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 CURRENT
OPINION Delivering personalized medicine in retinal care:

from artificial intelligence algorithms to
clinical application

J. Jill Hopkinsa, Pearse A. Keaneb,c, and Konstantinos Balaskasb

Purpose of review

To review the current status of artificial intelligence systems in ophthalmology and highlight the steps required
for clinical translation of artificial intelligence into personalized health care (PHC) in retinal disease.

Recent findings

Artificial intelligence systems for ophthalmological application have made rapid advances, but are yet to
attain a state of technical maturity that allows their adoption into real-world settings. There remains an
‘artificial intelligence chasm’ in the spheres of validation, regulation, safe implementation, and
demonstration of clinical impact that needs to be bridged before the full potential of artificial intelligence to
deliver PHC can be realized.

Summary

Ophthalmology is currently in a stage between the demonstration of the potential of artificial intelligence
and widespread deployment. Next stages include aggregating and curating datasets, training and
validating artificial intelligence systems, establishing the regulatory framework, implementation and
adoption with ongoing evaluation and model adjustment, and finally, meaningful human–artificial
intelligence interaction with clinically validated tools that have demonstrated measurable impact on patient
and healthcare system outcomes. Ophthalmologists should leverage the ability of artificial intelligence
systems to glean insights from large volumes of multivariate data, and to interpret artificial intelligence
recommendations in a clinical context. In doing so, the field will be well positioned to lead the
transformation of health care in a personalized direction.
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INTRODUCTION

In recent years, the potential of artificial intelli-
gence – in particular, a technique called deep learn-
ing – to transform health care has become
increasingly apparent. Ophthalmology has been at
the forefront of this revolution and may soon serve
as an exemplar for other medical specialties. Cata-
lyzed by upheavals of the global coronavirus pan-
demic, it seems likely artificial intelligence tools/
platforms will allow world-class ophthalmic exper-
tise to be brought increasingly into the community,
and even the home. This should allow greatly
enhanced outcomes/efficiency for patients and
healthcare systems, with improved screening, tri-
age, diagnosis, and monitoring of eye disease [1–3].
Predictive algorithm usage may also be a big step

toward the goal of personalized health care (PHC)
for patients by harnessing the power of data to
deliver individualized care to patients with retinal
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disease. Perhaps most importantly, artificial intelli-
gence-assisted scientific discovery may provide
novel insights into disease progression and under-
lying pathophysiology [4

&&

], and improve clinical
trial efficiency and success rates. Thus, the potential
exists for artificial intelligence to meaningfully
transform the care of patients with retinal disease
at every stage of the patient journey to deliver truly
personalized medicine and significantly impact the
healthcare ecosystem of the future.

Although recent advances in artificial intelli-
gence-enabled health care in retinal disease have
been rapid, with some demonstrating clinical and
real-world applicability [5

&&

,6], several hurdles
remain for real patient benefit to be realized. Despite
the hype, artificial intelligence in ophthalmology is
still at a nascent stage. It is not yet widely used and
has not yet led to patient benefits at scale. There
remains a huge ‘artificial intelligence chasm’ that
needs to be crossed before scalable deployment,
meaningful real-world application, and human–
artificial intelligence interaction can be achieved
[4

&&

,7,8].

NEED FOR BETTER DATA
INFRASTRUCTURE

Before validation and scalable deployment, large
high-quality clinical datasets are critical for the
training and evaluation of deep-learning models.
There is a need to go beyond traditional biostatisti-
cal approaches using relatively small amounts of
data (e.g., from clinical trials and small registries)
to harnessing advanced analytic methods on large
real-world datasets. A fundamental requirement is
that these training datasets must be representative
of those that will be encountered in future clinical

applications [3,9]. They also need to be in a compu-
tationally tractable form, appropriately annotated,
and in most circumstances, robustly deidentified.
These requirements can be challenging and time
consuming, and impact utilization of currently
available datasets. While data from clinical trials
(e.g., HARBOR [10]) and cohort studies (e.g., UK
Biobank [11]) tend to be of high quality and contain
deep individual patient-level information, these
data are not always representative of clinical use
cases and may not be of sufficient size or generaliz-
ability to achieve state-of-the-art results. Conse-
quently, we have seen increased use of wider
datasets derived from routine clinical care, such as
the American Academy of Ophthalmology IRIS Reg-
istry (Intelligent Research In Sight) [12,13] of elec-
tronic health records (EHRs), and ophthalmic
imaging bioresources such as the INSIGHT Health
Data Research Hub for Eye Health [14] in the United
Kingdom. In addition to training, it will be impor-
tant that large datasets are also available to allow
independent benchmarking of artificial intelligence
systems and facilitate approval of commercial artifi-
cial intelligence systems by regulators. Significant
recent progress has also been made in deriving
ethical and legal frameworks for such work, both
in the United States and elsewhere, with patient and
public involvement and transparency about usage
being paramount considerations [15–17].

