.3.4]

is positive. By a similar argument, this stability condition is

expected to hold for the two atom interaction model.

It can be seen that the role of the three atom interactions in 

both these last two conditions is complicated, there being four 

constants. It is required to estimate signs and magnitudes of the

various terms, since all four are derived from a single function, it 

may be possible to achieve this. A preliminary investigation is 

presented in chapter 6.

The most stringent requirement is that the three body interaction 

should lead to a positive value of c „ and it has been seen that a4 4
single parameter kgg is the critical factor.

On the experimental side, it is noted that there is only one

simple cubic atomic lattice known, that of a-polonium (J. Donohue 

1974). An experimental consequence of the central model which is often

quoted is that the Cauchy conditions hold i.e.

c = c12 44
[4.3.5]

From the results given here

c -c = 16a(k +2k )12 44 v FG FS'

[4.3.6]



Two comments may be made. The first is that the departure from the 

Cauchy result is due to genuine three body effects i.e. from force 

constants depending on two inter atomic distances and hence three 

atomic positions. The second is that the difference is due wholly to
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5.1 INTRODUCTION

The lattice dynamics of diamond and diamond like structures has 

been discussed in the literature by Born (1914), his collaborator 

Smith (1948) and Warren et al (1957). Musgrave and Pople (1962) use 

spectroscopic data of molecules to calculate the force constants 

obtained by Born and Smith. More recently Cowley (1982) has proposed 

several models for the interatomic potential of silicon and uses them 

to generate the interatomic force constants.

The forces determining the structure of diamond arise from 

covalent bonding between carbon atoms. In molecules exhibiting such 

bonding a potential energy expression in terms of changes in bond 

distances, interbond angles, dihedral angles and similar internal 

coordinates (often called valence coordinates) frequently give close 

agreement between observed and calculated frequencies with relatively 

few force constants. One advantage of using valence coordinates is 

that the structures in the crystal closely resemble those in a 

molecule whose vibrations have been interpreted in terms of valence 

force functions.

Musgrave and Pople use the results of Smith in order to write 

down the elastic constants of diamond by the use of spectroscopic data 

obtained from the neopentane C(CH3)4 molecule. The values of force 

constants calculated from the data are then used to calculate 

theoretical values for the Raman frequency and values for elastic 

constants.

Born and Smith using a general potential function have obtained a 

set of coefficients from the potential energy expansion which were 

then used to calculate the force constants of diamond for first and 

second nearest neighbour interactions. These coefficients (parameters



in the theory) were expressed by calculating the dymamical matrix 

whose elements they are. Similar calculations were also carried out by 

Ramathan (1947) and St James (1958). By using the symmetry operations 

belonging to the diamond structure and looking at solutions of the 

equation of motion at the long wavelength limit q— M3 it is possible to 

express the values of the Raman frequency and elastic constants in 

terms of the parameters. Also expressions for the dispersion relations 

between the frequency and the wave vector are obtained in terms of the 

parameters so that a calculation of these relations is possible along 

certain directions of high symmetry along the Brillouin zone 

(Brillouin 1946).

The parameters obtained by Smith are the most general ones which 

occur in this type of analysis. Also the use of a general potential 

function gives the least number of parameters to which experimental 

data may be fitted. The number of parameters will of course increase 

sharply as we include more and more distant neighbour interactions. In 

case of diamond (Born 1946) it was thought that by simply extending 

the previous analysis to include second neighbour interactions that 

the calculated theoretical values of the elastic constants and Raman 

frequency would be brought to closer agreement with the experimental 

values. This was not found to be the case (Smith 1948). In fact it is 

necessary to go out to fifth nearest neighbours (Herman 1956) before 

such agreement is possible. Cousins (1982) gives a useful survey of 

various theoretical approaches in which the internal strain paramaters 

are extracted from various models of elasticity and lattice dynamics 

of diamond and diamond like structures.

The advantages of using valence coordinates over the more general 

parameters is that they give themselves more readily to physical



interpretation that is the force constants can be attributed to bond 

and angle changes within the structure. The disadvantages of using 

valence coordinates become apparent when the need for mathematical 

manipulation becomes necessary and difficulties arise from the non 

orthogonal character of such coordinates.

It is suggested that perhaps the use of a coordinates system 

where the atoms are all treated equivalently might be more useful in 

terms of manipulation and flexibility when we include many body 

interactions in the analysis.

5.2 GENERAL THEORY

The expression for the potential energy of the crystal when the 

atoms are given small displacement is written down as

■milk l' k' a/3
$ 1 1 f l / \ l »

, k k',ua . k . U? , k'>

[5.2.1]

where 1 identifies a unit cell, k a particular atom in the unit cell. 

The equilibrium positions are given by

r( I ) = r“+ v

[5.2.2]

and rectangular components of r
/ \ 1 2a(k) = 1»2»3). The index kare « c

runs from 1 to n, (n is the number of atoms in the unit cell) so the 

number of independent coordinates is 3nN. The equation of motion of a



particle of type k and mass rak is then

m, u k oc - l ll’k' 0
4>«0

/ > 
1 1'

r  \  
1 *

k k ‘ U 0 , k \

[5.2.3]

which is formally solved by introducing the plane wave (Born and 

Begbie 1946)

= V(k) exp ^(q.r - ut),

[5.2.4]

where vC) is a reduced displacement vector /mku

coefficient 11 *•kk’) is rewritten as

and the

«0
( ■ k v *

  4>1/2 oc0

[5.2.5]

So that the equation of motion becomes

“2Vk> =X D«P(kV) Vk’)>
k ' 0

[5.2.6]

where



- 1 0 0 -

'«0
q
k k

[5.2.7]

where D(q) is the representation of the dynamical matrix in reciprocal 

space. In order to calculate the force constants we can use the 

symmetry of the crystal. If S represents the operation of a centre of

symmetry (without translation) about r

coincidence with r and leaves rC) which brings r 

unaffected then if
(:•)1into

S =
- 1 0  0 

0 - 1 0  

0 0 - 1

[5.2.8]

it follows then that the matrix 0^(11* :kk*) transforms as

(Cochran 1966)

D " i i” ) = siw (  i i.’)®-

[5.2.9]

where S is the transpose of S. Certain symmetry operations will bring 

the atom (l*k*) into self coincidence as well as the one at (lk). For 

these symmetry operations

d«p( J I’) = sod«p( i

[5.2.10]



This relation limits the number of independent force constants. The 

solution of the equation of motion [5.2.6] for long wavelength limit 

is used to find the elastic constants.

