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Abstract

This thesis contains several pieces of work related to the 2-part of class groups and

Diophantine equations. We first give an overview of some techniques known in

computing the 2-part of the class groups of quadratic number fields, including the

use of the Rédei symbol and Rédei reciprocity in the study of the 8-rank of the class

groups of quadratic fields. We review the construction of governing fields for the

8-rank by Corsman and extend a proof of Smith on the distribution of the 8-rank

for imaginary quadratic fields, to real quadratic fields, conditional on the general

Riemann hypothesis.

In joint work with Peter Koymans, Djordjo Milovic, and Carlo Pagano, we

improve a previous lower bound by Fouvry and Klüners, on the density of the solv-

ability of the negative Pell equation over the set of squarefree positive integers with

no prime factors congruent to 3 mod 4. We show how Rédei reciprocity allows us to

apply techniques introduced by Smith to obtain this improvement.

In joint work with Djordjo Milovic, using Kuroda’s formula, we study the aver-

age behaviour of the unit group index in certain families of totally real biquadratic

fields Q(
√
p,
√
d) parametrised by the prime p.

In joint work with Christine McMeekin and Djordjo Milovic, we study certain

cyclic totally real number fields K, in which we attach a quadratic symbol spin(a, σ)

to each odd prime ideal a and each non-trivial σ ∈ Gal(K/Q). We prove a formula

for the density of primes ideals p such that spin(p, σ) = 1 for all non-trivial σ ∈

Gal(K/Q).

Finally, we study integral points on the quadratic twists ED : y2 = x3 − D2x

of the congruent number curve. We show that the number of non-torsion integral

points on ED is � (3.8)rank ED(Q) and its average is bounded above by 2. We deduce

that the system of simultaneous Pell equations aX2 − bY 2 = d, bY 2 − cZ2 = d
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for pairwise coprime positive integers a, b, c, d, has at most � (3.6)ω(abcd) integer

solutions.



Impact Statement

This thesis showcases several pieces of work relating to the arithmetic statistics of

class groups, elliptic curves, and Diophantine equations. We hope that this could

lead to new insights in investigating other connections between different objects in

number theory that have not been fully explored.

We study several interesting questions in arithmetic statistics. We show how

some new results in the area can be applied to existing unsolved problems in the

field. For example, we apply recent work by Smith on the distribution of the 2-part

of class groups to improve a current lower bound to the density of the solvability of

the negative Pell equation, working towards a conjecture by Stevenhagen in the field.

We ask a new question on the arithmetic statistics of the unit group of biquadratic

fields, and provide an answer in a special case using Kuroda’s formula and our

understanding of the 2-part of class groups.

In the study of the 8-rank of class groups of quadratic fields, we give explicit

constructions of minimally unramified C4-extensions, which may facilitate further

study in class fields.

Furthermore, we give applications of the study of elliptic curves to Diophantine

equations. We apply methods from Diophantine approximation to study the number

integral points on elliptic curves, and show how results obtained for elliptic curves

have implications for Diophantine equations such as simultaneous Pell equations.
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Introduction

The Pell equation is the quadratic Diophantine equation having the form

x2 −Dy2 = 1, (0.1)

where D > 0 is a given squarefree integer and we are interested in finding integer

solutions x, y. The negative Pell equation is the analogous equation

x2 −Dy2 = −1. (0.2)

With the factorisation x2 −Dy2 = (x+ y
√
D)(x− y

√
D), it is natural to study the

unit group of Q(
√
D). We know from Dirichlet’s unit theorem, that the unit group

of a real quadratic field Q(
√
D) must have the form

〈−1〉 × 〈εD〉,

where εD is the fundamental unit, i.e. the minimal unit in K greater than 1. There-

fore (0.1) is always solvable and possesses infinitely many solutions.

However this is not the case for (0.2). Taking (0.2) modulo any prime p | D ,

we see that −1 has to be a quadratic residue modulo p, so D cannot be divisible by

any prime p ≡ 3 mod 4 if (0.2) is solvable. However the condition that any p | D

is not congruent to 3 mod 4 is not sufficient in determining the solvability of (0.2).

For example, there are no solutions when D is 34, 146, 178, 194, 205, 221, · · · . The

equation (0.2) is solvable if and only if there is an element with norm −1 in the

unit group of Q(
√
D). This happens precisely when the ordinary class group ClD

and the narrow class group CD of Q(
√
D) coincide. The odd parts of ClD and CD

are always isomorphic, so it suffices to study the 2-parts of ClD and CD. In recent
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years, much progress has been made in the study of the distribution of 2-parts of

class groups of quadratic number fields, most notably by Fouvry and Klüners [30]

and Smith [81].

We start off in Chapter 1, by giving an overview of some of the techniques

known in computing the 2-part of the class groups of quadratic number fields. Class

field theory establishes the existence of the class field HD and the narrow class

field H+
D , which are the fields that satisfy ClD ∼= Gal(HD/Q(

√
D)) and CD

∼=

Gal(H+
D/Q(

√
D)). The field H+

D is the maximal abelian extension of Q(
√
D) that

is unramified at all finite places, and HD is maximal totally real subfield of H+
D .

Therefore we can study the 2-part of the class group by constructing unramified

2-power extensions of Q(
√
D).

In Chapter 2, we give an explicit construction of minimally ramified cyclic degree

4 extensions of quadratic fields. This generalises the construction of cyclic degree 4

extensions of Q(
√
D) that lie in its narrow class field H+

D , considered in the study of

the 4-rank of CD. With this we define the Rédei symbol and give a proof of Rédei

reciprocity. The Rédei symbol, together with Rédei reciprocity, originated from

Rédei’s [65] classical work on the 8-rank of CD, and were generalised by Corsman

[27]. The Rédei symbol is a triple [a, b, c], taking values in {±1}, where (a, b) defines

a cyclic degree 4 extension La,b/Q(
√
D) that is minimally ramified, i.e. unramified

at all prime ideals not dividing 2ab, and c specifies an class in CD[2], represented by

an ideal c of norm |c|. The Rédei symbol is by definition multiplicative in its last

entry, and the value of [a, b, c] depends on the splitting of c in La,b/Q(
√
D) when c

is a prime ideal. Rédei reciprocity shows that the entries of the Rédei symbol are

symmetric, and this allows us to extend multiplicativity to all three entries.

In Chapter 3, we show how Rédei reciprocity can be applied to the study of

the 8-rank of the narrow class groups of quadratic fields. It allows us to construct

minimal governing fields for the 8-rank, as shown by Corsman [27], which are fields

Ω3(d) such that the 8-rank of Cdp is determined by the splitting of p in Ω3(d)/Q.

Then we extend a proof of Smith [80] in obtaining the distribution of the 8-rank

for imaginary quadratic fields, to real quadratic fields, conditional on the general

Riemann hypothesis. Let D(N) be the set of positive squarefree integer less than

N .
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Theorem 3.1. Assume the general Riemann hypothesis. For any m ≥ j ≥ 0 and

any δ ∈ {±1}, we have

lim
N→∞

#{δ ·D ∈ D(N) : rk4 CD = m, rk8 CD = j}
#{δ ·D ∈ D(N) : rk4 CD = m}

=


Prob(j | m,m+ 1) if δ = 1,

Prob(j | m,m) if δ = −1,

where

Prob(j | m,n) :=
#{M ∈ Matm×n(F2) : corank(M) = j}

# Matm×n(F2)

and Matm×n(F2) denotes the space of m× n matrices over F2.

In Chapter 4, we consider the solvability of the negative Pell equation over the

set

P := {D positive squarefree integer : p 6≡ 3 mod 4 for all primes p | D}.

This is the set of squarefree D > 0 such that rk2 CD = rk2 ClD. Stevenhagen [86]

conjectured that the natural density of D ∈ P such that the negative Pell equation

is solvable, is 58.057 . . .%. Fouvry and Klüners [31, 32] showed that the density lies

between 52.427 . . .% and 2
3 . Their lower bound comes from the density of D ∈ P

such that such that

rk4 ClD = rk4 CD ∈ {0, 1} and rk8 CD = 0,

and their upper bound comes from the density of D ∈ P such that

rk4 CD = rk4 ClD +1.

In joint work with Peter Koymans, Djordjo Milovic, and Carlo Pagano [19], we

improve the lower bound using new techniques introduced by Smith [81], together

with some new algebraic results relying on Rédei reciprocity. More precisely, let

P(N) := {D < N : D ∈ P}, P−(N) := {D ∈ P(N) : (0.2) is solvable for D}, and

α :=
∏∞
j=1(1 + 2−j)−1 = 0.41942 . . ., we prove the following.
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Theorem 4.1. We have

lim inf
N→∞

|P−(N)|
|P(N)|

≥ αβ = 0.53822 . . . ,

where

β =

∞∑
n=0

2−n(n+3)/2 = 1.28325 . . . > 5/4.

Our improved lower bound comes from the density of D ∈ P such that

rk4 ClD = rk4 CD = n and rk8 CD = 0.

In Chapter 5, we proceed to study a generalisation of the Pell equation. This

chapter contains results from joint work with Djordjo Milovic [21]. Fixing any d in

the set

R := {d ∈ Z>0 squarefree : rk2 Cld = rk2 Cd, rk4 Cd = 0},

we study how often an equation

x2 − dy2 = 4εp (0.3)

is solvable for x, y ∈ OQ(
√
p), where εp is the fundamental unit of Q(

√
p), as we vary

p in certain congruence classes. This involves studying the unit groups of the fields

k1 = Q(
√
p), k2 = Q(

√
d), k3 = Q(

√
dp), K = Q(

√
d,
√
p). Under our choices of d

and p, the unit group index of K is Q(K) := [O×K : O×k1O
×
k2
O×k3 ] ∈ {1, 2}, and (0.3)

is solvable if and only if Q(K) = 2. We make use of Kuroda’s class number formula

[51, 48, 49] to translate this problem to the setting of class groups. The formula

states that

h(K) =
1

4
Q(K) · h(k1)h(k2)h(k3),

where h(K) denotes the size of the 2-part of ClK . We use techniques similar to that

used in Chapter 2, to construct the maximal 2-power subfield ℋ+
d,p of the narrow

Hilbert class field of K. Define md,p := #{q | d : q splits completely in Q(
√
p)}, and

take

Pd,m := {p ≡ 1 mod 4 prime : p - d, rk4 Cdp = 0, md,p = m},
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and Pd,m(N) := {p ∈ Pd,m : p < N}. Writing Kd,p := Q(
√
d,
√
p), we expect that

the density of p ∈ Pd,m such that Q(Kd,p) = 2 to behave as follows.

Conjecture 5.2. For d ∈ R, we have

lim
N→∞

#{p ∈ Pd,m(N) : Q(Kd,p) = 2}
#Pd,m(N)

=
1

2t−1
,

where t = ω(d).

We are able to prove our conjecture in the cases m = t− 1 and m = t− 2.

Theorem 5.3. Suppose d ∈ R and let t = ω(d). Then the map

Pd,m → {1, 2}, p 7→ Q(Kd,p)

is Frobenian for m = t − 1 and m = t − 2. Moreover, Conjecture 5.2 holds for

m = t− 1 and m = t− 2, and, for all m ∈ {0, 1, . . . , t− 3}, we have

lim
N→∞

#{p ∈ Pd,m(N) : Q(Kd,p) = 2}
#Pd,m(N)

≤ 1

2m
.

Chapter 6 is based on joint work with Christine McMeekin and Djordjo Milovic

[20]. We study totally real cyclic odd degree extensions K/Q, which have odd class

number, and such that every totally positive unit is the square of a unit. Given a

non-trivial σ ∈ Gal(K/Q) and an odd ideal a, the spin of a (with respect to σ), is

defined as the quadratic residue symbol

spin(a, σ) :=
( α
aσ

)
,

where α is any totally positive generator of the principal ideal ah, and h is the class

number of K. The spin was previously studied by Friedlander, Iwaniec, Mazur,

and Rubin [33]. Conditional on a standard conjecture on short character sums

(Conjecture Cη in Chapter 6), we prove a formula depending only on the degree n =

[K : Q], for the density of primes p such that spin(p, σ) = 1 for all σ ∈ Gal(K/Q) \

{1} holds for some prime ideal p lying above p, over the set of primes that split
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completely in K/Q. We can state our theorem more precisely. Define

S := {p prime : p splits completely in K/Q},

S± := {p ∈ S : p ≡ ±1 mod 4Z},

F := {p ∈ S : spin(p, σ) = 1 for all σ ∈ Gal(K/Q) \ {1}},

F± := S± ∩ F,

where p denotes a prime ideal in K lying above p. For sets of primes A ⊆ B, we

define the restricted density of A (restricted to B) to be

d(A|B) := lim
N→∞

#{p < N : p ∈ A}
#{p < N : p ∈ B}

.

Theorem 6.4. Let K be a cyclic totally real number field of odd degree n over Q

with odd class number, such that every totally positive unit is the square of a unit,

and such that 2 is inert in K/Q. Assume Conjecture Cη holds for η = 2
n(n−1) . For

k 6= 1 dividing n, let dk be the order of 2 in (Z/kZ)×. Then for a fixed sign ±,

d(F±|S±) =
s±

23(n−1)/2
, and d(F |S) =

s+ + s−

2(3n−1)/2

where

s+ := 1 +
∏

k|n, k 6=1
dkodd

2
φ(k)
2dk

 ∏
k|n, k 6=1
dkodd

2
φ(k)
2 − 1

 ,

and

s− :=
∏

k|n, k 6=1
dkeven

(2
dk
2 + 1)

φ(k)
dk

∏
k|n, k 6=1
dkodd

(2dk − 1)
φ(k)
2dk ,

where φ denotes the Euler’s totient function.

At first sight, it might seem that the probability that spin(p, σ) = 1 holds for

all σ ∈ Gal(K/Q) \ {1}, should be 1/2n−1, since there are n − 1 quadratic symbol

conditions to satisfy. However, it turns out that not all of these symbols behave inde-

pendently. More precisely, it was shown in [33] that spin(p, σ) spin(p, σ−1) depends

on the Hilbert symbols (α, ασ)v at even places v, where α is any totally positive gen-

erator of ph. Assuming that 2 is inert in K/Q, we are able to give a combinatorial

argument to study the behaviour of the condition (α, ασ)2 = 1.
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In Chapter 7, we explore an application of the study of elliptic curves to a

special type of simultaneous generalised Pell equations.

Theorem 7.6. Let a, b, c, d be pairwise coprime positive integers and set D = abcd.

Then for any sufficiently large D, the system of equations

aX2 − bY 2 = d, bY 2 − cZ2 = d

has at most 15+(1.89)r+19r1/3 ≤ 15+(3.58)ω(D)+12ω(D)1/3 solutions (X,Y, Z) ∈ Z3
>0,

where r := rank ED(Q).

The solutions to the system of equations in Theorem 7.6 can be mapped explic-

itly to integral points on the congruent number curve

ED : y2 = x3 −D2x.

Then Theorem 7.6 follows from an upper bound on the number of integral points

on ED.

Theorem 7.1. We have

#ED(Z)� (3.8)rank ED(Q).

We also prove an average result on the number of integral points. Let TD denote

the set of torsion points in ED(Q), and D(N) denote the set of squarefree integers

less than N .

Theorem 7.5. We have

lim sup
N→∞

1

#D(N)

∑
D∈D(N)

#(ED(Z) \ TD) ≤ 2.

If we further assume the abc conjecture, the upper bound can be improved to 1.

Non-torsion integral points come in pairs of the form (x,±y). It follows

from Smith’s work [81] that almost all ED has rank 0 or 1. The upper bound

in Theorem 7.5 comes from the possible existence of a pair of small points in

the range D2/(logD)12+ε < x < D2+ε, and a pair of large points of size x >
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exp(exp(23
12

√
logD)) left from an application of Roth’s Theorem, which we are un-

able to eliminate on most curves of rank 1, except by using the abc-conjecture.



Chapter 1

The 2-part of class groups of quadratic

number fields

Class groups first appeared in the theory of binary quadratic forms. An integral

quadratic form has discriminant D := b2− 4ac. Gauss defined a composition law on

quadratic forms of a fixed discriminant. The set of equivalence classes of quadratic

forms is then a finite abelian group. The formulation of the concept of ideals by

Dedekind, allows class groups to be described in terms of ideals. The class group

measures how far a ring is from being a principal ideal domain.

Gauss made several conjectures in Disquisitiones Arithmeticae [34]. The first

being the following statement later proved by Heilbronn [39].

Theorem. The class number of Q(
√
D) tends to infinity as D → −∞.

This implies that there are only finitely many imaginary quadratic fields with

any given number. For low class numbers, Gauss gave tables of fields, which he

conjectured to contain all the possible imaginary quadratic fields with the given

class numbers. Providing a complete list of imaginary quadratic fields with a given

class number became known as the “class number problem”. For class number 1,

this was solved independently by Baker [4], Heegner [38] and Stark [84].

In contrast, much less is known for real quadratic fields. The following conjec-

ture is still open.

Conjecture. There are infinitely many real quadratic fields with class number one.

The p-part of an abelian group is the subgroup containing all elements with

p-power order. The fundamental theorem of finite abelian groups states that any



22 Chapter 1. The 2-part of class groups of quadratic number fields

finite abelian group is isomorphic to a direct product of cyclic groups of prime-power

order. Therefore the isomorphism class of a given abelian group is determined by

its p-parts. Given a finite abelian group G and an integer k ≥ 1, the pk-rank of

G is defined as rkpk G = dimFp(p
k−1G/pkG). The non-increasing sequence of non-

negative integers {rkpk G}k≥1 determines the isomorphism class of the p-primary

part of G.

We are mainly interested in studying the 2-part of the class groups of quadratic

fields. We review the techniques known in computing the 2k-ranks of the class group

of quadratic fields.

Let Cn denote the cyclic subgroup of order n, V4 denote the Klein four group,

and D8 denote the Dihedral group of order 8.

1.1 Class groups

For a number field K, the narrow class group is defined as CK = JK/P
+
K and the

ordinary class group is defined as ClK = JK/PK , where

JK := {fractional ideals of K},

PK := {principal fractional ideals of K}, and

P+
K := {totally positive principal fractional ideals of K}.

The class groups CK and ClK are both finite abelian groups. There exists the

following short exact sequence

0→ PK/P
+
K → CK → ClK → 0. (1.1)

We say α ∈ K is totally positive, if σ(α) > 0 for all real embeddings σ : K ↪→ R.

A principal ideal is totally positive if it has a generator that is totally positive.

1.1.1 Some class field theory

Suppose L/K is a Galois extension. Let p be a prime of OK unramified in L and P

be a prime in OL containing p. The Artin symbol is the unique Frobenius element(
L/K
P

)
in Gal(L/K) [28, Lemma 5.19, p.95] such that for any α ∈ OL, we have

(
L/K

P

)
(α) = αNorm(p) mod P.
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The Artin symbol satisfies some useful properties [28, Corollary 5.21, p.95]. First

of all, it encodes information about the splitting of a given prime. A prime p splits

completely in L/K if and only if
(
L/K
P

)
= 1. Moreover, for any σ ∈ Gal(L/K), we

have (
L/K

σP

)
= σ

(
L/K

P

)
σ−1.

We denote by
(
L/K
p

)
the Frobenius conjugacy class of

(
L/K
P

)
in the Galois group

Gal(L/K). When
(
L/K
p

)
contains only one element, by abuse of notation we write(

L/K
p

)
to stand for the unique element in the conjugacy class. For example, when

L/K is an abelian extension,
(
L/K
P

)
is the only element in

(
L/K
p

)
, and we write

(
L/K

p

)
:=

(
L/K

P

)
.

If L/K is abelian and p splits completely in K/Q,
(
L/Q
p

)
contains only one element,

so we write (
L/Q
p

)
:=

(
L/K

P

)
,

where (p) = P ∩ OL.

When K is totally real, the Artin symbol
(
L/K
∞

)
is defined as the Frobenius

at infinity, i.e. the identity map if L/K is totally real, and complex conjugation

otherwise.

1.1.2 Hilbert class field

Suppose L/K is a abelian extension unramified at all finite places. Then we can

extend the Artin symbol to all ideals in OK by multiplicativity

(
L/K

·

)
: JK → Gal(L/K)

∏
j

p
ej
j 7→

∏
j

(
L/K

pj

)ej
.

Class field theory tells us that the Artin symbol induces isomorphisms between

class groups and Galois groups.

Proposition 1.1 (Artin reciprocity). [43, p.228, 242] Let K be a number field.

Denote H+ the maximal abelian extension of K unramified at all finite primes and

H the maximal abelian extension of K unramified at all finite and infinite primes.
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Then (
H+/K

·

)
: CK

∼=−→ Gal(H+/K)

and (
H/K

·

)
: ClK

∼=−→ Gal(H/K).

We call H+ the narrow Hilbert class field and H the ordinary Hilbert class field.

Given any Galois extension K/Q, the class fields H+ and H are always Galois over

Q since any conjugate fields are also unramified.

The following proposition is useful for constructing unramified extensions.

Proposition 1.2 ([37, Chapter V, Theorem 120]). Let L be a number field and

suppose that β ∈ OL \ O2
L is coprime to 2. Given a rational prime p, L(

√
β)/L is

unramified at any prime p in L above p if and only if the following are satisfied:

(i) ordp βOL is even at every p above p, and

(ii) further that X2 ≡ β mod 4 is solvable for some X ∈ OL if p = 2.

Theorem 1.3 (Monodromy theorem [59, p. 265, Corollary 2 of Proposition 6.8]).

Let L/K be a normal finite extension of an algebraic number field. The subgroup of

Gal(L/K) generated by all inertia groups of prime ideals of OL corresponds to the

maximal subfield of L, unramified over K.

1.1.3 Dual class group

The dual class group ĈK is defined as Hom(CK ,T), where T is the circle group

{z ∈ C : |z| = 1}. Since CK is a finite abelian group, we have ĈK
∼= CK .

Given some ψ ∈ ĈK , since kerψ is a subgroup of the abelian group Gal(H+/K),

we can take L to be the subfield of H+ such that kerψ ∼= Gal(H+/L). If ψ has

exact order m, then Gal(L/K) ∼= Cm. We call L the field of definition of ψ. In

other words, L is the smallest field such that one can write

ψ : CK
∼=−→ Gal(H+/K) � Gal(L/K) ∼= Cm ↪→ T,

where the first isomorphism is Artin reciprocity. For ease of notation we simply

write ψ =
(
L/K
·

)
as an element in ĈK by identifying the image of

(
L/K
·

)
with

{z ∈ C : |z| = 1, zm = 1} ⊂ T.
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1.2 Quadratic number fields

Here and henceforth, take K to be the quadratic number field Q(
√
D), where D 6= 1

is a squarefree integer. The discriminant of K/Q is given by

∆K =


D if D ≡ 1 mod 4,

4D if D ≡ 2 or 3 mod 4.

A discriminant of a quadratic field is a fundamental discriminant. For simplicity,

we write CD and ClD for CQ(
√
D) and ClQ(

√
D) respectively.

1.2.1 Imaginary quadratic fields

For imaginary quadratic fields K, i.e. D < 0, every element has positive norm, so

P+
K = PK and CD = ClD. Hence also H = H+. The unit group is simply 〈−1〉.

1.2.2 Real quadratic fields

For real quadratic fields K, i.e. D > 0, there exist elements with negative norms, for

example
√
D. Principal ideals generated by such an element is only totally positive

if there exists a unit with negative norm. In (1.1), the quotient PK/P
+
K is generated

by the class [(
√
D)],

0→ 〈[(
√
D)]〉 → CD → ClD → 0. (1.2)

Dirichlet’s unit theorem states that the unit group of a number field is finitely

generated and has rank r + s− 1, where r is the number of real embeddings and s

is the number of conjugate pairs of complex embeddings of K. Therefore, we can

express the unit group of K in the form

〈−1〉 × 〈εD〉, (1.3)

where εD is taken as the minimal unit in K greater than 1, which is called the

fundamental unit. Therefore, ClK = CK holds precisely when εD has norm −1. A

field extension of a totally real field is unramified at all places in infinity, if and only

if it is totally real. Therefore H is the maximal totally real subfield of H+. Also

[H+ : H] ≤ 2. There is the following short exact sequence

0→ Gal(H+/H) ∼=
〈(

H+/K

∞

)〉
→ Gal(H+/K)→ Gal(H/K)→ 0. (1.4)
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Relating (1.1) and (1.4) by Artin reciprocity, we see that

(
H+/K

∞

)
=

(
H+/K

(
√
D)

)

generates Gal(H+/H).

1.2.3 Quadratic symbols

Suppose E is a number field. For any nonzero a ∈ OE and p a prime in E, we write(
a
p

)
to denote the Kronecker symbol, and extend this multiplicatively. We define(

a
p

)
+

to be c ∈ {0, 1} such that (−1)c =
(
a
p

)
. If p is unramified in E(

√
a)/E, we

can equate the Artin symbol and the Kronecker symbol by

(
a

p

)
=

(
E(
√
a)/E

p

)
=


1 if p splits in E(

√
a)/E,

−1 if p is inert in E(
√
a)/E.

We write ME to be the set of places of E, for example

MQ = {prime numbers} ∪ {∞}.

We call a prime ideal p in OE even if p ∩ Z = 2Z, and odd otherwise. If p ∈ ME ,

we write Ep for the completion of E with respect to p. For any p ∈ ME , and any

a, b ∈ E×, we define the local Hilbert symbol at p to be

(a, b)p =


1 if x2 − ay2 = bz2 has a solution (x, y, z) ∈ E3

p \ {(0, 0, 0)},

−1 otherwise.

By the Hasse-Minkowski theorem, x2 − ay2 = bz2 is solvable by some (x, y, z) ∈

E3 \ {(0, 0, 0)} if and only if (a, b)p = 1 for all p ∈ME .

We can relate Artin symbols of quadratic extensions with Hilbert symbols.

Lemma 1.4. Suppose E is a number field and let a, b ∈ OE. If a prime p is

unramified over E(
√
a)/E, then

(a, b)p =

(
E(
√
a)/E

p

)ordp b

.

Proof. This follows from results from local class field theory, see for example [61,
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Proposition 3.1 p.333], [17, Exercise 2.8, p.352] and [17, Chapter VI.2, Proposition 2,

p.141]. Since the global Artin map at a prime is the corresponding local Artin map,

we have

(a, b)p =

(
Ep(
√
a)/Ep

b

)
=

(
E(
√
a)/E

p

)ordp b

.

1.2.4 Splitting of primes in biquadratic extensions

Lemma 1.5. Suppose F and E are number fields such that Gal(F/E) ∼= V4. Let

E1, E2, E3 be the three quadratic subfields. If v is unramified in F/E1 and v ∩ OE

is unramified in E2/E, then

(
F/E1

v

)
=

(
E2/E

NormE1/E v

)
.

Proof. Let p = v ∩ OE . If p ramifies or splits in E1/E, then p = NormE1/E v and

the splitting of v in F/E1 is the same as the splitting of p in E2/E.

If p is inert in E1/E, then p2 = NormE1/E v and p must split in one of E2/E

and E3/E. Therefore
(
F/E1

v

)
= 1.

Lemma 1.5 also follows from more general theory of Artin symbols, see for

example [17, Chapter VII, Proposition 3.2, p.166].

Lemma 1.6. Suppose F and E are number fields such that Gal(F/E) ∼= V4. Let

E1, E2, E3 be the three quadratic subfields. If p is unramified in E1/E, then F/E2

and F/E3 must be unramified at any prime above p.

Proof. By symmetry it suffices to show that F/E2 must be unramified. If p ramifies

in E2/E, then since the inertia degree of p in F/E is 2, any prime in E2 above p must

be unramified. If p is unramified in E2/E, then since F = E1 · E2, p is unramified

in F/E.

Lemma 1.7. Let a, b 6= 1 be distinct squarefree integers. A prime ideal ramifies in

Q(
√
a,
√
b)/Q(

√
ab) if and only if it divides gcd(∆Q(

√
a),∆Q(

√
b)).

Proof. First suppose that p | gcd(∆Q(
√
a),∆Q(

√
b)), then p ramifies in both Q(

√
a)

and Q(
√
b). If p - ∆Q(

√
ab), i.e. p is unramified in Q(

√
ab)/Q, which is always the

case when p is odd, then it must ramify in Q(
√
a,
√
b)/Q(

√
ab). If p | ∆Q(

√
ab), then

p is totally ramified in Q(
√
a,
√
b)/Q.
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Suppose instead p - gcd(∆Q(
√
a),∆Q(

√
b)). If p - ∆Q(

√
a) and p - ∆Q(

√
b), p is

unramified in both Q(
√
a) and Q(

√
b), hence also in their compositum Q(

√
a,
√
b).

If p divides exactly one of ∆Q(
√
a) and ∆Q(

√
b), then p | ∆Q(

√
ab). In this case p

is unramified in one of Q(
√
a)/Q and Q(

√
b)/Q, but ramifies in Q(

√
ab)/Q, so the

prime ideal above p must be unramified in Q(
√
a,
√
b)/Q(

√
ab).

When we have quadratic extension of a quadratic extension, the following lemma

allows us to determine its Galois closure.

Lemma 1.8 ([54, Chapter VI, Exercise 4, p.321]). Let K be a number field. Let

E = K(
√
a), where a ∈ K× \ (K×)2, and let F = E(

√
β), where β ∈ E× \ (E×)2.

Let N = NormE/K(β).

(i) If N ∈ (K×)2, then F/K is normal and Gal(F/K) ∼= V4.

(ii) If N ∈ a · (K×)2, then F/K is normal and Gal(F/K) ∼= C4.

(iii) If N /∈ (K×)2 ∪ a · (K×)2, then F/K has normal closure F (
√
N) and

Gal(F (
√
N)/K) ∼= D8.

1.3 Inductively computing the 2k-rank

H+

H+
2∞

...

H+
8

H+
4

H+
2

Q(
√
D)

Q

2r8

2r4

2r2

To find the size of the 2-part of CD, we can either work with CD

directly or its dual ĈD, by constructing 2-power extensions of

K contained in the narrow class field H+. Let r2k := rk2k CD,

so 2r2k = # C2k−1

D [2] = #(C2k−1

D /C2k

D ).

Since C2k

D is a subgroup of CD, there exists some fieldH+
2k
⊆

H+ such that C2k

D
∼= Gal(H+/H+

2k
) under Artin reciprocity.

Then we have Gal(H+
2k
/K) ∼= Gal(H+/K)/Gal(H+/H+

2k
) ∼=

CD /C2k

D . We see that

(
H+

2k
/K

·

)
: CD /C2k

D → Gal(H+
2k
/K) [m] 7→

(
H+

2k
/K

m

)
.

Therefore

C2k

D = ker

(
H+

2k
/K

·

)
=

⋂
Ψ∈ĈD[2k]

ker Ψ. (1.5)
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We see that H+
2k

is the compositum of the fields of definition of all Ψ ∈ ĈD[2k]. The

field H+
2k

is constructed as the maximal abelian at finite places unramified extension

of K of exponent 2k. We can repeat this until we obtain H+
2∞ , the maximal abelian

at finite places unramified 2-power extension of K. This is a finite process since the

class group is finite.

The field H+
2 is called the genus field of K. It follows from Gauss genus the-

ory [28, Theorem 6.1] that

H+
2 = K(

√
p∗ : p | ∆K), (1.6)

where p∗ = (−1)
p−1
2 p for odd p and

2∗ =
D∏

odd p|D

p∗
=


2 if D ≡ 2 mod 8,

−2 if D ≡ −2 mod 8,

−1 if D ≡ 3 mod 4.

We can also show directly that the field we defined is indeed the genus field of K.

It is straightforward to check that the H+
2 /K is indeed unramified, for example we

can apply Lemma 1.6. We prove the following more general lemma which implies

that the genus field must have degree bounded by 2t−1 over K, where t = ω(∆K).

Then since we have constructed an unramified extension H+
2 /K with degree 2t−1,

we see that r2 = rk2 ĈD = t− 1.

Lemma 1.9. Suppose E is a number field with odd narrow class number, and let

K/E be a quadratic extension. Let H+
2k

be the maximal abelian at finite places

unramified extension of K of exponent 2k. Let σ ∈ Gal(H+
2k
/E) be a lift of the

generator of Gal(K/E). Then for any subfield L ⊆ H+
2k

containing K, L/E is Galois

and σgσ−1 = g−1 for any g ∈ Gal(L/K). Furthermore, Gal(H+
2 /E) is abelian and

of exponent 2, and rk2 CK ≤ #{p prime in E : p ramifies in K/E} − 1.

Proof. Consider the short exact sequence

1→ CK /C2k

K
∼= Gal(H+

2k
/K)→ Gal(H+

2k
/E)→ 〈σ〉 → 1.

Each class in CK /C2k

K contains a prime ideal v in K by Chebotarev density theorem.
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Suppose p is the prime in E lying below v. Since E has odd narrow class number,

[p] is trivial in CE /C2k

E , and so [pOK ] is trivial in CK /C2k

K . If p splits or ramifies

in K/E, then vvσ = pOK , so [v]−1 = [v]σ in CK /C2k

K . If p is inert, then [v] is trivial

in CK /C2k

K . Since the isomorphism CK /C2k

K
∼= Gal(H+

2k
/K) respects the action of

σ, this implies that σgσ−1 = g−1 for any g ∈ Gal(H+
2k
/K). Now every subgroup of

Gal(H+
2k
/K) is stable under σ, so any L ⊆ H+

2k
containing K is Galois over E. The

same argument for L/K shows that σgσ−1 = g−1 holds for any g ∈ Gal(L/K).

When k = 1, any g ∈ Gal(H+
2 /K) has order dividing 2, so g = g−1 and since

σgσ−1 = g−1, we see that g commutes with σ. Therefore Gal(H+
2 /E) is abelian and

of exponent 2. It follows from the monodromy theorem (Theorem 1.3), since E has

no unramified at all finite prime abelian extension of even degree, that Gal(H+
2 /E)

is generated by the inertia groups of ramified primes. Since Gal(H+
2 /E) is abelian,

the inertia group does not depend on the choice of prime above a given prime p in

E, so the number of generators is bounded by the number of primes ramifying in

K/E.

Let p1, . . . , pt be the distinct prime factors of ∆K . These are precisely the

primes that ramify in K/Q. Denote pj the ideal in OK that is above pj , so (pj) = p2
j

and [pj ]
2 = 1. It is well known (see for example [85, Corollary 9.9(a)]) that CD[2]

can be generated by the classes [pj ], so we can express any element in CD[2] as∏
j [pj ]

ej , for some ej ∈ {0, 1}.