With advances in technology, sources and
modalities of data that could be harnessed will also
expand [e.g., development of home-based vision
monitoring and optical coherence tomography
(OCT) [18] systems may allow much more frequent
functional and structural retinal disease assess-
ments]. With increasing 5G technology usage, along
with cloud computing infrastructure [4

&&

,19], per-
sonal sensor and hyperlocal environmental data
may also be captured and used as the substrate for
artificial intelligence models. In coming years, we
will also see rapid advances in collection of ‘-omic’
data, from genomics to metabolomics to oculomics.
Systems and infrastructure to integrate and manage
these data will also be critically important. In the
future, ophthalmologists will likely use a range of
narrowly focused artificial intelligence tools to inte-
grate this information and to make individualized
and informed decisions for their patients [19].

FROM IDEAS TO ALGORITHMS: EARLY-
STAGE DEVELOPMENT OF NOVEL
OPHTHALMIC ARTIFICIAL INTELLIGENCE
SYSTEMS

Deep learning uses artificial neural networks, named
because of their superficial resemblance to

KEY POINTS

� Implementation of artificial intelligence systems in
retinal care provides the opportunity to bring world-
class expertise into the community and into the home
for the benefit of patients.

� There is an urgent need to bridge the artificial
intelligence chasm between proof-of-concept
development and real-life patient benefit with high-
quality clinical validation and implementation science.

� To fulfill the potential of PHC in ophthalmology, there is
a tremendous amount of work to be done across all
stages of artificial intelligence solutions development
and unprecedented collaboration will be required
across health care and technology sectors to
achieve this.

Artificial intelligence in retina
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biological neural networks, to discover intricate
structure in large datasets. Convolutional neural
network usage has proven particularly effective for
image classification tasks, and thus much of the
early focus of artificial intelligence in ophthalmol-
ogy has been on classification of retinal photo-
graphs/OCT images. These choices have also
been driven, in large part, by availability of existing
large datasets of these images. As the artificial
intelligence field continues to evolve and datasets
in other areas become available, it is likely that the
range of clinical applications (often termed ‘use
cases’) will greatly expand. In the coming years,
we are likely to see clinical applications for novel
areas, such as generative adversarial networks
[20,21], which allow synthetic data generation,
and reinforcement learning [22,23], the technol-
ogy underlying game-playing systems such as
AlphaGo. In addition, automated deep-learning
platform usage will allow clinical researchers with-
out specialized expertise to scope feasibility of deep
learning in healthcare applications [24

&&

]. This will
likely be a major stimulus to novel use of such
systems and the next phase of artificial intelligence
‘industrialization’.

As the translational pipeline for clinical artificial
intelligence systems evolves and matures, a crucial
aspect will be identification – and robust interro-
gation – of potential use cases. Identification and
optimization of the correct metrics to measure per-
formance/utility of an algorithm for specific-use
cases will be needed.

The multiple stakeholders involved in the trans-
lational pipeline have potentially different needs
and interests. For patients, it will be important to
know how use will result in better treatment and
outcomes. For clinicians, it could mean how it
addresses an unmet need, benefits patients, and
affects patient management. For regulators
[25,26], it will be necessary to receive clear defini-
tions of intended use with justifiable assumptions
made from existing data, and how the system may
evolve over time. For payers, it will be important to
clarify who the product is intended for use by, in
what population, in which disease subtype, and
under what circumstances. On the contrary, much
initial work in this space has not yet reached this
level of consideration.

TOWARD ROBUST CLINICAL VALIDATION

The first step toward bridging the ‘artificial intelli-
gence chasm’ is robust validation of the algorithm’s
performance. If an artificial intelligence system can
be used to identify congenital cataract, papilledema,
or diabetic retinopathy [27–29], how will such

images be obtained and does that already solve
the clinical problem? Closely related to this, for
artificial intelligence systems to be implemented,
it is essential to establish benchmarks for human
diagnostic performance at a range of expertise levels
for screening, triage, diagnosis, and future predic-
tion of retinal disease. At the same time, it is also
essential to ensure that when artificial intelligence
systems are used, they result in improvements in or
are on par with human diagnostic performance,
rather than decreasing accuracy [30], and that they
are adequately generalizable to the clinical popula-
tion at hand.

