

Research Articles: Behavioral/Cognitive

Attention and capacity limits in perception: A cellular metabolism account

https://doi.org/10.1523/JNEUROSCI.2368-19.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2368-19.2020

Received: 3 October 2019 Revised: 10 June 2020 Accepted: 18 June 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 Bruckmaier et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1 Attention and capacity limits in perception: A cellular metabolism 2 account

3

6

4 Abbreviated title:

5 Attention, perception, and cellular metabolism

7 Authors:

- 8 Merit Bruckmaier^{*1}, Ilias Tachtsidis², Phong Phan², Nilli Lavie¹
- 9 *corresponding author (Email: merit.bruckmaier.16@ucl.ac.uk)

10

11 Affiliations:

- 12 ¹Institute of Cognitive Neuroscience, University College London, London, UK
- ¹³ ²Department of Medical Physics and Biomedical Engineering, University College London,
 14 London, UK

15

16 **Conflicts of interest:**

17 The authors declare no conflict of interest.

18

19 Acknowledgements:

- 20 This research was supported by the Economic and Social Research Council and Toyota
- 21 Motor Europe [grant number ES/J500185/1]. Authors I.T. and P.P. were supported by the
- 22 Wellcome Trust [grant number 104580/Z/14/Z]. We would also like to thank Paola Pinti for
- 23 her technical support.

24

25

- 27 Number of pages: 45
- 28 Number of figures: 4
- 29 Number of tables: 4
- 30 Number of words: 250 (abstract), 650 (introduction), 1499 (discussion)

31 Abstract

32	Limits on perceptual capacity result in various phenomena of inattentional blindness. Here
33	we propose a neurophysiological account attributing these perceptual capacity limits
34	directly to limits on cerebral cellular metabolism. We hypothesized that overall cerebral
35	energy supply remains constant, irrespective of mental task demand, and therefore an
36	attention mechanism is required to regulate cellular metabolism levels in line with task
37	demands. Increased perceptual load in a task (imposing a greater demand on neural
38	computations) should thus result in increased metabolism underlying attended processing,
39	and reduced metabolism mediating unattended processing. We tested this prediction
40	measuring oxidation states of cytochrome c oxidase (oxCCO), an intracellular marker of
41	cellular metabolism. Broadband near-infrared spectroscopy was used to record oxCCO levels
42	from human visual cortex while participants (both sexes) performed a rapid sequential
43	visual search task under either high perceptual load (complex feature-conjunction search) or
44	low load (feature pop-out search). A task-irrelevant, peripheral checkerboard was presented
45	on a random half of trials. Our findings showed that oxCCO levels in visual cortex regions
46	responsive to the attended-task stimuli were increased in high versus low perceptual load,
47	while oxCCO levels related to unattended processing were significantly reduced. A negative
48	temporal correlation of these load effects further supported our metabolism trade-off
49	account. These results demonstrate an attentional compensation mechanism that regulates
50	cellular metabolism levels according to processing demands. Moreover, they provide novel
51	evidence for the widely-held stipulation that overall cerebral metabolism levels remain
52	constant irrespective of mental task demand and establish a neurophysiological account for
53	capacity limits in perception.

54 Significance Statement

We investigated whether capacity limits in perception can be explained by the effects of
attention on the allocation of limited cellular metabolic energy for perceptual processing.
We measured the oxidation state of cytochrome c oxidase, an intracellular measure of
metabolism, in human visual cortex during task performance. The results showed increased
levels of cellular metabolism associated with attended processing and reduced levels of
metabolism underlying unattended processing when the task was more demanding. A
temporal correlation between these effects supported an attention-directed metabolism
trade-off. These findings support an account for inattentional blindness grounded in cellular
biochemistry. They also provide novel evidence for the claim that cerebral processing is
limited by a constant energy supply, which thus requires attentional regulation.

