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Abstract

A novel finite-time convergent estimation technique is proposed for identifying the amplitude, frequency and phase of a biased
sinusoidal signal. Resorting to Volterra integral operators with suitably designed kernels, the measured signal is processed
yielding a set of auxiliary signals in which the influence of the unknown initial conditions is removed. A second-order sliding
mode-based adaptation law – fed by the aforementioned auxiliary signals – is designed for finite-time estimation of the frequency,
amplitude, and phase. The worst case behavior of the proposed algorithm in presence of the bounded additive disturbances
is fully characterized by Input-to-State Stability arguments. The effectiveness of the estimation technique is evaluated and
compared with other existing tools via extensive numerical simulations.
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1 Introduction

A wide variety of techniques are proposed in the liter-
ature to address the frequency estimation problem in-
cluding extended Kalman filters (see e.g. [18] and the
reference cited there in), phase locked loop (PLL) tools
(see e.g. [22,31]), adaptive notch filters (ANF) (see e.g.
[20,26]) and techniques based on the internal model prin-
ciple [4].

The presence of a bias perturbation affecting the si-
nusoidal signal has recently generated considerable re-
search efforts. An extension of the so-called EPLL ap-
proach presented in [22] has been recently proposed in
[21] to address sinusoidal signals affected by a bias term
by including an additional integrator in the EPLL algo-
rithm. However, in spite of the popularity of the PLL
techniques in electrical power systems applications, typ-
ically only local stability properties can be proved or,
when averaging analysis is used, global results are avail-
able but they are valid only for small adaptation gains
(see [31] and [41]).
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ANF techniques represent an effective alternative to
handle the possible bias in the measured signal by in-
troducing an augmented integral loop that makes the
modified ANF a frequency-locked-loop (FLL) system
(see, [21] and [16]). Resorting to a bank of such FLL
filters, multi-sinusoidal estimation problems have also
been dealt with in [15]. A variant of the FLL, namely
second-order generalized integrator-based orthogonal
signal generator (OSG-SOGI) is also exploited in [12]
and [13] to cope with a single sinusoidal signal affected
by a bias term. In particular, in [13], the frequency
adaptive law is integrated into the OSG-SOGI, thus
giving rise to a third order generalized integrator-based
OSG (OSG-TOGI).

Another important family of frequency estimation meth-
ods is based on the state-variable filtering techniques (see
e.g., [37]). Specifically, in [2], a fourth-order frequency es-
timator – characterized by a switched adaptation gain –
is proposed: this algorithm provides extra attenuation of
high-frequency noise in steady state. Recently, an algo-
rithm able to cope with a large class of structured pertur-
bations parametrized in the family of time-polynomial
functions has been proposed in [36], that extends the
previous work by the authors on the estimation of unbi-
ased harmonic signals (see [35]). The robustness of the
method against bounded unstructured perturbations is
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characterized by a Input-to-State-Stability (ISS) analy-
sis. Furthermore, in [11,8], a parallel pre-filtering scheme
is presented that extends the single pre-filter used in
[35] and [36]. This enhanced structure allows to simplify
the adaptation law with respect to [36] and [10], while
maintaining the robustness properties with respect to
bounded measurement perturbations.

Estimation techniques based on adaptive observers rep-
resent a valid alternative to the aforementioned methods
and several recent approaches are proposed in the liter-
ature. These observer-based methods have been exten-
sively analysed in terms of their stability properties and
several papers show that global or semi-global stability
can be achieved (see, for example [25,42,19,3,10,6,7] and
[9] and the references cited therein). In particular, the
very recent paper [9] extends the results presented in
[10] (where both structured and unstructured uncertain-
ties are addressed in virtue of suitable pre-filtering tech-
niques) and deals with a ‘dual-mode’ estimation scheme,
incorporating a switching algorithm (depending on the
real-time excitation level) into an adaptive observer-
based sinusoidal estimator.

While the aforementioned algorithms provide in most
cases only asymptotic stability guarantees, there ex-
ists a few other methods that are capable to achieve
finite-time convergence,, which is a very desirable fea-
ture in several application contexts like, for example,
micro-grids power systems that are affected by severe
frequency fluctuations due to low inertia of generators.
For instance, non-asymptotic methods based on alge-
braic derivatives are proposed in [39,38]; however these
tools are affected by singularities due to the scalar di-
vision based algorithm (this issue has been tackled in
[23,24] by using a recursive least squares algorithm,
while preserving the deadbeat property). Furthermore,
a modulating function-based approach is presented in
[14], which allows non-asymptotic frequency detection
by suitably-designed modulating functions. The well-
known Prony’s method and its many variants represent
another class of techniques specialized for estimating
the frequency of complex sinusoidal functions (see, for
example, [30] and the references cited therein). Re-
cently, the Prony’s problem is addressed by an algebraic
method reported in [40]. Nevertheless, all the methods
currently available lack a theoretical investigation of
the finite-time convergence properties in presence of
measurement noise.

In this paper, we propose a robust parametric finite-time
estimation methodology for biased sinusoidal signals by
employing a class of kernel based-linear integral opera-
tors, which allow to establish a relationship independent
of the unknown initial value of the state of the signal’s
generator, and in turn yield the adaptation algorithms to
identify the sinusoidal parameters in a non-asymptotic
way. This is a remarkable result since also in a very re-
cent paper [29], the parameter adaptation scheme de-

pends on a relationship which holds only asymptotically,
due to the unknown initial error (asymptotic decay), and
theoretically prevents the finite-time convergence of the
estimates.

In the spirit of prior work presented by the authors on the
sole frequency estimation problem (see [33]), this paper
deals with a finite-time convergent estimation scheme
in which the frequency, amplitude and phase (AFP) of
a noisy sinusoidal signal are estimated in finite-time.
As shown in the very recent paper [32] dealing with
non-asymptotic continuous-time systems identification,
Volterra operators induced by suitably defined bivariate
kernels, turn out to be an enabling tool for finite-time
estimation. In contrast with existing works, the behav-
ior of the estimator in presence of a bounded additive
measurement disturbance is rigorously characterized by
ISS arguments. To the best of the authors’ knowledge,
this is the first finite-time convergent sinusoidal estima-
tor the behavior of which is analyzed also in presence of
unstructured and bounded measurement perturbations.

The paper is organized as follows: Section 2 introduces
several useful notations and basic definitions and pro-
vides the problem formulation. In Section 3, the Volterra
integral operators are characterized whereas in Section 4,
the finite-time estimation technique is illustrated. In Sec-
tion 5, the stability and robustness properties of the pro-
posed estimation tool are dealt with. Extensive simula-
tion results are provided in Section 6 and Section 7 draws
some concluding remarks.

2 Problem statement and preliminaries

Consider a biased sinusoidal signal

y(t) = A0 +A∗ sin (ϑ(t)), ϑ̇(t) = ω∗, ϑ0 = φ (1)

where A0 ∈ R>0, A
∗ ∈ R>0 and ω∗ ∈ R>0 are the un-

known offset, amplitude and angular frequency, respec-
tively, ϑ is the instantaneous angle, φ denote the inital
phase shift.

As mentioned in the Introduction, our objective consists
in estimating A∗, ω∗ and ϑ of the sinusoidal signal (1)
(i.e., AFP) within an arbitrarily small finite-time.

For the reader’s convenience and for the sake of com-
pleteness, let us briefly recall some basic concepts of lin-
ear integral operators’ algebra (see, for example [5] and
the references therein), which are needed to derive the
main results presented in the subsequent sections.

