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Abstract

Artificial grammar learning (AGL) experiments are used to investigate the 

possibility that separate general and specific learning systems exist that store implicit, 

abstract rule knowledge versus specific, episodic knowledge. Chapter 1 concludes that 

the most urgent priority is to settle continuing debates about whether memorisation of 

grammatical examples leads to rule, exemplar, or fragment knowledge. In Chapter 2, 

it is recommended that a biconditional grammar be used to settle the knowledge 

debate, as rule, exemplar, and fragment knowledge are inevitably correlated in finite- 

state grammar generated stimuli.

Chapters 3 and 4 present evidence that memorising grammatical training 

examples leads to fragment, but not rule or exemplar knowledge. In contrast, active 

hypothesis testing is required to gain rule knowledge. Chapters 5 and 6 demonstrate 

that knowledge gained by memorising training examples is explicit according to 

objective recognition, cued-recall, and subjective confidence tests.

Using a biconditional grammar, there is no support for a dichotomy between 

general and specific learning systems. The results are best explained by one episodic- 

processing system that records processing of specific structural aspects of 

grammatical items in order to meet the demands of the training task. During 

classification, knowledge may appear to be implicit when participants are unaware of 

the source of fluent processing (i.e., when they unconsciously use fragment 

knowledge to classify test items as grammatical or ungrammatical). However, 

instructions that draw attention to the relevant knowledge (i.e., in cued-recall and 

recognition tests) reveal that classification knowledge is explipit.
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Chapter 1: Introduction
8

People have an impressive capacity for storing information about particular 

events. This "episodic" memory (Tulving, 1983) allows us to recall the context of 

specific experiences, such as what we did on our last holiday. We also have an ability 

to acquire general knowledge, that is, properties of classes of objects or events. We 

can judge the grammaticality of a novel sentence, read a word in an unfamiliar script, 

perform arithmetic operations, and so on. These abilities seem to require 

representations of abstract, general properties such as the rules of a grammar that are 

separate from knowledge of specific objects or events.

Cognitive psychology has traditionally dealt with this distinction by assuming 

separate processes for acquiring specific and general knowledge. Under various terms 

(e.g., episodic, explicit, declarative), knowledge of specific events is assumed to be 

distinct from knowledge about general properties (e.g., semantic, implicit, 

procedural). A puzzle, however, is to explain how we acquire general knowledge as 

abstract properties themselves are never directly observed (see Whittlesea, 1997a, b). 

Instead, such properties must be induced from multiple experiences with specific 

objects or events. Hence, the separate-systems account assumes that there exists a 

mechanism for creating abstractions across specific experiences. Moreover, as we are 

not normally deliberately intending to perform such abstraction, it must be largely an 

incidental and unconscious process.

Undoubtedly, there is a wealth of evidence consistent with this separate 

systems account with a good deal of that evidence coming from artificial grammar 

learning (AGL) research. For example, Knowlton, Ramus, and Squire (1992) trained 

normal participants and amnesic patients by asking them to memorise strings of letters
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generated from the finite-state grammar shown in Figure 1. This grammar specifies 

rules for ordering string elements such as those that exist in natural languages. 

Grammatical strings are generated by entering the diagram at the leftmost node and 

moving along legal pathways, as indicated by the arrows, collecting letters, until an 

exit point is reached on the right-hand side. The letter string XXVXJJ is grammatical 

as it can be generated from the diagram whereas TXXXVT is ungrammatical, as 

strings must begin with a V or an X.

Figure 1. This artificial grammar was used by Knowlton, Ramus, and Squire (1992), 

and was originally created by Abrams and Reber (1989).

Knowlton, Ramus, and Squire (1992) tested specific knowledge by asking 

participants to recognise which letter strings they had seen during training using a set 

of test strings half of which had been presented as training strings and half of which 

were novel. In contrast, general knowledge was tested by informing participants of the 

existence of a set of rules governing the structure of the training items - though they 

were not told what those rules are - and then asking participants to classify novel

IN OUT

j



10
letter strings as grammatical or ungrammatical depending on whether the letter 

strings appeared to conform to the rules or not. The fact that the amnesic patients were 

selectively impaired in making judgments about specific items, while their general 

knowledge of the grammar was intact, seems to support the idea of separate 

“implicit”, general and “explicit”, specific learning systems.

This dual systems theory of implicit learning is based on four major claims. 

First, it is claimed that implicit knowledge is acquired when participants observe or 

memorise representative examples of a complex rule-governed concept, without being 

told that the examples conform to a set of rules (Knowlton & Squire, 1994, 1996; 

Meulemans & Van der Linden, 1997, Experiment 2b; Reber, 1967, 1989; Reber & 

Allen, 1978; Reber & Lewis, 1977). Secondly, in these incidental learning conditions, 

participants are passive "consumers" (Lewicki & Hill, 1989, p.240) of stimulus-driven 

knowledge (Cleeremans, 1993, p. 19). Thirdly, it is claimed that an implicit learning 

system creates mental representations of abstracted knowledge, in parallel with an 

explicit system that creates representations of specific whole or partial training items 

in a separate episodic memory. While the empirical work reported in later chapters 

focuses on the claim that we can acquire implicit rule knowledge (Knowlton &

Squire, 1994, 1996; Meulemans & Van der Linden, 1997, Experiment 2b; Reber,

1967, 1989, Reber & Allen, 1978; Reber & Lewis, 1977), there are also claims that 

implicit knowledge is based on abstract patterns of family resemblance (Mathews, 

Buss, Stanley, Blanchard-Fields, Cho, & Druhan, 1989), first-order dependencies 

between adjacent letters (Gomez, 1997), or associative chunk strength (Servan- 

Schreiber & Anderson, 1990).

Finally, it is claimed that participants lack awareness of the knowledge they 

use to classify test items at above chance levels as they cannot fully state the rules of
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the grammar (Reber & Lewis, 1977) and accurate performance is accompanied by a 

subjective experience of guessing (Dienes, Altmann, Kwan, & Goode, 1995). In 

contrast, because participants are aware of observing or memorizing whole or partial 

training examples, conscious recollection of "old" items and a sense of novelty for 

"new" items accompany recognition performance.

In contrast to the dual-system theory, exemplar and fragment accounts assume 

that above-chance classification performance can be explained solely on the basis of 

episodic knowledge. The exemplar account claims that participants encode a 

collection of training examples (Brooks, 1978; Brooks & Vokey, 1991; Neal & 

Hesketh, 1997; Me Andrews & Moscovitch, 1985; Vokey & Brooks, 1992) and at test 

items that are highly similar to training items (e.g., differing by only one letter), are 

more likely to be called grammatical than dissimilar items. The letter-fragment 

account (Dulany, Carlson, & Dewey, 1984; Meulemans & Van der Linden, 1997, 

Experiment 2a, Perruchet, 1994; Perruchet & Pacteau, 1990; Redington & Chater, 

1996; Servan-Schreiber & Anderson, 1990) suggests that participants use specific 

knowledge of letter fragments seen in training strings to classify test items. In this 

case, participants are assumed to classify test items containing fragments seen in 

training as grammatical and test strings containing novel fragments as ungrammatical.

Whereas the implicit rule abstraction, exemplar, and fragment accounts share 

an assumption that specific aspects of the structure of training examples (rules, 

exemplars, or letter-fragments) are acquired in a stimulus-driven manner, the 

episodic-processing account (Whittlesea, 1997a, b; Whittlesea & Dorken, 1993, 1997; 

Whittlesea & Wright, 1997; Whittlesea & Williams, 1998, in press, Wright & 

Whittlesea, 1998) suggests that knowledge acquisition is driven by processing. By 

this account, participants actively process training strings in order to meet the
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demands of the training task and in so doing acquire knowledge of the specific 

aspects of training items (rules, exemplars, or letter fragments) necessary to meet 

those demands. As a result, episodic representations are created combining knowledge 

of both the processing carried out and the information used to satisfy the training 

instructions.

At test, items that overlap with training items on the structural aspects encoded 

during training cue prior processing episodes and as a result are processed more 

fluently than dissimilar test items that do not cue prior episodes. The knowledge 

underlying fluency is neither implicit nor explicit. Instead, when participants are 

unaware of the relationship between fluency and the information they acquired during 

training they will respond on the basis of familiarity, whereas when they are aware of 

the relationship they will respond on the basis of recollection.

The assumptions of the episodic-processing account can be illustrated using an 

AGL example where a participant is asked to memorise a set of letter strings, such as 

MXRTMXR. In this example, the participant actively meets the demands of the 

memorisation task by mentally rehearsing each training string left to right as a series 

of two- and three-letter fragments. Using this strategy, MXRTMXR is rehearsed for 

example as the three letter fragments MXR, TM and XR and the episodic-processing 

system is assumed to create episodic representations of the mental rehearsal process 

and those specific fragments. By the end of the training phase, this participant will 

have acquired episodic representations of mentally rehearsing a large number of letter 

fragments leading to an ability to process efficiently future letter strings containing 

the same letter fragments.

During a later classification test, the assumption is that test items that are 

similar to training items on the structural dimension used to process training items



13
(letter fragments in this example) will cue episodic representations of processing 

similar training items. Cueing prior episodes will result in similar test items being 

processed more efficiently (fluently) than dissimilar test items. Thus, continuing with 

the example, a test string containing previously seen letter fragments, such as MXR, 

TM and XR, would cue episodic representations of processing those fragments, 

whereas a test string containing only novel fragments would not retrieve any episodic 

representations.

Finally, the suggestion that participants will respond on the basis of subjective 

feelings of familiarity if they are unaware, or on the basis of recollection if they are 

aware of the relationship between the information they acquired during training and 

test demands can be illustrated by comparing classification and recognition test 

performance. When the participant, in the example, is asked to classify novel test 

items as grammatical or ungrammatical, he will not understand the relationship 

between the letter-fragment knowledge gained in training and fluency of processing 

test items. Consequently, fluency in processing test items containing training 

fragments will unconsciously be attributed to grammaticality and accompanied by a 

subjective feeling of familiarity. In contrast, when the participant is asked to 

discriminate between fragments seen during training and novel fragments in a 

recognition test, old/new judgements will be based on conscious recollection of 

fragment knowledge as the test instructions draw attention to the information acquired 

during training. Recollection is a separate process to fluency and not simply an 

attribution based on fluency.

There is therefore a similarity between the episodic-processing account 

(Whittlesea, 1997a, b; Whittlesea & Dorken, 1993, 1997; Whittlesea & Wright, 1997; 

Whittlesea & Williams, in press, Wright & Whittlesea, 1998) and the rule-abstraction
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account (e.g., Reber, 1967, 1989) as both accounts predict that knowledge can be 

applied implicitly in a classification test. However, these two accounts disagree about 

the form of knowledge (processing episodes versus rules) and whether knowledge is 

stored in an implicit form (Reber, 1967,1989) or stored in a neutral form that can be 

expressed implicitly or explicitly depending on test instructions (Whittlesea & 

Williams, in press).

Forms o f Knowledge 

The first stage in evaluating the four accounts of implicit learning has to be 

identifying what knowledge is acquired during incidental memorisation conditions, as 

without reliable evidence about the information used to classify test items it is 

impossible to test whether that knowledge is implicit or explicit (see Shanks & St. 

John, 1994).

Evidence fo r  Rule Knowledge

Convincing evidence that participants classify on the basis of rules depends on 

having a clear definition of what a rule is and on unconfounding rule knowledge from 

other explanations of test performance. While knowledge of what bigrams are 

allowable can be a form of rule knowledge, this thesis seeks to establish whether 

participants can acquire the rules of the specific biconditional grammar created by 

Mathews et al. (1989) by simply memorising training strings without knowing that 

those training strings were constructed according to a set of rules.

The strongest evidence for abstract rule knowledge is found in “transfer” tests 

where participants train on items in one letter-set or modality and successfully classify 

test items presented in a different letter-set or modality (e.g., Altmann, Dienes, &
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Goode, 1995; Brooks & Vokey, 1991; Gomez & Schvaneveldt, 1994; Reber, 1969). 

The only common factor between training and test items is their underlying abstract 

structure.

For example, Altmann et al. (1995, Experiment 1) trained one group of 

participants on standard letter strings and a second group on sequences of tones, with 

both the letter strings and tone sequences conforming to the same rule structure. Thus 

each letter string had an equivalent tone sequence in which, for instance, the letter M 

was translated into a tone at the frequency of middle C. In the test phase, participants 

classified strings presented in the same modality as their training strings (letters/letters 

or tones/tones) or in the opposite modality (letters/tones or tones/letters). There were 

two types of control groups who either received no training or who were trained on 

randomly generated sequences. The results suggested that prior exposure to the 

grammar led to accurate classification performance (same modality 56% correct, 

changed modality 54% correct), whereas control groups performed at chance levels 

(50%).

Although this experiment appears to provide evidence that changed modality 

groups used general, abstract, rule knowledge that goes beyond perceptual features, 

Redington and Chater (1996) demonstrated that participants could have used surface 

fragments of two or three letters to perform abstraction at test. This is explained in 

more detail in a later section on evidence for fragment learning. Moreover, Gomez 

(1997) has presented convincing evidence that transfer is always accompanied by 

explicit knowledge: Participants who achieved above chance transfer scores also 

scored above chance on direct tests in her experiments. Thus there is little evidence at 

present that transfer is mediated by implicit, abstract knowledge.
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Evidence fo r  Exemplar Knowledge

The exemplar account assumes that participants retrieve specific training 

examples from memory when they classify test items (Brooks, 1978; Brooks &

Vokey, 1991; Neal & Hesketh, 1997; McAndrews & Moscovitch, 1985; Vokey & 

Brooks, 1992). For example, Vokey and Brooks (1992) trained participants on 

grammatical strings and tested them on novel strings, where half the test strings were 

grammatical and half ungrammatical. Orthogonal to grammaticality, half the test 

items were similar to one training item (differing by only one letter) while half were 

dissimilar to all training items (differing by two or more letters). Independent effects 

of grammaticality and similarity were found in both classification and recognition 

tests.

Vokey and Brooks (1992, p. 328) used instance models (e.g., Hintzman, 1986, 

1988; Medin & Schaffer, 1978; Nosofsky, 1986) to argue that independent effects of 

grammaticality and similarity are consistent with models that rely solely on retrieval 

of specific items. As new grammatical test items are likely to resemble a large number 

of grammatical training items, the difference between classification of grammatical 

versus ungrammatical test items can be explained by “retrieval time averaging”. On 

the other hand, the difference between similar and dissimilar test items can be 

explained on the basis that a test item that is highly similar to an item in memory has a 

disproportionately large effect on test performance. Hence the grammaticality effect 

could arise because grammatical test items are moderately similar to many training 

items and the similarity effect could arise because each similar test item is highly 

similar to one training item. However, Vokey and Brooks (1994) conceded that their 

design did not allow them to falsify the abstract rule knowledge account.



17
Evidence fo r  Fragment Knowledge

An opposing theory is that participants learn about the frequency of 

occurrence of fragments (i.e., two letter bigrams, three letter trigrams etc.) in the 

training strings and classify novel test strings as grammatical to the extent that test 

strings contains fragments that were present in the training strings (Dienes,

Broadbent, & Berry, 1991; Dulany, Carlson, & Dewey, 1984; Perruchet, 1994; 

Perruchet, Gallego, & Pacteau, 1992; Perruchet & Pacteau, 1990; Redington &

Chater, 1996; Servan-Schreiber & Anderson, 1990). Perruchet and Pacteau (1990) 

compared the performance of participants trained on grammatical letter strings with 

those trained on the bigrams used to construct the grammatical training strings. The 

finding that both groups were able to classify novel test strings at above-chance levels 

suggests that fragment knowledge alone is sufficient to account for accurate 

classification performance. In fact Perruchet (1994) was able to explain both the 

grammaticality and similarity effects found by Vokey and Brooks (1994) solely on the 

basis of trigram knowledge.

However Gomez and Schvaneveldt (1994) demonstrated that there are two 

types of bigram violations within ungrammatical strings and participants trained on 

bigrams were only sensitive to one violation type. Participants trained on grammatical 

strings could detect both illegal letter pairs and legal letter pairs in illegal positions 

within a string, while participants who memorised bigrams were only able to detect 

illegal letter pairs. But Redington and Chater (1996) added a further dimension to this 

debate by showing that Gomez and Schvaneveldt’s results can be predicted by models 

that call a test string grammatical if all bigrams and trigrams have been seen in 

training items, and call a test string ungrammatical if it contains novel letter
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fragments. Overall, then, the evidence that grammaticality judgments are to some 

extent mediated by fragment knowledge is quite strong.

Evidence for Rule and Fragment Knowledge

Knowlton and Squire (1994, Experiment 2b) challenged the exemplar account 

by using test stimuli that contained the same orthogonal grammaticality and whole- 

item similarity manipulations as Vokey and Brooks (1992) had used, but with an 

added manipulation where fragment similarity was held constant across similar and 

dissimilar test item types. The results showed that Vokey and Brooks’ results were 

more likely to have been produced by rule and fragment knowledge than by rule and 

whole-item knowledge. However, these results leave open the debate about whether 

the grammaticality and fragment effects are derived from dual knowledge sources or 

exemplar knowledge (e.g., Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky,

1986) from only one knowledge base.

Meulemans and Van der Linden (1997) have provided the most convincing 

rule and fragment account using test stimuli that balanced rule knowledge 

orthogonally to fragment knowledge. They found that after training on 32 letter 

strings (Experiment 2a), participants classified test strings using fragment knowledge, 

whereas after training on 125 letter strings (Experiment 2b) they classified on the 

basis of rule knowledge. However, Johnstone and Shanks (1999) demonstrated that in 

Experiment 2b, information about grammatical rules and familiar training fragments 

was confounded with knowledge of the positional constraints on letter fragments. This 

argument is explained in more detail in a discussion of the methodological problems 

with finite-state grammars in Chapter 2.
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Evidence fo r  Episodic-Processing Knowledge

The episodic-processing account challenges all of the above accounts, as those 

accounts focus solely on stimulus-driven acquisition of structural aspects of training 

items (i.e., rules, exemplars, or letter-fragments) whereas, the episodic-processing 

account suggests that: (1) processing knowledge is acquired in addition to structural 

knowledge, (2) training instructions dictate which aspects of the structure of training 

items are encoded, and (3) participants can apply the same knowledge explicitly or 

implicitly depending on whether or not they understand the relationship between 

processing fluency and the knowledge they acquired by processing training items in 

particular ways.

Evidence that knowledge of both structure and processing is encoded during 

training was provided by Whittlesea and Dorken (1993). Participants memorised 

items such as ENROLID that were generated from a grammar, either by pronouncing 

or spelling them aloud and then classified test items by pronouncing half of them and 

spelling the remainder. Test performance was only reliably above chance when the 

study and test processes were the same. When items were spelled in training and 

pronounced at test or pronounced during training and spelled at test, participants 

classified at chance levels. Thus, the knowledge gained during training included 

details of processing as well as structural aspects of stimuli, and test performance was 

successful to the extent that the test instructions cued prior processing episodes.

Evidence that training instructions dictate which aspects of the structure of 

training items are encoded was presented by Wright and Whittlesea (1998). In the 

study phase, participants were presented with digit strings such as 1834, all of which 

conformed to an odd-even-odd-even rule. One group processed each digit by saying a 

digit and immediately made a judgement about whether the digit was a low number
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(less than five) or high number (greater than four). For example, 1834 would be 

processed as “ l-low-8-high-3-low-4-low”. A second group processed each string by 

pronouncing the two digit pairs. In this case, 1834 would be processed by saying 

“eighteen thirty-four”. At test, half the strings were created by reversing the order of 

the two familiar digit pairs in training items (e.g., 1834 became 3418) and half the test 

items comprised novel digit pairs.

Although all test strings were novel, participants were asked to discriminate 

between “old” items seen during training and “new” items. The group who said the 

training items as two digit pairs were more likely than the group who read strings 

digit-by-digit to say that test items containing familiar digit pairs were old and test 

items containing unfamiliar digit pairs were new. Thus the manner in which training 

items were processed dictated which aspect of the structure of test items was encoded 

(single digits or digit pairs) and subsequent test performance. These results cast doubt 

on the idea that there is a “neutral” form of coding, whether it is of whole items, 

fragments, or rules. Instead, and consistent with the principles of transfer-appropriate 

processing (Morris, Bransford, & Franks, 1977), what is learned depends on the 

processing demands of the task.

Whittlesea and Williams (in press) put forward a discrepancy-attribution 

hypothesis which suggests that participants will apply knowledge explicitly or 

implicitly at test depending on whether or not they understand the relationship 

between processing particular test items fluently and the knowledge they acquired 

during training. During training, participants pronounced natural words (e.g., DAISY, 

DELICATE), orthographically regular easy to pronounce nonwords (e.g., BARDLE, 

PLEMIDON) and less regular and hence harder to pronounce nonwords (e.g., 

LICTPUB, MOLPEOT). At test, participants were asked to pronounce old and novel
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versions of these three types of items and to indicate whether each item had been 

seen during training or not.

As novel regular nonwords (e.g., HENSION) were 21% more likely to be 

called old than novel words (e.g., TABLE), it was suggested that participants did not 

expect nonwords to be processed fluently and as a result unconsciously attributed the 

surprising fluency of orthographically regular nonwords to those items having been 

pronounced during training. In contrast, there was no discrepancy between the first 

impression that TABLE is a word and the subsequent fluency of processing. 

Participants were therefore able to discount fluency and use conscious recollection to 

make test responses for natural words.

Summary

Despite 30 years of AGL research there are still debates about whether 

participants who memorise representative examples of a complex rule-governed 

concept, without knowing that those examples conform to a set of rules, classify on 

the basis of implicit or explicit knowledge. However, before we can determine 

v/hether knowledge acquired in incidental learning situations is implicit or explicit it 

is necessary to gain a better understanding of the form of knowledge (i.e., rules, 

exemplars, fragments, or processing episodes) used to classify test items. Chapter 2 

identifies weaknesses in the standard finite-state grammars typically used to 

investigate implicit learning and suggests that the debate about forms of knowledge 

can be more successfully investigated using a biconditional grammar.



Chapter 2: Problems with Finite-state Grammars
22

The AGL literature review, in Chapter 1, indicated that despite 30 years of 

research there is still much debate about what participants who memorise rule-based 

training stimuli actually learn. In this chapter, research by Meulemans and Van der 

Linden (1997) is analysed to demonstrate that the standard AGL approach of using 

finite-state grammars is flawed because these grammars do not allow us to 

unconfound the contributions of rule- and similarity- (exemplar or fragment) based 

knowledge in classification test performance.

In their Experiments 2a and 2b, Meulemans and Van der Linden made heroic 

efforts to unconfound the factors of grammaticality and fragment statistics. Half of the 

test items were grammatical and half were nongrammatical and, orthogonally, half of 

the test strings were highly associated with training strings (i.e., contained familiar 

letter fragments) and half were not. This created four sets of test items: grammatical 

and associated (GA), grammatical and not associated (GNA), nongrammatical and 

associated (NGA), and nongrammatical and not associated (NGNA). The degree to 

which test strings were associated to training strings was measured using a statistic 

called associative chunk strength (ACS; see Experiment 1, Chapter 3 for a detailed 

explanation of the ACS calculation). This measures the overlap of letter-fragments 

(chunks) of two (bigrams) and three (trigrams) letters between test and training strings 

weighted by the number of times a chunk occurred in the training strings. Meulemans 

and Van der Linden calculated mean ACS statistics for letter chunks that occurred in 

anchor positions (initial and terminal chunks) and in global positions (anywhere 

within a letter string). In both experiments ACS varied between associated and 

nonassociated items, but was balanced across grammatical and nongrammatical
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strings. Experiments 2a and 2b differed in two respects. First, test items in 

Experiment 2b contained chunks that had been seen at least once during training, 

whereas the test items in Experiment 2a contained some novel chunks that had not 

been seen during training. However, the number of novel chunks was equivalent 

across grammatical and nongrammatical strings in Experiment 2a. Secondly, the two 

experiments differed in terms of the number of training strings (32 versus 125 

respectively) and training trials (64 versus 125 respectively) experienced by 

participants.

Table 1
Mean String Characteristics and Percentage o f Test Strings Classified as 
Grammatical by the Experimental Groups in Meulemans and Van der Linden's (1997) 
Experiments 2a and 2b.

Grammatical
Associated

Grammatical Nongrammatical 
Nonassociated Associated

Nongrammatical
Nonassociated

Experiment 2a 
Anchor ACS 4.78 3.31 4.44 3.41
Global ACS 9.69 6.17 9.71 6.30
Novelty 0.00 1.25 0.00 1.50
NCP 0.63 1.75 1.38 2.13
Length 6.88 6.00 6.75 6.63
Classification 65.31 42.81 67.50 45.00

Experiment 2b 
Anchor ACS 18.00 13.38 18.25 12.25
Global ACS 35.44 23.43 34.80 23.80
Novelty 0.00 0.00 0.00 0.00
NCP 0.25 0.25 0.63 1.88
Length 6.50 6.50 6.75 6.63
Classification 67.81 62.81 56.25 60.31

Note. ACS = associative chunk strength. NCP = novel chunk position.

Table 1 summarises the test string characteristics and Meulemans and Van der 

Linden's key findings. The row labelled "Classification" gives the percentages of
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strings of each type classified by participants as grammatical. On the basis of 

analyses of variance (ANOVA), Meulemans and Van der Linden concluded that after 

the short training phase (Experiment 2a) participants classified test strings on the basis 

of ACS, with no reliable effect of grammaticality: The classification rates closely 

parallel the ACS measures. However, when participants received extended training 

(Experiment 2b), they classified test strings on the basis of grammaticality, with no 

reliable effect of ACS. In this case the classification rates do not parallel the ACS 

measures, but instead tend to be higher for grammatical than nongrammatical strings. 

Meulemans and Van der Linden suggested that these results provide evidence of two 

independent learning mechanisms, which are brought into operation depending on the 

number of items presented in the training phase. When fewer training strings are 

presented, classification judgements are based on chunk frequency and overlap with 

training items, whereas with longer training, performance is based on knowledge of 

the rules of the grammar.

The Basis fo r  Reappraising Meulemans and Van der Linden ’s Conclusions

Meulemans and Van der Linden's findings were based on an assumption that 

the training strings only provided participants with two types of knowledge: 

grammatical rules and chunk frequency information. However, the training strings 

also provided information about legal locations of chunks within training strings and 

this finer level of knowledge was not captured by the global ACS measure.

Redington and Chater (1996) used models to demonstrate that evidence of 

participants classifying at above chance levels, in prior AGL studies, could be 

explained solely on the basis of participants calling test items that contained entirely 

familiar chunks grammatical and items that contained at least one novel chunk
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ungrammatical. For this reason, Meulemans and Van der Linden balanced the 

number of novel chunks across grammatical and ungrammatical test strings in 

Experiment 2a (though not between associated and nonassociated items) and ensured 

that test strings did not contain any novel chunks in Experiment 2b. But these models, 

like Meulemans and Van der Linden's ACS measures, are not sensitive to familiar 

training chunks in novel positions within test strings, and a number of researchers 

have suggested that participants may acquire knowledge of the legal positions of 

chunks within letter strings (e.g., Dienes, Broadbent, & Berry, 1991; Dulany, Carlson, 

& Dewey, 1984). So there is a possibility that participants could become sensitive to 

chunks that they have seen in training being presented in novel locations in test 

strings. The following analyses will demonstrate that in Experiment 2b 

grammaticality was confounded with positional information.

