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Association between admission 
criteria and body composition 
among young children 
with moderate acute malnutrition, 
a cross‑sectional study 
from Burkina faso
christian fabiansen 1,2*, Bernardette cichon1,2, charles W. Yaméogo1,3, 
Ann‑Sophie iuel‑Brockdorf1,2, Kevin p. Q. phelan4, Jonathan c. Wells5, christian Ritz 1, 
Suzanne filteau6, André Briend1,7, Vibeke B. christensen2,8, per Ashorn7,  
Kim f. Michaelsen 1, Susan Shepherd4 & Henrik friis 1

children with moderate acute malnutrition (MAM) are treated based on low weight‑for‑length z‑score 
(WLZ), low mid‑upper arm circumference (MUAc) or both. this study aimed to assess associations 
of admission criteria and body composition (Bc), to improve treatment of MAM. We undertook a 
cross-sectional study among 6–23 months old Burkinabe children with MAM. Fat-free (FFM) and fat 
mass (fM) were determined by deuterium dilution and expressed as ffM (ffMi) and fM index (fMi). 
Of 1,489 children, 439 (29.5%) were recruited by low MUAC only (MUAC-O), 734 (49.3%) by low WLZ 
and low MUAC (WLZ-MUAC) and 316 (21.2%) by low WLZ only (WLZ-O). Thus, 1,173 (78.8%) were 
recruited by low MUAC, with or without low WLZ (ALL-MUAC). After adjustments, WLZ-O had 89 g 
(95% confidence interval (CI) 5; 172) lower FFM compared to MUAC-O. Similarly, WLZ-O had 0.89 kg/
m2 (95% CI 0.77; 1.01) lower FFMI compared to MUAC-O, whereas there was no difference for FMI. 
However, boys included by WLZ-O compared to MUAC-O had 0.21 kg/m2 (95% CI 0.05; 0.38) higher 
FMI. In contrast, girls included by WLZ-O had 0.17 (95% CI 0.01; 0.33) kg/m2 lower fMi compared to 
MUAC-O (interaction, p = 0.002). We found that different criteria for admission into MAM treatment 
programmes select children with differences in BC, especially FFMI.
Trial registration: ISRCTN42569496.

Childhood malnutrition is associated with almost half the global mortality in children under 5 years of  age1. 
Although both the prevalence and incidence of moderate acute malnutrition (MAM) is unknown, moderate 
wasting alone affects 33 million children at any  time2 and is associated with a threefold increased risk of  death3.
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MAM is currently defined as weight-for-length z-score (WLZ) between − 3 and − 2 (i.e. moderate wasting), 
and/or mid-upper arm circumference (MUAC) between 115 and 125 mm4. These criteria based on standard 
anthropometry are used both for inclusion in MAM programs and eligibility for trials assessing the effect of 
different  supplements5–11.

MUAC and WLZ have been used independently to determine eligibility for nutritional therapy and identify 
overlapping but not identical groups of  children12. MUAC is increasingly used as the sole anthropometric admis-
sion criterion for nutrition programs, taking advantage of its simplicity of  use13.

Children detected by universal MUAC thresholds are on average younger, shorter and more likely to be 
female while those identified by gender-specific WLZ are on average older, longer and  male14. However, little is 
known about how these anthropometric parameters relate to body composition, which is a more accurate way 
to evaluate nutritional status and likely to be key in short term response to treatment and for predicting longer 
term risks of non-communicable  diseases15. Moreover, wasting and stunting have been shown to be interrelated 
conditions but so far body composition in stunted children with MAM has only been described in children 
admitted with MUAC as single  criterion16. Here we present data on stunted children with MAM irrespective of 
their admission criteria. Indices of body composition, i.e. fat and fat-free  mass17, can be determined under field 
conditions using the deuterium dilution  technique18.

This was a cross-sectional study using trial cohort baseline data on body  composition18. Our objective was to 
assess the association of both types of anthropometric admission criteria with body composition and to describe 
body composition in stunted children with MAM.

Methods
This study was part of the Treatfood trial, a randomized trial with a 2 × 2 × 3 factorial design, investigating the 
effectiveness of 500 kcal/day supplement either as corn-soy blend (CSB) porridge or ready-to-use lipid-based 
nutrient supplements (LNS) for the treatment of  MAM18. As previously described the LNS supplements provided 
almost three times more energy as fat than the CSB supplements (~ 57% vs ~ 21%). Assignment to one of the 12 
supplements (6 CSB and 6 LNS) followed randomisation stratified by site.

participants. Data were collected in the Province du Passoré in the Northern region of Burkina Faso at 
five research sites located at different governmental health centers (Gomponsom, Latoden, Bagaré, Bokin and 
Samba) and staffed by the non-governmental organization Alliance for International Medical Action (ALIMA, 
Dakar, Senegal).