There is a different route which does not exploit the symmetry of 

the lattice directly but is more convenient when considering many body

interactions. It is possible to write out an explicit expression for

the elements (force constants) in the dynamical matrix and then go on 

to calculate the force constants for any pair, triplet or any other 

multibody interaction. The second derivatives of the potential energy 

can be written down for the simple case of one atom per unit cell and 

central interactions

d2$* n  1 M  = ____ — — ----
} 3ua(l)aup(l’)’

a2# a2s a$ as as a2$
a y u a y i ’ ) = aua(i)3up(i’ ) - as + a y i )  • a y i ’ ) • 3g2 >

[5.2.11]

where the configuration vector s is defined as

s = rii-= Z [u« (i) ■
a

[5.2.12]

Hence the force constant is given by the expression



- 1 0 2 -

where the terms «a and are the Cartesian components of the distance 

between the atoms in the crystal usually taken from some reference 

atom point. The differential T' and T'' are the first and second order 

differential respectively of the potential over the configuration 

vector s.

5.3 CORRECTION TO THEORY

Before proceeding further, it should be pointed out that there is 

an error in Smith’s treatment of the next nearest neighbour dynamical 

matrices. The general forces between nearest neighbours are described 

by the parameters a and 0 and in Smith’s notation it is suggested that 

there are only three independent dynamical matrix elements /J,p and X. 

There is in fact a fourth which we shall call o, which Smith has 

incorrectly set equal to zero. Thus the correct form of the matrix
gSmith calls D is

rather than

/j v o  
v id o

-a -a X

\x v 0
v id 0
0 0 X

[5.3.1]

[5.3.2]

We can see from the diagram below that
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Fig. [5.3.1]

the atoms lying on the face centered cubic sites lie at a centre of 

octahedral symmetry while the remaining four atoms lie at a centre of 

tetrahedral symmetry.

When deriving the dynamical matrices of the face centred cubic 

lattice the reflexion planes «a= and «a= 0 are valid and so from

the symmetry elements describing these planes the matrix [5.3.2] is 

obtained. Smith uses the same symmetry elements to derive her matrix 

elements for second nearest neighbours in the diamond structure, but 

because only half the tetrahedral holes are filled then the symmetry 

element «a= 0 no longer exists and only the reflexion planes «a= 

still hold. Consequently the extra element o appears in the matrix as 

in [5.3.1].

The additional matrix element must be taken into account in any 

of the expressions used to calculate the frequency spectrum and 

subsequent dispersion relations. The antisymmetric off diagonal 

elements of the dynamical matrix D(q) are given as
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»„( )

■>4 ,\ ^

4 v—  sin Jtq sin Jtq , m x y

4v s m  Jtq s m  T t q ,m z x

23
q 
1 l

4\> s m  JTq s m  Jtq , m  y z

[5.3.3]

where these elements are taken over the qx,qy,qz space. With the 

additional parameter o we have the expressions

12
q
l l

D [ q 113[' 'J

D f q 123^ 1 1 J

4v—  s m  tcq s m  Ttqm x y

4p—  s m  Ttq s m  n qm  z :

\ v—  s m  ic q s m  Ttq m  y z

t4cr sin tcq (cos Ttq - cos Ttq ),z x y

t4a sin Jtq (cos Jiq - cos rcq ),y z x

t4<7 sin Jiq (cos Jtq - cos Ttq ).x y z

[5.3.4]

When the dispersion relations are calculated along symmetry directions 

of the Brillouin Zone it is found that the only direction where the
l lthe parameter o appears is in the [- - 0] direction, otherwise all 

other dispersion relations remain unaffected.

The relations between the macroscopic elastic constants and the 

atomic force are given by Smith (1948) as

2acal= (a + 8/i),

2ac12= (a - | + 4X + 4/i),

2ac = (20 -a - 4X - 4/i + 8^).
4  4

[5.3.5]



The force constant cr appears in the secular equation but not in the 

long wavelength approximation from which the above relations are 

obtained.

5.4 THREE BODY POTENTIAL EXPRESSION

The diamond lattice can be thought of as two equivalent

interpenetrating face centered cubic lattices, relatively displaced

one quarter of the way along the cube diagonal. Diamond has the

translational symmetry of face centered cubic lattice and at each

point of the face centred cubic Bravais (space) lattice it has a
/3basis consisting of two atoms at a distance of where 2a is the

lattice constant.

If we go to a Cartesian coordinate system with the origin at a 

lattice point and axes parallel to the cube edges, the primitive (cell 

vectors) vectors of the the lattice are given by

aa = a(0,1,1), a2 = a(l,0,l), a^ = a(l,l,0).

[5.4.1]

The coordinates of the two atoms in the unit cell are (0,0,0) and 
1 1 1(-a,-a,-a) which are labelled as 0 and O' respectively. The atoms

lying on the same cubic lattice as 0 are labelled k=l, and those lying

on the same lattice as O' are labelled k=2. Each of the atoms in the

basis has four nearest neighbours arranged tetrahedral at a distance 
/3-ga which sit on the other f.c.c lattice such that any interactions 

between these neighbours always involve relative sublattice 

displacements. When we go on to second nearest neighbours then the
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same atoms in the basis have twelve second nearest neighbours at a 

distance /2a which lie on the same f.c.c. lattice.

In order to include a three body interaction in our diamond 

lattice we must first expand on the expression used by Smith for the 

force constant. We use an analogous expression to [5.2.11] for the 

Taylor coefficient as

d2$(abc)
^ua(a)6u^(b)*

[5.4.2]

where

4>(abc) = 4>[s(ab) ,s(bc) ,s(ca) ].

[5.4.3]

and

s(ab) = r2(ab) = [r (ab)]2 + [r (ab)]2+ [r (ab)]2x y z
[5.4.4]

where the atomic distances s(ab),s(bc),s(ca) are the nearest neighbour 

distances which together make up the sides of the triplet.

Fig. [5.4.1]
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When we consider nearest neighbour interactions then the origin of

our triangle is taken as the distance between the atoms at (0,0,0) and 
1 1 1

( - a , - 3 , - 3 )  so that ail nearest neighbour triplet interactions have 

that side common to them. There are in common a total of six nearest 

neighbour triplet of atoms making up all nearest neighbour 

interactions. If we expand [5.4.2] then we have

* = -,'ibz6o0 + 4 V ab)V b,° r u b)<b.)
+ 4 <ea(ab)<ybc) ,i"(;bHbc)

+ 4 <ea (ac)<yba) '•"(;c)(ba)

+ 4 «a (ac)®p (bc) 4,;;b)(bc).

[5.4.5]

We can rewrite the above expression so that the derivatives are taken 

over the triplet sides can be distinguished by whether they lie along 

a carbon, carbon bond or not. We rewrite [5.4.5] as

* = 26ctf + 4 *™«a<ab)V ba)
+ 4 '1'NB[*a(ab)«^(bc) + «a(ac)«^(ba)]

+ 4 ^BB,<Ea(aC)<Ej3(bc)
[5.4.6]

If we calculate the contribution of the triplet D(0,0\ 1) (see fig. 