Several retrospective studies [2] with large num-
bers of patients have been used to train and test
deep-learning algorithms; however, very few pro-
spective studies have evaluated performance of arti-
ficial intelligence systems [31

&&

,32,33] in
ophthalmology. A hierarchy of validation studies
with ascending order of reliability would include
retrospective in-silico validation using a hospital-
based dataset with high prevalence of disease; out-
of-sample validation by assessing performance on
datasets from different patient populations than the
one the algorithm was trained on; prospective obser-
vational validation by exposure of the algorithm to
data representative of the diversity and variation in
real-life clinical practice; and in prospective ran-
domized controlled trials (RCTs), where possible.
Retrospective studies performed in silico are often
based on datasets from hospital settings with high
prevalence of disease and are prone to selection bias.
Very few algorithms have been externally validated
with evaluation of human and artificial intelligence
performance on the same dataset [34]. Prospective
studies are needed to understand diagnostic accu-
racy of artificial intelligence systems in real-world
settings. In a pivotal prospective trial of an artificial
intelligence diagnostic system for diabetic retinop-
athy, diagnostic accuracy in predicting diabetic ret-
inopathy severity was less than what was observed
in retrospective studies, highlighting the need to
validate performance of artificial intelligence sys-
tems in prospective validation studies with data
representative of real-life diversity [31

&&

]. However,
such studies will not address the issue of clinical
effectiveness. Interventional RCTs would poten-
tially be needed to address this key question. To
date, there are very few RCTs of artificial intelligence
systems [35], and such studies, particularly those
aiming to use clinical outcomes and quality-of-life
improvements as trial endpoints, may be needed for
regulatory approval. EHRs and other observational
databases also offer promise in validating deep-
learning algorithms by extracting/incorporating
real-world clinical data.

Translating clinical artificial intelligence Hopkins et al.
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Technical maturity of artificial intelligence sys-
tems will depend upon performance validation in
the general population, with low disease prevalence,
versus a patient population; evaluation of positive
predictive value of artificial intelligence systems to
ensure a surge of false-positive results is avoided; and
performance versus human experts, including in
complex cases. To this end, frameworks and metrics
for artificial intelligence performance reporting
need to be established. Ability to fine-tune artificial
intelligence models for different use cases and devi-
ces (interoperability across different imaging modal-
ities and equipment); rapidly validate it for different
patient populations than the ones it was originally
trained on; technical integration of artificial intelli-
gence tools and expertise at different levels of the
care pathway with different levels of technical infra-
structure maturity, including community (high-
street optician); and secondary care will also be
key to technical maturity of artificial intelligence
systems.

Regulatory frameworks are fundamental to
achieving safe and effective deployment of artificial
intelligence algorithms, and efforts are evolving to
ensure appropriate regulatory guidelines are in place
as artificial intelligence systems become part of rou-
tine care delivery [25,36–38]. However, the current
pace of innovation in artificial intelligence and
unique nature of deep-learning models [8,35] pose
a unique set of challenges; artificial intelligence
systems are often designed to be autodidactic, and
may also be constantly improved/upgraded by the
provider throughout their lifecycles. Guidelines in
development for ongoing performance monitoring
that factor in anticipated modifications to artificial
intelligence systems [39] will support identification
of performance deficits over time, and allow con-
tinuous learning in real-world settings. The evolving
artificial intelligence regulatory framework will
have implications for clinical trial planning, ability
to generate data outside of clinical trials from real-
world evidence in the form of EHRs, and commercial
development. Regulatory framework [40] for deal-
ing with relevant ethics issues such as patient pri-
vacy and anonymity while handling protected
health information, data security, and risk mitiga-
tion of artificial intelligence-based clinical predic-
tion and decision support will also be needed.
Regulatory requirements (prospective versus retro-
spective validation) may also differ based on the
particular use case. It is imperative that all key stake-
holders involved in the development and imple-
mentation of artificial intelligence systems
collaborate with each other, and work closely with
regulators in the regulatory framework develop-
ment [36–38].

Regulation around conventional therapies typi-
cally requires postmarketing surveillance and clini-
cal follow-up plans [41,42]. Currently, there are no
long-term follow-up data available, with artificial
intelligence systems being relatively novel. Artificial
intelligence systems may also be prone to effects of
the dataset shift [35] brought on by changes in
practice or new data sources such as long-term fol-
low-up data. Postmarket monitoring/follow-up and
reporting will help implementation of corrective
plans such as quantification of performance over
time, updating, and recalibrating/retraining [39].