Children were screened in villages either by community health workers using MUAC tapes or by designated 
screening teams with the use of both MUAC and WLZ. Moreover, children could be referred from a health centre 
or could present at site on caretaker´s initiative. At the sites, the final assessment of eligibility for inclusion was 
performed.

Children aged 6–23 months with MAM (defined as MUAC between 115 and 125 and/or a WLZ between − 3 
and − 2), resident in the catchment area and whose parent and/or legal guardian gave informed consent, were 
included. Children were not included if treated for severe acute malnutrition (SAM) or hospitalized within 
the past two months, if already in a nutritional program or if they presented medical complications requiring 
hospitalization. Likewise, children with a severe disability limiting the possibility of investigations and children 
with suspected allergy to milk, peanuts, corn or soy were not included.

procedures and study visits. We previously described clinic visits, standard anthropometric measure-
ments and age  determination18. In the present paper we report on indices of body composition and skinfolds 
assessed at baseline. Total body water (TBW) was assessed using the deuterium dilution technique for assess-
ment of fat-free mass (FFM) and fat mass (FM). The method involved giving an oral dose of 5 g deuterium oxide 
 (D2O) (99.8%, Cambridge Isotope Laboratories Inc., Andover, USA). The isotope was diluted in 5 g of bottled 
water (LAFI, Burkina Faso), with the dosing bottle weighed with 0.01 g precision (Adam equipment: model 
CQT 202, United Kingdom) before and after administration of the dose. Pre-dose saliva samples were obtained 
to assess background isotope levels in body fluids, and post-dose saliva samples were collected after a three-hour 
equilibration period as established during the pilot  study19. For each assessment, deuterium enrichment was 
measured in duplicate in the pre- and post-dose saliva samples and in a diluted sample of the dose, using Fourier 
Transform Infrared Spectrometry (FTIR,Agilent Technologies, CA, USA)20 at St. John’s Research Centre, Ban-
galore, India. Saliva samples required at least 60 µl saliva for analysis. Deuterium dilution space was calculated 
as described previously 21, and converted to total body water (TBW) using a factor of 1.044 to adjust for proton 
 exchange22. FFM was calculated as TBW/hydration, using age- and sex-specific hydration  coefficients23. FM was 
calculated as weight minus FFM. Data were cleaned for typographical errors and implausible TBW values, based 
on the association of TBW with length and cut-offs for FM of < − 0.1 and > 2.4 kg.

Anthropometric measurements were undertaken by trained staff, after standardization sessions. Skinfold 
thickness was measured by a Harpenden caliper. Weight was measured to the nearest 100 g using electronic 
scales (Seca model 8811021659) with double weighing function. Length was measured with a wooden length 
board to the nearest 1 mm. WLZ was determined at sites using WHO sex-specific field tables, and this value was 
used for recruitment. MUAC was measured to the nearest 1 mm, at the midpoint between the olecranon and the 
acromion process using a standard measuring tape. For all anthropometric measures, the mean of the duplicate 
measurements was taken for analysis.

In later analyses, WLZ, length-for-age z-score (LAZ) and weight-for-age z-score were calculated using the 
package “zscore06” in Stata 12 (College Station, Texas, USA). Skinfold-for-age z-scores were calculated using 
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WHO’s Anthro Plus software (version 3.2.2, 2011, World Health Organization, Geneva, Switzerland). All z-scores 
were calculated using the 2006 WHO child growth  standards24.

At enrolment, a research nurse collected data on demographic characteristics, vaccination status, and 2-week 
retrospective morbidity and medical treatments using a structured questionnaire in the local language. Data on 
birthweight was acquired if children presented with a health card providing the information, accordingly, meas-
urement of birthweight was not standardized within the cohort. All children received vitamin A supplementation 
(100,000 International Units (IU) if 4–8 kg; 200,000 IU if > 8 kg) if they had not received any supplements in the 
previous 6 months, and albendazole (200 mg if 4–8 kg; 400 mg if > 8 kg) and vaccinations were administered 
according to the national schedule at the health centres.

outcomes. Body composition was evaluated using a two-component model, differentiating FFM i.e., mus-
cle, organs, and bone, and FM. As age differs considerably between admission groups, indices of body composi-
tion adjusted for length, which is closely correlated with age, were chosen as main outcome. The fat-free mass 
index (FFMI) and fat mass index (FMI) were obtained by dividing FFM and FM by length squared, giving 
indices expressed in kg/m2, similar to body mass index (BMI).