Define a t-dimensional F2-vector space

V1 :=


{±b | ∆K} ⊂ Q×/{1,−D}(Q×)2 if D > 0,

{b | ∆K : b > 0} ⊂ Q×/(Q×)2 if D < 0.

(1.7)

Since #V1 = 2t and # CD[2] = 2t−1, there is a two-to-one projection

P : V1 � CD[2] m 7→


[m] if m > 0,

[m(
√
D)] if m < 0,

where m is an ideal in K with norm |m| . One set of representatives for V1 is

{pe11 p
e2
2 . . . pett : (e1, e2, . . . , et) ∈ Ft2}.
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Since # kerP = 2, there exist exactly one non-trivial positive representative R | ∆K

in kerP . If D < 0, we always have R = D, since (
√
D) is a totally positive principal

ideal. Define Vk to be the set of elements b ∈ V1 such that P (b) ∈ C2k−1

D [2].

Define another t-dimensional F2-vector space

U1 := {(p∗1)e1(p∗2)e2 . . . (p∗t )
et : (e1, e2, . . . , et) ∈ Ft2} ⊂ Q×/(Q×)2. (1.8)

The field of definition of any Ψ ∈ ĈD[2] is contained in H+
2 , so we can write Ψ =(

K(
√
a)/K
·

)
for some a ∈ U1. Then there is a two-to-one projection

ψ1 : U1 � ĈD[2] a 7→
(
K(
√
a)/K

·

)
.

Since K(
√
a) = K(

√
D/a), we see that kerψ1 = {1, D}. Define Uk to be the set of

a ∈ U1 such that ψ1(a) ∈ Ĉ2k−1

D [2].

For any a ∈ Uk, there exists some Ψ ∈ ĈD[2k] such that Ψ2k−1
= ψ1(a). Since

Ψ ∈ ĈD[2k], we can write Ψ =
(
L/K
·

)
, where L ⊆ H+ and Gal(L/K) ∼= C2i for

some i ≤ k. From Ψ2k−1
= ψ1(a), we deduce that the field of definition of ψ1(a)

must be contained in L. Also if ψ1(a) is non-trivial, then Ψ must have exact order

2k, so i = k. Therefore L ⊆ H+
2k

is a C2k -extension of K containing K(
√
a). We see

that any two choices of
(
L/K
·

)
defer by an element in ĈD[2k−1]. If ψ1(a) is trivial

then Ψ ∈ ĈD[2k−1]. Therefore we can define

ψk : Uk → ĈD[2k]/ĈD[2k−1] ψk(a)2k−1
= ψ1(a).

The following is now clear.

Theorem 1.10. Let a ∈ U1 \ {1, D}. Then a ∈ Uk if and only if there exists a field

L such that K ⊆ K(
√
a) ⊆ L ⊆ H+ and Gal(L/K) ∼= C2k .

We see that ⋂
Ψ∈ĈD[2k]

ker Ψ =
⋂
i≤k

⋂
a∈Ui

kerψi(a).

From (1.5), we deduce that

C2k

D = ker

(
H+

2k−1/K

·

) ⋂
a∈Uk

kerψk(a) = C2k−1

D

⋂
a∈Uk

kerψk(a).
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Define a pairing

〈 , 〉k : Uk × Vk → {±1} 〈a,m〉k 7→ ψk(a)(P (m)). (1.9)

Since ĈD[2k−1] is trivial on C2k−1

D , 〈 , 〉k is well defined. It is straightforward to

check that the pairing factors through Ĉ2k−1

D [2]×C2k−1

D [2]. This pairing arises from

the natural pairing ĈD×CD → T. The important property of this pairing 〈 , 〉k
is that its left kernel (i.e. cokernel) is Uk+1 and right kernel is Vk+1, which both have

size 21+r
2k+1 . Starting with U1 and V1, we inductively obtain the r4, r8, r16, . . . via

this pairing. We have sequences of subspaces

{1, D} ⊆ · · · ⊆ Uk+1 ⊆ Uk ⊆ · · · ⊆ U1 {1, R} ⊆ · · · ⊆ Vk+1 ⊆ Vk ⊆ · · · ⊆ V1,

such that ψ1(Uk) = Ĉ2k−1

D [2], P (Vk) = C2k−1

D [2] and dimF2 Uk = dimF2 Vk = r2k + 1.

Define

Uk = Uk/{1, D} and Vk = Vk/{1, R}. (1.10)

The pairing is also well-defined on Uk and Vk.

For any S = {s1, . . . , sm} ⊆ Uk and T = {t1, . . . , tn} ⊆ Vk, define Rk,S,T (D) to

be the m× n matrix (ci,j) over F2, such that (−1)ci,j = 〈si, tj〉k. If S is a basis for

Uk and T is a basis for Vk, then Rk,S,T (D) is the matrix representation of 〈 , 〉k,

and we have cokerRk,S,T (D) ∼= Uk+1 and kerRk,S,T (D) ∼= Vk+1, under the maps

(e1, . . . , em) 7→ se11 . . . semm and (e1, . . . , en) 7→ te11 . . . tenn , respectively.

We will discuss this idea in computing r4 and r8 in the following sections.

1.4 Computing 4-rank

We can find r4 = rk4 CD from the dimension of the right kernel of 〈 , 〉1. We

attempt to obtain a matrix representation of the pairing 〈 , 〉1 with respect to

the basis S = {p∗1, . . . , p∗t } for U1 and the basis T = {p1, . . . , pt} for V1. Taking

norms, we obtain an expression in terms of the Kronecker symbols at each prime pj ,

〈p∗i , pj〉1 =

(
K(
√
p∗i )/K

pj

)
=


(

Q(
√
p∗i )/Q
pj

)
=
(
p∗i
pj

)
if i 6= j,(

Q(
√
D/p∗i )/Q
pi

)
=
(
D/p∗i
pi

)
if i = j.



1.4. Computing 4-rank 33

We see that the matrix representation for 〈 , 〉1 with respect to the bases S and

T , is given by R1,S,T (D) := (cij)1≤i,j≤t, where

cij =


(
p∗i
pj

)
+

if i 6= j,(
D/p∗i
pi

)
+

if i = j.

Note that the entries have been converted from {±1} to {0, 1}, as 〈 , 〉1 is multi-

plicative, while the matrix space acts on additive structures. We callR1 := R1,S,T (D)

the Rédei matrix, since it was first given by Rédei [64]. Then V2 is the left kernel of

R1, U2 is the right kernel of R1, and corankR1 = r4 + 1.

We can convert the Kronecker symbols into Hilbert symbols, so alternatively,

for any pi and odd pj ,

〈p∗i , pj〉1 = (D, pj)pi = (−D, p∗i )pj .

If pj = 2, we see that exactly one of p∗i or D/p∗i is congruent to 1 mod 4, and

〈p∗i , 2〉1 = (D, 2)pi =


1 if p∗i or D/p∗i ≡ 1 mod 8

−1 if p∗i or D/p∗i ≡ 5 mod 8

.

Therefore checking also the Hilbert symbol at ∞, and noting that (−D, a)p =

(D, b)p = 1 for any a, b | D and p - ∆√D, we have

U2 = {a ∈ U1 : (−D, a)p = 1 for all p ∈MQ,

and a or D/a ≡ 1 mod 8 if 2 ∈ V1}, (1.11)

V2 = {b ∈ V1 : (D, b)p = 1 for all p ∈MQ} . (1.12)

1.4.1 Decomposition of second type

Rédei and Reichardt [66] showed that we can find the 4-rank by constructing the

unramified C4-extensions. Fouvry and Klüners [31] described the construction in

more detail and applied this idea to the negative Pell equation. They gave the

following definition.
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Definition 1.11 (decomposition of second type). Given a squarefree integer D, we

call {D1, D2} a decomposition of second type if the following holds

� D = D1D2;

� (D1, D2)p = 1 for all p ∈MQ;

� if one of ∆Q(
√
D1),∆Q(

√
D2) is even, the other is 1 mod 8.

In terms of Kronecker symbols, an equivalent formulation of the last two con-

ditions in the definition is
(
D2
p

)
= 1 for all p | D1 and

(
D1
p

)
= 1 for all p | D2. We

treat {D1, D2} and {D2, D1} as the same decomposition since they define the same

extensions.

It is straightforward to check from (1.11) that this is an alternative description

of elements in U2.

Theorem 1.12. We have a ∈ U2 if and only if {a,D/a} is a decomposition of

second type. Therefore Q(
√
D) has 2r4 decomposition of second type.

For a ∈ U2 /∈ {1, D}, the field of definition of ψ2(a) ∈ ĈD[2k] turns out to

be D8-extensions of Q. We will show in Section 2.1 that such extensions can be

constructed explicitly. Here we prove a slightly more general lemma. The case when

E = Q is known by Rédei and Reichardt [66].

Lemma 1.13. Let E be a number field with odd class number, and let K/E be a

quadratic extension. Suppose L/K is a C4-extension unramified at all finite places.

Then Gal(L/E) ∼= C2 o C4 = D8.

Proof. By Lemma 1.9, σgσ−1 = g−1 for any g ∈ Gal(L/K), and L/E is a Galois

extension. Since Gal(L/E) has order 8, the only group that satisfy the conditions

is D8.

1.5 Computing the 8-rank

To compute the 8-rank, we find the right kernel of the pairing 〈 , 〉2.

Definition 1.14 (Rédei symbol for decomposition of second type). Let a ∈ U2 and

b ∈ V2. Define the Rédei symbol as

[a,D/a, b] := 〈a, b〉2.
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and the additive Rédei symbol, which takes values in F2, as

[a,D/a, b]+ =


0 if [a,D/a, b] = 1,

1 if [a,D/a, b] = −1.

Take a basis S = {a1, . . . , ar4+1} for U2 = cokerR1 and a basis T =

{b1, . . . , br4+1} for V2 = kerR1. Then the matrix representation of 〈 , 〉2 is

R2,S,T (D) := ([ai, D/ai, bj ]+)1≤i,j≤r4+1, and corankR2 = r8 + 1.

In the next chapter we will study the Rédei symbol in a more general setting.





Chapter 2

A new look at Rédei reciprocity

In 1939, Rédei defined a symbol in terms of some power residue symbol [65] to study

the 8-rank of the class group, with a similar meaning to the symbol we defined in

Definition 1.14, but with more restrictions on the entries. He showed that his symbol

satisfies some form of symmetry in the entries. More recently, in a more class field

theoretic setting, Corsman [27] extended the Rédei symbol to include the infinite

places, and discovered a more general form of the symmetry, which we will call Rédei

reciprocity. Smith also provided a proof of Rédei reciprocity in [80]. However, as

pointed out in [87], both Corman and Smith’s proofs did not account for subtleties

arising from the primes above 2 and ∞ correctly. Stevenhagen gave more careful

versions of the definition and proof of Rédei reciprocity in [87, Theorem 1].

The proofs involve applying Hilbert reciprocity to an appropriate field and

relating the Hilbert symbols with the Artin symbol defining the Rédei symbol. We

will give a proof following a similar approach, but taking a more explicit route when

constructing minimally ramified extensions, where the Rédei symbol is defined.

For any principal ideal (d) in a field K, let [d] denote the squarefree ideal

dividing (d) such that (d)[d] is the square of an ideal. In contrast to the previous

chapters, here K will denote some V4-extension of Q.

2.1 Constructing minimally ramified C4-extensions

In this section, let a, b 6= 1 be nonzero integers satisfying

(a, b)p = 1 for all p ∈MQ. (2.1)
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Note that (a, b)∞ = 1 implies that at least one of a and b is positive. Define

Sa,b =


2 gcd(∆Q(

√
a),∆Q(

√
b)) if {a, b} ≡ {5 mod 8, 3 mod 4},

gcd(∆Q(
√
a),∆Q(

√
b)) otherwise.

Define Fa,b to be the set containing all β ∈ Q(
√
a) such that

(i) L = Q(
√
a,
√
b,
√
β) is a Galois extension of Q,

(ii) L/Q(
√
ab) is a C4-extension that is unramified at any prime ideal not dividing

Sa,b.

We will show that given (2.1), Fa,b is non-empty. Fouvry and Klüners [31,

Section 3.2] constructed elements in Fa,b when {a, b} is a decomposition of second

type of ab. We extend their construction to this more general setting.

2.1.1 Choosing a generator

We will construct some β ∈ Fa,b. By the Hasse-Minkowski theorem, condition (2.1)

implies that there exists some (x, y, z) ∈ Q3 \ {(0, 0, 0)} satisfying

x2 − ay2 = bz2. (2.2)

Clearing denominators and removing any common factors if necessary, we take

x, y, z ∈ Z not all zero and pairwise coprime satisfying (2.2). (2.3)

When a or b is congruent to 1 mod 4, we also require that either

{
(x, y, z) ≡ (1, 1, 0) mod 2 and x− z ≡ 1 mod 4, or (2.4a)

(x, y, z) ≡ (1, 0, 1) mod 2 and x− y ≡ 1 mod 4. (2.4b)

Note that (2.4a) implies that a ≡ 1 mod 4 and (2.4b) implies that b ≡ 1 mod 4. The

existence of such (x, y, z) is guaranteed by the following lemma.

Lemma 2.1. If a or b is congruent to 1 mod 4, there exists (x, y, z) satisfying (2.3)

and one of (2.4b) and (2.4a).

Proof. From the preceding discussion, it is clear that hypothesis (2.7) implies the

existence of some (x, y, z) satisfying (2.3). Without loss of generality, assume that
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b ≡ 1 mod 4. It suffices to show that x is odd and and exactly one of y and z is even,

because then switching the sign of x gives x− y ≡ 1 mod 4 or x− z ≡ 1 mod 4.

Suppose a ≡ 1 mod 4. Notice that x2 ≡ z2 + y2 mod 4, so x is odd and exactly

one of y and z is even.

Suppose a ≡ 2 mod 4. Then from x2 − 2y2 ≡ z2 mod 4, we see that x is odd, y

is even and z is odd.

Suppose a ≡ 3 mod 4. From x2 + y2 ≡ z2 mod 4, we see that z is odd and

exactly one of x and y is odd. If x is even and y is odd, we can take (X,Y, Z) =

(x(1 + b)− 2bz, y(1− b), 2x− z(1 + b)), which satisfies X2 − aY 2 = bZ2. Then X

and Z are both exactly divisible by 2 and Y is divisible by 4. Therefore removing

any common factors of X, Y and Z reduces to the case where x is odd and y is

even.

Fix some (x, y, z) satisfying (2.3) and in addition (2.4b) or (2.4a) if a or b is

congruent to 1 mod 4, we define


α = x+ z

√
b, β = x+y

√
a

2 if a ≡ 1 mod 4 and 2 | z,

α = 2(x+ z
√
b), β = x+ y

√
a otherwise.

(2.5)

Let F ′a,b be the set of all β ∈ Q(
√
a) that arise from (2.5).

Note that β is defined as a primitive element in the ring of integers OQ(
√
a), i.e.

p - β for any rational prime p. Moreover, α = (
√
β + sgn(z)

√
β̄)2, where β̄ is the

conjugate of β in Q(
√
a) and sgn(z) ∈ {±1} is the sign of z.

We will show the following.

Theorem 2.2. F ′a,b ⊆ Fa,b.

Define K = Q(
√
a,
√
b) and L = Q(

√
a,
√
b,
√
β). To prove Theorem 2.2, we

need to check L satisfies the conditions set out in the definition of Fa,b.

Applying Lemma 1.8 shows that Gal(L/Q) ∼= D8, unless ab ∈ (Q×)2, when

Q = Q(
√
ab) and Gal(L/Q) ∼= C4.

In our case N is bz2 and the normal closure F (
√
N) in the theorem is L.

We obtain the following field diagram, where ᾱ denotes the conjugate of α in

Q(
√
b). Here L/Q(

√
ab) is a cyclic extension of degree 4 which is central in L/Q.
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Q(
√
a) Q(

√
b)

Q(
√
β)Q(

√
β̄) Q(

√
α) Q(

√
ᾱ)K = Q(

√
a,
√
b)

L = Q(
√
a,
√
b,
√
β)

Q(
√
ab)

Q

To prove Theorem 2.2, it remains to show that L/Q(
√
ab) is unramified at any

prime ideal not dividing Sa,b.

With Proposition 1.2 in mind, we first show that L/K is unramified at odd

primes not dividing Sa,b.

Lemma 2.3. The following holds.

(i) Q(
√
β)/Q(

√
a) is unramified at any odd prime not dividing b, and

(ii) Q(
√
α)/Q(

√
b) is unramified at any odd prime not dividing a.

It follows that L/K is unramified at any odd prime not dividing gcd(a, b).

Proof. Suppose p is a prime in Q(
√
a) lying above an odd prime p - ∆Q(

√
b). Note

that p ramifies in Q(
√
β)/Q(

√
a) if and only if p | β. If p | β, then p | x + y

√
a.

Taking norms gives p | bz2, but p - b, so p | z. The condition gcd(x, y) = 1 implies

that p - β in OQ(
√
a), so p is the only prime above p that divides β. Now ordp β

is even, hence p is unramified over Q(
√
β)/Q(

√
a). Applying Lemma 1.6 to the

V4-extension L/Q(
√
a), we see that L/K is unramified at any prime above p.

If p - ∆Q(
√
a), a symmetric argument with β replaced with α shows that p is

unramified over Q(
√
α)/Q(

√
b) and L/K is unramified at any prime above p.

To handle ramification over the prime 2, we require α ∈ Q(
√
b) or β ∈ Q(

√
a)

to be a square modulo 4 when 2 /∈ S. Indeed, suppose a ≡ 1 mod 8, then if β ≡

X2 mod 4 and is odd in Q(
√
a), then 1 and (X +

√
β)/2 forms an integral basis of

OQ(
√
β) over OQ(

√
a). This basis has discriminant β, which is odd, so 2 is unramified.

Lemma 2.4. Suppose 2 /∈ Sa,b. Then the following holds:

(i) Q(
√
β)/Q(

√
a) is unramified at any even prime if (2.4b) holds, and



2.2. Defining the Rédei symbol 41

(ii) Q(
√
α)/Q(

√
b) is unramified at any even prime if (2.4a) holds.

Furthermore, L/K is unramified at any even prime.

Proof. The assumption 2 - Sa,b implies that a ≡ 1 mod 8, or b ≡ 1 mod 8, or a ≡ b ≡

1 mod 4. We first show that (2.4b) implies that β is a square modulo 4 in OQ(
√
a),

so that Q(
√
β)/Q(

√
a) is unramified at any even prime. Assuming (2.4b) holds, we

have b ≡ 1 mod 4.

If a ≡ 1 mod 4, then β = x+ y
√
a ≡ (x− y) + 2y(1+

√
a

2 ) ≡ 1 mod 4.

Suppose a ≡ 2 mod 4. If y ≡ 0 mod 4, then β = x + y
√
a ≡ 1 mod 4. If

y ≡ 2 mod 4, then β = x+ y
√
a ≡ 3 + 2

√
a ≡ (1 +

√
a)2 mod 4.

Suppose a ≡ 3 mod 4. Then b ≡ 1 mod 8. From x2 − ay2 ≡ z2 mod 8, we must

have y ≡ 0 mod 4, so β = x+ y
√
a ≡ 1 mod 4.

Therefore L/Q(
√
a) is unramified at any even prime. Applying Lemma 1.6 to

the V4-extension L/Q(
√
a), we see that L/K is also unramified at any even prime.

If (2.4a) holds instead of (2.4b), then a ≡ 1 mod 4 and z is even, so α = x+z
√
b.

A symmetric argument shows that α is a square modulo 4, so that L/Q(
√
b) and

hence L/K are unramified at any even prime.

By Lemma 2.3 and Lemma 2.4, L/K is unramified at any finite prime not

dividing Sa,b. Together with Lemma 1.7, we see that L/Q(
√
ab) is unramified at any

finite prime not dividing Sa,b. This proves Theorem 2.2.

2.2 Defining the Rédei symbol

To define the Rédei symbol, take a, b, c 6= 1 to be nonzero squarefree integers satis-

fying

gcd(∆Q(
√
a),∆Q(

√
b),∆Q(

√
c)) = 1, and (2.6)

(a, b)p = (a, c)p = (b, c)p = 1 for all p ∈MQ. (2.7)

Our goal is to define an Artin symbol
(
K(
√
β)/K
c

)
that only depends on a, b and c.

Fix some β ∈ F ′a,b and define L = K(
√
β). By Theorem 2.2, L/K is unramified

at any odd prime dividing c, since it must be coprime to Sa,b by (2.6). When c is

even, at least one of a and b is congruent to 1 mod 4 by (2.6) so must be congruent

to 1 mod 8 by (2.7), so L/K is unramified at any prime at 2. Any p | c splits or
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ramifies in Q(
√
a)/Q and Q(

√
b)/Q from condition (2.7), so we can always find an

ideal c in K with norm |c|.

2.2.1 Removing the dependency on the choice of field extensions

Now that we know where this Artin symbol exists, we need to check where it is

independent of the choice of β and c.

Since Gal(L/K) is in the centre of Gal(L/Q), for each prime p | c, the symbol(
L/K
v

)
does not depend on the choice of prime ideal v above p. Therefore taking a

different c does not change the value of
(
L/K
c

)
.

Theorem 2.5. Let a, b, c 6= 1 be nonzero squarefree integers satisfying the condi-

tions (2.6) and (2.7). Define K = Q(
√
a,
√
b). Let β, β′ ∈ Fa,b. Let c be an ideal in

K of norm |c|. Futher assume for any even prime p in Q(
√
a),

ordp β is even if {a, b} ≡ {3 mod 4, 5 mod 8} and c ≡ 5 mod 8. (2.8)

Then 
(
K(
√
β)/K
c

)
=
(
K(
√
β′)/K
c

)
if c > 0,(

K(
√
β)/K

c∞

)
=
(
K(
√
β′)/K
c∞

)
if c < 0.

Lemma 2.6. Let a, b 6= 1 be nonzero squarefree integers satisfying (2.1). Define

K = Q(
√
a,
√
b). Suppose β, β′ ∈ Fa,b. Then K(

√
β′) = K(

√
dβ) for some squarefree

integer d. Furthermore, K(
√
d)/Q(

√
ab) is also unramified at any finite prime not

dividing Sa,b, and

gcd(∆Q(
√
ab/d)

,∆Q(
√
d)) | Sa,b. (2.9)

Proof. Since K(
√
β′) and K(

√
β′) are both C4-extensions of Q(

√
ab), by Lemma 1.8,

we must have NormQ(
√
a)/Q β = bz2 and NormQ(

√
a)/Q β

′ = bz′2 for some z, z′ ∈

Q×. Now NormQ(
√
a)/Q ββ

′ = (bzz′)2, so Q(
√
ββ′)/Q is a V4-extension. Hence

Q(
√
ββ′) = Q(

√
a,
√
d) for some squarefree integer d, and ββ′ ∈ d · (Q(

√
a)×)2.

Therefore K(
√
β′) = K(

√
dβ). Since K(

√
d) ⊂ K(

√
β) · K(

√
β′), we know that

K(
√
d)/Q(

√
ab) must be unramified where K(

√
β)/Q(

√
ab) and K(

√
β′)/Q(

√
ab) are

both unramified, i.e. outside Sa,b. In particular Q(
√
d,
√
ab)/Q(

√
ab) is unramified

outside Sa,b. Now (2.9) follows from Lemma 1.7.

Proof of Theorem 2.5. Suppose d is a squarefree integer such that K(
√
β′) =
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K(
√
dβ) as in Lemma 2.6. If

(
K(
√
d)/K
c

)
= 1, since Gal(K(

√
β,
√
β′)/K) ∼= V4,

we have

(
K(
√
β′)/K

c

)
=

(
K(
√
β)/K

c

)(
K(
√
d)/K

c

)
=

(
K(
√
β)/K

c

)
.

Therefore it suffices to show that
(
K(
√
d)/K
c

)
= 1.

Suppose p | c. Then (2.6) implies that p - Sa,b. The condition (a, c)p = (b, c)p =

1 in (2.7) implies that any p either splits or ramify in the extensions Q(
√
a)/Q

and Q(
√
b)/Q. Suppose v | c is the prime in K above p. Apply Lemma 1.5 to

K(
√
d)/Q(

√
ab), then to Q(

√
ab,
√
d)/Q, then

(
K(
√
d)/K

v

)
=

(
Q(
√
ab,
√
d)/Q(

√
ab)

NormK/Q(
√
ab) v

)
=


(
Q(
√
d)/Q
p

)
if p - ∆Q(

√
d),(

Q(
√
ab/d)/Q
p

)
if p - ∆Q(

√
ab/d)

.

We must be in at least one of the two cases by (2.9). Converting to the Hilbert

symbol, (
K(
√
d)/K

v

)
= (d, c)p. (2.10)

since by assumption (ab, c)p = (a, c)p(b, c)p = 1.

Since c is squarefree, multiplying the symbols (2.10) over v | c then applying

Hilbert reciprocity, we have(
K(
√
d)/K

c

)
=
∏
p|c

(d, c)p = (d, c)∞
∏
p-c

(d, c)p.

If c > 0 then (d, c)∞ = 1. If c is negative, then

(
K(
√
d)/K

∞

)
= (d, c)∞.

Therefore it remains to show that

∏
p-c

(d, c)p = 1. (2.11)
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For any odd p dividing d but not c, p must divide a or b because of (2.9), so

(d, c)p =

(
Q(
√
c)/Q
p

)
=


(a, c)p if p | a,

(b, c)p if p | b
= 1.

If p - 2cd, we have (d, c)p = 1.

The term (d, c)2 only appear in (2.11) when c is odd. If c is odd and 2 - Sa,b,

then from (2.9), Q(
√
d)/Q or Q(

√
ab/d)/Q is unramified at 2, so (d, c)2 = 1. The

remaining case is when c is odd and 2 | Sa,b. Since ∆Q(
√
c) is coprime to Sa,b, we

must have c ≡ 1 mod 4. If c ≡ 1 mod 8, then (d, c)2 = 1, so the remaining case is

c ≡ 5 mod 8. To satisfy (2.7), we are left with the case in (2.8), but our assumption

ensures d is odd, so (d, c)2 = 1.

We see from the following example that the value of the Artin symbol depends

on the choice of β if (2.8) is not assumed.

Example 2.7. Take a = 23 ≡ 3 mod 4, b = 13 ≡ 5 mod 8 and c = 29 ≡ 5 mod 8,

which satisfy (2.6) and (2.7). We find that (x, y, z) = (6, 1, 1) and (29, 1, 6) are both

solutions to x2−ay2 = bz2. Set β = 6+
√

13 and β′ = 29+
√

13, then K(
√
β)/Q and

K(
√
β′)/Q are both unramified at 29, but

(
K(
√
β)/K
c

)
= 1 and

(
K(
√
β′)/K
c

)
= −1 for

any ideal c in K with norm 29.

We now define the Rédei symbol.

Definition 2.8 (Rédei symbol). For any triple (A,B,C) ∈ Q× × Q× × Q× sat-

isfying conditions (2.6) and (2.7), take a, b, c to be the squarefree integers such

that (a, b, c) = (r2A, s2B, t2C) for some r, s, t ∈ Q×. Define K = Q(
√
a,
√
b). If

a, b, c 6= 1, take any β ∈ Fa,b which satisfies (2.8), and any ideal c in K of norm |c|.

The Rédei symbol is defined by

[A,B,C] =



(
K(
√
β)/K
c

)
if c > 0 and 1 6∈ {a, b, c},(

K(
√
β)/K

c∞

)
if c < 0 and 1 6∈ {a, b, c},

1 if 1 ∈ {a, b, c}.

2.3 Proof of Rédei reciprocity

Our aim is to prove the following theorem using Hilbert reciprocity.
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Theorem 2.9 (Rédei reciprocity). For a, b, c ∈ Q× satisfying the condi-

tions (2.6), (2.7), we have

[a, b, c] = [a, c, b].

It suffices to prove Theorem 2.9 assuming a, b, c 6= 1 are nonzero squarefree

integers. We can also fix β ∈ F ′a,b and γ ∈ F ′a,c, since they automatically satisfy (2.8),

and the Rédei symbols are independent of such choices. Define Ka,b = Q(
√
a,
√
b),

Ka,c = Q(
√
a,
√
c), La,b = Q(

√
a,
√
b,
√
β) and La,c = Q(

√
a,
√
c,
√
γ).

We will prove the following more explicit version of Theorem 2.9.

Theorem 2.10. Let a, b, c 6= 1 be nonzero squarefree integers satisfying (2.6)

and (2.7). Take c to be an ideal in Ka,b which has norm |c| and b to be an ideal in

Ka,c which has norm |b|. Then

(
La,b/Ka,b

c

)(
La,c/Ka,c

b

)
=



(
La,b/Ka,b
∞

)
if c < 0,(

La,c/Ka,c
∞

)
if b < 0,

1 if b > 0 and c > 0.

Theorem 2.9 is immediate from Theorem 2.10.

Now La,b/Ka,b and La,c/Ka,c are unramified at primes outside Sa,b and Sa,c

respectively. Take c to be an ideal in Ka,b which divides γ, and has norm |c|. Take

b to be an ideal in Ka,c which divides β, and has norm |b|. It is possible to pick

such b and c by the following lemma.

Lemma 2.11. There exists an ideal c in Ka,b such that NormKa,b/Q(
√
a)(c) = [γ],

and Norm(c) = |c|.

Proof. Let p be a prime in Q(
√
a) above some prime p in Q. Only at most one

prime p in Q(
√
a) above p can divide γ, since p - γ. From the defining equation for

γ, we get γγ̄ = cz2 or c(z/2)2 for some z ∈ Z, if p | [γ], then p | c. Any p | c must

either ramify or split in Q(
√
b)/Q and Q(

√
a)/Q by (2.7). Since c is squarefree, we

have ordp[γ] = ordp c. For each p | c, we can take a prime v in Ka,b above p so that

NormKa,b/Q v = p. We take c to be a product of such v over all p | c, then c satisfies

the required properties.

For any prime p in Q(
√
a), we study the Hilbert symbol (β, γ)p according to
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Q(
√
a)

Q(
√
β)Q(

√
β̄) Ka,b = Q(

√
a,
√
b)

La,b = Q(
√
a,
√
b,
√
β)

the ramification of p in the extensions Q(
√
β), Q(

√
β̄), Q(

√
γ) and Q(

√
γ̄). Notice

that La,b/Q(
√
a) and La,c/Q(

√
a) are V4-extensions.

Lemma 2.12. If p is unramified in Q(
√
β)/Q(

√
a), then

(β, γ)p =

(
La,b/Ka,b

v

)ordp[γ]

,

where v is any prime in Ka,b lying above p.

Proof. Note that p being unramified in Q(
√
β)/Q(

√
a) implies that v is unramified

in La,b/Ka,b by Lemma 1.6.

By Lemma 1.4,

(β, γ)p =

(
Q(
√
β)/Q(

√
a)

p

)ordp[γ]

.

We are done if ordp[γ] = 0, so assume ordp[γ] = 1. By Lemma 2.11, we have

NormKa,b/Q(
√
a) v = p. Since Gal(La,b/Q(

√
a)) ∼= V4, we can apply Lemma 1.5 to get

(
Q(
√
β)/Q(

√
a)

NormKa,b/Q(
√
a) v

)
=

(
La,b/Ka,b

v

)
.

If p is odd and p | [β] and p | [γ]. By Lemma 2.11, we can find v and u that are

unramified in La,c/Ka,c and La,b/Ka,b respectively.

Lemma 2.13. Suppose p ramifies in both Q(
√
β)/Q(

√
a) and Q(

√
γ)/Q(

√
a). If

{a, b} ≡ {3 mod 4, 5 mod 8} or {a, c} ≡ {3 mod 4, 5 mod 8}, assume further that p

is odd. Let v be a prime in Ka,b lying above p, and u be a prime in Ka,c lying above

p. Then

(β, γ)p =

(
La,c/Ka,c

u

)ordp [β](La,b/Ka,b

v

)ordp [γ]

,

Proof. Since Qp ⊆ Q(
√
a)p, we have (b, c)p = 1 from the assumption (b, c)p = 1. By
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the multiplicativity of the Hilbert symbol, we have

1 = (b, c)p = (β, γ)p(β̄, γ)p(β, γ̄)p(β̄, γ̄)p.

Since p ramifies in both Q(
√
β)/Q(

√
a) and Q(

√
γ)/Q(

√
a), by Lemma 2.3 and

Lemma 2.4, p | ∆Q(
√
b) and p | ∆Q(

√
c). By (2.6), p - ∆Q(

√
a), so p - Sa,b and p - Sa,c,

so v is unramified in La,b/Ka,b, and u is unramified in La,c/Ka,c. Taking the inertia

field of p in in La,b/Q(
√
a), we see that p must be unramified in Q(

√
β̄)/Q(

√
a).

Similarly we see that p is unramified in Q(
√
γ̄)/Q(

√
a).

Now we can apply Lemma 2.12 to (β̄, γ)p, (β, γ̄)p and (β̄, γ̄)p.

If p is unramified in Q(
√
β)/Q(

√
a) or Q(

√
γ)/Q(

√
a), we can apply Lemma 2.12.

Otherwise p is ramified in both Q(
√
β)/Q(

√
a) and Q(

√
γ)/Q(

√
a), then we can apply

Lemma 2.13, except when p is even and {a, b, c} ≡ {3 mod 4, 5 mod 8, 5 mod 8}

or {3 mod 4, 1 mod 8, 5 mod 8}. If a ≡ b ≡ 1 mod 4 or a ≡ c ≡ 1 mod 4, or

one of a, b, c is congruent to 1 mod 8, then p is unramified in Q(
√
β)/Q(

√
a) or

Q(
√
γ)/Q(

√
a) by Lemma 2.4, so we we are covered by Lemma 2.12. Therefore the

remaining case is when p is even and a ≡ 3 mod 4, and b ≡ c ≡ 5 mod 8.

Lemma 2.14. Suppose a ≡ 3 mod 4, and b ≡ c ≡ 5 mod 8. Let p be an even prime

in Q(
√
a). Then (β, γ)p = 1.

Proof. By (2.4b) and from the equation x2− ay2 ≡ 5z2 mod 8, we see that β ≡ γ ≡

3+2
√
a mod 4, so each of β and γ is congruent to one of {3±2

√
a,−1±2

√
a} mod 8.