In this paper, we use transformations acting on the
Hilbert space L2

loc(R≥0) of locally square-integrable
functions with domain R≥0 and range R (i.e., u(·) ∈
L2
loc(R≥0) ⇔ (u(·) : R≥0 → R) ∧ (

∫
B
|u(t)|2dt <∞,
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∀ compactB ⊂ R≥0). Given a function u ∈ L2
loc(R≥0),

its image through the Volterra (linear, integral) operator
VK induced by a Hilbert-Schmidt HS Kernel Function
K(·, ·) : R× R→ R is usually denoted by [VKu](·), and
is defined by the inner product:

[VKu] (t) ,
∫ t

0

K(t, τ)u(τ)dτ, t ∈ R≥0 . (2)

Any explicit function of time u(t) : t → u(t) ∈ R, such
that u(·) ∈ L2

loc(R≥0) will be addressed in this paper
as a signal. Then, given two scalars a, b ∈ R≥0, with
a < b, let us denote by u[a,b](·) and u(a,b](·) the restric-
tion of a signal u(·) to the closed interval [a, b] and to
the left open interval (a, b], respectively. Moreover, let
u(t) ∈ Rn, ∀t ≥ 0 be an i-times differentiable vector
of signals, we denote by u(1) the vector of the i-th or-
der time-derivative signals. Then, we recall the following
useful definition:

Definition 1 (Weak (generalized) derivative) Let
u(·) ∈ L1

loc(R≥0). We say that u(1)(·) is a weak derivative
of u(·) if∫ t

0

u(τ)

(
d

dτ
φ(τ)

)
dτ = −

∫ t

0

u(1)(τ)φ(τ)dτ, ∀t ∈ R≥0

for all φ ∈ C∞, with φ(0) = φ(t) = 0. �

We remark that u(1)(·) is unique up to a set of zero
Lebesgue measure, i.e., it is defined almost everywhere.
If u is differentiable in the conventional sense, then its
weak derivative is identical to its conventional derivative.
Classical rules for the derivation of sum or products of
functions also hold for the weak derivative. Given a ker-
nel function K(·, ·) in two variables, its i-th order weak
derivative with respect to the second argument will be
denoted as K(i), i ∈ Z≥0.

For obvious practical implementability reasons, it is con-
venient to devise a differential form for the operators. By
applying the Leibniz differentiation rule to the Volterra
integral, the transformed signal [Vkx](t), for t ≥ 0, can
be obtained as the output of a dynamic system described
by the following scalar integro-differential equation: ξ̇(t) = K(t, t)x(t) +

∫ t

0

(
∂

∂t
K(t, τ)

)
x(τ)dτ

ξ(0) = ξ0 = 0

[VKx] (t) = ξ(t),∀t ∈ R>0

(3)

Now, we introduce some useful results dealing with the
application of Volterra operators to the derivatives of a
signal.

Lemma 2.1 (Volterra image of a signal’s deriva-
tive) For a given i ≥ 0, consider a signal u(·) ∈ L2(R≥0)
that admits a i-th weak derivative in R≥0 and a kernel
function K(·, ·) ∈ HS that admits the i-th derivative (in
the conventional sense) with respect to the second argu-
ment, ∀t ∈ R≥0. It holds that:[

VKu(i)
]
(t) =

i−1∑
j=0

(−1)i−j−1u(j)(t)K(i−j−1)(t, t)

+

i−1∑
j=0

(−1)i−ju(j)(0)K(i−j−1)(t, 0)

+(−1)i
[
VK(i) u

]
(t), ∀t ∈ R≥0,

(4)

that is,
[
VKu(i)

]
(·) is non-anticipative with respect to

u(·) and its first (i-1)-th derivatives u(1)(·), . . . , u(i−1)(·).
�

Lemma 2.1 (proved in the Appendix) allows to identify
a class of kernels such that for each derivative u(i), i ∈
{0, · · · , n−1}, the image signal

[
Vku(i)

]
(t), t > 0 is inde-

pendent from the initial states u(0), u(1)(0), · · · , u(i−1)(0),
according to the following definition.

Definition 2 (i-th order non-asymptotic kernel)
Consider a function K(·, ·) satisfying the assumptions of
Lemma 2.1; if, in addition, for a given i ≥ 1, the kernel
verifies the condition

K(j)(t, 0) = 0 ,∀t ∈ R≥0, ∀j ∈ {0, . . . , i−1}, (5)

then, it is called an i-th order non-asymptotic kernel. �

An instance of the kernel function introduced in Defini-
tion 2 will be given in the forthcoming context.

Assuming that K(·, ·) is an n-th order non-asymptotic
kernel function (e.g. BF-NK), then it holds that:

[
VK u(i)

]
(t) =

i−1∑
j=0

(−1)i−1−ju(j)(t)K(i−j−1)(t, t)

+(−1)i[VK(i)u](t), i ∈ {1, . . . , n− 1}.
(6)

Considering the case i = 1, from (6) we get[
VKu(1)

]
(t) = u(t)K (t, t)− [VK(1)u] (t) . (7)

Moreover, changing the kernel function K with K(j), for
any j ∈ {1, . . . , n− 1} we have that also the following
integral equation holds[
VK(j)u(i+1)

]
(t) = u(i)(t)K(j)(t, t)−

[
VK(j+1)u(i)

]
(t) .

(8)
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3 Bivariate Feedthrough Non-asymptotic Ker-
nels

Definition 3 (i-th Order BF-NK) [34] A kernel
K(·, ·) ∈ HS that satisfies the assumptions given in
Lemma 2.1 and that, for a given i ≥ 1, also verifies the
conditions

K(j)(t, t) 6= 0, ∀t 6= 0, ∀j ∈ {0, . . . , i − 1} (9)

is called i-th Order Bivariate Feedthrough Non-
asymptotic (BF-NK) kernel.

Here, we introduce a BF-NK that fulfills (9):

F (t, τ) = e−β(t−τ)(1− e−β̄τ )n, (10)

which is parametrized by the constants β ∈ R>0 and
β̄ ∈ R>0. In view of (10), all the non-asymptoticity con-
ditions up to the n-th order are met thanks to the factor(

1− e−β̄τ
)n

regardless of the choice of β and β̄.

For any i ∈ {0, 1, · · · , n}, the τ derived kernel functions
read:

F (i)(t, τ) = e−βt
di

dτ i
eβτ (1− e−β̄τ )n . (11)

Specializing (3) to the kernel (11) with respect to the si-
nusoidal signal y(t), we have that the transformed signal
[VF (i)y] (t), for any i ∈ {1, 2, · · · , n} can be obtained as
the output of a linear time-varying scalar system. Let-
ting ξ(t) = [VF (i)y] (t), we have that

ξ̇(t) = F (i)(t, t)y(t) +

∫ t

0

(
∂

∂t
F (i)(t, τ)

)
y(τ)dτ

= F (i)(t, t)y(t)− βξ(t), t ∈ R≥0

(12)

with ξ(0) = ξ0 = 0. Being F (i)(t, t) bounded and β
strictly positive, it holds that the scalar dynamical sys-
tem realization of the Volterra operators induced by the
proposed kernels is BIBO stable with respect to y.

4 Finite-time AFP estimation in presence of
bias

It is worth noting that the biased sinusoidal signal y(t)
given in (1) can be thought as generated by a linear
dynamical system governed by the following differential
equation:

y(3)(t) = −Ω∗y(1)(t) (13)

where Ω∗ = ω∗2. Taking the Volterra linear integral op-
erator on both sides of (13), we obtain[

VKy(3)
]

(t) = −Ω∗
[
VKy(1)

]
(t) . (14)

In view of (8), we can expand both sides of (14) by

[
VKy(3)

]
(t) = y(2)(t)K(t, t)−

[
VK(1)y(2)

]
(t)

=
[
VK(2)y(1)

]
(t)−y(1)(t)K(1)(t, t)+y(2)(t)K(t, t)

= y(t)K(2)(t, t)− [VK(3)y ] (t)

−y(1)(t)K(1)(t, t)+y(2)(t)K(t, t)

and

[
VKy(1)

]
(t) = y(t)K (t, t)− [VK(1)y] (t) .

