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Abstract—At millimeter wave (mmWave) frequencies, the
higher cost and power consumption of hardware components
in multiple-input multiple output (MIMO) systems do not allow
beamforming entirely at the baseband with a separate radio
frequency (RF) chain for each antenna. In such scenarios, to
enable spatial multiplexing, hybrid beamforming, which uses
phase shifters to connect a fewer number of RF chains to a
large number of antennas is a cost effective and energy-saving
alternative. This paper describes our research on fully adaptive
transceivers that adapt their behaviour on a frame-by-frame
basis, so that a mmWave hybrid MIMO system always operates
in the most energy efficient manner. Exhaustive search based
brute force approach is computationally intensive, so we study
fractional programming as a low-cost alternative to solve the
problem which maximizes energy efficiency. The performance
results indicate that the resulting mmWave hybrid MIMO
transceiver achieves significantly improved energy efficiency
results compared to the baseline cases involving analogue-only or
digital-only signal processing solutions, and shows performance
trade-offs with the brute force approach.

Index Terms—energy efficiency, hybrid beamforming, MIMO,
millimeter wave, 5G and beyond.

I. INTRODUCTION

Fifth generation (5G) technology is set to address the
consumer demands and performance enhancements for mobile
communication in 2020 and beyond [1]. There will be 28.5
billion networked devices and connections by 2022 [2] and
8.9 billion mobile subscriptions by the end of 2024 [3].
For such large scale use of mobile devices through 5G
and beyond 5G services, the communication systems would
require increased capacity, high data rates, improved coverage
and also reduced energy consumption. We currently use the
microwave frequency spectrum for communication which is
congested with a large number of consumer devices raising the
demand for an unused and available spectrum. This increased
demand on bandwidth and capacity can be resolved by the
use of millimeter wave (mmWave) frequency spectrum which
ranges from 30-300 GHz [4]. This is beneficial as the larger
spectral channels at mmWave would lead to higher data rates.
Moreover, the large scale antenna arrays such as the multiple-
input multiple-output (MIMO) systems can reduce the high
path loss at mmWave frequencies [5], [6]. However, it would
be difficult to use one radio frequency (RF) chain per antenna
leading to a least energy efficient and highly complex system.
Thus, using digital beamforming which needs a dedicated RF

chain per antenna is not very practical from energy efficiency
(EE) and hardware complexity perspectives. To save power
and reduce complexity, analogue beamforming can be used
where a network of analogue phase shifters connects the
antennas to a single RF chain [7], but multi-stream and multi-
user communication can not be supported.

A mmWave MIMO system with hybrid beamforming
(HBF) architecture can save power and reduce hardware
complexity using fewer number of RF chains than the large
number of antennas, and support multi-stream communication
with high spectral efficiency (SE) [8]–[12]. Such systems can
also be optimized to achieve high EE gains [13] but this
has not been widely studied for EE maximization with low
complexity. Low resolution sampling can be implemented to
save power such as in [14] we discuss EE maximization with
low resolution digital-to-analogue converters (DACs) at the
transmitter (TX), in [15] with low resolution analogue-to-
digital converters (ADCs) at the receiver (RX) and in [16]
with low resolution sampling at both the DACs and the ADCs.
However, the existing literature mostly considers fixed number
of RF chains for high SE performance [8]–[12] and RF chains
consume a lot of power which increases the cost of MIMO
systems [17]. Reference [13] provides an exhaustive search
based brute force (BF) approach where a full precoder design
is evaluated for all possible combinations of RF chains, in
order to select the number of RF chains that maximizes EE
but this is a computationally inefficient solution. Moreover,
lower complexity solutions can be implemented to design the
HBF matrices than in [8], [13].