Since (3+2
√
a)(1+2

√
a) ≡ −1 mod 8 and (3+2

√
a)(3−2

√
a) = (1+2

√
a)(1−2

√
a) ≡

5 mod 8, it suffices to compute the Hilbert symbol between 3 + 2
√
a, −1 and 5. The

fact that (5, 5)p = (5,−1)p = 1 follows from the Hilbert symbol at the rational prime

2. Since (
√
a)2 is congruent to either −5 or −1 mod 8, we also have (−1,−1)p = 1.

Notice that

(
√
a)2 ≡ (3 + 2

√
a) + (3 + 2

√
a)(1 +

√
a)2 mod 8,

(2 +
√
a)2 ≡ (3 + 2

√
a) + 5(1 +

√
a)2 mod 8, and

(2 +
√
a)2 ≡ (3 + 2

√
a)− (1−

√
a)2 mod 8.

Hensel’s Lemma implies that (3+2
√
a, 3+2

√
a)p = (3+2

√
a, 5)p = (3+2

√
a,−1)p =

1. By the multiplicativity of the Hilbert symbol, we have (β, γ)p = 1.
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From Lemma 2.12, Lemma 2.13, and Lemma 2.14, we conclude the following.

Lemma 2.15. Let p be a prime in Q(
√
a). Let v be a prime in Ka,b lying above p,

and u be a prime in Ka,c lying above p. Then

(β, γ)p =



(
La,c/Ka,c

u

)(
La,b/Ka,b

v

)
if ordp[β] = ordp[γ] = 1,(

La,c/Ka,c
u

)
if ordp[β] = 1 and ordp[γ] = 0,(

La,b/Ka,b
v

)
if ordp[β] = 0 and ordp[γ] = 1,

1 if ordp[β] = ordp[γ] = 0.

We now look at the places at infinity.

Lemma 2.16. We have

∏
p|∞

(β, γ)p =



(
La,b/Ka,b
∞

)
if c < 0,(

La,c/Ka,c
∞

)
if b < 0,

1 if b > 0 and c > 0.

Proof. Suppose p is a place at infinity in Ka,b. Note that (β, γ)p = −1 is only

possible when Q(
√
a) is real and β, γ are both negative in Q(

√
a)p. If a > 0, then

there are two embeddings of Q(
√
a). Now

∏
p|∞(β, γ)p = −1 if and only if exactly

one of {β, γ}, {β̄, γ̄} contains all negative elements. This can only happen when

b < 0 or c < 0. Note that b and c cannot both be negative since (b, c)∞ = 1.

By symmetry we only need to prove one of the two cases b < 0 and c < 0.

Suppose c < 0, so exactly one of γ, γ̄ is negative and a, b > 0. Then
(
La,b/Ka,b
∞

)
= −1

if and only if β, β̄ < 0 and this holds precisely when
∏

p|∞(β, γ)p = −1.

Hilbert reciprocity formula in Q(
√
a) states that

∏
p∈MQ(

√
a)

(β, γ)p = 1.

Substitute each term (β, γ)p with the expressions in Lemma 2.15 and Lemma 2.16,

then Theorem 2.10 follows from Lemma 2.11.
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2.4 Symmetry in entries

The Rédei symbol, where it is defined, is symmetric in its first two entries by con-

struction. It follows from Rédei reciprocity that any two entries are symmetric.

Rédei reciprocity also allows multiplicativity to hold at any entry. Since the

Rédei symbol is defined as an Artin symbol, it is multiplicative in the last entry. We

get [a, b, c][a, b, c′] = [a, b, cc′] where the symbols are defined. By Rédei reciprocity,

we have

[a, b, c][a, b′, c] = [a, c, b][a, c, b′] = [a, c, bb′] = [a, bb′, c].

2.5 Rédei symbol for decompositions of second type

We now check that the Rédei symbol defined in Definition 2.8 is actually a more

general version of Definition 1.14.

We use the description of the elements in U2 as decompositions of second type

in Theorem 1.12. Suppose D = ab and {a, b} is a decomposition of second type for

Q(
√
D). Take c ∈ V2. We proceed to check the conditions in Definition 2.8 holds

for a, b and c.

It is immediate from the definition of decomposition of second type that (a, b)p =

1 for all primes p ≤ ∞. We also have gcd(a, b) = 1, which implies S(a) ∩ S(b) = ∅,

so (2.6) always holds. Since if one of a, b is even, the other has to be 1 mod 8, (2.8)

does not apply to decomposition of second type.

We still need to check (a, c)p = (b, c)p = 1 for all primes p ≤ ∞. By (1.12),

we have (D, c)p = 1 for all primes p ≤ ∞. Note that (D, c)p = (a, c)p(b, c)p, so it

suffices to show that for each p, one of (a, c)p and (b, c)p is 1. Suppose p - c. Since

gcd(a, b) = 1, we have p - a or p - b, which implies (a, c)p = 1 or (b, c)p = 1. Now

suppose p | c, since c must split in at least one of Q(
√
a) and Q(

√
b), then either

(a, c)p =
(
a
p

)
= 1 or (b, c)p =

(
b
p

)
= 1.





Chapter 3

Governing fields and the distribution

of the 8-rank

In this chapter, we will present an application of Rédei reciprocity. Corsman [27]

used Rédei reciprocity to construct a minimal governing field for the 8-rank of class

groups of quadratic fields, that is, a Galois extension Ω(d)/Q such that the splitting

of primes p in Ω(d)/Q determines rk8 Cdp. Governing fields are useful because

Chebotarev density theorem allows us to determine the density of different splitting

behaviour of primes.

The distribution of the 4-rank was predicted by an extension of Cohen-Lenstra

heuristics [22] by Gerth [35]. Fouvry and Klüners [30] proved that the 4-rank of

class groups of quadratic number fields behaves as predicted. Using Corsman’s

construction, Smith [80] found the distribution of the 8-rank of the class groups of

imaginary quadratic fields, assuming the general Riemann hypothesis. Subsequently

Smith proved unconditionally the distribution of the full 2-primary part of class

groups of imaginary quadratic field [81].

In Theorem 3.21, we extend Smith’s initial conditional result to real quadratic

fields. Let D(N) be the set of positive squarefree integer less than N . We will prove

the following.

Theorem 3.1. Assume the general Riemann hypothesis. For any m ≥ j ≥ 0 and
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any δ ∈ {±1}, we have

lim
N→∞

#{δ ·D ∈ D(N) : rk4 CD = m, rk8 CD = j}
#{δ ·D ∈ D(N) : rk4 CD = m}

=


Prob(j | m,m+ 1) if δ = 1,

Prob(j | m,m) if δ = −1,

where

Prob(j | m,n) :=
#{M ∈ Matm×n(F2) : corank(M) = j}

# Matm×n(F2)
(3.1)

and Matm×n(F2) denotes the space of m× n matrices over F2.

The δ = −1 case is due to Smith [80].

3.1 Frobenian maps

Let X be a discrete set. A map f : MK → X is called Frobenian [70, Section 3.3]

if there exists a Galois extension E/K, and a map ϕ : Gal(E/K)→ X such that

(i) ϕ is invariant under conjugation, and

(ii) f(p) = ϕ(
(
E/K
p

)
) for any p ∈MK that is unramified in E/K.

When f is a Frobenian map, we call any field E satisfying the above a governing

field of f . Since the Chebotarev Density Theorem is a ready-made tool for studying

densities of prime numbers, it is of particular interest to determine when a map is

Frobenian.

3.1.1 Chebotarev density theorem

Chebotarev density theorem is a useful tool in studying splitting behaviour of primes.

Theorem 3.2 (Chebotarev density theorem, [43, Chapter V, Theorem 10.4], [60,

Chapter V, Theorem 6.4]). Let L/K be an abelian extension. Then given any con-

jugacy class C in Gal(L/K),

lim
n→∞

#{p prime in K : Norm(p) < n,
(
L/K
p

)
= C}

#{p prime in K : Norm(p) < n}
=

#C

[L : K]
.

Lagarias and Odlyzko also proved an effective form of Chebotarev density the-

orem [52, Corollary 1.3]. However, their result only holds for n ≥ exp(10 · [L :
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Q](log ∆L/Q)2), which is not applicable when the discriminant of the field is too

large relative to n. If we are allowed to assume the generalised Riemann hypothesis,

such requirement can be weakened. The following conditional result was proved by

Lagarias and Odlyzko, and refined by Serre.

Theorem 3.3 (Effective Chebotarev density theorem, [52, Theorem 1.1], [69,

Théorème 4] ). Let L/K be a Galois extension. Assume that the generalised Rie-

mann hypothesis holds for the Dedekind zeta function associated to L. Then given

any conjugacy class C in Gal(L/K), we have

#

{
p prime in K : Norm(p) < n,

(
L/K

p

)
= C

}
=

Li(n)#C

[L : K]

(
1 +O

(
log n√
n

(
log ∆L/Q + [L : Q] log n

)))
.

In Theorem 3.3, having n ≥ (log ∆L/Q)2+ε + [L : Q]2+ε is enough to give us our

desired asymptotics as n→∞.

We can show that the density of primes in p in K with inertia degree 1 over Q

has density 1. Let p be the rational prime below p. If p does not split completely in

K/Q, then p2 ≤ Norm(p) < n. There are �
√

Li(n) such p by the prime number

theorem. Therefore the set of prime p in K such that Z∩p splits completely in K/Q

has density 1, more precisely

#{p prime in K : Norm(p) < n,
(
K/Q
Z∩p

)
= id}

#{p prime in K : Norm(p) < n}
= 1 +O

(
1√

Li(n)

)
.

Moreover, when L/Q is Galois and L/K is an abelian, if p splits completely

in K/Q, the conjugacy class
(
L/Q
p

)
contains exactly 1 element. This allows us to

deduce the following from Theorem 3.2 and Theorem 3.3.

Corollary 3.4. Let L/K be an abelian extension and L/Q be a Galois extension.

Then given any σ ∈ Gal(L/K),

lim
n→∞

#{p < n prime :
(
L/Q
p

)
= σ}

#{p < n prime : p splits completely in L/Q}
=

1

[L : K]
.

Corollary 3.5. Let L/K be an abelian extension and L/Q be a Galois extension.

Assume that the generalised Riemann hypothesis holds for the Dedekind zeta function
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associated to L. Then given any σ ∈ Gal(L/K), we have

#

{
p < n prime :

(
L/Q
p

)
= σ

}
=

Li(n)

[L : Q]

(
1 +O

(
log n√
n

(
log ∆L/Q + [L : Q] log n

)))
.

3.2 Governing fields for the 2k-rank of class groups

Cohn and Lagarias [23] conjectured that governing fields exists for the 2k-rank of

class groups of quadratic fields. In other words, more precisely, for fixed d and j,

the map fd sending primes p to the sequence {rk2k Cdp}k≤j is Frobenian.

Conjecture 3.6. Given integers d and j, there exists a normal extension Ωj(d)

of Q having the following property. If p and p0 are primes such that
(

Ωj(d)/Q
p

)
=(

Ωj(d)/Q
p0

)
, then rk2k Cdp = rk2k Cdp0 for 1 ≤ k ≤ j.

If such a field Ωj(d) exits, we call it a governing field for the 2j-rank. Cohn

and Lagarias also showed that the conjecture holds for j = 1 and j = 2. The cases

j = 1 and j = 2 are relatively straightforward. The existence of governing fields

for j = 3 was first proved by Stevenhagen in [85]. Corsman [27] gave a different

proof by constructing the governing fields explicitly using Rédei reciprocity. We will

present the construction of governing fields Ω3(d), following Corsman’s approach.

No governing field has been found for j ≥ 4 so far.

3.2.1 Building on a common basis

The case j = 1 follows from genus theory.

Theorem 3.7. Ω1(d) = Q(
√
−1,
√
d) is a governing field for the 2-rank.

Proof. Suppose
(

Ωj(d)/Q
p

)
=
(

Ωj(d)/Q
p0

)
. Then p has to be unramified in Q(

√
d)/Q

and Q(
√
−1)/Q, so p, p0 - 2d. Also

(
−1
p

)
=
(
−1
p0

)
implies that p ≡ p0 mod 4, so dp ≡

dp0 mod 4 and ω(∆Q(
√
dp)) = ω(∆Q(

√
dp0)), where ω denotes the number of distinct

prime factors. Since rk2(dp) = ω(∆Q(
√
dp))− 1, we have rk2 Cdp = rk2 Cdp0 .

Suppose ∆Q(
√
dp0) has prime factors p0, . . . , pt−1, where p0 6= 2. Observe that

for the set of fields {Q(
√
dp) :

(
Ω1(d)/Q

p

)
=
(

Ω1(d)/Q
p0

)
}, we can take a common bases
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S = {p∗1, . . . , p∗t−1} for U1 and

T =


{p1, . . . , pt−1,−1} for V1 if d > 0,

{p1, . . . , pt−1} for V1 if d < 0.

The existence of Ω2(d) follows from the Rédei’s work. Given fields with the

same U1 and V1, we look for those which have the same V2, hence the same 4-rank.

Proposition 3.8 (Governing field for 4-rank). Fix a squarefree integer d. Let

p1, . . . , pr be distinct odd prime factors of d. Let

Ω2(d) = Q
(√
−1,
√

2,
√
p1, . . . ,

√
pr

)
.

Suppose p and p0 are primes that satisfy
(

Ω2(d)/Q
p

)
=
(

Ω2(d)/Q
p0

)
. Then R1,S,T (dp) =

R1,S,T (dp0) and hence rk4 Cdp = rk4 Cdp0. In particular, Ω2(d) is a governing field

for the 4-rank of {Cdp}p.

Proof. Suppose p and p0 are primes so that
(

Ω2(d)/Q
p

)
=
(

Ω2(d)/Q
p0

)
. Since Ω1(d) ⊆

Ω2(d), we see that p and p0 must be odd, dp0 ≡ dp mod 4, and p, p0 - d. Suppose

p0, p1, . . . , pt−1 are the distinct prime factors of ∆Q(
√
dp0). Restricting to subfields of

Ω2(d), we see that
(
−1
p

)
=
(
−1
p0

)
and

(
2
p

)
=
(

2
p0

)
. This implies that p ≡ p0 mod 8.

We also see that
(
pj
p

)
=
(
pj
p0

)
, for odd pj and j ∈ {1, . . . , t− 1}. The only possible

difference in the entries of R1,S,T (dp) and R1,S,T (dp0) are on the diagonal. The

diagonal entries of R1,S,T (dp0) are
(∏

i∈{0,...,t−1}\j p
∗
i

pj

)
+

for j = 1, . . . , t−1. Therefore

it suffices to show that
(
p∗0
pj

)
=
(
p∗

pj

)
and

(∏
1≤i≤t−1 p

∗
i

p0

)
=
(∏

1≤i≤t−1 p
∗
i

p

)
. This

follows from quadratic reciprocity. Therefore R1,S,T (dp) = R1,S,T (dp0).

For odd primes p0 - d, define

Ad,p0 = {p prime : p - 2d and p0p square modulo 8d}.

Let Ad,p0(n) = {p ∈ Ad,p0 : p < n}.

From the proof of Proposition 3.8, we see the following by restricting to

quadratic subfields of Ω2(d)/Q.

Lemma 3.9. Suppose p and p0 are primes. Then the following are equivalent
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(i) p ∈ Ad,p0,

(ii)
(

Ω2(d)/Q
p

)
=
(

Ω2(d)/Q
p0

)
.

Proposition 3.8 gives us a condition that is enough for R1,S,T (dp) = R1,S,T (dp0)

to hold. Therefore we can find a basis for U2 = cokerR1 that is common for Q(
√
dp)

and Q(
√
dp0), and also for kerR1, which is V2 if d > 0 and V2 if d < 0. Our aim

is to determine the fields Q(
√
dp) that have the same matrix representation of the

paring 〈 , 〉2 on this basis.

Lemma 3.10. Let d be a squarefree integer and let p0 - 2d be a prime. Take a basis

{ai : i} for cokerR1,S,T (dp0) and a basis {bj : j} for kerR1,S,T (dp0). Define

Fp0(d) :=
∏
i,j

Lai,bj ,

where Lai,bj = Q(
√
ai,
√
bi,
√
βij) for some fixed choice of βij ∈ Fai,bj and Fa,b is as

defined in Section 2.1. Then if p ∈ Ad,p0 satisfy
(
Fp0 (d)/Q

p0

)
=
(
Fp0 (d)/Q

p0

)
, we have

rk8 Cdp = rk8 Cdp0.

Proposition 3.11 (Governing field for 8-rank). Let d be a squarefree integer. Take

I(d) to be a set containing a prime in each class in (Z/8dZ)×/((Z/8dZ)×)2. Then

Ω3(d) = Ω2(d) ·
∏

p0∈I(d)

Fp0(d)

is a governing field for the 8-rank of {Cdp}p.

It suffices to show that such a field Fp0(d) exists for any odd prime p0. We fix

a prime p0 and take any p ∈ Ad,p0 . Let m be the 4-rank of Cdp0 . Let t be number

of distinct prime factors of ∆Q(
√
dp0) so t ≥ r. List the distinct prime factors of

∆Q(
√
dp0) as p0, . . . , pt−1.

3.2.2 Governing fields for the 8-rank

Now take S2 ⊆ spanF2
S so that S2 = {a1, . . . , am} is a basis for U2 =

cokerR1,S,T (dp0). Also take a basis

T2 =


{b1, . . . , bm+1} ⊆ spanF2

T for V2 = kerR1,S,T (dp0) if d > 0

{b1, . . . , bm} ⊆ spanF2
T for V2 = kerR1,S,T (dp0) if d < 0.
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By construction p0 - aj and p0 - bj . The matrix R2,S2,T2(dp0) is the F2-matrix

([ai, dp0/ai, bj ]+)i,j . By the multiplicativity of the Rédei symbol and Rédei reci-

procity, we have

[ai, dp/ai, bj ][ai, dp0/ai, bj ] = [ai, p0p, bj ] = [ai, bj , p0p]

=

(
Lai,bj/Kai,bj

p

)(
Lai,bj/Kai,bj

p0

)
,

where p and p0 are primes in Kai,bj with norm p and p0 respectively. Since(
Lai,bj /Kai,bj

p0

)
and [ai, dp0/ai, bj ] are fixed, R2,S2,T2(dp) only depends on(

Lai,bj /Kai,bj
p

)
.

Lemma 3.12. Suppose p - 2abd. If a ∈ U2 and b ∈ V2, then p splits in both

Q(
√
a)/Q and Q(

√
b)/Q.

Proof. Since (a, dp/a)p = (dp, b)p = 1, this implies that
(
a
p

)
=
(
b
p

)
= 1, so p splits

in Q(
√
a)/Q and Q(

√
b)/Q.

By construction, any p ∈ Ad,p0 is coprime with any ai, bj . By Lemma 3.12, p

splits completely in the compositum

Ep0(d) :=
∏
i,j

Kai,bj

and

(
Lai,bj /Kai,bj

p

)
=

(
Lai,bj /Q

p

)
.

By Lemma 1.5,

(
Lai,bj /Kai,bj

p

)
=

(
Ep0 (d)·Lai,bj /Ep0 (d)

v

)
, where v is a prime in

Ep0(d) above p. Therefore there is the following one-to-one correspondence between

{(
Fp0(d)/Q

p

)
: p ∈ Ad,p0

}
→ {R2,S2,T2(dp) : p ∈ Ad,p0} ⊆ Matm×s(F2)

τ 7→
(
τ �Lai,bi

)
i,j
,

where s is m when d < 0 and m + 1 when d > 0. Therefore Fp0(d) is the field

required by Proposition 3.11. The 8-rank of Cdp only depends on the splitting of p

in Fp0(d)/Ep0(d). This proves Lemma 3.10.
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3.3 Distribution of the 8-rank in congruence classes

Lemma 3.13. Suppose p and p0 - 2d are primes. Then

(i)
(

Ω2(d)/Q
p

)
=
(

Ω2(d)/Q
p0

)
if and only if p ∈ Ad,p0;

(ii) if p ∈ Ad,p0, then
(
Fp0 (d)/Q

p

)
=
(
Fp0 (d)/Q

p0

)
if and only if R2,S2,T2(dp) =

R2,S2,T2(dp0);

(iii)
(

Ω2(d)·Fp0 (d)/Q
p

)
=
(

Ω2(d)·Fp0 (d)/Q
p0

)
if and only if p ∈ Ad,p0 and R2,S2,T2(dp) =

R2,S2,T2(dp0).

Ω2(d) · Fp0(d)

Ω2(d) = Q(
√
−1,
√

2,
√
p1, · · · ,

√
pr)Fp0(d) =

∏
i,j Lai,bj

Ep0(d) =
∏
i,jKai,bj

Q

To obtain the distribution over all imaginary quadratic field, an effective form of

Chebotarev density theorem is needed to allow summing over all squarefree integers

d. However, the unconditional form of Chebotarev density theorem requires N/d

to be relatively large with respect to the discriminant of the field being applied to.

Without this, we have to assume the Riemann hypothesis to obtain a good enough

error term.

Assumption 3.14 (GRH). The generalised Riemann hypothesis holds for Dedekind

zeta function associated to any Galois extension L/Q, with Galois group Gal(L/Q) ∼=

Cs2 × (Cm2 o Cn2 ) for some positive integers m ≤ n and s.

We apply the Chebotarev density theorem as stated in Corollary 3.4, over the

extension Ω2(d) · Fp0(d)/Ep0(d) and Ω2(d)/Ep0(d), noting that p splits completely

in Ep0(d)/Q.

Theorem 3.15. Take R ∈ {R2,S2,T2(dp) : p ∈ Ad,p0}. Then

lim
n→∞

#{p ∈ Ad,p0(n) : R2,S2,T2(dp) = R}
#Ad,p0(n)

=
1

[Fp0(d) : Ep0(d)]
.
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If we assume (GRH), then

#{p ∈ Ad,p0(n) : R2,S2,T2(dp) = R}
#Ad,p0(n)

=
1

[Fp0(d) : Ep0(d)]
+O

(
2r log n log d√

n

)
, (3.2)

where r is the number of odd prime factors of d.

Proof. Let E := Ep0(d), F := Fp0(d), and M := Ω2(d) · Fp0(d). Assuming (GRH),

we can apply an effective form of Chebotarev density theorem over the abelian

extensions M/E and Ω2(d)/E, as in Corollary 3.3, then for σ ∈ Gal(M/E) and

τ ∈ Gal(Ω2(d)/E).

#
{
p < n prime :

(
M/Q
p

)
= σ

}
#
{
p < n prime :

(
Ω2(d)/Q

p

)
= τ

}
=

1

[M : Ω2(d)]

(
1 +O

(
log n√
n

(log ∆M + [M : Q] log n)

))
. (3.3)

Observe that [M : Ω2(d)] = [F : E], [Ω2(d) : Q] = 2r+2 and [M : Q] = 2r+2 · [F :

E]. The prime that ramifies in M/Q must divide 2d. Therefore by [69, Proposition

6, p.130], we have

log ∆M ≤ ([M : Q]− 1)
∑
p|∆M

log p+ ([M : Q] log[M : Q])ω(∆M )

= O(2r[F : E] log d).

Then (3.2) follows from (3.3) and Lemma 3.13.

3.4 Prime divisors

Define Sr(N) := {n ∈ D(N) : ω(n) = r} and µ := µ(N) := log logN . Sathé–Selberg

theorem [67] shows that, uniformly in the range r < 2µ, we have

#Sr(N) � N

logN

(log logN)r−1

(r − 1)!
.

This shows that the number of distinct prime factors is Poisson distributed in D(N).

Let T (N) := {(d0, p) : 0 < d0p < N, d odd squarefree integer, p - 2d0 prime}, and
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Tr(N) := {(d0, p) ∈ T (N) : ω(d0) = r − 1}. Observe that

#Tr(N) � r#Sr(N)

Lemma 3.16. The number of elements in (d0, p) ∈ T (N) so that |r − µ| > µ2/3 is

� exp(−1
2µ

1/3)#T (N).

Proof. By the Erdős–Kac theorem [88, Chapter 111.4, Theorem 8], the limit dis-

tribution of ω(n) is the normal distribution with mean log logn and variance

log logn. Therefore the density of integers in D(N) with |r − µ| > µ2/3, is

� µ−1/6 exp
(
−1

2µ
1/3
)
� exp

(
−1

2µ
1/3
)
.

Now we show that we can make assumptions on the size of p in Tr(N) without

affecting the resulting density.

Lemma 3.17. [80, Lemma 4.5] Suppose |r − µ| < µ2/3. The number of elements

in (d, p) ∈ Tr(N) so that log log p < µε is � µ−(1−ε)#Tr(N).

Proof. Suppose n is such that log log n = µε.

∑
p<n #Sr−1(N/p)

r#Sr(N)
� r − 1

r log logN

∑
p<n

logN

p log(N/p)

� 1

log logN

∑
p<n

1

p
� log log n

log logN

3.5 Genericity

The result on the distribution of the 8-rank of class groups of imaginary quadratic

fields is due to Smith [80]. Where Fp0(d)/Ep0(d) has maximum degree, we expect

Gal(Fp0(d)/Ep0(d)) ∼= Cm
2

2 ,

where m = rk4 C(dp0). This shows that each matrix in Matm×(m+1)(F2) occurs

equally likely, i.e. with density 1
[Fp0 (d):Ep0 (d)] = 1

2m(m+1) .

We call (d, p) generic if

(i) d is a squarefree integer,

(ii) p - 2d is a prime, and



3.5. Genericity 61

(iii) there exists non-trivial a | d such that (a,−dp)v = (a, dp)v = 1 for all v ∈MQ.

It is straighforward to check that if (d, p0) is generic, then (d, p) is automatically

generic for any p ∈ Ad,p0 .

Lemma 3.18. If (d, p0) is generic, then

Gal(Fp0(d)/Ep0(d)) ∼=


Cm

2

2 if d < 0,

C
m(m+1)
2 if d > 0.

Proof. Let E = Ep0(d) and F = Fp0(d). In this case, the sets U2 and V2 are disjoint

subspaces in Q×/(Q×)2. This implies that E is a C2m
2 -extension of Q when d < 0

and C2m+1
2 -extension when d > 0. Let σi (resp. τj) be the element in Gal(F/Q) that

sends
√
ai 7→ −

√
ai (resp.

√
bj 7→ −

√
bj) and fixes all other generators. The the

commutator [σi, τj ] is the unique non-trivial automorphism of Lai,bj/Kai,bj and fixes

all other Lal,bk . The commutator subgroup of Gal(F/Q) is generated by all [σi, τj ],

therefore has order 2m
2

when d < 0 and order 2m(m+1) when d > 0. The maximal

abelian subextension of F/Q is E/Q, so the commutator subgroup of Gal(F/Q) is

Gal(F/E). Since F/E has exponent 2, this proves the lemma.

Smith showed that almost all (d, p0) are generic in [80, Lemma 4.6].

Lemma 3.19. Suppose |r − µ| < µ2/3. The number of (d0, p) ∈ Tr(N) such that

(d0, p) or (2d0, p) is not generic, is �
(

3
4

)r
#Tr(N).

Proof. Suppose (d, p) ∈ Tr(N) and (d, p) is not generic. Suppose a | d has k prime

factors and satisfy (a,−dp0)v = (a, dp0)v = 1 for all v ∈MQ. Then we have
(−1
v

)
=(

dp0/a
v

)
= 1 for v | a and

(
a
v

)
= 1 for v | dp0/a. These are r+k independent Legendre

symbols. The probability that a satisfies the requirements is � 2−r−k. Making use

of [45, Proposition 9], we can convert this probability to natural density. Therefore

the probability that some a | d satisfies the equations is�
∑

k≥0

(
r
k

)
2−s−k � 2−r(1+

1
2)r � (3

4)r. For the case when (2d0, p) is not generic, replacing d with 2d0 we get

the same estimate up to a multiplicative constant.
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3.6 Distribution of the 8-rank in natural densities

The expression for Prob(j | m,n) in (3.1) can be evaluated more explicitly [83,

Chapter 1 Exercise 192],

Prob(j | m,n) =

∏m
i=j+1(1− 2−i)

∏n
i=n−m+j+1(1− 2−i)

2j(n−m+j)
∏m−j
i=1 (1− 2−i)

.

The imaginary case is in [80, Proposition 2.5].

Lemma 3.20. Suppose (d, p0) is generic. Let m := rk4 Cdp0. Then for any j ≤ m,

we have

lim
n→∞

#{p ∈ Ad,p0(n) : rk8 Cdp = j}
#Ad,p0(n)

=


Prob(j | m,m) if d < 0

Prob(j | m,m+ 1) if d > 0.

If we assume (GRH), and further that (d, p0) satisfies |ω(d) − µ| < µ2/3, dp0 < N ,

log log N
d > µ1/2, then for any c < 1/2 and j ≤ m, we have

#{p ∈ Ad,p(n) : rk8 Cdp0 = j}
#Ad,p(n)

=


Prob(j | m,m) +O

(
exp(−ceµ1/ε)

)
if d < 0

Prob(j | m,m+ 1) +O
(

exp(−ceµ1/ε)
)

if d > 0.

Proof. The lemma follows from summing Theorem 3.15 over all R of corank j. The

lower bound of n gives the required error term. Lemma 3.18 shows that every

element in Matm×m(F2) or Matm×m+1(F2) are attained with the same density.

We are now ready to prove our main theorem. We will prove the following

effective version of Theorem 3.1.

Theorem 3.21. Assume (GRH). For any m ≥ j ≥ 0 and δ ∈ {±1}, we have

#{δ ·D ∈ D(N) : rk4 CD = m, rk8 CD = j}
#{δ ·D ∈ D(N) : rk4 CD = m}

=


Prob(j | m,m+ 1) +O

(
(log logN)−(1−ε)) if δ = 1,

Prob(j | m,m) +O
(
(log logN)−(1−ε)) if δ = −1.
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Proof. We first fix η ∈ {±1,±2}, and sum over (η · d0, p), where (d0, p) ∈ T (N), i.e.

#{(d0, p) ∈ T (N) : rk4 Cη·d0p = m, rk8 Cη·d0p = j}
#{(d0, p) ∈ T (N) : rk4 Cη·d0p = m}

.

Write d = η · d0, where d0 is an odd positive integer. By Lemma 3.16, we only need

to consider the sum over r in the range |r−µ| < µ2/3. Also by Lemma 3.19, we can

assume (d, p0) is generic.

It suffices to consider the sum

∑
|r−µ|<µ2/3

∑
d<N

∑
p0∈I(d)

rk4 Cdp0=m

(d,p0) generic

#{(d0, p) ∈ Tr(N) : p ∈ Ad,p0(Nd ), rk8 Cdp = j}
#{(d0, p) ∈ Tr(N) : p ∈ Ad,p0(Nd )}

,

where I(d) is taken as in Proposition 3.11. When log logN/d <
√

log logN , apply

Lemma 3.17, otherwise apply Lemma 3.20. Combining the sums for η ∈ {1, 2} when

δ = 1 and η ∈ {−1,−2} when δ = −1, and keeping track of the error terms coming

from Lemma 3.16, Lemma 3.17, Lemma 3.19 and Lemma 3.20. This proves the

theorem.





Chapter 4

The negative Pell equation

This chapter is based on joint work with Peter Koymans, Djordjo Milovic, and Carlo

Pagano [19].

We consider the solvability over Z of the negative Pell equation

x2 −Dy2 = −1, (4.1)

where D is a positive integer. A necessary but insufficient condition for (4.1) to be

solvable is that D is not divisible by any prime congruent to 3 mod 4. To see this,

simply take the equation (4.1) modulo any prime p | D, then −1 must be a quadratic

residue modulo p, which is impossible if p ≡ 3 mod 4.

Recall from (1.3) that the unit group of K has the form

〈−1〉 × 〈εD〉,

where εD is the fundamental unit in Q(
√
D). If (4.1) is solvable, we see that x+y

√
D

is a unit in Q(
√
D) with norm −1, so Norm εD = −1. Conversely, if Norm εD = −1,

then ε3D can be written as x+y
√
D, where x, y ∈ Z, which corresponds to a solution

to (4.1). Therefore (4.1) is solvable if and only if Norm εD = −1.

Since
√
D has negative norm, the ideal (

√
D) is totally positive if and only there

exists a unit of norm −1. From (1.2), this happens precisely when the narrow and

ordinary class groups coincide. Altogether, we see that (4.1) is solvable if and only

if ClD ∼= CD.

Since # CD /# ClD can only be either 1 or 2, the odd parts of ClD and CD
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are always isomorphic, so it suffices to compare the 2-parts of ClD and CD. Hence

(4.1) is solvable⇐⇒ rk2k ClD = rk2k CD for all integers k ≥ 1.

The frequency of solvability of (4.1) is intricately related to the joint distribution of

2-primary parts ClD and CD.

Note that rk2 ClD = rk2 CD if and only if D is in the Pell family

P = {D positive squarefree integer : p 6≡ 3 mod 4 for all primes p | D}.

This can be seen by observing that the genus field H+
2 as discussed in (1.6) is totally

real if and only if D ∈ P.

As P has natural density 0 in the set of all positive squarefree integers, it is more

meaningful to study density questions concerning the solvability of (4.1) relative to

P. There exists D ∈ P such that (4.1) is not solvable, for example:

34, 146, 178, 194, 205, 221, 305, 377, 386, 410, 466, 482, . . . .

Stevenhagen [86] conjectured that

lim
N→∞

|P−(N)|
|P(N)|

= 1− α = 0.58057 . . . ,

where

P(N) = {D ∈ P : D ≤ N},

P−(N) = {D ∈ P(N) : (4.1) is solvable over Z},

and

α =
∏
j odd

(1− 2−j) =

∞∏
j=1

(1 + 2−j)−1 = 0.41942 . . . .

Until now, the best bounds in the direction of Stevenhagen’s conjecture are due

to Fouvry and Klüners [31, 32]. They proved that

0.52427 . . . =
5

4
α ≤ lim inf

N→∞

|P−(N)|
|P(N)|

≤ lim sup
N→∞

|P−(N)|
|P(N)|

≤ 2

3
. (4.2)
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The lower bound in (4.2) comes from proving that the density of D ∈ P such that

rk4 CD = 0

is equal to α and the density of D ∈ P such that

rk4 ClD = rk4 CD = 1 and rk8 CD = 0

is equal to α/4.

By incorporating the methods developed by Smith [81], we can improve the

lower bound.