We primarily compared body composition between the three admission groups used in the main trial those 
admitted based on low MUAC only (MUAC-O), both low WLZ and low MUAC (WLZ-MUAC) and low WLZ 
only (WLZ-O). For reasons of simplicity, to improve coverage and to facilitate screening by caretakers, malnutri-
tion programs increasingly use MUAC only (admission by low MUAC as single criterion)25. We therefore also 
simulated the effect of this strategy and compared all children that would have been included in a MUAC-only 
programme (ALL-MUAC) vs children only qualifying by WLZ only: ALL-MUAC (MUAC-O + WLZ-MUAC) 
vs WLZ-O. These groups will be referred to as operational groups.

Statistical analysis. Data were double entered in Epidata 3.1 (Epidata Association, Odense, Denmark) and 
double entry checks were performed daily. All statistical analyses were carried out using the statistical software 
package Stata version 12 (StataCorp, College station, Texas, USA).

Differences between MUAC-O, WLZ-MUAC, and WLZ-O were evaluated by a chi-square test or a one-way 
ANOVA. P-values from post-hoc pairwise comparisons were Bonferroni adjusted.

Linear mixed models were used to assess associations of admission criteria with indices of body composition. 
We considered both unadjusted models and models adjusted for age, sex, month of inclusion and site (random 
effects). Additionally, for the adjusted models, interactions with sex were evaluated and, in case of a significant 
interaction, stratified analyses were carried out. Model checking was based on residuals and normal probability 
plots. A significance level of 0.05 was applied.

Role of the funding source. The funder of the study had no role in study design, data collection, data 
analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data 
from the study and had final responsibility for the decision to submit for publication.

informed consent and ethics. Written informed consent was obtained from all caregivers (signature or 
fingerprint) prior to enrolment. The trial was approved by the Ethics Committee for Health Research in Burkina 
Faso (2012-8-059) and consultative approval was obtained from the Danish National Committee on Biomedical 
Research Ethics (1208204). Trial registration: ISRCTN42569496. All research was performed in accordance with 
relevant guidelines and regulations.

Results
Of 1609 children in the trial, data on body composition were available on 1,489 (92.5%). Among these, the mean 
standard deviation (SD) age was 12.4 (4.8) months, 821 (55.1%) were females and 988 (66.4%) were included 
in the dry season. Most children 1,404 (94.4%) were still breastfed. The mean (SD) MUAC was 123 (4) mm and 
mean (SD) length was 70.5 (5.3) cm. As previously  reported18, the mean (SD) weight of 6.92 (0.92) kg comprised 
5.79 (0.91) kg FFM and 1.13 (0.39) kg FM. The mean (SD) FFMI was 11.62 (0.87) kg/m2 and FMI was 2.30 (0.78) 
kg/m2. The mean (SD) WLZ was − 2.21 (0.51). The mean (SD) weight for age z-score (WAZ) was − 2.51 (0.65) 
and mean (SD) LAZ was − 1.68 (1.12), with 552 (37.1%) being stunted (LAZ < − 2) and 149 (10%) being severely 
stunted (LAZ < − 3). Mean (SD) triceps skinfold-for-age z-score was − 1.43 (0.85) and subscapular skinfold-for-
age z-score − 1.59 (0.94). The pattern of variability in skinfolds across the three groups was consistent with the 
equivalent pattern for fat mass, with the WLZ-MUAC group showing lowest values in both cases.

Of the 1,489 children with body composition data, 439 (29.5%) were recruited by MUAC-O, 734 (49.3%), were 
recruited based on WLZ-MUAC and 316 (21.2%) by WLZ-O (Fig. 1). In unadjusted analysis those recruited by 
low MUAC (i.e. either MUAC-O or WLZ-MUAC) were more likely to be girls, and were younger, shorter and 
weighed less (Table 1).

In Table 2 we present differences in body composition by admission criteria with site as random effect in 
unadjusted and adjusted models. As seen, admission by WLZ-O was associated with 471 g (95% confidence 
interval (CI) 340; 602) greater FFM compared to admission by MUAC-O. However, after adjustment for age, sex 
and month of inclusion, admission by WLZ-O was associated with 89 g (95% CI 5; 172) lower FFM. Similarly, 
in adjusted analysis the WLZ-O had 0.89 kg/m2 (95% CI 0.77; 1.01) lower FFMI (i.e. FFM indexed by length) 
compared to the MUAC-O group, whereas there was no difference for FMI. Table 2 also presents differences in 
body composition between children admitted by WLZ-O compared to ALL-MUAC. As seen, those admitted 
with WLZ-O had 396 g (95% CI 283; 508) greater FFM in the unadjusted analysis, whereas there was no signifi-
cant difference after adjustment (63 g, 95% CI − 8; 134). Conversely, admission by WLZ-O was associated with 
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0.37 kg/m2 (95% CI 0.27; 0.48) lower FFMI and 0.23 kg/m2 (95% CI 0.14; 0.32) greater FMI, compared to those 
admitted based on ALL-MUAC.