Contribution: This paper describes different approaches to
performing dynamic adaptation of a mmWave hybrid MIMO
system on a frame-by-frame basis. Our idea exploits the
beam training phase in the communication system to learn
the propagation conditions. Based on this, we can choose to
adapt the behaviour of the transceiver in order to optimize
a performance metric of interest, such as EE. Maximizing
EE is challenging mathematically because it is a ratio of two
important parameters, namely data rate (or SE) and power.
In our recent research, we use the Dinkelbach method (DM)
[18] to replace this ratio function by an iterative sequence of
problems based on the difference of the numerator and denom-
inator. In this work, we discuss different ways to optimize the
transceivers, particularly in relation to the number of activated

ar
X

iv
:2

00
3.

11
68

3v
1 

 [
ee

ss
.S

P]
  2

6 
M

ar
 2

02
0



Notations Description
a Scalar
a Vector
‖a‖0 l0-norm of a
A Matrix
|A| Determinant of A
AT Transpose of A
AH Complex conjugate transpose of A
A(i) i-th column of A
‖A‖F Frobenius norm of A
CN (a;A) Complex Gaussian vector; mean a, covariance A
CA×B To represent matrix of size A×B with complex entries
E{·} Expectation operator
IN Identity matrix with size N ×N
R+ Set of positive real numbers
R{·} Real part
tr(A) Trace of A

X ∈ CA×B Complex-valued matrix X of size A×B
X ∈ RA×B Real-valued matrix X of size A×B

TABLE I: List of notations and their description.

RF chains and the sample rate of the system. As a practical
example, we present a more detailed discussion of how the
Dinkelbach’s approach can be used to optimize the EE and
simultaneously achieve a low complexity alternative to the
exhaustive search based BF approach in [13]. An attractive
feature of our approach is that we only need to compute
the HBF matrices once, after the number of RF chains is
determined by the DM based solution.

Notations and Organization: Table I provides a list of
notations used in this paper along with their description. The
remainder of the paper is structured as follows: Section II
describes the channel model and HBF architecture that is
used in the paper. Section III describes the EE maximization
problem and we describe different approaches that we have
studied to address this problem. In Section IV, we discuss in
more detail how the DM can be applied to select the optimal
number of RF chains. Section V presents simulation results
to show the performance improvements of the DM and finally
Section VI presents conclusions to the paper.

II. MMWAVE MIMO SYSTEM WITH HBF

A. MmWave Channel

We use a narrowband clustered channel model due to
different channel settings at mmWave such as the number of
multipaths, amplitudes, etc. [6]. We consider Ncl clusters with
Nray paths related to each cluster and for a single user system
we have NT TX antennas transmitting Ns data streams to NR
RX antennas. This mmWave channel can be expressed as

H =

Ncl∑
i=1

Nray∑
l=1

αilaR(φ
r
il)aT(φ

t
il)
H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being
the average power of the ith cluster. The vectors aT(φ

t
il)

and aR(φ
r
il) denote the normalized array response vectors

at the TX and the RX, respectively [6], with φtil being the
azimuth angles of departure and φril being the azimuth angles
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Fig. 1: A mmWave MIMO system with HBF architecture and
the proposed DM framework.

of arrival. We assume the transmit and receive arrays are
uniform linear arrays (ULAs) of antennas, which are modelled
as ideal sectored elements [19].

B. MIMO System with HBF Architecture

Fig. 1 shows the system model considered in this paper
where LT is the number of available RF chains at the TX and
LR at the RX. Based on MIMO communication with HBF, we
follow the conditions Ns ≤ LT ≤ NT and Ns ≤ LR ≤ NR.
The symbol vector s ∈ CNs×1 at the TX is such that
E{ssH} = 1

Ns
INs . The digital precoder matrix right before

the DAC-RF chain blocks is FBB ∈ CLT×Ns = P
1
2

TXF̂BB

where F̂BB is the digital precoder matrix before the switches
and PTX ∈ RLT×LT is a diagonal matrix with entries of
power allocation values. We have tr(PTX) = Pmax, where
Pmax is the maximum allocated power. The entries of the
analogue precoder matrix FRF ∈ CNT×LT are of constant
modulus and this matrix models the phase shifting network
which is only able to adjust the phase of the incoming signals,
not the amplitude [8]. Note that the power constraint at
the TX is satisfied by ‖FRFFBB‖2F = Pmax. The matrices
WBB ∈ CLR×Ns and WRF ∈ CNR×LR denote the digital
combiner and the analogue combiner at the RX, respectively.
The analogue combiner matrix is also constant modulus.