Empirical Evidence That Information about Familiar Training Chunks in Novel Test 

Positions Was Confounded with Grammaticality.

The issue of familiar training chunks appearing in novel test positions can be 

illustrated by looking at the letter strings used in Experiment 2b. Within the set of 

training strings, the trigram VXR occurred ten times (MXRMVXR, MVXR. 

MVXRV W . MVXRMXT. MVXRMXR. MVXRVMT. MVXRVV. MVXRV. 

MVXRM, and MVXRVVM) Within these ten training strings, VXR appeared in 

only two of the five possible locations: nine times as the second trigram and twice as 

the last trigram (in one string the second trigram is also the last). This means that 

when VXR appeared as the fourth trigram in four out of the eight NGA test items 

(MXRVXRM, MXRVXRV. VMRVXRM. VMRVXRV) it was appearing in a novel 

location. Perhaps participants call these strings nongrammatical not because they
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violate the rules of the grammar but because they contain familiar chunks in novel 

locations.

A new statistic was created to measure how many times bigrams and trigrams 

occurred in novel chunk positions (NCP) within test items. A terminal chunk was 

only counted as being in a novel position when it both occupied specific letter 

positions that it had not been seen in during training and had never occurred as the last 

chunk in any training string. This can be illustrated using the test string MVXVTRX. 

First NCP was set to 7 as 3 bigrams (XV, VT, and TR) and 4 trigrams (VXV, XVT, 

VTR, and TRX) appeared in novel positions. For example, the trigram VXV only 

appeared in letter positions 1-3 and 4-6 in training strings, but never in locations 2-4 

as in this test string. Secondly the NCP value was reduced by 1 to 6 as the final 

trigram in the test string (TRX) had appeared as the final trigram in some training 

strings. The mean NCP statistics for each test string type are shown in Table 1, along 

with Meulemans and Van der Linden's anchor ACS and global ACS measures.

It can be seen that in Experiment 2a, the NCP score was somewhat lower in 

grammatical test strings than nongrammatical test strings (1.19 versus 1.76) and was 

markedly lower in associated than nonassociated strings (1.01 versus 1.94). A 

contrasting pattern is obtained in Experiment 2b with much lower NCP in 

grammatical than nongrammatical (0.25 versus 1.26) items and somewhat lower NCP 

in associated than nonassociated (0.44 versus 1.07) strings. In both experiments 

Meulemans and Van der Linden had carefully manipulated the measures of anchor 

and global ACS so that there were significant differences overall between associated 

versus nonassociated strings, but not between grammatical and nongrammatical 

strings. However, there may also be significant differences in NCP scores. Mann- 

Whitney tests were used to assess differences in NCP scores between different string
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types in the two experiments. A significance level of .05, two-tailed, is assumed for 

all statistical tests, unless the significance level is specifically stated. In Experiment 2a 

there was a significant difference in NCP scores between the associated and 

nonassociated test items (U=  76.5), but the difference between grammatical and 

nongrammatical items was not significant (U=  87). In Experiment 2b the opposite 

pattern was observed with a significant difference between the grammatical and 

nongrammatical strings (U=  75.5), while the difference between associated and 

nonassociated strings was not significant (U  = 122.5).

These findings indicate that the NCP characteristics of the test strings show 

the same trends as the classification results found by Meulemans and Van der Linden. 

This suggests that the results of Meulemans and Van der Linden's two experiments 

can potentially be explained on the basis of a unitary learning system that is sensitive 

to both chunk frequency and location within training strings. In order to identify the 

best predictor of classification performance multiple regression was used to examine 

which string characteristics account for the highest proportions of the variance in test 

scores.

What Is the Best Predictor o f Grammaticality Classification Rates?

Table 2 shows the correlations between the independent variables and between 

each independent variable and the dependent variable of classification performance. 

Importantly, it can be seen that in Experiment 2b grammaticality (i.e., whether a 

string is grammatical or nongrammatical) is significantly correlated with NCP, 

suggesting that an apparent effect of grammaticality observed in the ANOVA cannot 

be taken as evidence that participants abstracted the rules of the grammar.
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Table 2
Intercorrelations Between the Predictor Variables in Meuleman's and Van der
Linden's (1997) Experiments 2a and 2b.

Classification Grammaticality Anchor
TRS

Global
TRS

Anchor
ACS

Global
ACS

Novelty NCP

2 a Grammaticality +.07
Anchor TRS +.34 .  5i**
Global TRS -.27 -.37* + .2 0

Anchor ACS + 4 7 ** -.05 +.32 -.07
Global ACS +.52** + .0 2 +.38* + .0 0 +.57**
Novelty -.50** +.06 - .2 1 - .2 1 - .1 0 -.53**
NCP -.04 +.19 + .0 2 -.06 +.05 -.19 +.61**
Length +.32 +.16 +.05 +.08 +.67** +.34 +.06 +.26

2 b Grammaticality -.32
Anchor TRS +.31 -.81**
Global TRS +.35* -.83** +.83**
Anchor ACS + .1 1 -.05 +.07 +.38*
Global ACS +.18 - .0 1 +.04 +.44* +.64**
Novelty
NCP 739* +737* 741* 756* -.78 -733
Length -.39* +.15 -.33 -.27 -.14 -.16 - +.07

Note. Grammaticality refers to whether a string is grammatical or nongrammatical. 
Dashes indicate that there were no novel fragments in Experiment 2b. NCP = novel 
chunk position. TRS = transition rule strength. ACS = associative chunk strength.
* p<05, ** p<01 (two-tailed, n = 3 2 test strings).

Multiple regression was used to assess which independent variables are the 

best predictors of classification performance in each of Experiments 2a and 2b. In 

order to test within-participants predictors against the appropriate error term, the 

individual regression equation method recommended by Lorch and Myers (1990) was 

adopted. A separate simultaneous regression was run for each participant with 

grammaticality, anchor ACS, global ACS, novelty (Experiment 2a only), NCP and 

string length as predictor variables and the mean number of trials (0, 1, or 2; each 

string was presented twice in the test stage) on which the participant classified each 

string as grammatical as the dependent variable. String length was included because 

test strings varied from 5 to 7 letters in length and this was not controlled across the 

four test item types.
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Table 3
Regression Coefficients from Individual Analyses o f Participants’ Data in Meulemans
and Van der Linden's Experiment 2a.

Participant Gram Anchor
ACS

Global
ACS

Novelty NCP Length Variance
Explained

P

1 .04405 -.06941 .05454 -.04215 .04486 -.08030 9.2% .86
2 -.04923 .26239 -.06431 -.07109 .04936 .00367 37.2% .05*
3 -.02235 .02404 .03832 -.24686 .13560 -.02092 38.6% .04*
4 -.12264 .10127 -.02502 -.16690 .03110 -.04370 19.4% .45
5 -.23011 .12021 -.02214 -.10587 -.02217 .12436 41.0% .03*
6 -.17056 .10612 -.02199 -.15014 .09668 -.01483 22.8% .33
7 .13955 -.01602 -.03447 -.11803 -.00004 .24587 25.1% .25
8 -.08144 -.06175 -.02922 -.22968 .14023 .07675 32.2% .11
9 -.03732 .00448 -.02230 -.15606 .02346 .13065 13.7% .68
10 -.03732 -.00448 -.02230 -.15606 .02346 .13065 13.7% .68
11 .09353 .09181 .05403 .03338 .06410 -.01527 29.1% .16
12 .07975 -.03776 .04044 -.11746 .01218 .13783 19.1% .46
13 .12740 .00251 .00010 -.12699 .04070 -.03382 12.1% .75
14 .22163 .10905 -.02000 -.08041 -.00589 -.24864 34.5% .08
15 -.08543 .08053 .02877 -.10965 .04643 .03001 25.9% .23
16 .14670 -.01580 -.01153 -.08226 .04375 -.19965 17.8% .51
17 -.05866 .08216 .01240 -.13898 -.01444 .05916 29.7% .15
18 -.01445 .09998 -.01105 -.02374 -.01011 .06049 11.6% .77
19 -.23039 .11991 .03024 -.14405 .04358 -.04405 49.6% .01**
20 -.01166 .00968 .04010 -.12100 .05645 .00856 20.2% .42

M -.01002 .05045 .00073 -.11770 .03996 .01534 25.1%
SE .02786 .01800 .00759 .01444 .00998 .02577
t(l9) 0.36 2.80* .10 8 is** 4.00** 0.60
Note. Gram = grammaticality, ACS = associative chunk strength, NCP = novel chunk
position. * p < .05, ** p < .01.

This analysis provided one equation for each of the 20 participants in each of 

the two experiments. The regression coefficients for each equation from Experiments 

2a and 2b are shown in Tables 3 and 4, respectively. The mean correlation coefficient 

was calculated across participants for each predictor variable and a one-sample t-test 

was then used to assess whether each predictor variable differed reliably from zero. 

The bottom three rows of each table show the results of these tests. In Experiment 2a, 

anchor ACS, novelty and NCP were reliable predictors of classification performance, 

while in Experiment 2b no predictors were significant by a two-tailed test; however, 

length was reliable at the p < 0.05 level by a one-tailed test. Grammaticality was a
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reliable predictor in neither experiment: the lack of a grammaticality effect in 

Experiment 2b critically challenges Meulemans and Van der Linden's conclusions.

Table 4
Regression Coefficients from Individual Analyses o f Participants ’ Data in Meulemans
and Van der Linden’s Experiment 2b.

Participant Gram Anchor
ACS

Global
ACS

NCP Length Variance
Explained

P

1 .14442 -.04465 .01149 .04094 -.21039 44.8% .01**
2 .05285 .00924 .00649 .01610 .22238 14.4% .51
3 -.07260 .01628 -.00903 -.05392 .09834 20.0% .29
4 .25710 -.01576 -.01801 -.03500 .00769 28.8% .10
5 -.16949 .01879 -.01474 -.11183 -.27459 33.6% .05*
6 .09077 -.04880 .00772 -.04772 -.20284 32.6% .06
7 -.09511 .01801 -.01350 -.19245 -.11555 36.0% .03*
8 .06729 -.01448 -.00110 -.04970 -.24400 20.5% .28
9 .10819 .04678 .00822 .05853 -.11989 40.7% .01**
10 -.00121 .00921 -.02870 -.10045 -.13722 21.1% .26
11 .00202 -.02474 .00008 -.03670 -.01844 7.5% .83
12 .01367 -.00165 .00315 -.00002 .07252 1.3% 1.00
13 .16153 -.02713 .00453 -.05676 -.06243 24.1% .18
14 .19640 -.04907 .01707 .04608 -.13343 28.1% .11
15 -.02245 -.01563 .00720 -.02400 -.02287 4.3% .94
16 .06123 -.02387 .03984 .12014 .15975 40.4% .01**
17 .21029 .00654 -.00275 -.00006 -.19560 23.9% .19
18 .02794 .05347 -.00602 .06852 .07054 25.7% .15
19 -.22462 .04374 .00114 -.09754 -.24156 41.2% .01**
20 -.11286 .02123 .00006 -.02352 .07351 11.1% .67

M .03477 -.00112 .00066 -.02397 -.06370 25.0%
SE .02858 .00687 .00322 .01613 .03266
t(19) 1.22 0.16 0.20 1.49 1.95

Note. Gram = grammaticality, ACS = associative chunk strength, NCP = novel chunk 
position. * p < .05, ** p < .01.

At first glance, the absence of a reliable effect for NCP in Experiment 2b 

contradicts the claim that a unitary model based on positional knowledge can largely 

account for the entire pattern of findings. However, further analysis of the data of 

Experiment 2b suggests that NCP rather than length is the critical psychological 

variable. The key observation is that the relationship between length and classification 

is not linear: Participants classified as grammatical 65 .0% of strings 5 letters long, 

69.7% of strings 6 letters long, and 61.8% of strings 7 letters long. Inclusion of strings
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of length 5 is unwarranted from the point of view of the NCP model as there were 

only two of them. In strings of length 6, 2/9 contained chunks in novel positions while 

in strings of length 7, 11/21 contained chunks in novel positions. This pattern of 

chunks in novel positions raises the question of whether classification rates for strings 

of seven letters may have been depressed by the greater number of chunks in novel 

positions within such strings, relative to six-letter strings.

To answer this question, a two-way ANOVA was used on the classification 

rates for strings of 6 and 7 letters, with length and whether strings contained chunks in 

novel positions or not as between-strings factors. Note that treating NCP as a binary 

rather than a continuous variable should make little difference as NCP had a value of 

0 or 1 in all but three test strings. The analysis revealed a highly significant effect of 

chunks in novel positions, F  (1, 26) = 17.32, MSE  = 11.09, but no effect of length, F  

(1, 26) = 1.96. The interaction between length and whether strings contained novel 

chunks was marginally significant, F  (1, 26) = 3.09, MSE  = 3.09,/? = .091. These 

results suggest that NCP is the critical predictor of classification performance and that 

length only appears to be a predictor because of idiosyncrasies in the distribution of 

chunks in novel positions across strings of different lengths.

Overall this analysis shows that in both experiments the string characteristics 

that Meulemans and Van der Linden believed were driving classification performance 

were confounded with other variables that have greater predictive power. In 

Experiment 2a, anchor ACS, novelty and NCP were reliable predictors of 

performance, which agrees with Meulemans and Van der Linden's conclusion that in 

Experiment 2a participants were responding on the basis of chunk information, 

though it is now evident that chunk novelty and location were stronger predictors than
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associative chunk strength. In Experiment 2b, using one-tailed tests, length was a 

reliable predictor, while grammaticality was not. These results question Meulemans 

and Van der Linden's conclusion that participants in Experiment 2b were classifying 

on the basis of grammaticality. It appears that when string length is controlled, NCP is 

the best predictor of performance and hence the results of Experiment 2b can also be 

explained on the basis of chunk information.

One final issue is that the significance levels in the final columns of the 

individual regressions in Tables 3 and 4 indicate that the classification performance of 

only four participants in Experiment 2a and six participants in Experiment 2b could 

be predicted reliably. The ranges of individual regression coefficients show the extent 

to which participants varied in the information they used to classify test strings. These 

individual participant analyses confirm the claim that grammaticality is not the basis 

of classification performance in Experiment 2b. The regression analyses for both 

experiments explained only 25% of the variance in performance. The low levels of 

variance accounted for also demonstrate that we are a very long way from a full 

understanding of what participants learn in artificial grammar learning experiments 

such as these.

What are the implications o f using finite-state grammars?

Meulemans and Van der Linden explained differences in performance 

between their Experiments 2a and 2b on the basis that shorter training led to 

knowledge of letter chunks, while longer training resulted in knowledge of the rules 

of the grammar. However, reanalysis of their data suggests that fragment novelty and 

NCP were stronger predictors of performance than the anchor and global ACS 

explanation given by Meulemans and Van der Linden. In particular, knowledge of
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valid letter chunk locations provides the strongest explanation of performance in 

Experiment 2b.

As well as questioning Meulemans and Van der Linden's explanation of their 

findings, these analyses provide an opportunity to open up a methodological debate 

about why researchers continue to use artificial grammars based on finite-state 

transition rules to investigate implicit learning, as these grammars do not appear to 

provide a means of convincingly determining whether participants are classifying on 

the basis of rule knowledge or of distributional statistics.

Figure 2. The artificial grammar used by Brooks and Vokey (1991).

The problem with transition-rule-based grammars is that they use a rule- 

structure that dictates legal consecutive letters tied to particular letter string locations. 

For example, all legal strings generated from the grammar used by Meulemans and 

Van der Linden (created by Brooks & Vokey, 1991, see Figure 2) start with MV, MX, 

VM, or VX. But if participants classify test strings on the basis of knowing what 

letters are legal in the first two positions, it is not clear whether they are doing this on
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the basis of rules (i.e., all legal strings must begin with M or V; an initial M can 

only be followed by V or X; and an initial V can only be followed by M or X) or 

whether they are classifying on the basis of bigram knowledge (i.e., all the training 

strings began with MV, MX, VM, or VX). It is suggested that a partial solution to this 

problem is to develop new methods of quantifying grammaticality that can then be 

taken into account in selecting experimental materials. Chapter 3, identifies a more 

complete solution created by using a biconditional grammar in which rule-structure is 

unconfounded from the distributional statistics of n-grams.

Can grammaticality be quantified?

Over the last thirty years, there have been a number of different explanations 

of what participants learn in finite-state grammar experiments (see the literature 

review in Chapter 1) and during this time there has been a trend to control for and 

quantify distributional statistics at increasing levels of detail. However, grammatical 

knowledge has remained a vague concept, quantified only in terms of two distinct 

categories (grammatical versus ungrammatical), that are assumed to exist whenever 

distributional statistics do not account for all o f the variance in test performance.

Although this has not been attempted before, it is possible to quantify 

precisely how grammatical test strings generated from finite-state grammars are. For 

example, the string MXRVXRM is intuitively less ungrammatical than the string 

XXXXX. While, the former can be turned into a grammatical string simply by 

moving the final M to position 4, the latter cannot be transformed so easily into a 

grammatical string. One method of measuring grammaticality can be illustrated using 

the grammar designed by Brooks and Vokey (1991) and the specific letter strings 

selected from this grammar by Meulemans and Van der Linden. The Brooks and
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Vokey (1991) grammar, shown in Figure 2, comprises a set of 17 rules that specify 

which letter can be added to a string of letters at each transition between nodes of the 

finite-state diagram, and 6 rules that specify legal terminal nodes for each string. First, 

the number of times each of these 23 rules occurred in training strings was counted. 

Repetition of a rule in training strings was deemed to increase the ‘transition rule 

strength’ (TRS) in much the same way that the repetition of letter fragments increases 

associative chunk strength (anchor ACS and global ACS). These 23 measures of 

transition rule strength were then used to create global TRS measures, which include 

all of the rules, and anchor TRS measures, which include the first and last rules, in 

each test string. These rule measures are similar to the global and anchor ACS 

measures. The TRS calculations were carried out by breaking each test string down 

into its constituent rules, summing the training transition rule frequency counts of the 

rules composing a specific string, and then dividing the total rule strength by the 

number of letters in the string. This can be demonstrated using test string VXVRM 

from Experiment 2b, in conjunction with the finite-state grammar diagram in Figure 

2. VXVRM comprises the following transition rules: V was selected at the transition 

from node 1 to 4; X was selected at the transition from node 4 to 7; V was selected at 

the transition from node 7 to 6; R was selected at the transition from node 6 to 8; M 

was selected at the transition from node 8 to 9; and the terminal transition was at node 

9. These six transition rules occurred 64, 33, 17, 45, 19, and 39 times respectively in 

the 125 training strings. The global TRS for VXVRM was therefore (64 + 33 + 17 + 

45 + 19 + 39) / 5 = 43.4. Anchor TRS was quantified by adding the transition rule 

strength for the first and last rules and dividing by 2. The anchor TRS for VXVRM 

was (64 + 39) / 2 = 51.5.
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In Meulemans and Van der Linden's Experiment 2a, the mean anchor TRS 

values for grammatical versus nongrammatical items were 9.81 versus 8.00, and for 

associated versus nonassociated items were 9.56 versus 8.25. A two-way ANOVA 

with grammaticality (as defined by Meulemans & Van der Linden) and similarity as 

between-string variables showed an effect of grammaticality, F (  1, 28) = \2.29, MSE  

= 2.138, and an effect of similarity, F  (1, 28) = 6.45, MSE = 2.138, but no interaction 

of grammaticality with similarity, F  < 1. The mean global TRS values for 

grammatical versus nongrammatical items were 13.02 versus 7.89, and for associated 

versus nonassociated items were 11.19 versus 9.73. A two-way ANOVA with 

grammaticality and similarity as between-string variables, showed an effect of 

grammaticality, F  (I, 28) = 73.98, MSE=  2.845, and an effect of similarity, F ( l ,  28)

= 6.00, MSE = 2.845, but no interaction of grammaticality with similarity, F  < 1. This 

suggests that in Experiment 2a anchor and global TRS were confounded with anchor 

and global ACS.

In Meulemans and Van der Linden's Experiment 2b, the mean anchor TRS 

values for grammatical versus nongrammatical items were 37.88 versus 30.88, and for 

associated versus nonassociated items were 34.31 versus 34.44. A two-way ANOVA 

with grammaticality and similarity as between-string variables showed an effect of 

grammaticality, F ( l ,  28) = 52.17, MSE = 7.513, and no effect of similarity, F  < 1, 

and no interaction of grammaticality with similarity, F  < 1. The mean global TRS 

values for grammatical versus nongrammatical items were 47.26 versus 27.38, and for 

associated versus nonassociated items were 41.54 versus 33.11. A two-way ANOVA 

with grammaticality and similarity as between-string variables showed an effect of 

grammaticality, F  (1, 28) =118.31, MSE  = 26.734, and an effect of similarity, F  (1, 

28) = 21.26, MSE = 26.734, but no interaction of grammaticality with similarity, F  (1,
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28) = 3.58. This means that in Experiment 2b, global TRS was confounded with 

anchor and global ACS.

Consistent with the idea that TRS is a measure of grammaticality, its 

correlation with the standard binary classification of grammaticality, in Experiment 

2b, was significant for both anchor (r = .81) and global TRS (r = .83). Moreover, 

consistent with the view that participants in Experiment 2b were not abstracting the 

rules of the grammar, when anchor and global TRS measures were used in the full 

regression they failed to account for significant proportions of the variance in 

classification rates.

It therefore appears that despite Meulemans and Van der Linden creating the 

best set of training and test strings that it is possible to construct with this particular 

grammar, it was impossible for them to have balanced test strings according to more 

sensitive TRS measures of grammaticality. As the transition-based rules in Brooks 

and Vokey’s (1991) grammar are common to all finite-state grammars, it is 

recommended that different types of grammars are used in future that allow 

grammaticality to be straightforwardly quantified and to provide a sounder basis for 

manipulating grammaticality measures orthogonal to chunk similarity measures.
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Chapter 2 ended by suggesting that the finite-state grammars used for over 30 

years to investigate the possibility that there are distinct rule-abstraction and 

exemplar-based learning systems are methodologically unsound as they do not allow 

investigators to unconfound the contributions of rule- versus exemplar-based (letter- 

fragment and whole training exemplar) knowledge in classification performance. In 

Chapters 3 to 6, a biconditional grammar is used to demonstrate that when rule- and 

exemplar-based knowledge are satisfactorily unconfounded there is no evidence for a 

distinct rule-abstraction system.

Shanks, Johnstone, and Staggs (1997, Experiment 4) constructed letter strings 

from a biconditional grammar, originally designed by Mathews et al. (1989, 

Experiment 4). This biconditional grammar generates strings of eight letters and has 

three rules governing the relationship between letters in positions 1 and 5, 2 and 6, 3 

and 7, and 4 and 8, such that when one position contains a D, the other should be an 

F, where there is a G the other letter should be an L, and where there is a K, the other 

letter should be an X (e.g., DFGK.FDLX is legal, whereas LFGK.KDLX is not). This 

grammar has four advantages over transition-rule grammars. First, each of the three 

rules can occur in any of the letter locations. For example a D can be placed in any of 

the eight positions, as long as an F occurs in the associated letter location. Secondly, 

as the rule-related positions have three intervening letters, it is possible to unconfound 

rule and fragment knowledge. Thirdly, all strings are eight letters long, meaning that it 

is not necessary to control for length. Finally, it is straightforward to quantify how 

grammatical test strings are. All grammatical strings contain four valid rules and in
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the current studies all ungrammatical test strings contain three valid rules and one 

illegal letter pairing.

The strings generated from this biconditional grammar allow exemplar and 

fragment information to be unconfounded from grammaticality more successfully 

than has been achieved with finite-state grammars. The first aim of the present 

research, therefore, is to re-evaluate the key assumptions of implicit learning that have 

driven AGL research over the last 30 years but which have yet to be settled: Do 

participants who memorise grammatical training strings, without knowing that these 

strings conform to a set of rules, acquire implicit rule knowledge? Or, is the 

performance of memorisers better explained by similarity-based exemplar or letter- 

fragment knowledge?

Rule Learning

In addition to studying the effects of memorising training strings, Shanks et al. 

(1997, Experiment 4) also looked at the performance of participants who consciously 

tried to learn the rules of a grammar. In most previous studies (Dulany, Carlson, & 

Dewey, 1984; Perruchet & Pacteau, 1990; Reber, 1976; Reber, Kassin, Lewis, & 

Cantor, 1980; Turner & Fischler, 1993), instructions aimed at encouraging rule 

learning were minimal (e.g., participants were simply informed prior to a standard 

study phase that the strings conformed to a set of rules and that discovering these 

rules may be helpful). However, Shanks et al. used a task, originally created by 

Mathews et al. (1989, Experiments 3 and 4), that was designed to encourage rule 

learning. Participants were shown flawed examples of grammatical strings, asked to 

indicate which letters they thought created violations of the grammar, and then given 

feedback about their accuracy. Training strings contained one or two violations of the
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biconditional rules, and participants adopted a hypothesis-testing strategy to 

determine the underlying rules used to generate grammatical strings. Like Mathews et 

al. (Experiment 4) a clear dissociation in classification test accuracy was found, with 

chance-level performance by some participants and almost perfect performance by 

others. Shanks et al. found that these latter participants showed a strong effect of 

grammaticality and no effect of exemplar knowledge, suggesting that the mental 

representations underlying their performance were the rules of the grammar. These 

results suggest that, as predicted by the episodic-processing approach (Whittlesea, 

1997a, b; Whittlesea & Dorken, 1993), rule abstraction does not take place under 

implicit learning conditions, but depends on active, conscious efforts to identify the 

rules of the grammar, leading to explicit knowledge. The second aim of the seven 

experiments reported in Chapters 3 to 6 is to assess how well the findings fit this 

episodic-processing approach. Experiment 1 examines whether exemplar knowledge 

contributes to grammaticality decisions under explicit and implicit training conditions.

Experiment 1

Shanks, Johnstone, and Staggs (1997, Experiment 4) used the biconditional 

grammar and match and edit tasks created by Mathews et al. (1989, Experiments 3 

and 4), along with new training and test strings that manipulated rule knowledge (i.e., 

grammaticality) orthogonal to exemplar (whole-item) similarity while ensuring that 

these two factors had minimal overlap with fragment similarity. In keeping with prior 

research (e.g., Knowlton & Squire, 1994, 1996; Meulemans & Van der Linden, 1997; 

Servan-Schreiber & Anderson, 1990) and Chapter 2, two- and three-letter fragment 

similarity will be referred to as associative chunk strength (ACS). At the level of 

whole items, test strings that differ from one training item by only two letters are
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defined as similar, whereas test items that differ by three or more letters from all 

training items are defined as dissimilar.

One group of participants was induced to process the surface characteristics of 

the training stimuli by asking them to memorise letter strings, without telling them 

that these strings were constructed according to the rules of a grammar (match group). 