[5.4.1]) for nearest neighbour force constant then from equation

[5.4.6] our triplets will correspond to D(abc) where all contributions 

from D(0, O', 1), D(<9,0\ 2) and D(0, O', 3) will have the side s(ac) as the 

non bonded side and s(ab) and s(bc) as the two bonded sides.
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Contributions from the triplets D(0, 0',I), D(0, O', 2) and 0(0,0', 3) will 

still have the side s(ab) as the bonded side but now the other bonded 

side is s(ac) and non bonded side is now s(bc). The second nearest 

neighbour interactions are considered in a similar way except that the 

common side to all triplets (there is in fact only one such 

configuration) is the non bonded side 01 (from fig. [5.4.1]).

n' 1 1 10 —a — a —a2 2 2

T i l l1 — —a — — a —a
k=l Table [5.4.1]

o 1 1 12 - — a —a — — a2 2 2

- l l l3 — a — — a — —a2 2 2

k 1 « * «1 2  3

0 0 0 0

1 a a 0
k=2 Table [5.4.2]

3 0 a a
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Table [5.4.1] gives the coordinates of the first neighbours of 0 and 

table [5.4.2] gives the coordinates of first neighbours of O'. Table

[5.4.3] gives the various interatomic distances needed to calculate 

the triplet contributions given by D(0,0', 1), D(0,0', 2) and D(0,0', 3) 

using [5.4.6].

<ae -0B ®1 2  3

« (ab) --- --- ---or ’ 2 2 2
1 1 1V ba) 7 7 7P 2 2 2 Table [5>4<3]

« / \ “ 1 “ 1 0 «a(ac)

«p(ca) 1 1 0

« 0(bc)     —0 V ' 2 2 2

«  (cb) — —  ---or ' 2 2 2

Where the lattice constant factor, a is taken out for simplicity. From

[4.5.6] we have

D(a,b,c) = D (0,0', 1) =

C C3 4

C C C3 1 4

C C C3 3 2 J

[5.4.7]



Where:

V  D„*<0-0'’1> = ^ y * 0-0'-1) = - 2 V  '!'bB+ %»'•
C2= D22(0,0;i) = - 2 V  Tm - Tbb.,

C 3= D X y(0.0'.D = Dyx(0,0',l) = D 2 x (0,0',1) = D2y(0,0',l) = - fM +
C4= d x 2 ( o , o ; d  = D (o,o;i) = - f BB- f B B ,.

Similar contributions are calculated for the remaining set of triplets 

D(0,0',2), D(0,0',3), D(0,0',I), D(0,0',2), and D(0,0',3).

Thus for nearest neighbour triplets we have the force constant 

matrix

6^ + 3V - T ,B BB BB 3T + 4T - ^ ,BB  NB BB 3T + 4¥ - V ,BB  NB BB

-  2 3 ^ + 4 ¥  - ¥ ,
BB NB BB 6 ^ + 3 ^  - ¥ ,B BB BB 3^ + 4'f - V ,BB NB B B

3^ + 4^ - V ,BB NB  BB 3Td + 4Vu - V fB B  NB BB 6^ + 3^ - V ,B BB BB

[5.4.8]

For the second nearest neighbours the force constant matrix is



- 1 1 1 -

The force constants ¥ _ and ¥ are in fact pseudo-two body andB B  N N

describe interactions between pairs of atoms under a three body 

potential. We now write down the force constants resulting from two 

body interactions for nearest and next nearest neighbours in terms of 

our bonded and non bonded atoms in the triplet. These force constants 

are given in a more general form by Smith (1948). By using the 

expression [5.2.13] we can work out analogous force constant matrices 

in terms of our parameters.

Nearest neighbour interactions give the force matrix

BB BB

l
m BB BB

BB BB

[5.4.10]

Which is analogous to the matrix given by Smith (1948)

« 0 0
1 0 a j9in

0 0 a
[5.4.11]

The elastic constants are given by the expression (Smith 1948)

p
2acn = 2aci2= 2^ “ a ’ 2ac44= “ a*

[5.4.12]



In terms of our parameters the elastic constants may be rewritten 

(using the above result of Smith) as

,2$
2ac = 20 + 0 ,  2ac = 0 - 20 , 2ac = 0 + 2$ BB11 B B B ’ 12 BB B 1 44 BB B $ + 2$ BB B

[5.4.13]

When we go on to consider second nearest neighbour interactions we 

have the matrix

2$ + 4$N NN 40

40NN

NN

20 + 0 N NN

0

0

20N
[5.4.14]

Which is analogous to the second nearest neighbour matrix

V i> 0
V V 0
0 0 X

[5.4.15]

The expression for the elastic constants for second nearest neighbour 

interactions are given again by Smith (1948):
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2acn = a +
2ac12= 20 - a - 4/J - 4X + 8i>

B22ac = a + 4X + 4/J - - 44 a
[5.4.16]

Hence we can also write down the expressions for the elastic constants 

for second nearest neighbours:

2ac = 0  + 20 + 160 + 320 ,11 BB b  n n n ’

2ac = 0  - 20 - 160 + 160 ,12 BB B N NN*
.20R R2ac = 0  + 20 + 160 + 160 --------44 BB B N NN 0 + 2 0  BB B

[5.4.17]

From the condition of zero pressure as given by Born and Huang (1954) 

below:

£ * « (  i , K (  i ,) r (x| 1 , | 2) = °-
lkk

[5.4.18]

We now have a relation between the forces (first derivatives of the 

potential) 0 and 0 such thatB N
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0 = - - 0 .N 8 B

[5.4.19]
Hence the expressions [5.4.17] can be simplified to 

2ae = 0 + 320 ,11 BB n n ’

2ac = 0  + 160 ,12 BB n n ’
« 2 0

2ac = 0 + 1 6 0 ------— --- .44 BB NN 0 + 2 0  BB B

[5.4.20]

We can also write down linear combinations of elastic constants. One 

such combination is related to the compressibility of the crystal and 

is given in terms of the elastic constants clt and c =

2a(c + 2c ) = 30 + 640 .' 11 12 BB NN

[5.4.21]

Another such combination is related to the shearing deformations of

the crystal and again is given in terms of the elastic constants c

and c12
2a(c - c ) = 16011 12 NN

[5.4.22]

We can now combine our rdsults for two body force constants and three 

body force constants for nearest neighbours [5.4.10] and [5.4.8] so 

that the force constants a and 0 are given by:



The elastic constants can be written down from [5.4.12]

2ac = 0 + 20+ 12T- 2T .,11 BB B B BB

2ac = 0  - 20 - 12^ + 161? - 2T , ,12 BB B B NB BB ’