We assume the channel state information (CSI) to be known
at both the TX and the RX. Then the signal received at the
RX antennas y ∈ CNR×1 can be written as

y = HFRFFBBs + n, (2)

where n ∈ CNR×1 = CN (0, σ2
n ) represents independent

and identically distributed complex additive noise. After the
analogue combiner and digital combiner units, the RX output
signal can be expressed as

r=WH
BBWH

RFy=WH
BBWH

RFHFRFFBBs+WH
BBWH

RFn. (3)

The mechanism to select only required number of RF chains
LoptT out of the available LT RF chains is implemented during
the baseband processing. The proposed DM based solution
drives this selection mechanism, which uses dynamic power
allocation to decide on how many RF chains should be active



during each channel realization. In the next section, we derive
a fractional programming problem from the problem which
maximizes EE and implement the Dinkelbach’s approach to
obtain the number of RF chains optimally at the TX/RX.

III. OVERVIEW OF EE MAXIMIZATION

In terms of the SE R (bits/s/Hz) and the power consumption
P (W), the EE can be written as

EE(PTX) ,
R(PTX)

P (PTX)
(bits/Hz/J). (4)

In (4), PTX ∈ DLT×LT represents a square matrix whose
diagonal entries contain the transmission power of each data
stream at the output of the digitally-computer precoder ma-
trix, while all non-diagonal entries are zero. The notation
DLT×LT ⊂ RLT×LT represents the set of possible choices for
LT × LT matrices, given the existence of a maximum transmit
power constraint.

In order to represent the selection mechanism for RF chains
at the digital precoder, we consider [PTX]kk ∈ [0, Pmax]∀ k =
1, . . . , LT. The diagonal entries of PTX with a zero value
means an open switch in the selection mechanism shown in
Fig. 1. This means that the non-zero diagonal entries of the
matrix PTX determine the number of the active RF chains
currently selected at the TX side, i.e., LoptT = ‖PTX‖0.
We may achieve high SE by increasing the number of RF
chains, however, it increases power consumption as well.
Thus, maximizing EE in (4) given suitable constraints on the
solution provides us with a practical method for selecting the
TX/RX configuration with the best performance trade-off.

The optimization problem in (4) has inspired us to study
several different approaches to optimize the performance of a
mmWave hybrid MIMO transceiver. As shown in Fig. 2, we
deal with two phases in a single communication frame where
we assume that at the start of each data frame, a beam training
phase provides information to both the TX and RX about the
current channel matrix H and there are LT active RF chains.
Based on this knowledge it is possible to adapt the behaviour
of the TX and RX before the main data communication phase,
where in this paper, the DM based solution is applied to
activate only required number of RF chains, i.e., LoptT , which
is obtained from the solution of EE maximization problem.
In the process, the HBF matrices can be designed through
an Euclidean distance minimization problem [8] as discussed
in the next section and we also propose a low complexity
alternative to design the HBF matrices. Next, we discuss the
approaches which we implemented to adapt the behaviour of
the TX and RX in order to achieve maximum EE.

1) RF Chain Selection: In Fig. 1, the analogue precoder
and the analogue combiner may connect every RF chain to
every TX/RX antenna, which is termed as a fully-connected
structure. Alternatively, in a structure which is termed as
partially-connected, each RF chain may only be connected
to a subset of all the antennas. In the latter case, we have
explored an optimization technique to select the best set of
RF chains for data transmission in [20]. A key feature of this
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Fig. 2: Single communication frame with two phases process:
beam training and data communications.

approach is that we use a low signal-to-noise ratio (SNR)
approximation of the data rate to simplify the optimization
approach. A sparse solution for the RF chains is desired
and this is obtained by minimizing the number of non-zero
entries in the matrix PTX. This is achieved practically by
using a technique called convex relaxation which allows the
optimization to be performed efficiently. However, there is
lack of research in literature dealing with the selection of RF
chains. In a hardware setup, whether its fully-connected or
partially-connected, when HBF is implemented on a field-
programmable gate array (FPGA) chip, switching on only
the needed RF chains would save a lot of power leading
to an energy efficient communication system. Following that
approach, in [18] we consider a fully-connected structure
(as shown in Fig. 1) and the Dinkelbach’s approach selects
only that number of RF chains which maximizes EE and the
complexity is kept minimum. More details of this approach
are presented in Section IV below.