After adjustments, moderate stunting (LAZ ≥ − 3.0 to − 2.0) and severe stunting (LAZ < − 3.0) were associ-
ated with 407 g (95% CI 353; 461) and 906 g (95% CI 825; 986) lower FFM, respectively, and 97 g (95% CI 55; 
140) and 168 g (95% CI 105; 231) lower FM, respectively, compared to children without stunting (Table 2). In 
contrast, FFMI was 0.30 kg/m2 (95% CI 0.21; 0.40) greater among children with moderate stunting, and 0.33 kg/
m2 (95% CI 0.18; 0.47) greater among children with severe stunting, compared to non-stunted children, whereas 
there were no differences in FMI.

Since the associations between admission criteria and the body composition outcomes shown in Table 2 
largely depended on sex (see footnotes in Table 2 for p-values for all interactions), we also present the associations 

Figure 1.  Participant flow chart. Adapted from Ref.18. Body composition assessment by deuterium dilution 
 (D2O). Mid-upper arm circumference (MUAC). Weight-for-length z-score (WLZ). Children with  D2O admitted 
by MUAC only (MUAC-O). Children with  D2O admitted by WLZ and MUAC (WLZ-MUAC). Children with 
 D2O admitted by WLZ only (WLZ-O).

Table 1.  Characteristics of 1,489 children with moderate acute malnutrition by admission criteria. Data are 
mean (± SD) unless otherwise indicated. 1 Overall p-value for chi-square or F test from ANOVA, means inside 
table not sharing a superscript letter are different following Bonferonni correction. P-values below 0.05 are in 
bold. 2 Height-for-age z-score, < − 3% comparison WLZ-O vs MUAC-O, p = 0.06. 3 Fat-free mass MUAC-O vs 
WLZ-MUAC: p = 0.06.

MUAC-O (n = 439) WLZ-MUAC (n = 734) WLZ-O (n = 316) p-value1

Background characteristics

Girls, % (n) 78.1 (343)a 52.6 (386)b 29.1 (92)c < 0.001

Age, months 11.1 (4.6)a 12.6 (4.8)b 13.6 (4.8)c < 0.001

Season at inclusion, % (n) 0.24

Dry season 64.7 (284) 65.7 (482) 70.3 (222)

Rainy season 35.3 (155) 34.3 (252) 29.8 (94)

Site, % (n) < 0.001

0 19.6 (86) 24.0 (176) 23.7 (75)

1 13.2 (58)a 18.0 (132)a 34.5 (109)b

2 19.1 (84) 16.8 (123) 15.5 (49)

3 28.0 (123)a 24.9 (183)a 10.4 (33)b

4 20.1 (88) 16.4 (120) 15.8 (50)

Breastfeeding, % (n), (n = 1,487) 95.0 (417) 94.0 (688) 94.6 (299) 0.76

Ill past 2 weeks, maternal recall % (n), (n = 1,480) 34.3 (150) 38.6 (281) 40.3 (127) 0.19

Standard anthropometry

Weight (kg) 6.78 (0.97)a 6.81 (0.88)a 7.37 (0.81)b < 0.001

Length (cm) 68.2 (5.2)a 70.7 (4.9)b 73.1 (4.8)c < 0.001

Mid-upper arm circumference (mm) 121.6 (2.4)a 120.8 (2.6)b 128.5 (2.9)c < 0.001

Weight-for-length z-score − 1.59 (0.34)a − 2.50 (0.30)b − 2.41 (0.28)c < 0.001

Weight-for-age z-score − 2.22 (0.61)a − 2.72 (0.63)b − 2.44 (0.57)c < 0.001

Length-for-age z-score − 1.83 (1.02)a − 1.72 (1.16)a − 1.39 (1.10)b < 0.001

 <  − 2% (n), (n = 552) 41.9 (184)a 38.2 (280)a 27.9 (88)b < 0.001

 < − 3% (n), (n = 149) 10.5 (46)a,b 11.6 (85)a 5.7 (18)b 0.0132

Body composition

Fat-free mass (kg) 5.62 (0.97)a 5.75 (0.88)a 6.11 (0.84)b < 0.0013

Fat-free mass index (kg/m2) 12.03 (0.89)b 11.46 (0.80)a 11.41 (0.80)a < 0.001

Fat mass (kg) 1.16 (0.38)a 1.07 (0.37)b 1.26 (0.41)c < 0.001

Fat mass index (kg/m2) 2.51 (0.83)a 2.14 (0.72)b 2.37 (0.75)c < 0.001

Triceps skinfold-for-age z-score, (n = 1,487) − 1.40 (0.82)a − 1.61 (0.82)b − 1.05 (0.84)c < 0.001

