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 

Abstract— Harmonics detection is a critical element of active 

power filters. A previous review has shown that the Recursive 

Discrete Fourier Transform and the Instantaneous p-q Theory are 

effective solutions to extracting power harmonics in single-phase 

and three-phase power systems, respectively. This paper presents 

the operating principle of a new modulation function integral 

observer algorithm that offers a fast solution for the extraction of 

the fundamental current and the total harmonic current when 

compared with existing methods. The proposed method can be 

applied to both single- and three-phase systems. The observer-

based algorithm has an advantageous feature of being able to be 

tuned offline for a specific application, having fast convergence 

and producing estimated fundamental component with high 

circularity. It has been tested with both simulations and practical 

measurements for extracting the total harmonic current in a 

highly efficient manner. The results have confirmed that the 

proposed tool offers a new and highly effective alternative to the 

smart grid industry. 

 
Index Terms— fundamental extraction, harmonics detection, 

active power filters 

 

I. INTRODUCTION 

onlinear electric loads draw non-sinusoidal currents from 

the power supplies. Such harmonics have been identified 

as key factor for poor power quality and a range of adverse 

effects, including but not limited to, electromagnetic 

interference (EMI), overheating of cables, and low power 

factors [1]-[4]. Since the 1980’s, the power electronics research 

community has responded with the solutions of active power 

 
 

filters (APF) to deal with the power harmonics problems [5]-

[10]. In a typical setup of an active filter as shown in Fig.1, one 

critical element is the real-time detection of the harmonic 

current. The control block involves a fast harmonic current 

detection so that a reference of the harmonic current can be 

derived for the power inverter to inject the harmonic current 

into the power line. 

Despite such APF technologies have been 

commercialized [11], active research is still on-going in 

searching for effective real-time harmonics detection methods. 

In a recent survey [12], it is stated that “There exist many 

implementations supported by different theories (either in time- 

or frequency-domain), which continuously debate their 

performances proposing ever better solutions.” The survey [12] 

provides a comprehensive comparison on six different methods 

covering (i) Discrete Fourier Transform (DFT), (ii) Recursive 

DFT, (iii) Synchronous Fundamental dq-Frame, (iv) 5th 

Harmonic dq-Frame, (v) p-q Theory and (vi) 5th Generalized 

Integrator. Methods (i), (ii) and (vi) are suitable for single-phase 

systems, and hence are suitable for three-phase ones as well. 

Methods (iii), (iv) and (v) can only be applied for three-phase 

systems and require filtering. In terms of settling time and phase 

error, the Recursive DFT and the p-q Theory methods offer 

better performance than the others in the comparison. 

 
Fig.1   A typical setup of an Active Power Filter 
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 The methods described in [12] are familiar ones in the power 

electronics and power systems communities. However, 

significant progress has been achieved in signal processing and 

some of the emerging signal-processing methods are also 

applicable to harmonics detection. The frequency domain 

detection methods, such as discrete-time Fourier transform 

(DFT) and the sliding DFT [14]-[17] represent the most 

commonly used techniques for their fast convergence speed 

and higher accuracy comparing to the time-domain methods. 

Despite their successful applications, the existing methods 

based on DFT also suffer from two main drawbacks: (1) a 

synchronous sampling is needed, (2) problems in processing the 

inter-harmonics may occur. On the other hand, in the time-

domain, methods like the Kalman filter, adaptive Notch filter 

(ANF), Phase-locked-loop (PLL) and second-order 

generalized integrators (SOGI) are proposed.  These methods 

usually ensure enhanced noisy immunity at the expense of 

longer transient time than frequency-domain algorithms [18]-

[25]. Moreover, the implementation of time-domain methods 

is more instrumental in the context of real-time harmonic 

compensation. In [26], PLL, recursive DFT (RDFT), and 

discrete Kalman filtering (DKF) from aforementioned two 

categories are compared analytically in terms of real-time 

implementation. 

Very recently, a novel modulation-function integral observer 

(MF observer) has been developed for general single-input 

single-output linear systems. It offers practically instantaneous 

convergence without high gain injection and complexity [27]. 

The novel theory reported in [27] is supported by a rigorous and 

rather complex mathematical analysis. Thus, it may not be 

obvious to power electronics engineers without the relevant 

theoretical background. It is the aim of this paper to explore the 

use of this new modulation integral observer for extracting the 

fundamental current and the total harmonic current, the 

knowledge of the latter being required in active power filtering 

applications. The practical relevance of this MF observer with 

active power filter applications is explained in this paper for the 

first time. It is discovered that this new method, although 

unknown to the power electronics and power system 

communities, can perform fundamental current and total 

harmonic current extraction quickly even in presence of 

unknown dc offsets. The fast-convergent MF observer is 

implemented in non-selective form to achieve a low 

computational burden for on-line total harmonics extraction. 