2) Sampling Rate Selection: A number of papers recently
have shown that using limited resolution digital-to-analogue
or analogue-to-digital converters in the TX or RX can improve
communications efficiency [21]. The reason for this is that the
power consumed by a sampling device scales in an exponen-
tial manner with the number of quantization bits that are used.
The limitation of using limited resolution sampling is that it
can limit the overall data rate at high SNR values. However,
limited resolution sampling can be particularly attractive for
low or medium SNR values where the SE is lower. Reference
[14] extends the RF chain selection approach of [18] to the
case where the TX uses the fully-connected structure and each
RF chain uses fixed resolution DACs at the TX. In that paper,
a linear model is used to describe the impact of quantization,
through a scaling factor and the addition of a noise term which
represents the quantization noise. Similarly, the partially-
connected case is with limited resolution sampling studied
in [20]. We have recently extended this work to consider the
joint optimization of both the HBF matrices design and the
bit level resolution of each RF chain [15], [16]. This involves
a complex model where the effect of the quantization noise
on the data throughput is explicitly modelled and the bit level
resolution can be adjusted to optimize the resulting EE. We
introduce a novel matrix decomposition that is applied to the
HBF matrices at both the TX and RX, i.e., the joint decompo-
sition of a matrix representing analogue beamforming matrix,
a second matrix modelling the impact of bit resolution on
receiver noise and a third matrix that models digital baseband
beamforming. Moreover, we address the joint TX-RX problem



unlike in the existing literature and the optimization approach
we follow requires the use of the alternating direction method
of multipliers to find the best solution for both the HBF
matrices and the required bit resolutions at the TX and RX in
order to maximize EE.

Next, we describe the Dinkelbach’s approach for selecting
the number of RF chains optimally and show how this leads
to a low-cost solution to EE maximization.

IV. RF CHAIN SELECTION FOR MAXIMUM EE

A. RF Chain Selection Formulation

For MIMO with HBF and point-to-point communication,
the SE R given the active number of RF chains is

R(PTX,PRX)=log

∣∣∣∣INs+
1

σ2
n
WH

BBP
1
2

RXWH
RFHFRF×

P
1
2

TXF̂BBF̂HBBP
1
2

TXFHRFH
HWRFP

1
2

RXWBB

∣∣∣∣, (5)

where the real valued LT × LT matrix PTX is the diagonal
matrix allocating power at the TX side. At the RX, instead
we use the LR × LR real-valued diagonal matrix PRX with
entries from {0, 1}, since this matrix represents the activated
RF chains, thus, LoptR = ‖PRX‖0.

Following [8], we assume that F̂BBF̂HBB ≈ ILT and
WBBWH

BB ≈ ILR , then the SE can be written as

R(PTX,PRX) = log

∣∣∣∣ILR +
1

σ2
n
P

1
2

RXWH
RFHFRF

PTXFHRFH
HWRFP

1
2

RX

∣∣∣∣. (6)

The problem in (6) can be simplified by considering the TX
side and the RX side separately. To compute the matrix PTX
it is assumed that the RX has activated all its RF chains, so
that PRX = ILR . In that case, the SE can be expressed as

R(PTX)=log

∣∣∣∣ILR+
1

σ2
n
WH

RFHFRFPTXFHRFH
HWRF

∣∣∣∣. (7)

Once the matrix PTX is obtained, the matrix PRX can be
computed via the following SE expression:

R(PRX)=log

∣∣∣∣ILR+
1

σ2
n
P

1
2

RXWH
RFHFRF

PTXFHRFH
HWRFP

1
2

RX

∣∣∣∣. (8)

Next, we focus on how to maximize the EE for the TX in
order to select the optimal number of RF chains LoptT . The
alternative of trying to solve (8) to maximize EE at the RX
results leads to a complex integer programming optimization
problem. In this paper, we will assume that the number of TX
and RX spatial streams are the same, so that LoptR = LoptT .