2ac = 0  - 20 - 12T - 2T44 BB B B BB

0 + 8^ - 2^ , BB NB BB

$ - 20 - 12T - 2¥ ,BB B B BB

[5.4.24]

We can write down the force constants for the two body forces plus 

three body forces for second nearest neighbours as:

a = 0 + 2 0 + 6 ^  + 12¥ - 2Y ,BB B BB B BB

0 = 0 + 6 ^  + 8T - 2¥ ,
r BB BB NB BB

X = 20 + 2T - T ,B N BB

/J = 20 + 2T + 40 + 4 ^  + 4¥ + ¥ ,^  B N NN NN NB BB

i> = 40 + 4¥ + 4 ^  + ¥ ,NN NN NB BB

O = - 2T - T ,N B  BB

[5.4.25]

The elastic constants can be rewritten for second nearest neighbour 

interactions



Here for simplicity of notation the effective two body parameters are 

combined:

[5.4.27]

[5.4.28]

In addition, the zero pressure condition [5.4.18] when applied to two 

and three body interactions is

2$ + 16$ + 12V + 16¥ =0B N B N

[5.4.29]

This has been taken into account in expressions of elastic moduli

[5.4.26].

5.5 ELASTIC CONSTANTS

We compare our results to those of Musgrave and Pople (1962). 

They have set up a general valence force field for diamond. The energy

T = $ + 6T ,BB BB BB

T = $ + $NN NN NN
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is expanded in terms of the bond length r.. and bond angles Q.i J i Jk
They arrive at a total of seven interaction constants listed as:

(i) k , a point to point bond stretching constants for nearestr

neighbours i and j,

(ii) k , an interaction constant. for the bond pairs such that ir r

and k are nearest neighbours of j,

(iii) kq , an angular rigidity for the angle 0A ,

(iv) k^, an interaction constant for the bond ij which forms an arm 

of the angle 9. .,,° i j k ’

(v) k^, an interaction constant for the bond ij which does not form

an arm of the angle 0, ,,k j i

(vi) knfl, interaction constant betw_een angles 0. ., and 9 which
at) ij k i j 1

share a bond,

(vii) k'd'at an interaction constant between angles 0. and 9 . which
at) i j k 1 j m

do not share a bond.

The atom labelled j is the atom at the origin and i, j, 1 and m are 

nearest neighbour atoms. From the above definitions the interaction 

constants can be grouped into various many body interactions: k is ar

parameter of a two body potential, k , k0, k'̂ ., of a three bodyr r a  r t )

potential, k^Q, k^g, of a four body potential and k ^  a parameter of a 

five body potential.

These seven interaction constants can be reduced to five, by 

making use of a single geometrical relation which holds amongst the 

bond angles

i k

[5.5.1]



so that the interaction constants k' k ^  and k ^  can be

written as the following combinations

r Q
= 21/2(k' - k' ' )

6 * r0 r Q
k' = k - k'0 0 00 * k' ' = k - k' ' K0 K0 00*

[5.5.2]

Musgrave and Pople derive expressions for the elastic constants in 

terms of their five interaction constants. They use the Born constants 

as Smith (1948) derives them, in order to write down equivalent 

expressions for the force constants using a combination of the valence 

force constants so that

“  = 3 [ V  2 k r r- 8 k r 0 + % ' ] ’

p = 5 [ k r- 2krr- 2kre- 4ke ] ’

x = 5 [ - k r r + 2 k r0 ’ 3 k 0  + k 0 ' ] ’

^ = I [ 2 k r r + 2kr0 + 6k6 ‘ 5k9 ] ’

"  =  I  [ 2 k r r + 2 k r 0  ‘  3 k 0  + 4 k 0  ] >

°  =  S  [ “  2 k r r + k r0  + 3 k 0  '  k 0  ] -
[5.5.3]

This may be compared to the expression [5.4.25] for the parameters <x 

through to o in terms of two and three body constants.

We note that in the force constants of Musgrave and Pople the two body

contribution to the overall force constant appear^, in a and (3 only.

This contribution k (bond stretching constant) does not appear in ther
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constants X, v, \i and o since these constants take into account more 

distant neighbours where higher multibody interactions are present. 

This is also found to be the case for the force constants listed in 

[5.4.10] where the two body interaction constant 4> only appears in aB D
1

and 0 . Herman (1958) in his discussion of the lattice vibrational 

spectrum of silicon, writes down the atomic force constant matrices 

for general, central, angular and torsional forces for up to the fifth 

nearest neighbour.

Assuming zero stress we can summarise the results as follows:

Herman (1958)

Nearest General Two body Three body
neighbour forces forces forces

o
a 0 0

1 0 a 0
0 0 a

/J V a
V a

-o -o X

Pi P1 p

Pi P1 p

Pi P1 p

P2 P2 0

P2 P2 0
0 0 0

16Q -8Q -8Q
-8Q 16Q -8Q
-8Q -8Q 16Q

Q Q 2Q
Q Q 2Q

-2Q -2Q -4Q

[5.5.4]

The e a r l i e s t  m o d e l  of the l a t t i c e  d y n a m i c s  of d i a m o n d  was put f o r w a r d  
in 1914 by B o r n  ( B o r n  1914). It is a f o r c e  c o n s t a n t  m o d e l ,  w i t h  all 
e x c e p t  the f i r s t  n e a r e s t  n e i g h b o u r  f o r c e  c o n s t a n t s  set to zero. By 
m a k i n g  s u c h  an a s s u m p t i o n  we f i n d  th a t  the e x p r e s s i o n s  for the e l a s t i c  
c o n s t a n t s  are

C = C = «/a, 11 12 ' ’ C 4 4 = °*

W h i c h  c o r r e s p o n d  to [5.5.4], [5.5.5] a n d  [ 5 . 5 . 6 ]  w i t h  o n l y  the two
b o d y  t e r m  as a n o n  ze r o  term. T h e s e  e l a s t i c  c o n s t a n t s  as m i g h t  be 
e x p e c t e d  do n o t  a g r e e  w i t h  the e x p e r i m e n t a l  v a l u e s .
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Musgrave and Pople ( 1 9 6 2 )

Nearest General Two body Three body
neighbour forces forces forces

a 0 0 k r k r k r ! 6 k 0 - 8 k 0 CD
CO1

1° 0 a 0 k r k r k r

i 00 FT CD 16ke - 8 k e

0 0 a k r k r k r
CD

001 CD
X001 16ke

/J V a 0 0 0 ke k0 2 k 0
o2 V a 0 0 0 ke ke 2k g

-a -a X 0 0 0 - 2ke i to CD CD
J*1

The equivalent results of this work are:

[ 5 . 5 . 5 ]