As confirmed by the simulation and experimental results, this 

new method is favorably compared with some of the best 

harmonics extraction methods commonly used in the active 

power filtering applications. 
 

II. BRIEF SUMMARY OF FREQUENCY-DOMAIN AND TIME-

DOMAIN HARMONIC DETECTION METHODS 

 

Although conducted 10 years ago, the review in [12] still 

provides some important insights into the operating principles 

and the algorithm structures of different harmonic detection 

methods. In this section, the schematics of the main methods 

are used to highlight the differences of the methodologies in 

terms of their algorithm structures. The understanding of such 

differences and the schematic structures of the harmonic 

detection algorithms will form a basis for comparing various 

approaches, including the fast-convergent integral observer 

under investigation in this paper. 

A. Frequency-Domain Discrete Fourier Transform and 

Recursive DFT 

 
Fig.2 Schematic of the Discrete Fourier Transform 

 

Fig.2 shows the schematic of the DFT method. The 

Recursive DFT (RDFT) is similar to the DFT, except that the 

samples are obtained within a moving window of the sampled 

data. Note that the DFT method and its variants require the 

measurements of the current only. There is no need to 

measure the mains voltage. Its ability to handle 1-phase 

measurements naturally indicates that it can be applied to a 

3-phase system. There are two ways to work out the total 

harmonic current.  

 The first one is to obtain the sum of the dc component 

and fundamental component. By subtracting this sum 

from the input current waveform, the total harmonic 

current function can be obtained.  

 The second way is to add several of the low-order 

current harmonic components together to form an 

approximate harmonic current. 

B. Time-Domain dq-Frame  methods 

Unlike the DFT method, the time-domain dq-Frame  

approach requires the measurements of both of the mains 

voltages and currents for the 3 phases. Therefore, this method 

requires more sensors and is not suitable for single-phase 

applications. The phase currents are measured and 

transformed into the direct (d) and quadrature (q) 

components. The time-domain dq-Frame  method can also be 

used in two ways as described for the DFT method. 

 

(i) Synchronous fundamental dq-Frame  method  

Fig.3 shows the schematic of this method for 

extracting the harmonic components. The rotating frame of 

this method rotates at the fundamental frequency. This makes 

the fundamental component appearing as the dc component 

after the transformation in the rotating frame. With the use of 

a high-pass filter with a typical bandwidth of 25Hz to120Hz, 

the fundamental d- and q- current components can be 

eliminated. The high-pass-filter enables the d- and q- 

components of the harmonic currents (id~ and iq~) to go 

through. By doing a dq-abc transformation, the harmonic 

currents of the three phases can be re-constructed as ia*, ib* 

and ic* in Fig.3.  
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Fig.3   Schematic of the Synchronous Fundamental dq-Frame  method 

 

(ii) Synchronous harmonic dq-Frame  method 

The schematic of the harmonic dq-Frame  is shown in 

Fig.4. Again, the three phase currents and voltages have to be 

measured. The procedures for extracting the harmonic 

currents are similar to that of the fundamental dc frame 

method. The major difference is that the rotating frames for 

the harmonics will be according to their respectively 

harmonic frequencies. Once the harmonic currents are 

obtained, they can be added together to form the total 

harmonic current. In practice, only several of the low-order 

harmonic currents are usually used to reconstruct a good 

approximation of the total harmonic currents for the three 

phases.  

It is important to note that the Fundamental dq-Frame 

and Harmonic dq-Frame  methods require the use of high-

pass or low-pass filters in the process of deriving the required 

current components. Consequently, such approach 

unavoidably introduces phase error, as previously discussed 

in [12]. 

 

 
Fig.4  Schematic of the Synchronous Harmonic dq-Frame  

 

(iii)  Instantaneous p-q power theory 

Another common approach for harmonic extraction is 

based on the instantaneous p-q power theory pioneered by 

Prof. Akagi [28]. The schematic is shown in Fig.5. Like the 

dq-Frame  methods, this approach needs the measurements of 

the phase currents and voltages. Thus, it is suitable for 3-

phase systems, but not for single-phase ones. The phase 

voltage and current measurements are transformed into their 

respectively α and β components. Then the real power (p) and 

reactive power (q) are obtained. With the use of high-pass 

filters, the harmonic real power ( p~ ) and harmonic reactive 

power ( q~ ) are obtained. The α and β harmonic current 

components (
*

i  and 
*

i ) are then derived, and are eventually 

used to reconstruct the total harmonic currents  for the three 

phases. 

 

 
 

Fig.5  Schematic of the method based on the Instantaneous p-q Power Theory 

 

In the next section, the proposed fast fundamental and 

harmonics estimator will be illustrated. 