Theorem 4.1 ([19, Theorem 1.1]). We have

lim inf
N→∞

|P−(N)|
|P(N)|

≥ αβ = 0.53822 . . . ,

where

β =
∞∑
n=0

2−n(n+3)/2 = 1.28325 . . . > 5/4.

We obtain our lower bound by proving that the density of D ∈ P such that

rk4 ClD = rk4 CD = n and rk8 CD = 0.

is equal to 2−n(n+3)/4α.

In fact, we prove more. For integers n ≥ m ≥ 0, let

Pn,m(N) = {D ∈ P(N) : rk4 ClD = rk4 CD = n and rk8 CD = m},

and

Pn(N) = {D ∈ P(N) : rk4 CD = n}.

Theorem 4.2 ([19, Theorem 1.2]). For integers n ≥ m ≥ 0, we have

lim
N→∞

|Pn,m(N)|
|P(N)|

= α · 2−n(n+1)

∏n
j=m+1(2n − 2n−j)∏m

k=1(2k − 1)
∏n−m
l=1 (2l − 1)

. (4.3)
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Similar to (3.1), define

ProbSym(j | m) :=
#{M ∈ Symm(F2) : corank(M) = j}

# Symm(F2)
,

where Symm(F2) denotes the space of m×m symmetric matrices over F2. The limit

in (4.3) can be interpreted as

1

2n
Prob(m | n, n) lim

r→∞
ProbSym(n | r).

By [86, Proposition 2.8],

lim
r→∞

ProbSym(n | r) =
α∏n

i=1(2i − 1)
.

Proved by Fouvry and Klüners in [31], this is the density of D ∈ P such that

rk4 CD = n. Then Theorem 4.2 follows from proving that

(i) 1
2n is the density of D in P such that rk4 ClD = rk4 CD given that rk4 CD = n;

and

(ii) Prob(m | n, n) is the density of D in P such that rk8 CD = n given that

rk4 CD = rk4 ClD = n.

More precisely, the following is the main result in [19] used to deduce Theo-

rem 4.2.

Theorem 4.3 ([19, Theorem 6.1]). For any integers n ≥ m ≥ 0 Then

∣∣∣∣#Pn,m(N)− 1

2n
Prob(m | n, n)#Pn(N)

∣∣∣∣� N

log log logN

Similar to (1.4), writing K = Q(
√
D), we have

0→

〈(
H+

2k
/K

(
√
D)

)〉
→ Gal(H+

2k
/K)→ Gal(H2k/K)→ 0.

From this we see that H+
2k

= H2k if and only if

(
H+

2k
/K

(
√
D)

)
is trivial. Therefore

rk2k ClD = rk2k CD holds if and only if −1 is in the right kernel of 〈 , 〉k+1. To

check that rk4 ClD = rk4 CD holds, for all a ∈ U2, we need to have 〈a,−1〉2 =
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[a, Da ,−1] = 1, where [·, ·, ·] is the Rédei symbol defined in Section 1.5. Since

dimF2 U2 = rk4 C(D) = n, we expect there to be n independent symbols, which

should give a probability of 1
2n for all of them to be trivial.

For D ∈ P, {b | D : b > 0} is a set of representatives for both V1 and U1. By

quadratic reciprocity, we see that the Rédei matrix discussed in Section 1.4, with

respect to a basis of this set is symmetric. Therefore 〈 , 〉1 is a symmetric pairing

on this set of representatives. This leads to the same set of positive representatives

for U2 and V2, given by

{a | D : a > 0, a squarefree, (a,D/a) = 1}.

This also follows from comparing the sets given in (1.11) and (1.12). This leads to a

major novel difficulty with working in the Pell family. The reason for this is that the

algebraic results break down in this case since there is no valid choice of “variable

indices”. In particular, all discriminants D ∈ P end up in the error term of Smith’s

theorem [81]. Considering up to the 8-rank, we are able to extend Smith’s algebraic

results to mitigate this issue using Rédei reciprocity.

We will discuss some of the ideas used in proving Theorem 4.3.

4.1 Reflection principles

The Rédei symbol plays a prominent role in the proof of Theorem 4.2. We prove

several identities on the product of Rédei symbols, which serve as the algebraic input

for our analytic machinery in proving equidistribution.

Write Uk(D), Vk(D), Uk(D), Vk(D), and 〈 , 〉k,D to stand for spaces defined

in (1.8), (1.7), (1.10), and the pairing defined in (1.9), respectively, for the field

Q(
√
D).

We call a triple of nonzero integers {a, b, c} admissible if abc is not divisible by

any prime that is congruent to 3 mod 4, and the Rédei symbol [a, b, c] is defined,

i.e. {a, b, c} satisfies conditions (2.6) and (2.7). It is straightforward to check that

admissibility of {a, b, c} does not depend on the ordering of the triple. Also if {a, b, c}

and {a, b, c′} are admissible then so is {a, b, cc′}. Recall from Definition 1.14, that

〈a, b〉2,D is the Rédei symbol [a, Da , b].

We now prove our main algebraic results.
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Theorem 4.4. Let d ∈ P. Let p1, p2, q1, q2 be primes congruent to 1 mod 4 and

coprime to d. Let a and b be divisors of d, where a > 0 and b is possibly negative.

Assume that b ∈ V2(piqjd) for all i, j ∈ {1, 2}.

(i) If a ∈ U2(piqjd) for all (i, j) ∈ {(1, 2), (2, 1), (2, 2)}, then a ∈ U(p1q1d) and

〈a, b〉2,p1q1d〈a, b〉2,p1q2d〈a, b〉2,p2q1d〈a, b〉2,p2q2d = 0. (4.4)

(ii) If instead pia ∈ U2(piqjd) for all (i, j) ∈ {(1, 2), (2, 1), (2, 2)} and
(
q1q2
p1

)
=(

p1p2
q1

)
= 1, then p1a ∈ U2(p1q1d), {p1p2, q1q2, b} is admissible and

〈p1a, b〉2,p1q1d〈p1a, b〉2,p1q2d〈p2a, b〉2,p2q1d〈p2a, b〉2,p2q2d = [p1p2, q1q2, b]. (4.5)

Proof. (i) We can check that the assumptions implies that (a,−p1q1d)v = 1 for all

v ∈ MQ, so a ∈ U(p1q1d). Writing the terms as Rédei symbols, the left-hand

side of (4.4) equals

[a, p1q1
d

a
, b][a, p1q2

d

a
, b][a, p2q1

d

a
, b][a, p2q2

d

a
, b].

By the multiplicativity of Rédei symbols, this product equals

[a, q1q2, b][a, q1q2, b] = 1.

(ii) It is straightforward to check that the assumptions ensures that (p1a,−p1q1d)v =

1 for all v ∈MQ, so p1a ∈ U(p1q1d). Writing the terms as Rédei symbols, the

left-hand side of (4.5) equals

[p1a, q1
d

a
, b][p1a, q2

d

a
, b][p2a, q1

d

a
, b][p2a, q2

d

a
, b]

Applying the multiplicativity of Rédei symbols, this product equals

[p1a, q1q2, b][p2a, q1q2, b] = [p1p2, q1q2, b].

Theorem 4.5. Let d ∈ P. Take primes p1, p2, q1, q2 that are 1 modulo 4 and coprime

to d. Let a be a positive divisor of d. Assume that pia ∈ V2(piqjd) for all i, j ∈ {1, 2}.
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Then pia ∈ U2(piqjd) for all i, j ∈ {1, 2}, {p1p2, q1q2, p1p2} is admissible and

〈p1a, p1a〉2,p1q1d〈p1a, p1a〉2,p1q2d〈p2a, p2a〉2,p2q1d〈p2a, p2a〉2,p2q2d

= [p1p2, p1p2, q1q2]. (4.6)

Proof. Since pia is not divisible by primes congruent to 3 mod 4, the assumption

pia ∈ V2(piqjd) implies that (pia, piqjd)v = (pia,−piqjd)v = 1 for all v ∈ MQ, so

pia ∈ U2(piqjd). Therefore the left-hand side of (4.6) is

[p1a, q1
d

a
, p1a][p1a, q2

d

a
, p1a][p2a, q1

d

a
, p2a][p2a, q2

d

a
, p2a].

The product becomes

[p1a, q1q2, p1a][p2a, q1q2, p2a]

= [p1a, q1q2,−q1q2][p2a, q1q2,−q1q2] = [p1p2, q1q2,−q1q2].

By Lemma 4.6, we have

[p1p2, q1q2,−q1q2] = [p1p2, q1q2, p1p2].

Then the desired result follows from Rédei reciprocity.

Lemma 4.6. Suppose a, b ∈ P are coprime integers such that (a, b)v = 1 for all

v ∈MQ. Then

[a, b,−ab] = 1.

Proof. Since a ∈ U2(ab), we have [a, b,−ab] = 〈a,−ab〉2,ab = 〈a, 1〉2,ab = 1 by defini-

tion.

Theorem 4.7. Let d ∈ P. Let p1, p2, q1, q2 be distinct primes congruent to 1 mod 4

and coprime to d. Let a, b be a positive divisors of d. Assume that b, pia ∈ V2(piqjd)

for all i, j ∈ {1, 2}. Then b, pia ∈ U2(piqjd) for all i, j ∈ {1, 2}, and

2∏
i=1

2∏
j=1

〈pia, b〉2,piqjd〈b, pia〉2,piqjd = 0. (4.7)
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Proof. The assumptions implies that b, pia ∈ U2(piqjd) for all i, j ∈ {1, 2}. The

product (4.7) can be rewritten as

2∏
i=1

2∏
j=1

[pia,
d

a
qj , b][b,

d

b
piqj , api].

By the multiplicativity of Rédei symbols and Rédei recirocity (Theorem 2.9), we

have

[p1a, q1q2, b][p2a, q1q2, b][b, q1q2, ap1][b, q1q2, ap2]

= [p1p2, q1q2, b][b, q1q2, p1p2] = 0.

Theorem 4.8. Let d be a positive squarefree integer composed of primes that are 1

or 2 modulo 4. Let p1, p2, q1, q2 be distinct primes that are 1 modulo 4 and coprime

to d. Let a, b be positive divisors of d. We assume that qjb, pia ∈ V2(piqjd) for all

i, j ∈ {1, 2}. Then we have qjb, pia ∈ U2(piqjd) for all i, j ∈ {1, 2}, {p1p2, q1q2,−1}

is admissible and

2∏
i=1

2∏
j=1

〈pia, qjb〉2,piqjd〈qjb, pia〉2,piqjd = [p1p2,−1, q1q2]. (4.8)

Proof. The assumptions implies that pia, qjb ∈ V2(piqjd) for all i, j ∈ {1, 2}. The

left-hand side of (4.8) equals

2∏
i=1

2∏
j=1

[pia,
d

a
qj , qjb][qjb,

d

b
pi, pia].

By the multiplicativity of Rédei symbols, we can rewrite the product as

[p1p2,
d

a
q1, bq1][p1p2,

d

a
q2, bq2][q1q2,

d

b
p1, ap1][q1q2,

d

b
p2, ap2].

One readily checks that pi
d
b is coprime to q1q2 and that qj

d
a is coprime to p1p2.

Therefore we can apply Lemma 4.6 to each of the terms in the above sum

[p1p2,
d

a
q1,−dabp1p2][p1p2,

d

a
q2,−dabp1p2][q1q2,

d

b
p1,−dabq1q2][q1q2,

d

b
p2,−dabq1q2].
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We can further simplify this by multiplicativity and get

[p1p2, q1q2,−dabp1p2][p1p2, q1q2,−dabq1q2] = [p1p2, q1q2, p1p2q1q2].

Since p1p2 and q1q2 are coprime, we can apply Lemma 4.6 and get that the above

equals

[p1p2, q1q2,−1],

and the result follows from Rédei reciprocity.

4.2 Equidistribution

For a squarefree integer D, write the distinct prime factors of D as p1 < p2 < · · · <

pr, where r := ω(D). Define

µD : Fr−1
2 → U1(D) (e1, . . . , er−1) 7→ pe11 . . . p

er−1

r−1 .

Take S1 = {p1, p2, . . . , pr−1}, which is a basis for U1(D). Then S1 ∪ {−1} is a basis

for V1(D). For D ∈ P, we always have −1 in the kernel of 〈 , 〉1, so we can always

take −1 in the basis of V2(D). In particular V2(D) ∼= spanF2
(kerR1,S1,S1(D)∪{−1}).

In the following, write R1(D) := R1,S1,S1(D).

Given a matrix A ∈ Symr−1(F2) with corank n, take a basis B for kerA, then

S := µD(B) is a basis for U2(D) and T := µD(B) ∪ {−1} is a basis for V2(D). We

need to show that R2(D,B) := R2,S,T (D) is equidistibuted in Matn,n+1(F2), over

the set of D ∈ P such that R1(D) = A.

Define PA(N) := {D ∈ P : R1(D) = A}. The goal is to show that for most

A that appear as R1(D) for some D ∈ P(N), fixing a basis B for kerA, for any

non-trivial (multiplicative) character F : Matn,n+1(F2)→ {±1}, we have

∑
D∈PA(N)

F (R2(D,B))� #PA(N)

(log log logN)3
. (4.9)

For if we take B = (bi,j) ∈ Matn,n+1(F2), then

1

2n(n+1)

∏
i,j

(
1 + (−1)bi,jFi,j

)
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is an indicator function of the subset {B} of Matn,n+1(F2), where Fi,j :

Matn,n+1(F2) → {±1} is the character such that Fi,j(M) = 1 if and only if the

(i, j) entry of M is −1, for 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1. Expanding the product,

we can rewrite the indicator function as

1

2n(n+1)

∑
H

∏
(i,j)∈H

(−1)bi,jFi,j ,

where the sum is taken over all subsets H of {1, . . . , n} × {1, . . . , n + 1}. When

H = ∅, the product is 1 by convention. Now summing up the indicator function

evaluated at R2(D,B), over D ∈ PA(N), we get

#{D ∈ PA(N) : R2(D,B) = B}

=
1

2n(n+1)

1 +
∑
H 6=∅

 ∏
(i,j)∈H

(−1)bi,j

 ∑
D∈PA(N)

 ∏
(i,j)∈H

Fi,j

 (R2(D,B))

 .

Each
∏

(i,j)∈H Fi,j Matn,n+1(F2)→ {±1} is a character, so we can deduce from (4.9),

that ∣∣∣∣#{D ∈ PA(N) : R2(D,B) = B} − 1

2n(n+1)

∣∣∣∣� #PA(N)

(log log logN)3
.

4.2.1 Variable indices

We work with D ∈ PA and B fixed according to A. List the elements in µD(B)

as s1, . . . , sn. Then the entries of R2(D,B) = (ai,j) satisfy (−1)ai,j = 〈si, sj〉2 =

[si, D/si, sj ] for 1 ≤ i, j ≤ n and (−1)ai,n+1 = 〈si,−1〉2 = [si, D/si,−1] for 1 ≤ i ≤ n.

Write pi as the i-th largest prime of D.

The set {Fi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1} is a basis of the dual space of

Matn,n+1(F2). Any character F : Matn,n+1(F2)→ {±1} can be written as

F =
∏
i,j

F
ci,j
i,j ,

where ci,j ∈ {0, 1}. Define B0 := (ci,j)1≤i,j≤n and B1 := (ci,n+1)1≤i≤n. For each

non-trivial F , we take a subset W of {1, 2, . . . , r − 1} with size 2 or 3 as follows.

(V1) If B0 6= 0 is symmetric with diagonal entries all 0, and B1 = 0, take 1 ≤

j1, j2 ≤ n so that cj1,j2 = 1. Then take W = {k1, k2}, so that
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� pk1 | sj1 and pk1 - si for all i 6= j1;

� pk2 | sj2 and pk2 - si for all i 6= j2.

(V2) If B0 is not symmetric, take 1 ≤ j1, j2 ≤ n so that cj1,j2 = 1 and cj2,j1 = 0.

Then take W = {k1, k2, k3}, so that

� pk1 | sj1 and pk1 - si for all i 6= j1;

� pk2 | sj2 and pk2 - si for all i 6= j2;

� pk3 - si for all i.

(V3) Otherwise, B0 is diagonal or B1 6= 0. Take 1 ≤ j ≤ n such that cj,j = 1 or

cj,n+1 = 1. Then take W = {k1, k2}, so that

� pk1 | sj and pk1 - si for all i 6= j;

� pk2 - si for all i 6= j.

Any choice of W is universal for any D ∈ PA when A and B are fixed.

For most A that appear as R1(D), the existence of a choice of W is guaranteed

when r is large enough by [19, Lemma 6.9].

4.2.2 A combinatorial result

Instead of working with F : Matn,n+1(F2) → {±1} directly, we consider a product

of F evaluated at a certain set of integers.

Let X = X1×X2×· · ·×Xk. Define a map d : {X → {±1}} → {X×X → {±1}}.

For F̃ : X → {±1}, define

dF̃ (x(1), x(2)) =
∏

(v1,...,vk)∈{1,2}k
F̃ ((x

(v1)
1 , . . . , x

(vk)
k )),

where x(i) = (x
(i)
1 , . . . , x

(i)
k ). Let A(X) = im d.

We expect that it is rare to have

∣∣∣F̃−1(1)
∣∣∣ ≥ ε#X. (4.10)

We say that g is ε-bad if (4.10) holds for some F̃ such that dF̃ = g. Then [19,
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Theorem 3.3] implies that

#{g ∈ A(X) : g is ε-bad}
#A(X)

.

is small.

Let M := b(log log logN)10c. Fixing a choice of W , we take a collection of

subsets of elements in PA(N) (described in [19, Section 6]). Each D ∈ PA(N)

appear in the same number of subsets, other than a small proportion collected in

the error term.

The subsets of the collection take the following forms. If we are in (V1) or (V3),

a subset has the form

{a} × Y × Z := {a} × {p(i) : i} × {q(j) : j}

(viewed as a subset of PA(N) via the map (a, p(i), q(j)) 7→ ap(i)q(j)), where p(i) and

q(j) are respectively the k1-th and k2-th largest primes of ap(i)q(j), for all i, j ∈ {1, 2},

#Y = M , and Z is the largest possible set such that all the above conditions are

satisfied.

If we are in (V2), take subsets of the form

{a} × Y1 × Y2 × Z := {a} × {p(i) : i} × {q(j) : j} × {r(k) : k},

where p(i), q(j), r(k) are respectively the k1-th, k2-th, and k3-th largest primes of

ap(i)q(j)r(k), for all i, j, k ∈ {1, 2}, #Y1 = #Y2 = M , and Z is the largest possible

set such that all the above conditions are satisfied. Let Y = Y1 × Y2 in this case.

4.2.3 Relative governing fields

Recall the definition of Fa,b in Section 2.1. For any nonzero integers a, b satisfy-

ing (2.1), fix a choice of β ∈ Fa,b, and write La,b = Q(
√
a,
√
b,
√
β).

We define the relative governing fields we need. If we are in (V1), or (V3) with

cj,j = 0 and cj,n+1 = 1, take

L :=
∏

(p1,p2)∈Y×Y

Lp1p2,−1.
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If we are in (V3) with cj,j = 1, take

L :=
∏

(p1,p2)∈Y×Y

Lp1p2,(−1)cj,n+1p1p2

If we are in (V2), take

L :=
∏

((p1,q1),(p2,q2))∈Y×Y

Lp1p2,q1q2 .

Let K is the maximal multiquadratic extension of Q contained in L. By construction

any prime in Z splits completely in K/Q.

We have an isomorphism

Ψ : Gal(L/K)
∼=−→ A(Y ) σ 7→

(
(p1, p2) 7→ σ �Lp1p2,−1

)
.

Surjectivity of Ψ follows from a dimension calculation in [19, Lemma 3.1].

For any σ ∈ Gal(L/K), the proportion of primes r ∈ Z such that
(
L/Q
r

)
= σ is

1/# Gal(L/K) = 1/2M−1 up to a small error (see [19, (6.11)]) by a delicate analytic

argument, which amounts to careful applications of Chebotarev density theorem for

relatively small primes and large sieve for larger primes. This requires the existence

of a large gap between primes factors for almost all D ∈ P [19, Theorem 4.1(iii)].

Take g ∈ A(Y ×{1, . . . ,M}) such that g is not ε-bad, i.e. (4.10) does not hold for

any F̃ such that dF̃ = g, with ε taken as (log log logN)3. Then g(·, ·, i, j) ∈ A(Y ).

By the equidistribution of
(
L/Q
r

)
for r ∈ Z, take any r1 in Z, then find r2, r3, . . . , rM

such that Ψ(
(
L/Q
r1rj

)
) = g(·, ·, 1, j).

Repeating this process of taking r1, . . . , rM in Z, by equidistribution of
(
L/Q
r

)
for r ∈ Z in Gal(L/K), we can put almost all elements in Z into disjoint subsets of

primes with size M such that Ψ(
(
L/Q
rirj

)
) = g(·, ·, i, j).

It remains to show that the sum in (4.9) restricted to each constructed subset

of PA(N) of the form {a} × Y × {r1, . . . , rM} is small. This follows from the fact

that g is not ε-bad, provided that we can verify dF̃ = g for some suitable F̃ .

Let X = Y × {1, . . . ,M}. If we are in (V1), or (V3), define F̃ : X → {±1} by

F̃ (p, j) = F (R2,S,T (aprj)) and F̃i,j : X → {±1} by F̃i,j(p, j) = Fi,j(R2,S,T (aprj)).

If we are in (V2), define F̃ : X → {±1} by F̃ ((p, q), j) = F (R2,S,T (apqrj)) and
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F̃i,j : X → {±1} by F̃i,j((p, q), j) = Fi,j(R2,S,T (apqrj)).

We now check that dF̃ = g. For (V1), we apply Theorem 4.7 and Theorem 4.8.

Since cj1,j2 = cj2,j1 = 1, Theorem 4.8 gives dF̃j1,j2 = g. Now consider any (j3, j4) 6=

(j1, j2), with cj3,j4 = 1. Then j4 ≤ n and cj4,j3 = 1. Hence Theorem 4.7 implies

dF̃j3,j4 = 1. Altogether we conclude that dF̃ = g.

For (V2), applying Theorem 4.4(ii) twice shows that dF̃j1,j2 = g. Two ap-

plications of Theorem 4.5 show that for all 1 ≤ j2 ≤ n2, we have dF̃j2,j2 = 1,

while two applications of Theorem 4.4(i) imply dF̃j3,j4 = 1 for all (j3, j4) such that

(j1, j2) 6∈ {(j3, j4), (j4, j3)} and j3 6= j4. This shows that dF̃ = g.

The case (V3) follows from an application of Theorem 4.4 and Theorem 4.5.

Notice that Rédei reciprocity played a key role in Section 4.1 in allowing us

to separate the primes that end up defining the relative governing field L and the

primes in Z which we ask for the splitting behaviour. Without this, the field L

would vary with the prime in Z in some cases, which makes it impossible to control

in the current framework.



Chapter 5

Kuroda’s formula and arithmetic

statistics

This chapter is based on joint work with Djordjo Milovic [21].

We are interested in real biquadratic fields, i.e. normal totally real extensions

K of Q with Gal(K/Q) ∼= V4. Let k1, k2, k3 be the quadratic subfields of K. and εi

be the generating units for ki. Kuroda [50] proved that if K is real, the unit group

of K has a set of generators of one of seven types

{ε1, ε2, ε3}, {
√
ε1, ε2, ε3}, {

√
ε1,
√
ε2, ε3}, {

√
ε1ε2, ε2, ε3},

{
√
ε1ε2,

√
ε3, ε2}, {

√
ε1ε2,

√
ε2ε3,

√
ε3ε1}, {

√
ε1ε2ε3, ε2, ε3}. (5.1)

This shows that the unit group index, defined as

Q(K) = [O×K : O×k1O
×
k2
O×k3 ],

can be 1, 2, or 4.

Let h(K) denote the largest power of 2 dividing the class number of K.

Kuroda’s class number formula [51, 48, 49] states that

h(K) =
1

4
Q(K)h(k1)h(k2)h(k3). (5.2)

A particular choice of K that is natural from the standpoint of Gauss’s genus theory
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and that appears in the literature [78, 79, 3, 6, 89, 90, 62] is

K = Q(
√
p,
√
d),

where p is a prime number and d is a positive squarefree integer coprime to p. With

this choice of K, we can now ask more precise statistical questions pertaining to the

arithmetic objects appearing in (5.2). For instance, if we fix a positive squarefree

integer d and i ∈ {1, 2, 4}, then we may wish to determine the natural density, if it

exists, of prime numbers p such that Q(K) = i.

In analogy with numerous works on 2-parts of class groups we discussed in

Section 3.2, for instance [23, 24, 85], we may further inquire if there exists a governing

field ℳ(d)/Q, not depending on p, such that Q(K) is determined by the Frobenius

conjugacy class of p in the Galois group Gal(ℳ(d)/Q).

We first establish our notation for this chapter. Given integers d1, . . . , dk, let

Kd1,...,dk := Q(
√
d1, . . . ,

√
dk). Let Cld1,...,dk and Cd1,...,dk denote the ordinary and

the narrow class group of Kd1,...,dk respectively. Let ℋd1,...,dk (resp. ℋ+
d1,...,dk

) denote

the 2-Hilbert class field (resp. the narrow 2-Hilbert class field) of Kd1,...,dk , i.e. the

maximal abelian at all places (resp. at finite places) unramified 2-power extension of

K. Let h(d1, . . . , dk) and h+(d1, . . . , dk) denote the size of the 2-parts of Cld1,...,dk

and Cd1,...,dk respectively. This implies h(d1, . . . , dk) = [ℋd1,...,dk : Kd1,...,dk ] and

h+(d1, . . . , dk) = [ℋ+
d1,...,dk

: Kd1,...,dk ]. Also let md,p denote the number of primes

dividing d that split completely in Kp/Q.

We aim to study the natural density of the fibres of the map φd : p 7→ Q(Kd,p).

We will describe a case where we can prove that the map φd is indeed Frobenian

and compute the density of the fibres of φd.

If Normki/Q(εi) = −1 for all i = 1, 2, 3, then from (5.1) the only possible cases

are

{ε1, ε2, ε3}, and {
√
ε1ε2ε3, ε2, ε3}, (5.3)

since we can see that all other cases would contradict to K being real by taking the

norm from K to one of k1, k2, k3. In (5.3), the first case gives Q(K) = 1 and the
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second case gives Q(K) = 2. The second case happens if and only if

x2 − dy2 = 4εp,

where εd is the fundamental unit of Q(
√
p), has a solution x, y ∈ OQ(

√
p). Therefore

we may ask how often Q(Kd,p) = 2 holds.

We consider this question in some restricted sets of d and p. Define

R := {d ∈ Z>0 squarefree : rk2 Cld = rk2 Cd, rk4 Cd = 0}.

The condition rk2 Cld = rk2 Cd occurs if and only if d has no prime factors congruent

to 3 modulo 4, which happens precisely when the genus field of Kd is totally real.

Further take

Pd := {p ≡ 1 mod 4 prime : p - d, rk4 Cdp = 0}.

Then for d ∈ R and p ∈ Pd, let t = ω(d), then we have

h(d) = h+(d) = 2t−1, h(p) = h+(p) = 1, and h(dp) = h+(dp) = 2t,

so that the formula (5.2) becomes

h(d, p) = Q(Kd,p) · 22t−3. (5.4)

We will first prove that h+(d, p) = 22t−2, so that Q(Kd,p) = 2 or Q(Kd,p) = 1

depending on whether or not ℋ+
d,p is totally real.

Theorem 5.1. Suppose d ∈ R and p ∈ Pd. Let t = ω(d). Then rk2 Cd,p = t+md,p−

1 and rk4 Cd,p = t−md,p−1. In particular, h+(d, p) = 22t−2, Q(Kd,p) ∈ {1, 2}, and

Q(Kd,p) = 2 if and only if ℋ+
d,p is totally real.

Furthermore, after proving Theorem 5.1, we will explicitly construct ℋ+
d,p as the

compositum of t−1 disjoint quadratic extensions of the totally real field ℋdp, so that

ℋ+
d,p is totally real if and only if each of the t−1 aforementioned quadratic extensions

is totally real. Roughly speaking, we can prove that md,p of those extensions are

totally real with probability 1/2, and we expect the remaining t−md,p−1 to behave

similarly. Hence we make the following conjecture.
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Further define Pd,m := {p ∈ Pd : md,p = m}, and Pd,m(N) := {p ∈ Pd,m : p <

N}.

Conjecture 5.2. For d ∈ R, we have

lim
N→∞

#{p ∈ Pd,m(N) : Q(Kd,p) = 2}
#Pd,m(N)

=
1

2t−1
,

where t = ω(d).

Our main “statistical” result about Q(Kd,p) is the following theorem.

Theorem 5.3. Suppose d ∈ R and let t = ω(d). Then the map

Pd,m → {1, 2}, p 7→ Q(Kd,p)

is Frobenian for m = t − 1 and m = t − 2. Moreover, Conjecture 5.2 holds for

m = t− 1 and m = t− 2, and, for all m ∈ {0, 1, . . . , t− 3}, we have

lim
N→∞

#{p ∈ Pd,m(N) : Q(Kd,p) = 2}
#Pd,m(N)

≤ 1

2m
.

5.1 The 2-rank of Cd,p

Let d ∈ R and t = ω(d) as in the introduction and let p ∈ Pd,m. We begin by

constructing an unramified at all finite primes Ct+m−1
2 -extension of Kp,d and stating

a criterion for this extension to be totally positive.

Let q1, . . . , qt be the prime divisors of d. We may reorder the qi so that
(
qi
p

)
= 1

for 1 ≤ i ≤ m and
(
qi
p

)
= −1 for m + 1 ≤ i ≤ t. First, as we described in

Section 1.3, genus theory for the quadratic number field Kd implies that Kp,q1,...,qt

is an unramified at all primes Ct−1
2 -extension of Kd,p. Now suppose that 1 ≤ i ≤ m,

so that
(
qi
p

)
= 1. Applying [31, Lemma 19, p.2059] (or more generally our (2.5))

with D1 = qi (or 4qi if qi = 2) and D2 = p, we can choose xi, yi, zi ∈ Z satisfying

the ternary quadratic equation

x2
i − py2

i − qiz2
i = 0
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such that (i) x2
i , py

2
i , and qiz

2
i are pairwise coprime, yi, zi ≥ 0 (ii) xi odd, and one

of yi and zi is even, and (iii) xi − yi ≡ 1 mod 4 if yi is even and xi − zi ≡ 1 mod 4 if

zi is even. We define

αi =


xi + yi

√
p if zi is odd,

1
2(xi + yi

√
p) if zi is even;

(5.5)

then [31, Lemma 20, p.2060], or more generally Theorem 2.2, implies that

Kp,qi(
√
αi)/Q is a D8-extension, unramified at all finite primes over Kpqi and a

fortiori over Kp,qi . The extension Kp,qi(
√
αi)/Kp is a V4-extension, and so, upon

taking the compositum over all 1 ≤ i ≤ m and also with Kp,q1,...,qt , we find that

ℰd,p = Kp,q1,...,qt(
√
α1, . . . ,

√
αm) (5.6)

is normal over Kp with Galois group isomorphic to Ct+m2 . We hence conclude that

ℰd,p/Kd,p is a normal, unramified at all finite primes extension with Galois group

isomorphic to Ct+m−1
2 . Since Kp has odd class number, we can apply Lemma 5.4 to

over Kp, we see that rk2 Cd,p ≤ t + m − 1, since the number of primes of Kp that

ramify in Kd,p is t+m. This also follows from results in genus theory over Kp [90,

Lemma 2.3]. Hence we have proved

Lemma 5.4. Define ℰd,p as in (5.6). Then ℰd,p/Kd,p is the maximal unramified

at all finite primes abelian extension of K of exponent 2. In particular, rk2 Cd,p =

t+m− 1.

Now [31, Proposition 5, p.2061] implies that Kp,qi(
√
αi) is totally real if and only if

[
p

qi

]
4

[
qi
p

]
4

= 1. (5.7)

Here, as in [31, p.2061], for a prime ` and a rational integer a, we define

[
a

`

]
4

=


1 if a is a fourth power modulo `

−1 otherwise



84 Chapter 5. Kuroda’s formula and arithmetic statistics

whenever ` is an odd prime such that
(
a
`

)
= 1 and

[
a

2

]
4

=


1 if a ≡ 1 mod 16

−1 if a ≡ 9 mod 16

whenever a ≡ 1 mod 8. Thus ℰd,p is totally real if and only if (5.7) holds for all

i ∈ {1, . . . ,m}. We will now rewrite the condition (5.7) in terms of genuine fourth

power residue symbols
( ·
·
)

4
over K−1, a field containing a primitive fourth root of

unity. Suppose that p and qi split into primary primes as p = ππ and qi = ρiρi in

the ring of Gaussian integers OK−1 (assume for the moment that qi 6= 2). Then,

since πOK−1 and ρiOK−1 are primes of degree 1, we have

[
p

qi

]
4

[
qi
p

]
4

=

(
p

ρi

)
4

(qi
π

)
4

=

(
π

ρi

)
4

(
π

ρi

)
4

(ρi
π

)
4

(
ρi
π

)
4

.

Quartic reciprocity law [42, Theorem 2, p. 123] implies that

(
π

ρi

)
4

=
(ρi
π

)
4
· (−1)

p−1
4

qi−1

4 and

(
π

ρi

)
4

=
(ρi
π

)
4
· (−1)

p−1
4

qi−1

4 .

Hence [
p

qi

]
4

[
qi
p

]
4

=
(ρi
π

)
4

(
ρi
π

)
4

(ρi
π

)
4

(
ρi
π

)
4

=
(ρi
π

)
2
.

Hence we have proved that when 2 - q1 . . . qm, ℰd,p is totally real if and only if p

splits completely in the number field

ℳ2(d) = K−1,q1,...,qm(
√
ρ1, . . . ,

√
ρm). (5.8)

Now suppose q1 = 2, so that p ≡ 1 mod 8. By definition,
[p
2

]
4

= 1 if and only

if p ≡ 1 mod 16, i.e., if and only if p splits completely in K−1,−2(
√

2 +
√

2), while[
2
p

]
4

= 1 if and only if p splits completely in K−1,2( 4
√

2). Hence
[p
2

]
4

[
2
p

]
4

= 1 if and

only if p splits completely in K−1,2( 4
√

2
√

2 +
√

2) = K−1,2(
√

1 +
√
−1). Thus, if

q1 · · · qm is even with q1 = 2, say, then again ℰd,p is totally real if and only if p splits

completely in ℳ2(d), where now ρ1 = 1 +
√
−1 ∈ K−1.