- 69
- 70
- 71
- 72

74	Much research has demonstrated the limited nature of perceptual capacity, reporting that
75	in attention demanding tasks observers can fail to perceive unattended objects, a
76	phenomenon termed "inattentional blindness" (e.g. Simons and Chabris, 1999; Cartwright-
77	Finch and Lavie, 2007). Neuroimaging research has attributed inattentional blindness to
78	attentional modulations of visual cortex response to unattended stimuli (e.g. Rees, 1999).
79	The level of perceptual load in the task has been shown to be a critical factor in attentional
80	modulations: In tasks involving high perceptual load (e.g. requiring discrimination of feature
81	conjunctions) cortical response to unattended stimuli was found to be smaller compared to
82	low load tasks (e.g. feature detection). For example, high (vs. low) perceptual load in an
83	attended task was shown to result in decreased Blood Oxygen Level Dependent (BOLD)
84	signal in V5/MT in response to unattended motion (Rees et al., 1997), in the
85	parahippocampal cortex in response to task-irrelevant images of 'places' (Yi et al., 2004), in
86	V1-V4 in response to flickering checkerboard distractors (Schwartz et al., 2005; Torralbo et
87	al., 2016), and in V4 and TEO in response to unattended, meaningful objects (e.g. flowers,
88	Pinsk et al., 2004). This pattern of findings was obtained across a variety of perceptual load
89	manipulations, all known to increase the computational demand on perceptual capacity
90	(Lavie, 2005; Whiteley and Sahani, 2012; Lavie et al., 2014). Behavioural reports also
91	demonstrated the analogous impact of perceptual load on conscious experience (e.g.
92	Carmel et al., 2007; Macdonald and Lavie, 2008; Stolte et al., 2014).
93	The abundance of studies reporting attentional modulations of the neural response to a
94	variety of stimuli in different cortical regions and across different manipulations of load
95	suggests that they reflect an attentional mechanism which is required to regulate a
96	fundamental, physiological limitation on the overall amount of neural processing. Numerous

97	cellular physiology studies calculating the energy usage of neurons through their ATP
98	consumption have demonstrated that the bio-energetic cost of neural activity is high
99	(Attwell and Laughlin, 2001; Lennie, 2003), primarily because the ion gradients across the
100	cell membrane need to be restored following postsynaptic currents and action potentials.
101	This critically depends on the levels of cellular oxidative metabolism which supplies the
102	required energy in the form of ATP. Other research has shown that the metabolic energy
103	supply to the brain remains constant irrespective of increased mental task demands (Clarke
104	and Sokoloff, 1999). This has led to a widely held premise that cerebral energy supply places
105	a hard limit on mental processing. It follows that increased neural activity (with increased
106	mental-task demand) needs to be balanced out by reductions in cellular metabolism
107	elsewhere. However, while well engrained within theoretical neuroscience, empirical
108	research relating cellular energy limits to limits on mental processing has been rather
109	sparse.
110	Here we investigated this further, directly testing the impact of perceptual processing
111	demands (load) on the attentional allocation of limited cellular metabolism. We
112	hypothesised that cellular metabolism levels are flexibly redistributed between attended
113	and unattended stimuli to compensate for changes in demand on the limited metabolic
114	energy available for neural responses. This ensures that metabolic energy is allocated to

115 goal-relevant processing when the overall neural computational demand exceeds the

supply, as in conditions of high perceptual load.

In order to provide a straightforward test of this attentional compensatory mechanism that redistributes cellular metabolism according to task demand, a direct assessment of the effect of attention on the underlying cellular metabolism that supplies the required neural

energy is necessary. Thus, here we sought to investigate the effects of attention on the
distribution of limited cellular metabolic energy to attended versus unattended processing
in visual cortex, as assessed with an intra-cellular marker of metabolism levels. We used
Broadband Near-Infrared Spectroscopy (BNIRS) which allows us to track the oxidation state
of cytochrome c oxidase (oxCCO), a mitochondrial enzyme indicative of cellular oxidative
metabolism (Bale et al., 2016 for review), during performance of a selective attention task
under different levels of perceptual load.

127

128 Materials and Methods

129 BNIRS methodology

The oxCCO signal measured with BNIRS provides an intracellular marker of oxidative 130 131 metabolism levels. Increases in energy requirements due to neuronal activation are largely 132 covered by an upregulation of oxidative phosphorylation whereby energy in the form of ~30 133 adenosine triphosphate molecules (ATP, commonly known as the molecular unit of currency 134 for intracellular transfer of energy) per glucose molecule are produced (Attwell et al., 2010; 135 Lin et al., 2010). CCO is the final electron acceptor of the electron transport chain in the 136 mitochondria where oxidative phosphorylation takes place. Since its concentration does not 137 change over relatively short time periods (e.g. hours), the ratio between oxidised and 138 reduced CCO can be used to assess changes to the level of cellular metabolism. BNIRS can measure the oxCCO signal by using the full light spectrum in the range of 780-900nm (Arifler 139 140 et al., 2015). Conventional fNIRS systems, in contrast, have just 2-3 wavelengths of light and 141 thus can only be used to measure concentration changes in oxygenated (HbO2) and

142	deoxygenated (HHb) haemoglobin in the blood vessels surrounding the brain areas of
143	interest. The intracellular BNIRS measure of oxCCO has been validated both in animal and
144	human studies, for example demonstrating its correlation with phosphorous magnetic
145	resonance spectroscopy (³¹ P MRS) measures of nucleotide triphosphate levels (NTP, which is
146	mainly ATP; Peeters-Scholte et al., 2004; Bainbridge et al., 2014; Kaynezhad et al., 2019) and
147	measures of the lactate/pyruvate ratio, a marker of aerobic metabolism (i.e. mitochondrial
148	ATP synthesis), as obtained with micro dialysis (Tisdall et al., 2008). For a review see Bale et
149	al. (2016).