After some algebra, we get

[VK(3)y ] (t)−K(2)(t, t)y(t) +K(1)(t, t)y(1)(t)

−K (t, t)y(2)(t) + Ω∗ ([VK(1)y] (t)−K(t, t)y(t)) = 0 .
(15)

Consider three BF-NKs (10) denoted by F1, F2 and F3

with n = 3

Fh(t, τ) = e−βh(t−τ)(1− e−β̄τ )3 (16)

where βh ∈ R>0, ∀h = {1, 2, 3} and β̄ are set by the
designers such that

βi 6= βj , for i 6= j . (17)

Then let us rewrite (15) with respect to F1, F2 and F3,
obtaining the following three equations:

[
VF1

(3)y
]

(t)− F (2)
1 (t, t)y(t) + F

(1)
1 (t, t)y(1)(t)

− F1(t, t)y(2)(t) + Ω∗
([
V
F

(1)
1

y
]

(t)− F1(t, t)y(t)
)

= 0,

(18a)[
VF2

(3)y
]

(t)− F (2)
2 (t, t)y(t) + F

(1)
2 (t, t)y(1)(t)

− F2(t, t)y(2)(t) + Ω∗
([
V
F

(1)
2

y
]

(t)− F2(t, t)y(t)
)

= 0,

(18b)[
VF3

(3)y
]

(t)− F (2)
3 (t, t)y(t) + F

(1)
3 (t, t)y(1)(t)

− F3(t, t)y(2)(t) + Ω∗
([
V
F

(1)
3

y
]

(t)− F3(t, t)y(t)
)

= 0 .

(18c)
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Now, it is convenient to introduce the following auxiliary
signals: 1

κa,h(t) ,
[
VFh(3)y

]
(t)− F (2)

h (t, t)y(t)

κb,h(t) , F
(1)
h (t, t)

κc,h(t) , −Fh(t, t)

κd,h(t) ,
[
V
F

(1)

h

y
]

(t)− Fh(t, t)y(t), ∀h = 1, 2, 3 .

(19)

In view of (16), it is worth noting that

F1(t, t) = F2(t, t) = F3(t, t), ∀t ≥ 0 (20)

which implies that

κc,1(t) = κc,2(t) = κc,3(t), ∀t ≥ 0. (21)

In the following, we show that the signals
[
VFh(3)y

]
(t)

and
[
V
F

(1)

h

y
]

(t) appearing in κa,h(t) and κd,h(t), respec-

tively, can be obtained as the output of a linear time-
varying system. To this end, let us define the internal
state vector

ξ(t) ,
[
ξβ1

(t)>, ξβ2
(t)>, ξβ3

(t)>
]> ∈ R6

with ξβh(t) ∈ R2, ∀h ∈ {1, 2, 3} in turn defined as

ξβh(t) ,

[[
V
F

(1)

h

y
]

(t),
[
V
F

(3)

h

y
]

(t)

]>
.

In view of (12), the time evolution of the observer’s in-
ternal state vector ξ(t) is described by

ξ̇(t) = Gξξ(t) + Eξ(t)y(t) , (22)

with ξ(0) = 0 and where Gξ ∈ R6×6 is a diag-
onal, time invariant and Hurwitz matrix, defined
by Gξ = blockdiag[Gξ1 , Gξ2 , Gξ3 ], with Gξh =
diag(−βh) ∈ R2×2, while the time-varying input matri-
ces Eξ(t) ∈ R6 can be expressed as

Eξ(t) =


Eξ1(t)

Eξ2(t)

Eξ3(t)

 ,
1 It is worth noting that the signals (19) are either kernel-
dependent (and thus a priori known functions of time)
or computable by processing the measurement y(t) by the
Volterra operators.

where Eξh(t) ∈ R2 are given by:

Eξh(t) =

[
F

(1)
h (t, t)

F
(3)
h (t, t)

]
.

Finally, κa,h(t) and κd,h(t) can be expressed in terms of
the scalar elements of ξ(t):

κa,h(t) , ξ2h(t)− F (2)
h (t, t)y(t)

κd,h(t) , ξ2h−1(t)− Fh(t, t)y(t), ∀h = 1, 2, 3.
(23)

Substituting (19) into (18a)-(18c), after some algebra we
can eliminate the variables, y(1)(t) and y(2)(t) from the
system, obtaining equation (24) that has Ω∗ as the only
unknown (for brevity, we have dropped the dependence
of all variables on t):

κa,3κb,2κ
2
c,1 − κa,3κb,1κc,1κc,2 + κa,1κb,3κc,1κc,2

− κa,2κb,3κ2
c,1 + κa,2κb,1κc,1κc,3 − κa,1κb,2κc,1κc,3

+ Ω∗
(
κb,3κc,1κc,2κd,1 − κb,3κ2

c,1κd,2

+κb,1κc,1κc,3κd,2 − κb,2κc,1κc,3κd,1
+κb,2κ

2
c,1κd,3 − κb,1κc,1κc,2κd,3

)
= 0 . (24)

Let us rearrange the left-hand-side of (24) by using the
relationship (21) and by extracting the variables indexed
by a and d respectively, thereby getting

κa,1(κb,3 − κb,2) + κa,2(κb,1 − κb,3) + κa,3(κb,2 − κb,1)

+ Ω∗ (κd,1(κb,3 − κb,2) + κd,2(κb,1 − κb,3)

+κd,3(κb,2 − κb,1)) = 0 ,

which, in turn, can be rearranged in vector form as fol-
lows:

κ>a (t)F(t, t) = −Ω∗κ>d (t)F(t, t) , (25)

withκa(t) = [κa,1 κa,2 κa,3]>, κd(t) = [κd,1 κd,2 κd,3]>

and

F(t, t) =


F1(t, t)

F2(t, t)

F3(t, t)

 =


κb,3 − κb,2
κb,1 − κb,3
κb,2 − κb,1


that depends only on the kernels Fh(t, t), h = 1, 2, 3 in
correspondence with κb,h(t) and κc,h(t) defined in (19).
By rewriting (25) in a compact form, we finally obtain
the following equality:

κ1(t) = −Ω∗κ2(t) (26)

with κ1(t) = κ>a (t)F(t, t), κ2(t) = κ>d (t, t)F(t).

Note that, due to the positivity of the squared frequency,
it also holds that:

|κ1(t)| = Ω∗|κ2(t)| . (27)
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Applying to both sides of (27) the linear operator VKg ,

with kernel Kg(t, τ) = e−g(t−τ), g ∈ R>0, we have that

Ω∗[VKg |κ2(t)|](t) = [VKg |κ1(t)|](t) . (28)

Defining γi(t) , [VKg |κi(t)|](t), i = 1, 2, it follows that
γ1(t) and γ2(t) obey the differential equations:

γ̇1(t) = |κ1(t)| − gγ1(t)

γ̇2(t) = |κ2(t)| − gγ2(t)
(29)

with γ1(0) = γ2(0) = 0. Finally, in view of (28) we
have that Ω∗ verifies the following constraint for any t:
γ1(t) = γ2(t)Ω∗. When an estimate Ω̂(t) of the squared
frequency is available, we have that the constraint is not
met when Ω̂ 6= Ω∗ and a residual term can be introduced:

RΩ(t) = γ1(t)− γ2(t)Ω̂(t) .

The following technical result (the proof is reported in
the Appendix) characterizes a persistency of excitation
(PE) on signal κ2 that will be used in the following to
devise a sliding mode-based adaptation law for frequency
estimation. 2

Lemma 4.1 (Persistency of Excitation) Given the
sinusoidal measurement y(t) and the designed ker-
nels (16), for any sinusoidal signal with non-zero ampli-
tude, there exists ε ∈ R>0 and tε ∈ R>0 such that

1

tε

∫ t

t−tε
|κ2(τ)|dτ ≥ ε, ∀t ≥ tε . (30)

Owing to (29) and (30), the signal γ2(t) (driven by
|κ2(t)|) is ensured to be positive for all t ≥ tε, as shown
below:

γ2(t)≥
∫ t

t−tε
e−g(t−τ)|κ2(τ)|dτ

≥e−gtε
∫ t

t−tε
|κ2(τ)|dτ

≥tεεe−gtε .

(31)

Let δε , tεεe
−gtε , then the following adaptation law,

2 The PE condition introduced in this paper is a slightly
modified version of the classical one available in the literature
(see, for instance, [2])

exploiting the residual signal R(Ω̂, t), is proposed:

˙̂
Ω(t)=


γ2(t)

−1
(
ηΩ(t) + L1

√
|RΩ(t)| sign(RΩ(t))

−Ω̂(t)γ̇2(t) + γ̇1(t)
)
, if γ2(t) ≥ δε,

0, otherwise.

η̇Ω(t) = L2 sign(RΩ(t))

(32)

with Ω̂(0) > 0 set arbitrarily and ηΩ(0) = 0, L1, L2 ∈
R>0 are constant gains set by the designer. The system
(32) with sign(·) is understood in the Filippov sense [17].