Subscapular skinfold-for-age z-score (n = 1,488) − 1.42 (0.91)a − 1.79 (0.91)b − 1.36 (0.93)a < 0.001
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Table 2.  Differences in body composition among 1,489 children with moderate acute malnutrition, according 
to admission citeria. Data are estimated mean difference (95% CI) from linear mixed models with site as 
random effect in unadjusted and adjusted model. Adjustments include age, sex and month of inclusion. 
Estimates in bold are significant, p < 0.05. 1 Analysis for interaction between admission criteria and sex 
showed interactions in model adjusted for age and months of admission and site (random effects): FFM, 
p = 0.002; FFMI, p = 0.051; FM, p = 0.017: FMI, p = 0.002. 2 Operational admission criteria: ALL-MUAC (MUAC 
only + MUAC and WLZ) vs WLZ only. 3 Analysis for interaction between operational admission criteria and 
sex showed significant interactions in model adjusted for age, months of admission and site (random effects) 
with p-values FFM, p = 0.007; FFMI, p = 0.43; FM, p = 0.002; FMI, p = 0.0001. Sex-stratified analyses of indices 
of body composition and all admission criteria are shown in Table 3.

Fat-free mass (g) Fat-free mass index (kg/m2) Fat mass (g) Fat mass index (kg/m2)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Admission criteria1

MUAC only 
(n = 439) Ref Ref Ref Ref Ref Ref Ref Ref

MUAC and WLZ 
(n = 734) 118 (13;224) − 209 (− 274; 

− 145)
− 0.58 (− 0.68; 
− 0.48)

− 0.71 (− 0.80; 
− 0.62) − 84 (− 128; − 40) − 86 (− 130; − 43) − 0.35 (− 0.44; 

− 0.26)
− 0.26 (− 0.35; 
− 0.18)

WLZ only 
(n = 316) 471 (340;602) − 89 (− 172; − 5) − 0.64 (− 0.76; 

− 0.52)
− 0.89 (− 1.01; 
− 0.77) 119 (64;174) 114 (58;170) − 0.10 

(− 0.21;0.01) 0.04 (− 0.07;0.15)

Operational admission criteria2,3

ALL-MUAC 
(n = 1,173) Ref Ref Ref Ref Ref Ref Ref Ref

WLZ only 
(n = 316) 396 (283;508) 63 (− 8;134) − 0.27 (− 0.38; 

− 0.16)
− 0.37 (− 0.48; 
− 0.27) 173 (126;220) 177 (130;223) 0.12 (0.03;0.22) 0.23 (0.14;0.32)

Length-for-age Z category

≥ − 2 (n = 937) Ref Ref Ref Ref Ref Ref Ref Ref

≥ − 3.0 to − 2.0 
(n = 403) − 61 (− 166;45) − 407 (− 461; 

− 353) 0.30 (0.20;0.40) 0.30 (0.21;0.40) − 81 (− 125; − 37) − 97 (− 140; − 55) − 0.08 
(− 0.17;0.01) 0.02 (− 0.06;0.11)

< − 3.0 (n = 149) − 247 (− 404; − 91) − 906 (− 986; 
− 825) 0.34 (0.19;0.48) 0.33 (0.18;0.47) − 133 (− 199; 

− 68)
− 168 (− 231; 
− 105)

− 0.11 
(− 0.24;0.02) 0.07 (− 0.06;0.20)

Table 3.  Sex-stratified differences in body composition by admission criteria among 1,489 children with 
moderate acute malnutrition. Data are estimated mean difference (95% CI) from linear mixed models. Sex 
stratified analysis were adjusted for age and month of inclusion and site (random effect). Estimates in bold 
are significant, p < 0.05. 1 Operational admission criteria: ALL-MUAC: ((MUAC only) + (MUAC and WLZ) 
vs (WLZ only)). As also shown in Table 2, analysis for interaction between admission criteria and sex showed 
interactions in model adjusted for age and months of admission and site (random effect).: FFM, p = 0.002; 
FFMI, p = 0.051; FM, p = 0.017: FMI, p = 0.002. Operational admission criteria: ALL-MUAC: ((MUAC 
only) + (MUAC and WLZ) vs (WLZ only)). 2 Analysis for interaction between operational admission criteria 
and sex showed significant interactions in model adjusted for age, months of admission and site (random 
effects) with p-values FFM, p = 0.007; FFMI, p = 0.43; FM, p = 0.002; FMI, p = 0.0001.