Nearest
neighbour

General
forces

Two body 
forces

Three body 
forces

a 0 0
01 0 a 0

0 0 a

$ $BB BB BB
$ BB BB BB
<f> $ $BB BB BB

a
V /J cr
-a -a X

0 0NN NN
0NN NN

0 0 0 -C -C

[5.5.6]
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Where (assuming zero stress):

c r 61" -BB 2 T  ,BB

V 6T +BB 8 T  -NB

IIno 4V +NN 4T +NB

iio - 2TNB - T1 BB

V - v  ,BB

[5.5.7]

If we focus attention on the nearest neighbour force constant matrices 

(two body forces only) we see that in all three works the results are 

equivalent, but when we come to consider second nearest neighbour 

force constants we find that Musgrave and Pople do not arrive at a 

force constants which is equivalent to P_ in Herman’s work or in2 NN

this work. Both of these force constants describe the interaction of 

atoms through non bonded distances in the lattice and since Musgrave 

and Pople only consider a valence potential which is given in terms of 

two of the nearest neighbour bonded sides and the angle between them 

it is then not surprising that this form of interaction between second 

nearest neighbours is not described by the use of such a potential. 

Moving onto three body forces we can see that in Herman’s work the 

first and second nearest neighbour interactions are described by only 

one parameter Q. This parameter describes pure angular forces which by 

definition tend to resist deformations of the angle formed by each 

pair of concurrent bonds. Musgrave and Pople give three parameters 

which they say describe three body interactions. Of these three only 

kg can be taken as equivalent to Herman’s parameter Q (once equations

[5.5.2] are substituted into [5.5.3] it is then a relatively trivial
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task to pick out the relevant force constants). When we come to

consider the force constants listed in [5.5.7] we find that a

straightforward comparison with either Herman’s or Musgrave and

Pople’s force constants is no longer possible. One of the reasons for

this is that the three body force constants in [5.5.7] are neither as

general as the Born parameters (Smith 1948) and neither are they as 
2specific as the force constants that Musgrave and Pople use. We can 

see from [5.5.6] that the three body first and second nearest

neighbour matrices are analogous to the general force constants

[5.5.4] and also from [5.5.5] we can see that they are also analogous 

to the Musgrave constants.

From [5.5.6] and [5.5.7] we see that there are five force

constants: $ 4> T ¥ and ¥ / and six Born constants. The linearBB NN NN NB BB

relation that exist between these two sets of force constants in given 

by Musgrave and Pople as #

a = J ( a - 0 ) + X  + /i -p .

[5.5.8]

When the two and three body force constants in [5.5.6] are placed into 

equation [5.5.8] the relation still holds.

5.6 CRYSTAL STABILITY

One of the problems in solid state theory is the explanation of

the absolute stability of a given substance or the interpretation of
2--------------------------------------------------------------------------------------
By  s p e c i f i c  we m e a n  that the p a r a m e t e r s  that M u s g r a v e  a nd P o p l e  h a v e

w r i t t e n  d o w n  c o m e  f r o m  c o n s i d e r i n g  a v a l e n c e  p o t e n t i a l .  T h e  r e s u l t s
f r o m  a u c h  a p o t e n t i a l  s h o u l d  o b e y  all of the t r a n s l a t i o n a l  a n d
r o t a t i o n a l  c o n d i t i o n s  s a t i s f i e d  by the m o r e  g e n e r a l  p o t e n t i a l  s u c h  as
the o n e  u s e d  by Born.
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polyraorphic transitions between different crystal structures exhibited 

by one and the same chemical compound. From the pioneering work of 

Born (1940) it is possible to show that for the simplest classes of 

solids such as those of the rare gas atoms that a two body pair 

potential leads to the result that all rare gas species should 

crystallise in the hexagonal close packed structure. Experimentally 

this configuration is found only with solid helium. In fact it is the 

f.c.c. lattice which is favoured and can be explained by taking into 

account many body interactions amongst the atoms.

Such a pair potential cannot stabilize the diamond structure. If 

we take a typical pair potential such as the Lennard-Jones (6,12) 

potential:

a  ] "  f a  I 6
i R  . I R  J

[5.6.1]

where E(tf)=0; E . =-£; for R=R =21/6cr. We can use the potential tomi n O

calculate the elastic constants of diamond and then use the various 

inequalities which make the elastic constant matrix positive definite 

to test for stability.

From Born and Huang (1954) the expression for the elastic 

constants is derived from the method of long waves and is given by the 

expression

ca y  f3X= [a0,yX] + [07,a X] - [0X,ay] + (ay,0X).

[5.6.2]
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The term (ocyf(3\) describes the internal strains within the crystal. 

This term is still present when we assume a pair potential interaction 

for our diamond crystal and hence must be taken into account when 

calculating the elastic constants. The terms in the square and round 

brackets are defined by

[ 5 . 6 . 4 ]

Where Ĵ (kk* ) anc* ^ ^ ( k k ’’) are defined in [1.3.13], The matrix

[5.6.3]

k > > >

r ,(kk’) is defined as the inverse of the matrix (/^(kk') which
Vyl (Xp

satisfies by definition the relation

/3k ' /3k *

[5.6.5]

If we assume a pair potential then the definitions of C^j)(kk,)) 

(kkM and C*?1 ^(kk*) can be written as (Born and Huang 1954)
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cap (kk) = i j  2 6a/3
k
Z Zcr]x+4Z I[vpr]}
' (*k) 1 k ' ( ^ k )  1 J

[5.6.6]

Ca M (kk’* = 7"~
(mk
"~T75 { 6aP Z [V']x+ 2 Z [*«W
V '   ̂ 1 1 j

[5.6.7]

2

(mm )v k k ,y v 1

[5.6.8]

Cap!̂<kk’> = . .̂i/S { % Z [Vxr]* + 2 Z [W V  ”],>•

Assuming that the crystal is initially free of stress we can write 
( 2 )C o ,(kk’) in [5.6.3] so that the square brackets reduce to aP> #*•

[ap.yx] Z [®«y,v
a lkk' X

[5.6.9]

From [5.6.2] the elastic constants are given by

C . = C = [xx,xx],11 x x x x

C 1 2 = C = x x y y [xy,xy] + [xy,xy] - [xx,yy],

C 4 4 ~ C = x y x y [xx,yy] + [xy,xy] - [xy,xy] - (xy,xy)

[5.6.10]

The force constants given by the round brackets (<xy,(3\) are zero for 

the elastic constants c and c and hence do not contribute. From
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[5.6.6], [5.6.7], [5.6.9] and [5.6.2] (assuming m=l the unit mass of a 

carbon atom) we calculate the elastic constants for nearest and next 

nearest neighbours

2v■r cn= r̂ ri) + 32r/(r2)'
2v-r c12= r-fr,) + 16f''(r2)

2v r' ( r 2)

-f c.4= r'(r1) + 16'*' (rj -4 4 4 1 2 2r (Fl) + r  #(r2)

[5.6.11]

Hence the linear combinations of the elastic constants are given by

(ci f  = 1 6 r ' ^ 2)

2v
“  (clt+ 2c12) = 3T '(rt) + 64V" (r2)

[5.6.12]

Where V' ' is the second derivative of the Lennard-Jones potential 

taken with respect to the nearest neighbour distance r and second 

nearest neighbour distance r2*

One of the characteristics of such a potential function (see fig. 