III. MODULATION FUNCTION INTEGRAL OBSERVER METHOD 

In In this section, a third-order MF observer is introduced for 

harmonic current extraction. The schematic of this method is 

shown in Fig.6. With the help of a modulation function that can 

be selected and tuned offline for a specific application, the line 

current samples are fed to the integral observer in order to 

obtain the sum of the dc component and the fundamental 

component of the current. The total harmonic current can then 

be derived by subtracting this sum from the line current. It 

should be noted that this method can be applied to a single-

phase system. Therefore, it can be applied to 3-phase ones too. 

 

A The Modulation Function Integral Observer 

 
Fig.6  Schematic of the fast-convergent Modulation Function Integral Observer 

 

The line current i(t) is expressed as: 

     



N

k

k titicti
2

1       (1) 

where c is the dc current component, t is the time variable, 𝑖1(𝑡) 
is the fundamental current,  𝑖𝑘(𝑡)  is the kth current harmonic 

component and  


N

k

k ti
2

 is the total harmonic current.  

Let the fundamental current be:   

      tati sin1        (2) 

and  

        ticty 1           (3) 

where A is the amplitude of the fundamental current,  is the 

angular frequency and  is the phase shift. It is important to 

note that the integral observer considers the total harmonic 

current as ‘noise’ initially. If 𝑦(𝑡) can be found by the observer, 

from (1) and (3), the total harmonic current can be obtained 

easily “by subtraction” as follows:   
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     tytiti
N

k

k 
2

        (4) 

Therefore, 𝑦(𝑡) is chosen to be the single output of the 

integral observer introduced in the following lines.  

Differentiating (3) twice leads to: 

        tity 1

2          (5) 

where  ty  is the second-order time-derivative of y(t). Based 

on (3) and (5), one can form the following expression: 
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Now, assume that the single output 𝑦(𝑡) is generated by a 

general 3rd order state-space observable system, 

   
   








tty

tt
T

Z

Z

zc

zAz
         (7) 

where we let 

𝐳(𝑡) = [

𝑧1(𝑡)
𝑧2(𝑡)

𝑧3(𝑡)
]

= [
𝑐 + 𝑎 sin(𝜔𝑡 + 𝜑)

𝜔 cos(𝜔𝑡 + 𝜑)

𝜔2𝑐

]                                             (8) 

and 
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It can be easily seen that 

       tytz 1            (9) 

         tytytz 2

3          (10) 

Clearly, the total harmonic current can be derived as long as 

𝑧1(𝑡)  is available. However, in the following lines, we will 

show that the dc offset and the fundamental signal can be 

individually recovered by using the state vector 𝐳(𝑡). Since only 

 tz1  and  tz3  are relevant in the calculation, the following 

matrix equations can be derived: 

        tt Ayze        (11) 

where 
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thus leading to  

        tt ezAy
1      (12) 

The 2×1 state column vector  tez  can be related to the 3×1 

state column vector  tz  as: 

      tt zIz ee        (13) 

with 











100

001
eI  

In view of (13), (12) and (6), the fundamental and the dc 

component modelled in the right hand side of (6) can be 

retrieved by simple algebra (see A.3-A.5 in Appendix I). 

  

B The Modulation Function and the Modulation Matrix 

 The modulation integral observer uses a set of the time-

monomial modulating functions (see [27]). In the case 

addressed in this paper, the specific functions take on the form 

   
 !2

2

hn

tw
t

hn

h

h





      for       nh ,...,2,1    (14) 

where n is the order of the system (i.e., n = 3 for the 3rd order 

observer in this case) and 𝑤ℎ > 0   is a suitable positive 

weighting factor. According to [27], the chosen modulation 

functions must satisfy: 

 
0

0


dt

d h

n
        (15) 

The reason for selecting the modulation function (14) that is 

characterized by condition (15) is provided in the Appendix II. 

With the modulation function selected, the modulation 

function matrix is defined as: 
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Γ      (16) 

where  th
 and  th

 are the first and second derivatives of 

 th  for  3,2,1h . For any choice of 𝑤ℎ, it holds that  

𝜙1(𝑡) ≠ 𝜙2(𝑡) ≠ 𝜙3(𝑡), ∀𝑡 > 0 

𝜙̇1(𝑡) ≠ 𝜙̇2(𝑡) ≠ 𝜙̇3(𝑡), ∀𝑡 > 0 

𝜙̈1(𝑡) ≠ 𝜙̈2(𝑡) ≠ 𝜙̈3(𝑡), ∀𝑡 > 0 

thus  tΓ  is invertible for any 𝑡 > 0. 