Suppose p ∈ Pd,m. It follows from Rédei’s classical work [64] on the 4-rank of

class groups of quadratic fields, as we discussed in Section 1.4 and Proposition 3.8,
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that the condition rk4 Cdp = 0 can be detected by the Frobenius conjugacy class of p

in the abelian Galois group Gal(Kq1,...,qt/Q); furthermore, since p splits completely

in Kq1,...,qm/Q, the condition rk4 Cdp = 0 is in fact equivalent to
(
Kqm+1,...,qt/Q

p

)
belonging to some fixed subset Σ ⊂ Gal(Kqm+1,...,qt/Q). For each element σ ∈ Σ,

let Pd,m,σ be the set of p in Pd,m such that
(
Kqm+1,...,qt/Q

p

)
= σ. Since p ∈ Pd,m

splits completely in K−1,q1,...,qm/Q, since Kqm+1,...,qt is disjoint from ℳ2(d), and since

[ℳ2(d) : K−1,q1,...,qm ] = 2m, the Chebotarev Density Theorem implies that, for each

σ ∈ Σ, the natural density of primes p in Pd,m,σ such that ℰd,p is totally real is equal

to 2−m. Taking the union over all σ ∈ Σ, we deduce also that the natural density of

primes p in Pd,m such that ℰd,p is totally real is equal to 2−m. In conjunction with

Theorem 5.1, since ℋ+
d,p cannot be totally real unless ℰd,p is totally real, this proves

the case m0 = t− 1 (with ℳ2(d) as the governing field) as well as the upper bound

in the second part of Theorem 5.3.

5.2 The 4-rank of Cd,p

Define αi as in (5.5). Let α̃i be the conjugate of αi in Kp. Let qi be a prime above

qi in Kp and q̃i be its conjugate if i ≤ m, so that αiOKp factorizes into qi times a

square ideal.

Call a ∈ K×p /(K
×
p )2 a decomposition of second type for Kd,p if

(i) a ≡
∏m
i=1 α

ei
i

∏m
i=1 α̃i

e′i
∏t
i=m+1 q

fi
i mod (K×p )2, where ei, e

′
i, fi ∈ {0, 1}; and

(ii) (a, d/a)r = 1 for all finite and infinite primes r in OKp .

Lemma 5.5. Let a ∈ K×p /(K
×
p )2. Suppose that L/Kd,p is a C4-extension unramified

at all finite primes and containing Kd,p(
√
a) ⊆ ℰd,p. Then

(i) Gal(L/Kp) ∼= D8; and

(ii) (a, d/a)r = 1 for all r ∈MKp.

Proof. The first part follows from Lemma 1.13.

For the second part of the lemma we follow the proof [31, Lemma 17] with

Q replaced by Kp. The extension L/Kd,p is the unique central C4-subextension in

L/Kp. Suppose q is a prime ideal in OKp that ramifies in Kp(
√
a)/Kp, the inertia

field of q in L/Kp have degree 4 since L/Kd,p is unramified. The inertia field of
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q therefore must contain Kp(
√
d/a) and is not Kd,p. Since the inertia field is not

normal in L/Kp, there must be at least two prime ideal in OL above q. Therefore q

must split in Kp(
√
a). Switching the role in of a and d/a proves the lemma.

The set of decompositions of second type form a multiplicative group in

K×p /
(
K×p
)2

of size 21+rk4 Cd,p .

5.2.1 Generalised Rédei matrix

Similar to [31, Lemma 13], the condition (a, d/a)r = 1 for all finite and infinite

primes r in OKp is equivalent to the following conditions

(i) a > 0;

(ii)
(
Kp,a/Kp

q

)
= 1 if ordq(da) is odd; and

(iii)
(
Kp,d/a/Kp

q

)
= 1 if ordq(a) is odd.

5.2.1.1 Rational decompositions of second type

Consider the subset of decompositions of second type where a ∈ Q, a > 0. Study-

ing the splitting of primes in the V4-extension Ka,p/Q, we see that the condition

(a, d/a)r = 1 for any prime ideal r in Kp is equivalent to asking for each prime q | d

with
(
q
p

)
= 1 to satisfy

(
a

q

)
= 1 if q

∣∣∣ d
a
,

(
d/a

q

)
= 1 if q | a.

Writing a as a product of qi, the conditions can be packaged in a matrix over F2.

Take S = {q1, . . . , qt} and T = {q1, . . . , qm}, and let B0 be the matrix R1,S,T (d) as

defined at the end of Section 1.3, i.e.

B0 :=



(
d/q1
q1

) (
q2
q1

)
· · ·

(
qm
q1

) (
qm+1

q1

)
· · ·

(
qt
q1

)
(
q1
q2

) (
d/q2
q2

)
· · ·

(
qm
q2

) (
qm+1

q2

)
· · ·

(
qt
q2

)
...

...
. . .

...
...

...(
q1
qm

) (
q2
qm

)
· · ·

(
d/qm
qm

) (
qm+1

qm

)
· · ·

(
qt
qm

)


+

,

where the subscript + denotes the conversion of each entry from {±1} to {0, 1}.

Then kerB0 corresponds to the set of decompositions of the second type. The size

of the matrix implies that dim kerB0 ≥ t − m. Therefore rk4 Cd,p ≥ t − m − 1.
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Combining with the fact that rk2 Cd,p = t + m − 1, the 2-part of Cd,p has size at

least 22t−2.

5.2.1.2 General decompositions of second type

Now consider all decompositions of second type for Kd,p. The set of decompositions

of the second type a is given by the kernel of the matrix

A :=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where

A11 =


(
d/α1
q1

)
· · ·

(
αm
q1

)
...

. . .
...(

α1
qm

)
· · ·

(
d/αm

qm

)


+

, A12 =


(
α̃1
q1

)
· · ·

(
α̃m
q1

)
...

...(
α̃1
qm

)
· · ·

(
α̃m
qm

)


+

, A13 =


(
qm+1

q1

)
· · ·

(
qt
q1

)
...

...(
qm+1

qm

)
· · ·

(
qt
qm

)


+

,

A21 =


(
α1
q̃1

)
· · ·

(
αm
q̃1

)
...

...(
α1
q̃m

)
· · ·

(
αm
q̃m

)


+

, A22 =


(
d/α̃1

q̃1

)
· · ·

(
α̃m
q̃1

)
...

. . .
...(

α̃1
q̃m

)
· · ·

(
d/α̃m

q̃m

)


+

, A23 =


(
qm+1

q̃1

)
· · ·

(
qt
q̃1

)
...

...(
qm+1

q̃m

)
· · ·

(
qt
q̃m

)


+

,

A31 =


(

α1
qm+1

)
· · ·

(
αm

qm+1

)
...

...(
α1
qt

)
· · ·

(
αm
qt

)


+

, A32 =


(

α̃1
qm+1

)
· · ·

(
α̃m

qm+1

)
...

...(
α̃1

qm+1

)
· · ·

(
α̃m

qm+1

)


+

, A33 =


(
d/qm+1

qm+1

)
· · ·

(
qt

qm+1

)
...

. . .
...(

qm+1

qt

)
· · ·

(
d/qt
qt

)


+

.

The matrix A has the same rank as

B :=


A11 A11 +A12 A13

A11 +A21 A11 +A12 +A21 +A22 A13 +A23

A31 A31 +A32 A33

 =

A11 B0

BT
0 0

 .

In particular, when B0 has maximal rank m and m < t, rankB = 2 rankB0,

then the dimension of kerB = (t+m)− 2m = t−m, and so rk4 Cd,p ≤ t−m− 1.

5.2.2 The vanishing of the 8-rank of Cd,p

Lemma 5.6. Let K be a biquadratic number field with quadratic subfields k1, k2,

k3. Let n ≥ 1 be an integer. If rk2n Cki is 0 for i = 1, 2, 3, then the 2n+1-rank of

CK is 0.

Proof. Take a prime ideal P in OK above prime p. It suffices to show that the
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order of [P]2 ∈ CK divides the order of some ideal class in Cki . We split into three

possible cases according to the splitting of p in K.

Suppose p is inert in k1, k2 and splits in k3. Let p be an ideal below P in

k3. Since P = pOK , if pl is principal in k3, then Pl must also be principal in K.

Therefore the order of [P] ∈ CK divides the order of [p] ∈ Ck3 .

Now suppose p ramifies in k1 and k2. Let p be an ideal below P in k3. Since

P2 = pOK , the order of [P]2 ∈ CK divides the order of [p] ∈ Ck3 .

Suppose instead p splits completely in K. Let pi be the prime ideal below P in

ki for i = 1, 2, 3. Then piOK = PPi, where Pi is a conjugate prime ideal of P under

the non-trivial map in Gal(K/ki). Then (p)OK = PP1P2P3, so [p1p2p3OK ] = [P]2

in CK . Therefore the order of [P]2 ∈ CK divides the lcm of orders of [pi] ∈ Cki .

Lemma 5.7. Suppose d ∈ R and p ∈ Pd,m. Then rk8 Cd,p = 0.

Proof. The quadratic subfields of the biquadratic field Kd,p are Kd, Kp, and Kdp. By

assumption on d, we have rk4 Cd = 0. We have rk2 Cp = 0 and so also rk4 Cp = 0.

By definition of Pd,p, we have rk4 Cdp = 0. The result now follows from Lemma 5.6.

5.2.3 Proof of Theorem 5.1

The lower and upper bounds from Sections 5.2.1.1 and 5.2.1.2, respectively, yield

rk4 Cd,p = t−m− 1.

In conjunction with Lemma 5.7, we conclude that the 2-part of Cd,p is congruent to

C2m
2 × Ct−m−1

4 .

Now equation (5.4) implies that 22t−2 = h+(d, p) ≥ h(d, p) = Q(Kd,p) · 22t−3, so

that Q(Kd,p) ≤ 2 with equality if and only if h+(d, p) = h(d, p), i.e., if and only if

ℋ+
d,p is totally real.

5.3 Construction of ℋ+
d,p

In this section, we will give an explicit construction the narrow 2-Hilbert class field

ℋ+
d,p of Kd,p. We have

ℋ+
d,p = ℰd,p if m = t− 1,
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where ℰd,p is defined in (5.6). This follows from the upper bound on the 4-rank of

Cd,p given in Section 5.2.1.2.

When m ≤ t − 2, we will construct certain unramified at finite primes C4-

extensions of Kd,p by working over Kp. In general, this does not lead to simple

criteria for ℋ+
d,p to be totally real. When m = t − 2, then we can construct the

unramified at finite primes C4-extension of Kd,p by working over Q, and in this

case we can find a criterion for ℋ+
d,p to be totally real that is amenable to density

computations.

5.3.1 Constructing unramified C4-extensions

Lemma 5.8. Suppose that a | d and that a is even if d is even. Let p ≡ 1 mod 4 be

a prime. Suppose that

X2 − aY 2 =
d

a
Z2 (5.9)

is solvable for some X,Y, Z ∈ Kp. Then there exists a solution such that β :=

X+Y
√
a gives an extension Kd,p,a(

√
β)/Kd,p,a that is unramified at all finite primes.

More specifically, β can be taken such that

(i) X,Y, Z ∈ OKp,

(ii) gcd((X), (Y ), (Z)) is a square ideal,

(iii) X,Z are coprime with 2 and 2 | Y ,

(iv)

 X − Y if a ≡ 1 mod 4,

X − Y 2

2 if a ≡ 2 mod 4

 ≡


1 mod 4 if p ≡ 1 mod 8,

1 or
1+p
2
±√p
2 mod 4 if p ≡ 5 mod 8.

Proof. Our goal is to find a suitable β = X + Y
√
a that satisfies the requirement

in Proposition 1.2. Let σ be the generator of Gal(Kp/Q). Clearing denominators

we can assume X,Y, Z ∈ OKp . Since the fundamental unit in Kp has norm −1,

we can take x, y ∈ Z satisfying x2 − py2 = −1 and set u = x + y
√
p. Looking at

x2−py2 ≡ −1 mod 4 we see that x is even and y is odd, so u = x+y
√
p ≡ ±√p mod 4

in OKp .

Choosing β to be coprime to 2. Removing factors of 2 we can assume 2

divides at most one of X,Y, Z. If p ≡ 5 mod 8, then 2 is inert in Kp so at most one

of X,Y, Z is even.
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If p ≡ 1 mod 8, then 2 splits in Kp. Then

Norm

(
1 +
√
p

2

)
=

1− p
4

, and Norm

(
3 +
√
p

2

)
=

9− p
4

are both even but differ by 2, so one must be congruent to 2 mod 4. Say γ is the

element from above with norm 2 mod 4. Then exactly one of the primes above 2

divides γ with order 1, call this prime t. Suppose max{ordtX, ordt Y, ordt Z} = k,

then take X(γσ/2)k, Y (γσ/2)k, Z(γσ/2)k. Repeat the same for the ideal tσ. Then

we can assume that no prime above 2 divides gcd((X), (Y ), (Z)). Therefore at least

one of X,Y, Z is coprime with 2.

The squares modulo 4 in OKp are 0, 1, ω := ((1 + p)/2 +
√
p)/2 and ω′ :=

((1 + p)/2 − √p)/2. We have X2 = 2Y 2 + Z2 mod 4 when a is even, and X2 =

Y 2 + Z2 mod 4 when a is odd, we see that the possible combinations are

(X2, {Y 2, Z2}) ≡



(1, {0, 1}) mod 4, (5.10)

(ω, {0, ω}) mod 4, (5.11)

(ω′, {0, ω′}) mod 4, (5.12)

(1, {ω, ω′}) mod 4 if p ≡ 1 mod 8. (5.13)

The cases (5.11) and (5.12) are only possible when p ≡ 5 mod 8. For if p ≡

1 mod 8, the norms of ω and ω′ are (1 − p)2/16, which is even, contradicting with

the assumption that at least one of X,Y, Z is coprime with 2.

For case (5.13), one can obtain another solution to (5.9) that satisfies one

of (5.10), (5.11), (5.12). Without loss of generality assume Z2 ≡ ω mod 4. Since

X2 ≡ 1 mod 4 implies X ≡ ±1 or ±√p mod 4, multiplying X,Y, Z by a suitable

δ ∈ {±1,±u}, we can also assume X ≡ 1 mod 4. Let t denote the prime above 2

such that t | Y , then tσ | Z and t, tσ - X. Take

(X ′, Y ′, Z ′) :=

(
1 + d/a

2
X ± d

a
Z ,

1− d/a
2

Y,
1 + d/a

2
Z ±X

)
(5.14)

≡


(X ± Z, 0, Z ±X) mod 4 if d

a ≡ 1 mod 8,

(−X ± Z, 2, −Z ±X) mod 4 if d
a ≡ 5 mod 8.
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Then

Norm(X ′) ≡ Norm(Z ′) ≡ 1± (Z + Zσ) + ZZσ mod 4.

Z2 ≡ ω mod 4 implies Z ≡ ±(1+
√
p)/2 or ±(5+

√
p)/2 mod 4. Therefore Z+Zσ ≡

1 mod 4 and ZZσ ≡ 0 or 2 mod 4. Pick the sign such that Norm(X ′) ≡ Norm(Z ′) ≡

2 mod 4. Then ordtX
′ = ordt Z

′ = 1 and tσ - X ′Z ′. Carry out the reduction as

before we can obtain new X ′ and Z ′ that are both coprime to 2. Therefore we can

assume X is always coprime with 2 and exactly one of Y,Z is coprime with 2.

If X,Y are coprime with 2 and 2 | Z, the transformation (5.14) gives X ′, Z ′

that are coprime to 2 and 2 | Y ′. Therefore we can always take X,Z coprime to 2

and 2 | Y . In particular βOKd,p,a is coprime to 2 since its norm is odd.

Choosing β to be a square ideal. Let h be the class number of Kp, which

is odd. If ordp(gcd((X), (Y ), (Z)) is odd for some prime ideal p, we can multiply

X,Y, Z by some γ, where γ satisfies ph = (γ). Remove any rational prime p di-

viding gcd((X), (Y ), (Z)). Therefore we can assume gcd((X), (Y ), (Z)) is a square

ideal involving only prime ideals above odd primes that splits in Kp/Q. For each

odd prime p that splits in Kp/Q at most one of the primes above p can divide

gcd((X), (Y ), (Z)) .

Suppose there exists an odd prime dividing βOKd,p,a , then there must be a

prime P below in OKp,a dividing βOKp,a . Without loss of generality assume P - d/a,

otherwise consider the prime in OKp,d/a and interchange the roles of a and d/a in the

following. Let p be a prime in Kp below P. Taking norms to Kp we have p | Z2d/a,

so p | Z. But p cannot divide both X and Y with an odd power, otherwise p

divides gcd((X), (Y ), (Z)) with an odd power, so pOKp,a cannot divide β with an

odd power. Let τ be the generator of Gal(Kp,a/Kp). Then ordP β + ordPτ β =

ordP(X + Y
√
a) + ordP(X − Y

√
a) = ordP Z

2 = 2 ordp Z being even implies that

ordP β is even. Therefore βOKd,p,a has even valuation at odd primes.

Choosing β to be a square modulo 4. We now handle the ramification at

2 in cases (5.10), (5.11) and (5.12). First suppose a is odd so a ≡ 1 mod 4. We

assumed 2 | Y so

X + Y
√
a ≡ X − Y + 2Y

(
1 +
√
a

2

)
≡ X − Y mod 4.
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Also (X − Y )2 = X2 + 2XY + Y 2 ≡ X2 mod 4.

In case (5.10), X − Y ≡ ±1 or ±√p ≡ δ mod 4 for some δ ∈ {±1,±u}. In

case (5.10), multiplying each of X,Y, Z by δ satisfies the requirement since this

forces X − Y ≡ 1 mod 4, which a square modulo 4.

The cases (5.11) and (5.12) are only possible when p ≡ 5 mod 8. Suppose we

are in case (5.11), then (X − Y )2 ≡ ω mod 4. Then X − Y ≡ ±(1 +
√
p)/2 or

±(5 +
√
p)/2 mod 4. One of {±(1 +

√
p)/2 or ±(5 +

√
p)/2} is a square modulo 4,

and u(1 +
√
p)/2 ≡ (5 +

√
p)/2 mod 4. Therefore there exist δ ∈ {±1,±u} such that

δ(X − Y ) is a square modulo 4. Replace X,Y, Z by δX, δY, δZ then β is a square

modulo 4. Case (5.12) is similar.

Now suppose a is even so a ≡ 2 mod 4. In cases (5.10), (5.11) and (5.12), similar

to above there exists δ ∈ {±1,±u} such that δX ≡ X2 +Y 2/2 ≡ X2 +aY 2/4. Then

δX + δY
√
a ≡ (X + Y

√
a/2)2 mod 4.

Recall from Sections 5.2.1.1 and 5.2.1.2 that the space of decompositions of the

second type has dimension equal to t−m inside the F2-vector space K×p /(K
×
p )2. Let

a1, . . . , at−m−1, d denote a basis for this space, with ai | d, and let β1, . . . , βt−m−1

denote the corresponding solutions constructed in Lemma 5.8. Then we can realize

ℋ+
d,p as the field

ℋ+
d,p = ℰd,p(

√
β1, . . . ,

√
βt−m−1),

where ℰd,p is defined in (5.6).

5.3.2 The case m = t− 2

Throughout this section, we take m = t− 2, so that q1, . . . , qt satisfies
(
p
q1

)
= · · · =(

p
qt−2

)
= 1 and

(
p

qt−1

)
=
(
p
qt

)
= −1.

Lemma 5.9. There exists a positive integer a | d, a 6= 1 or d, such that

px2 − ay2 =
d

a
z2 (5.15)

is solvable for x, y, z ∈ Q. Also

(
a

p

)
=

(
d/a

p

)
= −1.

Proof. Since rankB0 = t−2, dim kerB0 = t− (t−2) = 2. We can pick (e1, . . . , et) ∈
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kerB0 \ {{0, . . . , 0}, {1, . . . , 1}}. Take a = qe11 . . . qett and b = d/a. Then for each

1 ≤ i ≤ t− 2,

(a, b)qi = 1.

If d is odd, a ≡ b ≡ 1 mod 4, so (a, b)2 = 1. Hilbert reciprocity implies

(a, b)qt−1(a, b)qt =
∏
r∈MQ

(a, b)r = 1. (5.16)

When d is even, 2 is one of q1, . . . , qt−2 if p ≡ 1 mod 8, and one of qt−1, qt if p ≡

5 mod 8, so (5.16) still holds.

Without loss of generality assume qt−1 | b, otherwise interchange a and d/a.

Since rk4 Cd = 0 and rk4 Cdp = 0, there are no decompositions of second type for

Kd or Kdp, so

(a, b)qt−1 = (a, b)qt = −1 and
(
(pa, b)qt−1 = (pa, b)qt = −1 or (pa, b)p = −1

)
.

If qt | b, then (pa, b)p =
(
b
p

)
=
∏
q|b

(
q
p

)
= 1, so we must have (pa, b)qt−1 =

(pa, b)qt = −1, but this contradicts with

(p, b)qt−1 = (p, b)qt =

(
qt−1

p

)
=

(
qt
p

)
= −1.

Therefore qt | a. Again a cannot give a decomposition of second type for Kd, so

(a, b)qt−1 = (a, b)qt = −1, and hence (pa, b)qt−1 = (pa, b)qt = 1. We also have

(
a

p

)
=
∏
qi|a

(
qi
p

)
= −1 and (pa, pb)p =

(
ab

p

)
=
∏
qi|d

(
qi
p

)
= 1.

Therefore (pa, pb)r = 1 for any prime r ∈MQ.

Since the 2-part of the class group and narrow class group of Kp are both trivial,

the fundamental unit in Kp has norm −1, we can take u, v ∈ Z satisfying

u2 − pv2 = −1. (5.17)

Looking at u2 − pv2 ≡ −1 mod 4 we see that u is even and v is odd, so u+ v
√
p ≡

±√p mod 4OKp . Replacing v with −v if necessary we can assume v− u ≡ 1 mod 4,
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so that u + v
√
p ≡ √p mod 4OKp . From u2 − pv2 ≡ −1 mod 8, we see that this

choice implies

(u, v) ≡


(0, 1) mod 4 if p ≡ 1 mod 8,

(2, 3) mod 4 if p ≡ 5 mod 8.

(5.18)

If we take some β = (x
√
p + y

√
a)(u + v

√
p), where x, y satisfy (5.15), then

Kd,p,a(
√
β)/Kd,p is a C4-extension by Lemma 1.8.

We claim that when β is chosen appropriately, the Kd,p,a(
√
β)/Kd,p is unram-

ified at all finite primes. Note that Kd,p,a is contained in ℋ+
d,p so Kd,p,a/Kd,p is

unramified.

Lemma 5.10. Let d ∈ Z be a squarefree and has no prime factors congruent to

3 mod 4. Suppose a | d and a is even if d is even. Let p ≡ 1 mod 4 be a prime. Sup-

pose (5.15) is solvable for some x, y, z ∈ Q. There exists x, y, z ∈ Z satisfying (5.15)

such that

(i) gcd(x, y, z) = 1,

(ii) x, z are odd and y is even, and

(iii) x− y ≡ 1 mod 4.

Setting β = (x
√
p + y

√
a)(u + v

√
p) gives an extension Kd,p,a(

√
β)/Kd,p,a that is

unramified at all finite primes.

Proof. Our goal is to find a suitable β = X + Y
√
a that satisfies the requirement in

Proposition 1.2. Let σ be the generator of Gal(Kp/Q). Clearing denominators we

can assume x, y, z ∈ Z.

Choosing β to be coprime to 2. Removing factors of 2 we can assume 2

divides at most one of x, y, z. Taking px2 − ay2 = d
az

2 mod 4, we see that x must

be odd and one of y, z is even. If d is even, a ≡ 2 mod 8 so y must be even. Now

suppose d is odd. If x, y are odd and z is even, then we can take instead

(
a+ d/a

2
px2,

a− d/a
2

y +
d

a
z,

a− d/a
2

z − ay
)
≡ (1, 0, 1) mod 2

as another set of solution to (5.15). Therefore we can always take x, z odd and y
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even. In particular βOKd,p,a is coprime to 2 since its norm

NormK/Kp β = (u+ v
√
p)2 d

a
z2

is odd.

Choosing β to be a square ideal. We can assume gcd(x, y, z) = 1 by

removing any common divisors.

Suppose there exists an odd prime dividing βOKd,p,a , then there must be a

prime P below in OKp,a dividing βOKp,a . Without loss of generality assume P - d/a,

otherwise consider the prime in OKp,d/a and interchange the roles of a and d/a in the

following. Let p is a prime in Kp below P. Taking norms to Kp we have p | z2d/a,

so p | z. But p cannot divide both x and y, so pOKp,a cannot divide β. Then

ordP β = ordP z
2 = 2 ordp z is even. Therefore βOKd,p,a has even valuation at odd

primes.

Choosing β to be a square modulo 4. First suppose a is odd so a ≡ 1 mod 4.

We assumed y is even so

β = (x
√
p+ y

√
a)(u+ v

√
p) ≡ (x

√
p+ y

√
a)
√
p ≡ x+ y

√
ap

≡ x− y + 2y

(
1 +
√
ap

2

)
≡ x− y mod 4OKd,p .

Since x is odd and y is even, taking −x instead if necessary, we can assume x− y ≡

1 mod 4. Then β is a square modulo 4 in OKd,p .

Now suppose a is even so a ≡ 2 mod 4. Taking −x instead if necessary, we can

assume x− y2/2 ≡ 1 mod 4. Then

β = (x
√
p+ y

√
a)(u+ v

√
p) ≡ x+ y

√
ap

≡ x− y
√
a+ 2y

√
a

(
1 +
√
p

2

)
≡
(

1− y

2

√
a
)2

mod 4.

Since y is even, 1
2y

2 ≡ y mod 4.

Take (5.15) modulo 8, if d is odd, the choice in Lemma 5.10 implies

(x, y) ≡


(1, 0) mod 4 if bp ≡ 1 mod 8,

(3, 2) mod 4 if bp ≡ 5 mod 8.

(5.19)
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5.3.3 Criterion for ℋ+
d,p to be totally real when m = t− 2

Lemma 5.11. The field Kd,p,a(
√
β) is totally real if and only if xv > 0.

Proof. Let β1 = (x
√
p+y

√
a)(u+v

√
p), β2 = (x

√
p−y

√
a)(u+v

√
p), β3 = (−x√p+

y
√
a)(u−v√p), and β4 = (−x√p−y

√
a)(u−v√p). Then β1β2 = bz2(u+v

√
p)2 > 0,

β1β3 = bz2 > 0, and β3β4 = bz2(u − v√p)2 > 0, so β1, β2, β3, β4 are always of the

same sign. Since β1 + β2 + β3 + β4 = 4xvp, we have β1, β2, β3, β4 > 0 if and only if

xv > 0.

If d is odd, (5.18) and (5.19) implies

xv ≡


1 mod 4 if b ≡ 1 mod 8,

3 mod 4 if b ≡ 5 mod 8.

(5.20)

Lemma 5.12. The field Kd,p,a(
√
β) is totally real if and only if

[
ab

p

]
4

[
ap

b

]
4

[
bp

a

]
4

= −1,

where b = d/a.

Proof. By Lemma 5.11, it suffices to show that

[
ab

p

]
4

[
ap

b

]
4

[
bp

a

]
4

=


−1 if xv > 0,

1 if xv < 0.

(5.21)

Without loss of generality, assume b is odd. Take a = 2ja0, where j = 0 if d is

odd and j = 1 if d is even. Take (5.15) modulo p and modulo each odd q | d, we get

[
−ab
p

]
4

(
y

p

)
=

(
bz

p

)
= −

(
z

p

)
,[

ap

b

]
4

(y
b

)
=
(px
b

)
= −

(x
b

)
,[

bp

a0

]
4

(
z

a0

)
=

(
px

a0

)
= −

(
x

a0

)
.

Multiply these equations together

−
[
−ab
p

]
4

[
ap

b

]
4

[
bp

a0

]
4

=

(
x

a0b

)(
y

bp

)(
z

a0p

)
. (5.22)
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Write y = 2iy0, where y0 is odd. Since a0 ≡ b ≡ p ≡ 1 mod 4, we can rewrite (5.22)

as

−
[
−ab
p

]
4

[
ap

b

]
4

[
bp

a

]
4

=

(
a0b

|x|

)(
2

bp

)i(bp
y0

)(a0p

z

)
. (5.23)

Take (5.15) modulo each prime r | x, r | y0, r | z, we get

(
a

|x|

)
=

(
−b
|x|

)
=

(
−1

|x|

)(
b

|x|

)
,

(
p

y0

)
=

(
b

y0

)
and

(p
z

)
=
(a
z

)
.

By (5.19), i = 1 and
(

2
bp

)
= −1 if bp ≡ 5 mod 8 and

(
2
bp

)
= 1 if bp ≡ 1 mod 8.

Simplifying (5.23) gives

−
[
−ab
p

]
4

[
ap

b

]
4

[
bp

a0

]
4

=

(
−1

|x|

)(
2

bp

)i( 2

xz

)j
= (−1)

|x|−1
2 (−1)

p−1
4

+ b−1
4

(
2

xz

)j
.

Take (5.17) modulo each prime r | v, we have
(
−1
|v|

)
= 1, so |v| ≡ 1 mod 4. Since

[
−1

p

]
4

= (−1)
p−1
4 ,

we have [
ab

p

]
4

[
ap

b

]
4

[
bp

a0

]
4

= −(−1)
|xv|−1

2 (−1)
b−1
4

(
2

xz

)j
. (5.24)

When d is odd, j = 0, so we get (5.21) by (5.20). When d is even, j = 1

and a is even. Take (5.15) modulo 16 gives px2 ≡ bz2 mod 16 if y ≡ 0 mod 4, and

px2 ≡ 8 + bz2 mod 16 if y ≡ 2 mod 4. Then

(
2

xz

)
= (−1)

(xz)2−1
8 =


1 if x2 ≡ z2 mod 16,

−1 if x2 ≡ 9z2 mod 16

= (−1)
y
2

[
pb

2

]
4

.

From (5.24) and since p ≡ b mod 8 here, we have

[
ab

p

]
4

[
ap

b

]
4

[
bp

a

]
4

= −(−1)
|xv|+y−1

2 (−1)
p−1
4 .

The choice x − y ≡ 1 mod 4 in Lemma 5.10, together with (5.18), implies

(−1)
xv+y−1

2 = (−1)
p−1
4 . Therefore (5.21) holds.
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5.4 Computing densities from a governing field

Recall that we proved the cases m = t− 1 and the upper bound in the second half

of Theorem 5.3 at the end of Section 5.1. It remains to prove the case m = t− 2 of

Theorem 5.3.

5.4.1 Construction of a governing field

We start by converting the criterion in Lemma 5.12 to a splitting condition in a

suitable governing field. If p is a prime number congruent to 1 modulo 4, then we

can write p = ππ for some π ≡ 1 mod (1 +
√
−1)3 in Z[

√
−1]; in this case, the

inclusion Z ↪→ OQ(
√
−1) induces an isomorphism Z/(p) ∼= OQ(

√
−1)/(π), so that an

integer n is a fourth power modulo p exactly when it is a fourth power modulo π.

For each 1 ≤ i ≤ t, fix ρi such that qi = ρiρi with ρi ≡ 1 mod (1+i)3 if qi ≡ 1 mod 4,

and take ρi = 1 +
√
−1 if qi = 2.

Assuming d = ab is odd for now, we have

[
d

p

]
4

[
bp

a

]
4

[
ap

b

]
4

=

[
d

p

]
4

·
∏
qi|a

[
bp

qi

]
4

·
∏
qj |b

[
ap

qj

]
4

=

(
d

π

)
4

∏
ρi|a

(
bp

ρi

)
4

·
∏
ρj |b

(
ap

ρj

)
4

= δ(a, b) ·
(
d

π

)
4

·
∏
ρk|d

(
p

ρk

)
4

,

where

δ(a, b) :=
∏
ρi|a

(
b

ρi

)
4

·
∏
ρj |b

(
a

ρj

)
4

.

Using quartic reciprocity as well as the fact that

(ρk
π

)
4

=

(
ρk
π

)
4

=

(
ρk
π

)3

4

,

we have

(
d

π

)
4

∏
ρk|d

(
p

ρk

)
4

=

(
d

π

)
4

∏
ρk|d

(ρk
π

)
4

(
ρk
π

)3

4

=

(
d

π

)
2

∏
ρk|d

(
ρk
π

)
2

=
∏
ρk|d

(ρk
π

)
2
.

Now suppose a is even, write a = 2a0. Define

δ(a, b) = δ(a0, b) · (−1)
1−b
8 ·

∏
ρj |b

(
2

ρj

)
4

.
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Since 2 = −ρ2
i

√
−1, we have

[
d

p

]
4

[
bp

a

]
4

[
ap

b

]
4

=

(
2

π

)
4

[
bp

2

]
4

(
a0b

π

)
4

∏
ρk|a0b

(
p

ρk

)
4

·
∏
ρi|a0

(
b

ρi

)
4

·
∏
ρj |b

(
2a0

ρj

)
4

= δ(a, b) · (−1)
b−1
8

(
−
√
−1

π

)
4

[
bp

2

]
4

·
∏
ρk|d

(ρk
π

)
2

Note that the assumption that a is even and (ap, bp)2 = 1 implies p ≡ b mod

8. Consider the possible classes of π in Z[
√
−1]/8Z[

√
−1] as in the proof of [31,

Proposition 7], which are

1, 1 + 4i if p ≡ 1 mod 16,

7 + 6i, 7 + 2i if p ≡ 5 mod 16,

5, 5 + 4i if p ≡ 9 mod 16,

3 + 6i, 3 + 2i if p ≡ 13 mod 16.

Then (
−
√
−1

π

)
4

= (−1)
1−p
8 and

[
bp

2

]
4

= (−1)
p−b
8

Therefore (−1)
b−1
8

(
−
√
−1
π

)
4

[bp
2

]
4

= 1.

In either case we have

[
d

p

]
4

[
bp

a

]
4

[
ap

b

]
4

= δ(a, b) ·
∏
ρk|d

(ρk
π

)
2
.