A second group was induced to process the relational properties of the letter strings, 

by asking them to hypothesis test in order to discover the rules of the grammar (edit 

group). The results showed a clear dissociation in classification accuracy, with edit 

participants who learned the rules performing at near-perfect levels, while the match 

group performed at chance. Neither group showed an effect of whole-item similarity.

Experiment 1 sought to extend the findings of Shanks et al. (1997, Experiment 

4) with three major modifications. A control group was included, participants' 

awareness of the rules of the grammar was assessed, and the rule letter pairs were 

counterbalanced across participants. While the match and edit groups trained on the 

same grammatical training items, a control group was asked to memorise letter strings 

that contained neither rules, whole-item similarity, nor ACS relationships with the test 

strings. All groups classified the same set of novel test strings. A questionnaire was 

used fairly exhaustively to assess participants’ knowledge of the rules of the grammar. 

All participants in Shanks et al.’s experiment trained on strings based on the three rule 

pairings of D with F, G with L, and K with X. In the present experiment each 

participant within each group saw a different version of the 15 possible sets of three 

letter pairs that can be created from the letters D, F, G, K, L, and X.

There were three hypotheses. The first was that as the match group had not 

been asked to process the rule structure of the training strings, they would show no 

effect of grammaticality in their classification performance. In fact, it was predicted
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that the match group would perform at the chance level anticipated in the control 

group. Secondly, as the edit participants had actively sought to identify the rule 

structure, it was predicted that those who succeeded in identifying the rules would 

show an effect of grammaticality. Thirdly, based on the results of Shanks et al. (1994, 

Experiment 4), it was predicted that none of the groups would show an effect of 

whole-item similarity.

Method

Participants. 24 psychology undergraduates from University College London 

(UCL) were paid £5 to take part in the experiment and were randomly assigned to a 

match, edit, or control group. The control and match groups were initially told that 

they were taking part in a short-term memory experiment, while the edit group was 

told that they would be taking part in a rule-discovery experiment. All three groups 

carried out the same classification test.

Match Task. The control and match groups were told that they were being 

tested on how good their short-term memory was for strings of letters like 

DFGX.FDLK. On each of 72 trials a string appeared on the screen and the participant 

was asked to mentally rehearse it. The string stayed on the screen for 7 s and then the 

screen went blank for 2 s. Then a list of three strings was displayed and the participant 

was asked to type the number (1-3) of the string that matched the one they were 

rehearsing. The two foils were illegal versions of the correct string. The order of 

strings was randomised across blocks and participants.

Edit Task. The edit group was told that they would be shown strings of letters 

such as DFGX.FDLK, that were constructed from the six letters D, F, G, K, L, and X, 

and that the computer was programmed with a set of rules for putting letters into



acceptable orders. Participants were told that their task was to work out what these 

rules were. They would see one string at a time for each of 64 trials. Each string 

would have between two and four letters that violated the rules, in terms of the 

relationships between the letters. Participants were asked to indicate whether they felt 

that each letter conformed to or violated the rules by putting a Y below letters that 

they believed conformed to the rules and an N below letters that they believed did not. 

It was explained that at the beginning of the experiment the participant would not 

know the rules and therefore they would have to start by guessing. But on each trial 

they would be given feedback in the form of the correct string of Ys and Ns, as well 

as the corrected string itself, and they should try to learn from this feedback in order 

to induce the rules.

Classification Task. Immediately before the classification task began, 

participants in the control and match groups were informed that the letter strings they 

had been asked to memorise in the first part of the experiment were generated from a 

complex set of rules. They were told not to worry if they did not notice any rules, as 

the task that they had performed made it very unlikely that they would know them. In 

fact only the match group had seen rule-governed strings whereas the control group 

had not. Participants in the edit group were reminded that in the first part of the 

experiment they had used a hypothesis-testing strategy to try to learn the rules of the 

grammar. They were also told not to worry if they did not feel completely confident in 

their understanding of the rules, as the task was very difficult.

The 144 strings presented for classification comprised two blocks of the same 

72 strings presented in different random orders across blocks and participants. Each 

string was presented in turn, and participants were asked to rate how well it 

conformed to the rules on a scale from 1 to 6. The points on the scale indicated the
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following: (1) certain, (2) fairly certain, and (3) guess that the string obeys the rules, 

(4) guess, (5) fairly certain, and (6) certain that the string does not obey the rules.

Questionnaire. After participants had finished the classification test, they were 

asked a series of questions in order to explore how much they had learned about the 

letter pair rules. Participants were asked if they had adopted any particular strategy in 

the test phase to determine if the strings conformed to the rules or not. If this failed to 

elicit the rules of the grammar they were then asked if they had noticed any rules in 

the construction of the training string. If this failed to elicit the rules, they were then 

asked if they knew the rules linking letters in the first half of the string to 

corresponding letters in the second half of the string. If this third question failed to 

elicit the rules of the grammar, participants were told that there were three rules that 

dictated which letters could appear in location 5 depending upon what letter was in 

location 1 and they were then asked if they could say what those rules were. This 

question was repeated for each pair of rule-related letter locations. The questionnaire 

is shown in Appendix G.

Materials. Three separate sets of letter strings were created to train the control 

group, to train the match and edit groups, and to provide a classification test for all 

three groups (see Appendix A). In addition, allocation of two sets of training strings 

(Lists 1 and 2) were counterbalanced for participants in both the match and edit 

groups. Though each participant within each group saw a different example of the 15 

possible sets of three letter pairs that can be created from D, F, G, K, L, and X, the 

examples given in Chapters 3 to 6 and the appendices were all generated from the 

rule-set D<->F, G<->L, and K<->X.

The training strings used by all three groups were designed so that each letter 

was evenly distributed across each of the eight locations and so that ACS was
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equivalent across test items. The control group training strings did not contain 

biconditional rules, whereas the match and edit group training strings did. For each 

training string used for the match and edit groups, two ungrammatical versions were 

created with one or two rule violations, making them one or two letters different from 

the grammatical string. For each training string used for the control group, two 

versions were also created that differed from the original string by one or two letters.

In relation to the training strings seen by the match and edit groups, half of the 

test strings were grammatical and the other half ungrammatical and within each of 

these two categories, half of the strings were similar to training strings and the other 

half were dissimilar. Similar test items only differed from a specific training item by 

two letters, whereas dissimilar test items differed from all training items by more than 

two letters. This created four types of test items: grammatical and similar (GS), 

grammatical and dissimilar (GD), ungrammatical and similar (US), and 

ungrammatical and dissimilar (UD). There were no relationships of grammaticality or 

similarity between the test strings and the training strings processed by the control 

group.

Calculation o f Associative Chunk Strength (ACS). ACS was calculated on the 

basis of the theoretical perspective on chunking presented by Servan-Schreiber and 

Anderson (1990) and as applied by Knowlton and Squire (1994, p. 85). The actual 

ACS statistics for each experiment are shown in the appendices. ACS is a measure of 

the frequency with which fragments of two letters (bigrams) and three letters 

(trigrams) within test items appeared in training strings. Two measures of ACS were 

calculated for the initial and terminal fragments within each test string (anchor ACS) 

and for all fragments in a test string (global ACS). For example, the anchor ACS for 

the grammatical test string LFGK.GDLX in relation to List 1 training items is (LF (1)
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+ LX (1) + LFG (0) + DLX (1)) / 4 = 0.75 and in relation to List 2 training items is 

(LF (0) + LX (1) + LFG (0) + DLX (0)) / 4 = 0.25.

Global ACS was calculated by breaking each test string down into its 

constituent bigrams and trigrams and then calculating how many times each fragment 

had occurred in any location within List 1 and List 2 and dividing the totals by the 

number of fragments (7 bigrams and 6 trigrams). For example, LFGK.GDLX can be 

broken down into LF, FG, GK, KG, GD, DL, LX, LFG, FGK, GKG, KGD, GDL, and 

DLX which when compared to the training strings contributes ((4 + 3 + 5 + 3 + 4 + 2 

+ 5) / 7) + ((0 + l + 0  + 0 + 0 + l ) / 6 ) / 2  = 2.02 to the List 1 similar global ACS 

score and (((2 + 5 + 5 + 2 + 1  + 4 + 5 ) / 7 )  + ((0 + 0 + 1 + 0  + 0 + 0 )/ 6)) / 2 — 1.80 to 

the List 2 dissimilar global ACS score. Appendix A shows that grammatical versus 

ungrammatical and similar versus dissimilar test strings did not differ in ACS.

Results

Table 5 shows data from four blocks of 18 training trials. Responses in both 

the control and match groups were scored as correct if the same string as that initially 

presented for rehearsal was selected from the list. A one-way ANOVA for the control 

group, with block as a within-subjects variable, indicated that there was a significant 

effect of block, F  (3, 21) = 3.53, MSE = 44.46, indicating that participants’ ability to 

memorise the training strings improved as training progressed. A two-way ANOVA 

for the match group, with block as a within-subjects variable and list as a between 

subjects variable, indicated that there were no effects of block, F  (3,18) = 2.46, MSE  = 

52.73, or list, F  < 1, and there was no Block x List interaction, F  <  1. The control and 

match groups' performance was close to ceiling and participants were performing the 

memorisation task accurately across training blocks.
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Table 5

Mean Percentage o f Correct Responses by Training Blocks in Experiments 1 and 2

Experiment Group Block 1 Block 2 Block 3 Block 4 Overall
Accuracy

1 Control 83 83 86 92 86
Match 82 88 87 92 87

Edit 60 72 75 77 71

2 Match 93 92 97 92 94
Edit 64 77 76 79 74

The edit group was asked to indicate whether each letter in a training string 

was grammatical or ungrammatical by placing Y or N beneath it. The accuracy of 

these responses was scored at the level of individual letters (see Table 5). A two-way 

ANOVA with block as a within-subjects variable and list as a between-subjects 

variable yielded an effect of block, F  (3, 18) = 6.91, MSE = 66.37, but no effect of 

list, F  < 1, and no Block x List interaction, F  < 1. These results suggest, as predicted, 

that the edit group acquired new knowledge as training progressed by successfully 

identifying the rules of the grammar as a result of hypothesis testing and feedback.

Table 6 shows the mean percentage of items classified as grammatical for each 

group. Within each group the classification responses are shown for the four test item 

types. The mean percentage of correct responses for the control group was 51%. This 

provides a measure of chance performance that can be compared with the 

classification results of the match and edit groups. The mean percentage of correct 

responses for the match group was 55%, and the 95% confidence intervals (Cl) shown 

in Table 6 indicate that this is not significantly different from the percentage correct in 

the control group, t<  1, SE = 4.69. The mean percentage correct for the edit group
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was 75%, with a confidence interval of 58% to 92% indicating above-chance 

performance.

A three-way ANOVA comparing the percentage of items classified as 

grammatical (ratings < 3), with group (control, match, or edit) as a between-subjects 

variable and both grammaticality and similarity as within-subjects variables, found a 

significant effect of grammaticality, F (  1,21)= 10.43, MSE = 1015.27, and a Group x 

Grammaticality interaction, F  (2,21) = 5.16, MSE = 1015.27. The main effects of 

group and similarity, and the Group x Similarity, Grammaticality x Similarity, and 

Group x Grammaticality x Similarity interactions were not significant, with F  < 1 in 

each case.

Next, separate two-way ANOVAs comparing the percentage of items 

classified as grammatical were conducted on the data for each of the three groups, 

with both grammaticality and similarity as within-subjects variables. In the control 

group there was no effect of grammaticality, F  < 1, or similarity, F<  1, nor a 

Grammaticality x Similarity interaction, F (  1,7) = 2.03, MSE = 26.70. In the match 

group there was no effect of grammaticality, F  (1, 7) = 1.39, MSE = 647.01, or 

similarity, F  < 1, nor a Grammaticality x Similarity interaction, F  < 1. The edit group 

showed an effect of grammaticality, F  (1, 7) = 8.60, MSE = 2342.61, whereas the 

effect of similarity, F  < 1, and the Grammaticality x Similarity interaction, F<  1, 

were not significant. This suggests that only edit group participants learned the rules 

of the grammar and that they classified test items based on rules alone.

A grammatical sensitivity measure (d  'g) was calculated by comparing the 

percentage of grammatical test strings that were correctly classified as grammatical 

(hits) with the percentage of ungrammatical test strings incorrectly classified as 

grammatical (false alarms). Figure 3 and Table 6 show that only edit group
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participants discriminated grammatical from ungrammatical items at above-chance 

levels (d g = 2.18), as d  'g = 0 fell inside the 95% confidence interval of the d  'g scores 

of both the control and match groups. In contrast, discrimination in the edit group was 

well above chance. Participants in all three groups showed a slight bias toward calling 

strings ungrammatical.

d, 5.00
4.50
4.00
3.50
3.00
2.50
2.00

1.50 
1.00  

0.50
0.00 

-0.50 
- 1.00

Figure 3. Mean d  ' for grammaticality-based (d ’g) and similarity-based ( d ’s) 
classification in the control, match, edit, nonlearner, and learner groups of Experiment
1. Error bars represent 95% confidence intervals.

Table 6 also shows the mean percentage of “correct” responses when 

performance is based on the similarity, rather than the grammaticality, of test strings. 

In this case, a test response is “correct” when a similar item is classified as 

grammatical or a dissimilar item is classified as ungrammatical. On the basis of 

similarity the control, match, and edit groups each classified 50% of strings as 

grammatical according to their similarity to training strings. Figure 3 shows that the 

95% confidence intervals around the similarity sensitivity scores ( d 's) for all three 

groups encompass chance-level sensitivity. For these calculations, grammatical

Grammaticality
Similarity

i
Control Match Edit Nonlearners Learners
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responses for similar (grammatical and ungrammatical) test items are scored as hits 

whereas grammatical responses for dissimilar (grammatical and ungrammatical) items 

are scored as false alarms.

Inspection of participants' verbal reports indicated that every participant in the 

control group, seven members of the match group, and four members of the edit group 

had no knowledge of the rules of the grammar. Based on the verbal report data, 

participants in the match and edit groups were partitioned into those who successfully 

identified the rules (Learners, N = 5) and those who did not (Nonlearners, N = 11), 

and a second set of analyses were conducted for these two subgroups (see Table 6). 

One participant in the match group was not aware of the rules at the end of the match 

task, but worked out what they were during the classification test. Three of the edit 

group learners reached ceiling in their first block of training and one participant 

reached ceiling in the fourth block.

The mean percentages correct were 52% for the nonlearners and 95% for the 

learners. Figure 3 shows that the nonleamers performed at chance levels with a d  'g 

score of 0.16 and confidence interval of -0.08 to 0.40, while the learners had a d \  

score of 3 .67 and a confidence interval of 2.77 to 4.57. The nonlearners had a bias 

towards calling test strings ungrammatical, whereas the learners had a slight bias 

towards calling strings grammatical. When the classification scores were examined to 

see if participants were sensitive to the similarity of test items to whole training items 

(see Table 6), the nonleamers classified 50% of test strings accurately and the learners 

classified 49% of the test strings accurately. The 95% confidence levels around the 

d 's score for both groups confirmed chance levels of performance.

Separate two-way ANOVAs were carried out for these two subgroups on the 

percentages of items classified as grammatical, with both grammaticality and
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similarity as within-subjects variables. For the nonlearners there was no effect of 

grammaticality, F  (1, 10) = 2.79, MSE = 36.20, or similarity, F<  1, nor a 

Grammaticality x Similarity interaction, F  < 1. For the learners, on the other hand, 

there was a significant grammaticality effect, F{ \ ,  4) = 328.52, MSE = 124.81, with 

no effect of similarity, F  < 1, and no Grammaticality x Similarity interaction, F ( l ,  4) 

= 1.54, MSE  = 16.02.

The sums of squares calculated for the two within-subjects ANOVAs 

indicated that rule knowledge accounted for 1% of the variance in the performance of 

the nonlearners while it accounted for 99% of the variance in performance of the 

learners. Whole-item similarity accounted for 0% of the variance in performance of 

both groups.

Discussion

This experiment replicates and extends the findings of Shanks, Johnstone, and 

Staggs (1997, Experiment 4). Neither the match nor edit groups showed any 

knowledge of whole training items in their classification performance. The match and 

edit nonlearners showed no knowledge of the rules of the grammar in their 

classification performance and did not differ from the control group. Only the edit 

learners who successfully identified the rules of the grammar succeeded in the 

classification test and these participants were fully aware of and able to say what the 

rules of the grammar are. Thus the rules of this biconditional grammar cannot be 

learned under standard implicit learning conditions, despite the fact that the 

performance of the participants in the edit group shows that the rules are learnable.
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The aim of the second experiment was to examine whether match and edit 

participants could learn about the two- and three-letter (bigram and trigram) 

fragments used to construct their training strings. While the same grammar, tasks, and 

questionnaire were used as in Experiment 1, a new set of training and test strings were 

constructed from a subset of the bigrams and trigrams that can be created from the 

letters D, F, G, K, L, and X. Again, half the classification test strings were 

grammatical and half ungrammatical, but this time within each of these categories 

half of the test items were constructed from the bigrams and trigrams used to 

construct the training items, while the other half of the test items were largely 

constructed from novel bigrams and trigrams not seen during training. This created a 

test manipulation of fragment similarity (i.e., ACS) orthogonal to grammaticality. 

Whereas in Experiment 1 similarity referred to the overlap of a whole test items with 

training items, in Experiment 2 similarity refers to the overlap of letter fragments 

between test and training items. Test items with high ACS are similar to training 

items, while test items with low ACS are dissimilar to training items.

The episodic-processing account (Whittlesea & Dorken, 1993; Wright & 

Whittlesea, 1998) suggests that variations in the processing demands of different 

training tasks will lead to variations in the knowledge acquired during training. In 

addition, a participant’s ability to retrieve knowledge acquired during training 

depends on the extent to which the test reinstates the original training context in terms 

of processing and the structure of the stimuli. It was predicted that edit group 

participants who successfully hypothesis tested would classify solely on the basis of 

the rules of the grammar, with no effect of ACS, and that they would also be able to



state the rules of the grammar. The episodic-processing account predicts these 

results because the edit learners would have explicitly processed their training strings 

in the same way required to carry out the classification test successfully. That is, they 

would scan from one side of the string to the other, checking that positions 1 and 5, 2 

and 6, 3 and 7, and 4 and 8 contain valid rule letter pairs.

There were two predictions for the match group and edit nonlearners. First, 

they would classify on the basis of ACS, with no effect of grammaticality. Secondly, 

they would not be able to say what the rules of the grammar are. The episodic- 

processing account predicts these results because the match group was instructed to 

mentally rehearse training strings and this should have caused them to process letter 

strings in the left-to-right order necessary to create knowledge of letter chunks. The 

chunk knowledge acquired during training would create familiarity effects for novel 

high ACS test strings as there would be a “discrepancy” (Whittlesea & Williams, in 

press) between the impression that all test strings are novel and the unexpected 

fluency of processing high ACS test strings. As participants would be unaware of the 

effect of prior chunk processing on their fluency of processing high ACS test strings, 

they would attribute increased fluency to grammaticality. Since processing in the 

training stage did not include explicit analysis of the rule structure, these participants 

would classify at chance levels in relation to the rules of the grammar and would not 

be able to say what the rules of the grammar are.

Method

Participants. A further 16 UCL psychology undergraduates were each paid £5 

to participate in the experiment and were divided equally between a match and an edit 

group.



Materials. A set of 36 grammatical training strings was created from a 

subset of 18 of the possible 36 bigrams and 216 trigrams that can be created from D,

F, G, L, K, and X (see Appendix B). Again, two ungrammatical training strings were 

created for each grammatical training string, by violating the rules for one or two 

letter pairs. The violations were made so that the ungrammatical training strings 

comprised the same subset of bigrams and trigrams as the grammatical training 

strings.

A set of 48 test strings was created using the frill set of possible bigrams and 

trigrams in order to manipulate ACS independently of grammaticality (see Appendix 

B). Half of the test strings were grammatical and half were ungrammatical.

Orthogonal to this, half of the test strings had high ACS and half of the test strings 

had low ACS. All participants classified the 48 test strings twice. The training and test 

strings are shown in Appendix B, along with string statistics that show that while 

similar and dissimilar test strings differ in ACS, there is no ACS difference between 

grammatical and ungrammatical test strings.

Results

Table 5 shows the mean percentage of training items on which participants in 

the match and edit groups made correct responses. A one-way ANOVA for the match 

group, with block as a within-subjects variable, indicated that there was no significant 

effect of block, F  (3,21) = 2.13, MSE = 23.38. Performance was close to ceiling and 

the results show that participants were performing the memorisation task accurately 

across training blocks. A one-way ANOVA for the edit group yielded a significant 

effect of block, F  (3, 21) = 3.51, MSE=  103.70. This suggests, as predicted, that the
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edit group acquired new knowledge as training progressed with successful 

hypothesis testing.

Table 6 presents the mean percentage of items classified as grammatical for 

each group, with the overall mean percentage correct. The mean percentage of correct 

responses for the match group was 53% with confidence interval of 48 to 58% 

suggesting that these results could have occurred by chance. The mean percentage 

correct for the edit group was 75% with confidence intervals of 58 to 93% indicating 

above chance performance. A three-way ANOVA comparing the percentage of items 

classified as grammatical (ratings < 3), with group (match or edit) as a between- 

subjects variable and both grammaticality and ACS as within-subjects variables, 

found significant effects of grammaticality, F  (1,14) = 9.22, MSE = 1384.97, and 

ACS, F  (1,14) = 17.90, MSE = 564.35, and a significant Group x Grammaticality 

interaction, F (  1,14) = 5.20, MSE = 1384.97. The effects of group, F (  1,14) = 1.42, 

MSE  = 208.29, and Group x ACS, F  (1,14) = 2.85, MSE = 564.35, Grammaticality x 

ACS, F<  1, and Group x Grammaticality x ACS, F  (1,14) = 1.05, MSE = 161.79 

interactions, were not significant.

Separate two-way ANOVAs comparing the percentage of items classified as 

grammatical were conducted for each of the groups, with both grammaticality and 

ACS as within-subjects variables. In the match group there was a significant effect of 

ACS, 7^(1,7) = 17.94, MSE=  551.14, but no effect of grammaticality, 7^(1, 7) = 1.85, 

MSE  = 213.22, and no Grammaticality x ACS interaction, F  (1,7) = 1.24, MSE = 

193.37. The edit group showed an effect of grammaticality, F ( \ , l )  = 7.66, MSE = 

2556.73, whereas the effect of ACS, F  (1,7) = 3.16, MSE = 577.57 and the 

Grammaticality x ACS interaction, F  < 1, were not significant.
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The d  'g sensitivity measures (see Figure 4) show that participants in the edit 

group, with confidence intervals of 0.59 to 3.69, were better at discriminating 

grammatical from ungrammatical items than the match group with confidence 

intervals of -0.09 to 0.45, since there is no overlap in the confidence intervals. Indeed, 

the level of chance responding (d 'g = 0) fell inside the 95% confidence interval of the 

d  'g scores of the match group. In contrast, discrimination in the edit group was well 

above chance.

d. 5.00
4.50
4.00
3.50
3.00
2.50
2.00

1.50 

1.00 

0.50 
0.00 

-0.50 
- 1.00

Figure 4. Mean d ' for grammaticality-based (d ’g) and similarity-based ( d ’s) 
classification in the match, edit, nonleamer, and learner groups of Experiment 2. Error 
bars represent 95% confidence intervals.

Percent correct and signal detection measures were also computed to assess 

whether performance had been influenced by the degree of ACS overlap between 

training and test strings. This time test responses were “correct” if high ACS items 

were classified as grammatical and low ACS items were classified as ungrammatical. 

Hits were grammatical responses to high ACS (grammatical and ungrammatical)

■  Grammaticality 
H  Similarity

Match Edit N onlearners Learners
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strings whereas false alarms were grammatical responses to low ACS (grammatical 

and ungrammatical) strings. Table 6 shows that based on ACS, the match group 

classified 68% of test strings correctly, while the edit group classified 58% of test 

strings accurately. Figure 4 shows that the 95% confidence intervals around the 

sensitivity scores (<d 's) indicate above-chance levels of sensitivity to the similarity of 

test strings to training strings in the match group with confidence intervals of 0.41 to 

1.67, while the edit group performed at chance with confidence intervals of -0.05 to 

0.93.

Verbal answers to the questionnaire showed that all the participants in the 

match group, and four participants in the edit group, had no knowledge of the rules of 

the grammar. The results for the subgroup who successfully identified the rules 

(learners) and those who did not (nonlearners) are shown in Table 6. The mean 

percentage correctly classified as grammatical or ungrammatical for the nonlearners 

was 53% while the learners had a mean percentage correct of 98%.

Separate two-way ANOVAs were carried out for these two subgroups on the 

percentages of items classified as grammatical, with both grammaticality and ACS as 

within-subjects variables. For the nonlearners there was an effect of ACS, F  (1,11) = 

25.04, MSE  = 543.59, but no effect of grammaticality, F (  1, 11) = 2.23, MSE =

165 .98, nor a Grammaticality x ACS interaction, F  < 1. For the learners, by contrast, 

there was a significant grammaticality effect, F ( l ,  3) = 2933.57, MSE =12.66, with 

no effect of ACS, F<  1, and no Grammaticality x ACS interaction, F  (1, 3) = 1, MSE 

= 1.09.

Finally, signal detection measures were calculated for sensitivities to the 

grammaticality and the ACS of test strings in these two subgroups. Figure 4 indicates 

that the nonlearners showed chance sensitivity to the rules of the grammar with a
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mean d  'g score of 0.14, while the learners showed near-perfect sensitivity to the 

grammaticality of test strings with a mean d  'g score of 4.22. In contrast, the 

nonlearners were sensitive to the ACS of test strings (<d 's= 0.99), while the learners 

showed chance level performance ( d \  = -0.01).

The sums of squares calculated for the separate two-way ANOVAs were 

analysed to identify how much of the performance of the nonleamers and learners 

could be accounted for by knowledge of the rules of the grammar versus ACS. Only 

1% of the variance in the performance of the nonlearners is attributable to knowledge 

of the rules of the grammar, whereas ACS explains 50% of the variance in their 

performance. In contrast, 100% of the variance in the performance of the learners 

could be explained by knowledge of the rules of the grammar, with ACS accounting 

for 0% of their performance.

Discussion

The results supported the predictions that edit learners would classify on the 

basis of rule knowledge with no effect of ACS, while the match group and edit 

nonlearners would show the opposite pattern, classifying on the basis of ACS with no 

knowledge of the rules of the grammar. Verbal answers to the questionnaire indicated 

that edit learners who used rule knowledge to classify test items at above chance 

levels of accuracy also had explicit knowledge of the rules. In contrast, participants 

who classified on the basis of fragment knowledge (i.e., the match group and edit 

nonlearners) performed at chance in relation to the rules of the grammar, could not 

say what the rules of the grammar are, and reported that they were guessing in the 

classification test. There was therefore an association between classifying on the basis 

of the rules of the grammar and being able to verbally report the rules of the grammar.