Remarks: 

Although 𝜙ℎ(𝑡), ℎ = 1,2,3  are monotonically increasing 

functions with respect to 𝑡, they are only computed over 0 ≤
𝑡 ≤ 𝑇Δ  +  𝑇𝑟 due to the action of reset (which is described later 

on), thus evading the issue of data overflow. In this respect, 

excessively large 𝑤ℎ  is not advisable. The same rule is 

applicable to 𝜙̇ℎ(𝑡) and 𝜙̈ℎ(𝑡).  Moreover, by observing the 

pattern of 𝚪(𝑡), 𝑤ℎ , ℎ = 1,2,3 should be chosen such that the 

resultant 𝜙ℎ(𝑡), ℎ = 1,2,3  are enough separated to facilitate 

the computation of matrix inverse). It is also important to note 

that the elements in the matrix of (17) can be pre-determined 

in an offline manner in the interval:  0 ≤ 𝑡 ≤ 𝑇Δ  +  𝑇𝑟 . 

Therefore, the matrix inversion is done only once. These pre-

determined values can be stored in memory for real-time 

implementation. 

With the availability of the modulation function matrix, the 

following matrix equation can be formed: 
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   ttt φvΓz
1)(       (17b) 

where the elements of  column vector  

        Ttvtvtvt 321 φv  can be obtained from 

the practical measurements of the line current i(t). It follows 

that  

            diitv

t
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2         (18) 

Thus,           titttv hhφh    2
           (19) 

By observation (19), in order to avoid error-accumulation due 

to the integration in case the measurement of 𝑖(𝑡) is noisy, we 

adopt a discrete-time deflation strategy which is described in 

the following lines. Let us define the time variable  

tk =TD + k+1( )Tr      (20) 

where 𝑇Δ  is the initial time, Tr is a repetitive period (note: 

within each repetitive period are many small sampling 

periods), and k is a natural number, the first derivative of 

 tv h
  can be obtained from the practical measurement of the 

line current i(t). When k = 0, t = t0 = T + Tr, this forms the first 

repetitive period. Beyond this time, the time variable lies 

within the next repetitive period Tr (i.e. tk < t < tk+1). 
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  (21) 

The time integrals of  tv h
  in (21) will lead to the values of 

 tv h  for h={1,2,3}. At the alternation of each repetitive 

period, the values of   tv h  should be reset as: 

 

        kkr

T

hkh tttTTTtv  





 for         1

φvΓΓΕ  

  (22) 

where  










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







0

0

1
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
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

0

1

0
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

















1

0

0

3Ε . 

Note that the line current is sampled at a relatively 

high speed within each repetitive period, and the integral 

values of (21) can provide the time-domain vector  tφv  

continuously at each sampling instant, then the state vector 

 tz  can be obtained from (17).  
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t
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φ
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vΓ
z


  

 (23) 

where T is a small time. It is needed because the modulation 

function matrix is not invertible at t=0. Thanks to (9), 

𝑧1(𝑡) represents an estimate of 𝑦(𝑡), then the total harmonic 

current can be obtained from (4). In the practical 

implementation, the proposed integral observer algorithms can 

be discretized as shown in the Appendix I. 

. 

IV. SIMULATION STUDY OF CONVERGENT RATES AND 

TRACKING ERRORS 

In order to evaluate the performance of the methods under 

consideration, a simulation study based on the conditions 

similar to those set in [12] has been conducted. The 

characteristic of the line currents are tabulated in Table I and 

such reference current waveform is shown in Fig.7. We 

compare the MF observer with two well-known methods that 

are successfully used in the active power filter context: the 

recursive DFT, p-q theory, and a variant of the adaptive notch 

filtering (ANF) [24] recently proposed for this typical 

application. The realizable algorithms of each method are 

described in the Appendix. For the MF observer, the weighting 

factors are tuned offline to be w1 = 1, w2 = 2 and w3 = 3. Tr = T 

= 0.1. For the Instantaneous p-q power theory, the high-pass 

filter has a cut off frequency of 200 rad/s. A pair of RDFT 

filters are employed with order 0 and 1 for the offset and 

fundamental respectively. The ANF is tuned with a = b = c = 

0.8 and  = 30.  

 

TABLE I  CHARACTERISTICS OF LINE CURRENT 
Indices Amplitude Phase 

Offset 3 0 

Fundamental 30 0, 120, 240 

5th harmonic 10 5 × (0, 120, 240) 

7th, 11th, 13th, 17th 1.5 h × (0, 120, 240) 

   

 

 
Fig.7  A reference current waveform constructed from the components 
tabulated in Table I the for the simulation study 

 

Time [s]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-40

-30

-20

-10

0

10

20

30

40
The harmonic input signal-offset+fundamental+5th+7th+11th+13th+17th



0885-8993 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2016.2570821, IEEE
Transactions on Power Electronics

TPEL-Reg-2015-08-1362 6 

 
(8a) 

 
(8b) 

 
(8c) 

 
(8d) 

Fig.8   Comparison of the actual harmonics and the extracted harmonics based 

on the (a) MF observer, (b) RDFT, (c) Instantaneous p-q power theory and (d) 
the ANF methods. 