Later, in Section 5, we will show that the frequency adap-
tation algorithm (32) is able to identify the squared-
frequency in finite-time in a noise-free scenario, while the
estimation error is ISS in presence of measurement noise.
Compared to the preliminary work [33] that exploits a
first order sliding mode-based adaptation law, the use
of a second order sliding mode (see [27] and [44]) allows
a significant suppression of the chattering phenomenon,
which will be highlighted in the simulation results pro-
vided in Section 6. Moreover, the time-based switching
condition in [33] is enhanced by a more robust switch-
ing mechanism that depends on a known signal and the
above excitation condition.

Now, with the aim of estimating the amplitude of the
sinusoid in finite time, we will exploit a further structural
constraint verified by the derivatives of the measured
signal. Indeed, thanks to (18a)÷(18c) and introducing
the signals

ρh(Ω∗, t) = κa,h(t) + Ω∗κd,h(t), h = 1, 2, 3 ,

it follows that the derivatives verify the following iden-
tities:


y(1)(t) =

F1(t, t)ρ2(Ω∗, t)− F2(t, t)ρ1(Ω∗, t)

F
(1)
1 (t, t)F2(t, t)− F1(t, t)F

(1)
2 (t, t)

,

y(2)(t) =
F

(1)
1 (t, t)ρ2(Ω∗, t)− F (1)

2 (t, t)ρ1(Ω∗, t)

F
(1)
1 (t, t)F2(t, t)− F1(t, t)F

(1)
2 (t, t)

(33)

if F
(1)
1 (t, t)F2(t, t)− F1(t, t)F

(1)
2 (t, t) 6= 0, and


y(1)(t) =

F1(t, t)ρ3(Ω∗, t)− F3(t, t)ρ1(Ω∗, t)

F
(1)
1 (t, t)F3(t, t)− F1(t, t)F

(1)
3 (t, t)

,

y(2)(t) =
F

(1)
1 (t, t)ρ3(Ω∗, t)− F (1)

3 (t, t)ρ1(Ω∗, t)

F
(1)
1 (t, t)F3(t, t)− F1(t, t)F

(1)
3 (t, t)

(34)

if F
(1)
1 (t, t)F2(t, t)− F1(t, t)F

(1)
2 (t, t) = 0. The above ex-

pressions are always well-posed (singularity-free) for any
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t > 0 if

F
(1)
1 (t, t)F2(t, t)− F1(t, t)F

(1)
2 (t, t) 6=

F
(1)
1 (t, t)F3(t, t)− F1(t, t)F

(1)
3 (t, t), ∀t > 0. (35)

In the following, we show that the relationship (35) holds
for any t > 0. Thanks to (20), we have

F
(1)
1 (t, t)F2(t, t) = F

(1)
1 (t, t)F3(t, t).

According to the following implications

F
(1)
2 (t, t)− F (1)

3 (t, t) = (β2 − β3)(1− e−β̄t)3 6= 0 ,

=⇒ F
(1)
2 (t, t) 6= F

(1)
3 (t, t), ∀t > 0 ,

=⇒ F1(t, t)F
(1)
2 (t, t) 6= F1(t, t)F

(1)
3 (t, t), ∀t > 0 ,

the condition (35) is immediately verified.

By deriving twice (1) with respect to time, we have
that the true squared-frequency Ω∗ verifies the following
structural constraint:

Ω∗y(1)(t)2 + y(2)(t)2 = A∗2Ω∗2 . (36)

Applying to both sides of (36) the linear operator VKga ,

with kernel Kga(t, τ) = e−ga(t−τ), ga ∈ R>0, we have
that[
VKga

√
Ω∗y(1)(t)

2
+ y(2)(t)

2
]

(t) = A∗[VKgΩ∗](t).

(37)

When only the estimates Ω̂(t) of Ω, Â(t) of A∗, and

ŷ(i)(t) of y(i)(t) are available (the estimated derivatives

can be obtained from (33), (34) by using Ω̂(t) in place

of Ω∗, thus becoming exact in finite time after Ω̂ has
converged to Ω∗), we have that the constraint (37) is not

met in general unless Â(t) = A∗, in general, so that we
can introduce a time-varying residual that depends on

the frequency estimate Ω̂(t) and on the estimates ŷ(1)(t)

and ŷ(2)(t) obtained by (33) and (34):

RA(t) ,

[
VKga

√
Ω̂(t)(ŷ(1)(t))2 + (ŷ(2)(t))2

]
(t)

− Â(t)[VKg Ω̂(t)](t)

= γA1
(t)− Â(t)γA2

(t), ∀t ≥ tε + TΩ

in which TΩ is the upper bound on finite time of conver-
gence for system (32) defined in (45)

γ̇A1
(t) = ψ(t)

(√
Ω̂(ŷ(1)(t))2 + (ŷ(2)(t))2 − gaγA1

(t)

)
,

γ̇A2
(t) = ψ(t)

(
Ω̂(t)− gaγA2

(t)
)
,

with γA1(0) = γA2(0) = 0, ψ(t) a binary on-off switching
signals: ψ(t) = 1, ∀t ≥ tε + TΩ, ψ(t) = 0, ∀t < tε + TΩ.
The following adaptation law based on the second order
sliding mode can be designed

˙̂
A(t)=


γA2

(t)
−1
(
ηA(t) + L3

√
|RA(t)| sign(RA(t))

−Â(t)γ̇A2
(t) + γ̇A1

(t)
)
, ∀t > tε + TΩ,

0, otherwise.

η̇A(t) = L4 sign(RA(t))

(38)

with Â(t) = Â(0) = 0, ∀t ≤ tε+TΩ and where L3, L4 ∈
R>0 are tuning gains set by the designer to steer the
residual term RA(t) to 0 in finite-time. Note that the
invertibility of γA2

(t) is verified for any t > tε + TΩ

due to the positiveness of Ω̂(t). Finally, the phase of the
sinusoidal signal can be easily estimated as follows:

ϑ̂(t) = ∠
[
ŷ(2)(t) + jω̂(t)ŷ(1)(t)

]
, ∀t ≥ tε + TΩ . (39)

where j denotes the complex imaginary unit.

5 Finite-time convergence and robustness anal-
ysis in presence of bounded measurement
noise

In this section, we first address the convergence proper-
ties of the proposed estimator in the absence of external
perturbations. Subsequently, the stability properties in
the case of noisy measurements are analyzed.

5.1 Noise-free scenario

The main result consists in the following theorem.

Theorem 5.1 Given the sinusoidal signal y(t), the esti-

mated frequency Ω̂(t) that is governed by the adaptation
law given by (32) converges to the true value Ω∗ in finite
time. �

Proof. Assuming that the noise-free measurement y(t)
is available, we show that the residuals RΩ and RA con-
verge to zero in finite-time. Thanks to inequality (30)
given in Lemma 4.1, the finite-time convergence of the
residuals implies also the deadbeat convergence of Ω̂(t)

and Â(t) to Ω∗ and A∗, respectively. The dynamics of
RΩ(t) obeys the following differential equation:

Ṙ(Ω̂, t) = γ̇1(t)− γ̇2(t)Ω̂(t)− γ2(t)
˙̂
Ω(t) . (40)

For t ≥ tε, by substituting the adaptation law in (40),
we have

ṘΩ(t) = −ηΩ(t)− L1

√
|RΩ(t)| sign(RΩ(t)) . (41)
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Consider an auxiliary variable vector ζ(t)=[ζ1(t), ζ2(t)]>

where ζ1(t) =
√
|RΩ(t)| sign(RΩ(t)), ζ2(t) = ηΩ(t).