Following [5], the total consumed power P for a HBF
MIMO communication system can be expressed as

P = βtr(PTX) + 2PCP +NTPT +NRPR + LoptT ×
(PRF +NTPPS) + LoptR (PRF +NRPPS) (W), (9)

where the power terms PCP, PRF, PPS, PT and PR represent the
power required by the circuit components, the power required
by each RF chain, the power required by each phase shifter,
the consumed power for each antenna at the TX and that
required for each RX antenna, respectively. The parameter β
is the reciprocal of amplifier efficiency.

Let us delete the subscript “TX” from PTX in order to write
simplified expressions. Hence, the EE maximization problem
in (4) can be expressed with respect to P ∈ RLT×LT as

max
P∈DLT×LT

R(P)

P (P)
s. t. P (P)≤P ′max & R(P)≥Rmin. (10)

Note that the power constraint in (10) provides an upper limit
on the power required for the HBF MIMO communication
system, i.e., P ′max = βPmax + 2PCP +NTPT +NRPR + LT ×
(PRF+NTPPS)+LR(PRF+NRPPS). Next, we proceed with the
proposed Dinkelbach’s approach to obtain both the number of
RF chains and the data streams optimally.

B. Dinkelbach’s Approach to EE Maximization
In order to obtain a solution to (10) which is a fractional

programming problem, we can implement the DM based
solution. Dinkelbach’s algorithm was first introduced in [22]
and it appears to be an efficient algorithm to solve fractional
problems. This is verified by the simulation results presented
in Section V where we can observe that the Dinkelbach’s
approach achieves good performance. We can replace the EE
ratio in (10) with an iterative sequence of difference-based
optimizations as follows:

max
P(m)∈DLT×LT

{
R(P(m))− ν(m)P (P(m))

}
s. t. P (P) ≤ P ′max and R(P) ≥ Rmin. (11)

The DM involves a sequence of iterations where the constant
ν(m) is updated at each iteration based on the SE and
power values estimated during the previous iteration which
is equal to the ratio R(P(m−1))/P (P(m−1)) ∈ R+, for
m = 1, 2, . . . , Imax, where Imax denotes the maximum number
of iterations. In order to reduce complexity compared to the
BF method, we wish to use a SE expression that does not
depend explicitly on the RF and baseband processing matrices.
This avoids the need to compute the HBF matrices each time
the number of selected RF chains is updated.

In order to proceed with the DM based solution, let us
first update the SE and power expressions. For that, we
consider channel’s singular value decomposition (SVD) as
H = UHΣHVH

H , where UH ∈ CNR×NR and VH ∈ CNT×NT

are unitary matrices, and ΣH ∈ RNR×NT represents a matrix
which is rectangular in nature where the diagonal entries
contain the singular values of the channel matrix and all the
other entries are zero. Considering the SVD of the channel,
(7) is written as

R(P) = log

∣∣∣∣INR +
1

σ2
n
WH

RFUHΣHVH
H FRF×

PFHRFVHΣH
H UH

H WRF

∣∣∣∣. (12)



Using the approach given in [8], it can be shown
that VH

H FRF ≈ [ILT 0T(NT−LT)×LT
]T and UH

H WRF ≈
[ILR 0T(NR−LR)×LR

]T , hence,

R(P) = log

∣∣∣∣INR +
1

σ2
n
Σ̄2P

∣∣∣∣, (13)

where the LR × LT matrix Σ̄ has diagonal entries [Σ̄]kk =
[ΣH]kk for k = 1, . . . , LT, assuming LT = LR. Again, the
remaining entries of this matrix are zero. In (13) all of the
matrices are diagonal, so it is possible to decompose the SE
calculation into LT parallel and orthogonal channels as