We let

ℳ4(d) = K−1,d(
√
ρ1 · · · ρt). (5.25)

Then [
d

p

]
4

[
bp

a

]
4

[
ap

b

]
4

= δ(a, b)

if and only if π splits in ℳ4(d)/K−1, if and only if p splits completely in ℳ4(d)/Q.

5.4.2 Computation of densities

Recall that d = q1 · · · qt with qi 6≡ 3 mod 4 distinct primes, that rk2 Cld = rk2 Cd,

that rk4 Cd = 0, and that Pd,t−2 is the set of prime numbers p such that

(i) p ≡ 1 mod 4,
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(ii) p - d,

(iii) rk4 Cdp = 0, and

(iv) there are exactly t− 2 indices i ∈ {1, . . . , t} such that
(
qi
p

)
= 1.

For each subset Ω ⊂ {1, . . . , t} of cardinality t − 2, let Pd,t−2,Ω denote the set of

p ∈ Pd,t−2 such that
(
qi
p

)
= 1 if and only if i ∈ Ω. Hence

Pd,t−2 =
⋃

Ω⊂{1,...,t}
|Ω|=t−2

Pd,t−2,Ω.

If Ω1 and Ω2 are two distinct subsets of {1, . . . , t} of cardinality t − 2, then there

exists i ∈ Ω1 \Ω2, and so every prime p ∈ Ω2 satisfies
(
qi
p

)
= −1, which means that

p /∈ Ω1. Hence the union above is disjoint, and so, to prove Theorem 5.3, it suffices

to prove for each Ω that the map

Pd,t−2,Ω → {1, 2}, p 7→ Q(Kd,p)

is Frobenian, with governing field ℳΩ, say, and that

lim
N→∞

#{p ∈ Pd,m,Ω : p ≤ N, Q(Kd,p) = 2}
#{p ∈ Pd,m,Ω : p ≤ N}

=
1

2t−1
,

whenever Pd,t−2,Ω is non-empty. Then one can take the compositum ℳ =
∏

Ω ℳΩ

as a governing field for the map Pd,t−2 → {1, 2} given by p 7→ Q(Kd,p). If Pd,t−2,Ω is

the empty set, then we may take ℳΩ = Q. Otherwise, by re-numbering the indices,

we may assume without loss of generality that Ω = {1, . . . , t− 2}.

First, if p ∈ Pd,t−2,Ω, then
(
qt−1

p

)
=
(
qt
p

)
= −1, so p splits completely in

ℰ = K−1,q1,...,qt−2,qt−1qt .

Conversely, any prime p that splits completely in ℰ but not in

ℒ = ℰKqt = K−1,q1,...,qt

belongs to Pd,t−2,Ω. Hence, letting σ denote the element in Gal(L/Q) that fixes
√
−1

and
√
qi for 1 ≤ i ≤ t− 2 and that sends

√
qi to −√qi for i = t− 1, t (i.e., σ is the
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Q

ℰ = K−1,q1,...,qt−2,qt−1qt

ℒ = K−1,q1,...,qt

ℳ = K−1,q1,...,qt(
√
ρ1, . . . ,

√
ρt−2,

√
ρ1 · · · ρt)

Figure 5.1: Field diagram of the fields ℰ ⊂ ℒ ⊂ℳ.

non-trivial element of Gal(ℒ/ℰ)), we see that p ∈ Pd,t−2,Ω if and only if
(
ℒ/Q
p

)
= σ.

Next, note that Lemma 5.9 yields the same decomposition a, b = d/a for Kd,p1

and Kd,p2 for any two primes p1, p2 ∈ Pd,t−2,Ω. Also note that K−1,d ⊂ ℰ, so, for

primes p that split completely in ℰ, the final result of the previous section can be

restated as

[
d

p

]
4

[
bp

a

]
4

[
ap

b

]
4

= δ(a, b)⇐⇒ p splits completely in ℰℳ4(d)/Q, (5.26)

where ℳ4(d) is as in (5.25). Hence, by Lemma 5.12 and the result of the previous

section, a prime p is in Pd,t−2,Ω and ℋ+
d,p is totally real if and only if

(i)
(
ℒ/Q
p

)
= σ,

(ii) p splits completely in ℰℳ2(d)/Q, where ℳ2(d) is as in (5.8), and

(iii) identifying Gal(ℰℳ4(d)/ℰ) with the group {±1}, and viewing Gal(ℰℳ4(d)/ℰ)

as a subgroup of Gal(ℰℳ4(d)/Q) in the canonical way,
(
ℰℳ4(d)/Q

p

)
= −δ(a, b).

Define ℳ to be the compositum

ℳ = ℒℳ2(d)ℳ4(d) = K−1,q1,...,qt(
√
ρ1, . . . ,

√
ρt−2,

√
ρ1 · · · ρt),

and observe that there is a unique element τ(a, b) ∈ Gal(ℳ/ℰ) ⊂ Gal(ℳ/Q) de-

pending on a and b such that for every prime p, the three conditions listed above

are equivalent to the condition that
(
ℳ/ℰ
p

)
= τ(a, b), where p is any prime of ℰ

lying above p. Note also that Gal(ℳ/ℰ) ∼= Ct2. Applying the Chebotarev Density
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Theorem to ℳ/ℰ and ℒ/ℰ, we get

lim
N→∞

#{p ∈ Pd,t−2,Ω : p ≤ N, Q(Kd,p) = 2}
#{p ∈ Pd,t−2,Ω : p ≤ N}

= lim
N→∞

#{p ∈ Pd,t−2,Ω : p ≤ N, ℋ+
d,p is totally real}

#{p ∈ Pd,t−2,Ω : p ≤ N}

= lim
N→∞

#{p prime in Oℰ : Norm(p) ≤ N,
(
ℳ/ℰ
p

)
= τ(a, b)}

#{p prime in Oℰ : Norm(p) ≤ N,
(
ℒ/ℰ
p

)
= σ}

=
2−t

2−1
= 2−t+1,

as desired.



Chapter 6

A density of ramified primes

This chapter is based on joint work with Christine McMeekin and Djordjo Milovic

in [20].

Given a number field K, let Cl, and C denote its class group, and its narrow

class group, respectively. We will prove certain density theorems for number fields

K satisfying the following five properties:

(P1) K/Q is Galois, K is totally real, and C = Cl;

(P2) the class number h := # Cl of K is odd;

(P3) n := [K : Q] is odd;

(P4) Gal(K/Q) is cyclic; and

(P5) the prime 2 is inert in K/Q.

If K is totally real, then C = Cl if and only if every totally positive unit in OK

is a square; see [20, Lemma 2.1]. Let O×K,+ := {u ∈ O×K : u totally positive}. Then

property (P1) can be restated as

(P1) K/Q is Galois, K is totally real, and O×K,+ =
(
O×K
)2

.

Number fields satisfying properties (P1) and (P4) were studied by Friedlander,

Iwaniec, Mazur, and Rubin [33]. They studied the behaviour of a quadratic residue

symbol defined on odd principal prime ideals

spin(πOK , σ) :=

(
π

πσOK

)
,
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where π is totally positive. When π and πσ are not coprime, the symbol is 0 by

convention. They proved that if σ is a fixed generator of Gal(K/Q), the density of

principal prime ideals πOK such that spin(πOK , σ) = 1 is equal to 1/2, conditional

to the following conjecture.

Conjecture Cη ([33, Conjecture Cn, p. 738-739]). Let η be a real number satisfying

0 < η ≤ 1. Then there exists a real number δ = δ(η) > 0 such that for all ε > 0

there exists a real number C = C(η, ε) > 0 such that for all integers Q ≥ 3, all real

non-principal characters χ of conductor q ≤ Q, all integers N ≤ Qη, and all integers

M , we have ∣∣∣∣∣∣
∑

M<a≤M+N

χ(a)

∣∣∣∣∣∣ ≤ CQη(1−δ)+ε.

We note that Conjecture Cη is known for η > 1/4, as a consequence of the

classical Burgess’s inequality [14], and remains open for η ≤ 1/4. Moreover, for

sums as above starting at M = 0, Conjecture Cη (for any η) is a consequence of the

Generalised Riemann Hypothesis for the L-function L(s, χ).

More precisely, the main result in [33] can be stated as follows.

Theorem 6.1 ([33, Theorem 1.1]). Suppose K is a number field satisfying proper-

ties (P1) and (P4). Suppose n = [K : Q] ≥ 3. Assume Conjecture Cη holds for

η = 1/n with δ = δ(η) > 0. Let σ be a generator of the Galois group Gal(K/Q).

Then for all x > 3, we have∣∣∣∣∣∣∣∣
∑

p principal
Norm(p)≤x

spin(p, σ)

∣∣∣∣∣∣∣∣�ε,K x1−θ+ε

where θ = θ(n) = δ
2n(12n+1) .

An analogous result when the summation is further restricted those p satisfying

a suitable congruence condition was also proved in [33]. Also, by Burgess’s inequality,

Conjecture Cη holds for η = 1/3 with δ = 1
48 , so Theorem 6.1 holds unconditionally

for [K : Q] = 3 where θ = 1
10656 .

In [33, Section 11], Friedlander et al. pose some questions about the joint dis-

tribution of spin(p, σ) and spin(p, τ) as p varies over prime ideals, where σ and τ are

two distinct generators of the cyclic group Gal(K/Q). In [47], Koymans and Milovic
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prove that such spins are distributed independently if n ≥ 5, i.e., that the product

spin(p, σ) spin(p, τ) oscillates similarly as in Theorem 6.1. In fact, they prove that

the product of spins ∏
σ∈H

spin(p, σ)

oscillates as long as the fixed non-empty subset H of Gal(K/Q) satisfies the property

that σ 6∈ H whenever σ−1 ∈ H. Moreover, their result holds for number fields K

satisfying property (P1) and having arbitrary Galois groups, i.e., not necessarily

satisfying property (P4).

The assumption in [47] that σ 6∈ H whenever σ−1 ∈ H is made because

spin(p, σ) and spin(p, σ−1) are not independent in the following sense.

Proposition 6.2 ([33, Lemma 11.1]). Suppose K is a number field satisfying prop-

erties (P1) and (P4). Suppose p ⊂ OK is a prime ideal and σ ∈ Gal(K/Q) is an

automorphism such that p and pσ are coprime. Then

spin(p, σ) spin(p, σ−1) =
∏
v|2

(α, ασ)v,

where α is a totally positive generator of ph and the product is taken over places v

dividing 2.

Proof. Since α and ασ are relatively prime, (α, ασ)p = spin(p, σ−1) and (α, ασ)pσ =

spin(p, σ). By Hilbert reciprocity
∏
v(α, α

σ)v = 1. Since α is totally positive,

(α, ασ)v = 1 for all infinite places v. For any odd prime v 6= p or pσ, we have

(α, ασ)v = 1 by Lemma 1.4.

In this chapter, we study the joint distribution of multiple spins spin(p, σ),

σ ∈ H, in a setting where H = Gal(K/Q) \ {1}, so there are in fact many σ ∈ H

such that σ−1 ∈ H as well.

By assuming property (P2), we are now also able to study the spin of all odd

prime ideals, and not only those that are principal. We give the following definition

of spin, which extends the definition of spin from [33] in a natural way.

Definition 6.3. Suppose K is a number field satisfying properties (P1) and (P2).

Let σ ∈ Gal(K/Q) be non-trivial. Given an odd ideal a, we define the spin of a (with
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respect to σ) to be

spin(a, σ) :=
( α
aσ

)
,

where α is any totally positive generator of the principal ideal ah, and where
( ·
·
)

denotes the quadratic residue symbol in K.

The assumption O×K,+ =
(
O×K
)2

is important for two reasons. First, Cl = C

ensures that the principal ideal ah has a generator α that is totally positive. Second,

any two totally positive generators of ah differ by a square, so the value of the

quadratic residue symbol defining the spin does not depend on the choice of totally

positive generator α.

Suppose p is a prime ideal in OK and α is any totally positive generator of

the principal ideal ph. It is immediate from the definition of spin, that p splits in

K(
√
ασ−1)/K if and only if spin(p, σ) = 1. Therefore, for any prime p in K coprime

to 2, the following are equivalent:

(i) spin(p, σ) = 1 for all non-trivial σ ∈ Gal(K/Q), and

(ii) p splits completely in K(
√
ασ : σ ∈ H)/K, where H = Gal(K/Q) \ {1}.

Let P2
Q denote the set of rational primes coprime to 2. For a fixed sign, ±, we

define the following sets of rational primes.

S := {p ∈ P2
Q : p splits completely in K/Q},

S± := {p ∈ S : p ≡ ±1 mod 4Z},

F := {p ∈ S : spin(p, σ) = 1 for all σ ∈ Gal(K/Q) \ {1}},

F± := S± ∩ F,

where p denotes a prime ideal in K lying above p.

For sets of primes A ⊆ B, we define the restricted density of A (restricted to

B) to be

d(A|B) := lim
N→∞

#{p ∈ A : Norm(p) < N}
#{p ∈ B : Norm(p) < N}

.

When Π consists of all but finitely many primes, then d(A) := d(A|Π) is the usual

natural density of A.

Our main result is as follows.
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Theorem 6.4. Let K be a cyclic totally real number field of odd degree n over Q

with odd class number, such that every totally positive unit is the square of a unit,

and such that 2 is inert in K/Q. Assume Conjecture Cη holds for η = 2
n(n−1) . For

k 6= 1 dividing n, let dk be the order of 2 in (Z/kZ)×. Then for a fixed sign ±,

d(F±|S±) =
s±

23(n−1)/2
, and d(F |S) =

s+ + s−

2(3n−1)/2

where

s+ := 1 +
∏

k|n, k 6=1
dkodd

2
φ(k)
2dk

 ∏
k|n, k 6=1
dkodd

2
φ(k)
2 − 1

 ,

and

s− :=
∏

k|n, k 6=1
dkeven

(2
dk
2 + 1)

φ(k)
dk

∏
k|n, k 6=1
dkodd

(2dk − 1)
φ(k)
2dk ,

where φ denotes the Euler’s totient function.

Unlike in [47], we have assumed here that Gal(K/Q) is cyclic.

In particular, when n is prime, writing d = dn, we have

(s+, s−) =


(

1 + 2
n−1
2d (2

n−1
2 − 1), (2d − 1)

n−1
2d

)
if d is odd,(

1, (2
d
2 + 1)

n−1
d

)
if d is even.

Table 6.1: Densities from Theorem 6.4, computed for K of degree n satisfying the
necessary hypotheses.

n d(F+|S+) d(F−|S−) d(F |S)

3 1/8 3/8 1/4

5 1/64 5/64 3/64

7 15/512 7/512 11/512

9 1/4096 27/4096 7/2048

11 1/32768 33/32768 17/32768

13 1/262144 65/262144 33/262144

15 1/2097152 375/2097152 47/262144

In the cubic case, we have the following unconditional theorem.
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Theorem 6.5. Let K/Q be a cubic cyclic number field and odd class number in

which 2 is inert. Then

d(F |S) =
1

4
,

d(F+|S+) =
1

8
, and d(F−|S−) =

3

8
.

If the spins of a fixed prime ideal spin(p, σ) and spin(p, τ) were independent for

all non-trivial σ 6= τ ∈ Gal(K/Q), then one might expect the density of F restricted

to S to be 2−(n−1). However, Proposition 6.2 gives a relation between the spins of

a prime ideal, which poses new challenges in our setting compared to that in [33]

or [47].

Define

R := {p ∈ S : spin(p, σ) spin(p, σ−1) = 1 for all σ 6= 1 ∈ Gal(K/Q)},

where p is a fixed prime of K above p. Observe that F ⊆ R ⊆ S, so if the limits

exist then

d(F |S) = d(F |R)d(R|S).

It follows from (6.2), that R is the set of primes satisfying a certain Hilbert sym-

bol condition. The densities appearing in our main theorems are of greater com-

plexity than those appearing in [33] or [47] because of the necessary considera-

tion of the density d(R|S). Toward computing the density d(R|S), the terms

s± arise from counting the number of solutions to this Hilbert symbol condition

over (OK/4OK)×/((OK/4OK)×)2, through a combinatorial argument given in Sec-

tion 6.2. The argument relies on properties (P4) and (P5), and allows us to obtain

explicit density formulas.

Another issue that we had to resolve arises from our generalisation of “spin” to

non-principal ideals. This extended definition means that techniques in the study

of oscillation of spins in [33] and [47] do not easily carry over. We describe some of

the new ideas in Section 6.3 in order to evaluate d(F |R) using results from [47].

Property (P3) ensures that Gal(K/Q) contains no involutions. While methods

to deal with involutions do exist (see [33, Section 12, p. 745]), incorporating them

into our arguments is non-trivial and may pose interesting new challenges in our
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analytic arguments.

6.1 A consequence of Chebotarev density theorem

In this section, we use Chebotarev density theorem to prove that the primes of K

are equidistributed in

M4 := (OK/4OK)×/
(
(OK/4OK)×

)2
,

under the map

r4 : P2
K →M4 p 7→ [α],

where α ∈ OK is a totally positive generator of the principal ideal ph. Since squares

are trivial in M4 by definition and O×K,+ =
(
O×K
)2

, the map rq is well-defined. Note

that M4 is a group with a natural action from Gal(K/Q) and r4 commutes with the

Galois action, i.e. r4(pσ) = r4(p)σ for all σ ∈ Gal(K/Q).

Proposition 6.6. Suppose K satisfies properties (P3),(P4) and (P5). Then

(i) M4
∼= Fn2 as a F2-vector space,

(ii) the invariants of the action of Gal(K/Q) on M4 are exactly ±1.

Proof. Let Um := (OK/m)×.

(i) Fix a set of representatives R for OK/2 in OK . Let R× be a subset of R

containing representatives for (OK/2)×. Observe that {x+2y : x ∈ R×, y ∈ R}

is a set of representatives for U4 and #U4 = 2n(2n − 1). Therefore elements

of U2
4 are of the form (x + 2y)2 ≡ x2 mod 4OK for x ∈ R× and y ∈ R. Since

#(OK/2)× = 2n − 1 is odd, the squaring map on U2 = (OK/2)× is surjective

and so #U2
4 = 2n−1. Therefore #M4 = #U4/#U

2
4 = 2n. Since M4 is formed

by taking the quotient of U4 modulo squares, M4 is a direct product of cyclic

groups of order 2.

For any α ∈ OK coprime to 2, write [α] as the projection of αOK in M4. Since

every x ∈ R× is a square in U2, we can write down the isomorphism explicitly

as

M4 → OK/2 ∼= Fn2 [x+ 2y] = [1 + 2x−1y] 7→ x−1y. (6.1)

We see that M4 = {[1 + 2y] : y ∈ OK/2}.
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(ii) Let σ be a generator of Gal(K/Q). The action of σ on [1 + 2y] ∈M4, simply

maps y to yσ. Then we see that y ≡ yσ mod OK/2 if and only if y ≡ 0 or

1 mod OK/2. These correspond to ±1 in M4.

6.1.1 Primes are equidistributed on M4

Lemma 6.7. Assume K satisfies (P1), (P2), and (P5). Let [α] ∈M4. Let p be an

odd prime of K such that r4(p) = α. The map

M4 → (Z/4Z)×

[α] 7→ NormK/Q(p) ≡ NormK/Q(α) mod 4Z

is well-defined.

Proof. By Lemma 6.8, for any α ∈ M4, there exists a prime p ∈ P2
K such that

r4(p) = α.

Let p and q be (odd) primes of K such that r4(p) = r4(q). Let α be a totally

positive generator of ph and let β be a totally positive generator of qh, where h

is the (odd) class number of K. Since r4(p) = r4(q), α ≡ β in M4. Then α ≡

βγ2 mod 4OK for some γ ∈ OK . Since 2 is inert, ασ ≡ βσ(γσ)2 mod 4OK for all

σ ∈ Gal(K/Q). Therefore Norm(α) ≡ Norm(β) Norm(γ)2 mod 4OK . Since the

norms are in Z, Norm(α) ≡ Norm(β) mod 4Z.

For m an ideal of OK , let Jm
K denote the group of fractional ideals of K prime

to m. Also let Cm denote the narrow ray class group of conductor m, that is, the

quotient of Jm
K by the set of principal fractional ideals generated by totally positive

a ∈ K with a ≡ 1 mod m.

Lemma 6.8 ([58, Lemma 3.5], [20, Lemma 4.6]). For K satisfying property (P1)

and (P2), the homomorphism J2
K →M4 induced by r4 induces a canonical surjective

homomorphism ϕ4 : C4 →M4.

For a fixed sign ±, let S′± denote the set of primes of K lying above some

p ∈ S such that p ≡ ±1 mod 4Z. We now state a lemma that handles the densities

restricted to primes of a fixed congruence class modulo 4Z.

Under the Artin map, ϕ4 induces a canonical isomorphism

Gal(L/K) ∼= M4,
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where L is contained in the narrow ray class field over K of conductor 4. Then

applying the Chebotarev density theorem over the extension L/K · Q(
√
−1) gives

the following lemma.

Lemma 6.9 ([20, Lemma 4.8]). Assume K satisfies conditions (P1)-(P3) and (P5).

For any [α] ∈M4, the density of p ∈ S′± such that ϕ4(p) = α is given by

d(r−1
4 (α) ∩ S′±|S′±) =

1

2n−1
.

6.1.2 The Hilbert symbol on M4

Lemma 6.10. The Hilbert symbol ( · , · )2 is well-defined on M4.

Proof. We show that (α, β)2 = (α + 4B, β)2 for any B ∈ OK coprime to 2, which

implies that ( · , · )2 is well-defined on (OK/4OK)××(OK/4OK)×. Suppose B ∈ OK

is coprime to 2. It suffices to show that (α, β)2 = 1 implies (α + 4B, β)2 = 1.

Take x, y, z ∈ OK not all divisible by 2 satisfying x2 − αy2 = βz2 mod 8. Since

(OK/2OK)× contains all its squares, there exists C,D ∈ OK such that C2 ≡

α−1βB mod 2 and D2 ≡ α−1β−1B mod 2. Take X = x + 2Cz, y = Y and

Z = z + 2Dx, then one can check that X2 − (α+ 4B)Y 2 ≡ βZ2 mod 8.

Lemma 6.11. The Hilbert symbol ( · , · )2 is non-degenerate on M4.

Proof. Fix some α ∈ OK coprime to 2. We claim that (α + 4B, 2)2 = 1 for some

B ∈ OK . Since (OK/2OK)× contains all its squareroots, there exist some γ, z ∈ OK

such that α ≡ γ2−2z2 mod 4. Write x = γ+2x′ for some x′ ∈ OK , set B = x′γ+x′2

and y = 1. Then x2 − (α+ 4B)y2 ≡ 2z2 mod 8. This proves our claim.

Now suppose (α, β)2 = 1 for all β ∈ OK coprime to 2. Then taking B from the

above claim, (α + 4B, β)2 = 1 holds for all β ∈ OK coprime to 2 by Lemma 6.10,

and for all β ∈ OK divisible by 2, by the above claim. Since the Hilbert symbol

is non-degenerate on K2/K
×
2 [68, Chapter XIV, Proposition 7], this implies that

α+ 4B ∈ O2
K . Hence [α] = [α+ 4B] is trivial in M4.

Proposition 6.2 and (P5) shows that for p a prime of K with totally positive

generator α ∈ OK , and for σ ∈ Gal(K/Q) a generator,

spin(p, σ) spin(p, σ−1) = (α, ασ)2,
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which motivates the following definition.

Definition 6.12 ([58] ). Assume K satisfies (P1), (P2), and (P5) with abelian

Galois group. Let α ∈ OK denote a representative of [α] ∈ M4. Define the map

? : M4 → {±1}

[α] 7→


1 if (α, ασ)2 = 1 for all non-trivial σ ∈ Gal(K/Q),

−1 otherwise.

Observe that ? is a well-defined map by Lemma 6.10. If (6.2) holds for some

α ∈ OK , then it holds for ασ for any σ ∈ Gal(K/Q). Therefore ?(α) = ?(ασ) for all

σ ∈ Gal(K/Q).

Let ?+ denote the restriction of ? to

M+
4 := {[α] ∈M4 : NormK/Q(α) ≡ 1 mod 4}

and let ?− denote the restriction of ? to

M−
4 := {[α] ∈M4 : NormK/Q(α) ≡ −1 mod 4}.

For a fixed sign ±, define R± := R ∩ S±.

By Proposition 6.2, fixing any prime p of K above p, the following are equivalent

(i) spin(p, σ) spin(p, σ−1) = 1 for all σ 6= 1 ∈ Gal(K/Q), and

(ii) ? ◦ r4(p) = 1.

Therefore, for each fixed sign ±,

R± = {p ∈ S± : ? ◦ r4(p) = 1 for p a prime of K above p}.

Summing up the densities in Lemma 6.9 over classes [α] ∈M+
4 and [α] ∈M−

4 ,

we get

d(R±|S±) =
# ker(?±)

#M±
4

.

Applying Proposition 6.6 we get #M4 = 2n. Since half the elements of M4 are in

M+
4 and half in M−

4 , #M+
4 = #M−

4 = 2n−1.
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Theorem 6.13. Assume K satisfies properties (P1)-(P5). Then

d(R|S) =
# ker(?)

2n
,

d(R+|S+) =
# ker(?+)

2n−1
and d(R−|S−) =

# ker(?−)

2n−1
.

6.2 Counting solutions to a Hilbert symbol condition

In this section, we will prove the formulae for # ker(?±).

Fix τ to be a generator of Gal(K/Q). For any α ∈ K, write α(k) := ατ
k

for

k ∈ Z.

Lemma 6.14. (−1,−1)2 = −1.

Proof. Assume for contradiction that (−1, 1)2 = 1. Consider a homomorphism ψ :

M4 → {±1} given by [α] 7→ (α,−1)2. Since the Hilbert symbol is non-degenerate,

and −1 is not a square modulo 4 in K, ψ is not identically 1. Therefore # kerψ =

#M4/# imψ = 2n−1.

For any [α] ∈M4 \ {±1}, we have (α(k),−1)2 = (α,−1)2 for any k. Therefore

ψ is stable under the Galois action. The size of each Galois orbit is n except the

orbit of ±1. But then n divides both #{[α] ∈ M4 \ {±1} : ψ(α) = 1} = #{[α] ∈

M4 : ψ(α) = 1} − 2 = 2n−1 − 2 and #{[α] ∈M4 : ψ(α) = −1} = 2n−1, which is a

contradiction.

Our aim is to count the number of elements in M4 with a representative α ∈ OK

satisfying the spin relation

(α, ασ)2 = 1 for all non-trivial σ ∈ Gal(K/Q). (6.2)

By Lemma 6.11, the property (6.2) only depends on the class of [α] ∈M4.

6.2.1 The Hilbert symbol as a bilinear form on M4

By the Kronecker–Weber theorem, K is contained in the cyclotomic field Q(ζf),

where f is the conductor of K. The conductor f is odd since we assumed that 2 is un-

ramified in K. By [29, Theorem 4.5], there exists a normal 2-integral basis of Q(ζf),

i.e. we can find some a ∈ OQ(ζf) such that the localization ofOQ(ζf) at 2 can be written

as OQ(ζf),2 = ⊕g∈Gal(Q(ζf)/Q)Z(2)a
g. Similar to the classic result for integral bases [59,
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Proposition 4.31(i)], taking y = TrQ(ζf)/K(a), then {y, yτ , . . . , yτn−1} gives a normal

2-integral basis of K. Since Z(2)/2Z(2)
∼= Z/2Z and OK,2/2OK,2 ∼= OK/2OK , we

know that y, yτ , . . . , yτ
n−1

also form a normal F2-basis of OK/2OK .

Set α = 1 + 2y. It follows from the isomorphism in (6.1) that

M4 =

{
n−1∏
i=0

[α(i)]
ui : (u0, . . . , un−1) ∈ Fn2

}
.

Write (α, α(i))2 = (−1)ci , ci ∈ {0, 1}. Note that (α(i), α(j))2 = (α, α(j−i))2. The

Hilbert symbol is multiplicatively bilinear, so we can represent ( · , · )2 by the matrix

A :=



c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0 . . . c3

...
...

...
. . .

...

cn−1 cn−2 cn−3 . . . c0


(6.3)

with respect to the basis [α(i)], 0 ≤ i ≤ n− 1.

Define the n× n F2-matrix

T1 =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

1 0 0 0 . . . 0


,

Tk = T k1 and T0 = I.

Lemma 6.15. Let A be the matrix representation of ( · , · )2 on M4 with respect to

a normal basis, as given in (6.3). Define a map

Ψ : Fn2 → F2[x]/(xn − 1)

u = (u0, . . . , un−1) 7→ Fu(x) := u0 + u1x+ u2x
2 + · · ·+ un−1x

n−1.
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Also define

Φ : Fn2 → Fn2 u 7→ (uTT0u, uTT1u, . . . , uTTn−1u).

Let B := Ψ ◦ Φ, so

B : Fn2 → F2[x]/(xn − 1) u 7→ xn · Fu(x)Fu(1/x) mod (xn − 1).

Then # ker(?+) = #B−1(0) and # ker(?−) = #B−1(h(x)), where h(x) =

Ψ(A−1(1, 0, . . . , 0)). Furthermore

h(x) ≡ xnh(1/x) mod (xn − 1). (6.4)

Proof. For any u = (u0, . . . , un−1),v = (v0, . . . , vn−1) ∈ Fn2 , we have

∏
i

αui(i),
∏
j

α
vj
(j)


2

= (−1)u
TAv.

Since ( · , · )2 is non-degenerate on M4 by Lemma 6.11, the matrix A has rank n and

is invertible. Note also that A is symmetric.

Now
∏
i α

ui
(i), u = (u0, . . . , un−1) ∈ Fn2 satisfies (6.2) if and only if

uTAT1u = uTAT2u = · · · = uTATn−1u = 0. (6.5)

Since {T0, T1, . . . , Tn−1} is a basis of GLn(F2), we can write

A =

n−1∑
i=0

ciTi, ci ∈ F2.

Then (6.5) becomes

A ◦ Φ(u) = A


uTT0u

uTT1u
...

uTTn−1u

 ∈



0

0
...

0

 ,


1

0
...

0




. (6.6)
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Since A is invertible, we can set h(x) = Ψ(A−1(1, 0, . . . , 0)). Notice that Ψ is a

one-to-one correspondence. Then (6.6) can be rewritten as B(u) = Ψ ◦ Φ(u) ∈

{0, h(x)}. Since A is symmetric, A−1 is also symmetric, so (6.4) holds. Also

(α, α)2 = (α,−1)2 = (α,−1)n2 =
∏
i(α(i),−1)2 = (NormK/Q(α),−1)2, which is 1

if NormK/Q(α) ≡ 1 mod 4 and −1 if NormK/Q(α) ≡ −1 mod 4 by Lemma 6.14.

Therefore # ker(?+) = #B−1(0) and # ker(?−) = #B−1(h(x)).

6.2.2 The counting problem

Our aim is to obtain the size of the preimage of 0 and h(x) under B. For any

polynomial f , let f∗ denote its reciprocal, i.e. f∗(x) = xdeg f · f(1/x).

Lemma 6.16. For any factor k 6= 1 of n, let dk be the order of 2 in (Z/kZ)×. Also

set d1 = 1. Consider the following factorisation in F2[x],

xn − 1 = f1(x) . . . fr(x)f∗m+1(x) . . . f∗r (x),

where fi are irreducible and fi = f∗i for i = 1, . . . ,m. Then
∑r

i=1 deg fi =
∑

k|n rkdk

and r =
∑

k|n rk and m =
∑

k|nmk, where r1 = m1 = 1, and

(rk,mk) =


(
φ(k)
2dk

, 0
)

if dk is odd,(
φ(k)
dk
, φ(k)

dk

)
if dk is even,

for k 6= 1.

Proof. Take f to be an irreducible factor of xn − 1 in F2[x]. Let γ be a root of f in

an extension of F2. Then γ is a primitive k-th root of unity, where k is some integer

dividing n. Galois theory on finite fields shows that Gal(F2(γ)/F2) is generated by

the Frobenius ϕ : x 7→ x2. Since ϕi : x 7→ x2i for any i ∈ Z, we see that the order of

ϕ must be dk, the order of 2 in (Z/kZ)×. Therefore deg f = dk. The set of roots of

f is {γ, ϕ(γ), ϕ2(γ), . . . , ϕdk−1(γ)}, which is closed under inversion precisely when

dk is even. Therefore f is self-reciprocal if and only if dk is even. There are φ(k)

roots of xn − 1 which are primitive k-th root of unity, so (2rk −mk)dk = φ(k).

We are now ready to prove the formulae for # ker(?+) and # ker(?−).
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Proposition 6.17. For each k 6= 1 dividing n, let dk be the order of 2 in (Z/kZ)×.

Then

# ker(?+) = 1 +
∏

k|n, dkodd, k 6=1

2
φ(k)
2dk

 ∏
k|n, dkodd, k 6=1

2
φ(k)
2 − 1

 ,

and

# ker(?−) =
∏

k|n, dkeven, k 6=1

(2dk/2 + 1)
φ(k)
dk

∏
k|n, dkodd, k 6=1

(2dk − 1)
φ(k)
2dk ,

where φ denotes the Euler’s totient function. If n is a prime, then writing d = dn,

(# ker(?+),# ker(?−)) =


(

1 + 2
n−1
2d (2

n−1
2 − 1), (2d − 1)

n−1
2d

)
if d is odd,(

1, (2
d
2 + 1)

n−1
d

)
if d is even.

In particular, when n = 3, # ker(?+) = 1 and # ker(?−) = 3.

Proof. The first case B(u) = 0 implies (xn − 1) | Fu(x)F ∗u(x). Obtain the following

factorisation in F2[x] as described in Lemma 6.16,

xn − 1 = f1(x) . . . fr(x)f∗m+1(x) . . . f∗r (x), (6.7)

where f1(x) = x+1, fi are irreducible and fi = f∗i for i = 1, . . . ,m. Write Fu = G·H,

where G = gcd(Fu, x
n − 1). Then for each k = 0, . . . , r, we have fk | Fu or f∗i | Fu.