Fat-free mass (g) Fat-free mass index (kg/m2) Fat mass (g) Fat mass index (kg/m2)

Admission criteria boys (n = 668)

MUAC only (n = 96) Ref Ref Ref Ref

MUAC and WLZ (n = 348) − 276 (− 394; − 158) − 0.75 (− 0.91; − 0.58) − 65 (− 143; 15) − 0.19 (− 0.34; − 0.03)

WLZ only (n = 224) − 226 (− 352; − 99) − 1.00 (− 1.18; − 0.82) 178 (94;263) 0.21 (0.05:0.38)

Admission criteria girls (n = 821)

MUAC only (n = 343) Ref Ref Ref Ref

MUAC and WLZ (n = 386) − 197 (− 274; − 120) − 0.71 (− 0.82; − 0.60) − 87 (− 138; − 35) − 0.27 (− 0.37; − 0.17)

WLZ only (n = 92) 76 (− 48, 199) − 0.73 (− 0.90; − 0.56) 26 (− 56; 108) − 0.17 (− 0.33: − 0.01)

Operational admission criteria1,2 boys (n = 668)

ALL-MUAC (n = 444) Ref Ref Ref Ref

WLZ only (n = 224) − 6 (− 92; 81) − 0.40 (− 0.53; − 0.27) 230 (172; 288) 0.36 (0.25; 0.48)

Operational admission criteria girls (n = 821)

ALL-MUAC (n = 729) Ref Ref Ref Ref

WLZ only (n = 92) 191 (74; 308) − 0.32 (− 0.49; − 0.14) 76 (− 1;154) − 0.02 (− 0.17;0.14)
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stratified by sex (Table 3). As seen, average FFMI for boys included by WLZ-O was 1.00 (95% CI 0.82; 1.18) kg/
m2 lower than those included by MUAC-O, whereas average FFMI for girls included by WLZ-O was 0.73 (95% 
CI 0.56; 0.90) kg/m2 lower than for girls included by MUAC-O (interaction between admission criteria and 
sex for FFMI, p = 0.051). Interestingly, boys included by WLZ-O compared to those included by MUAC-O had 
0.21 kg/m2 (95% CI 0.05; 0.38) higher FMI. In contrast, girls included by WLZ-O had 0.17 (95% CI 0.01; 0.33) 
kg/m2 lower FMI compared to MUAC-O (interaction between admission criteria and sex for FMI, p = 0.002). 
Similarly, compared to admission by ALL-MUAC, admission by WLZ-O was associated with 0.36 kg/m2 (95% 
CI 0.25; 0.48) higher FMI among boys, but not among girls (− 0.02, 95% CI − 0.17; 0.14) (interaction, p = 0.0001). 
There was no difference between boys and girls with respect to FFMI (− 0.40 vs − 0.32, interaction, p = 0.43).

The associations between admission criteria and the body composition outcomes shown in Table 2 also dif-
fered according to the presence or absence of stunting at admission. We therefore also assessed the associations 
after stratification by stunting (Table 4). As seen, the deficits in FFM and FFMI among children included by 
WLZ-O compared to MUAC-O were greater among stunted compared to non-stunted children, although only 
marginally significant for the FFMI (interactions non-stunted children vs stunted children and admission criteria 
with respect to FFM, p = 0.025, and FFMI, p = 0.078). Furthermore, the higher FM and FMI in children included 
by WLZ-O compared to MUAC-O was mainly seen in stunted children (interactions non-stunted children vs 
stunted children and admission criteria with respect to FM, p = 0.006, and FMI, p = 0.006). Likewise, compared to 
admission by ALL-MUAC, admission by WLZ-O was associated with 0.49 kg/m2 (95% CI 0.31; 0.68) lower FFMI 
and 0.45 kg/m2 (95% CI 0.29; 0.61) higher FMI among stunted children, compared to 0.24 (95% CI 0.12; 0.36) 
lower FFMI and 0.16 kg/m2 (95% CI 0.05; 0.27) higher FMI among non-stunted children (interaction, p < 0.05).

Discussion
Admission to a MAM intervention programme is based on falling below specific cutoffs of standard anthropo-
metric measurements of MUAC and WLZ. It is well established that MUAC and WLZ identify overlapping but 
not identical groups of children. There may be other longer term health risks associated with early childhood 
malnutrition that could be elucidated by investigating the relative changes in lean and fat tissues during nutrition 
supplementation. To shed new light on these issues, we investigated how the different approaches used to recruit 
children result in differing body composition at onset of treatment.

This was a cross-sectional study using baseline data from a trial, which has been reported previously without 
consideration of variability by admission  criteria18. To conduct these comparisons, we adjusted for age, as the 
groups admitted by different criteria varied in their average age. For similar reasons, we also adjusted for the 
calendar month of measurement, and for the site where the child was measured. In addition, we also conducted 
analyses first without (i.e. FFM and FM), and then with, adjustment for length (i.e. the indices of FFMI and FMI).