 

Figs. 8(a)-(d) show the actual harmonic current and the 

extracted current waveform in the time domain based on the (i) 

MF observer, (ii) RDFT, (iii) Instantaneous p-q power theory 

and (iv) the ANF methods.  For the sake of comparison, the 

tracking errors of these four methods are also examined by 

subtracting the actual harmonic waveform from the extracted 

waveforms. These tracking errors are compared in Fig.9, where 

the steady-state errors of the ANF method (which gives the 

largest error among the four methods) are used as the error 

tolerances (as indicated by the two long dotted lines of ±7 in 

Fig.9), the convergence times of these methods to reach the 

tolerance region are tabulated in Table II. The p-q theory 

method and the MF method have the fastest convergence 

performance.  

 
Fig.9   Comparison of tracking error of the four methods under consideration 

 

TABLE II CONVERGENCE TIMES OF THE FOUR METHODS 

 MF RDFT p-q ANF 

Convergence time 10ms 20ms <10ms >20ms 

 

The MF observer takes about 10ms to track the harmonic 

waveform and is faster than RDFT and ANF, which require at 

least 20ms. Although RDFT offers minimal steady-state error 

in a steady-state situation, it is important to note that fast 

convergence offers advantage to signal detection applications 

in which fast transients and frequency variations are common. 

Based on these simulation results, a comparative table with 

respect to the steady state error is also constructed as shown in 

Table III.  The following points can be noted: 

1. The results shown in the Table II confirm that the MF 

performs the best among all the approaches 

2. RDFT is very smooth in steady state; therefore the 

relative estimation error decreases as more cycles are 

considered.  

3. ANF has the worst steady state behavior; therefore the 

relative error increases as more cycles are considered.  

 
TABLE III COMPARISON OF RMS VALUES OF THE ESTIMATION ERRORS ON 

FIG.9 

 MF RDFT p-q ANF 

0-0.02s (10 cycles) 1.0-pu 2.17-p.u. 1.09-p.u. 1.48-p.u. 

0-0.1s (50 cycles) 1.0-pu 2.05-p.u. 1.13-p.u. 2.40-p.u. 

 

V. EXPERIMENTAL VERIFICATION 

A third-order MF observer has been implemented to derive 

the fundamental and the dc bias current only. The total 

harmonic current is then obtained by subtracting dc and 

fundamental current components from the line current.  

Based on the platform suggested in [12], the total harmonic 

currents, settling times, phase errors and overshoots of the 

following methods are compared with the practical 

measurements. 

  MF observer 

 Recursive DFT,  

 The Instantaneous p-q Theory method 

 Adaptive Notch Filter (ANF) method [24] 
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The algorithms of the 3rd order MF observer are 

implemented in a discretized form which is included in 

Appendix I. The algorithms of the RDFT and ANF 

methods also can be referred to the Appendix I. The 

algorithms of the instantaneous p-q theory are well 

known and simply follow the block diagrams as shown in 

Fig.5. The algorithms under consideration are 

implemented in a dSpace DS1006 system. Fig.10 shows 

the hardware setup, which includes a programmable 

power supply (AMETEK CSW11100), three inductors of 

slightly different inductance values, and three resistive 

loads. The line currents of the three phase system are 

displayed in Fig.11. 

 
Fig.10  Schematic of the three phase converter with resistive loads.  

 

 
Fig.11   Practical line currents of the three-phase system with a 

converter-resistor load. 
 

A Extraction of the fundamental current component 

Since the Instantaneous p-q power theory method uses 

a high-pass filter to remove the fundamental component in 

order to derive the total harmonic current (Fig.5), it is not 

included in this comparison because it does not generate the 

fundamental current. Only the experimental results of the MF 

observer, RDFT and ANF methods are included in this section. 

Under a fixed sampling frequency of 10 kHz, the same dSpace 

system is used to calculate the fundamental current in real time. 

The analogue of this estimated fundamental current is outputted 

to a digital storage oscilloscope (DSO-X 3034A). The estimated 

fundamental currents of the MF observer, RDFT and ANF 

methods are captured and displayed in Figs. 12(a), 12(b) and 

12(c), respectively.  

In order to observe the deviation of these waveforms 

from a pure sinusoidal waveform, let us transform the estimated 

sinewave into a unit “circle’’ by picking arbitrarily consecutive 

200 samples in one cycle. It is worth noting that a perfect time-

domain sinusoidal function can be represented as an ideal circle 

on the 2-D plane. By comparing the trajectory of the measured 

current with a perfect circuit, any deviation from the perfect 

circle can be observed. One method of measuring the quality of 

the extracted fundamental component is the concept of 

Circularity [29], which defines the formula for Circularity (C) 

2

4

P

A
C


           (24) 

with A and P the area and the perimeter enclosed by of the 

circular figure, respectively. Meanwhile, the isoperimetric 

theorem indicates that C = 1 only holds for an ideal circle. To 

this end, the circularity of each figure is evaluated in the 

following way: 

1. Divide the shape into circular sectors with radius ri, i =
1,2,⋯ ,200 based on the samples. 

2. Approximation of the area 𝐴 = ∑
1

200

200
𝑖=1 𝜋𝑟𝑖

2  

3. The perimeter 𝑃 of the curve is approximated by the sum 

of the distances between every two adjacent samples. 