Then:

ζ̇(t) =
1√
|RΩ(t)|

Mζ(t), ∀RΩ(t) 6= 0 (42)

where

M =

−1

2
L1 −

1

2
L2 0


with spectrum λ{M} =

−L1±
√
L2

1−8L2

4 . Being M Hur-
witz, there always exists a positive symmetric matrix P
that solves the linear Lyapunov equation M>P+PM =
−2qI. Now, let us introduce a quadratic function VΩ =
ζ>Pζ, which can be expanded as

VΩ(t) = p11|RΩ(t)|+ p22ηΩ(t)2

+ 2p12

√
|RΩ(t)| sign(RΩ(t))ηΩ(t) , (43)

with pij the components of the matrix P. Note that, by
taking the limit

lim
ζ1→0

VΩ(ζ) = p22ηΩ(t)2

we can rewrite (43) in the following way:

VΩ(ζ) =

{
ζ>Pζ, if ζ1(t) 6= 0

p22ζ
2
2 , if ζ1(t) = 0

.

After some algebra, the time-derivative of VΩ(t) along
the trajectories of the system (42) can be written as:

V̇Ω(t) =


− 2q√
|RΩ(t)|

|ζ(t)|2, if ζ1(t) 6= 0 ,

0, if ζ1(t) = 0 .

Clearly, ζ1(t) will stay in 0 when it crosses zero. In case

ζ1(t) 6= 0, using the facts that |RΩ(t)|−1/2
= |ζ1(t)|−1 >

|ζ(t)|−1
and VΩ(t) ≤ p|ζ(t)|2 with p , max eig(P),

V̇Ω(t) can be bounded as

V̇Ω(t) ≤− 2q

|ζ(t)|
|ζ(t)|2

≤− 2q√
p
VΩ(t)

1
2 .

(44)

In view of the Lyapunov-based finite-time convergence
result presented in [1], then (44) implies that ζ(t) → 0
with a guaranteed reaching-time TΩ(VΩ(tε)) verifying
the inequality:

TΩ(VΩ(tε)) ≤
√
VΩ(tε)p

q
, TΩ. (45)

Finally, noting that ζ(t) → 0 implies RΩ(t) → 0, then

we can conclude that Ω̂(t)→ Ω∗ in finite-time. �

In the noise-free condition, the frequency estimate co-
incides with the true frequency, i.e. Ω̂(t) = Ω∗ for
all t > tε + TΩ(VΩ(tε)), which makes it possible to
prove the finite-time convergence of the estimated
amplitude Â(t) ruled by (38) to A∗. By defining

ζA(t) = [
√
|RA(t)| sign(RA(t)), ηA(t)]>, then

ζ̇A(t) =
1√
|RA(t)|

MAζA(t), ∀RA 6= 0

where

MA =

−1

2
L3 −

1

2
L4 0

 .
Consider a positive symmetric matrix PA that solves
the Lyapunov equation M>

APA+PAMA = −2qAI. The
convergence time verifies the upper bound:

TA(VA(tε + TΩ(VΩ(tε)))) ≤
√
VA(tε + TΩ(VΩ(tε)))p̄A

qA
.

(46)

where pA , max eig(PA). Thus, the finite time conver-
gence of the amplitude estimate occurs at time:

tε + TΩ(VΩ(tε)) + TA(VA(tε + TΩ(VΩ(tε)))) .

This result can be proved by following the same steps
taken to prove the finite-time convergence of the fre-
quency estimate and is therefore omitted for the sake of
brevity.

Remark 1 Note that the square root term
√
|RΩ(t)|

and
√
|RA(t)| respectively appear in the adaptation laws

(32) and (38) can be replaced by any power within (0, 1)
without violating the finite-time convergence property.
Since a detailed discussion of this subject is beyond the
scope of the present article, the reader is referred to [1,28]
for more details.

5.2 Noisy scenario

Now, we consider a scenario in which the sinusoidal mea-
surement is corrupted by a norm-bounded additive dis-
turbance d(t): |d(t)| ≤ d̄, such that ŷ(t) , y(t) + d(t).

Let us rewrite (22) introducing the disturbance term
d(t):

˙̂
ξ(t) = Gξ̂(t) + E(t)(y(t) + d(t)) (47)

and the error ξ̃(t) = ξ̂(t)−ξ(t). Then, the error dynamics
can be expressed by

˙̃
ξ(t) = Gξ̃(t) + E(t)d(t) .
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Being the matrix G Hurwitz, and E(t)d(t) bounded, ξ̃(t)
is ISS with respect to E(t)d(t). Each element of the vec-

tor ξ̃(t) , [ξ̃1(t), ξ̃2(t), · · · , ξ̃6(t)] verifies the inequali-
ties depending on the parity of the index:

|ξ̃2h−1(t)| ≤ e−βhtε ξ̃2h−1(0) +
1

βh
sup

0≤τ<t
|F (1)
h (τ, τ)|d̄,

∀h ∈ {1, 2, 3}, ∀t ≥ tε .

|ξ̃2h(t)| ≤ e−βhtε ξ̃2h(0) +
1

βh
sup

0≤τ<t
|F (3)
h (τ, τ)|d̄,

∀h ∈ {1, 2, 3}, ∀t ≥ tε .

Let us denote the upper bound of |ξ̃2h−1(t)| and |ξ̃2h(t)|
by ξ̃2h−1 and ξ̃2h, respectively, such that

ξ̃2h−1 , e
−βhtε ξ̃2h−1(0) +

1

βh
sup

0≤τ<t
|F (1)
h (τ, τ)|d̄

ξ̃2h , e
−βhtε ξ̃2h(0) +

1

βh
sup

0≤τ<t
|F (3)
h (τ, τ)|d̄

From (23), we have error signals κ̃a,h(t) , κ̂a,h(t) −
κa,h(t), κ̃d,h(t) , κ̂d,h(t)− κd,h(t) follow that

|κ̃a,h(t)| = |ξ̃2h(t)− F (2)
h (t, t)d(t)|

≤ ξ̃2h + sup
0≤τ<t

|F (2)
h (τ, τ)|d̄

|κ̃d,h(t)| = |ξ̃2h−1(t)− Fh(t, t)d(t)|
≤ ξ̃2h−1 + sup

0≤τ<t
Fh(τ, τ)d̄

and then |κ̃1(t)|, |κ̃2(t)| that are bounded by

|κ̃1(t)| = |κ̂1(t)− κ1(t)| = |κ̃>a (t)F(t, t)|
≤ |κ̃a(t)|1|F(t, t)|1

=

(
3∑

h=1

ξ̃2h + sup
0≤τ<t

|F (2)
h (τ, τ)|d̄

)
3∑

h=1

sup
0≤τ<t

|Fh(τ, τ)|

|κ̃2(t)| = |κ̂2(t)− κ2(t)| = |κ̃>d (t)F(t, t)|
≤ |κ̃d(t)|1|F(t, t)|1

=

(
3∑

h=1

ξ̃2h−1 + sup
0≤τ<t

Fh(τ, τ)d̄

)
3∑

h=1

sup
0≤τ<t

|Fh(τ, τ)|

are ISS bounded with respect to ξ̃(t). Moreover, ξ(t) and
the kernels are bounded, thus implying the boundedness
of κ1(t), κ2(t) and κ̂1(t), κ̂2(t). For the sake of further

analysis, let

κ̃1(d̄) ,

(
3∑

h=1

ξ̃2h + sup
0≤τ<t

|F (2)
h (τ, τ)|d̄

)

×
3∑

h=1

sup
0≤τ<t

|Fh(τ, τ)|

and

κ̃2(d̄) ,

(
3∑

h=1

ξ̃2h−1 + sup
0≤τ<t

Fh(τ, τ)d̄

)

×
3∑

h=1

sup
0≤τ<t

|Fh(τ, τ)| .

From inequality (30), for all t ≥ tε, it holds that

1

tε

∫ t

t−tε
|κ̂2(τ)|dτ ≥ 1

tε

∫ t

t−tε
|κ2(τ)| − |κ̃2(τ)|dτ

≥ ε− 1

tε

∫ t

t−tε
|κ̃2(τ)|dτ

≥ ε− κ̃2(d̄)

= ε− σ(d̄)

where

σ(d̄) , κ̃2(d̄) . (48)

Now, consider γ̂1(t) and γ̂2(t) (i.e., the noisy coun-
terparts of γ1(t), γ2(t)). The following dynamic filters
driven by the norm of the noisy auxiliary signals |κ̂1(t)|
and |κ̂2(t)|, respectively, are introduced:

˙̂γ1(t) = |κ̂1(t)| − gγ̂1(t)

˙̂γ2(t) = |κ̂2(t)| − gγ̂2(t) .
(49)

By analogy with (31), we have

γ̂2(t) =

∫ t

t−tε
e−g(t−τ)|κ̂2(τ)|dτ

≥ tεe−gtε(ε− σ(d̄)), ∀t ≥ tε .