SAFE IMPLEMENTATION AND
WIDESPREAD USE

A system-level pathways transformation will be
required for artificial intelligence systems to be
deployed more broadly and maximize benefits. This
in turn would require active participation across all
stakeholders in community optometry, hospital-
based eye departments, and payers of the system
(commissioners), backed by good economic model-
ing. Such a system-level transformation could help
identify the minimal infrastructure requirements/
technical capacity that will be needed to make use of
artificial intelligence systems/tools, identify mature
models or closed systems that could help build the
framework for other artificial intelligence systems,
and ultimately should be able to demonstrate
improvement in patient health outcomes.

Risks/safety implications of artificial intelli-
gence systems could be associated with the under-
lying technology or the wider system it is
implemented in. Methods adopted to monitor
safety must be able to detect shortcomings in both.
Interpretability of artificial intelligence systems to
interrogate the decision-making process is also key
and will dictate safety analysis method choice. A
recent patient safety analysis [43] of artificial intel-
ligence systems in diabetic retinopathy screening
lays the road map for the future depending on the
artificial intelligence model. Failure mode and
effects analysis [44], which involves creating a
detailed map of the process to identify any/all points
that could fail, and system-theoretic process analy-
sis, which identifies and analyzes potential safety
gaps in systems and their consequence [45], are both
amenable to application in artificial intelligence-
based screening implementation. Another method
called the Bowtie analysis, which is applied in safety-
critical industries such as the aviation sector, pro-
vides a visual method to identify and map contrib-
uting factors to system failure, and solutions to
mitigate risk, is now also being applied in health
care [46].

Artificial intelligence in retina
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Artificial intelligence system implementation in
health care requires a financially viable business
model for implementation and sustainability. Costs
associated with artificial intelligence system adop-
tion could include purchase price, resources, and
time required for training, setup, and implementa-
tion, including cost of integrating technology into
clinical workflow. Sustainability could be achieved
if payers and hospitals adopt artificial intelligence
models based on anticipated long-term cost impli-
cations from improvement in clinical outcome of
interest, and reimbursement thresholds are altered
to incentivize uptake. For a more comprehensive
picture of costs/benefits, other cost efficiencies
achieved through artificial intelligence-enabled
pathways to patients (reduced hospital visits, travel
costs, early treatment) and clinicians (reduced bur-
den to hospital-based departments) should also be
considered. To address these issues, future research
to evaluate cost-effectiveness of artificial intelli-
gence systems in larger cohorts across multiple arti-
ficial intelligence applications in health care and
specific-use cases will be important.

There are limited cost–benefit reports from real-
world use of artificial intelligence algorithms in
clinical practice. Studies in diabetic retinopathy
screening using artificial intelligence (semiauto-
mated hybrid approaches) have demonstrated arti-
ficial intelligence model usage can be cost-effective
[47–50]. A recent health economic assessment in
diabetic retinopathy screening using artificial intel-
ligence [43] suggested that where there is no estab-
lished comparison, as is the case with artificial
intelligence systems, cost-utility analysis could be
the preferred method, or where clinical outcome
needs to be evaluated, cost-effectiveness analysis
could be the method of choice. Cost–benefit analy-
sis could be an effective method for intervention
assessment in resource-limited settings with high
unmet clinical needs.

Despite the vast demonstrable potential of arti-
ficial intelligence models, adoption of these systems
is still hindered by clinician and patient perception
that artificial intelligence is a ‘black box’ [2]. The key
to addressing this issue and achieving better
human–computer interactions lies in improving
artificial intelligence interpretability [2,35] (i.e.,
explain underlying features that drive decision-
making in an understandable way, with emphasis
on clinical applicability and effect on patient out-
comes). This would help clinicians understand how
artificial intelligence systems could assist them with
data management, screening, triage, and decision
support, enabling them to provide the best possible
care to patients, rather than replace them. From the
patient perspective, it is important to engage

patients and address concerns that artificial intelli-
gence systems will prevent interaction with clini-
cians. Interpretable algorithms that are transparent
and lead to tangible clinical benefits for patients are
more likely to engender trust and be accepted by
clinicians and patients alike.

As artificial intelligence enters into medical prac-
tice to support clinical decisions, a different set of
medicolegal challenges around medical liability,
stemming from issues ranging from missed diagnoses
to incorrect treatment based on artificial intelligence
algorithm recommendations, is a key concern for
medical professionals. Laws around medical liability
involving artificial intelligence are not developed
[51]. A key point is that current laws are dictated
by whether standard of care has been adhered to.
Because artificial intelligence is new to clinical prac-
tice, standards of care around artificial intelligence
system usage must be established. Artificial intelli-
gence interpretability will once again be key because
it will allow for establishing effective procedures for
risk assessment, risk mitigation, oversight, and inci-
dent investigation. Understanding around accept-
able levels of risk and potential false positives/false
negatives generated by an artificial intelligence
model will also be key.