As such, the vector trajectories of one period of three estimated 

fundamental current waveforms are plotted and compared with 

a perfect circle in Figs. 13(a), 13(b) and 13(c). It can be 

observed that the MF observer method generate the best 

fundamental current with the least amount of noise and 

distortion. For the sake of completeness, the circularity values 

of the MF observer, the RDFT and the ANF have been obtained 

and are recorded in Table IV. It can be seen that the curve 

generated by MF has the circularity closest to 1 (i.e with the 

least absolute deviation from 1.0). 

 
TABLE IV COMPARISON OF CIRCULARITY OF THE EXTRACTED 

FUNDAMENTAL COMPONENTS 

 Circularity 

C 

Absolute deviation 

0.1C  

Figure 

MF observer 1.0017 0.0017 13(a) 

RDFT 0.8925 0.1075 13(b) 

ANF 0.8883 0.1117 13(c) 

 

 
12(a) 

 
12(b) 
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12(c) 

Fig.12  The estimated fundamental currents obtained from the (a) MF observer, 

(b) RDFT and (c) ANF methods. 
 

 
13(a) 

 
13(b) 

 
13(c) 

Fig.13   Comparison of the trajectories of the fundamental currents estimated 

by the (a) MF observer, (b) RDFT and (c) ANF methods with the perfect 
sinusoidal trajectory. 

 

B Detection of the total harmonic current 

The second set of evaluation involves all of the four 

methods under consideration. This time, the total harmonic 

currents estimated by the four methods are captured. Their 

harmonic spectra are then plotted and compared with the 

harmonic spectrum of the mains current, which is included in 

Fig.14 as a reference. Figs. 15(a), 15(b), 15 (c) and 15(d) show 

the frequency spectra of the estimated total harmonic currents 

obtained from the (a) MF observer, (b) RDFT, (c) Instantaneous 

p-q power Theory and (d) the ANF methods, respectively.  

Comparing with the spectrum of the measured line current in 

Fig.14 and ignoring the part of the spectrum up to about 200 Hz 

(to remove the effect of the fundamental current), the spectra of 

MF observer, RDFT method and the ANF method are close to 

that of the line current.  

 
Fig.14 The measured frequency spectrum of measured line current of Fig.11 

 
15(a)                                                              

 
15(b) 

 
15(c)                                                             

 
15(d) 

Fig.15 Measured harmonic spectra of (a) the MF observer, (b) the RDFT, (c) 

the Instantaneous p-q power theory and (d) the ANF methods. 

 

C Overall Comparison 

With the results obtained, the performance of the four methods 

can be summarized as tabulated in Table V. The RDFT has 

generally good performance. The only limitation is its 
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requirement for synchronous sampling that may lead to 

accuracy issues when the frequency is changing dynamically. 

 

The Instantaneous p-q power theory requires the measurements 

of voltage and current. It is a fast method to generator the total 

harmonic current. But the introduction of filter in the process of 

harmonic extraction inevitably introduces phase error. The 

proposed MF observer has fast convergence for tracking the 

total harmonic current. Among the three methods that can 

extract the fundamental current, the MF observer offers the 

highest quality in terms of circularity. Because of the high 

quality of the fundamental current, its resultant total harmonic 

current (which is obtained by subtracting the fundamental 

current from the line current) is also of high quality. 

 

 

VI. CONCLUSIONS 

This paper presents the first practical implementation 

of a new modulation function integral observer for the 

extraction of the fundamental current and the total harmonic 

current of a three-phase nonlinear load. The observer algorithm 

has been adopted specifically for fundamental current and total 

harmonic current extraction. It has been explained step by step 

so that power electronics researchers and engineers can 

implement it without understanding the full details of the highly 

mathematical observer theory given in [27] in a more general 

setting. Based on the concept of circularity, it has been 

practically confirmed that this method has excellent 

performance in obtaining a high-quality representation of the 

fundamental current in real time from a highly nonlinear current 

waveform. Consequently, the total harmonic current, which is 

obtained by subtracting the fundamental current from the total 

line current, is also of high quality. Such high-quality signal 

extraction capability has been favorably compared with the 

RDFT, the Instantaneous p-q power theory (that are commonly 

used in the power electronics community) and the ANF 

methods. The fast convergent feature of this observer has also 

been demonstrated in a simulation study. Based on the 

comparison provided, it is concluded that the modulation 

function integral observer method offers a fast and practical 

online solution to obtaining the fundamental component and the 

total harmonic content of a highly nonlinear signal. Such 

functions can find many power electronics applications 

(including active power filters) in which highly nonlinear 

currents are involved. 