To make γ̂2(t) strictly positive for t ≥ tε, we impose
another constraint on the disturbance bound:

d̄ < σ−1(ε) .

Let us denote by δ̂ε , tεe
−gtε(ε − σ(d̄)) the transi-

tion threshold that determines the triggering time of
the adaptation. Then the following implementable fre-
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quency adaptation law in the noisy case is proposed:

˙̂
Ω(t)=


γ̂2(t)

−1

(
η̂Ω(t) + L1

√
|R̂Ω(t)| sign(R̂Ω(t))

−Ω̂(t) ˙̂γ2(t) + ˙̂γ1(t)
)
, if γ̂2(t) ≥ δ̂ε,

0, otherwise.

˙̂ηΩ(t) = L2 sign(R̂Ω(t))

(50)

where R̂Ω(t) = γ̂1(t)− γ̂2(t)Ω̂(t).

The following result characterises the stability proper-
ties of the adaptive estimation law (50).

Theorem 5.2 Given the sinusoidal signal y(t) and the
perturbed measurement ŷ(t), the estimated frequency

Ω̂(t) that evolves according to the adaptation law given
by (50), enters into a neighborhood of Ω∗ in finite-time

and the frequency estimation error Ω̃(t) = Ω̂(t) − Ω∗ is
ISS, with respect to any disturbance signal d(t) ∈ L1

∞
such that d̄ < σ−1(ε), where σ(·) is defined in (48). �

Proof. Consider the error variables: γ̃1(t) , γ̂1(t) −
γ1(t) and γ̃2(t) , γ̂2(t) − γ2(t). (29) implies that the
dynamics of the error variables obeys the following dif-
ferential equation:

˙̃γi(t) = |κi(t) + κ̃i(t)| − |κi(t)| − gγ̃i(t), i = 1, 2

By using the triangle inequality, we obtain

˙̃γi(t) ≤ |κ̃i(t)| − gγ̃i(t), i = 1, 2

that, in turn, lead to the following bounds ∀t ≥ tε:

|γ̃1(t)| ≤ e−gtε γ̃1(0) +
1

g
κ̃1(d̄),

|γ̃2(t)| ≤ e−gtε γ̃2(0) +
1

g
κ̃2(d̄) .

Finally, it turns out that γ̃1(t) and γ̃2(t) are ISS with

respect to ξ̃(t) and d̄.

Following the same steps taken in the disturbance-free
condition, we introduce the noisy counterpart of the

auxiliary variable vector ζ̂(t) = [ζ̂1(t), ζ̂2(t)]>, where

ζ̂1(t) =

√
|R̂Ω(t)| sign(R̂Ω(t)), ζ̂2(t) = η̂Ω(t), and ζ̂(t)

obeys the differential equations:

˙̂
ζ(t) =

1√
|R̂Ω(t)|

Mζ̂(t), ∀R̂Ω(t) 6= 0 (51)

Analogously, the residual R̂Ω(t) can be proven to remain

bounded. From the equality R̂Ω(t) = γ̂1(t) − γ̂2(t)Ω̂(t),
we have that

Ω̂(t) =
γ̂1(t)

γ̂2(t)
, ∀t ≥ tε + TΩ(VΩ(tε))

in which TΩ(VΩ(tε)) is the time of convergence. It turns
out that the proven boundedness of γ̂1(t), γ̂2(t) and in-

equality (30) imply the boundedness of Ω̂(t) for all t > 0.

Moreover, the frequency estimates Ω̂(t) will enter into
the compact region

Ω̂(t) ∈
[

inf
0≤τ<t

∣∣∣∣ γ̂1(τ)

γ̂2(τ)

∣∣∣∣ , sup
0≤τ<t

∣∣∣∣ γ̂1(τ)

γ̂2(τ)

∣∣∣∣] ,
∀t ≥ tε + TΩ(VΩ(tε)).

which contains Ω∗. Hence, the estimation error Ω̃(t) =

Ω̂(t)− Ω∗ is ISS with respect to d̄. �

Concerning the amplitude estimation in noisy condi-
tions, analogously to the disturbance-free case, we intro-
duce the perturbed residual signal

R̂A(t) ,

[
VKga

√
Ω̂(t)(ŷ(1)(t))2 + (ŷ(2)(t))2

]
(t)

− Â(t)[VKg Ω̂(t)](t)

= γ̂A1
(t)− Â(t)γ̂A2

(t), ∀t ≥ tε + TΩ(VΩ(tε))

with

˙̂γA1(t) = ψ(t)

(√
Ω̂(ŷ(1)(t))2 + (ŷ(2)(t))2 − gaγ̂A1

(t)

)
˙̂γA2(t) = ψ(t)

(
Ω̂(t)− gaγ̂A2(t)

)
and ŷ(1)(t), ŷ(2)(t), computed by (33)-(34) with the sub-

stitution of ρ̂h(Ω̂, t) , κ̂a,h(t) + Ω̂(t)κ̂d,h(t), h = 1, 2, 3
in place of ρh(Ω∗, t).

Then, the implementable amplitude adaptation law in
the presence of the disturbance d(t) is given by

˙̂
A(t)=


γ̂A2

(t)
−1

(
η̂A(t) + L3

√
|R̂A(t)| sign(R̂A(t))

−Â(t) ˙̂γA2(t) + ˙̂γA1(t)
)
, ∀t > tε + TΩ,

0, otherwise.

˙̂ηA(t) = L4 sign(RA(t))

(52)

where Â(t) = Â(0) = 0, ∀t ≤ tε + TΩ.
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Thanks to the boundedness of the Ω̂(t), κ̂a,h and κ̂d,h,

it is straightforward to show that ŷ(1)(t), ŷ(2)(t) are
bounded in presence of disturbances. Following the
same stability analysis carried out for the frequency
estimator, we immediately prove that Â(t) converges to
γ̂A1(t)/γ̂A2(t) in finite-time.

6 Simulation results

In this section, extensive numerical examples are given
to illustrate the effectiveness of the proposed deadbeat
AFP methodology. Several comparisons with other al-
gorithms are included. Moreover, the effect of the dis-
cretization algorithm is evaluated in Example 1 compar-
ing Euler and Runge-Kutta tools. In the other examples,
Euler discretization is used.

Example 1. Consider the measured sinusoidal signal:

ŷ(t) = 3 sin 5 t+ d(t),

where d(t) is a zero-mean Gaussian white random dis-
turbance with variance σ2. We consider a sampling time
of 1×10−4s with 4-th order Runge-Kutta discretization.
The proposed method is equipped with three BF-NKs
having parameters: β1 = 1, β2 = 2, β3 = 3, β̄ = 2.5 also
we let g = ga = 25, L1 = 30, L2 = 2, L3 = 300, L4 = 5
and δε = 10−5. In Fig. 1, the variance of the frequency es-
timate is compared with the Cramer-Rao bound, show-
ing the effectiveness of the estimator in a noisy sce-
nario (analogous results for the variance of the ampli-
tude and phase estimates can be obtained – not reported
for brevity).
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Fig. 1. Comparison of the Cramer-Rao bound and the vari-
ance of the frequency estimator on a 30 sample-time-window.

For practical implementation, it is important to anal-
yse the influence of discretization and of the order of
the sliding-mode adaptation scheme. This evaluation is
made on the biased measured sinusoidal signal:

ŷ(t) = 2 + 3 sin 5 t+ d(t),

where d(t) the random noise is uniformly distributed in
the interval [−0.25, 0.25], and we compare the proposed
method with the recent one given in [33] (with the same
initial conditions and tuned to show approximately the
same initial transient in absence of noise). Results are
shown in Fig. 2. The proposed technique shows supe-
rior performance compared to the one in [33] when a
simple Euler discretization is employed whereas using
a Runge-Kutta discretization, the two algorithms show
similar performance. It is observed that the chattering
phenomenon in steady state is significantly mitigated by
using a higher order sliding mode adaptation scheme.