1.4.1) is the very narrow distance between the minimum and the point 

of inflexion. In this small gap the second derivative V"  changes from
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a positive to a negative value. Hence derivatives with respect to

second nearest neighbour distance will be negative if they lie

outside the inflexion point. The nearest neighbours distance is

close to the equilibrium distance since the atoms interact

predominantly with nearest neighbours.

We can make a qualitative assessment of the stability of diamond.
1/6If we take the equilibrium distance of diamond as RQ= 2 o (the

distance of the nearest neighbour bonded atoms) which is also the

nearest neighbour distance then the second nearest neighbour distance
1/2is given by R2=(8/3) RQ. The distance of the inflexion point is

1/6given as R.=(13/7) RQ so that we can see that for diamond the second 

nearest neighbours lie outside the inflexion point since R2>^i' Hence 

we can see from [5.6.12] that c - c is negative since this elastic 

constant is given by the second derivative of second nearest 

neighbour atoms only. It follows that the elastic constant c and 

ctl+ 2c 12 are also negative due to the larger contribution by the 

second nearest neighbour force constant V''(r ). Thus from the 

conditions set out by Born for crystal stability we find that a pair 

potential such as a Lennard-Jones (6,12) potential cannot give 

stability to the diamond lattice and therefore it is necessary to look 

for higher orders of interactions such as three body interactions and 

see whether stability can be obtained.

Such a qualitative analysis is not possible when considering a 

multibody potential such as the three body potential considered here. 

One of the reasons for this is that no analogous potential exists, 

such as the Lennard-Jones pair potential, so that the same kind of 

analysis (which considers the sign of the force constant as we pass



through the various neighbour distances) is not possible. We consider 

this problem in the next chapter.
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CHAPTER 6 

MURRELL AND MILLS POTENTIAL

6.1 Introduction

6.2 Expression for Three Body Potential

6.3 Application of Three Body Potential to Crystal Problem

6.4 Prospects for Further Work on Diamond



6.1 INTRODUCTION

In the course of the thesis so far, the lattice dynamics has been 

discussed either in the context of the potential expansion 

coefficients as parameters or in terms of a potential energy function 

with specified general properties. In the traditional work of Born and 

later workers, the potential function type considered has almost 

always been the two body or central interaction. Here the possibility 

of a many body classification has been explored and attention focused 

on the three body potential and its application to elastic properties.

It is clear that in any detailed application of the theory, a 

particular functional form must be assumed for the potential. In this 

chapter, such a function is described, the form chosen having hitherto 

been used only in the context of isolated molecules. The necessary 

expressions for the use of this potential in a crystal context are 

developed and its application to diamond considered. Further use of 

this type of potential will require extended numerical calculations, 

including optimisation of potential parameters as well as 

determination of the crystal properties of interest, and it is 

anticipated that this might form the basis of a future investigation.

6.2 EXPRESSION FOR THREE BODY POTENTIAL

One of the most popular potentials for a stable diatomic molecule 

in current use is that of Morse (1929) which is a three parameter 

potential, the parameters usually being fitted to the equilibrium bond 

length, the electronic dissociation energy (D ) and the harmonic forcee

constant (k).
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V = D [exp (2ap) - 2 exp (-ap)]M e

[6.2.1]
where

a = _k_
2D

[6.2.2]

and p is the displacement of the internuclear distance from its 

equilibrium value.
(3)It is generally found that the cubic force constant k agrees 

closely with that deduced by spectroscopic analysis, but agreement 

with the quartic is poor. By introducing more parameters into a Morse 

type function it is possible to obtain agreement with D and with thee

higher force constant. The Morse function was extended in this way by 

Hulbert and Hirschfelder (Hulbert and Hirschfelder 1941). They 

proposed an analytical function in which the repulsive branch of the 

potential is multiplied by a polynomial in p as follows:

VHH= De|^ + gp + hp ] exP (-2«p) - 2 exp (-«p)j

[6.2.3]

They were able, by suitable choice of g and h, to fit the cubic and 

quartic derivatives of the potential. However, as the attractive 

branch of the Morse potential is not modified by this procedure and 

the Hulbert and Hirschfelder was not found to be a great improvement 

over the simple Morse function.

A more satisfactory function which can be extended to fit higher 

derivatives of the potential was first suggested by Rydberg
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VR= -De[l + ap] exp [-ap]

[6.2.4]

Like the Morse function it employs the same experimental data to

determine the parameters but whereas the former involves two

exponential constants, oc and 2oc, the Rydberg function uses, in effect,
1/2the geometric mean of these namely 2 a. This function has a minimum 

of depth D at p=0 and the second derivative of the potential is given
e

by

f = a2D
2  e

[6.2.5]

In the range of p generally covered by spectroscopic investigations 

there is in general little difference between V„ and V. The advantageM K
of V is that it is easily extended to fit higher derivatives of theR
potential by simply increasing the order of the polynomial in equation

[6.2.4]. The extended Rydberg function is defined as

V£R= —De[1 + ^  akPk3 exP
k

[6.2.6]

which has a minimum at p=0 if y=a . To fit f2, f and f one requires 

terms in the polynomial to k=3. Expanding [6.2.6] up to k=3

V„_ = -D [1 + a p1+ a p2+ a p3] exp (-a p)
E R  e  1 2  3  1

[6.2.7]



The analytical potential used to describe our triatomic system is an 

extension of this type of function. In the triatomic case we have many 

more parameters in this functional form of the potential but also have 

more spectroscopic constants from which to determine them.

The variables for the potential of the ABC system are the three 

internuclear distances R,(Iinr) and Ro(R*r)- This is
i  A  u  b  u  U  <j  A  Vrf

preferable to other independent sets (Fig. 3.1.1), such as the two 

distances and included angle, as the aim is to produce a potential 

which is appropriate for all shapes of the ABC triangle and all 

atom-atom dissociation limits. The three bond lengths are independent 

coordinates and must satisfy the triangular restriction R. ^ R.+ R, .i j k
Following Murrell et al ("1984) we can write the total potential 

as a sum of one, two and three body terms as

v (R , R «R ) = V*n  + V^U + v5.1}+ R ^ } (R ) + R ^ C R J  +A B C  l ’ 2 ’ 3' A B C AB ' 1 BC 2 AC 3

+ v!3)< - v w
[6.2.8 ]

(l )Atomic energies VA represent atomic excitation energies of the
(2 )dissociated atoms. The two atom potentials RA_ (R„) etc., representAB 1

the potential curves of the corresponding diatomics which are modelled 

on the extended Rydberg function adjusted to fit the dissociation 

energy, bond length and quartic force constants if known.