150 In the present study, we used a multi-channel BNIRS system, which has been developed to 151 specifically measure oxCCO (e.g. Phan et al., 2016) and has been shown to successfully 152 isolate its signal (based on the absorption characteristics of oxCCO, which has a broad peak 153 at 830nm) from other chromophores (HHb and HbO₂), as described here (Siddigui et al., 154 2018). The instrument has four source and ten detector fibres (optodes) and a sampling rate 155 of 1 s. The detectors were arranged in rows of five with the four sources between them 156 (source detector separation was 30mm), resulting in 16 measurement channels. The array 157 was fitted horizontally in a custom-designed optode holder, the centre of which was placed 158 4cm above the inion. All optode positions were digitised using a Patriot Digitizer (Polhemus, 159 Colchester, Vermont, USA), and the inion, nasion, left and right preauricular points, O1, O2, 160 and vertex served as reference points (based on 10/20 electrode placement system). To 161 ensure that the positions of the channels matched between participants the digitized 162 locations were converted to MNI coordinates using NIRS SPM (Ye et al., 2009).

163

164

165 **Experiment 1: Experimental Design and Statistical Analysis**

166	In Experiment 1 we first sought to establish whether the metabolism levels associated with
167	unattended processing are affected by the level of perceptual load in the attended task. To
168	that purpose we have used a well-established perceptual load manipulation which includes
169	a rapid, serial visual search task that is accompanied by a task-irrelevant, flickering
170	checkerboard in the periphery on half of the trials (Schwartz et al., 2005; Carmel et al., 2011,
171	Ohta et al., 2012). We examined the effects of perceptual load in the attended task on the
172	levels of metabolism specifically associated with the unattended, peripheral checkerboard.
173	Since the purpose of Experiment 1 was to investigate whether perceptual load can
174	modulate the levels of metabolism associated with the processing of unattended stimuli,
175	the size of the checkerboard was maximised (relative to the attended task stimuli) to ensure
176	that we would be able to measure a strong signal associated with unattended stimulus
177	processing in the low load condition, as well as a modulation of this response under high
178	perceptual load.
179	Participants

180 16 participants (11 female, age range 18-34) took part in Experiment 1. Since this is the first study using BNIRS to measure effects of attention on visual processing, no formal sample 181 182 size calculations could be carried out. We therefore used a sample size that is comparable to 183 studies using other neuroimaging techniques, looking at similar effects of perceptual load on 184 cortical processing (e.g. Schwartz et al., 2005, 16 participants; Molloy et al., 2015, 14 185 participants; Torralbo et al., 2016, 18 participants). A sensitivity analysis on the results 186 obtained in this experiment, using MorePower (Campbell and Thompson, 2012), confirmed that this sample size was sufficient to detect effects of a size $\eta_p^2 \ge 0.37$ with a power of 187

188 80%. All participants had normal or corrected to normal vision and normal colour vision.

This research was approved by the UCL research ethics committee, and written, informed
 consent was obtained from all participants prior to data collection.

191 Task and Stimuli

192 The experiment took place in a darkened room to minimise external light interfering with 193 the BNIRS system. We presented the experiments with Matlab Cogent Graphics tool box. 194 The attended task display consisted of a series of crosses (each $0.08^{\circ} \times 0.06^{\circ}$ of visual angle), 195 coloured either blue (0 115 255), green (0 255 0), yellow (255 255 0), purple (160 32 240), 196 red (255 0 0), or brown (156 102 31), and oriented either upright or inverted. These stimuli 197 were presented rapidly in the centre of the computer screen on a black background (see 198 Figure 1, and see Schwartz et al., 2005 and Carmel et al., 2011). On half of the streams a 199 black and white, radial checkerboard, which was flickering at a frequency of 7 Hz, was 200 present in the periphery of the visual field (extending 17° of visual angle from the centre of 201 the screen, leaving out a circle with a radius of 0.7° in the centre where the targets were 202 presented). Participants were instructed to ignore the checkerboard stimulus, if present. 203 Their task was to detect pre-specified 'target' crosses by pressing the '0' key on the number 204 pad of the computer keyboard. In the low load condition the targets were determined by 205 colour alone (any red crosses), whereas in the high load condition targets were determined 206 by a conjunction of colour and orientation (upright purple and inverted blue crosses). 207 Each 32 item stream started with a fixation cross present for 1000 ms at the centre of the

screen, followed by the presentation of 32 crosses (250 ms), each followed by a 500 ms ISI.