Example 2. In this example, the proposed deadbeat
estimator is compared with a classical exponentially-
converging algorithm, namely the one presented in [42],
where the measured noisy signal is:

y(t) = 40 sin(100t+ 229.18◦) + d(t)

with d(t) denoting a bounded disturbance with uni-
form distribution in the interval [−0.5, 0.5]. As shown in
Fig. 3, the proposed estimator is characterized by faster
convergence, much better transient and steady-state
accuracy. As is well known, the finite-time convergence
to the residual set of algorithms like [42] can be fur-
ther reduced at the price of higher noise-sensitivity and
larger overshoots. Such a trade-off does not arise in the
methodology presented in the paper.

Example 3. In this example, we aim at comparing
the proposed deadbeat methodology with two finite-
time frequency estimation techniques presented in [29]
and [40], To this end, consider the biased signal used
in [29]:

y(t) = 2 + 3 sin(4t+ π/4). (53)

First, we address the comparison with algorithm [29]

whose adaptation law is initialized by Θ̂1(0) = [0, 0, 0]>,
while the learning gain and the other coefficients are
set as Γ1 = diag([50, 500, 500]), λ1 = 2.5, λ2 = 5, l =
1, κ = 0.001. Our algorithm method is tuned by β1 =
1, β2 = 2, β3 = 3, β̄ = 2.5, g = 3, L1 = 30, L2 =
2, δε = 1 × 10−4 and the same initial frequency guess
Ω̂(0) =

√
5. The comparison is reported in Fig. 4. It can

be noticed that the proposed method shows a signifi-
cantly better performance both in noise-free and noisy
scenarios (the measurement noise has the same charac-
teristics as in the previous example).

It is worth noting that, the proposed estimation method-
ology inherently annihilates the effects of the (unknown)
initial conditions. To enhance this significant feature, in
Fig. 5 simulations referred to different initial conditions
in a noise-free scenario and using the same input sig-
nal (53) are reported. As can be noticed, unlike algo-
rithm [29], the proposed method yields in finite-time the
same estimate of the frequency, irrespective of the initial
conditions.
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Fig. 2. Time-behavior of the estimated frequency by using the proposed method and the method [33]: (a) and (b) noise-free
scenario with 4-th order Runge-Kutta and Euler discretization, respectively; (c) and (d) noisy scenario with 4-th order
Runge-Kutta and Euler discretization, respectively.
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Fig. 3. Time-behavior of the estimated frequency by using
the proposed method and the asymptotic method [42] in
noisy scenario.

For completeness, in Fig. 6 we show the performance of
the amplitude estimator and the behavior of the recon-
structed sinusoid to appreciate the accuracy of the phase
estimate.

As a second comparison with a finite-time frequency
estimation technique, we now consider the alge-
braic method illustrated in [40]. The sinusoidal in-
put (53) is rewritten as (Prony’s problem) y(t) =
2 + 3

2e
j(4t+π/4) + 3

2e
j(−4t−π/4) and is processed by the

algorithm in [40] with the order n equal to 2. Both
methods are tuned to show a similar transient behav-
ior in the noise-free scenario (see Fig. 7(a)). Under the
same conditions, we also compare the behavior of the
techniques in the presence of d(t) which is assumed
uniformly distributed in [−0.25, 0.25]. As shown in
Fig. 7(b), the algebraic method [40] is susceptible to
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Fig. 4. Time-behavior of the estimated frequency by using
the proposed method (blue line) compared with the time
behavior of the estimated frequency obtained by the method
[29] (red line): (a) noise-free case; (b) noisy case.

numerical problems in the noisy scenario because of the
lack of internal stability.

Example 4. This last comparison example is devoted
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Fig. 5. Time-behavior of the estimated frequency with dif-
ferent initial conditions: (a) algorithm [29]; (b) proposed al-
gorithm.
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Fig. 6. (a) Time-behavior of the amplitude estimate; (b)
time-behavior of the reconstructed sinusoidal signal.

to apply the proposed deadbeat AFP estimator to the
more challenging scenario in which the following biased
and noisy sinusoidal signal is considered:

ŷ(t) = A0(t) +A(t) sin(2πf(t) t) + d(t),

where the amplitude, frequency and the offset change
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Fig. 7. Time-behavior of the estimated frequency by using
the proposed method (blue line) compared with the time be-
havior of the estimated frequency obtained by the algebraic
method [40] (red line): (a) noise-free case; (b) noisy case.

over time according to the following pattern: A(t) =
10, f(t) = 50Hz, A0(t) = 1, 0 ≤ t < 0.5, A(t) =
12, f(t) = 52Hz, A0(t) = 0.8, 0.5 ≤ t < 1. d(t) is a ran-
domly generated perturbation with uniform distribution
in the interval [-0.5, 0.5]. The performance of our algo-
rithm is compared with the frequency estimation modu-
lation function technique presented in [14]. The param-
eters of the algorithm [14] are set as T = π/10, n =
500, µ = 0.99, K = 6. The proposed method is equipped
with three kernels having parameters: β1 = 50, β2 =
80, β3 = 100, β̄ = 60, while g = 30, ga = 100, L1 =
2× 104, L2 = 20, L3 = 1× 105, L4 = 50.

Theoretically, the algorithm in [14] identifies the true
frequency “almost instantaneously” as it is enabled,
whereas the proposed method is theoretically able to
achieve finite-time convergence with a “tunable” con-
vergence rate determined by the parameters L1, L2.
The comparison is shown in Fig. 8. The two algorithms
are tuned with similar response to the initial frequency

and the same initial condition f̂(0) = 48Hz for fair
comparison. Although both methods track satisfacto-
rily the frequency step-change, the proposed estimator
performs slightly better in terms of robustness against
measurement noise.

For completeness, in Fig. 9 we show the performance of
the amplitude estimator and the behavior of the recon-
structed sinusoid to appreciate the accuracy of the phase
estimate (the algorithm in [14] only provides a frequency
estimator).
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Fig. 9. (a) Time-behavior of the amplitude estimate; (b)
time-behavior of the reconstructed sinusoidal signal.

7 Concluding remarks

In this paper, the problem of AFP identification from
a noisy and biased measurement has been addressed. A
novel estimator is proposed to provide reliable frequency
estimates almost instantaneously. The method consists
in processing the measured signal with Volterra opera-
tors, to obtain auxiliary signals that are used in combi-
nation with second-order sliding mode adaptation laws
to estimate the frequency, the amplitude and the phase
of the original signal. This algorithm has been proved
to be finite-time convergent in nominal condition and
enjoys ISS stability properties with respect to bounded
measurement perturbations. Extensive numerical exam-
ples have been reported showing the effectiveness of the
proposed method compared to several techniques avail-
able in the literature.
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A Proof of Lemma 2.1

Integrating by parts, we have:

[
VKu(i)

]
(t) =

∫ t

0

K(t, τ)u(i)(τ)dτ = u(i−1)(t)K(t, t)

− u(i−1)(0)K(t, 0)−
∫ t

0

K(1)(t, τ)u(i−1)(τ)dτ . (A.1)

The integral operator on the right-hand side of (A.1) can
be further split by parts:

−
∫ t

0

K(1)(t, τ)u(i−1)(τ)dτ = −u(i−2)(t)K(1)(t, t)

+ u(i−2)(0)K(1)(t, 0) +

∫ t

0

K(2)(t, τ)u(i−2)(τ)dτ .
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Proceeding by induction we obtain

∫ t

0

K (t, τ)u(i)(τ)dτ = (−1)i
∫ t

0

K(i)(t, τ)u(τ)dτ

+

i∑
j=1

(−1)j+1u(i−j)(t)K(j−1)(t, t)

+

i∑
j=1

(−1)ju(i−j)(0)K(j−1)(t, 0) (A.2)

that is, the function obtained by applying the Volterra
operator to the i-th derivative is non-anticipative with
respect to lower-order derivatives. The identity (4) can
be verified by rearranging indexing of the summation in
(A.2), thus completing the proof. �

B Proof of Lemma 4.1

Let us recall the definition of κ2(t), which can be rewrit-
ten as follows:

κ2(t) =
[
V
F

(1)
1

y
]

(t)(F
(1)
3 (t, t)− F (1)

2 (t, t))

+
[
V
F

(1)
2

y
]

(t)(F
(1)
1 (t, t)− F (1)

3 (t, t))

+
[
V
F

(1)
3

y
]

(t)(F
(1)
2 (t, t)− F (1)

1 (t, t)) .