The three body interaction term is taken in the form



where T is a range function that tends to zero as R. becomes large- P
ois a polynomial in the displacement coordinates p.= p.- p., chosen 

from a reference configuration (R°,R°,R°). The function T is written 

in the form

3 - -

t = n 1 - tanh f y p - 1 1 1i = 1  ̂ 2

[6.2.10]

Where p. is a parameter. The form which the P function takes is:

P = V 1 + ) C.P.+ ) c ..P.P. + ) C...P.P.P.
L ^  11 Z-. 1 J 1 J  i j k i j k _

j£k
[6.2.11]

Where again c., c. . and c. .. are all parameters which are varied toi i j i j k

give the best value for the surface potential calculated by Murrell 

and Mills.

6.3 APPLICATION OF THREE BODY POTENTIAL TO CRYSTAL PROBLEM

The potential to be developed is associated with the names of 

Murrell, Mills and Carter (1980) and has the advantage that it allows 

the possibility of any many body term in addition to the three atom 

interactions on which attention is focused here.

In the context of diatomic molecules, many approximate functional 

forms have been suggested for the two body potential. Murrell’s 

approach is to choose one of these, which is found to be readily 

adapted in form to higher body interactions. The idea has been applied 

successively to two, three and four atom molecules so that in practice
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the potential has only been taken to a four bo-dy term.

In this chapter, it is the diamond problem which is taken as 

illustration. At the molecular level C2 and C3 have been considered, 

so that a molecular potential for three carbon atoms has already been 

found.

In order to use the Murrell potential in the context of crystals, 

a number of formulae must be developed. The potential is written in 

terms of radial displacement coordinates

in which r is the distance between the two atoms and r a reference

value. In the crystal theories developed earlier in the thesis, the

formulae are expressed in terms of s, the square of the distance

between the two atoms. The form of the Murrell potential is

sufficiently complicated that it is most natural to express its

variations directly in terms of the radial displacement coordinates p 

and to use bridging formulae to get to the s coordinates used in the 

general theory. Elementary analysis leads to the formulae

p=r - r ,O
[6.3.1]

o

av 1 av
a s -  2 r z a P -

[6.3.2]

[6.3.3]



The three body potential function is itself expressed in [6.2.9] as 

the product of a polynomial P and a "range” function T. The two body 

term [6.2.6] may also be expressed in this form by identifying the 

range function T as exp(-yp). The effect of this is to split the 

differentiation into two parts which can be determined separately and 

then combined. Again using elementary analysis

V=PT,

[6.3.4]

3V 3T ap m= P + -31- T,6s. 3s. 3si
[6.3.5]

a2v
3s. 3s = P 3 T ap 3T ap 3t a2p

3 s . 3s 3 s . 3s 3s .j 3s 3 s . 3s T.

[6.3.6]

Expressions for the derivatives are readily written down and are given 

in the following equations.



-137-

  = c + 2 c p + c p + c p + 3 c  p + c  p + 2 c  p p~ 2 2 2 2 12 1 23 3 222*2 112*1 223*2*3dp2
3 3 2+ c  p p + 4 c  p + c  p + 3 c  P P123 13  2222 2 1112*1 2223* 2*3

2 2 2 + 2c P P + 2 c  p p + c  p p •1122 1 2 2233 2 3 1123*1*3

[6.3.8]

3D 2 2 2  = c  +2c p + c  p + c  p + 3 c  p + c p + 2 c  p- 3 33 3 13*1 23 2 3 3 3 * 3  113*1 2 2 3 * 2dp3

3 3 3+ c p p + 4 c  p + c  p + c  p123 1 2  3 3 3 3  3 1 1 1 3 * 1  2 2 2 3 * 2

2 2 2+2c p p + 2 c  p p + c  p p ■1 133 1 3 2 2 3 3  2 3 1 1 2 3 * 1 * 2

[6.3.9]
-2_a p 2  = 2c + 6c p + 2c p + 2c P + + 12c p + 6c p p2 11 1 111 ! 113 3 1 12 2 1 1 1 1 * 1  111 2 1 2ap,

2 2 + 6c p p + 2c p + 2c p + 2c p p 111 3 1 3 1122 2 1133 3 1123*2*3
[6.3.10]

-i2_a p 2  = 2c + 6c p + 2c p + 12c p + 6c p p ̂2 22 222 2 223*3 2222*2 2223*2*3dp2
2 2 + 2c p + 2c p •1122*1 2233 3

62P  = 2c + 6c p + 12c p2 + 2c p2+ 2c p2- ̂2 33 333 3 3333*3 1133*1 2233*2dp
3

[6.3.11]

-2
d P 2

dp dp *1 2

dP,op3

[6.3.12]

= c + 2 c  p + c  p + 3 c  p"+ 4c P P +2c p P .12 112*1 123 3 111 2 1 1122 1 2 1123*1*3

[6.3.13]

= c + 2 c  p + c  p + 3 c  p~+ 4c p p +2c p p .
13 1 1 3 * 1  1 2 3  2 1 1 1  3 1 1 1 3 3  1 3 1 1 2 3 * 1 * 2

[6.3.14]

2̂9 P « 2



The first and second derivatives of T are given by

3T ,2 (Vi  = - s sech — 5—
d p . z ^ L

1 - tanh
( 7.P.M J J 1 - tanh k k

v. J  j

~2 
d T

^P2
= 2 sech tanh

7.p. 1 1 7.i

1 - tanh
7 .P . j j 1 - tanh V k

[6.3.16]

[6.3.17]

^2 , 7 .p.a T , 2 j j  = sech
dp.dp.

sech
r 7.P. 1 1 V i 1 - tanh

[6.3.18]

When applied to systems such as diamond, these equations are 

considerably simplified because the c coefficients depend only on atom 

type. In this way, for example, C1=C2=C3 with similar relationships 

for higher terms.



6.4 PROSPECT FOR FURTHER WORK ON DIAMOND

The potential functions and parameter values for C2 and C3 given 

by Murrell lead to totally unrealistic values of the elastic moduli of 

diamond. An improved model might be found by altering the parameter 

values and by extending the potential to include higher many body 

terms. Profitable continuation of the work in this thesis can be 

expected by developing this programme in the future.