Chapter 4: Exemplar versus Fragment Knowledge
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This chapter focuses on whether participants who mentally rehearse training 

strings acquire knowledge of whole training exemplars or letter fragments. In 

Experiment 1 (Chapter 3) and Shanks, Johnstone and Staggs (1997, Experiment 4), 

classification test items were designed to manipulate the similarity of whole test items 

to whole training items, orthogonal to the grammaticality of test strings, while 

balancing ACS across all test item types. Similar test items differed from one training 

string by only two letters, while dissimilar test items differed from all training items by 

three or more letters. The match groups, in both experiments, showed no effect of 

whole-item similarity in their classification test performance. The first aim of the 

experiments reported in this chapter was to provide stronger tests of exemplar theories 

(Brooks, 1978; Medin & Schafer, 1978; Nosofsky, 1986) by increasing the number of 

similar training items for each similar test item.

The second aim was to continue to test the episodic-processing prediction that 

memory preserves records of the processing applied to training items in order to meet 

the demands of the training task and later uses these records to drive test performance 

(Whittlesea, 1997b). In Experiment 2, the demands of the match task were to 

memorise a target string and then to select it from a list of three strings, where one 

distracter string differed from the target by one letter and the other differed by two 

letters. Although the two distracters were highly similar to the target item, participants 

successfully selected the target string on 94% of trials. This high level of accuracy in 

the match task combined with ACS effects in classification performance suggests that 

participants had memorised training items as a series of two- and three-letter
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fragments. Moreover, these findings suggest that as fragment knowledge was sufficient 

to meet the demands of the training instructions, fragment knowledge will continue to 

drive the test performance of match participants in experiments with stronger exemplar 

manipulations.

Experiment 3

This experiment provided a stronger test of the exemplar account as 

participants memorised six similar training strings for each similar test item. For 

example the test string DDKL.GFFL was similar to the six training strings 

KDKL.GFFL, DDGL.GFFL, DDKD GFFL, DDKL.GLFL, DDKL.GFGL, and 

DDKL.GFFF. In addition test strings were constructed to manipulate ACS orthogonal 

to whole training-item similarity. Unlike in the previous experiments, training strings 

were not constructed according to the biconditional rules.

Participants were asked to memorise the 108 letter strings shown in Appendix 

C. These letter strings were constructed from a subset of 18 of the 36 bigrams that can 

be created from the six letters D, F, G, K, L, and X. After training participants were 

given the standard classification instructions used in Experiments 1 and 2 and asked to 

classify test strings as grammatical or ungrammatical. The classification test stimuli 

comprised 18 high-whole-item similarity/high ACS strings (H3FLA) that each 

overlapped by seven letters with six training strings and also shared a high number of 

letter fragments with the training strings, 18 low-whole item/ high ACS test strings 

(LIHA) that were dissimilar to all training strings (i.e., they differed from all training 

strings by at least three letters), but shared a high number of letter fragments with
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training items, and a third set of low-whole item/ low ACS strings (LELA) that were 

dissimilar to all training items and had minimal overlap of two- and three-letter 

fragments with training items.

On the basis of the episodic-processing account and the strong ACS effects 

found in Experiment 2, it was predicted that participants would continue to classify 

more high ACS letter strings (LIHA) than low ACS strings (LILA) as grammatical, 

keeping whole-item similarity constant. In contrast to a strong ACS effect, it was 

predicted that participants may not acquire knowledge of whole training exemplars, as 

letter chunking was often sufficient to meet the demands of the match task. Thus 

participants would be equally likely to classify HIHA and LIHA items as grammatical. 

The three sets of test strings were designed to allow the contributions of whole-item 

similarity and ACS in classification performance to be unconfounded. If classification 

performance was also partly mediated by whole-item similarity then participants would 

classify more HIHA than LIHA items as grammatical. If participants classified solely 

on the basis of ACS, however, then there would be no difference in performance on 

HIHA and LIHA items.

Method

Participants. 12 students at University College London performed the 

experiment and were each paid £5 for taking part.

Procedure. The same match and classification tasks were used as in Experiment 

1 (Chapter 3).

Materials. 324 training strings were created using a subset of 18 of the 36 

bigrams that can be constructed from the six letters D, F, G, K, L, and X (see
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Appendix C). Unlike Experiments 1 and 2, double letters (e.g., DD) were used in this 

experiment. 108 of the training strings were each presented for mental rehearsal in the 

match task. The remaining 216 strings were the distracters in the list of three strings 

presented at the end of each match trial. Half of the distracter strings differed from the 

initial training string by one letter and the other half differed from the original training 

string by two letters.

Three sets of test strings were created (see Appendix C). Eighteen high- 

item/high-ACS strings (HIHA) each overlapped with six training strings on seven 

letters and also overlapped with all training strings in terms of ACS. Eighteen low- 

item/ high-ACS strings (LIHA) were dissimilar to all training strings, but overlapped 

with all training items in terms of ACS (low-item/ high-ACS test strings). A third set of 

low-item/ low-ACS strings (LILA) was dissimilar to all training items and dissimilar to 

all training string fragments. Appendix C shows that HIHA and LIHA test items differ 

in whole-item similarity but not ACS, while LIHA and LILA test items have equivalent 

low levels of whole-item similarity but differ in ACS.

Results

Table 7 shows the mean percentage of training items on which participants 

made correct responses. A one-way ANOVA, with block (27 training trials) as a 

within-subjects variable, found no effect of block, F  (3, 33) = 2.38, MSE = 32.63.
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Table 7

Mean Percentage Correct Training Responses fo r  Experiments 3 and 4

Experiment Block 1 Block 2 Block 3 Block 4 Overall

Accuracy

3 90 90 87 93 90

4 94 93 95 94 94

Table 8 presents the mean percentage of items classified as grammatical for 

each of the three test item types (HIHA, LIHA, and LILA). If participants classified on 

the basis of knowledge of whole training items then they would have called HIHA 

strings grammatical and LIHA strings ungrammatical; the results for these items were 

therefore reanalysed taking “grammatical” responses to HIHA and “ungrammatical” 

responses to LIHA items as “correct”. The results of this analysis indicated that 

participants did not memorise whole items as they performed at chance levels with a 

mean percentage correct of 50% with confidence intervals of 47.5% to 52.5%. On the 

other hand, if participants were classifying on the basis of ACS then they would 

classify LIHA strings as grammatical and LILA strings as ungrammatical and this in 

fact was the case. By this analysis, participants classified 71% of strings correctly with 

confidence intervals of 63% to 79%.

Related t tests indicated that there was no difference in the percentages of 

HIHA and LIHA items classified as grammatical, t < 1, but that there was a reliable 

difference in the percentages of LIHA and LILA items classified as grammatical, / ( l l )

= 5 .13. Further, the mean d ’uem score of 0.02 revealed chance sensitivity to
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whole-item similarity as the confidence intervals were -0.16 to 0.20. In contrast, the 

d ’acs score of 1.30 indicated above chance sensitivity to ACS as the confidence

intervals were 0.67 to 1.93. Despite the fact that there were six similar training items 

for each similar test item, participants classified solely on the basis of fragment 

knowledge.

Experiment 4

The aim of Experiment 4 was to provide an even stronger test of the exemplar 

account by increasing the number of training items that overlapped with each similar 

test item from 6 to 24. Again it was predicted that participants would classify more 

high ACS letter strings (LIHA) as grammatical than low ACS strings (LILA) and 

would be equally likely to classify HIHA and LIHA strings as grammatical.

Method

Participants. 12 students at University College London performed the 

experiment and were paid £5 for taking part.

Procedure. The same match and classification tasks were used as in Experiment 

1 (Chapter 3).

Materials. 432 training strings were created using a subset of 18 of the 36 

bigrams that can be constructed from the six letters D, F, G, K, L, and X (see 

Appendix D). 144 of the training strings were each presented for mental rehearsal in 

the match task. The remaining 288 strings were the distracters in the list of three



presented at the end of each match trial. Half of the distracter strings differed from the 

initial string by one letter and the other half differed from the original training string by 

two letters.

Three sets of test strings were created (see Appendix D). Six high-item/high- 

ACS strings (HIHA) each overlapped with 24 training strings on six or seven letters 

and also overlapped with all training strings in terms of ACS. Six low-item/high-ACS 

strings (LIHA) were dissimilar to all training items, but overlapped with training 

strings in terms of ACS (low-item/high-ACS test strings). A third set of low-item/low- 

ACS strings (LILA) was dissimilar to all training items and dissimilar to all training 

string fragments. Appendix D shows that HIHA and LIHA test items differ in whole- 

item similarity but not ACS, while LIHA and LILA test items have equivalent low 

levels of whole-item similarity but differ in ACS.

Results and Discussion

Table 7 shows the mean percentage of training items on which participants 

made correct responses. A one-way ANOVA, with block (36 training trials) as a 

within-subjects variable, found no overall effect of block, F  (3, 33) = 1.09, MSE = 

12.76.

Table 8 presents the mean percentage of items classified as grammatical for 

each of the three test item types (HIHA, LIHA and LILA), together with the mean 

percentage correct if participants were classifying on the basis of whole-item 

knowledge or ACS. In contrast to Experiment 3, the mean percentage correct for 

whole-item accuracy was 54% indicating that participants may have memorised whole 

training items, as the confidence intervals were 50% to 58%. This conclusion is
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reinforced by a item sensitivity score of 0.40 with confidence intervals of 0.05 to

0.75. However, there was a much stronger influence of ACS on classification 

performance as the mean percentage correct was 82% with confidence intervals of

74% to 90%, and the mean cTacs sensitivity score was 2.28 with confidence intervals of 

1.59 to 2.97.

A one-way ANOVA, with whole-item similarity as a within-subjects variable, 

found a marginal difference between the percentages of HIHA and LIHA items 

classified as grammatical, F  (1, 11) = 4.35, p  = .06, MSE = 85.46, whereas the same 

ANOVA with ACS found a reliable difference between the percentages of LIHA and 

LILA items classified as grammatical, F  (1, 11) = 62.24, MSE  = 404.98. The sums of 

squares generated by the two ANOVAs indicated that the whole-item manipulation 

accounted for 3% of the variance in performance for HIHA and LIHA items, whereas 

ACS accounted for 80% of the variance in performance between LIHA and LILA

items. In addition, the acs scores are significantly greater than the aPitem scores, t

(11) = 4.92, SEM= .38. Overall, these results suggest that ACS knowledge was the 

major determinant of classification performance.

As the ACS effect was so much stronger than the whole-item similarity effect it 

is worth considering whether participants had noticed the high repetition of four-letter 

chunks and were, in fact, learning longer letter chunks than the two- and three-letter 

fragments measured by ACS. Relative to Experiment 3, the design of this experiment 

increased the number of training trials (108 to 144), anchor ACS (4.77 to 8.25) and 

global ACS (28.31 to 40.44). It is therefore possible that the whole-item similarity 

effect is confounded with knowledge of fragments of four or more letters.
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The difference between HIHA and LIHA test items was reassessed using a new 

fourgram ACS measure, which combined bigram, trigram and fourgram strength.

Using this new measure, there was no difference between HIHA and LIHA test items 

for mean anchor fourgram ACS (7.5 versus 6.45), t (10) = 1.29, SE  = 0.819, but there 

was a difference in mean global fourgram ACS (32.14 versus 28.77), t (10) = 3.49, SE 

= 0.965. Thus, because there were more training trials in this experiment than in 

Experiment 3, it is possible that participants may have learned about fourgrams and 

therefore that fourgram ACS can fully explain the data.

Exemplar Knowledge

The results of Experiments 1 and 3 undermine exemplar accounts which 

suggest that participants acquire structural knowledge of a collection of whole training 

items in a stimulus-driven manner (Brooks, 1978; Brooks & Vokey, 1991;

McAndrews & Moscovitch, 1985; Vokey & Brooks, 1992, 1994) and instance models 

(e.g., Hintzman, 1986, 1988;Medin& Schafer, 1978; Nosofsky, 1986, 1988) which 

suggest that classification responses are influenced by similarity to prior examples. 

There was no evidence that participants memorised a collection of training exemplars 

with one (Experiment 1, Knowlton & Squire, 1994; Shanks et al., 1997) or six 

(Experiment 3) similar training items. Although there was marginal support for 

exemplar knowledge with 24 similar training items (Experiment 4), there was also the 

possibility that participants used four-gram knowledge to classify test items.

The results of Experiments 1,3, and 4, combined with the predictions of the 

episodic-processing account also undermine Whittlesea’s (1987) claim that exemplar 

knowledge drove performance in a speeded identification task. Whittlesea trained



participants on letter strings (e.g., set Ha - FEKIG, FUTEG, PURYG, FYRIP, and 

KURIT) that each differed from a prototype (e.g., FURIG) by two letters by showing 

these items for unlimited time and asking participants to write them down. At test, 

each item was presented for 30 ms followed by a pattern mask and participants were 

asked to write down the letters they could read in their correct positions. Whittlesea 

concluded that participants had memorised the training exemplars rather than the 

prototype as they were more accurate in writing down the letters of old training items 

than three sets of novel items that also differed from the prototype by two letters (e.g., 

set lib - FYKIG, FUTYG, PUREG, FERIP, PURIT; set lie - FUKIP, PUTIG, 

FURYT, FYREG, KERIG; and set III - PEKIG, FYTEG, PURYT, FYKIP, KURET).

Unfortunately, these results do not provide sound evidence of exemplar 

learning as the pattern of results can also be explained by participants being less 

accurate in writing down novel fragments, than in writing down novel exemplars. 

While the old test items (set Ila) contained only familiar letter-pairs, the other three 

sets contained four (set lib - FYKIG. FUTYG. PUREG. FERIP. PURIT), six (set lie 

- FUKIP. PUTIG, FURYT, FYREG, KERIG) and six (set III - PEKIG, FYTEG, 

PURYT. FYKIP. KURET) novel fragments respectively.

Processing-driven Fragment Knowledge

In contrast, and as predicted, participants demonstrated a strong processing- 

driven effect of fragment knowledge in Experiments 3 and 4. These findings support 

Whittlesea’s (1997a, b; Whittlesea & Dorken, 1993, 1997; Whittlesea & Wright,

1997) episodic-processing account which suggests that training leads to the 

acquisition of a set of processing skills that are sufficient to satisfy the demands of the
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task and which are reused whenever the current context, stimuli and task cue the 

original processing episodes. On each training trial, match participants were instructed 

to memorise a letter string in preparation for a short-term memory test, but they were 

not told how to memorise that string. It can be inferred from the results that 

participants actively adapted to the training task by applying rehearsal processes and 

organising each “to-be-remembered” string into a series of letter fragments. 

Furthermore, it seems likely that they maintained this approach as it was sufficient to 

meet the demands of the task which was to select each to-be-remembered string from 

the list of three strings presented in the second part of each match trial.

When participants were subsequently presented with more eight-letter strings at 

test, the format of the strings cued memory for the operations (mental rehearsal) and 

training string properties (letter fragments) used to process training items. Participants 

then used their mental rehearsal processing and fragment knowledge to classify the 

novel test items. Test items containing letter fragments processed during training 

would be processed more fluently than those containing novel fragments, as familiar 

fragments would cue prior training episodes whereas novel fragments would not. More 

fluent processing would be attributed to a test string being grammatical, whereas less 

fluent processing would be attributed to a test string being ungrammatical. As a result, 

more LIHA than LILA test strings were classified as grammatical.

While the form of knowledge (letter fragments) acquired by match participants 

in Experiments 2, 3, and 4 supports the findings of prior AGL studies (e.g., Dienes, 

Broadbent, & Berry, 1991; Dulany, Carlson & Dewey, 1984; Knowlton & Squire, 

1994, 1996; Perruchet, 1994; Perruchet & Pacteau, 1990; 1991; Redington & Chater,
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1996; Servan-Schreiber & Anderson, 1990), it should not be assumed that this 

fragment knowledge was acquired in a stimulus-driven manner. In particular, the 

results of Experiments 2, 3, and 4 challenge an assumption of Servan-Schreiber and 

Anderson’s (1990) competitive-chunking model that with sufficient training 

memorisation leads to encoding whole training items in the form of hierarchical 

networks of letter fragments. For example, this model predicts that repeated 

encounters with the string GFLK.XDGF will initially result in mental representations of 

single letters (D, F, G, K, L, and X), progressing to bigrams (GF, LK, XD, and GF), 

followed by fourgrams (GFLK and XDGF), eventually leading to a representation of 

the whole string. Thus with fewer training trials participants are expected to encode 

only letter fragments, but with extended training they are expected to acquire exemplar 

knowledge.

Counter to the assumptions of the competitive-chunking model, there was no 

evidence of whole-item similarity effects with 46 training trials (Knowlton & Squire, 

1994, Experiment 2b), 72 training trials (Shanks, Johnstone, & Staggs, 1997 and 

Experiment 1), or 108 training trials (Experiment 3). Though there was marginal 

support for whole-items effects with 144 training trials (Experiment 4), this effect 

could also be due to four-gram fragment knowledge. However, evidence of four-gram 

knowledge supports the competitive chunking model as it suggests that participants 

were acquiring a hierarchy of successively longer letter chunks which with further 

training would have eventually led to exemplar knowledge.
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Conclusion

In conclusion, there is no evidence that participants can memorise a collection 

of training exemplars. Where ACS is balanced across similar and dissimilar test items 

(Experiments 1 and 3; Knowlton & Squire, 1994; Shanks, Johnstone & Staggs, 1997) 

there is no evidence for whole-item similarity. In Experiment 4, where fourgram ACS 

was confounded with whole-item similarity, ACS was the stronger predictor of overall 

performance. The results of Experiments 1,3, and 4 suggest that exemplar effects 

reported by Vokey and Brooks (1992) and Whittlesea (1987) were confounded with 

letter-fragment knowledge.
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Chapter 5: Cued Recall and Recognition Measures o f Awareness

As the chance rule-based classification performance of the match groups in 

Experiments 1 and 2 (Chapter 3) and Shanks, Johnstone, and Staggs (1997, 

Experiment 4) runs counter to a substantial amount of evidence that memorisation 

leads to implicit, rule knowledge (e.g., Knowlton & Squire, 1994, 1996; Meulemans & 

Van der Linden, 1997; Reber, 1967, 1989; Reber & Allen, 1978; Reber & Lewis,

1977), and is of such crucial significance for the theoretical understanding of implicit 

learning, the aims of the experiments reported in this chapter were to examine in more 

detail the form of knowledge acquired by match participants and to use sensitive tests 

of awareness of the knowledge used to classify test items.

In contrast to the lack of support for implicit learning theories, the fragment 

effects in the classification performance of memorisers in Experiments 2 to 4 provided 

strong support for the episodic-processing account (Whittlesea, 1997a, b) as it appears 

that participants met the demands of the match task by “chunking” training strings into 

two- and three-letter fragments and this fragment knowledge was sufficient to explain 

classification test performance. It is suggested that biconditional grammar experiments 

are more likely than finite-state grammar studies to add to our understanding of the 

knowledge acquired by incidental learning instructions as rule and fragment knowledge 

can be tested orthogonally with biconditional but not finite-state grammar generated 

test strings.

At study by Reber and Allen (1978) illustrates the difficulties of determining 

what information participants use to classify test items generated from a finite-state 

grammar. After observing grammatical training strings, participants correctly
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classified 74% of novel strings as grammatical or ungrammatical, while concurrently 

justifying their classification decisions. Although participants made explicit 

justifications such as “you cannot start with an X”, “TX cannot occur like that”, and 

“MXR looks wrong there”, Reber and Allen concluded that the major predictor of 

classification accuracy was implicit rule knowledge as participants were only able to 

justify 821 out of 2000 decisions. Unfortunately free report (i.e., cued recall) was 

unlikely to extract all that participants knew and the relative contributions of rule and 

fragment knowledge in classification performance were not quantified.

Using Reber and Allen’s (1978) training strings and a more sensitive 

recognition test, Perruchet and Pacteau (1990) demonstrated that memorisers acquired 

explicit bigram knowledge as only 3 out of 25 old bigrams were judged less familiar 

than novel bigrams and there was a significant correlation between recognition scores 

and the frequency of occurrence of bigrams in training strings. Dienes, Broadbent, and 

Berry (1991, Experiment 1) also used Reber and Allen’s (1978) grammar and extended 

Perruchet and Pacteau’s bigram recognition findings.

In this study, participants classified test items, then verbally reported the rules 

or strategies used to classify test items, and finally carried out a “sequential letter 

dependency” (SLD) task. In the SLD task, they specified which letters could follow 

stems varying in length from zero to five letters. Although 65% of test strings were 

classified correctly, the verbally reported rules only accounted for 55% accuracy. In 

contrast, the results of the more sensitive SLD test fully accounted for classification 

accuracy. Thus, Perruchet and Pacteau (1990) and Dienes et al. (1991) were able to 

demonstrate that explicit fragment knowledge was also a predictor of classification 

performance.
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The aim of Experiment 5 was to quantify explicit rule knowledge. A match 

group was trained on modified strings from Experiment 2, while a control group was 

trained on a new set of strings that did not overlap with the test strings at the level of 

rules, exemplars, or letter fragments. Both groups classified the test strings used in 

Experiment 2. As one participant in Experiment 1 (Chapter 3) worked out what the 

rules of the grammar were during the classification test, it was possible that other 

participants might do the same in this experiment. A cued-recall test was used to divide 

match participants into those who were aware and unaware of the rules of the 

grammar and a subjective confidence test was used to provide a further measure of 

explicit rule knowledge that should correlate with accuracy in the cued-recall test and 

classification performance.

It was predicted that unaware match participants would replicate the chance 

rule-based classification performance of the match group in Experiment 2. In contrast, 

aware participants were expected to show significantly more rule knowledge in 

classification performance than either the control or unaware match groups. As all 

match participants had processed the training items in the same left-to-right manner 

required to memorise letter strings, both the unaware and aware match groups were 

expected to show significant levels of fragment knowledge in classification 

performance. Control participants were expected to show chance levels of fragment 

knowledge as their training strings contained all the bigrams used to create both high 

and low ACS test strings.

The prediction that aware match participants would show ACS effects in



classification performance differed from that of Experiment 2 where the edit learners 

were expected to show no effect of fragment knowledge. It was assumed that the edit 

learners in Experiment 2 did not show sensitivity to fragment knowledge as they had 

processed training strings by scanning backwards and forwards across the central dot 

to check whether the letters were in accordance with the rules of the grammar. The 

issue of whether edit participants acquire fragment knowledge is addressed in 

Experiment 6.

Method

Participants. 99 students at University College London performed the 

experiment as part of their first year research methods class. Although participants 

were not paid for taking part in the experiment, a £20 book token was offered to the 

student who gave the most accurate answers to the questionnaire. Participants were 

randomly assigned to a control group (N = 29) or a match group (N = 70).

Procedure. Both groups were trained and tested with the match and 

classification tasks used in Experiments 1-4. All participants then completed a 

questionnaire that examined how much explicit knowledge they had of the rules of the 

grammar and how confident they were that their rule knowledge was accurate. The 

only difference between the two groups was that they processed different training 

strings.

Match Group Training Strings. The letter strings used in Experiment 2 were 

modified to remove a whole-item similarity effect, while retaining the use of a subset of 

18 of the possible 36 bigrams that can be created from D, F, G, L, K, and X (see 

Appendix E). Again, two ungrammatical training strings were created for each
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grammatical string, violating the rules for one and two letter pairs. The violations were 

made so that the ungrammatical training strings comprised the same subset of bigrams 

and trigrams as the grammatical training strings.

Control Group Training Strings The control group was trained on 36 new 

letter strings that had no relationship to the test strings in terms of the biconditional 

rules, whole items, or letter fragments (ACS). The rule-related letter positions (1-5, 2- 

6, 3-7, and 4-8) contained all possible pairings of the six letters (D, F, G, K, L, and X). 

All 30 of the bigrams that can be created from the 6 letters D, F, G, K, L, and X, 

without using double letters (e.g., DD), were used to construct the strings (see 

Appendix E)

Classification Test Strings. The test strings were the same as in Experiment 2 

(Appendix B). Appendix E specifies how similar versus dissimilar test strings differed 

in ACS in relation to the match group’s, but not the control group’s training strings. 

There was no difference between ACS for grammatical versus ungrammatical test 

strings for either group.

Questionnaire. After the classification test, participants were asked to complete 

a two-part questionnaire. The first part informed them that the training strings had 

been constructed according to rules that governed which pairs of letters could occur in 

positions 1 and 5, 2 and 6, 3 and 7, and 4 and 8 of letter strings. Six questions 

attempted to elicit rule knowledge by specifying one letter and asking what letter 

should be paired with it. Participants were then asked to say how accurate they 

thought they had been in specifying the rules, by placing a mark on a horizontal line. 

The line was 16 cm long, with a zero at the left-hand end, indicating “I do not know 

any rules”, and 100 at the right-hand end, indicating “I am certain that all my answers
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are correct”. The questionnaire is shown in Appendix G.

Results

The mean percentages of training items on which participants in the control and 

match groups made correct responses are shown in Table 9. A two-way ANOVA 

comparing accuracy in the match task, with group (control or match) as a between- 

subjects variable, and training block (1 to 4) as a within-subjects variable, indicated 

that there was a significant effect of block, F  (3, 291) = 11.61, MSE  = 56.50, but no 

effect of group, F  (1, 97) = 2.73, MSE = 257.77, and no Group x Block interaction, F 

< 1. The performance of both groups improved across training blocks.

Table 9

Mean Percentage o f Correct Responses across Blocks in the Training Phase

Experiment Group Block 1 Block 2 Block 3 Block 4 Overall
Accuracy

5 Match 86 89 91 92 90

Control 84 84 89 90 87

6 Match 91 94 91 94 93

Apply Rules 98 99 99 98 98

Match participants’ explicit knowledge of the rules of the grammar was 

assessed by marking their six rule-based questions in relation to the specific set of 

rules (out of 15 different sets) they experienced. The answers of all control 

participants were assessed against the rule set of D<->F, G<->L, and K<->X. Match
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participants were allocated to an unaware group (N = 54) if they answered less than 

four questions correctly and an aware group (N = 16) if they answered four or more 

questions correctly. This cut-off point was selected as it created mean correct 

questionnaire scores for the unaware match group (M=  1.09, SEM=  0.13) that did 

not differ from the control group (M=  0.97, SEM=  0.16), t <1, while the aware match 

group, (M=  5.06, SEM=  0.23) was reliably more accurate than both the unaware 

match group, t (68) = 14.72, and the control group, t (43) = 14.76.

Table 10 presents the mean percentage of items classified as grammatical for 

each test item type and the overall mean percentage of correct classification responses 

for the control, unaware match and aware match groups. The mean percentages of 

correct responses were 49% for the control group, 50% for the unaware match group, 

and 53% for the aware match group. The confidence intervals indicate that the control 

and unaware match groups were classifying at chance levels, and that the aware group 

was performing at just better than chance.