Compared to those recruited by MUAC only, those recruited by WLZ only had lower FFMI. If these analyses 
were stratified by sex, then the deficit in FFMI was slightly stronger in males than females. In addition, among 

Table 4.  Stunting-stratified differences in body composition by admission criteria among 1,489 children with 
moderate acute malnutrition. Data are estimated mean difference (95% CI) from linear mixed models. Analysis 
stratified for stunting were adjusted for age month of inclusion, sex and site (random effect). Estimates in 
bold are significant, p < 0.05. 1 Not stunted (length for z score ≥ − 2). 2 Stunted (length for z score < − 2). In the 
adjusted model, interactions were identified between non-stunted children vs stunted children and admission 
criteria with respect to FFM, p = 0.025; FM, p = 0.006; FMI, p = 0.006, whereas it was marginally significant 
for FFMI (p = 0.078). 3 Operational admission criteria: ALL-MUAC: ((MUAC only) + (MUAC and WLZ) vs 
(WLZ only)). Analysis for interaction between operational admission criteria and stunting showed significant 
interactions in model adjusted for age, months of inclusion, sex and site (random effects) with p-values FFM, 
p = 0.014 ; FFMI, p = 0.021 , FM, p = 0.003 ; FMI, p = 0.003.

Fat-free mass (g) Fat-free mass index (kg/m2) Fat mass (g) Fat mass index (kg/m2)

Not-stunted (n = 937)1

MUAC only (n = 255) Ref Ref Ref Ref

MUAC and WLZ (n = 454) − 252 (− 324; − 182) − 0.67 (− 0.79; − 0.56) − 112 (− 166; − 58) − 0.29 (− 0.39; − 0.18)

WLZ only (n = 228) − 200 (− 288; − 112) − 0.75 (− 0.89; − 0.61) 29 (− 37; 96) 0.05 (− 0.18; 0.08)

Stunted (n = 552)2

MUAC only (n = 184) Ref Ref Ref Ref

MUAC and WLZ (n = 280) − 326 (− 413; − 238) − 0.71 (− 0.85; − 0.57) − 83 (− 150; − 17) − 0.21 (− 0.35; − 0.08)

WLZ only (n = 88) − 398 (− 520, − 276) − 1.00 (− 1.19; − 0.81) 199 (106;291) 0.29 (0.11:0.48)

Operational admission criteria
Not-stunted (n = 937)

ALL-MUAC (n = 709) Ref Ref Ref Ref

WLZ only (n = 228) − 4 (− 79; 70) − 0.24 (− 0.36; − 0.12) 112 (57; 168) 0.16 (0.05; 0.27)

Operational admission criteria3

Stunted (n = 552)

ALL-MUAC (n = 464) Ref Ref Ref Ref

WLZ only (n = 88) − 167 (− 278; − 56) − 0.49 (− 0.68; − 0.31) 260 (178; 342) 0.45 (0.29; 0.61)
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those recruited by WLZ only compared to MUAC only, boys had greater whereas girls had lower FMI. Our 
overall results show some consistency with a previous study of healthy infants in Ethiopia, where WLZ was 
likewise shown to be a stronger correlate than MUAC of variability in lean  mass26. In terms of absolute tissue 
masses, the results indicate that malnourished males show greater penalties in FFM compared to females. In good 
conditions, males have greater FFM than females, but this means that they require higher energy requirements 
to support it, and may therefore lose relatively more FFM during malnutrition. The sex difference was reduced 
when the outcome was FFMI.

Overall, the deficits of WLZ are greater for FFM and FFMI, than for FM and FMI. This makes sense from a 
biological perspective: lean tissue is a high-cost high-reward tissue, whose fitness benefits lie in part in the future, 
but whose maintenance costs manifest during early childhood. During malnutrition, lean mass is therefore sacri-
ficed and although fat is also used to buffer energy shortfalls, maintaining fat becomes increasingly important for 
survival. Some studies have shown that low levels of leptin a hormone secreted by fat and important for immune 
function, predict mortality in malnourished  children27,28.

By enabling comparison to international reference data, the data on skinfolds confirm the malnourished 
condition of this population, with mean values being below -1 z-scores for all three groups, and -1.8 z-scores 
for subscapular in the WLZ-MUAC group. In two of the three groups (those incorporating WLZ in the criteria 
for admission), the subscapular z-score was lower than the triceps z-score. Central body fat is more closely 
associated than peripheral fat with immune  function29,30, moreover central body fat may also supply energy for 
immune function which is  costly31. Consistent with that, previous work in adults has shown that higher pathogen 
burdens are associated with lower subscapular skinfold, suggesting greater use of energy from this fat depot to 
fund immune  function32. Therefore, these data may indicate a greater contribution of the costs of infection to 
the poorer nutritional status of the WLZ-MUAC group,however, this requires direct confirmation.