 

 

 

TABLE V COMPARISON OF FOUR METHODS FOR HARMONICS EXTRACTION 
 RDFT p-q Theory MF observer ANF 

Required measurements I only   
  

V and I      I only       
 

I only   
      

Response time 20ms   

 

10ms         

 

10ms     

   

30ms     

   

Steady state accuracy accurate  

   

phase error     Accurate    

 

less accuracy     

Selective harmonic compensation yes   

 

no      

 

potential yes1   yes        

  

1-ph/3-ph applications single/three  three       
 

single/three      single/three      

Need for synchronous sampling yes   

  

no        

 

no     

 

No      

 

Computational load (p-u)2 0.5-p.u.  

 

2-p.u.   

 

1-p.u. 

 

1.3-p.u.     

 

Estimation of the dc offset yes  

 

no   

 

yes  

 

no    

 

Circularity of fundamental Fair Not Applicable Excellent Fair 

APPENDIX I 

1. MF observer 

Discretized algorithm of (21)-(23) by a trapezoidal 

integration rule (see A1 at the bottom of this page):  

 

Hence, 

 

     z(k) = {

0,0 ≤ 𝑘 ≤ 𝑁∈ 

(𝚪(𝑘))
−1
𝛖(𝑘), 𝑁∈ ≤ 𝑘 ≤ 𝑁0 

(𝚪(𝑘 − 𝑁𝑘 + 𝑁∆))
−1
𝛖(𝑘), 𝑁𝑘 ≤ 𝑘 ≤ 𝑁𝑘+1

                      

(A.2) 

 
1 Multiple harmonics can be dealt with by a higher order MF 

observer (e.g. 2𝑛 +  1-th order for 𝑛 harmonics and the dc offset), 

which omitted here for sake of unnecessary complexity 

where 𝑇𝑠  is the fixed sampling period, 𝑁𝑘 =
𝑡𝑘

𝑇𝑠
, 𝑘 ∈ ℕ,𝑁Δ =

𝑇Δ

𝑇𝑠
, 𝑁𝑟 =

𝑇𝑟

𝑇𝑠
, 𝑁∈ =

𝑇∈

𝑇𝑠
. 

Particularly, in the discrete-time case 𝑇𝑟 , 𝑇Δ and 𝑇∈ are chosen 

as multiples of the sampling time Ts. 

Finally 

𝐳𝑒(k) = 𝚰𝑒𝐳(k)       (A.3) 

                                      𝐲(k) = 𝐀−1𝐳𝑒(𝑘)      (A.4) 

               [
𝑐

𝑖1(𝑘)
] = 









 20

11



−1

𝐲(k)     (A.5) 

2. RDFT 

2 The computation time is evaluated by Matlab under a fixed simulation 

example 
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It has been show that the RDFT is very convenient in 

extracting a specific harmonic component from a given 

current 𝑖(𝑡) by the following recursive algorithm (𝑗 is the 

order of the desired harmonic 

ℎ𝑗(𝑘) =
2

𝑁
(𝑖(𝑘) − 𝑖(𝑘 − 𝑁)) +𝑊𝑗ℎ𝑗(−1)      (𝐴. 6) 

which is driven by its equivalent transfer function 𝐺𝑗(𝑧) 

between the input 𝑖(𝑧) and the extracted harmonic signal 

ℎ𝑗(𝑧), : 

𝐺𝑗(𝑧) =
ℎ𝑗(𝑧)

𝑖(𝑧)
=
1

𝑁

1 − 𝑧−𝑁

1 −𝑊𝑗𝑧−1
                       (𝐴. 7) 

 

3. p-q theory 

The reader is referred to Figure 5 for the overall scheme. 

 

4. Adaptive notch filtering (ANF)  

Herein, a recent ANF [24] is picked for the sake of 

comparison and is reviewed in the following equations (the 

single-phase structure): 

{
 
 

 
 
ℎ̈𝑗(𝑡) = −𝑗

2𝜃(𝑡)2ℎ𝑗(𝑡) + 2ζ𝑗𝜃(𝑡)𝑒(𝑡)

𝑒(𝑡) = 𝑖(𝑡) −∑ℎ̇𝑙

𝑛

𝑙=1

𝜃̇(𝑡) = −𝛾𝜃(𝑡)ℎ1(𝑡)𝑒(𝑡)

                (A. 8)      

where 𝑖(𝑡)  represents the current signal from each phase 

respectively, 𝜃  is the estimate of the fundamental frequency 

𝜔, 𝑗 =  1, 2,⋯ , , 𝑛 is the order of the selected harmonic, ζ𝑗 , 𝛾 

are all positive adjustable parameters balancing the converging 

speed and accuracy, 𝑙 is the sequence of the harmonic that is 

estimated. The continuous-time algorithm can simply 

discretized by Euler or trapezoidal rules for digital 

implementation. 