A three-way ANOVA comparing the percentage of items classified as 

grammatical (ratings < 3), with group (control, unaware match, and aware match) as a 

between-subjects variable and both grammaticality and ACS as within-subjects 

variables, found significant effects of group, F  (2, 96) = 10.74, MSE  = 829.20, and 

ACS, F (1, 96) = 32.57, MSE  = 415.43, and significant Group x ACS, F  (2, 96) = 

13.22,MSE  = 415.43, Grammaticality x ACS, F (1, 96) = 5.94,MSE = 90.63, and 

Group x Grammaticality x ACS, F  (2, 96) = 4.95, MSE  = 90.63, interactions. There 

was no effect of grammaticality, F<  1, and no Group x Grammaticality interaction, F  

(2, 96) = 2.59, MSE = 111.61. A two-way ANOVA for the control group, with both
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grammaticality and ACS as within-subjects variables, indicated that there was no effect 

of grammaticality or ACS, and no Grammaticality x ACS interaction, with F  < 1 in all 

three cases. A comparable ANOVA for the unaware match group indicated that there 

was a significant effect of ACS, F ( l , 5 3 )  = 55.19, MSE  = 464.94, but no effect of 

grammaticality, F < 1, and no Grammaticality x ACS interaction, F ( l ,  53) = 1.50, 

MSE  =89.91. Finally, for the aware match group there was a significant effect of ACS, 

F  (1, 15) = 9.52, MSE = 641.13, a marginal effect of grammaticality, F ( l ,  15) = 4.14, 

MSE  = 115.67,/? = .06, and a Grammaticality x ACS interaction, F  (1, 15) = 9.45, 

MSE = 103 .30. The latter interaction derives from the fact that the aware match 

participants were less likely to call ungrammatical / similar test strings grammatical (M  

= 45%, SEM=  4.84) than the grammatical / similar strings (M=  59%, SEM=  4.07), t 

(15) = 3.58.

Signal detection measures were calculated to assess sensitivity in judging the 

grammaticality of test strings (dg). Both the control and unaware match groups

showed chance levels of sensitivity to the rules of the grammar, in contrast to the 

aware match participants who were sensitive to the rules. The control group showed a 

bias towards calling all test strings grammatical while the match participants showed a 

bias towards calling strings ungrammatical. The grammaticality effect in the aware 

match group’s classification performance appeared to be based on explicit knowledge 

as there were positive one-tailed correlations between the percentage of items 

classified correctly and both the number of explicit rules identified by the questionnaire 

(jr = .46), and the subjective confidence in the accuracy of the cued-recall rule 

questions {r = .44).
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Figure 5: Mean d  for grammaticality-based (fiPg) and similarity-based (<fs) 
classification in the control, unaware match and aware match groups in Experiment 5. 
Error bars represent 95% confidence intervals.

The accuracy of classification performance on the basis of sensitivity to ACS is 

also shown in Table 10 and was 49% for the control group, 61% for the unaware 

match group, and 60% for the aware match group. Figure 5 shows that compared to 

the control group, both the unaware and aware match groups were significantly more

sensitive tp ACS. This is confirmed by the d's scores.

The Grammaticality x ACS interaction in the aware match group ANOVA 

suggested that participants in this group were able to use their explicit rule knowledge 

to suppress calling ungrammatical/high ACS test strings grammatical. The accuracy 

of this group's performance was examined to see whether they had abstracted rules of 

the grammar during the training phase or whether they had consciously looked for 

them during the test, after being told that the training strings had been constructed 

according to a set of rules. A comparison of the aware group’s performance between

Grammaticality
Similarity

Control Unaware Match Aware Match
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the two blocks of 48 test trials indicated that there was no difference in classification 

accuracy between test block 1 (A/= 53% correct trials, SEM=  1.85) and block 2 (M=  

52%, SEM=  1.55), t < 1. This suggests that the aware match group acquired their 

explicit rule knowledge during training.

Discussion

The classification test results indicated that both aware and unaware match 

participants used ACS knowledge, but only the aware participants used rule 

knowledge. The answers to the cued-recall rule questions and the subjective 

confidence ratings confirmed that the aware match group’s rule knowledge was 

explicit as there were reliable positive relationships between the aware match group’s 

test accuracy and both their explicit rule knowledge and their subjective confidence in 

the accuracy of their rule knowledge.

There are three important points to be made about these results. First, there is 

absolutely no evidence for implicit abstraction of the rules of the grammar. Participants 

who used rules in classification performance could explicitly specify at least four of 

those rules, and gave subjective confidence ratings that correlated with the accuracy of 

their classifications. Thus, their rule knowledge was explicit by both cued recall and 

global subjective confidence measures. Experiment 7 (Chapter 6) looks at the 

relationship between accuracy and subjective confidence on a more detailed trial-by- 

trial basis.

Secondly, the design of the classification test pitted rule knowledge against the 

perceptual fluency of old letter fragments in high ACS ungrammatical test strings. The 

unaware match participants were significantly more likely to be swayed by the
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familiarity of the letter fragments in ungrammatical/similar strings and to call these 

strings grammatical, whereas the aware match participants were able to use their 

explicit rule knowledge to override fragment familiarity.

Thirdly, these results raise the issue of why rule learners in this experiment 

showed a strong effect of ACS whereas rule learners in Experiment 2 did not. 

Whittlesea and Dorken (1997) suggested that every act of learning carries with it a 

change in the potential to perform an infinite number of possible future activities.

When participants memorise grammatical letter strings they encode information about 

the training stimuli that indirectly (or incidentally) gives them an ability to process 

related stimuli in an unanticipated classification test, but the participants’ goal in the 

training task is not the direct acquisition of a classification skill. This account suggests 

that the edit/learners in Experiment 2 showed no effect of fragment knowledge in their 

classification performance, while the aware match group in Experiment 5 did, because 

of differences in the way they processed training strings. The edit/learners in 

Experiment 2 presumably processed training strings by glancing from letter positions 1 

to 5, 2 to 6, 3 to 7, and 4 to 8 to check that the letters conformed to the three 

biconditional rules of the grammar. This means that they will not have processed the 

letter strings in the sequential left-to-right manner necessary for them to become 

familiar with the two- and three-letter contiguous fragments embodied in the ACS 

measure. In contrast, participants in the match group in this experiment will have 

processed the training strings in the sequential left-to-right manner necessary to meet 

the demands of the memorization training task leading to knowledge of the 

distributional statistics of letter fragments (i.e., ACS).
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The results of Experiments 2-5 clearly demonstrate that participants who failed 

to learn the rules of the grammar (i.e., unaware match and edit nonleamers) used letter 

fragment knowledge to classify test items. One aim of Experiment 6 was to use the 

biconditional grammar to examine whether bigram knowledge is explicit. A match 

group trained on the letter strings used in Experiment 2 and then carried out 60 trials 

of a bigram recognition task. The 60 trials comprised two blocks of 30 randomly 

presented bigrams. 18 of the 30 bigrams were old, as they had been seen during 

training, and 12 bigrams were novel. On each trial, participants indicated whether they 

believed each bigram was old or new. On the basis of prior finite-state grammar 

research (e.g., Dienes, Broadbent & Berry, 1991; Perruchet & Pacteau, 1990), it was 

predicted that match participants would have explicit bigram knowledge.

The second aim of Experiment 6 was to test predictions of the episodic- 

processing account (Whittlesea, 1997a, b) by comparing the bigram recognition test 

performance of match and apply rules groups. As the match group must mentally 

rehearse training strings in a sequential left-to-right manner in order to meet the 

demands of the match task, the episodic-processing account predicts that this group 

will acquire bigram knowledge and hence be able to discriminate between old training 

bigrams and novel bigrams in a recognition test.

The episodic-processing account predicts that the match group’s recognition 

accuracy will differ from the chance performance of the apply rules group. As the 

apply rules participants are told the rules of the grammar at the beginning of the 

training phase and are instructed to correct ungrammatical strings, they will meet the
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demands of their training instructions by glancing from letter positions 1 to 5, 2 to 6, 3 

to 7, and 4 to 8 in order to identify and correct ungrammatical letter pairs. 

Consequently, apply rules participants will not process training strings in the sequential 

left-to-right processing order required to acquire bigram knowledge.

Method

Participants. 24 students at University College London performed the 

experiment and were paid £5 for taking part. 12 participants were allocated to the 

Match group and 12 to the Apply Rules group.

Materials. The same training letter strings were used as in Experiment 2.

Thirty bigrams were used for the recognition task. 18 of these test bigrams had been 

used to construct training strings and were therefore “old”, while 12 test bigrams had 

not been seen during training and were therefore “new”. Each participant saw the 

bigram set that matched the specific string set that they saw in training (out of 15 

different sets of rules).

Procedure. While the match group memorised training strings in the standard 

match task, the apply rules group corrected flawed letter strings in a new apply rules 

task. Both groups carried out a new recognition test, followed by the standard 

classification test.

Apply Rules Task. The apply rules group was given the rules of the 

biconditional grammar and asked to identify grammatical flaws in strings of letters 

such as DFGX.FDLK, which were processed one string at a time over 72 training 

trials. Each string had between two and four letters that violated the rules of the 

grammar. Participants were asked to indicate whether each letter conformed to or
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violated the rules by putting a Y below letters that they believed conformed to the 

rules and an N below letters that they believed did not. The full instructions are shown 

in Appendix F.

Recognition Test. Participants were told that they would be presented with 60 

letter pairs and asked to indicate whether they had seen each letter pair in their training 

phase or not. They were told that they should not worry if they found this task difficult 

and should try to base their judgement on how familiar each letter pair felt to them.

The test comprised two blocks of 30 bigrams presented in different random orders 

across blocks and participants.

Each letter pair was presented in turn and participants were asked to rate how 

confident they were that they had seen it, in the first part of the experiment, using the 

following scale: (1) certain, (2) fairly certain, (3) guess that I have seen this letter pair 

before, (4) guess, (5) fairly certain, (6) certain that I have not seen this letter pair 

before. In this part of the experiment they were not told whether their responses were 

correct or not. The precise instructions can be seen in Appendix F.

Results

Table 9 shows the mean percentage of strings correctly selected from the list 

of three strings by the match group and the mean percentage of letters correctly 

labelled as grammatical or ungrammatical by the apply rules group across four blocks 

of 18 trials. The data for one apply rules participant was removed from further 

analysis as he achieved only 49% accuracy in training. Both groups demonstrated 

near-perfect accuracy. A one-way ANOVA for the match group, with block as a 

within-subjects variable, found no overall effect of block, F  (3, 33) = 1.05, MSE  =



31.18. A similar one-way ANOVA for the apply rules group also found no overall 

effect of block, F  (3, 30) = 1.27, MSE = 3.33.

The results of the classification test (see Table 10) are presented before those 

of the recognition test to demonstrate that - by this test - the match and apply rules 

groups had acquired different types of knowledge during training (letter-ffagments 

versus rules). The match group performed at chance levels in relation to the rules of 

the grammar with a mean percentage correct of 50% and confidence intervals of 46 to 

54%, whereas the apply rules group achieved near-perfect levels of accuracy with a 

mean percentage correct of 97% and confidence intervals of 96 to 98%. In contrast, 

the match group performed at above chance levels according to ACS with a mean 

percentage correct of 59% and confidence intervals of 52% to 67% while the mean 

percentage correct for the apply-rules group was 51% with confidence intervals of 

50% to 52%.

A three-way ANOVA comparing the percentage of items classified as 

grammatical, with group (match or apply rules) as a between-subjects variable and 

both grammaticality and ACS as within-subjects variables, found significant effects of 

grammaticality, F ( l ,  21) = 433.75, MSE = 117.51, and ACS, F ( l ,  21) = 6.84, MSE = 

358.16, and significant interactions of Group x Grammaticality, F ( l ,  21) = 417,92, 

MSE=  117.51, and Group x ACS, F ( l ,  21) = 4.36, MSE = 358.16. There was no 

significant effect of group, F (  1,21)= 1.09, MSE  = 623.46, no Grammaticality x ACS 

interaction, F<  1, and no Group x Grammaticality x ACS interaction, F<  1.

Separate two-way ANOVAs comparing the percentage of items classified as 

grammatical were conducted with both grammaticality and ACS as within-subjects 

variables. In the match group, there was a significant effect of ACS, F (  1, 11) = 6.15,
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MSE  = 673.50, but no effect of grammaticality, F<  1, and no Grammaticality x ACS 

interaction, F  < 1. In the apply rules group there was a significant effect of 

grammaticality, F  (1, 10) = 4841.61, MSE = 19.81, a marginal effect of ACS, F  (1, 10) 

= 4.23, p = .067,MSE  =11.28, and no Grammaticality x ACS interaction, F<  1.

The mean sensitivity d 'g score of zero with confidence intervals of -0.24 to

+0.24 indicated that the match group discriminated grammatical from ungrammatical

strings at chance levels, whereas the mean sensitivity d 'g score of 3.86 with confidence

intervals of 3.59 to 4.13 indicated that the apply rules group discriminated at above

chance levels. The mean d acs sensitivity score of 0.59 with confidence intervals of

0.08 to 1.10 indicated that the match group discriminated at above chance levels, while

the mean d acs sensitivity score of 0.05 with confidence intervals of 0.01 to 0.09

indicated that the apply rules groups’ performance was only marginally above chance. 

In summary, the results of the classification test reveal that during training the match 

group acquired ACS but not rule knowledge, while the apply rules group acquired 

almost perfect rule knowledge and only a small amount of ACS knowledge.

As predicted, the match group reliably recognised bigrams as old or new with a 

mean percentage correct of 63% and confidence intervals of 57 to 69% and a mean

d rec sensitivity score of 0.67 with confidence intervals of 0.16 to 1.1. The criterion of

-0.97 (SEM=  0.17) indicating a bias towards calling items “old”. A related t test 

comparing the percentage of old bigrams correctly recognised as old (M=  85%, SEM  

= 4 .72) with the percentage of new bigrams incorrectly recognised as old (M=  69%, 

SEM= 6.25) confirmed that, as predicted, match participants could reliably
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discriminate between old and new bigrams, / (11) = 2.41.

Counter to the episodic-processing prediction, the apply rules group also 

discriminated between old and new bigrams with a mean percentage correct of 59%

and confidence intervals of 55 to 63% and a mean d rec sensitivity score of 0.28 with

confidence intervals of 0.04 to 0.52. The mean criterion of -0.72 indicated a bias 

toward calling bigrams old. A related t test comparing the percentage of old bigrams 

correctly recognised as old (M=  76%, SEM=  4.79) with the percentage of new 

bigrams incorrectly recognised as old (M = 68%, SEM=  5.48) indicated that apply- 

rules participants could reliably discriminate between these two types of bigrams, t (10) 

= 2.35. In fact, the match and apply-rules groups were equally sensitive to whether 

bigrams were old or new, t (21) = 1.33, SE = 3.65.

A plausible explanation of the apply rules group’s unexpected ability to 

discriminate between old and new bigrams is that they could not differentiate between 

the conceptual fluency of the rule-related letters (i.e., D-F, F-D, G-L, L-G, K-X, and 

X-K) and six old training bigrams based on the same letter pairs (i.e., DF, FD, GL, LG, 

KX, and XK). To investigate this possibility, the apply rules recognition sensitivity 

scores were recalculated without the six rule-related bigrams. In contrast to the 

analysis of all 30 bigrams, the results of this second analysis for the 24 non-rule-related 

bigrams indicated that the apply rules group performed at chance levels with a mean

d rec score of 0.17 and confidence intervals of -0.08 to 0.42. However, there was still
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no difference in sensitivity between the match2 and apply rules groups, t (21)

= 1.70.

Discussion

The results of the match group support the prediction that memorisation leads 

to fragment knowledge, as the match group were able to discriminate between old 

bigrams they had seen during training and new bigrams that only appeared in the 

recognition test. This evidence supports previous studies that used finite-state 

grammars to demonstrate that participants use fragment knowledge at test (e.g., 

Dienes, Broadbent & Berry, 1991; Dulany, Carlson & Dewey, 1984; Perruchet & 

Pacteau, 1990).

Unfortunately, the match group’s results do not provide convincing evidence 

for explicit bigram knowledge as recognition decisions may have been based on an 

automatic familiarity process rather than conscious recollection (Jacoby, 1991; 

Hintzman & Curran, 1994). Participants may simply have found old chunks more 

familiar and on that basis called them old without necessarily consciously recollecting 

them. This view is supported by recent simulations (e.g., Kinder & Shanks, submitted; 

Nosofsky & Zaki, 1998) which show that a single familiarity system can explain both 

classification and recognition performance in both normal and amnesic subjects (see 

Chapter 7 for a detailed explanation).

An alternative view is that recognition is a separate explicit memory task that is

2 A comparison between match sensitivity for all 30 bigrams and apply-rules sensitivity 
to only the 24 non-rule-related bigrams was warranted as the match group were 
equally able to discriminate between old and new bigrams when their performance was 
measured for the sets 30 and 24 bigrams, / (11) = 1.39.
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little contaminated by familiarity (Aggleton & Shaw, 1996; Yonelinas, 1997;

Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 1988). For example, evidence from 

Knowlton and Squire (1996) indicates that amnesics are significantly worse than 

normal participants at fragment recognition while performing at equivalent levels to 

normal participants in classification tests. These results suggest that recognition 

performance is based on a process of recollection that is separate from a fluency-based 

familiarity process used in classification performance. Hence, by this account amnesics 

are impaired in their ability to recollect, yet have normal familiarity-based processing.

The issue of whether fragment-based performance is based on unconscious 

familiarity or conscious recollection processes continues to be addressed in the next 

chapter by asking participants to provide subjective confidence ratings on each test 

trial (see Cheesman & Merikle, 1984; Dienes & Pemer, 1996, 1998). The advantage of 

this method is that it directly compares conscious mental states with accuracy of 

performance.

Turning to the apply rules group, once the six letter fragments that duplicated 

the rule pairs were removed from the analysis of their recognition data, there was no 

evidence of an ability to discriminate between old and new bigrams. Although edit 

learners in Experiments 1 and 2 classified solely on the basis of rule knowledge, there 

was always a possibility that they had also learned about letter fragments. The results 

of this recognition test support the episodic-processing account by demonstrating that, 

in fact, the apply rules group did not acquire fragment knowledge and that fragment 

knowledge is only acquired by processing training strings in a sequential right-to-left 

manner as demanded by match instructions.
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Chapter 5 presented evidence that according to objective cued-recall 

(Experiment 5) and bigram recognition (Experiment 6) tests, participants are aware of 

the rule and letter-fragment knowledge they use to classify test items. However, there 

is a second possibility, namely that knowledge can be implicit at a subjective level 

(Cheesman & Merikle, 1984; Dienes & Perner, 1996, 1998), where there is no 

relationship between accuracy and subjective confidence.

Dienes and Perner (1996, 1998) distinguished between two different domains 

of knowledge. The first domain contains facts (e.g., the rules of a grammar or letter 

fragments seen during training) and supports involuntary classification responses, 

whereas the second domain contains attitudes towards facts (i.e., “knowing” the rules 

of a grammar or “recollecting” seeing certain letter fragments in training strings) and 

supports the conscious, voluntary application of knowledge. The implications of this 

dual knowledge framework are that: (1) on classification test trials where performance 

is based solely on involuntary factual representations of the properties of training 

strings, participants will be accurate, yet have a subjective experience of guessing 

(i.e., the results will support a “guessing criterion” of implicit knowledge); and (2) 

because the knowledge driving test performance will vary in the subjective support it 

receives there will be no overall correlation between accuracy and subjective 

confidence ratings across all classification trials (i.e., the results will support a “zero 

correlation criterion” of implicit knowledge). Dienes, Altmann, Kwan, and Goode 

(1995) discuss the guessing and zero correlation criteria in detail.

An alternative view (Whittlesea & Dorken, 1997) is that one type of mental 

representation is sufficient to account for both accuracy and subjective experience. By
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this account, episodic representations are created during training that preserve the 

processing and organisation imposed on stimuli in order to meet the demands of the 

training task. At test, the retrieval of episodic-processing knowledge drives both 

accuracy and confidence judgements. Test items that are similar to training items are 

processed more fluently than test items that are dissimilar to training items and the 

relative fluency of processing forms the basis of both accuracy and subjective 

confidence judgements. In contrast to the dual-knowledge account, this unitary 

processing approach predicts that because accuracy and confidence are driven by the 

same information, (1) participants will perform at chance when they say they are 

guessing (i.e., there will be no evidence to support the guessing criterion), and (2) 

there will be a correlation between accuracy and confidence (i.e., there will be no 

evidence to support the zero correlation criterion).

Conflicting results have been reported in five previous AGL studies that tested 

the guessing and zero correlation criteria using the same-letter set for training and test 

stimuli. Chan (1992, cited by Dienes, Altmann, Kwan, & Goode, 1995) and Dienes, 

Altmann, Kwan, and Goode (1995) found evidence for implicit knowledge according 

to both criteria. Dienes and Altmann (1997, Experiment 2) found evidence for the 

guessing criterion, but not the zero correlation criterion. Redington, Friend, and 

Chater (1996) and Whittlesea, Brooks, and Westcott (1994) found no evidence of 

implicit knowledge by either criteria.

Unfortunately the studies that supported the guessing and zero correlation 

criteria only measured the grammatical status of test strings and failed to control for
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the effects of fragment knowledge (ACS) on test performance1. As suggested by 

much previous AGL research, there is evidence to support fully (e.g., Dienes, 

Broadbent & Berry; 1991; Dulany, Carlson & Dewey, 1984; Johnstone & Shanks, 

1999; Perruchet, 1994; Perruchet, Gallego, & Pacteau, 1992; Perruchet & Pacteau, 

1990; Redington & Chater, 1996; Servan-Schreiber & Anderson, 1990) or partially 

support (e.g., Knowlton & Squire, 1994, 1996; Meulemans & Van der Linden, 1997) 

the view that classification test performance is driven by the overlap of letter 

fragments between training and test items. Indeed the results of Experiments 1 and 2 

(Chapters 3) indicate that when ACS is equated across grammatical and 

ungrammatical test strings, match participants perform at chance in relation to the 

rules of the grammar.

Therefore, if the guessing and zero correlation criteria are measuring real 

effects then these effects should be stronger when assessed according to the true basis 

of classification decisions (i.e., ACS) than when assessed according to the 

grammaticality of test strings. The aims of Experiment 7 were to assess the 

relationship between accuracy and confidence for both rule and ACS knowledge and 

to test the predictions of the dual knowledge (Dienes & Perner, 1998) and episodic- 

processing (Whittlesea & Dorken, 1997) accounts of the relationships between 

accuracy and subjective confidence.

1 For example, the grammatical and ungrammatical test strings used by Dienes and 
Altmann (1997) differed for both anchor ACS (M = 5.71 versus 1.09), t (56) = 15.65, 
SE = .30, and global ACS (M = 8.83 versus 2.86), t (56) = 8.88, SE = .67.
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Participants were trained and tested on the stimuli used in Experiment 5, as 

these strings unconfound the contributions of rule and ACS knowledge in 

classification performance. On each classification trial, participants were first asked to 

indicate whether the test string was grammatical or ungrammatical and then asked to 

specify how confident they were in the accuracy of their initial response. Confidence 

was rated on a scale from 50 to 100%, where 50% indicated guessing and 51-100% 

indicated increasing levels of confidence.

Based on the results of Experiments 1-6, it was predicted that classification 

performance would be at chance in relation to grammaticality, but above chance in 

accordance with ACS. Support for the dual-knowledge account required that 

participants classify at above chance levels in the 50% confidence category (guessing 

criterion), with no relationship between accuracy and confidence for all responses 

(50-100%) (zero correlation criterion). In contrast, support for the episodic-processing 

account required that participants perform at chance when they used the 50% 

confidence rating and that there was a relationship between confidence and accuracy 

across all responses (50-100%).

Method

Participants. 21 students at University College London performed the 

experiment and were each paid £5 for taking part.

Procedure. The same match task, letter strings and classification test were 

used as in Experiment 5, with a minor modification to the classification test. On each 

trial, participants were first asked to press the Y key if they believed that the string
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conformed to the rules of the earlier strings or the N key if they believed that the 

string did not conform to the rules of the earlier training strings. They were then asked 

to rate how confident they were that their Y or N response was correct on a scale 

ranging from 50% (complete guessing) to 100% (complete certainty). They were 

encouraged to use any integer within this range to indicate as accurately as possible 

their confidence in their Y or N judgement.

Results

The mean percentages of training items across four blocks of training on 

which participants made correct responses was 89%, 90%, 91%, and 93% with an 

overall accuracy level of 91%. A one-way ANOVA comparing accuracy with training 

block (1 to 4) as a within-subject variable, indicated that there was no effect of block, 

F  (3, 60) = 1.51, MSE =31.81. This indicated that accuracy levels remained at 

around 90% across all training blocks.

The mean percentage of items classified as grammatical for the four test item 

types was 70% (GH), 32% (GL), 69% (UH), and 38% (UL). The overall mean 

percentage correct according to the rules of the grammar (48%, with confidence 

intervals of 46% to 50%) indicated chance performance. A two-way ANOVA 

comparing the percentage of items classified as grammatical (Y responses), with both 

grammaticality and ACS as within-subjects variables, found a significant effect of 

ACS, F  (1, 20) = 31.30, MSE = 790.63, but no effect of grammaticality, F  (1, 20) = 

2.37, MSE = 89.24, and no Grammaticality x ACS interaction, F  (1, 20) = 2.80, MSE 

= 85.28. The sums of squares calculated for the ANOVA indicated that ACS 

knowledge accounted for 42% of the variance in classification performance, whereas 

grammaticality accounted for less than 1% of the variance. These results entirely
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replicate the findings of Experiments 2-4 where memorisers classified on the basis 

of ACS, but not rule knowledge.

Signal detection measures were calculated for each participant to assess

sensitivity (cTg) in judging the grammaticality of test strings. The mean t f g o f -0  .08

with confidence intervals of -0.18 to 0.02, confirmed that participants did not classify 

on the basis of rule knowledge. The mean criterion of -0.06 demonstrated that there 

was little classification bias.

The mean percentage ACS accuracy and mean cTacs scores were calculated by

taking grammatical responses to high ACS strings as “correct” and grammatical 

responses to low ACS strings as “incorrect”. According to both of these measures, 

participants classified on the basis of ACS knowledge as there was a mean percentage

correct of 67% with confidence intervals of 61% to 73%, and a mean d’acs score of

1.05 with confidence intervals of 0.64 to 1.46. The mean criterion o f -0.09 indicated 

that there was little classification bias.