R(P) ≈
LT∑
k=1

log

(
1 +

1

σ2
n
[Σ̄2]kk[P]kk

)
(bits/s/Hz). (14)

The number of available RF chains at the TX LT and at the RX
LR are determined by the hardware setup of the transceiver.
For the TX side, the power values in the matrix P can be
written as

PTX(P) = Pstatic +

LT∑
k=1

(β[P]kk + PRF +NTPPS) (15)

=⇒ PTX(P) = Pstatic +

LT∑
k=1

β′[P]kk (W), (16)

where the value of Pstatic , PCP + NTPT does not depend
on the entries of the matrix P and β′ , β + PRF+NTPPS

Pmax
.

Simplifying (15) into the form given in (16) is possible as∑LT
k=1[P]kk = tr(P) = Pmax.
Following (14)-(16), the m-th DM step can be written as

{P(m), ν(m)} = arg max
P(m)∈DLT×LT

G(P(m)ν(m)),

s. t. P (P) ≤ P ′max and R(P) ≥ Rmin, (17)

where G(P(m), ν(m)) ,
∑LT
k=1 log

(
1 + 1

σ2
n
[Σ̄2]kk[P

(m)]kk

)
−

ν(m)
∑LT
k=1 β

′[P(m)]kk. Note that (17) is generally not
convex given the constraint associated with P(m), i.e.,
P(m) ∈ DLT×LT . Indeed, in the case where the set D also
contains the zero value, the problem (17) is a mixed-integer
programming one. To proceed, we alleviate this constraint
on P(m) first, so that (17) can be solved using a standard
interior-point method, e.g., using CVX [23]. A theoretical
analysis of DM convergence is presented in [26].

In order to explain the steps of Algorithm 1, it begins with
the maximum number of RF chains LT. Step 4 shows that
we solve (17) to update P(m) using CVX after alleviating the
constraint as mentioned above. Then we apply the constraint
again as highlighted in Step 5 of Algorithm 1. This is achieved
by setting the values P(m) to zero when they fall below the
tolerance value εth (see Table II for εth value). Step 6 shows
that counting the non-zero values of P

(m)
th determines the

number of activated RF chains. The DM method keeps updat-
ing these values within the loop and finally computes ‖P(m)

th ‖0
when the loop ends. Step 7 determines the SE R(P(m))
and the power PTX(P

(m)), and in Step 8 G(P(m), ν(m)) is

Algorithm 1 Dinkelbach Method (DM)

1: Initialize: P(0), choose tolerance ε, LT and set ν(0) with
G(P(0), ν(0)) ≥ 0.

2: Start Iteration Step m = 0.
3: while |G(P(m), ν(m))| > ε do
4: Alleviate the constraint on P(m) and solve (17).
5: Threshold the entries of P(m) → obtain P

(m)
th .

6: Count non-zero values of P
(m)
th → update LoptT .

7: Calculate R(P(m)) and PTX(P
(m)) using (14)-(16).

8: Compute G(P(m), ν(m)).
9: Update the value ν(m) as R(P(m))/PTX(P

(m)).
10: Update m = m+ 1 for next iteration.
11: end while
12: Compute LoptT as the value ‖P(m)

th ‖0.

computed based on its given expression above, where ν(m) =
R(P(m−1))/P (P(m−1)) ∈ R+. Step 9 is used to update ν(m)

according to the current value R(P(m))/PTX(P
(m)). The loop

terminates when |G(P(m), ν(m))| is lower than the specified
value ε, which is determined empirically (see Table II for ε
value). The number of spatial streams is then set to be equal
to the optimal number of RF chains, i.e., Ns = LoptT .