The failure of the molecular parameters of C2 and C3 to give an 

adequate description of diamond is not surprising. In particular, C3 

is formally a linear molecule but has a very low bending force 

constant, whereas a C3 fragment in diamond has a relatively high 

resistance to bending.

Herman (1959), using the Born von Karman theory of lattice 

dynamics, showed that the experimental elastic constants cannot be 

fitted to force constant models based only on first and second nearest 

neighbour interactions. Indeed, fifth neighbour interactions are 

required to reproduce the experimental pattern. This would suggest not 

only that the range of interactions must be extended, but it almost 

certainly means that four and perhaps five body forces must be 

considered.
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APPENDIX

The three body parts of the elastic constants given in this 

chapter may be derived from two specimen triangles.

Triangle 1

0 a (000) 
R (NO) = 1

X

R (PO) = 0

N a (100)

R (NO) = 0 y
R (PO) = 1 y

P a (010) 

R (NO) = 0

Rz(P0) = 0

Contribution to ci jki

ijkl k

xxxx 2ak__FF
yyyy 2ak _FF
xxyy 4akFG
xyxy 0

All other contributions zero.

Table [A.l]

Triangle 2

0 a (000) N a (100) P a (110)

R (NO) = 1 R (NO) = 0 R (NO) = 0x y z

R (PO) = 1 R (PO) = 1 R (PO) = 0x y z



Contribution to c. ,i j k 1

i jkl k

XXXX 2a(k__FF + k + 4k )SS F S '

yyyy 2ak__SS
xxyy 2a(k__ v SS + 2k )FS '
xyxy 2ak SS

Table [A.2]

All other contributions zero.

To get total contributions to square net in xy plane, sum over 4 

triangles of type 1 (symmetric with respect to x and y) 4 of type 2 

identical to above entry and 4 of type 2 with x and y entries 

interchanged. This leads to

[A. 1 ] 

[A.2] 

[A. 3 J 

[A.4]

To get the corresponding expressions for the simple cubic structure, 

add contributions like the above for the xy xz and yz planes.

c =16a(k +k + 2 k )x x x x ' FF SS FS

c =c y y y y  xxxx

c =16a(kc,c,+k„_+2k__x x y y  ' S S  FG FS

c =16ak 0x y x y  SS
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c„ = 2c c = c c = c
1 1  x x x x  1 2  x x y y  4 4  x y x y

[A.5]

A similar analysis for the two body terms leads to

c„= 8a(kF+ks) c12= 8aks c44= 8aks

[A.6]

Equations [4.2.6] to [4.2.8] are obtained by adding the two and three 

body contributions.



-143-

REFERENCES

Born, M. 1914 Ann. Phys. 44 j 605.

Born, M. 1940 Proc. Camb. Phil. Soc. 36> 173.

Born, M. 1942 Proc. Camb. Phil. Soc. 39, 100.

Born, M. 1946 Nature, 157, 179.

Born, M. and Begbie, G.H. 1946 Proc. Roy. Soc. A, 188. 179.

Born, M. and Begbie, G.H. 1946 Proc. Roy. Soc. A, 188. 189.

Born, M. and Huang, K. 1954 Dynamical Theory of Crystal Lattices.

Oxford University Press.

Born, M and Th. von Karman, 1912 Z. Phys. 13, 279.

Brillouin, L. 1946 Wave Propagation in Perodic Structures.

McGraw-Hill, New York.

Carter, S. and Mills, I.M. 1980 J. Mol. Spectrosc. 81, 110.

Cochran, W. 1966 in Phonons in Perfect Lattices and in Lattices with 

Point Imperfections, edited by Stevenson, R.W.H.. Oliver & Boyd. 

Cochran, W. 1971 Acta. Cryst. A, 27, 556.

Cochran, W. 1973 The Dynamics of Atoms in Crystals, p.46. Arnold.

Cousins, C.G.S. 1978 J. Phys. C:Solid State Physics H ,  4867.

Cousins, C.G.S. 1982 J. Phys. CrSolid State Physics 15, 1857.

Cowley, E.R. 1988 Phys. Rev. Lett. 60, 2379.

Donohue, J. 1974 Structures of the Elements. John Wiley, New York. 

Epstein, P.S. 1946 Physical Review 70, 915.

Foreman, A.J.E. and Lomer, W.M. 1957 Proc. Phys. Soc. London, B, 70. 

1143.

Hedin, L.T. 1960 Ark. Fys. 18, 369.

Herman, F. 1959 Physics and Chemistry of Solids 8, 405.

Horton, G.K. and Maradudin, A.A. 1974 Dynamical Properties of Solids. 

North-Holland, Amsterdam.



Huang, K. 1950 Proc. Roy. Soc. A, 203. 178.

Hulbert, H.M. and Hirschfelder, J.O. 1941 J. Chem. Phys. 9, 61. 

Huntington, H.B. 1958 Solid State Physics 7, 213.

Leigh, R.S., Szigeti, B. and Tewary, V.K. 1971 Proc. Roy. Soc. A, 320. 

505.

Maradudin, A.A., Montroll, E.W., Weiss, G.H. 1963 Theory of Lattice 

Dynamics in the Harmonic Aproximation. Academic Press.

Martin, J.W. 1975 J. Phys. C: Solid St. Phys. 8, 2837.

Martin, J.W. 1975 J. Phys. C: Solid St. Phys. 8, 2858.

Martin, J.W. 1975 J. Phys. C: Solid St. Phys. 8, 2869.

Morse, P.M. 1929 Phys. Rev. 34, 57.

Murrell, J.N., Mills, I.M. and Carter, S. 1980 J. Mol. Spectrosc. 81. 

110.

Murrell J.N. et al 1984 Molecular Potential Energy Functions. John 

Wiley & Sons, New York.

Musgrave, M.J.P. and Pople, J.A. 1962 Proc. Roy. Soc. A, 268. 474. 

Ostoskii, V.S. and Efros, A.L. 1961 Soviet Physics-Solid State 3, 448 

Ramanathan, K.G. 1947 Proc. Indian Acad. Sci. A, 2j>, 481.

Smith, H.M.J. 1948 Phil. Trans. A, 241. 105.

Stakgold, I. 1950 Quart. Appl. Math. 8, 169.

St. James, D. 1958 J. Phys. and Chem. Solids 5, 337.

Strauch, D., Mayer, A.P. and Dorner, B. 1990 Z. Phys. B, 78, 405. 

Wallace, D.C. 1972 Thermodynamics of Crystals. John Wiley & Sons, New 

York.

Warren, J.L., Yarnell, J.L., Dolling, G. and Cowley, R.A. 1967 

Phys. Rev. 158. 806.

Zener, C. 1947 Phys. Rev. 71, 323.