The relationship between subjective confidence and classification accuracy 

was examined by counting the total number of trials on which participants used 

ratings of 50%, 51-60%, 61-70%, 71-80%, 81-90%, and 91-100% and then 

calculating the proportion of these trials on which participants were correct in their 

response. Accuracy was calculated on the basis of both the grammatical and ACS 

status of test strings. For the latter, classifying a high ACS string as grammatical was 

“correct”, while classifying a low ACS string as grammatical was “incorrect”. The 

frequency counts and proportions correct are shown in Table 11 and the proportions 

correct are shown graphically in Figure 6.
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Figure 6. Mean accuracy and confidence scores for Experiment 7

The results for grammatical accuracy suggest that there was no relationship 

between classification accuracy and subjective confidence as participants performed 

at chance levels across all confidence categories while confidence rose across those 

categories. In contrast, the results for ACS accuracy show that accuracy increased 

with subjective confidence as there was a reliable linear trend, t (20) = 2.69. When 

participants said they were guessing (50% subjective confidence) their performance 

was reliably at chance for grammaticality (.46), but was marginally significant for 

ACS (.56) (z = 1.81,/? = .07), when assessed by binomial tests. However, this latter 

effect is very weak and disappears if only a single participant -  who had 28 out of 39 

correct responses in the 50% confidence category - is removed from the analysis (z = 

0.78). Moreover, the test should be interpreted cautiously because one of its 

assumptions, strict independence of observations, is violated: the same participants 

made repeated responses.
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Another way of analysing these data is to calculate for each participant the 

proportion of correct responses in relation to ACS in the 50% confidence category. In 

this category, 5 participants made no responses, more than half of the responses of 9 

participants were correct and more than half the responses of 7 participants were 

incorrect. For the 16 participants who did respond at the 50% confidence level, the 

mean proportion correct was .54 with confidence intervals of .39 to .69 which 

indicates that when participants said they were guessing, they performed at chance 

levels (z = 0.49). Thus the results for the 50% confidence trials provide extremely 

weak evidence for the guessing criterion. The marginally significant effect in the 

binomial test is largely attributable to one participant who made 39 of the 239 

responses and the analysis of mean level of accuracy across all participants was not 

significant.

However, these results also provide only weak support for the prediction that 

participants would perform at chance in relation to ACS when they gave a 50% 

confidence rating as the confidence limits around the mean proportion correct (C7 = 

.39 to .69) also include the above chance mean ACS proportion correct across all six 

confidence categories (M = .67). Consequently, the results of this test cannot 

distinguish between chance and above chance performance when participants report 

that they are guessing.

Linear regression was used to assess whether knowledge was implicit 

according to the zero correlation criterion. Up to six confidence/rule or ACS accuracy 

datapoints (M=  5, range 2 to 6) contributed to grammaticality and ACS regression 

equations for each participant. Each confidence/accuracy datapoint was weighted by 

the number of trials that had contributed to that confidence category. Two sets of
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mean intercept and slope coefficients were created using the 21 grammaticality and 

21 ACS equations.

The mean intercept of .47, with confidence intervals of .43 to .51, and slope of 

.03, with confidence intervals of -  . 15 to .21, indicated that there was no relationship 

between grammatical accuracy and confidence. In contrast, the mean intercept of .51, 

with confidence intervals of .41 to .61, and slope of .64, with confidence intervals of 

.35 to .93, demonstrated a stronger relationship between confidence and sensitivity to 

ACS. Chance accuracy in relation to both rule and ACS knowledge accompanied 50% 

confidence ratings.

Discussion

Experiment 7 investigated the possibility that knowledge applied accurately in 

a classification test might be implicit in relation to subjective confidence as measured 

by guessing and zero correlation criteria. Two analyses of the mean proportion correct 

across participants for the 50% confidence category were unable to determine whether 

participants performed at chance when they said they were guessing. However, 

regressions across all confidence categories (50-100%) supported the conclusion that 

there was no evidence for implicit knowledge according to either criterion.

The results of the linear regressions support the unitary episodic-processing 

account (Whittlesea & Dorken, 1997) and prior studies that found no evidence for the 

guessing or zero correlation criteria (Redington, Chater, & Friend, 1996; Whittlesea, 

Brooks, & Westcott, 1994). Evidence that accuracy and confidence, in relation to 

ACS, are related across the 50-100% confidence range suggests that one type of 

knowledge (i.e., fluency) can support both classification and confidence judgements.
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While prior studies used finite-state grammars provide evidence of implicit 

knowledge according to subjective criteria (Dienes & Altmann, 1997; Dienes et al.,

1995), Experiment 7 was based on a biconditional grammar that allowed the 

contributions of rule and ACS knowledge to be independently assessed. As in 

Experiments 1 to 6, unconfounding rule and ACS knowledge indicated that unaware 

memorisers use ACS rather than rule knowledge.

If ACS is the real basis of classification performance, then measuring the 

relationship between accuracy and confidence on its true basis (i.e., ACS) should have 

resulted in greater accuracy in the 50% confidence category than the rule-based 63% 

calculated by Dienes and Altmann (1997, Experiment 2, same letters group). As the 

results of Experiment 7 indicated ACS accuracy of 54% in the 50% confidence 

category the existing data need not undermine the notion of a subjective threshold.
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Everyday experience suggests that we have an ability to store two types of 

knowledge independently. Episodic knowledge allows us to recall the context of 

specific experiences, such as what we did on our last holiday. In contrast, general 

knowledge of the properties of classes of objects and events is not tied to specific 

experiences and enables us to make judgements about novel instances. Thus, we can 

judge the grammaticality of a sentence we have never heard before and read words in 

unfamiliar handwriting. Moreover, as we are not normally intending to abstract 

underlying rules, it appears that we acquire general knowledge in an incidental and 

unconscious manner.

A good deal of evidence supporting this dual systems account has come from 

AGL studies. For example, Knowlton, Ramus, and Squire (1992) presented evidence 

that despite being selectively impaired in making judgements about specific items, 

amnesics had intact general knowledge of an artificial grammar. Evidence such as this 

seems to support the notion that we have separate learning systems that acquire 

implicit, general and explicit, specific knowledge.

However, despite 30 years of AGL research, there is still debate over the form 

of knowledge acquired in incidental learning situations. While the dual systems 

account suggests that memorising letter strings, without realising that those letter 

strings were constructed according to a set of rules, leads to both implicit knowledge 

of the rules of the grammar and episodic knowledge of specific training examples 

(e.g., Cleeremans, 1993; Lewicki & Hill, 1989; Reber, 1967, 1989), it has also been 

suggested that behaviour that appears to be rule-based can also be explained by an



106

episodic system that acquires specific knowledge of a collection of training exemplars 

(Brooks, 1978; Brooks & Vokey, 1991; Neal & Hesketh, 1997; Vokey & Brooks, 

1992), the frequency statistics of letter fragments in training items (e.g., Dulany, 

Carlson, & Dewey, 1984; Perruchet & Pacteau, 1990), or processing training items in 

particular ways in order to meet the demands of the training task (Whittlesea, 1997a, 

b; Whittlesea & Dorken, 1993, 1997; Whittlesea & Williams, in press; Whittlesea & 

Wright, 1997; Wright & Whittlesea, 1998).

As well as varying in assumptions about the form of knowledge acquired and 

whether we have one or two learning systems, these four accounts also differ in other 

ways. While the implicit rule-abstraction, exemplar, and fragments accounts suggest 

that knowledge acquisition is stimulus-driven, the episodic-processing account 

suggests that knowledge acquisition is driven by the processing required to meet the 

demands of the training task. Finally, there is also debate over whether incidentally 

acquired knowledge is always applied implicitly (i.e., the abstraction account suggests 

that implicit rule knowledge is applied in classification tests), applied explicitly 

(exemplar and letter-fragment knowledge), or applied implicitly or explicitly 

depending on whether test instructions disguise or alert participants to the relationship 

between fluent processing of test items and the information acquired during training 

(episodic processing account).

In Chapter 2, a reanalysis of a study that supported the dual-systems account 

(Meulemans & Van der Linden, 1997) demonstrated that finite-state grammars, which 

dominate AGL research, do not allow us to unconfound the contributions of rule, 

exemplar and fragment knowledge in test performance. Because these grammars (e.g., 

Brooks & Vokey, 1991, see Figure 2 in Chapter 2) use transition rules that dictate
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legal consecutive letters in particular letter string locations (e.g., all legal strings must 

begin with M or V; an initial M can only be followed by V or X; and an initial V can 

only be followed by M or X), it is has not been possible to determine whether 

incidental learning leads to rule, exemplar (e.g., test item MVXTX is similar to 

training example MVXTR), or fragment knowledge (e.g., all the training strings 

began with MV, MX, VM or VX) in test performance.

The inadequacies of finite-state grammars were overcome by using a 

biconditional grammar that generates strings of eight letters and has three rules 

governing the relationship between letters in positions 1 and 5, 2 and 6, 3 and 7, and 4 

and 8, such that when one position contains a D, the other should be an F, where there 

is a G the other letter should be an L, and where there is a K, the other letter should be 

an X. As each of the three rules can occur in any of the letter locations and as rule- 

related positions have three intervening letters, it was possible to design letter strings 

that unambiguously test for knowledge of rules versus exemplars (Experiment 1), 

rules versus fragments (Experiments 2, 5, 6, and 7) and exemplars versus fragments 

(Experiments 3 and 4).

The first priority was to establish what form of knowledge is acquired by 

incidental memorisation (Experiments 1 to 4 in Chapters 3 and 4), as without this 

information it is impossible to determine whether that knowledge is implicit or 

explicit (Experiments 5 to 7 in Chapters 5 and 6). The results of Experiments 1 to 4 

indicated that incidental memorisation leads to knowledge of fragments (Experiments 

2 to 4). Only 1 out of 16 memorisers noticed the rules of the grammar (Experiments 1 

and 2) and that one participant could state the biconditional rules. There was no 

evidence of exemplar knowledge when for each test item there had been one
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(Experiment 1) or six (Experiment 3) similar training items. However, there was 

marginal support for exemplar knowledge with 24 similar training items (Experiment 

4), though in this experiment exemplar knowledge was confounded with knowledge 

of four-letter fragments.

As there was strong support for fragment learning (Experiments 2 to 4) and 

one participant had noticed the biconditional rules (Experiment 1), the experiments 

reported in Chapters 5 and 6 focused on replicating the rule and fragment effects 

found in Experiments 1 to 4 and assessing whether rule and fragment knowledge 

acquired by memorising training items is implicit or explicit. In Experiment 5, the 16 

out of 70 participants who used rule knowledge to classify test items were able to 

specify at least four of the six rule pairs (i.e., D-F, F-D, G-L, L-G, K-X, and X-K) in a 

cued-recall test. Memorisers could discriminate between old fragments seen during 

training and novel fragments (Experiment 6) and demonstrated a relationship between 

fragment-based classification performance and subjective confidence ratings 

(Experiment 7).

In order to distinguish between stimulus- and processing-driven learning 

accounts, the classification performance of passive memorisers was compared to that 

of active hypothesis-testers (Experiments 1 and 2). Evidence that memorisers 

classified on the basis of letter-fragments while successful hypothesis testers 

classified on the basis of rules suggests that knowledge acquisition is process- rather 

than stimulus- driven. These results are consistent with memorisers processing 

training strings in the sequential left-to-right manner required to encode letter- 

fragments and rule learners processing training items by glancing from locations 1 to 

5, 2 to 6, 3 to 7, and 4 to 8 to search for letter pairs that violated the rules of the
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grammar. The results of the recognition test in Experiment 6 provide further support 

for this conclusion as memorisers, but not rule learners were able to discriminate 

between old letter fragments seen during training and novel letter fragments.

Finally, whether knowledge is stored in an implicit, explicit or neutral form 

was investigated by comparing performance on tests that did and did not alert 

participants to the relationship between the knowledge they acquired during training 

and the demands of the tests. The strongest evidence for implicit performance comes 

from Experiments 3 and 4 where training strings contained exemplar and fragment 

but not rule knowledge. Despite their lack of rule knowledge, memorisers did not 

object to test instructions asking them to classify test items as grammatical or 

ungrammatical. In fact, their classification results indicate that they unconsciously 

attributed high processing fluency created by overlapping letter fragments between 

training and test items to grammaticality, and low fluency created by novel test 

fragments to ungrammaticality. In contrast, in Experiment 6, memorisers applied 

fragment knowledge explicitly as they were able to meet the demands of a fragment 

recognition test that asked them to discriminate between fragments seen during 

training and novel fragments. In this case memorisers attributed high processing 

fluency to a test fragment being old and low fluency to it being new. These results 

suggest that knowledge is stored in a neutral form that can be expressed implicitly 

(i.e., using fragment knowledge to classify test items as grammatical or 

ungrammatical) or explicitly (i.e., using fragment knowledge to determine whether test 

fragments are old or new) depending on whether or not test instructions alert 

participants to the relationship between processing fluency and the knowledge they 

acquired during training.
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No evidence for dual implicit rule versus explicit exemplar-based learning

systems

As the type of knowledge acquired varied between match and edit instructions 

(Experiments 1 and 2) there was no support for Lewicki and Hill’s (1989, p.240) 

claim that participants are passive “consumers” of knowledge, or Cleeremans’ (1993, 

p. 19) claim that the acquisition of rule knowledge is stimulus-driven. As memorisers 

predominantly used fragment knowledge (Experiments 2, 5, 6, and 7) and the few 

who acquired rule knowledge could report the rules verbally (Experiments 1 and 2), 

and in cued-recall tests (Experiment 5) there was no support for a separate learning 

system that unconsciously abstracts rule knowledge (e.g., Knowlton & Squire, 1994, 

1996; Knowlton, Ramus, & Squire, 1992, Meulemans & Van der Linden, 1997;

Reber, 1967, 1989; Reber & Allen, 1978; Reber & Lewis, 1977).

No evidence fo r  a system that encodes training exemplars

The lack of exemplar effects in Experiments 1 (one similar training item) and 

3 (six similar training items), and only marginal support for exemplar knowledge in 

Experiment 4 (24 similar training items) challenges claims that memorisers encode a 

collection of training exemplars in a stimulus-driven manner (e.g., Brooks, 1978; 

Brooks & Vokey, 1991; McAndrews & Moscovitch, 1985; Neal & Hesketh, 1997; 

Vokey & Brooks, 1992) and the predictions of instance models (e.g., Hintzman, 1986, 

1988; Medin & Schafer, 1978; Nosofsky, 1986, 1988) that test items that are highly
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similar to training items (e.g., differing by only one letter), are more likely to be called 

grammatical than dissimilar test items. However, evidence that participants acquired 

four-gram knowledge supports Servan-Schreiber and Anderson’s (1990) competitive- 

chunking model as it suggests that with longer training participants may eventually 

encode whole exemplars in the form of a nested hierarchy of successively longer letter 

fragments.

These results also support Shanks, Johnstone & Staggs’s (1997, Experiment 4) 

and Knowlton and Squire’s (1994) findings that when fragment knowledge is 

controlled across similar and dissimilar test items, there is no evidence for exemplar 

effects. In accordance with the episodic-processing account, these results suggest that 

exemplar effects will only occur if participants receive training instructions that can 

only be met by processing training items in a way that binds together individual 

features. The strong fragment effects in Experiments 1, 3 and 4 suggest that mentally 

rehearsing exemplars as a series of letter fragments was sufficient to meet the demands 

of the training task and as a result only fragment knowledge was acquired.

Support fo r  a single fragment learning system

In contrast to the lack of conclusive evidence for exemplar (Experiments 1,3, 

and 4) or implicit rule knowledge (Experiments 1, 2, 5, 6, and 7), there was strong 

support for claims that participants use fragment knowledge (Experiments 2 to 7) to 

classify test strings as grammatical or ungrammatical (Dienes, Broadbent, & Berry, 

1991; Dulany, Carlson, & Dewey, 1984; Johnstone & Shanks, 1999; Perruchet, 1994; 

Perruchet & Pacteau, 1990; Redington & Chater, 1996; Servan-Schreiber & Anderson,
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1990) that undermines prior suggestions that fragment knowledge cannot fully account 

for classification performance (Gomez & Schvaneveldt, 1994; Knowlton & Squire, 

1994, 1996; Mathews et al., 1989; Meulemans & Van der Linden, 1997; Reber & 

Allen, 1978).

Unfortunately the results of Experiments 2 to 7 do not allow us to determine 

whether fragment knowledge was acquired actively in order to meet the demands of 

the test instructions or in a passive, stimulus-driven manner. A comparison of the 

classification performance of the match and apply rules groups in Experiment 6 

suggests that knowledge acquisition depends on the active processing carried out 

during training. The match group mentally rehearsed training strings in a sequential 

left-to-right manner and subsequently showed fragment, but not rule effects in their 

test performance. In contrast, the apply rules group processed their training items by 

glancing from letter locations 1 to 5, 2 to 6, 3 to 7, and 4 to 8, in order to correct 

ungrammatical letter pairings. As a result, the apply rules group showed an effect of 

rule knowledge and no effect of fragment knowledge in their test performance. In 

contrast, the results of Experiment 2 suggest that fragment knowledge can be acquired 

in a passive, stimulus-driven manner as edit participants who failed to discover the 

rules of the grammar by active hypothesis-testing showed an effect of fragment 

knowledge in their classification performance.

It also appears that fragment knowledge is held in a neutral form that can be 

applied implicitly or explicitly as participants unconsciously attributed high ACS to 

grammaticality in classification tests (Experiments 2 to 7), while attributing high ACS 

to “old” in a recognition test (Experiment 6). Evidence that fragment knowledge is 

stored in a neutral form challenges earlier suggestions that fragment knowledge is
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explicit (e.g., Dulany, Carlson, & Dewey, 1984; Perruchet, 1994; Perruchet &

Pacteau, 1990) or implicit (Servan-Schreiber & Anderson, 1990).

However, the conclusion that fragment-based fluency drives grammaticality 

decisions runs counter to the conclusions of Buchner (1994) who found that faster 

identification of letter strings in a perceptual clarification task was not a predictor of 

later classifying a string as grammatical. After memorising grammatical letter strings, 

participants were told that the training strings conformed to a set of rules and asked to 

carry out two-stage test trials. First, they were asked to press a button as soon as they 

could identify a letter string obscured behind a solid black mask that gradually clarified. 

Then, depending on test instructions, they indicated whether they had seen the string 

during training (50% of test trials) or whether the string was grammatical (50% of test 

trials). The set of test strings comprised 20 old grammatical strings, 20 new 

grammatical strings and 20 new ungrammatical strings, that were each presented on a 

recognition and a classification trial.

While Buchner found that identification speed predicted recognition responses, 

as test items identified more quickly were more likely to be called old than items 

identified more slowly, there was no such relationship between identification speed and 

grammaticality judgements. This evidence suggests that grammaticality judgements are 

not based on processing fluency and hence conflicts with the earlier conclusion that in 

Experiments 2 to 7, memorisers classified on the basis of fragment-based fluency.

However, there are significant differences between the test stimuli, instructions 

and procedures used in Experiments 2 to 7 and in Buchner’s study that according to 

the discrepancy-attribution hypothesis (Whittlesea & Williams, in press) would lead to 

different outcomes. In Experiments 2 to 7, participants were only tested on novel items
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and only made classification responses. In contrast, Buchner’s participants saw old and 

new test items and made both classification and recognition responses. According to 

the discrepancy-attribution hypothesis, test performance is only based on implicit 

familiarity when test instructions do not refer to knowledge acquired during training. 

Thus in Experiments 2 to 7, when participants were told that all test strings were novel 

and asked to classify these strings as grammatical or ungrammatical, they were not 

alerted to the fact that their incidentally acquired fragment knowledge would lead to 

variations in processing similar and dissimilar test stimuli. As a result, these conditions 

created a discrepancy between the expectation that all strings were novel and 

surprising variations in the fluency of processing test strings. As participants were 

unaware of any other source of fluency, they implicitly attributed high fluency to a test 

item being grammaticality and low fluency to a test item being ungrammatical.

In contrast, Buchner’s participants received training instructions that alerted 

them to information acquired during training as they were informed that they would be 

tested on old as well as new test stimuli. In this case the discrepancy-attribution 

hypothesis predicts that participants will use recollection and not fluency to make all 

test decisions. On recognition trials, old strings contained only familiar fragments 

whereas new strings contained familiar and unfamiliar fragments. Thus old items were 

identified more quickly than new items and there was a relationship between speed of 

identification and old/new status. However, grammatical test items included both old 

items containing only familiar training fragments and new items containing a mixture of 

old and new training fragments. Thus there was no clear-cut relationship between 

speed of identification and calling a string grammatical.

Future research could investigate whether identification speed predicts
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grammaticality and recognition judgements by using the same training procedure and 

stimuli as Experiment 5. Half of these test strings are grammatical and half are 

ungrammatical. Orthogonal to the grammaticality manipulation half of the strings 

comprise letter fragments from training items (high ACS items) and half contain largely 

novel fragments (low ACS items). In a between-subjects experiment, all participants 

would memorise grammatical training strings, be tested on novel test strings, and carry 

out two-stage test trials. One group would receive test instructions telling them that 

they were to see old and new test items and that after identifying each string they were 

to indicate whether that string was old or new. A second group would be told that the 

training strings conformed to a set of rules, that all test items were novel and that after 

identifying each string they were to indicate whether it was grammatical or 

ungrammatical.

As the classification group would have been told that all test strings were 

novel and as their test instructions would not alert them to the relationship between the 

fragment knowledge they acquired during training and variations in the fluency of 

processing test items, it is predicted that participants would classify in accordance with 

the discrepancy-attribution hypothesis (Whittlesea & Williams, in press). That is, high 

ACS test items would be processed and identified faster than low ACS items and faster 

processing/identification would be attributed to grammaticality, whereas slower 

processing/identification would be attributed to ungrammatically.

As all test strings would be novel, the recognition group would show the same 

ACS-based pattern of responding as the classification group, but would instead base 

their responses on recollection of fragments seen during training. Thus both groups 

would use ACS knowledge acquired during training with the result that high ACS
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strings would be called grammatical/old and low ACS strings would be called 

ungrammatical/new. Plus in both cases items called grammatical or old would be 

identified faster than items called ungrammatical or new. These predictions are based 

on evidence that participants are unlikely to learn training exemplars (Experiments 1,

3, and 4) and that they classify on the basis of ACS knowledge (Experiments 2 to 7).

Support fo r  the episodic-processing account

The episodic-processing account (Whittlesea, 1997a, b; Whittlesea & Dorken, 

1993, 1997; Whittlesea & Williams, in press; Whittlesea & Wright, 1997; Wright & 

Whittlesea, 1998) provides the strongest explanation of the results of Experiments 1 to 

7. The knowledge acquired was consistent with the processing applied and the 

dimensions of test items processed in order to meet the demands of the training 

instructions. Thus, as a result of processing training strings in the sequential left-to- 

right manner required to mentally rehearse training strings, memorisers used fragment 

knowledge to classify test items (Experiments 2 to 7) and could discriminate between 

old and new fragments in a recognition test (Experiment 6). Similarly, as a result of 

processing the letters within training items in the order 1-5, 2-6, 3-7, and 4-8 in order 

to check for rule violations, edit learners and the apply rules group classified test items 

on the basis of rules (Experiments 1, 2, and 6) and could not discriminate between old 

and new fragments in a recognition test (Experiment 6).

The results also support the claim that episodic representations of processing 

(mental rehearsal of letter fragments or checking for rule violations) and specific structural 

aspects of training items (letter fragments or biconditional rules) are stored in a neutral
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form that can be applied implicitly or explicitly at test depending on whether test 

instructions disguise or alert participants to the relationship between the knowledge they 

acquired during training and the demands of the test. Memorisers appear to have 

unconsciously attributed the processing fluency of test items containing old letter 

fragments to grammaticality (Experiments 2 to 7), while also being able to express this 

knowledge explicitly in a recognition test by discriminating between old and novel 

fragments (Experiment 6).

Finally, there was evidence that knowledge from one episodic system is sufficient 

to explain classification performance (Whittlesea & Dorken, 1997), as there was a 

relationship between memorisers’ fragment-based classification accuracy and subjective 

confidence ratings (Experiment 7). These results conflict with evidence that classification 

accuracy depends on implicit rule knowledge whereas subjective confidence is based on 

separate explicit representations (Dienes, Altmann, Kwan, & Goode, 1995; Dienes & 

Altmann, 1997). For example, Dienes and Altmann (1997, Experiment 2) found that 

participants classified accurately in relation to the rules of a finite-state grammar when 

believing that they were guessing.

However, before any strong conclusions can be reached about the relationship 

between accuracy and subjective confidence, it is necessary to replicate Experiment 7 and 

Dienes and Altmann’s (1997, Experiment 2) study. It is necessary to repeat Experiment 

7 as there was marginal support from a binomial test for accurate fragment-based 

classification when participants believed they were guessing, though this effect 

disappeared when the contributions of one participant were removed. The Dienes and 

Altmann study needs to be replicated as the original analysis only compared rule-based 

classification accuracy with subjective confidence ratings. If, as so many AGL studies now
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show, memorisers classify on the basis of fragment rather than rule knowledge (e.g., 

Experiments 2 to 7; Dulany, Carlson, & Dewey, 1984; Perruchet, 1994; Perruchet & 

Pacteau, 1990; Redington & Chater, 1996), the results of the Dienes and Altmann study 

should show greater support for the guessing criterion when accuracy is calculated on the 

basis of the overlap of fragment knowledge between training and test items than when it 

is calculated on the basis of the grammar. This is because the percentage accuracy in the 

50% guessing category is likely to increase when calculated on the true basis of 

classification decisions (i.e., ACS).

Why do these results conflict with transfer studies?

Many people have suggested that transfer studies in which the letter-set is 

changed at test provide evidence of abstract rule knowledge (e.g., Gomez & 

Schvaneveldt, 1994; Knowlton & Squire, 1996; Manza & Reber, 1997; Reber, 1969; 

Reber & Lewis, 1977). But, it is difficult to understand how can this be the case when 

experiments with the same letter-set at test fail to yield evidence of rule abstraction 

(Experiments 1, 2, 5, 6, and 7). In fact, there are two similarity-based accounts that 

can fully explain transfer effects without requiring rule abstraction at study.

Brooks and Vokey (1991) showed that much of the transfer to “changed letter- 

set” strings is due to abstract similarity between test and training strings. For example 

the abstract structure of M XVW M  could be seen as similar to BDCCCB. Whittlesea 

and Wright (1997, Experiment 2) manipulated repetition patterns orthogonal to rules 

and found that classification performance was influenced by repetition. They also 

pointed out that standard finite-state grammars, such as that created by Reber and 

Allen (1978), produce massive repetition of letter patterns (e.g., MTTVT, MTVRXM,
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MTVRXRM, MTTVRXRM and MTV) that are likely to capture a participant’s 

attention.

Redington and Chater (1996) also demonstrate that above-chance transfer 

performance can be explained by non-abstractionist models that learn surface 

fragments of training strings and classify test items that contain familiar fragments as 

grammatical and test items that contain novel fragments as ungrammatical. When test 

items are instantiated in a new letter set, the model attempts to map the test letter set 

onto the training letter set.

For example, if test stimuli generated from the grammar created by Brooks and 

Vokey (1991, see Figure 2 in Chapter 2) were based on a different letter set from 

training items it would be relatively easy to map the test letter set onto the training set 

as certain letters and combinations of letters can only appear in particular locations in 

grammatical strings. Using the letter-set M, R, T, V, and X, grammatical items can 

only begin with single letters M or V, and bigrams MV, MX, VM, and VX. 

Furthermore, MV can never be followed by T whereas MX, VM and VX can.

Similarly VX can never be followed by R, but the other three bigrams can. As certain 

letters and combinations of letters are location dependent it is relatively easy to map a 

new letter set (e.g., B, F, K, L and N) onto the old letter set (M, R, T, V and X) by 

examining the first three letters of test strings. By learning the surface fragments in 

training items and mapping new letter sets onto old letter sets, Redington and Chater’s 

(1996) models were able to simulate transfer effects in studies by Altmann, Dienes and 

Goode (1995), Brooks and Vokey (1991), Gomez and Schvaneveldt (1994), and 

Whittlesea and Dorken (1993, Experiment 5).