Once we obtain LoptT , LoptR (= LoptT ) and Ns, we can design
the HBF matrices FRF, FBB, WRF and WBB. We assume that
as in [8], the matrices FRFFBB can be designed to yield a
good approximation of the fully digital precoder FDBF. Note
that the precoder matrix FDBF = VH1P

(1/2)
TX where the matrix

VH1 ∈ CNT×Ns consists of the Ns columns of the matrix
VH which contains the right singular eigenvectors [8] with
‖FDBF‖2F = tr(PTX) = Pmax. Following [8], the problem to
compute the hybrid precoder decomposition FRFFBB through
Euclidean distance minimization can be transformed to a
sparse approximation problem. To solve that, we use gradient
pursuit (GP) algorithm [24] which is implemented as an
alternative to the most commonly used orthogonal matching
pursuit (OMP) algorithm for HBF design. The GP algorithm
has same performance as the OMP algorithm, but it uses only
one matrix vector multiplication per iteration to avoid matrix
inversion, leading to faster approximation and low complexity
[9]. At the RX, the hybrid combiner can be designed with a
similar mathematical formulation as at the TX except there is
no power constraint. Following the steps in [8], we compute
the fully digital combiner matrix WDBF and the Euclidean
distance minimization problem for the combiner design is
transformed to the sparse approximation problem likewise at
the TX. The sparse approximation problem at the RX can
then be solved by the GP algorithm [9] in order to obtain the
hybrid combiner decomposition WRFWBB.

Computational Complexity: The computation for the DM
based solution requires only O(LoptT ) operations per iteration.
The complexity comparison with the BF approach is provided
in Section V. The complexity order in computing beamform-
ing weights for the GP algorithm is O

(
(LoptT )3NT

)
and for

the OMP algorithm equals O
(
(LoptT )4

)
+O

(
(LoptT )3 - the GP



System Parameter Value
Number of clusters Ncl =2

Number of rays Nray =10
Angular spread 7.5◦

Average power for each cluster σα,i=1
Mean angles (azimuth domain) 60◦ − 120◦

Mean angles (elevation domain) 80◦ − 100◦

Normalized system bandwidth 1 Hz
SNR 1/σ2

n
Amplifier efficiency 1/β=0.4

Minimum desired SE in (10) Rmin =1 bits/s/Hz
Tolerance values ε=10−4 and εth =10−6

Number of available RF chains LT =LR = length
(
eig(HHH)

)
Spacing between antenna elements d=λ/2 (e.g., λ=1/28 GHz [13])

(a) Values of the system parameters.
Power Term Value

Power required by all circuit components PCP =10 W
Power required by each RF chain PRF =100 mW

Power required by each phase shifter PPS =10 mW
Power per TX/RX antenna element PT =PR =100 mW

Maximum allocated power Pmax =1 W

(b) Values of the power terms in (9) [25].

TABLE II: Values of the system parameters and power terms
used in the simulations.
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Fig. 3: EE versus number of iterations at NT = 32, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 16 W.

method only makes use of matrix multiplies at each step. This
reduction in complexity comes from using a gradient compu-
tation in place of a full matrix inverse calculation. Reference
[9] provides a more detailed complexity comparison. Next, we
present simulation results that verify the good performance of
the proposed Dinkelbach approach.

V. SIMULATION RESULTS

This section evaluates the performance of the proposed
DM based solution and compares it with existing baseline
cases. All results have been averaged over 1,000 Monte-
Carlo realizations. In terms of the system setup, Table II (a)
provides the values of all the system parameters and Table II
(b) provides the values used in the simulations for the power
terms in (9).

0 5 10 15 20 25 30

SNR (dB)

0.2

0.4

0.6

0.8

1

1.2

1.4

E
n

er
g
y
 E

ff
ic

ie
n

cy
 (

b
it

s/
H

z/
J
)

Dinkelbach Method (DM) Brute Force (BF) Digital Analog

0 5 10 15 20 25 30

SNR (dB)

10

15

20

25

30

35

40

45

50

S
p

ec
tr

a
l 

E
ff

ic
ie

n
cy

 (
b

it
s/

s/
H

z)

Fig. 4: EE and SE versus SNR at NT = 32, NR = 8, Ncl = 2,
Nray = 10 and Pmax = 1 W.
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Fig. 5: EE and SE versus NT at SNR = 10 dB, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 1 W.