(B.1)

Moreover, consider two kernels Fi, Fj , with i 6= j among
the designed kernels Fh, h = 1, 2, 3. Then, some algebra
gives

F
(1)
i (t, t)− F (1)

j (t, t) = (βi − βj)(1− e−β̄t)3 6= 0 ,

(B.2)
for all t > 0 while satisfying constraint (17). Owing
to (22), the following condition in the Laplace domain
(with zero initial conditions) can be written:

L
{[
V
F

(1)

h

y
]

(t)
}

=
1

s+ βh
L
{
F

(1)
h (t, t)y(t)

}
, (B.3)

where

F
(1)
h (t, t) = βh − 3(βh − β̄)e−β̄t + 3(βh − 2β̄)e−

¯2βt

− (βh − 3β̄)e−
¯3βt .

Since y(t) takes on the sinusoidal form (1), we get

L
{
F

(1)
h (t, t) y(t)

}
= βh

A0

s
+ βhA

∗ s sinφ+ ω cosφ

s2 + ω∗2

− 3(βh − β̄)

[
A0

s+ β̄
+A∗

(s+ β̄) sinφ+ ω cosφ

(s+ β̄)2 + ω∗2

]
+ 3(βh − 2β̄)

[
A0

s+ 2β̄
+A∗

(s+ 2β̄) sinφ+ ω cosφ

(s+ 2β̄)2 + ω∗2

]
− (βh − 3β̄)

[
A0

s+ 3β̄
+A∗

(s+ 3β̄) sinφ+ ω cosφ

(s+ 3β̄)2 + ω∗2

]
.

(B.4)

Except for the first two elements in (B.4), the other terms
are exponentially decaying to zero. Hence, from (B.3) it
follows that, for any choice of t̄ > 0, one gets[
V
F

(1)

h

y
]

(t) = A0 +
βhA

∗√
β2
h + ω∗2

sin (ω∗t+ φ+ φFh)

+O1t̄(t), ∀t ≥ t̄ ,

where φFh = arctan(ω∗/βh) and where |O1t̄(t)| can be
made as small as desired by selecting a suitably large
value of t̄. Analogously, (B.2) can be expressed as

F
(1)
i (t, t)− F (1)

j (t, t) = βi − βj +O2t̄(t), ∀t ≥ t̄.

where |O2t̄(t)| can be made as small as desired by select-
ing a suitably large value of t̄. Therefore, for t ≥ t̄, (B.1)
can be rewritten as

κ2(t) =
β1A

∗√
β2

1 + ω∗2
sin (ω∗t+ φ+ φF1)(β3 − β2)

+
β2A

∗√
β2

2 + ω∗2
sin (ω∗t+ φ+ φF2

)(β1 − β3)

+
β3A

∗√
β2

3 + ω∗2
sin (ω∗t+ φ+ φF3

)(β2 − β1) +Ot̄(t) ,

where Ot̄(t) represents a residual whose absolute value
can be made arbitrarily small by selecting a suitably
large t̄.

Let us now show that, for any t > t̄, there exists tp(t) ∈
(t̄, t), such that κ2(tp(t)) 6= 0. Suppose ab absurdo that
6 ∃ tp(t) ∈ R>t̄ : κ2(tp(t)) 6= 0, that is, κ2(t) = 0, ∀t > t̄.
Consider a time instant t1 : t1 > t̄, such that ω∗t1 +φ =
2kπ, for some k ∈ Z. Then:

κ2(t1) =
β1A

∗√
β2

1 + ω∗2
sin (φF1)(β3 − β2)

+
β2A

∗√
β2

2 + ω∗2
sin (φF2)(β1 − β3)

+
β3A

∗√
β2

3 + ω∗2
sin (φF3)(β2 − β1) +Ot̄(t1) ,
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that is (since sin (φFh) = ω∗√
β2
h

+ω∗2
):

κ2(t1) =
β1A

∗ω∗

β2
1 + ω∗2

(β3 − β2) +
β2A

∗ω∗

β2
2 + ω∗2

(β1 − β3)

+
β3A

∗ω∗

β2
3 + ω∗2

(β2 − β1) +Ot̄(t1) .

Then, κ2(t1) = 0 if

β1A
∗ω∗

β2
1 + ω∗2

(β3 − β2) +
β2A

∗ω∗

β2
2 + ω∗2

(β1 − β3)

+
β3A

∗ω∗

β2
3 + ω∗2

(β2 − β1) = −Ot̄(t1) . (B.5)

Next, consider a time instant t2 : t2 > t̄, such that ω∗t2+
φ = 2kπ+π/2, for some k ∈ Z. Then, similarly as above

and owing to the relationship cos (φFh) = βh√
β2
h

+ω∗2
, it

follows that κ2(t2) = 0 if

β2
1A
∗

β2
1 + ω∗2

(β3 − β2) +
β2

2A
∗

β2
2 + ω∗2

(β1 − β3)

+
β2

3A
∗

β2
3 + ω∗2

(β2 − β1) = −Ot̄(t2) . (B.6)

Finally, consider t3 : t3 > t̄, such that ω∗t3 + φ+ φF1 =
2kπ, for some k ∈ Z. Since φFh is the phase shift of a
first-order filter, it turns out that |φFi −φFj | < π/2, i 6=
j; hence

sin (ω∗t3 + φ+ φF2
) 6= 0

and
sin (ω∗t3 + φ+ φF3

) 6= 0 .

Therefore, κ2(t3) = 0 if

χ2(β1 − β3) + χ3(β2 − β1) = −Ot̄(t3) , (B.7)

where

χ2 ,
β2A

∗√
β2

2 + ω∗2
sin (ω∗t3 + φ+ φF2)

and

χ3 ,
β3A

∗√
β2

3 + ω∗2
sin (ω∗t3 + φ+ φF3

) .

Now, from (B.5), (B.6), and (B.7) it follows that a neces-
sary condition for κ2(t) = 0, ∀t > t̄ is κ2(t1) = κ2(t2) =
κ2(t3) = 0, that is:
β1A

∗ω∗

β2
1 + ω∗2

β2A
∗ω∗

β2
2 + ω∗2

β3A
∗ω∗

β2
3 + ω∗2

β2
1A
∗

β2
1 + ω∗2

β2
2A
∗

β2
2 + ω∗2

β2
3A
∗

β2
3 + ω∗2

0 χ2 χ3



β3 − β2

β1 − β3

β2 − β1

=−


Ot̄(t1)

Ot̄(t2)

Ot̄(t3)

 .
(B.8)

For any choice of β1, β2, β3 satisfying (17), it is imme-
diate to conclude that there exists a sufficiently large
value of t̄ such that no selection of t1, t2, t3 ∈ (t̄,∞) does
exist such that the vector equality (B.8) holds. Hence,
we can conclude that there always exists a time instant
tp(t) ∈ (t̄, t), such that κ2(tp(t)) 6= 0.

Now, consider a time instant tε(t) , t− tp(t). From the
continuity of function κ2(t) is continuous, we immedi-
ately get:

1

tε(t)

∫ t

t−tε(t)
|κ2(τ)|dτ=

1

t− tp(t)

∫ t

tp(t)

|κ2(τ)|dτ > 0 ,

∀t > tp(t) .

Therefore, there exists a strictly positive function ε(t)
depending on |κ2(tp(t))|, such that

1

tε(t)

∫ t

t−tε(t)
|κ2(τ)|dτ ≥ ε(t)

which, in turn, implies that the signal κ2 admits a local
PE condition with a level of excitation ε(t), such that

1

tε(t)

∫ t

t−tε(t)
|κ2(τ)|dτ ≥ ε(t), ∀t ≥ tp(t) > t̄ . (B.9)

Since (B.9) holds for any t ∈ R>t̄, one may infer that for
all t the global PE condition (30) holds conservatively
with ε = inft>t̄ ε(t) and tε = supt>t̄ tε(t), thus ending
the proof.
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