Furthermore, Gomez (1997) has shown that above-chance transfer is invariably
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associated with above-chance performance on tests of explicit knowledge (e.g., 

recognition tests). Hence, transfer studies do not challenge the biconditional grammar 

findings that memorisers do not acquire implicit rule knowledge.

Support for rule- versus similarity-based processing strategies

Evidence that memorisation leads to fragment-based classification performance 

(match participants in Experiments 2 to 7), while successful hypothesis-testing (edit 

learners in Experiments 1 and 2) leads to rule-based classification performance 

supports prior research that identified two strategies for categorising stimuli using for 

example artificial grammars (e.g., Mathews et al., 1989; Reber et al., 1980), geometric 

stimuli (e.g., Nosofsky, Clark, & Shin, 1989), and cartoon animals (e.g., Allen & 

Brooks, 1991; Regehr & Brooks, 1993). One obvious question to ask is whether 

similarity- and rule-based skills can be acquired by one mechanism or whether they 

require separate systems.

Experiments 1 to 7 suggest that a unitary episodic-processing system that 

records the processing applied to training items and the specific knowledge used to 

meet the demands of the training instructions is sufficient to explain similarity- and 

rule-based performance. On this basis, memorisation would lead to episodic 

representations of mentally rehearsing letter strings in a sequential left-to-right manner 

(letter locations 1 to 2 to 3 to 4 to 5 to 6 to 7 to 8) and fragment knowledge, whereas 

successful hypothesis-testing would lead to representations of checking letters in the 

order 1 to 5, 2 to 6, 3 to 7, and 4 to 8 in order to look for rule violations and 

knowledge of the biconditional rules that each rule-related pair should contain D and 

F, G and L, or K and X.
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Is it possible for one computational model to acquire exemplar and rule knowledge?

Because simple recurrent network (SRN) models perform at equivalent levels 

to human memorisers in AGL experiments (e.g., Dienes, Altmann, & Gao, 1999; 

Redington & Chater, 1996), yet lack an ability to hypothesis-test, it appears that 

different models are required for exemplar- and rule-based learning. However, by 

focusing solely on the processing carried out after successful hypothesis-testing (e.g., 

learners in Experiments 1 and 2), or after participants have been told the rules of the 

grammar (e.g., the apply rules group in Experiment 6), it can be seen that it is as easy 

to train neural network models to classify according to rules as it is to train them to 

classify on the basis of exemplar knowledge.

If learning in AGL experiments and learning models can be described solely in 

processing terms, then models such as SRNs can be taught to classify on the basis of 

rule- or exemplar-based knowledge by manipulating the order that letters are fed to the 

input nodes of the model. For example, when the model is being trained to memorise 

grammatical examples, such as DGKL.FLXG, then the input nodes will receive the 

eight letters in the order D-G-K-L-F-L-X-G, with an end of string delimiter after the 

eighth letter. In contrast, when the same model is being trained on the biconditional 

rules then the string DGKL.FLXG will be processed in the order of the four rule- 

related letter pairs as D-F, G-L, K-X and L-G. By the end of the training phase, the 

exemplar-processing model will have “memorised” training examples, whereas the 

rule-learning model will have memorised the six rule-related pairs D-F, F-D, G-L, L-G, 

K-X and X-K.

However, explicit human learning goes far beyond what SRN models



122

are capable of as humans have an ability to actively hypothesis test by attending to a 

variety of possible relationships between letters before settling on one set of rules that 

explain the structure of all training exemplars. The model suggested above would not 

be able to learn rules such as “The second half of the string is the first half backwards”, 

or the letter in position 2 is two letters further along in the alphabet than the letter in 

position 1” (e.g., If there is a B in position 1 then position 2 should contain a D).

How do Experiments 1 to 7 relate to AGL research on amnesia?

When the AGL performance of patients with anterograde amnesia is compared 

with that of normal adults it appears that amnesics are impaired on recognition tests 

yet are able to classify as well as normal adults (e.g., Knowlton, Ramus, & Squire, 

1992). Such findings have been taken as support for dual learning systems where 

classification performance is based on general rule knowledge while recognition 

performance depends on acquiring information about specific training examples.

One problem for AGL evidence in favour of dual learning systems (Knowlton, 

Ramus & Squire, 1992; Knowlton & Squire, 1994, 1996) is that it is based on finite- 

state grammars. As discussed at length in Chapter 2, it is difficult to measure the 

relative contributions of rule- and exemplar-based knowledge in finite-state grammar 

classification performance as information about transition rules is inevitably 

confounded with ACS. In fact, when this problem was overcome by using a 

biconditional grammar in Experiments 1 to 7 there was no evidence that normal adults 

acquire implicit rule knowledge.

A second problem for dual-system accounts is that Nosofsky and Zaki (1998)



were able to create dissociations in the classification and recognition performance of 

dot patterns using a single model. When Nosofsky and Zaki trained their Generalised 

Context Model (GCM) model on stimuli from one category (as is the case in AGL 

training), the processes of classification and recognition were identical. That is, the 

probability of a test item being classified as a member of the training category or 

recognised as old was based on the mean similarity of the test item to all stored 

training items. However, when they varied a sensitivity parameter that represents the 

ability to discriminate between distinct training exemplars, classification performance 

was only slightly reduced, while recognition accuracy was much reduced. This 

simulation indicates that dissociations in the classification and recognition performance 

of normal adults and amnesic patients can be produced by one learning mechanism.

Recent simulations by Kinder and Shanks (submitted) have replicated and 

extended Nosofsky and Zaki’s (1998) findings using AGL stimuli rather than dot 

patterns. This time an SRN model was trained and tested on the stimuli used by 

Knowlton, Ramus, and Squire (1992) and the learning rate was manipulated to 

simulate normal and amnesic performance. The results replicated Nosofky and Zaki’s 

findings as recognition performance was more affected than classification performance 

by reductions in the learning rate, just as was observed in the behavioural data.

Kinder and Shanks added to our understanding by demonstrating that the 

dissociation was due to differences in the ACS of the test strings used in the 

classification and recognition tests, as well as differences in learning rates. While the 

same novel ungrammatical test items were used in both tests in Knowlton, Ramus, and 

Squire’s experiment, old training items were used in the recognition test and new 

grammatical items were used in the classification test. The dissociation was created by
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there being a larger ACS difference between the old grammatical versus new 

ungrammatical items used in the recognition test than between the new grammatical 

versus new ungrammatical items used in the classification test. Overall, these findings 

suggest that there is currently little evidence to suggest that general and specific 

information is acquired by separate systems.

What do these studies contribute to our understanding o f concept learning?

AGL research is only one way of investigating how we learn to group objects 

and events into categories. Theories of concept learning have suggested that we 

determine whether a novel object is a member of a category by comparing it to a 

prototype (e.g., Rosch, Simpson & Miller, 1976), a collection of exemplars (e.g., 

Medin & Schaffer, 1978) or by applying rules to the relationships between features of 

the novel object (e.g., Allen & Brooks, 1991).

The results of Experiments 1 to 7 suggest that the information used to 

categorise stimuli depends on the demands of the training task. While Experiments 2 to 

7 demonstrated that memorisers used information about surface features (i.e., letter 

fragments) to classify novel test items into categories of grammatical and 

ungrammatical letter strings, Experiments 1 and 2 showed that successful hypothesis- 

testers could categorise the same novel test items on the basis of a set of rules about 

the relationships between pairs of single letters.

The demands of the training task also determined the extent of the information 

encoded. Although it appears that the results of memorisers in Experiments 2 to 7 

support feature and not exemplar or prototype learning accounts, the results actually 

show that fragment knowledge was sufficient to satisfy the demands of the training
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task. That is memorising two- and three-letter fragments was sufficient to be able to 

select the to-be-remembered letter string from a list of three presented in the second 

half of each training trial. It seems reasonable to assume that with appropriate 

instructions participants could extend what they learn to exemplars or prototypes.

Finally, different effects of fragment and rule knowledge do not indicate that 

we have separate similarity- and rule-based learning systems. Instead these results 

show that one processing system can account for the acquisition of different types of 

knowledge. These findings support the effects of selectively attending to some aspects 

of the structure of training items and not others (e.g., Goldstone. 1994).

Overall Summary

By using a biconditional grammar and orthogonal designs that set the 

contributions in classification performance of rule versus exemplar, rule versus 

fragment, and exemplar versus fragment knowledge in opposition to one another, it 

has been possible to identify the knowledge acquired from an artificial grammar more 

successfully than any prior AGL experiments.

As a result of being able to identify the form of knowledge used to classify test 

items it was possible to demonstrate that knowledge acquisition is not a matter of 

passively absorbing structural aspects of training items. Instead, the form of knowledge 

acquired is driven by the active processing applied to training items in order to meet 

the demands of the training task. Thus, the results can be explained by one episodic- 

processing system that encodes both the processing applied to training items and the 

specific aspects of training items processed. There was no evidence for dual implicit 

rule- and exemplar-based learning mechanisms.
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Again, as a result of being able to identify the form of knowledge used to 

classify test items, it was also possible to demonstrate that episodic-processing 

knowledge is stored in a neutral rather than an implicit or explicit form. Consequently, 

this neutral form of knowledge can be expressed implicitly or explicitly at test 

depending on whether participants are made aware of the relationship between the 

knowledge they acquired during training and the demands of the test. Thus, given 

appropriate test instructions that refer to the knowledge acquired during training, all 

knowledge is explicit.
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Appendix A: Experiment 1 Strings Statistics and Letter Strings 

Table A1

The Means and Ranges fo r  Item Characteristics within List and Training Group

Group List Item
Characteristic

GS GD us UD

Match/Edit 1 Anchor ACS Mean
Range

0.44
0.25-0.75

0.28
0.00-0.50

0.44
0.25-0.75

0.32
0.00-0.50

Global ACS M ean
Range

2.33
1.44-2.90

2.37
0.00-0.50

2.33
1.82-2.85

2.33
1.74-2.95

Whole-item
Similarity

Mean
Range

1.00
1.00- 1.00

0.00
0 .00- 0.00

1.00
1.00- 1.00

0.00
0 .00- 0.00

M atch/Edit 2

Control

Anchor ACS

Global ACS

Whole-item
Similarity

Anchor ACS

Global ACS

W hole-item
Similarity

Mean 0.46 0.21 0.51 0.33
Range 0.25-1.00 0.00-0.50 0.25-0.75 0.00-0.75

Mean 2.28 2.16 2.43 2.18
Range 1.60-3.04 1.68-2.94 1.58-3.12 1.37-2.93

Mean 1.00 0.00 1.00 0.00
Range 1.00- 1.00 0 .00- 0.00 1.00- 1.00 0.00-0.00

Mean 0.63 0.75 0.60 0.68
Range 0.25-1.00 0.25-1.50 0.25-1.00 0.25-1.25

M ean 4.93 4.74 4.86 4.73
Range 3.54-5.79 3.77-5.50 3.71-5.33 4.01-5.43

M ean 0.06 0.11 0.11 0.06
Range 0 .00- 1.00 0 .00- 1.00 0 .00- 1.00 0 .00- 1.00

Note. GS = grammatical and similar, GD = grammatical and dissimilar, US = 
ungrammatical and similar, UD = ungrammatical and dissimilar, and ACS = associative 
chunk strength. Whole-item similarity indicates how many training items overlap with 
each training item on seven letters.



128

Table A2

Experiment 1 Match and Edit Group Training Strings

Match Rehearsal Distracter 1 Distracter 2

Edit Correct String Hypothesis test 1 Hypothesis test 2

List 1 DFGK.FDLX LFGK.FDLX DFGXFGLX

DGKX.FLXK DFKX.FLXK LGKX.FLDK

DKFLFXDG DKXL.FXDG DKFG.KXDG

FDXG.DFKL FDXK.DFKL FDLG.DGKL

FLDK.DGFX FLDK.LGFX FLDX.DGKX

FXLD.DKGF FXLD.DXGF FXLG.DKLF

GKDF.LXFD GKDF.LXGD XKDFLKFD

GLFX.LGDK GLFX.LGDF DLFX.LGFK

GXKLLKXG DXKLLKXG GXDL.LFXG

KLXDXGKF KGXD.XGKF KLGD.XGKL

KXGL.XKLG KXDL.XKLG KXGD.XFLG

KDLF.XFGD KDLX.XFGD KXLF.LFGD

LFDG.GDFL LFDG.KDFL LFDX.GDKL

LGXF.GLKD LGXFGFKD KGXF.GLFD

LKGX.GXLK LKGX.GXDK FKGX.GDLK

XDKGKFXL XDKG.KFXD XDFG.KDXL

XFLK.KDGX GFLK.KDGX XFLGKLGX

XGFD.KLDF XFFD.KLDF LGFD.KLDX

List 2 KXFGXKDL KXLGXKDL KLFG.GKDL

XDGK.KFLX XDGF.KFLX FDGK.KFDX

LDKF.GFXD LDKF.KFXD LDXFGKXD

GFKX.LDXK GFKX.LFXK DFKX.LDXF

KFLD.XDGF KFLD.XDLF KFLG.XLGF

DFXL.FDKG DFXL.FDKX KFXL.FXKG

LGKD.GLXF XGKD.GLXF LGKF.GLDF

XGLF.KLGD XDLF.KLGD KGLF.KLXD

FGXD.DLKF FGLD.DLKF FGXL.GLKF
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DKLX.FXGK DKLG.FXGK DFLX.FXDK

LKFG.GXDL LKFG.KXDL LKFX.GKDL

FKDL.DXFG FKDL.DXLG FGDL.DXFL

GLXK.LGKX GLXK.LGKF LGXK.LGKX

FLGX.DGLK KLGX.DGLK FLKX.DGLX

XLDG.KGFL XKDG.KGFL XLDK.KGXL

GXDK.LKFX GXDK.LGFX LXDK.LKFG

KDFL.XFDG KDXL.XFDG KDFG.XLDG

DXGF.FKLD DXGF.FXLD KXGF.FKXD

Note. All of the training and test strings in this thesis are reported using the three rules 

that D is paired with F, G with L, and K with X. In practice, in all seven experiments, 

15 different sets of these three rules were used. Rule sets were matched across 

participants in the Match and Edit groups.

Table A3

Control Group Training Strings used in Experiments 1 and 5

Rehearsal String Distracter 1 Distracter 2

DLGK.DGKL GLGK.DGKL DLGK.DGFX

DGXD.GXLD DKXD.GXLD DGXD.FGLD

DKFL.KGLX DKGL.KGLX DKXD.KGLX

DFLG.FXGD DFLX.FXGD XKLG.FXGD

DLXK.LFXL DLXK.DFXL FLDK.LFXL

DXKD.XLFG DXKD.XKFG DGICF.XLFG

GXLF.DFKX GXLF.DFGX GXKFLFKX

GDXL.GLDK GDXL.GLDF GDXF.GXDK

GDLX.KDFL KDLX.KDFL GDLX.GDKL

GKDL.FLDX GXDL.FLDX GKDL.FGDF

GFDK.LGXD GFLK.LGXD LFDK.LGKD

GLFK.XLKF GLFD.XLKF GXFK.XLKD

KLFG.DXFK KLFG.LXFK GLFG.DXFD
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KXGL.GKFL

KGDX.KFLK

KDGL.FGLX

KGFX.LKDG

KFXD.XFDK

FKXF.DKFD

FLDF.GKLF

FXDL.KFGD

FKLX.FDLF

FDKF.LXDL

FGLK.XGDK

LGXK.DLKG

LKGX.GFDX

LFKG.KLXF

LXFD.FXKL

LXKF.LGFX

LDFK.XKGD

XDGL.DFXG

XGKLGDXK

XKLDKXDF

XFGK.FKXF

XLKG.LDGL

XFDGXDKG

KXGLGXFL

KGDX.KFGK

KDGL.FGLK

LGFX.LKDG

KLXD.XFDK

FKLF.DKFD

FLDL.GKLF

FXDL.DFGD

FKLX.FKLF

FDKF.LXFL

FGLK.XGDF

KGXK.DLKG

LFGX.GFDX

LFXG.KLXF

LXFG.FXKL

LXKF.XGFX

LDFK.XLGD

XDGLDFKG

XGKLGDXL

FKLD.KXDF

XDGKFKXF

XLKG.LDFL

XFDGXDKL

FXGF.GKFL

KFDG.KFLK

KDFL.FDLX

KGFD.LKFG

KFXD.LFDL

DKXF.DGFD

FGDF.GKXF

FXGL.KFGK

DKLX.KDLF

FXKF.LFDL

FGDK.XGLK

LGXL.DLKX

LFGX.KFDX

LFDG.KGXF

LGFD.FXDL

FXKF.LDFX

LGFK.XKLD

XDKL.DFXD

XGKD.GFXK

XKLX.LXDF

XFLK.FDXF

DLKG.LDXL

XLDGXDKX
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Table A4

Experiment 1 Classification Test Items

Grammatical Test Items Ungrammatical Test Items

LFGK.GDLX LFGK.KDLX

DLKX.FGXK DFKX.FGXK

DKGL.FXLG DKGL.FXKG

FDXL.DFKG FDXKDFKG

FGDK.DLFX FGDK.DKFX

FKLD.DXGF FGLD.DXGF

XKDF.KXFD XKDFGXFD

GLDX.LGFK GLKX.LGFK

GXKF.LKXD GXKD.LKXD

KLGD.XGLF KLFD.XGLF

FXGL.DKLG FXGL.FKLG

KDLX.XFGK KDLG.XFGK

LFXG.GDKL LFXGGDXL

LGDF.GLFD LGKF.GLFD

LKGD.GXLF LKGD.GXLD

XFKGKDXL XLKGKDXL

XFLG.KDGL XFLG.KDGF

XKFD.KXDF XLFDKXDF

DXFGFKDL LXFG.FKDL

FDGK.DFLX FDGK.GFLX

GDKF.LFXD XDKF.LFXD

GDKX.LFXK GDKX.LGXK

KGLD.XLGF KXLD.XLGF

DFKL.FDXG DFKL.FDLG

LXKDGKXF LFKD.GKXF

XGDF.KLFD XGDF.KLXD

FGXL.DLKG FGXK.DLKG

DKLF.FXGD DKLF.FXGL
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LKXG.GXKL

FKDX.DXFK

GLXF.LGKD

KLGX.XGLK

XLFG.KGDL

GXLK.LKGX

KGFL.XLDG

DKGF.FXLD

LKDGGXKL

FKDX.DXFL

GLXD.LGKD

KLGX.FGLK

XLKG.KGDL

GXLK.LKDX

KXFL.XLDG

DKGF.FGLD



Appendix B: Experiments 2 and 6 String Statistics and Letter Strings

Table B1

The Means and Ranges fo r  Item Characteristics

Item
Characteristic

GH

Anchor ACS Mean 1.75

GL

0.06

UH

1.75

UL

0.04
Range 1.50-2.25 0.00-0.25 0.50-2.25 0.00-0.25

Global ACS Mean 11.15 0.74 11.08 0.74
Range 9.14-12.17 0.50-1.14 8.98-12.13 0.50-1.21

Note. ACS = associative chunk strength, GH = grammatical and high ACS, GL 
grammatical and low ACS, UH = ungrammatical and high ACS, and UL = 
ungrammatical and low ACS.

Table B2

Training Strings for Experiments 2 and 6

Edit

sal String Distracter 1 Distracter 2

Correct String Hypothesis test 1 Hypothesis test 2

DFGD.FDLF LFGD.FDLF XFKD.FDLF

DFKD.FDXF DLKD.FDXF XFKD.FDLF

DFKX.FDXK XFKX.FDXK DFKD.FDLK

DLGX.FGLK DLGL.FGLK DLGX.LGLG

DLKD.FGXF DXKD.FGXF DLFD.LGXF

DLFD.FGDF DLFD.FGDL DXFD.FGDX

GDFG.LFDL KDFG.LFDL GDFG.DFGL

GLKX.LGXK GLKX.FGXK XLKG.LGXK



GLFD.LGDF

GXKG.LKXL

GXFG.LKDL

GXLG.LKGL

KDLG.XFGL

KDXK.XFKX

KGLK.XLGX

KXFD.XKDF

KXFKXKDX

KXLGXKGL

FDLK.DFGX

FDXF.DFKD

FDLF.DFGD

FGDF.DLFD

FGXK.DLKX

FKXF.DXKD

LGDF.GLFD

LGXK.GLKX

LGXF.GLKD

LKDL.GXFG

LKGL.GXLG

LFDL.GDFG

XKDL.KXFG

XKDXKXFK

XKGL.KXLG

XFGL.KDLG

XFGX.KDLK

XLKX.KGXK

GLKD.LGDF

GXLGLKXL

GXFG.LKGL

GXLG.LKGD

KDLGXFDL

KDXKXLKX

FGLK.XLGX

KXFK.XKDF

KXFK.XFDX

KXLG.LKGL

FDLK.DFKX

FGXFDFKD

FGLF.DFGD

FGDF.DLFK

FGXK.DLKG

FDXFDXKD

LFDF.GLFD

LGXKXLKX

LGXF.DLKD

LKDL.GLFG

LKGL.GDLG

DFDL.GDFG

XKDF.KXFG

XKDL.KXFK

XKDL.KXLG

XFDL.KDLG

XFGXKDXK

XLKX.KGXF

GXFD.LGDX

GXKXLGXL

KXFG.LKGL

GDLG.LKGX

GDLG.XFDL

KGXKXFKD

LGLK.XLKX

DXFD.XKDL

KXLK.XFDX

KGLG.XKXL

FDFK.DFGD

FKXF.DFKX

FDXF.DFGX

FKDF.DLFG

FGXF.DFKX

LKXFDFKD

LGDL.GLKD

KGXL.GLKX

LKXF.GLFD

LKDF.GXKG

LKGX.GDLG

LGDL.KDFG

XKGL.KDFG

LKDX.KDFK

XKDLGXLG

XFGL.GDFG

XFGX.FDXK

XFKX.KGXL
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Table B3

Classification Test Items used in Experiments 2, 5, 6, and 7

UngrammaticalGrammatical 

High ACS DFGL.FDLG 

DLKX.FGXK 

GLKD.LGXK 

GXFD.LKDF 

KGXK.XLKX 

KXFGXKDL 

FDLG.DFGL 

FGXF.DLKD 

LKDF.GXFD 

LKXF.GXKD 

XFDL.KDFG 

XFKX.KDXK 

Low ACS DGKL.FLXG 

DXGK.FKLX 

GDKF.LFXD 

GKFX.LXDK 

KGFL.XLDG 

KFLD.XDGF 

FKLX.DXGK 

FLXG.DGKL 

LDGK.GFLX 

LXDK.GKFX 

XDGF.KFLD 

XGKF.KLXD

DFGL.FDLF

DLKXFDXK

GLKD.FGXF

GXKD.LKDF

KDXK.XLKX

GXFG.XKDL

FDLK.DFGL

FGXF.GLKD

LKDF.GXKD

LKXF.GXKG

XKDL.KDFG

XFKXKGXK

DGKL.DLXG

DXGK.FKLD

GDKF.LFXG

GKLX.LXDK

DGFL.XLDG

KFXDXDGF

FKLX.DXGF

FLDG.DGKL

LDGK.GKLX

LXDK.GKLX

XDGF.KFXD

XDKF.KLXD
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Table Cl

The Means and Ranges fo r  Item Characteristics

Item
Characteristic

KHA LIHA LILA

Anchor ACS Mean
Range

4.89
3.75-6.00

4.65
3.75-6.00

0.00
0.00-0.00

Global ACS Mean
Range

28.46
25.69-30.93

28.16
25.39-30.87

0.00
0.00-0.00

Whole-item
Similarity

Mean
Range

6.00
6.00-6.00

0.00
0.00-0.00

0.00
0.00-0.00

Note. ACS = associative chunk strength, HLHA = high item/high ACS similarity, 
LI HA = low item/ high ACS similarity, and LILA = low item/ low ACS similarity.