This leaves us with 2r−m choices for G. Since

deg ((xn − 1)/G) = n−
r∑
i=1

deg fi =
∑
k|n

(rk −mk)dk,

There are 2
∑
k|n(rk−mk)dk − 1 choices for H 6≡ 0 mod (xn − 1)/G, so

# ker(?+) = 1 + #|B−1(0) \ {0} = 1 + 2r−m
(

2
∑
k|n(rk−mk)dk − 1

)
. (6.8)

The second case B(u) = h(x). We count the number of u ∈ Fn2 such that

xn · Fu(x)Fu(1/x) ≡ h(x) mod (xn − 1). (6.9)
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Fix a primitive complex n-th root of unity ζn. Consider the isomorphism

(F2[x]/(xn − 1))× → (Z[ζn]/2Z[ζn])× Fu(x) 7→ Fu(ζn) mod 2.

Now (6.9) becomes

Fu(ζn)Fu(ζn) ≡ h(ζn) mod 2.

Notice from (6.4) that h(ζn) = h(ζ−1
n ) = h(ζn) is real. We compute from (6.7),

#(Z[ζn]/2Z[ζn])× = #(F2[x]/(xn − 1))×

=
r∏
i=1

# (F2[x]/(fi))
×

r∏
j=m+1

#
(
F2[x]/(f∗j )

)×
=
∏
k|n

(2dk − 1)2rk−mk .

Take g ∈ F2[x] such that

xn − 1

x− 1
≡ xn−1 + xn−2 + · · ·+ x+ 1 = x

n−1
2 g(x+ x−1).

We can factorise g(x) = g2(x) . . . gr(x), where xdeg gk · gk(x + x−1) = fk(x) for

2 ≤ k ≤ m and xdeg gk · gk(x + x−1) = fk(x)f∗k (x) for m + 1 ≤ k ≤ r. Then since

(Z[ζn + ζ−1
n ]/2Z[ζn + ζ−1

n ])× ∼= (F2[x]/(g))×, we compute

#
(
Z[ζn + ζ−1

n ]/2Z[ζn + ζ−1
n ]
)×

= #(F2[x]/(g))×

=
r∏
i=2

# (F2[x]/(gi))
×

=
∏

k|n, k 6=1

(2dk/2 − 1)mk(2dk − 1)rk−mk .

Our goal is to compute the size of the kernel of the homomorphism

ψ : (Z[ζn]/2Z[ζn])× → (Z[ζn + ζ−1
n ]/2Z[ζn + ζ−1

n ])× β 7→ ββ.

We claim that ψ is surjective. Since (Z[ζn+ζ−1
n ]/2Z[ζn+ζ−1

n ])× has odd order, every

element is a square, so suppose β2 ∈ (Z[ζn + ζ−1
n ]/2Z[ζn + ζ−1

n ])×, then ψ(β̂) = β2
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for any lift β̂ ∈ Z[ζn + ζ−1
n ] of β. Therefore

# ker(?−) = #B−1(h(x)) = # kerψ =
#(Z[ζn]/2Z[ζn])×

# imψ

=
∏

k|n, k 6=1

(2dk/2 + 1)mk(2dk − 1)rk−mk . (6.10)

Putting in (6.8) and (6.10) the values of r and m in terms of n and d as in

Lemma 6.16 proves the proposition.

6.3 Joint spins

Fix a sign µ ∈ {±}. The following formula for the relative density of Fµ in Rµ was

proved in [20, Section 6].

Theorem 6.18 ([20, Theorem 6.1]). Assume Conjecture Cη for η = 2
n(n−1) . Then

d(Fµ|Rµ) = 2−
n−1
2 .

Since each p ∈ Sµ splits into exactly the same number of prime ideals in OK ,

and since Rµ is a set of primes of positive natural density, it suffices to show that

∑
Norm(p)≤X

p∈F ′µ

1 = 2−
n−1
2

∑
Norm(p)≤X

p∈R′µ

1 + o

(
X

logX

)
, (6.11)

where F ′µ is the set of prime ideals lying above primes in Fµ, and R′µ is defined

similarly. Let τ be a generator of Gal(K/Q), a cyclic group of order n. Then,

by definition of the set Rµ, a prime p ∈ Rµ belongs to the set Fµ if and only if

spin(p, τk) = 1 for all k ∈ {1, 2, . . . , n−1
2 }. The product

n−1
2∏

k=1

1 + spin(p, τk)

2

is the indicator function of the property that spin(p, τk) = 1 for all k ∈

{1, 2, . . . , n−1
2 }. Expanding this product gives

2−
n−1
2

∑
H⊂{τ,...,τ

n−1
2 }

∏
σ∈H

spin(p, σ), (6.12)
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where the sum is over all subsets H of {τ, τ2, . . . , τ
n−1
2 }. When H = ∅, the product

is 1 by convention.

Let A denote the set of disjoint G-orbits of elements of Mµ
4 , so that we can

write

Mµ
4 =

⊔
A∈A

A.

Each G-orbit A is then a collection of invertible congruence classes modulo 4OK

that are distinct modulo squares. Let A0 ⊂ A be the set of G-orbits A such that

spin(p, σ) = spin(p, σ−1) for all non-trivial σ ∈ G and for all prime ideals p such

that r4(p) ∈ A. Note that a prime ideal p in OK lies over a prime p ∈ Rµ if and

only if r4(p) ∈ A for some A ∈ A0.

Summing (6.12) over all prime ideals p of norm Norm(p) ≤ X, we get that

∑
Norm(p)≤X

p∈F ′µ

1 = 2−
n−1
2

∑
H⊂{τ,...,τ

n−1
2 }

A∈A0

Σ(X;H,A),

where

Σ(X;H,A) =
∑

Norm(p)≤X
r4(p)∈A

∏
σ∈H

spin(p, σ). (6.13)

The sums Σ(X;∅, A) feature no cancellation and provide the main term in (6.11).

It then remains to show that

Σ(X;H,A) = o

(
X

logX

)

for each non-empty subset H of {τ, . . . , τ
n−1
2 } and each A ∈ A0. To this end, we

need a slight generalization of Theorem 1 of [47].

One of the main reasons we cannot apply [47] directly, is due to our extended def-

inition of spin. If we attempt to modify the arguments in [47] using our previous asso-

ciation of a to a totally positive generator α of ah, then since Norm(α) = Norm(a)h,

we will find that the set of α arising from the ideals a with Norm(a) < X is too

“sparsely” distributed in the set of totally positive elements with norm less than Xh

in a way that we are unable to control.

To circumvent this issue, we introduce another relation between prime ideals p
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and some totally positive α0 ∈ OK . Fix a set C consisting of h unramified degree-one

prime ideals in OK that is a complete set of representatives of ideal classes in the

class group of K; its existence is guaranteed by an application of the Chebotarev

Density Theorem to the Hilbert class field of K.

Now suppose that a is a nonzero ideal in OK coprime to
∏

p∈C Norm(p), and

let α denote a totally positive generator of ah. As h is odd, the set {p2 : p ∈ C} is

also a complete set of representatives. Hence there exists a unique p ∈ C such that

ap2 is a principal ideal. Let π denote a totally positive generator of the ideal ph.

Let α0 denote a totally positive generator of ap2. Then αh0 and απ2 are both totally

positive generators of the ideal (ap2)h, so we have

spin(a, σ) =

(
α

σ(a)

)
=

(
απ2

σ(ap2)

)
= spin(ap2, σ) =

(
αh0

σ(ap2)

)
=

(
α0

σ(α0)

)
,

since h is odd. Note that for each p ∈ C there is a bijection given by a 7→ α0 as

above, between

{a ⊂ OK : Norm(a) ≤ X, ap2 is principal}

' {α0 ∈ D : Norm(α0) ≤ X ·Norm(p)2, α0 ≡ 0 mod p2},

where D is a set of totally positive elements in OK defined in [33, (4.2), p.713].

Moreover, r4(a) is the class in M4 of a totally positive generator of ah, i.e., the class

of α in M4. Since squares vanish in M4, the classes of α and απ2, and so also of

αh0 , coincide in M4. Hence, if A is a G-orbit, then

r4(a) ∈ A if and only if [αh0 ] ∈ A.

We now state the adaptation of [47, Theorem 1] proved in [20].

Theorem 6.19 ([20, Theorem 6.2]). Take Σ(X;H,A) as defined in (6.13). Assume

Conjecture Cη holds true for η = 1/(|H|n) with δ = δ(η) > 0 (see [47, p. 7]). Let

ε > 0. Then for all X ≥ 2, we have

Σ(X;H,A)�ε,K X
1− δ

54|H|2n(12n+1)
+ε
.
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6.4 Proof of main results

Proof of Theorem 6.4. By Theorem 6.13 and Proposition 6.17, d(R±|S±) =

s±/2
n−1. By Theorem 6.18, d(F±|R±) = 2−(n−1)/2. Therefore

d(F±|S±) = d(F±|R±)d(R±|S±) =
s±

23(n−1)/2
.

Since d(F |S) = d(F+|S+)d(S+|S) + d(F−|S−)d(S−|S), and d(S±|S) = 1/2,

d(F |S) =
s+ + s−

2(3n−1)/2
.

Theorem 6.4 settles a generalised version of Conjecture 1.1 in [58]

Proof of Theorem 6.5. For K a cyclic cubic number field with odd class number,

by [2, Theorem V] or [58, Theorem 1.4], K satisfies property (P1). It is a consequence

of the classical Burgess’s inequality [14] that Conjecture Cη is true for m = 3, as is

shown in Section 9 of [33]. Therefore the result follows from Theorem 6.4.



Chapter 7

Integral points on the congruent

number curve

This chapter contains results presented in [18].

For squarefree positive integer D, we consider the elliptic curve

ED : y2 = x3 −D2x.

We are interested in the set of integral points on the curve, defined as

ED(Z) :=
{

(x, y) ∈ Z2 : y2 = x3 −D2x
}
.

Given an elliptic curve with Weierstrass equation y2 = x3 +Ax+B, Siegel [72]

proved that there are only finitely many integral points, using techniques from the

theory of Diophantine approximation. Baker [5, page 45] gave the first effective

bound on the height of integral points: if an integral point (x, y) exists, then

|x| ≤ exp
(
(106 max{A,B})106

)
.

Lang [53, page 140] conjectured that the number of integral points on an elliptic

curve should be bounded only in terms of its rank. This was proven for elliptic

curves with integral j-invariant [75, Theorem A] and for elliptic curves with bounded

Szpiro ratio [41, Theorem 0.7]. The curves ED satisfy both of these properties, and

more specifically the theorems show that there exists some constant C, such that

ED(Z) ≤ Crank ED(Q). (7.1)
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From a more general theorem by Helfgott and Venkatesh [40, Corollary 3.11], we

can deduce that

#ED(Z)� Cω(D)(logD)2(1.33)rank ED(Q),

where C is some absolute constant and ω(D) denotes the number of distinct prime

factors of the integer D. We obtain an upper bound with a smaller and explicit

base, specifically for the curves ED.

Theorem 7.1. We have

#ED(Z)� (3.8)rank ED(Q).

Therefore if we expect the rank to be uniformly bounded for all ED(Q) (as has

been recently conjectured by various authors), then there would be a squarefree

positive integer D such that #ED(Z) attains its maximum.

We proceed by partitioning ED(Z) into cosets of 2ED(Q). For any R ∈ ED(Q),

define

ZD(R) := ED(Z) ∩ (R+ 2ED(Q)).

We obtain an upper bound on the size of each ZD(R) in terms of the rank of ED(Q):

Theorem 7.2. If D is sufficiently large and R ∈ ED(Q) then

#ZD(R) < 30 + (1.89)r+19r1/3 ,

where r := rank ED(Q).

Since #ED(Q)/2ED(Q) = 22+rank ED(Q), Theorem 7.1 is immediate from Theo-

rem 7.2.

Fix ε > 0. We partition ZD(R) into the points with “small” x-coordinates,

SD(R) :=
{
P ∈ ZD(R) : x(P ) ≤ D2(1+ε)

}
and the points with “large” x-coordinates,

LD(R) :=
{
P ∈ ZD(R) : x(P ) > D2(1+ε)

}
,
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which we will bound by very different techniques.

Theorem 7.3 (Points with large x-coordinates). There exists some ε > 0 such that

the following holds for any sufficiently large D and R ∈ ED(Q).

(i) #LD(R) ≤ 30;

(ii) If the abc conjecture holds, then LD(R) = ∅.

We will complete the proof of Theorem 7.2 by showing that #SD(R) <

(1.89)r+19r1/3 .

If x(R) ≤ D then we can improve the bound to #ZD(R) ≤ 4.

Theorem 7.4 (Cosets with respect to points with very small x-coordinates).

(i) ZD(O) = ∅;

(ii) ZD((−D, 0)) = {(−D, 0)} and ZD((0, 0)) = {(0, 0)};

(iii) ZD((D, 0)) contains (D, 0) and no more than one other pair P,−P ∈ ED(Z),

given by x(P ) = (2v2 − 1)D, where v + u
√
D is the fundamental solution of

the equation v2 −Du2 = 1;

(iv) If R ∈ ED(Q) and −D < x(R) < 0, then ZD(R) contains at most one pair

P,−P ∈ ED(Z), except for the sets

{(−98,±12376), (−1058,±21896)} when D = 1254,

and {(−5184,±398664), (−7056,±233772)} when D = 7585.

The sets considered in Theorem 7.4 ((i)), ((ii)) contains no non-trivial integral

points, and the upper bounds obtained in ((iii)), ((iv)) are sharp. Indeed, on the

curve E6(Q) of rank 1, the distinct cosets Z6(R) of integral points are {(−6, 0)},

{(0, 0)}, as well as

{(−3,±9)}, {(−2,±8)}, {(6, 0), (294,±5040)}, {(12,±36)}, {(18,±72)}.

Ordering the curves ED with increasingD, Heath-Brown [36, Theorem 1] showed

that the moments of the 2-Selmer of ED are bounded. Together with (7.1) or The-

orem 7.1, this implies that the average size of ED(Z) is bounded. The boundedness
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of the average of #ED(Z) was first proved by Alpoge [1], but the upper bound was

not explicitly evaluated.

Let D(N) be the set of positive squarefree integers less than N . Define TD to

be the set of torsion points on ED(Q). It is standard that TD = {O, (0, 0), (±D, 0)}

(see for example [46, Chapter I, Proposition 17]). Let s2∞(D) denote the Z2-corank

of the 2-power Selmer group of ED(Q), and s2k(D) denote the F2-rank of the 2k-

Selmer rank of ED(Q). Then s2∞(D) = limk→∞ s2k(D). Each s2k(D) and hence also

s2∞(D) provides an upper bound on the rank of ED(Q). Heath-Brown [36] notes that

it can be derived from results of Cassels [16] and Birch and Stephens [10], that s2(D)

is even for D ≡ 1, 2 or 3 mod 8, and odd for D ≡ 5, 6 or 7 mod 8. An elementary

proof of this parity condition was given by Monsky [36, Appendix]. Furthermore,

the 2k+1-Selmer group is computed from the kernel of the Cassels-Tate pairing on

the 2k-Selmer group. Since the Cassels-Tate pairing is always skew-symmetric [15],

we have s2k(D) ≡ s2k+1(D) mod 2 for all k, so s2∞(D) and s2(D) are of the same

parity. Smith [81, Corollary 1.2] recently claimed that

{D ∈ D(N) : s2∞(D) ≥ 2} = o(N).

It then follows that for s ∈ {0, 1}, we have

lim
N→∞

1

#D(N)
#{D ∈ D(N) : s2∞(D) = s} =

1

2
. (7.2)

Since rank ED(Q) ≤ s2∞(D), asymptotically at most half of the curves are of rank

1, and density 0 of curves are of rank 2 or above. This allows us to focus on curves

with rank 0 and 1, hence we can find a better upper bound on the average.

Theorem 7.5. We have

lim sup
N→∞

1

#D(N)

∑
D∈D(N)

#(ED(Z) \ TD) ≤ 2.

If we further assume the abc conjecture, the upper bound can be improved to 1.

Note that non-torsion integral points come in pairs of (x,±y). The upper

bound from Theorem 7.5 comes from the possible existence of a pair of small points

in the range D2/(logD)12+ε < x < D2+ε, and a pair of large points of size x >
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exp(exp(23
12

√
logD)) left from an application of Roth’s Theorem, which we are unable

to eliminate on most curves of rank 1.

We expect the order of
∑

D∈D(N) #(ED(Z) \TD) to be roughly N1/2. To obtain

a lower bound, we attempt by counting a subset of integral points. Suppose u > v

are squarefree positive coprime integers. Let w be the squarefree part of u2 − v2,

so u, v, w are pairwise coprime. If D = uvw, then (u2w, u2w3/2
√
u2 − v2) ∈ ED(Z),

since w(u2 − v2) is a square by the definition of w. If uv(u2 − v2) < N , then

D ∈ D(N), so counting the number of squarefree coprime positive integers u, v in

the range v < u < N1/4, gives a lower bound of � N1/2.

Now we give a heuristic on the maximum size of
∑

D∈D(N) #(ED(Z) \ TD). The

larger points (x, y) ∈ ED(Z) with x > D2+ε can be removed by assuming the abc

conjecture as in Theorem 7.3, so let’s look at D ∈ D(N) and |x| < D2+ε. If x = −j,

j − D, or D + j for 1 ≤ j ≤ D/2 then x3 − D2x ≈ jD2. If 3
2D < x < N3 then

x3 −D2x ≈ x3. Then we expect the number of pairs (D,x) such that x3 −D2x is a

square to be approximately

∑
1
2
N≤D<N

 ∑
1≤j≤D/2

(
1

jD2

)1/2

+
∑

3
2
D<x<D3

(
1

x3

)1/2

� N1/2.

To prove Theorem 7.2, we bound #SD(R) and #LD(R) separately. We prove

that #SD(R) is bounded above by

#
{
P ∈ R+ 2ED(Q) : ĥ(P ) ≤ 2(1 + ε) logD + o(1)

}
,

where ĥ denotes the canonical height. Then viewing ED(Q) as an r-dimensional

Euclidean space, we apply sphere packing bounds to get an upper bound of

(1.89)r+19r1/3 after fixing some appropriate ε.

On the other hand, we show that #LD(R) is bounded by some constant de-

pending only on ε. Assume x(R) > D and R /∈ TD + 2ED(Q), otherwise the result

follows from Theorem 7.4. We first prove that points in LD(R) obey a gap principle.

Then, for points with larger heights in LD(R), we apply Roth’s theorem in a way

that is similar to a classical argument of Siegel’s Theorem, which also appeared in

Alpoge’s work [1]. Suppose P = 2Q+R ∈ ZD(R) and x(P ) is large, P is close to the
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point at infinity. Let K be the minimal number field containing the x-coordinates

of all points in 1
2ED(Q). If 4S = R and 2Q̃ = Q, where Q̃, S ∈ ED(Q), then S

and Q̃ are close together. Making this precise, we can show that x(Q̃) gives a K-

approximation to x(S) with exponent close to 8. Roth’s theorem show that there

are finitely many such Q̃. In [1], large integral points of the form P = 3Q+R were

considered, where Q,R are rational points on a general elliptic curve. The main

difference of our approach is that we apply Roth’s theorem over K instead of Q.

Given a class in ED(Q)/nED(Q), the exponents of the Q-approximations obtained

from the argument in [1] are close to 1
2n

2. If we had taken n = 2, the exponent

would be just under 2 which would not be large enough to apply Roth’s theorem.

Applying the argument over K instead gives a large enough exponent.

7.1 Applications to other Diophantine equations

Given positive integers a, b and c, Bennett [8, Theorem 1.2] proved that there exists

at most one set of three consecutive integers of the form cZ2, bY 2, aX2. In other

words, the simultaneous equations

aX2 − bY 2 = 1, bY 2 − cZ2 = 1, (X,Y, Z) ∈ Z3
>0

possess at most one solution. We can ask a more general question replacing the 1

in the equations with an integer d.

Theorem 7.6. Let a, b, c, d be pairwise coprime positive integers and set D = abcd.

Then for any sufficiently large D, the system of equations

aX2 − bY 2 = d, bY 2 − cZ2 = d (7.3)

has at most 15+(1.89)r+19r1/3 ≤ 15+(3.58)ω(D)+12ω(D)1/3 solutions (X,Y, Z) ∈ Z3
>0,

where r := rank ED(Q).

We prove Theorem 7.6 by relating the problem to our result in Theorem 7.2. If

we take D = abcd and x = ac(bY )2, then x −D = ab(cZ)2 and x + D = bc(aX)2.

Therefore (ac(bY )2, (abc)2XY Z) ∈ ED(Z). The image of such a point under the
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injective homomorphism

θ : ED(Q)/2ED(Q)→ Q/(Q∗)2 ×Q/(Q∗)2 ×Q/(Q∗)2

given at non-torsion points by

(x, y) 7→ (x−D, x, x+D),

is (ab, ac, bc). If P and R are both integral points on ED that correspond to solutions

to (7.3), then P − R ∈ 2ED(Q). Moreover, x(P ) > 0 and b2 | x(P ). Theorem 7.6 is

a corollary of Theorem 7.2 as ±P corresponds to the same solution for (7.3).

More general forms of simultaneous Pell equations have been studied previously.

For nonzero integers a1, a2, b1, b2, u, v, let N (a1, a2, b1, b2, u, v) denote the number of

solutions to the system of equations

a1X
2 − b1Y 2 = u, b2Y

2 − a2Z
2 = v

in positive integers X,Y, Z such that gcd(X,Y, Z, u, v) = 1. Theorem 7.6 provides

an upper bound to N (a, c, b, b, d,−d), where a, b, c, d are pairwise coprime positive

integers. Transforming the equations (7.3) by X 7→ aX and Z 7→ cZ, we get

N (a, c, b, b, d,−d) = N (1, 1, ab, bc, ad,−cd). Assuming a, b are distinct positive inte-

gers and −av 6= bu, Bennett [7, Theorem 2.1] showed that

N (1, 1, a, b, u, v)� 2min{ω(u),ω(v)} log(|u|+ |v|).

This impliesN (a, c, b, b, d,−d)� 2ω(d) min{ω(a),ω(c)} log((a+c)d). Bugeaud, Levesque

and Waldschmidt [13, Théorème 2.2] gave the bound

N (a1, a2, b1, b2, u, v) ≤ 2 + 23996(ω(a1a2uv)+1).

Translating to our case, this gives an upper bound N (a, c, b, b, d,−d) ≤ 2 +

23996(ω(acd2)+1).

Theorem 7.6 can also provide an upper bound to a different Diophantine equa-
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tion. In 1942, Ljunggren [56] showed that for a fixed integer d, the equation

X4 − dY 2 = 1, (X,Y ) ∈ Z2
>0,

has at most two solutions, through a study of units in certain quadratic and bi-

quadratic fields. More recently, Bennett and Walsh [9] used the theory of linear

forms in logarithms of algebraic numbers, to show that for squarefree positive inte-

gers b, d ≥ 2, the equation

b2X4 − dY 2 = 1, (X,Y ) ∈ Z2
>0,

has at most one solution. We prove the following as a corollary to Theorem 7.6.

Theorem 7.7. Let A,B,C be pairwise coprime positive squarefree integers. Then

there are � 2ω(AB2C2) integral solutions (X,Y ) to

A2X4 −BY 2 = C2.

Proof. Let g := gcd(X,C). Observe that

(
Ag

(
X

g

)2

− C

g

)(
Ag

(
X

g

)2

+
C

g

)
= B

(
Y

g

)2

.

The factors on the left hand side have common factor 1 or 2. Therefore we can write

Ag

(
X

g

)2

− C

g
= B1Y

2
1 and Ag

(
X

g

)2

+
C

g
= B2Y

2
2 , (7.4)

where B1 and B2 are positive integers such that B1B2 = B or 4B, and Y1Y2g = Y .

Now applying Theorem 7.6, the system of equations (7.4) has � 2ω(ABC) solutions.

There are 2ω(C) choices of g | C and � 2ω(B) choices of pairs (B1, B2). This proves

Theorem 7.7.

7.1.1 The abc conjecture

In Theorem 7.3, if we are allowed to assume the abc conjecture, we can show that

there exists some ε (determined by the conjecture) such that the set LD(R) is empty

when D is sufficiently large. The abc conjecture states that for every ε > 0, for any
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pairwise coprime positive integers a, b, c, with a+ b = c, we have

c�ε

∏
p|abc

p1+ε.

Suppose that (x, y) ∈ ED(Z) and x > 0. Let g = gcd(x,D). Dividing y2 = x3−D2x

by xg2 and rearranging, we have

(
D

g

)2

+
y2

xg2
=

(
x

g

)2

.

Assuming the abc conjecture,

(
x

g

)2

�ε

∏
p|
(
D
g

)2(
x
g

)2
y2

xg2

p1+ε. (7.5)

If p | (Dg )2(xg )2 y2

xg2
, then p | (Dg )(xg ) y2

xg2
= Dy2

g4
. By construction g | D and g3 | y2.

Since g is squarefree, so g2 | y. Therefore p | Dy
g2

. Putting this back to (7.5),

(
x

g

)2

�ε

(
Dy

g2

)1+ε

<

(
Dx3/2

g2

)1+ε

.

Then for ε < 1
15 , since g ≤ D,

x�ε

(
D2(1+ε)

g4ε

)1−3ε

≤ D2( 1+ε
1−3ε) < D2(1+5ε).

This proves the last assertion in Theorem 7.3.

7.2 Height estimates

Notice that if (x, y) ∈ ED(Q), then either x ≥ D or −D ≤ x ≤ 0. For α ∈ Q, define

height functions H(α) :=
∏
v max{1, |α|v} and h(α) = logH(α) =

∑
v log+ |α|v,

where v is taken over the set of places of Q(α) and log+ is a function on the positive

real numbers, defined as log+ t = max{0, log t}. For any point P ∈ ED(Q), define

H(P ) = H(x(P )), denote the (Weil) height by h(P ) := h(x(P )) and the canonical
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height by

ĥ(P ) := lim
n→∞

h(nP )

n2
.1

Lemma 7.8. Let P ∈ ED(Q) be a non-torsion point. Write x(2P ) = r
s , where r

and s are coprime integers and s > 0. Then gcd(r,D) = 1.

Proof. Suppose P ∈ ED(Q), then θ(2P ) = (1, 1, 1), so write

x(2P ) =
r2

s2
, x(2P )−D =

u2

v2
,

where r, s, u, v ∈ Z and gcd(r, s) = gcd(u, v) = 1. Combining gives

r2v2 − u2s2 = Dv2s2.

We see that v = s, since gcd(r, s) = gcd(u, v) = 1. Rewriting

r2 − u2 = Ds2.

Since gcd(r, s) = gcd(u, s) = 1 and D is squarefree, gcd(r,D) = 1.

We prove for points on ED(Q) that the Weil height and the canonical height are

close together.

Lemma 7.9. Let P = (x, y) ∈ ED(Q) \ {O, (0, 0)}. Write x = r
s , where r and s are

coprime integers and s > 0. If x ≥ D, then

− log | gcd(r,D)| − 2 log 2 ≤ ĥ(P )− h(P ) ≤ − log | gcd(r,D)|+ 2

3
log 2. (7.6)

If −D ≤ x < 0, then

log

∣∣∣∣ D

gcd(r,D)

∣∣∣∣−log+ |x|−2 log 2 ≤ ĥ(P )−h(P ) ≤ log

∣∣∣∣ D

gcd(r,D)

∣∣∣∣−log+ |x|+ 2

3
log 2.

(7.7)

In particular,

− 2 log 2 ≤ 4ĥ(P )− h(2P ) = ĥ(2P )− h(2P ) ≤ 2

3
log 2. (7.8)

1This is sometimes defined with an extra factor of 1
2

in literature.
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Proof. Focusing on the h(2nP ) terms in the limit defining ĥ(P ), we can express the

canonical height as a telescoping series

ĥ(P ) = h(P )−
∞∑
n=0

1

4n

(
h(2nP )− 1

4
h(2n+1P )

)
. (7.9)

Consider a point P ∈ ED(Q) \ {O, (0, 0)}. Write x(P ) = r
s , where r, s are

coprime integers and s > 0. Then

x(2P ) =
(r2 +D2s2)2

4rs(r −Ds)(r +Ds)
.

If an odd prime p divides both (r2 + D2s2)2 and 4rs(r − Ds)(r + Ds), then since

gcd(r, s) = 1, p divides both r and D. If r2 +D2s2 is even, either r,D, s are all odd,

or r,D are even and s is odd. The first case implies that r2 + D2s2 ≡ 2 mod 8, so

4 ‖ (r2 + D2s2)2. The second case note that D is squarefree so 2 ‖ D. If 2 ‖ r we

have 4 · 24 ‖ (r2 +D2s2)2, otherwise the 24 ‖ (r2 +D2s2)2.

Therefore

gcd
(
(r2 +D2s2)2, 4rs(r −Ds)(r +Ds)

)
= (gcd(r,D))4 or 4(gcd(r,D))4.

Since x(2P ) > D, we have

h(2P ) = log(r2 +D2s2)2 − log gcd
(
(r2 +D2s2)2, 4rs(r −Ds)(r +Ds)

)
= 2 log(r2 +D2s2)− 4 log gcd(r,D)− 1{s odd}1{ord2 r=ord2D}2 log 2.

(7.10)

We first prove (7.6). Suppose x(P ) ≥ D. Then

h(P )− 1

4
h(2P ) = −1

2
log

(
1 +

D2s2

r2

)
+log gcd(r,D)+1{s odd}1{ord2 r=ord2D}2 log 2.

(7.11)

Apply (7.11) to (7.9). Then

0 < log

(
1 +

D2s2

r2

)
< log 2.

We know from Lemma 7.8 that gcd(r,D) = 1 for double points. The conditions

2 - s and ord2 r = ord2D can only hold simultaneously at most once in the sequence
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2nP . For if s, r,D are all odd, then subsequent terms would have even s. On the

other hand, since the x-coordinates of double points must be squares, 2 ‖ r can only

happen in the first term. Noting that
∑∞

n=0
1

4n = 4
3 , we get (7.6).

For (7.7), suppose instead −D < x(P ) < 0. Then from (7.10)

h(P )− 1

4
h(2P )

= 1{r>s} log |x|−1

2
log

(
1 +

r2

D2s2

)
−log

∣∣∣∣ D

gcd(r,D)

∣∣∣∣+1{s odd}1{ord2 r=ord2D}2 log 2.

Apply this to (7.9). Similar to the argument for (7.6), but here instead

0 < log

(
1 +

r2

D2s2

)
< log 2,

we get (7.7).

Finally (7.8) follows from (7.6) and Lemma 7.8.

Estimates equivalent to (7.8) were obtained in Section 2 of [12] by analysing

the local height functions specifically for ED. The inequalities (7.6),(7.7) with larger

constant terms can be obtained via a study of local heights by applying theorems

for general elliptic curves [77, Theorem 4.1, Theorem 5.4], and [76, Theorem 5.2].

For general algebraic points on ED, we obtain the following estimate by ap-

plying [77, Equation(3)], noting that the discriminant of ED is ∆D = (2D)6 and

j-invariant is 1728.

Lemma 7.10. Any P ∈ ED(Q) satisfies

|ĥ(P )− h(P )| < logD + 4.6. (7.12)

Since ĥ(2P ) = h(2P ) +O(1) by (7.8), we have

ĥ(2P ) = h(2P )− 2 log 2 ≥ logD − 2 log 2. (7.13)

Therefore for any P ∈ ED(Q) \ TD,

ĥ(P ) ≥ 1

4
logD − 1

2
log 2. (7.14)
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The equation (7.14) is a version of Lang’s conjecture, which says that the canonical

height of a non-torsion point on an elliptic curve should satisfy

ĥ(P )� log |∆|,

where ∆ is the discriminant of the elliptic curve. This conjecture was proven for

elliptic curves with integral j-invariant [73], for elliptic curves which are twists [74],

and for elliptic curves with bounded Szpiro ratio [41]. The curves ED are in all three

of these categories, as remarked in [12]. The bound (7.14) for curves ED with the

explicit constant factor 1
4 was first given in [12, (11)].

7.3 Bounding small points via spherical codes

In this section we prove the following lemma, which gives the upper bound of

#SD(R) for Theorem 7.2.

Lemma 7.11. Suppose R ∈ ED(Q) with x(R) > D. Let ε < 1
650 . Then for any

sufficiently large D we have

#{P ∈ R+ 2ED(Q) : ĥ(P ) ≤ 2(1 + ε) logD} < (1.89)r+19r1/3 .

We know that the the canonical height of the difference between any two distinct

points in R + 2ED(Q) is at least logD + O(1) from equation (7.13). Viewing R +

2ED(Q) as a Euclidean space Rr of dimension r, we can bound the number of points

by the maximum number of spheres of radius 1
2

√
logD + O(1) with centres lying

inside a sphere Sr−1
R of radius R =

√
2(1 + ε) logD.

A spherical code in dimension r with minimum angle θ is a set of points on the

unit sphere Sr−1
1 in Rr with the property that no two points subtend an angle less

than θ at the origin. Let A(r, θ) denote the greatest size of such a spherical code.

We can obtain an upper bound in terms of the function A via a classical argu-

ment (see for example the proof of (2.1) in [25]). Project the sphere centres in Sr−1
R

onto the upper hemisphere of SrR orthogonally to the hyperplane. The projections of

the sphere centres are still at least distance
√

logD+O(1) apart, and thus separated

by angles of at least θ, where sin θ
2 = 1

2
√

2(1+ε)
−o(1). Therefore the number of small

points is bounded above by ≤ A(r + 1, θ).
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7.3.1 For large dimensions

Kabatiansky and Levenshtein proved the following upper bound on A(r, θ).

Theorem 7.12 ([44, (52)]). Let r ≥ 3 and α = r−3
2 , and let tαk be the largest root of

Pαk (t) =
1

2k

k∑
i=0

(
k + α

i

)(
k + α

k − i

)
(t+ 1)i(t− 1)k−i.

Take any k such that cos θ ≤ tαk . Then

A(r, θ) ≤ 4

1− tαk+1

(
k + r − 2

r

)
.

From the proof of [44, Lemma 4], we know that

τk −
2π2/3

((k + α)(k + α+ 1)τk)1/3
≤ tαk ≤ τk,

where

τk =

√
1− α2 − 1

(k + α)(k + α+ 1)
.

Therefore if we take k such that

cos θ ≤ τk −
2π2/3

((k + α)(k + α+ 1)τk)1/3
, (7.15)

and since tαk+1 ≤ τk+1, we have

A(r, θ) ≤ 4

1− τk+1

(
k + r − 2

r

)
.