For comparison with the proposed DM based solution,
following baseline cases have been considered in this paper.

1) BF Approach: The exhaustive search based approach in
[13], i.e., the BF approach, at each realization (current channel
realization), computes the EE performance by designing the
beamforming matrices for each possible choice of activated
RF chains, namely LT = {1, 2, ..., NT}, and then chooses
the corresponding number of RF chains corresponding to
the highest EE value. In contrast, the proposed DM based
solution does not need to iterate for all possible number of RF
chains and then find a number of RF chains which is optimal,
which reduces the complexity significantly while providing
high energy efficient solution. The complexity order of the
BF approach is related the number of RF chains multiplied
by the total number of antennas, i.e., O

(
LoptT NT

)
which is

larger than that of the DM based solution that only requires
O(LoptT ) operations per iteration. In simulation, the BF and
DM approaches uses the same HBF matrix computation.

2) Digital Beamforming: As mentioned above, the full
digital beamforming baseline allocates one active RF chain for
each antenna in all simulations, i.e., LT = NT and LR = NR.



3) Analogue Beamforming: In this case, analogue beam-
forming only implements one active RF chain , i.e., LT =
LR = 1, and the HBF decomposition matrices are designed
equal to phases of the first singular vectors.

Fig. 3 graphs the EE performance versus the number of
iterations for SNR values of −10, 0 and 10 dB to observe
convergence of the proposed DM based solution at NT = 32,
NR = 8, Ncl = 2, Nray = 10 and Pmax = 16 W. The DM
based solution converges rapidly, requiring typically about
two iterations to achieve an optimal solution at each channel
realization. Also, the achieved EE results increase with the
SNR value, for example, after 2 iterations, the EE value at 10
dB SNR is ≈ 0.55 bits/Hz/J higher than that for −10 dB SNR
and ≈ 0.3 bits/Hz/J higher than the result for 0 dB SNR.

Fig. 4 shows the EE and SE performance of the DM method
along with the BF approach, and both the analogue and digital
baseline cases versus SNR with NT = 32, NR = 8, Ncl = 2,
Nray = 10 and Pmax = 1 W. We can observe that the DM
based solution has similar EE and SE performance to the
BF approach, achieving a much higher EE than the digital
baseline case, and higher EE and SE results compared to
the analogue baseline. At an SNR value of 20 dB, the DM
based solution yield ≈ 0.2 bits/Hz/J higher EE than the digital
baseline case, and ≈ 10 bits/s/Hz higher SE and about 0.3
bits/Hz/J higher EE than the analogue baseline case.

Fig. 5 shows the EE and SE performance versus the number
of TX antennas, NT, plotted for an SNR of 10 dB, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 1 W. It is clear that as the
number of antennas increases, the EE results start to decrease
for both the proposed DM based solution and the existing
baseline cases. For example, at NT = 80, the EE and SE
performance of the DM based solution is similar to that of
the BF method. Also, the DM based solution has ≈ 0.42
bits/Hz/J higher EE than the digital baseline case, and ≈ 7.5
bits/s/Hz higher SE and about 0.2 bits/Hz/J higher EE than
the analogue baseline case.

VI. CONCLUSION

This paper has discussed the concept of adaptive HBF
MIMO systems that adapt their behaviour on a frame-by-
frame basis to optimize EE. In particular, a DM based
solution has been studied to enable fractional programming
to maximize the EE of the candidate transmitter and receiver
architectures in a low-cost manner. The DM method described
in this paper can achieve EE and SE performance similar to
the exhaustive search based BF approach, while reducing the
complexity significantly. Once the number of RF chains is
selected, the proposed technique needs to compute the HBF
matrices only once. Further, the DM solution can also provide
significantly improved EE performance when compared with
the existing baseline cases, e.g., at 10 dB SNR, it performs
≈ 20% better than the digital beamforming baseline and
≈ 15% better than the analogue beamforming case. Finally
it is shown that the GP algorithm, which is used to compute
the HBF matrices, is a faster and less complex algorithm in
comparison to the state-of-the-art OMP algorithm.
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