Table C2

Experiment 3 Training Strings

Group Rehearsal String Distracter 1 Distracter 2

1 KDKL.GFFL DDKL.GFFL KDGL.GFFL

1 DDGL.GFFL DDKL.GFFL KDKL.GFFL

1 DDKD.GFFL DDKD.GLFL DDKD.GLFL

1 DDKL.GLFL XDKL.GLFL DDKD.GFFL

1 DDKL.GFGL DDGL.GFGL DDGL.GFFL

1 DDKL.GFFF DDKL.GFFL DDKD.GLFF

2 FGFG.LKDD FGFG.LKXD DGFG.LKXD

2 DGFF.LKDD DGFG.LKDD DGFG.XKDD

2 DGLGLKDD DGLG.LKXD DGFF.LKDD

2 DGFG.XKDD DGFG.LKDD FGFG.XKDD

2 DGFG.LKXD DGFG.LKDD DGLGLKDD

2 DGFG.LKDK DGFG.LKXK DGFF.LKXK

3 XKLG.FFLK DKLG.FFLK DKLG.LFLK
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7
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7

7
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DGLG.FFLK

DKLG.LFLK

DKLG.FGLK

DKLG.FFLF

DKDG.FFLK

LFLK.DDGF

GFLK.XDGF

FFLK.DDGF

GFLK.DDGX

GFLK.DDGF

GFLK.DDGX

KLGF.FLKX

GFGF.FLKX

GLFF.FLKX

GLGL.FLKX

GLGF.GLKX

GLGF.FLGX

KXDD.KLFG

GXKDKLFG

GXDD.GLFG

GXDDKLFF

GXDD.KLFL

XXDD.KLFG

XDDG.XXKL

KXDGXXKL

KDDKXXKL

KDDG.XDKL

DDDG.XXKL

KDDG.XDKL

GLFF.LGXD

FLFF.LGXD

DKLG.FFLK

DKLK.LFLK

DKLG.FFLK

DKLG.LFLF

DKLG.FFLK

LKLK.DDGF

GFLK.DDGF

FFLK.XDGF

GFLK.DDGF

GFLK.XDGF

FFLK.DDGX

KLGF.FLGX

GLGF.FLKX

GLGF.FLKX

GLGF.FLKX

GLGF.FLKX

GLGL.FLGX

KXDD.GLFG

GXDD.KLFG

GXDD.KLFG

GXDD.KLFG

KXDD.KLFL

XXDD.GLFG

KDDG.XXKL

KDDG.XXKL

KDDG.XXKL

KDDK.XDKL

DDDG.XDKL

KDDG.XXKL

FLFF.LGXD

GLFF.LGXD

DKLG.LFLK

DKLG.FFLF

DKDG.FFLK

DKLG.FGLK

DKLG.LFLK

GFLK.DDGX

GFLK.DDGX

FFLK.XDGX

LFLK.DDGF

FFLK.XDGF

GFLK.XDGF

GFGF.FLKX

KLGF.FLKX

GFGF.FLKX

GFGF.FLKX

GLGF.FLGX

GLGF.GLKX

GXKDKLFG

KXDD.KLFG

GXDDKLFF

GXDD.GLFG

GXKD.GLFL

XXKD.KLFL

XXDG.XDKL

XXDG.XDKL

KXDGXXKL

KDDKXXKL

XDDK.XXKL

KDDKXXKL

KLGF.LGXD

FLGF.LKXD
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KLGF.LGXD

KLFG.LGXD

KLFF.FGXD

KLFF.LKXD

GXXD.GLGL

XXXD.GLGL

KXDD.GLGL

KXKD.GLGL

KXXD.KLGL

KXXD.GFGL

FGXK.LFGF

FGXK.LFGL

FGLK.LFGX

DGXK.LFGX

LGXK.LFGX

FGLK.LFGX

FFFL.KXDG

FFGXKXDG

FFGL.KXDG

FFGL.GXDG

FFGL.KDDG

FFGL.KXDK

FLGX.DGLF

FLKD.DGLF

FLKX.DKLF

FLKX.DGFF

GLKX.DGLF

KLKX.DGLF

LKLF.GXXK

LFLF.GXXK

LGLF.GXDK

DGLF.GXXK

KLFF.LGXD

KLFF.LGXD

KLFF.LGXD

KLFF.LGXD

GXXD.GFGL

XXXD.KLGL

KXKD.GLGL

KXDD.GLGL

KXXD.GLGL

KXXD.GLGL

FGXK.LFGL

FGXK.LFGF

FGXK.LFGX

DGLK.LFGX

LGXK.LFGL

FGLK.LFGF

FFGL.KXDG

FFGL.KXDG

FFGXKXDG

FFGL.KXDG

FFGL.KXDG

FFGL.KXDG

FLGX.DKLF

FLKD.DKLF

FLGX.DKLF

FLKX.DGLF

FLKX.DGLF

KLKX.DKLF

LFLF.GXXK

LFLF.GXDK

LKLF.GXDK

LGLF.GXXK

GLGF.LKXD

KLFF.FGXD

KLFG.LGXD

KLFG.LGXD

XXDD.GLGL

XXDD.GFGL

KXXD.KLGL

KXDD.KLGL

KXKD.GLGL

GXXD.GLGL

FGLK.LFGL

FGLK.LFGF

DGLK.LFGL

DGLK.LFGL

DGLK.LFGX

FGXK.LFGF

FFGL.GXDG

FFFL.KXDG

FLGX.KXDG

FLGL.KXDG

FFGL.GXDG

FFGX.KDDK

GLKX.DGLF

FLKX.DKLF

GLKD.DKLF

FLKX.DKLF

FLKX.DGFF

KLGX.DGFF

LFLF.GXDK

LKLF.GXXD

DGLF.GXXK

LGLF.GXDK
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FGLF.GXXK

LGLF.GXXD

LKLK.XDDK

LKXK.XDDK

LKDG.XDDK

LKDK.DDDK

LKDK.XKDK

LKDK.XXDK

LGFL.FGFF

LFFL.FGLF

LFFL.FFFF

LFFL.FLFF

LFFG.FGFF

LFGL.FGFF

XDGX.DKLG

XDGXXKDG

XDKXXKLG

XDGX.XKLK

XDGXXKLF

KDGX.XKLG

XXXXKDKD

XKXX.DDKD

XKXXXDKD

XKXXKDDD

XKXDKDKD

XKXX.KDKD

XDKDDKXX

XXKX.DKXX

XXDDDKXX

XXXDDKXX

XXKDDKXD

XXKD.DKXK

FGLF.GXXD

LGLF.GXXK

LKLK.DDDK

LKDK.XDDK

LKDK.XDDK

LKDK.XDDK

LKDK.XXDK

LKDK.XKDK

LFFL.FGFF

LGFL.FGLF

LFFL.FGFF

LFGL.FLFF

LFFL.FGFF

LFFLFGFF

XDGX.XKLG

XDGX.XKLG

XDKXXKDG

XDGX.XKLG

XDKX.XKLF

KDGX.XKLF

XKXX.KDKD

XKXX.KDKD

XKXX.DDKD

XKXX.XDDD

XKXXKDKD

XKXDKDKD

XXKD.DKXX

XDKXDKXX

XXXDDKXX

XXKD.DKXX

XXKD.DKXK

XXKDDKXD

LGLF.GXDK

FGLF.GXXK

LKXK.XKDK

LKLK.XKDK

LKXK.XDDK

LKDG.XDDK

LKDG.XDDK

LKDGXKDK

LFFG.FGFF

LGFG.FGLF

LFGLFFLF

LGFL.FGFF

LFFL.FLFF

LFFG.FGFF

XDGXXKDG

XDKXXKLG

XDGXXKLF

XDGXXKDG

KDGXXKLG

XDGXXKDG

XKXDKDKD

XXXXKDKD

XKXXKDDD

XKXXXDKD

XKXXKDDD

XKXK.XDKD

XXKDDKXD

XXKD.DKXK

XDKDDKXX

XXKXDKXX

XXKX.DKXK

XDKDDKXD
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Table C3

Experiment 3 Classification Test Items

High Item Similarity Low Item Similarity Low Item Similarity

High ACS Similarity High ACS Similarity Low ACS Similarity

DDKL.GFFL LFFG.LKDD DFKG.DXGG

DGFG.LKDD XXKX.DDGX DLLX.GKKF

DKLG.FFLK FFLK.DDKL DXGG.KFDL

GFLK.DDGF FGLG.FFFL GDFK.GGKK

GLGF.FLKX XKLG.FGLF GGDF.KKGD

GXDD.KLFG GFLK.DDKL GKKF.DLXG

KDDG.XXKL LKXX.KDDK KGGK.KGDX

KLFF.LGXD DDGL.FFLK KKGD.FXLL

KXXD.GLGL LKXD.GFFL KFXG.GDLX

FGXK.LFGX XDGL.KXDK FDLL.XGGK

FFGL.KXDG GFLK.LFGX FKFD.LXFD

FLKX.DGLF FLGX.XKLF FXLD.XFKG

LGLF.GXXK KLGX.DDGF LDXL.LDFK

LKDK.XDDK KDGX.KDKD LLXF.XLLD

LFFL.FGFF FFGFLKXD LXFX.LLDF

XDGX.XKLG DGLK.XKDK XGKK.FDXF

XKXX.KDKD DKDK.XXKL XFDL.DFXL

XXKD.DKXX FGLK.XDGX XLDX.FKFX
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Appendix D: Experiment 4 String Statistics and Letter Strings

Table D1

The Means and Ranges fo r  Item Characteristics
Item HIHA LIHA LILA
Characteristic

Anchor ACS Mean 8.42 8.08 0.00
Range 6.00-10.50 7.25-10.25 0.00-0.00

Global ACS Mean 41.05 39.83 0.00
Range 38.68-45.82 38.24-42.37 0.00-0.00

Whole-item Mean 24.00 5.17 0.00
Similarity Range 24.00-24.00 3.00-6.00 0.00-0.00

Note. ACS = associative chunk strength, HIHA = high item/high AC
LIHA = low item/ high ACS similarity, and LILA = low item/ low A

Table D2

Experiment 4 Training Items

Group Rehearsal String Distracter 1 Distracter 2

1 KDGL.FGFF XDGL.FGFF KDKL.FFFF

1 XDGL.FGFF DDGL.FGFF KDGF.FGFF

1 DDKL.FGFF DDKL.FGFG DDGL.FGLF

1 DDGF.FGFF DDGL.FGFF XDGL.FGFF

1 DDGL.FFFF DDGL.FGFF DDGL.FGLF

1 DDGL.FGLF DDKL.FGLF DDKL.FGFF

1 DDGL.FGFG DDGF.FGFG DDKL.FGLG

1 DDGL.FGFX DDGL.FGFF DDFG.FGFF

1 KDKLFGFF KDKL.FFFF XDGL.FGFF

1 KDGF.FGFF KDGL.FGFF KDGL.FGFG

1 XDGL.FGLF XDGF.FGLF XDKL.FGFF

1 XDGL.FGFG XDGLFFFG XDGL.FFFF

1 DDKL.FGFX DDGL.FGFX DDGF.FGFX

1 DDKL.FFFF DDKL.FGFF DDKL.FGFX

1 DDGF.FGLF DDGF.FGLG DDKL.FGLF

1 DDGF.FGFG DDGL.FGFG DDGL.FGFX

1 DDGL.FFFX DDGL.FGFX DDKL.FGFX
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DDGL.FFFG

DDGL.FGLG

DDKL.FGLF

DDGL.FFFG

XDGL.FGFG

DDGF.FGFX

KDGL.FGFX

DKDK.XXLG

LKDK.XXLG

GKLK.XXLG

GKDK.XXDG

GKDK.XXLK

GKDK.XXLF

DKLK.XXLG

DKDK.XXDG

DKDK.XXLK

LKLK.XXLG

LKDK.XXDG

LKDK.XXLF

GKLK.XXLK

GKLK.XXLF

GKLK.XXDG

DKDK.XXDG

GKLK.XXDG

GKDK.XXDK

DKDK.XXLK

LKDK.XXLK

GKLK.XXLK

LKDK.XXLF

DKDK.XXLF

LKDK.XXLF

GLKX.LFXD

DDGL.FGFG

DDGL.FGLF

DDGL.FGLF

DDKL.FFFG

XDGF.FGFG

DDGL.FGFX

KDGL.FGFG

LKDK.XXLG

LKDK.XXDG

GKDK.XXLG

GKLK.XXDG

GKDK.XXLF

GKDK.XXLK

DKLK.XXDG

DKLK.XXDG

DKDK.XXDK

LKLK.XXDG

LKDK.XXDK

LKLK.XXLF

GKDK.XXLK

GKLK.XXLK

GKDK.XXDG

DKDK.XXDK

DKLK.XXDG

GKLK.XXDK

DKDK.XXDK

DKDK.XXLF

GKDK.XXLK

GKLK.XXLF

LKDK.XXLF

LKDK.XXLK

XLKX.LFXD

DDGF.FGFG

XDGF.FGLG

DDGL.FGFF

DDGL.FGFX

XDGF.FGFX

DDKL.FGFX

KDGL.FFFF

DKLK.XXDG

DKLK.XXLG

GKDK.XXDG

GKLK.XXLG

LKLK.XXLK

GKDK.XXDG

DKDK.XXLF

DKLK.XXLG

DKDK.XXDG

LKDK.XXDG

LKLK.XXLG

LKDK.XXDK

LKDK.XXLK

GKLK.XXDG

DKDK.XXDG

DKLK.XXLG

GKLK.XXLF

GKLK.XXLK

GKLK.XXLK

LKLK.XXLF

GKDK.XXDK

LKLK.XXLK

DKLK.XXLK

LKLK.XXLG

GLKX.LFXL
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XLKXLFXD

KDKXLFXD

KLFX.LFXD

KLKX.LKXD

KLKX.LFXL

KLKX.LFXX

GLKX.LFXX

GLKX.LKXD

GLFX.LFXD

XLKX.LFXX

XLKXLKXD

XDKX.LFXD

KDKX.LFXX

KDKXLFXL

KDKX.LKXD

GLFX.LFXD

KLFXLKXD

KLFX.LFXL

GLKX.LKXD

KLFXLKXD

KDKXLFXL

KLFX.LFXL

KLKX.LKXX

DGFF.GKDK

LGFF.GKDK

FFFF.GKDK

FGLF.GKDK

FGFF.GKLK

FGFF.GKDD

FGFF.GKDG

DGFF.GKDD

DGFF.GKLK

GLKX.LFXD

KDKX.LKXD

KLFX.LFXL

KLFXLKXD

KLKX.LFXD

KLFX.LFXX

GLKX.LKXX

KLKX.LKXD

GLFX.LKXD

GLKX.LFXX

XLKXLFXD

KDKXLFXD

KDKX.LKXX

KLKX.LFXL

KDKXLFXD

GLKX.LFXD

KLFX.LFXD

KLFX.LFXD

KLKX.LKXD

KLFX.LFXD

KLKX.LFXL

KLKX.LFXL

KLFX.LKXX

DGFF.GKDG

DGFF.GKDK

FFFF.GKLK

FGFF.GKDK

FGFF.GKDK

FGFF.GKDG

FFFF.GKDG

FGFF.GKDD

DGFF.GKDK

KLKX.LKXD

KLFX.LFXD

KLKX.LKXD

KLFX.LFXD

KLKX.LKXD

GLFX.LFXX

GLFX.LKXX

GLFX.LKXX

KLKX.LFXD

KLFX.LFXX

GLKX.LFXD

XLKXLKXD

KLKX.LKXX

KDKX.LKXD

KLFXLKXD

KLKX.LFXD

KLKX.LFXD

KLFX.LKXX

GLKX.LFXL

KLFX.LFXL

KLFX.LFXL

KDKXLFXD

KLFXLKXD

FGFF.GKDD

LGLF.GKLK

FGFF.GKDD

FGLF.GKLK

FGFF.GKDD

FGFF.GKLK

LGFF.GKDD

DGLF.GKDG

LGLF.GKLK



4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
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LGLF.GKDK

LGFF.GKLK

FFFF.GKDG

FFFF.GKLK

DGLF.GKDK

FGLF.GKDD

FGLF.GKLK

LGFF.GKLK

FFFF.GKDD

LGFF.GKDD

FFFF.GKDG

FGLF.GKDG

FFFF.GKDD

FGLF.GKDG

FFFF.GKLK

GFXD.DDGL

FFXD.DDGL

LKXD.DDGL

LFXX.DDGL

LFXD.KDGL

LFXD.DDKL

LFXD.DDGK

LFXD.DDGF

GFXD.DDGF

GFXXDDGL

FFXD.DDKL

FFXD.KDGL

LKXD.KDGL

LKXD.DDGK

LFXX.DDKL

FFXX.DDGL

GFXD.KDGL

LGLF.GKLK

LGLF.GKLK

FGFF.GKDG

FFFF.GKDK

DGLF.GKLK

FGFF.GKDD

FGFF.GKLK

LGFF.GKDK

FFFF.GKDG

FGFF.GKDD

FGFF.GKDG

FGLF.GKDD

FFFF.GKDK

FGFF.GKDG

FGFF.GKLK

FFXD.DDGL

GFXD.DDGL

LKXD.DDGK

LFXD.DDGL

LFXD.DDGL

LFXD.KDKL

LFXD.DDGF

FFXD.DDGF

LFXD.DDGF

GFXX.DDKL

FFXD.DDGL

LFXD.KDGL

LFXD.KDGL

LKXD.KDGK

LFXX.DDGL

LFXX.DDGL

FFXD.KDGL

DGFF.GKDK

LGFF.GKDG

DGFF.GKDG

FGFF.GKDK

FGFF.GKDK

DGLF.GKDK

FFFF.GKLK

LGFF.GKDD

FGLF.GKDD

LGFF.GKLK

FFFF.GKLK

FFFF.GKDG

FFFF.GKLK

FGFF.GKDK

FGLF.GKLK

FFXX.DDGL

FFXX.DDKL

FFXD.DDGL

LFXD.DDKL

LFXD.DDGF

LKXD.KDKL

FFXX.DDGK

LFXD.DDKL

GFXD.KDGL

LFXD.DDGL

FFXX.DDGL

FFXD.DDKL

FFXD.KDGL

LKXD.KDGL

LFXX.DDGK

LFXD.DDGL

FFXD.DDGL
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5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
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LFXD.KDGF

FFXD.DDKL

GFXD.DDKL

LFXD.KDGK

LFXX.DDGK

LFXD.KDGF

LFXX.DDGF

KXLG.KLKX

FXLG.KLKX

XXDG.KLKX

XXLG.KDKX

XXLGKLFX

XXLG.KLKD

XXLG.KLKL

KXDG.KLKX

KXLG.KDKX

FXLG.KDKX

FXLG.KLKD

XXDG.KLFX

XXDG.KLKL

XXLG.KDKL

XXDGKDKX

KXLG.KLFX

FXLG.KLFX

XXDG.KLKD

XXLG.KDKD

KXLG.KLKL

XXDG.KLKL

FXDG.KLKX

XXLG.KDKL

XXDG.KLKX

LFXD.KDGL

FFXD.DDGL

FFXD.DDKL

LKXD.KDGK

LFXD.DDGK

LFXD.DDGF

LFXX.DDGL

FXLG.KLKX

KXLG.KLKX

XXDGKDKX

XXLG.KLKX

XXDG.KLFX

KXLG.KLKD

XXLG.KLKX

KXDG.KLKL

KXDG.KDKX

FXDG.KDKX

FXLG.KLKX

XXDG.KLKX

XXLG.KLKL

XXDG.KDKL

XXDG.KLKX

KXLG.KLKX

KXLG.KLFX

XXLG.KLKD

XXLG.KDKL

KXLG.KDKL

KXDG.KLKL

FXLG.KLKX

XXLG.KLKL

XXDG.KLKX

LFXD.DDGL

FFXD.KDGL

GFXX.DDGL

GFXD.DDGK

LFXD.DDGF

LFXX.DDGF

LFXD.KDGF

KXDG.KLKX

XXDG.KLKX

XXLG.KDKX

XXDG.KLKX

XXLG.KDKX

XXDG.KLKD

XXLGKLFX

KXDG.KDKL

FXLG.KLKX

FXDG.KLKX

FXLG.KDKX

FXLG.KLFX

XXDGKDKX

XXDG.KLKL

XXLG.KDKL

KXDG.KLKX

FXLG.KLKD

XXDG.KDKL

XXDG.KLKD

XXLG.KLKX

XXDG.KDKD

KXLG.KLKX

XXDG.KLKL

XXLG.KLKX
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Table D3

Experiment 4 Test Items

High Item Similarity 

High ACS Similarity

DDGL.FGFF

GKDK.XXLG

KLKX.LFXD

FGFF.GKDK

LFXD.DDGL

XXLG.KLKX

Low Item Similarity 

High ACS Similarity

DDKX.LFXL

KDKL.FGFX

KDKL.FGLF

FFXD.KDKX

LFXX.DDKX

XXDGKDGL

Low Item Similarity 

Low ACS Similarity

DXGX.KFLD

GDLL.DFKG

XKGD.LXFK

LXGX.FKFD

FLDX.KGDF

KGXF.LDXK



Appendix E: Experiments 5 and 7 String Statistics and Letter Strings

Table E l

The Means and Ranges fo r Item Characteristics

Item GH GL UH
Characteristic

Anchor ACS Mean 1.75 0.06 1.75
Range 1.50-2.25 0.00-0.25 0.50-2.25

UL

0.04
0.00-0.25

Global ACS Mean 11.15 0.74 11.08 0.74
Range 9.14-12.17 0.50-1.14 8.98-12.13 0.50-1.21



Table E2

Training Strings for the Match Groups in Experiments 5 and 7
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Rehearsal String

DFGD.FDLF

DFGX.FDLK

DFKD.FDXF

DFKD.FDXF

DLGD.FGLF

DLFD.FGDF

DXKD.FKXF

DXKDFKXF

GDFG.LFDL

GDFG.LFDL

GLFG.LGDL

GLFG.LGDL

GXKG.LKXL

GXLG.LKGL

GXLGLKGL

KDFK.XFDX

KDFK.XFDX

KDLK.XFGX

KDXK.XFKX

KXLK.XKGX

KXLK.XKGX

FDLK.DFGX

FDLF.DFGD

FDLF.DFGD

FDXK.DFKX

FGLK.DLGX

FGLK.DLGX

LGDL.GLFG

Distracter 1

KFGD.FDLF

DLGX.FDLK

DFXD.FDXF

DFKG.FDXF

DLGD.KGLF

DLFD.FXDF

DXKD.FKDF

DXKD.FKXG

GDFG.LFDX

GDFG.LFKL

GLFG.LFDL

GLFG.XGDL

GXKD.LKXL

GXKG.LKGL

GFLG.LKGL

GDFK.XFDX

LDFK.XFDX

KGLK.XFGX

KDFK.XFKX

KXLGXKGX

KXLK.DKGX

FDLK.DKGX

FDLF.DFLD

FDLF.DFGX

FDXK.DFKL

FGLK.DLFX

FGLK.DKGX

LGDL.DLFG

Distracter 2

XKGD.FDLF

DFLK.FDLK

DFKD.GKXF

DFKD.FDLG

KLXD.FGLF

DGFL.FGDF

DXGD.LKXF

DXKF.FDXF

GDFG.KFXL

GDFG.LKDG

DLFX.LGDL

GKFG.KGDL

GXDG.LDXL

GXLF.LKFL

GXLG.DKGD

XDFK.KFDX

KGFK.XKDX

KDXKXFDX

KDXF.XFKL

DXLK.XKGL

KFLK.XKDX

FDGK.DLGX

FDLG.KFGD

GDLK.DFGD

FDXK.LFKG

FKLX.DLGX

FGLK.GLDX

LKFL.GLFG
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LGDL.GLFG

LGXL.GLKG

LKGL.GXLG

LKXL.GXKG

XKDL.KXFG

XKDL.KXFG

XLGX.KGLK

XLGX.KGLK

LGDF.GLFG

LGKL.GLKG

LDGL.GXLG

XKXLGXKG

XFDL.KXFG

XKFL.KXFG

XLGX.KDLK

XLGX.KGDK

LGDL.GXKG

LKXL.GXKG

LKFL.GXDG

LKDL.GXDG

FKDG.KXFG

XKDLLXFD

FLGX.KGLF

XLGK.XGLK
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Appendix F: Instructions used in Experiments 1 to 7

Match Task Training Instructions fo r the Match (Experiments 1 to 7) and Control 

Groups (Experiments I  and 5). In the first part of this experiment we will be looking at 

how good your short-term memory is for strings of letters like DFGK.FDLX. There 

will be 72 trials on each of which you will see a letter string. The string will stay on the 

screen for seven seconds during which time you should mentally rehearse it so that you 

can remember it. The screen will then go blank for two seconds, then a list of three 

strings will appear. You will be asked to type the number (1-3) of the string matching 

the one you are holding in memory.

Please try to be as accurate as possible, but if you really cannot remember then select 

the string that seems most familiar.

After you have typed in your choice, press RETURN. The program will tell you 

whether you were correct or not, and if you were wrong the correct choice will be 

displayed. Then you should press the X key to go on to the next trial.

Edit Training Instructions (Experiments 1 and 2). In this experiment you will be 

shown strings of letters such as DFGK.FDLX. Each string is made out of the six 

letters D, F, G, K, L and X. The computer knows a set of rules for putting letters into 

acceptable orders and your task is to try to work out what these rules are.

Each of the strings you see will have between two and four letters that violate the 

rules, in terms of the relationships between the letters. You will be asked to indicate 

whether you feel that each letter conforms to or violates the rules, by putting a Y 

below letters that you believe conform to the rules and an N below letters that you 

believe violate them. Please type a full stop under the central dot. When you have 

made your decision the program will tell you which letters actually violate the rules.



At the beginning of the experiment you will not know any of the rules so you will have 

to guess whether each letter is acceptable or not. Soon, though, you will begin to 

discover what the rules are.

Apply Rules Training Instructions (Experiment 6). In this experiment you will be 

shown 72 strings of letters such as DFGK.FDLX. Each string is made out of the six 

letters D, F, G, K, L and X and should conform to the following rules. Letter position 

1 is linked to position 5, 2 is linked to 6, 3 with 7, and 4 with 8. Where one letter of 

each pair is D the other must be F, where one is G the other letter must be L, and 

where one letter is K the other letter must be X.

You will be shown flawed letter strings that violate the rules, in terms of the 

relationships between the letters. Your task is to put a Y below letters that you feel 

conform to the rules and an N below letters that you believe violate the rules. Please 

type a full stop under the central dot. When you have made your decision the program 

will tell you which letters actually violate the rules.
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Classification Test Instructions (Experiments 1 to 7)

Initial Classification Instructions fo r the Match (Experiments 1 to 7) and Control 

Groups (Experiments 1 and 5). You may not be aware of it but the letter strings you 

were asked to memorise in the first part of this experiment were generated from a set 

of rules. Don’t worry if you didn’t notice this, as the task was designed to make it very 

difficult to notice the rules.

Initial Classification Instructions fo r the Edit Groups (Experiments I  and 2). In the 

first part of the experiment you used a hypothesis testing strategy to try to learn the 

rules of the grammar. Do not worry if you do not feel completely confident in your 

understanding of the rules.

Initial Classification Instructions fo r  the Apply Rules Group (Experiment 6). None.

Final Classification Instructions fo r all Groups (Experiments I  to 7). In this final 

phase you will be asked to classify 144 new strings according to whether you think 

they conform to the rules of the strings you saw earlier or not.

Each string will be presented in turn and your task is to rate how well it conforms to 

the rules on a scale of 1 to 6. The points on the scale indicate the following: (1) certain 

the string obeys the rules; (2) fairly certain the string obeys the rules; (3) guess that the 

string obeys the rules; (4) guess that the string does not obey the rules; (5) fairly 

certain the string does not obey the rules; (6) certain the string does not obey the rules. 

You do not need to memorise these instructions, as they will be repeated on each 

screen

Note that in this phase of the experiment you will NOT be told whether your responses 

are correct or not.



Appendix G: Questionnaires (Experiments 1, 2 and 5)
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Questionnaire Completed by the Experimenter fo r  Experiments 1 and 2 

Subject Number:.......................Group:............................  Date:...................................

Q 1: Did you adopt any particular strategy, in the test phase, to determine if the strings
conformed to the rules or not?

Q2: Did you notice any rules in the construction of the training strings?

Q3: There were rules linking letters in the first half of the string to corresponding
letters in the second half of the string. Can you tell me any of these rules?

Q4: There were three rules that dictated which letters could appear in location five
depending upon what letter was in location one. Can you tell me what those rules 
were?

Q5: Repeat the above question three times more for location pairs two and six, three
and seven and four and eight.
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Questionnaire Completed by each Participant in Experiment 5

Please answer the following questions as accurately as you can.
If your answers are 100% correct then you will win a £20 book voucher.
If more than one person is 100% correct, we will throw a coin to determine who gets the 
prize.

Question 1: The letter strings you saw in the experiment were constructed from the six 
letters D, F, G, L, K and X. Each string comprised eight letters with a dot in the middle 
and was created according to a set of rules. These rules governed which pairs of letters 
could occur in positions 1 and 5, 2 and 6, 3 and 7 and 4 and 8. For example if the letter 
in position 1 was D the rule may have been that position 5 must contain an X. 
Alternatively D may have been paired with F, G, K or L.

Can you tell me what these letter pair rules were in the strings you saw?
If you do not know the answer then please guess.

If there was a D in position 1, what letter appeared in position 5?........................................

If there was an F in position 2, what letter appeared in position 6 ? .....................................

If there was a G in position 3, what letter appeared in position 7?.......................................

If there was a K in position 5, what letter appeared in position 1?.......................................

If there was a L in position 7, what letter appeared in position 3?........................................

If there was a X in position 8, what letter appeared in position 4?.......................................

Question 2: Please indicate on the line below how accurate you think you were in 
specifying the rules. The line represents a scale of 0 to 100, where 0 indicates that you feel 
you do not know any of the rules and 100 indicates that you are certain you have 
answered all six parts of question 1 correctly.

0
I do not know 
any rules

I am certain 
that all my 
answers are 
correct

100
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