Emphasis on any of the above considerations
could significantly differ between different coun-
tries and resource settings. For example, a retinopa-
thy of prematurity screening tool could have a
significant positive impact on healthcare outcomes
in systems underresourced for pediatric ophthal-
mologists, which could affect the approach to risk
acceptances. This example highlights the need for
implementation science work on a local level
adapted to the ‘pain points’ and priority needs of
each system.

Trials that assess and validate how such a sys-
tem-level transformation could be achieved using
telemedicine and artificial intelligence; overcome
barriers to clinical deployment; address issues of
cost-effectiveness and patient and healthcare pro-
fessional acceptability/trust; perceptions of the
‘black box’ phenomenon; and concerns about
impersonal care, training, and familiarization with
the technology, are underway (HERMES study) [52].
Work of this kind will be increasingly needed to
bridge the ‘artificial intelligence chasm’ and move
artificial intelligence systems from the laboratory to
front-line clinical practice for the benefit of patients
and healthcare systems.

CALL TO ACTION

To truly deliver PHC in the management of retinal
diseases, a system-level paradigm shift enabled by

Translating clinical artificial intelligence Hopkins et al.
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collaboration of all stakeholders will be needed to
tackle existing challenges (Fig. 1). The opportunity
to address unmet needs in delivering PHC has been
presented by artificial intelligence, and artificial
intelligence-enabled telemedicine/virtual clinics
[47,53] (e.g., positive OCT picked up by artificial
intelligence in the high-street optometry practice
triggers a direct appointment to a hospital-based
injection clinic, potentially bypassing the interme-
diate diagnostic step at the hospital, enabling early
treatment) are working to demonstrate this promise.
However, a commitment to addressing the unmet
needs in each stage of development of a PHC solu-
tion has to be made.

Harnessing data

Clinical healthcare researchers and artificial intelli-
gence experts (academia and industry) must tackle
challenges in curation and annotation of large data-
sets, linking clinical (and other) data to ophthalmic
images obtained by various modalities, and stan-
dardizing digital imaging and communications
in ophthalmology.

Validating artificial intelligence systems

Clinical healthcare researchers and artificial intelli-
gence experts (academia and industry) must

collaborate to develop artificial intelligence systems
trained on well-curated datasets and real-world data,
and develop clinical trials and evidence packages
that demonstrate clear benefit and impact of the
artificial intelligence system.

Infrastructure development

Clinical healthcare researchers and artificial intelli-
gence experts (academia and industry) must work
together to develop systems to integrate and man-
age data, and to support real-time run efforts of
deployed artificial intelligence systems.

Implementation

Academic and industry experts need to work with
policy makers and regulators to develop frameworks
for implementation of technically mature artificial
intelligence systems into the clinic.

Adoption

Healthcare workforce (ophthalmologists/optomet-
rists, clinics, payers, healthcare systems) embrace
artificial intelligence systems and create an environ-
ment primed for adoption based on demonstrable
value of artificial intelligence systems to their
patients.

Supporting technical infrastructure (local servers versus cloud servers)

DATA

Ethical/privacy frameworks

Timeframe

Medicolegal and regulatory frameworks

Patient/public involvement/engagement

Healthcare  
researchers

Industry
AI experts

Academic 
AI experts Regulators Healthcare  

providersPoints of care Payers and 
policymakers

IDEATE AGGREGATE 
DATA

CURATE
DATA

TRAIN/TEST 
MODELS

CLINICALLY 
VALIDATE

REGULATE IMPLEMENT ADOPT UPDATE

FIGURE 1. Artificial intelligence and personalized medicine in retina: from ideation to adoption.
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Patients

Ultimately, patients are at the center of PHC, and it
is critical for them to fully engage based on their
understanding of artificial intelligence system ben-
efits, in the knowledge that their data and personal
health information are protected, and that the ulti-
mate goal of any artificial intelligence system is to
improve their treatment journey and outcome.

This is the journey that we as healthcare pro-
viders must enable with our patients, from the
earliest inception of an artificial intelligence-
enabled solution to the impact it will ultimately
enable in their care. Ophthalmology is poised to
be a leader in the implementation of PHC, and with
coordinated efforts across the spectrum of system
design and implementation, stands to be an exem-
plar for other medical specialties.
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