 

 

APPENDIX II 

A nominal state observer (i.e., Luenberger Observer) is 

applicable for the linear system (7). However, only asymptotic 

convergence is guaranteed (i.e., the estimated state ẑ(t) →
z(t), when t → ∞), because of the initial error driven by the 

unknown initial condition.  In order to circumvent this 

restriction and to propose an observer that can converge within 

an arbitrary small finite time, we annihilate the influence of the 

unknown initial condition by exploiting an integral operator 

(see (18)) with respect to the designed modulation function.  

The next Lemma introduced in [27] is instrumental for the 

following description.  

 

Lemma 1 (Modulated signal’s derivative): Consider a signal 

𝑥(𝑡), 𝑡 ≥ 0 that admits a 𝑖-th order derivative, and a i-th order 

differentiable modulation function 𝑉𝜙𝑥(𝑡), 𝑡 ≥ 0 .  It holds that: 

[𝑉𝜙𝑥
(𝑖)](𝑡) = ∑(−1)𝑖−𝑗−1

𝑖−1

𝑗=0

𝑥(𝑗)(𝑡)𝜙(𝑖−𝑗−1)(𝑡)

+∑(−1)𝑖−𝑗
𝑖−1

𝑗=0

𝑥(𝑗)(0)𝜙(𝑖−𝑗−1)(0)

+ (−1)𝑖 [𝑉𝜙𝑖𝑥] (𝑡) 

 

where we let the 
𝑑𝑖

𝑑𝑡𝑖
𝑥(𝑡) ≜ 𝑥(𝑖)(𝑡)  for the sake of brevity and 

we define the modulation operator by  

[𝑉𝜙𝑥](𝑡) ≜ ∫ 𝜙(𝜏)𝑥(𝜏)𝑑𝜏
𝑡

0

 . 

The above Lemma motivates us to eliminate the unknown 

initial conditions 𝑥(0),
𝑑1

𝑑𝑡1
𝑥(0),

𝑑2

𝑑𝑡2
𝑥(0),⋯  by choosing a 

modulation function 𝜙(𝑡), such that 
𝑑𝑛

𝑑𝑡𝑛
𝜙(0) = 0                                         (𝐴9) 

Thanks to (A9), we design the following modulating function  

𝜙ℎ =
𝑤ℎ𝑡

2𝑛−ℎ

(2𝑛 − ℎ)!
 ,       ℎ = {1,2,⋯ 𝑛}    

 

{
  
 

  
 ν𝜙ℎ(𝑘 + 1) = ν𝜙ℎ(𝑘) +

1

2
𝑇𝑠 ((𝜙ℎ(𝑘 + 1) + 𝜔

2𝜙ℎ̇(𝑘 + 1)) 𝑖(𝑘 + 1) + (𝜙ℎ(𝑘) + 𝜔
2𝜙ℎ̇(𝑘)) 𝑖(𝑘)) , 0 ≤ 𝑘 < 𝑁0

ν𝜙ℎ(𝑘 + 1) = ν𝜙ℎ(𝑘) +
1

2
𝑇𝑠 (

(𝜙ℎ(𝑘 + 1 − 𝑁𝑘 +𝑁Δ) + 𝜔
2𝜙ℎ̇(𝑘 + 1 − 𝑁𝑘 + 𝑁Δ)) 𝑖(𝑘 + 1) +

(𝜙ℎ(𝑘 − 𝑁𝑘 +𝑁Δ) + 𝜔
2𝜙ℎ̇(𝑘 − 𝑁𝑘 + 𝑁Δ)) 𝑖(𝑘)

) , 𝑁𝑘 < 𝑘 < 𝑁𝑘+1

                                  ν𝜙ℎ(𝑁𝑘
+) = 𝐸ℎ

𝑇𝚪(𝑁Δ)𝚪(𝑁r + 𝑁Δ)
−1𝛎(𝑁𝑘), 𝑘 = 𝑁𝑘 .                                                                     (A1) 
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where the index ℎ allows a set of modulation functions in this 

form distinguished by different parameter 𝑤ℎ  and order ℎ . 

Admittedly, the choice of the modulation function satisfying 

(A9) is not unique. For this application paper, we only show 

this typical function as a simple example. Although the 

modulation function plays an important role in this 

methodology, the selection does not vary from application to 

application; the modulation functions satisfying (A9) are 

applicable for the state estimation problem of any linear system 

in which the harmonic model can be embedded.  
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