If the reference group was extended to include all children for whom low MUAC defined admission, the 
deficit in FFMI was smaller, and did not interact with sex, and accompanied by a higher FMI, although the lat-
ter was only seen in boys.

Wasting and stunting have been shown to be interrelated conditions, both associated with increased mortal-
ity and affecting the same population and often the same  child33,34. The effect on mortality is especially strong 
when both are  present35. In our data, children identified by All MUAC had higher rates of stunting and nearly 
double the rates of severe stunting compared to those identified by WLZ only. This is consistent with a previ-
ous report in Ethiopian infants, which found that MUAC was more sensitive than WLZ to variability in length/
height26. Overall, stunted children had higher FFMI, more so if they were severely stunted, indicating that the 
deficits in length were greater than those in absolute FFM. There was no difference in FMI between stunted and 
non-stunted children.

When we stratified the comparison of body composition between the admission groups by stunting status, we 
found that the average deficits in FFMI and surplus FMI of the WLZ group were greater in the stunted children. 
Conversely, there was more variability in FMI across the admission groups, with stunted WLZ children having 
greater FMI than MUAC only children, whereas this difference was not evident in non-stunted children. The 
results for the comparison of MUAC and WLZ children with MUAC only children showed the same pattern, 
but the magnitudes of effect tended to be lower. Using all-MUAC children as the reference, the differences of 
the WLZ children were again greater in stunted versus non-stunted children. These findings are consistent with 
those of other studies, which have reported deficits in FFM in stunted children, sometimes accompanied by a 
relative preservation of fat  mass36.

On this basis, if WLZ is not used to recruit children, there will be a tendency to miss those with lower FFMI. 
This will be the case for both boys and girls, but among boys, in contrast to girls, the lower FFMI will be accom-
panied by a higher FMI.

We do not believe that these results currently have any implications for practice. First, the measurement of 
weight-for-length requires costly and bulky equipment and the ability to read weight-for-length tables. While 
this is possible to do at health centres it is not practical for detection of malnutrition at a large scale involving 
community health volunteers or family or family members. MUAC bracelets are low cost and can be used with 
minimal training by both health workers and family members at large scale, and due to colour coding does not 
require the ability to read or write. The use of MUAC at the community level can therefore dramatically increase 
coverage of early detection of children with acute malnutrition at large scale and improve efficiencies in which 
programs reach vulnerable children.

Second, as yet, we know little about the relative importance of FFMI versus FMI for immediate survival 
in moderately malnourished young children. Fat provides energy for a range of body functions including the 
immune system, whereas muscle provides proteins also needed for the inflammation response and immune 
 system37. In the long term, low FFMI is associated with increased risk of non-communicable  diseases38. In the 
entire sample, the average ratio of fat to fat free mass is ~ 1 to 5, regardless of the admission criteria used. For com-
parison, the equivalent ratio is 1–3 in healthy European 1–2 year  olds39. Such a difference is unsurprising given 
the fact that fat is used as fuel for metabolism of vital organs such as the liver and heart during  malnutrition40,41. 
There is ample evidence that stunting in early childhood is associated with long-term health and educational 
 impacts42,43. However, the relative value of lean and fat mass, or the ratio between the two, in malnourished chil-
dren is less certain, as is what constitutes the optimum accretion of either during recovery from  malnutrition17. 
In non-infected patients, physiology suggests that fat is the main determinant of survival during  starvation41. 
In infected patients, lean tissue may be more  important33, but recently studies have shown that lower leptin (a 
marker of fat) in hospitalized children with very low anthropometric measures was a predictor of  mortality27,28. 
The relative importance of fat-free and fat mass may also vary according to  season44. These are important ques-
tions for future studies to address.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13266  | https://doi.org/10.1038/s41598-020-69987-9

www.nature.com/scientificreports/

The strengths of the study include a large group of children and use of the deuterium dilution technique which 
provides objective data on the relative proportions of fat-free and fat mass in body weight. We also looked at 
several significant interactions including sex and stunting status. Although the aim of our study (i.e. to describe 
body composition among MAM children by admission criteria) obviously requires a cross-sectional study design, 
we cannot exclude the possibility of selection bias.

In conclusion we found that different criteria for admission into treatment programmes in moderate malnu-
trition select children with subtle but significant differences in body composition, especially FFMI. However, to 
fully understand the significance of these differences, we need more information on the importance of fat and 
fat-free tissue in malnourished children, and to assess if baseline differences in fat and fat-free mass modify the 
response to treatment. Moreover, there may be other outcomes, aside from body composition, that show larger 
contrasts between children admitted by MUAC or WLZ criteria. Therefore, the issue merits further investigation.
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