Take θ such that sin θ
2 = 1

2
√

2(1+ε)
− o(1). Let

N =
1− sin θ

2 sin θ
=

2(1− ε)√
7− 8ε

− 1

2
+ o(1),

so that

τk →

√
1− 1

(2N + 1)2

as k →∞ and k
r → N .

Fix some

C3 > 16π2N(N + 1)(2N + 1)5 (7.16)
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Take k − 2 =
⌊
rN + Cr1/3

⌋
, so (7.15) is satisfied for large enough r. By Stirling’s

formula, we have

(
k + r − 2

r

)
≤ e

2π

(k + r − 2)k+r− 3
2

rr+
1
2 (k − 2)k−2+ 1

2

≤ e

2π
√
r

(
1 +

1

N

)Cr1/3+ 1
2
(

(1 +N)1+N

NN

)r

for large enough r. Therefore for large enough r, we have the upper bound

A(r, θ) <

(
(1 +N)1+N

NN

)r+ log(1+N)−logN
(1+N) log(1+N)−N logN

Cr1/3

, (7.17)

taking some small C in the range (7.16).

We can now prove Lemma 7.11 for r ≥ 2000. Take ε < 1
650 and C = 189

25 ,

so (7.16) is satisfied. Then we can rewrite the bound in (7.17) as A(r, θ) <

(1.89)r+19r1/3 .

7.3.2 For small dimensions

To prove Lemma 7.11, it remains to check the same bound holds for r < 2000. The

two following bounds, obtained respectively by Rankin and Shannon, are weaker

asymptotically when r →∞ but are better bounds for small r.

Theorem 7.13 ([63, Theorem 2]). If 0 < θ < π
4 and sinβ =

√
2 sin θ, then

A(r, θ) ≤
√
πΓ( r−1

2 ) sinβ tanβ

2Γ( r2)
∫ β

0 sinr−2 x(cosx− cosβ)dx

≤
2
√
πΓ( r+3

2 ) cosβ

Γ( r2) sinr−1 β(1− 3
r+3 tan2 β)

∼

√
1
2πr

3 cos 2θ

(
√

2 sin θ)r−1
.

Theorem 7.14 ([71, (21),(27)]). Suppose 0 < θ < π
2 . Then

A(r, θ) ≤
√
πΓ( r−1

2 )

Γ( r2)
∫ θ

0 sinr−2 xdx
≤

2
√
πΓ( r+1

2 ) cos θ

Γ( r2) sinr−1 θ(1− 1
r tan2 θ)

∼
√

2πr cos θ

sinr−1 θ
.

Evaluating the bounds in Theorems 7.13 and 7.14 for r < 2000 proves

Lemma 7.11 in those cases.

7.4 Repulsion between medium points

Suppose P = (X,Y ) and R = (x, y) are integral points in the same coset of 2ED(Q).

Assume D2(1+ε) < x < X and Y y > 0. Suppose P = 2Q+ R for some Q ∈ ED(Q).
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Replacing Q with one of Q + (0, 0), Q + (D, 0), Q + (−D, 0) if necessary, we can

assume x(Q) > (1 +
√

2)D.

Lemma 7.15. Suppose P = (X,Y ), R = (x, y) ∈ ED(Q) and D < x ≤ X. Let

B = X
x > 1 and µ = D2

x2
. Then

x(P +R) ≥

(
B + µ√

B2 − µ+
√
B(1− µ)

)2

x. (7.18)

Also this lower bound is always greater than 1
4x.

Proof. First suppose Y y > 0. Without loss of generality assume y, Y > 0. Then

x(P +R) =

(√
B2 − µ−

√
B(1− µ)

B − 1

)2

x =

(
B + µ√

B2 − µ+
√
B(1− µ)

)2

x >
1

4
x.

If instead Y y < 0, the lemma follows from the fact that x(P +R) > x(P −R).

We now show that x(Q+R) is properly bounded away from D. If (1+
√

2)D <

x(Q) < 4(1+
√

2)D, since we assumed x(R) > D2(1+ε), by (7.18) we have x(Q+R) >

3
4(1 +

√
2)D for large enough D. If x(Q) ≥ 4(1 +

√
2)D, then x(Q+R) ≥ (1 +

√
2)D

by Lemma 7.15.

Lemma 7.16. Suppose Q ∈ ED(Q). Assume x(Q) > 1
δD, where δ > 1. Then

1

4
x(Q) ≤ x(2Q)�δ x(Q).

Proof. This follows immediately from the formula

x(2Q) =

(
1 + ( D

x(Q))2
)2

4
(

1− ( D
x(Q))2

)x(Q).

Trivially h(Q) ≥ log x(Q) and h(Q + R) ≥ log x(Q + R). By Lemma 7.16 and

the lower bounds on x(Q) and x(Q + R), we have x(Q) � x(2Q) = x(P − R) and

x(Q+R)� x(2Q+ 2R) = x(P +R). Also x(P ±R)� x by Lemma 7.15. Putting

together we have h(Q), h(Q+R) ≥ log x+O(1). Now apply (7.6) to P and P −R,

then to Q and Q+R, it follows that

logX+ log x+O(1) ≥ ĥ(P ) + ĥ(R) = 2ĥ(Q) + 2ĥ(Q+R) ≥ 4 log x− 4 logD+O(1).
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Rearranging gives

logX ≥ 3 log x− 4 logD +O(1). (7.19)

7.5 Large integral points giving Diophantine approxi-

mations

In this section we will prove the following lemma.

Lemma 7.17. Suppose P ∈ ED(Z) such that P = 4Q̃+R, for some Q̃ ∈ ED(Q) and

R ∈ ED(Q) \ 2ED(Q). Assume h(P ) > max{ 1
λh(R), 1

δ logD} and x(R) > D. Take

S ∈ {S̃ ∈ ED(Q) : 4S̃ = R} such that |x(Q̃)− x(S)| is minimum. Then

log |x(Q̃)− x(S)|
h(Q̃)

≤ −8 · 1− 63λ− 418δ

(1 +
√
λ)2(1 + δ) + 16δ

+ o(1).

Suppose P ∈ ED(Z) such that P = 4Q̃+R, for some Q̃ ∈ ED(Q) and R ∈ ED(Q).

Assume h(R) < λh(P ), x(P ) > D1/δ and x(R) > D. Then x(Q̃) � x(2Q) =

x(P −R)�λ x(R).

7.5.1 Height estimates

Applying estimates (7.12) to

4

√
ĥ(Q̃)−

√
ĥ(R) ≤

√
ĥ(P ) ≤ 4

√
ĥ(Q̃) +

√
ĥ(R),

also using h(R) < λh(P ) and squaring, we have

(1−
√
λ)2(1− δ)− 16δ − o(1) ≤ 16h(Q̃)

h(P )
≤ (1 +

√
λ)2(1 + δ) + 16δ + o(1). (7.20)

7.5.2 Approximation of algebraic numbers

If S ∈ ED(Q) such that 4S = R, write

x(R) = x(4S) =
φ4(S)

ψ4(S)2
,

where ψn is the nth-division polynomial of ED and φn = xψ2
n − ψn+1ψn−1. Define

fR(T ) :=
∏

S:4S=R

(T − x(S)) = φ4(T )− x(R)ψ4(T )2.
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The two expressions are equivalent as they are both are monic polynomials of degree

16 with roots {x(S) ∈ ED(Q) : 4S = R}. Put T = x(Q̃), then

∏
4S=R

(x(Q̃)− x(S)) = φ4(Q̃)− x(R)ψ4(Q̃)2.

Substitute φ4(Q̃) = ψ4(Q̃)2x(4Q̃), we get

∏
4S=R

(x(Q̃)− x(S)) = ψ4(Q̃)2(x(4Q̃)− x(R)). (7.21)

Now

x(P ) = x(4Q̃+R) =

(
y(4Q̃)− y(R)

x(4Q̃)− x(R)

)2

− x(4Q̃)− x(R)

=
−y(4Q̃)y(R) + x(4Q̃)2x(R) + x(4Q̃)x(R)2 −D2(x(4Q̃) + x(R))

(x(4Q̃)− x(R))2
.

Using (7.21), we have

x(P )

( ∏
4S=R

(x(Q̃)− x(S))

)2

= ψ4(Q̃)4
(
−y(4Q̃)y(R) + x(4Q̃)2x(R) + x(4Q̃)x(R)2 −D2(x(4Q̃) + x(R))

)
� x(4Q̃)x(R)2 max{x(Q̃), D}2(42−1) � x(R)33 � x(P )33λ.

Taking logs,

log
∏

4S=R |x(Q̃)− x(S)|
h(P )

≤ −1

2
+

33

2
λ+O

(
δ

logD

)
. (7.22)

Let α = x(S) be a root of fR. Apply [57, p.262 last line],

|f ′R(α)| � |∆(fR)|1/2‖fR‖−14
1 ,

where ∆(·) denotes the discriminant and ‖·‖1 denotes the `1-norm. Write x(R) = r
s ,

where gcd(r, s) = 1. Since sfR(T ) ∈ Z[T ], so |∆(fR)| ≥ s−30. Also we can check



7.6. Roth’s Theorem 141

that ‖fR‖1 � D14 max{x(R), D2}. Therefore noting that H(R) = r ≥ Ds,

∏
S̃ 6=S:4S̃=R

|x(S̃)−x(S)| = |f ′R(α)| � |s|−15(D14 max{x(R), D2})−14 ≥ H(R)−15D−209.

Take S ∈ {S̃ ∈ ED(Q) : 4S̃ = R} such that |x(Q̃) − x(S)| is minimum. By the

triangle inequality

|x(S)− x(S̃)| ≤ |x(Q̃)− x(S)|+ |x(Q̃)− x(S̃)| ≤ 2|x(Q̃)− x(S̃)|.

Taking products

∏
S̃ 6=S:4S̃=R

|x(Q̃)− x(S̃)| �
∏

S̃ 6=S:4S̃=R

|x(S)− x(S̃)| � H(R)−15D−209.

Take logs

log
∏

S̃ 6=S:4S̃=R

|x(Q̃)− x(S̃)| ≥ −15h(R)− 209 logD +O(1).

Put this back to (7.22),

log |x(Q̃)− x(S)|
h(P )

≤ −1

2
+

63

2
λ+ 209δ + o(1).

Applying the upper bound in (7.20) proves Lemma 7.17.

7.6 Roth’s Theorem

In this section we follow the proof of Roth’s Theorem in Chapter 6 of [11], specialising

in the bivariate case.

Let K ⊆ E be number fields such that m := [E : K]. Suppose α ∈ E. Let | · |

be the ordinary absolute value on C. Let S be a set containing exactly one infinite

place of K, i.e. an embedding K ↪→ C. We call β ∈ K a K-approximation to α with

exponent κ, if

|β − α| < H(β)−κ.

Approximations obey the following strong gap principle.

Theorem 7.18 (strong gap principle [11, Theorem 6.5.4]). Let β, β′ ∈ K be distinct
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elements such that |α− β| < H(β)−κ, |α− β′| < H(β′)−κ and h(β′) ≥ h(β). Then

h(β′) ≥ −2 log 2 + (κ− 1)h(β).

Proof. We have

log |β − β′| = log |(α− β′)− (α− β)| ≤ max
(
log |α− β′|, log |α− β|

)
+ log 2

≤ −κmin
(
h(β′), h(β)

)
+ log 2 = −κh(β) + log 2.

Also

log |β − β′| ≥ −h(β − β′) ≥ −h(β)− h(β′)− log 2.

Theorem 7.19. Let c < 1, M ≥ 72 and L = (h(α)+log 2
c−2−1

+ 4)M . Assume

κ >

(
c− 4

√
m

M

)−1(
1 +

c−2 + 1

M

)√
2m. (7.23)

Suppose β1, β2 ∈ K are both approximations to α ∈ E with exponent κ. If h(β1) ≥ L,

then h(β2) < Mh(β1).

We prove Theorem 7.19 by contradiction. Suppose we can find β1, β2 under the

assumptions in Theorem 7.19, and such that h(β1) ≥ L and h(β2) ≥ Mh(β1). Let

σ :=
√

2
M and t := c

√
2
m .

7.6.1 The auxiliary polynomial

Take N large. Choose

dj =

⌊
N

h(βj)

⌋
for j = 1, 2.

Let t < 1, α = (α, α) ∈ E2 and β = (β1, β2) ∈ K2. Let

V2(t) := vol ({(x1, x2) : x1 + x2 ≤ t, 0 ≤ xj ≤ 1}) =
1

2
t2.

For a polynomial F (x1, x2) =
∑

j ajx
j ∈ Q[x1, x2], define |F |v = maxj |aj|v, H(F ) :=∏

v |F |v and h(F ) = logH(F ).

We apply the following lemma to construct an auxiliary polynomial.

Lemma 7.20 ([11, Lemma 6.3.4]). Suppose mV2(t) < 1. Then for all sufficiently

large d1, d2 ∈ Z, there exist F ∈ K[x1, x2], F 6≡ 0, with partial degrees at most d1, d2



7.6. Roth’s Theorem 143

such that

ind(F ; d,α) := min
µ

{
µ1

d1
+
µ2

d2
: ∂µF (α) 6= 0

}
≥ t;

and

h(F ) ≤ mV2(t)

1−mV2(t)

2∑
j=1

(h(αj) + log 2 + o(1))dj ,

as dj →∞.

Since 1
2mt

2 < 1, we have

mV2(t)

1−mV2(t)
≤ mt2

2−mt2
=

1

2m−1t−2 − 1
.

Take C1 := h(α)+log 2
c−2−1

, so L = (C1 + 4)M . Then we can obtain a non-trivial polyno-

mial F ∈ K[x1, x2] with partial degrees at most d1, d2 such that

ind(F ; d,α) ≥ t and h(F ) <
2C1N

L
. (7.24)

7.6.2 Non-vanishing at the rational point

Next we apply Roth’s lemma to construct a suitable derivative of F that does not

vanish at β.

Lemma 7.21 (Roth’s lemma [11, Lemma 6.3.7]). Let F ∈ Q[x1, x2] with partial

degrees at most d1, d2 and F 6≡ 0. Let (ξ1, ξ2) ∈ Q2
and 0 < σ2 ≤ 1

2 . Suppose that

d2 ≤ σ2d1 and minj djh(ξj) ≥ σ−2(h(F ) + 8d1). Then ind(F ; d, ξ) ≤ 4σ.

Since L ≥ 2σ−2(C1 + 4) and M ≥ 2σ−2, we can apply the lemma to get

ind(F ; d,β) ≤ 4σ. Now we can take µ such that ∂µF (β) 6= 0 and µ1
d1

+ µ2
d2

=

ind(F ; d,β). Let G = ∂µF . Since ind(G; d,α) ≥ ind(F ; d,α) − µ1
d1
− µ2

d2
by [11,

6.3.2(c)], we deduce from (7.24) that

ind(G; d,α) ≥ t− 4σ, G(β) 6= 0, and h(G) ≤ 4C1N

L
. (7.25)

7.6.3 The upper bound

For places v /∈ S, we have

log |G(β)|v ≤ log |G|v +
2∑
j=1

dj(log+ |βj |v + εvo(1)), (7.26)
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where o(1)→ 0 as dj →∞, and

εv =


[Kv :Qv ]
[K:Q] if v is archimedean

0 if v is non-archimedean.

For v ∈ S, expand G in Taylor series with center α

G(β) =
∑
k

∂kG(α)(β1 − α)k1(β2 − α)k2 . (7.27)

We have from (7.25), that

∂kG(α) = 0 if
k1

d1
+
k2

d2
< t− 4σ,

and

log |∂kG(α)| ≤ log |G|v +
2∑
j=1

(dj − kj) log+ |α|+ εv(log 2 + o(1))dj ,

so putting back to (7.27) and taking absolute values and logs,

log |G(β)| ≤ max
k

log

∣∣∣∣∣∣∂kG(α)
2∏
j=1

(βj − α)kj

∣∣∣∣∣∣+ εv

2∑
j=1

log(dj + 1)

≤ − min
k1
d1

+
k2
d2
≥t−4σ

 2∑
j=1

kj log+ 1

|βj − α|

+ log |G|v

+
2∑
j=1

(
log+ |βj |+ log+ |α|+ εv(log 2 + o(1))

)
dj .

(7.28)

Adding up the bounds (7.26) and (7.28) for all places v ∈MQ, and noting that∑
v εv = 1, we have

∑
v∈MQ

log |G(β)|v ≤ − min
k1
d1

+
k2
d2
≥t−4σ

 2∑
j=1

kj log+ 1

|βj − α|

+ h(G)

+

2∑
j=1

(
h(βj) + log+ |α|+ 2 log 2 + o(1)

)
dj

≤ − min
k1
d1

+
k2
d2
≥t−4σ

 2∑
j=1

kj log+ 1

|βj − α|

+

(
2 +

C2

L

)
N + o(N),
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where C2 = 4C1 + 4 log 2 + 2 log+ |α|.

Since

κh(βj) ≤ log+ 1

|βj − α|
,

we have

2∑
j=1

kj log+ 1

|βj − α|
≥ κ

2∑
j=1

(h(βj)dj)
kj
dj
∼ Nκ

(
k1

d1
+
k2

d2

)
.

This gives us the upper bound

∑
v∈MQ

log |G(β)|v ≤ −κ (t− 4σ)N +

(
2 +

C2

L

)
N + o(N). (7.29)

7.6.4 Obtaining the bound

Since G(β) 6= 0, we have
∑

v log |G(β)|v = 0. Put this into (7.29) and let N → ∞,

we get

−κ
(
t

2
− 2σ

)
+ 1 +

C2

2L
≥ 0.

Since by assumption σ < 1
6 , we have

κ ≤
(
t

2
− 2σ

)−1(
1 +

C2

2L

)
,

which contradicts (7.23). The completes the proof of Theorem 7.19.

7.7 Bounding the number of points

In this section we prove the explicit upper bound of #LD(R) given in Theorem 7.3,

when x(R) > D and R /∈ TD + 2ED(Q). Take R to be the point with minimum

canonical height in the coset R + 2ED(Q). Let ε = 0.00153, which satisfies the

assumption in Lemma 7.11.

For each Q̃ ∈ 1
2ED(Q), define LQ̃ := (h(S)+log 2

c−2−1
+4)M as in Theorem 7.19, where

S is chosen in 1
4R such that |x(S)− x(Q̃)| is minimum, with absolute constants M

and c to be specified later. We bound the number of medium points

A1 :=
{
P ∈ LD(R) : h(Q̃) < LQ̃ for some Q̃ ∈ 1

4
(P −R)

}
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and large points

A2 :=
{
P ∈ LD(R) : h(Q̃) ≥ LQ̃ for all Q̃ ∈ 1

4
(P −R)

}
.

For each S ∈ 1
4R, define

B2(S) :=
{
Q̃ ∈ 1

2
ED(Q) : 4Q̃+R ∈ A2, |x(S)− x(Q̃)| minimum over S ∈ 1

4
R
}
.

7.7.1 Medium points

Let P1, P2, . . . , Ps be points in A1 with strictly increasing height. Applying (7.19)

repeatedly,

ĥ(Ps) >

(
1− 2 logD +O(1)

ĥ(P1)

)
3s−1ĥ(P1) =

(
ε

1 + ε
− o(1)

)
3s−1ĥ(P1). (7.30)

Take λ > 1+ε
3s−1ε

and δ > 1
2·3s−1ε

, so that λh(Ps) > h(P1) > h(R) and δh(Ps) >

1
2(1+ε)h(P1) > logD.

For each S ∈ 1
4R, since 16ĥ(S) = ĥ(R) ≤ ĥ(P1), we have by (7.12)

h(S) <
1

16
h(P1) + logD − o(1).

Writing Ps = 4Q̃s +R and using the lower bound in (7.20),

1

16
h(Ps)

(
(1−

√
λ)2(1− δ)− 16δ − o(1)

)
≤ h(Q̃s)

< LQ̃s <

(
1
16h(P1) + logD + log 2 + o(1)

c−2 − 1
+ 5

)
M.

Now apply (7.30) and divide both sides by 1
16h(P1),

(
ε

1 + ε
− o(1)

)
3s−1

(
(1−

√
λ)2(1− δ)− 16δ + o(1)

)
<

(
1 +

8

1 + ε
+ o(1)

)
M

c−2 − 1
.

Simplifying we have

3s−1 <

(
1 +

9

ε

)
M

(c−2 − 1)
(

(1−
√
λ)2(1− δ)− 16δ

) + o(1). (7.31)
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Therefore taking s to be the maximum integer satisfying (7.31), then #A1 ≤ 2s,

where the factor of 2 comes from the possible existence of −P1, . . . ,−Ps .

7.7.2 Large points

Now fix some S ∈ 1
4R and consider the set B2(S). Let K be the minimal number

field containing the x-coordinates of all points in 1
2ED(Q), and let E be the field

K(x(S)).

Suppose Q̃ ∈ B2(S). Fix λ = 0.000137, δ = 0.0000684, and take κ = 7.516,

which satisfies

κ < 8 · 1− 63λ− 418δ

(1 +
√
λ)2(1 + δ) + 16δ

+ o(1),

then Lemma 7.17 implies that x(Q̃) is a K-approximation to x(S) with exponent κ.

Now we can apply Theorem 7.19 with m = [E : K] ≤ 4, M = 276.1 and c = 0.861,

noting that (7.23) is satisfied. Take β1 = x(Q̃) such that h(Q̃) is minimum over all

Q̃ ∈ B2(S). Then Theorem 7.19 shows that all points in B2(S) must have height in

the interval [h(β1),Mh(β1)]. By Theorem 7.18, if t is the smallest integer such that

(κ− 1)t > M,

then #B2(S) ≤ t. This is achieved by t = 3. There are 16 choices of S, but since

ED(Q)[4] ⊆ 1
2ED(Q), if x(Q) is a K-approximation to x(S), then x(Q + T ) is also a

K-approximation to x(S + T ) for any T ∈ ED(Q)[4]. Therefore #A2 ≤ 3.

Returning to the medium points with our choice of constants, we have #A1 ≤

28. If P ∈ ED(Z) then −P ∈ ED(Z), so #(A1 ∪ A2) ≤ 30.

7.8 Integral points in other cosets of 2ED(Q)

We now prove the upper bounds in Theorem 7.4.

7.8.1 Cosets with respect to a non-torsion point

Here we will treat the case in Theorem 7.4 ((iv)), assuming R /∈ TD + 2ED(Q).

Suppose x(R) < 0. If P ∈ ZD(R), then −D < x(P ) < 0 and so ĥ(P ) < logD +

2
3 log 2 by (7.7). Following the argument in Section 7.3, we obtain an upper bound

of A(r + 1, θ) where sin θ
2 = 1

2

√
logD−2 log 2

logD+ 2
3

log 2
= 1

2 − o(1). For D ≥ 97353, applying

the following estimate by Rankin gives us an upper bound of 3. Since non-torsion

integral points in comes in pairs of ±P , we can reduce the upper bound to 2 if
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R /∈ TD + 2ED(Q).

Theorem 7.22 ([63, Lemma 2]). If π
4 < θ < π

2 , then

A(r, θ) ≤ 2 sin2 θ

2 sin2 θ − 1
.

Checking all the integral points in the range −D < x(P ) < 0 on ED for each

D < 97353, we see that the only exceptions are those listed in Theorem 7.4 ((iv)).

7.8.2 Integral points in 2ED(Q) + TD
We now prove cases ((i)), ((ii)) and ((iii)) in Theorem 7.4. We first show that if a

rational point has a multiple which is an integral point, then the original point must

also be integral.

Lemma 7.23. Suppose P ∈ ED(Q). If mP ∈ ED(Z) for some integer m ≥ 2, then

P ∈ ED(Z).

Proof. Suppose P = mQ, where Q ∈ ED(Q). We have

x(P ) =
φm(Q)

ψm(Q)2
,

where ψm is the mth division polynomial, and φm = xψ2
m−ψm+1ψm−1 as usual. The

polynomials φm(x) and ψm(x)2 have leading terms xm
2

and m2xm
2−1 respectively.

Putting x(Q) = u
v with gcd(u, v) = 1, and clearing denominators we have

x(Q) =
um

2
+ vF (u, v)

v(m2um2−1 + vG(u, v))
,

for some polynomials F,G ∈ Z[x, y]. Therefore x(P ) ∈ Z implies v | u, so v = 1 and

Q is also integral.

We show that 2ED(Q) contains no integral points.

Lemma 7.24. Suppose P ∈ ED(Q) is non-torsion. Then 2P 6∈ ED(Z).

Proof. Suppose P ∈ ED(Q) and 2P ∈ ED(Z), then P must be an integral point by

Lemma 7.23. Write P = (x, y), so

x(2P ) =

(
x2 +D2

2y

)2

.
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Suppose 2P ∈ ED(Z). Then 4y2 = 4x(x+D)(x−D) | (x2 +D2)2. Therefore x | D

and so x is squarefree. Write d = −D
x , and we have 4(d − 1)(d + 1) | x(d2 + 1)2.

Since we assumed that P is not a torsion point, x 6= D and −D < x < 0. Suppose d

is odd, then (d2 + 1)2 ≡ 4 mod 8 and 8 | (d− 1)(d+ 1), so 8 | x, but this contradicts

with x being squarefree. Now suppose d is even, then (d2 + 1)2 is odd, so 4 | x,

which is also a contradiction.

We now look at points of the form 2P + (−D, 0) or 2P + (0, 0).

Lemma 7.25. Suppose P ∈ ED(Q). For each T ∈ {(−D, 0), (0, 0)}, we have

2P + T ∈ ED(Z) if and only if P is a torsion point.

Proof. Notice that θ(2P + (0, 0)) = (−D,−1, D) and θ(2P + (−D, 0)) =

(−2D,−D, 2). If 2P + (−D, 0) ∈ ED(Z), taking x(2P + (0, 0)) = −s2, we see

that the equation

s2 +Dt2 = D

is solvable for s, t ∈ Z. Similarly if 2P + (0, 0) ∈ ED(Z), taking x(2P + (−D, 0)) =

−Du2, then

Du2 + 2v2 = D

is solvable for u, v ∈ Z. The only solutions to each of these equations over the

integers are given by s = 0 and u2 = 1. This implies that in both cases P is a

torsion point.

The only possible non-torsion integral points in 2ED(Q) + TD are in (D, 0) +

2ED(Q) and satisfies the property in the following theorem.

Lemma 7.26. Then there exists some P ∈ ED(Q) such that 2P + (D, 0) ∈ ED(Z) if

and only if the system

s2 − 1 = 2Du2, s2 + 1 = 2v2 (7.32)

is solvable for some s, u, v ∈ Z>0. Furthermore, (7.32) has at most one solution for

each D. If a solution (s, u, v) exists, then x(2P + (D, 0)) = Ds2,

s2 + 2uv
√
D = (v + u

√
D)2, (7.33)
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and v + u
√
D is the fundamental solution to v2 −Du2 = 1.

Proof. Note that θ(2P + (D, 0)) = (2, D, 2D). If 2P + (D, 0) ∈ ED(Z), then writing

x(2P + (D, 0)) = Ds2 finds us a solution (s, u, v) to the system (7.32). Conversely

if (7.32) is solvable, it is easy to check that Ds2 is the x-coordinate of an integral

point on ED, and this point must be in the same coset of 2ED(Q) as (D, 0) since θ

is injective.

If (7.32) is solvable, taking the difference of the two equations in (7.32), we get

v2 − Du2 = 1. From (7.32), we see that (7.33) holds, and also s4 − D(2uv)2 = 1.

Cohn showed that such equation has at most one solution unless D = 1785. More

precisely, the main theorem in [26] implies that s2 + 2uv
√
D is either a + b

√
D or

(a + b
√
D)2 if a + b

√
D is the fundamental solution to v2 −Du2 = 1. This proves

the final claim.

7.9 Average number of integral points

In this section we prove Theorem 7.5. From Theorem 7.1

#ED(Z)� 4rank ED(Q).

Heath-Brown [36, Theorem 1] proved that2

lim
N→∞

1

#D(N)

∑
D∈D(N)

2k·rank ED(Q) �k 1.

Therefore

lim sup
N→∞

1

#D(N)

∑
D∈D(N)

(#ED(Z))2 � 1.

Suppose GN ⊆ DN . By Cauchy–Schwarz inequality,

∑
D∈GN

#ED(Z) ≤
( ∑
D∈D(N)

(#ED(Z))2
)1/2

(#GN )1/2 � (#D(N))1/2(#GN )1/2.

Therefore the contribution from any subset GN of D(N) of size o(N) to the average

of #ED(Z) over D(N) tends to 0 as N →∞.

2To be precise, the theorem was only stated for odd D, but it is possible to extend the proof to
even D.
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Assuming (7.2) implies that we only need to consider the contribution from the

curves ED with rank 0 or 1. A theorem by Le Boudec [55, Proposition 1] shows that

∑
D≥1

#

{
P ∈ ED(Z) : x(P ) <

N2

(logN)κ

}
� N

(logN)κ/2−6
,

where we take κ > 12. Therefore we can also exclude all ED with any integral point

H(P ) < N2

(logN)κ since there are o(N) of them.

If rank ED(Q) = 0, then there are automatically no non-torsion integral points.

In the following we consider ED such that rank ED(Q) = 1 and any P ∈ ED(Z) \ TD

satisfy H(P ) > D2

(logD)κ . This removes the need to consider the points arising from

cases ((i)), ((ii)), ((iv)) in Theorem 7.4.

Our aim is to prove the following.

Theorem 7.27. Assume that rank ED(Q) = 1 and that any P ∈ ED(Z) \ TD satisfy

H(P ) > D2

(logD)κ . Then

#(ED(Z) \ TD) ≤ 4.

We now demonstrate that the integral points that appear in Theorem 7.4 ((iii))

are rare for D ∈ D(N) and do not contribute to the average average in Theorem 7.5.

Recall that these points are classified in Lemma 7.26. Dirichlet class number formula

for real quadratic number fields states that the class number of Q(
√
D) equals

√
DL(1, χD)

log εD
,

where χD is the Kronecker symbol
(
D
·
)

and εD is the fundamental unit of Q(
√
D).

Since the class number is at least 1, this gives an inequality

log εD ≤
√
DL(1, χD).

It is well-known that L(1, χD)� logD. Therefore together with (7.33), we have

log s < 2 log εD �
√
D logD. (7.34)

On the other hand, since s2 − 2v2 = −1 and 1 +
√

2 is the fundamental unit of
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Q(
√

2), we the possible values of s is given by

s =
1

2

(
(1 +

√
2)k + (1−

√
2)k)

)
,

where k is any positive odd integer. For large values of k, |(1−
√

2)k| is bounded, so

s� (1 +
√

2)k. (7.35)

Putting together the inequalities (7.34) and (7.35), we get

k �
√
D logD.

Therefore for D ∈ D(N), there are �
√
N logN integral points of the form 2P +

(D, 0), which does not contribute to the average in Theorem 7.5.

7.9.1 Odd multiples of a generator

It now remains to treat the points not covered by Theorem 7.4. Notice that if m is

odd, mP + T = m(P + T ) for any P ∈ ED(Q) and T ∈ TD, so any integral points

not in 2ED(Q) + TD are odd multiples of a generator of the free part of ED(Q). By

Lemma 7.23, if mP ∈ ED(Z) then P ∈ ED(Z).

If P ∈ ED(Z) and H(P ) > N2

(logN)κ , then x(P + (0, 0)), x(P + (−D, 0)), x(P +

(D, 0))� D, therefore by assumption P + (0, 0), P + (−D, 0), P + (D, 0) /∈ ED(Z).

Therefore it is enough to consider odd multiples of one integral point that is also

generator.

We show that small multiples of a reasonably sized rational point, as assumed

in Theorem 7.27 which we wish to prove, cannot be integral.

Theorem 7.28. Let κ > 0 and C1 <
√

4
3 log 2. Suppose D is some sufficiently large

squarefree integer, P ∈ ED(Q) and assume x(P ) > D2

(logD)κ , then mP /∈ ED(Z) for

all 1 < m ≤ exp(C1
√

logD).

We have shown that 2P cannot be integral, so assume m ≥ 3. With the formulae

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, (7.36)

ψ2m =
ψm
2y

(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
, (7.37)
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we prove the following by induction.

Lemma 7.29. Fix some C2 >
3

2 log 2 . Let x > D such that (x, y) ∈ ED(Q). Then

for any positive integer m satisfying C2(logm)2 < 2(log x− logD), we have

ψm(x) >

(
1− exp

(
C2(logm)2

)(D
x

)2
)
mx

m2−1
2 .

Proof. Write ψm(x) = (1 − Em(Dx )2)mx
m2−1

2 . Assuming Em
(
D
x

)2
< 1, we obtain

from (7.36)

E2m+1 < Em−1 + 3Em+1 +
m3(m+ 2)

2m+ 1
(Em+1 + 3Em), (7.38)

from (7.37)

Em+2 <
1

2
+Em +

(m− 1)2(m+ 2)

4
(Em−1 + 2Em+2) +

1

2
(Em−2 + 2Em+1). (7.39)

Assuming Em < exp
(
C2(logm)2

)
for all m < N , we obtain an upper bound for

EN < exp
(
C2(logN)2

)
from (7.38) and (7.39). Checking the base cases ψ2 =

2x3/2(1− (Dx )2)1/2 and ψ3 = 3x4(1− 2(Dx )2 − 1
3(Dx )4) completes the induction.

Write uniquely x(mP ) = u
v2m

, where gcd(u, vm) = 1 and vm > 0. By [82,

Lemma 11.4]

log vm ≤ log |ψm(x)| ≤ log vm +
1

8
m2 log |∆D|, (7.40)

where ∆D = (2D)6 is the discriminant of ED.

Proof of Theorem 7.28. Let x := x(P ) > D2

(logD)κ . Suppose mP ∈ ED(Z), then (7.40)

reduces to

ψm(x) ≤ (2D)
3
4
m2
. (7.41)

Fix ε > 0 such that

logm <

√
1

C2
(log(1− ε) + 2 logD − 2κ log logD),
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then by Lemma 7.29,

ψm(x) > εmx
m2−1

2 > εm

(
D

(logD)κ/2

)m2−1

,

which contradicts (7.41) for sufficiently large D.

Now following Section 7.7, we have #A1 = 0 for the medium points using

Theorem 7.28, and #A2 ≤ 3 for the large points. Since non-torsion integral points

come in pairs ±P , #(A1 ∪ A2) ≤ 2. Therefore the possible points contributing to

the upper bound in Theorem 7.27 comes from the generator and its corresponding

negative point, together with the pair of large points in #A2.
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