209 Each stream contained 4 targets (12.5% of stimuli) that were presented randomly in any

210 temporal stream positions except for the first, with the constraint that no two targets could

211	appear on successive presentations. The time window of 750 ms from the onset of a target
212	has previously been shown to provide sufficient time for typical responses to be made
213	before the next stimulus appeared (e.g. Carmel et al., 2011). However, the constraint that
214	no two targets could appear in succession allowed us to accept any target detection
215	response made within the 1500 ms time window from target onset (the minimal time
216	between two potential targets) as correct. The target stimulus was equally likely to be in
217	either orientation in the low load or colour/orientation combination in the high load
218	condition (sampled randomly with replacement). Apart from excluding the target colour (in
219	the low load) and target colour/orientation combination (in the high load), all colours and
220	colour/orientation combinations were equiprobable for each of the non-target stimuli
221	(sampled randomly with replacement), with the exception that the opposite feature
222	combination of those defining the targets in the high load condition (i.e. upright blue and
223	inverted purple) were twice as likely as any other non-target colour/orientation
224	combination. To match the streams across the load conditions, these opposite combinations
225	were also twice as likely in the low load streams. Note, that the visual stimulation was thus
226	the same in both load conditions and load was varied just through the task instructions
227	which required a different amount of perceptual processing for the same stimulus stream.
228	Participants completed 56 streams, each consisting of 32 items, lasting for 25 s, and
229	followed by a 25 s break, during which participants received automated feedback on their
230	performance. Five seconds before the next stream, instructions indicating the new targets
231	appeared on the screen. Participants started with two short practice streams (one per load
232	condition, always starting with low load). The experimental streams were interleaved in an
233	ABBABAAB pattern with respect to the load condition.

234 Data Pre-processing

235	In order to convert the measured attenuation changes across the wavelengths between
236	780-900nm into concentration changes of the chromophores (deoxygenated haemoglobin
237	(HHb), oxygenated haemoglobin (HbO $_2$), oxCCO), we applied the UCLn algorithm using the
238	Modified Beer-Lambert law assuming a differential pathlength factor (DPF) of 6.26 and its
239	wavelength dependence (Phan et al., 2016). Next, the concentration changes of each
240	chromophore were bandpass filtered to remove physiological noise (such as Mayer waves)
241	using a 5th order Butterworth filter with cut-off frequencies of 0.01 and 0.08 Hz. Streams
242	were excluded from analysis if motion artefacts were present, or if the error rate was
243	particularly high (\geq 75%), potentially indicating that the participant was responding to the
244	wrong targets. This resulted in 3.46% of trials in total removed in Experiment 1 and 6.05% of
245	trials removed in Experiment 2. For each participant and channel, the data was then
246	prepared by averaging across the RSVP streams for each of the four conditions (high/low
247	load x checkerboard present/absent), using the first second of each RSVP stream as the
248	baseline by subtracting it from the activity in the rest of the trial.
249	The converted MNI coordinates indicated that our channel positions were located across
250	Brodmann areas 17, 18, and 19 – commonly referred to as striate cortex and visual
251	association areas. Based on their MNI coordinates, measurement channels were allocated
252	individually for each participant (Ye et al., 2009) to the following cortical regions: left and
253	right BA19, left and right BA18, and BA17 (see Table 1 and 2 for average coordinates and
254	allocation of each channel in Experiment 1 and 2, respectively). This step reduced the
255	number of statistical comparisons compared to the channel level, and therefore lowered the
256	risk of false positives.

257 Statistical Analysis

258	In both Experiments 1-2 analyses of the oxCCO were based on the mean oxCCO signal in
259	each of the conditions for each participant across the 25s task period. In all analyses of both
260	the oxCCO and the behavioural data the outlier exclusion criterion was based on responses
261	that are > 2.5 SD from the group mean. This resulted in the exclusion of one participant in
262	each of the experiments. Behavioural responses were compared using pairwise, two-tailed t
263	tests comparing response times, hit rates, and false alarm rates between high vs. low load
264	conditions. The main oxCCO analysis used a 2 x 2 within-subject ANOVA to investigate the
265	effects of distractor presence (present vs. absent) and perceptual load (high vs. low).
266	Statistical significance is reported using an alpha level of .05 with false discovery rate (FDR)
267	correction (Benjamini and Hochberg, 1995) for multiple comparisons across the five cortical
268	regions.

269 **Experiment 2: Experimental Design and Statistical Analysis**

270 In Experiment 2, we investigated whether the modulation of the metabolism associated 271 with unattended processing in Experiment 1 was the result of a load-induced trade-off, as 272 suggested by previous functional imaging experiments (Pinsk et al., 2004; Torralbo et al., 273 2016). We therefore examined whether the reduction of metabolic energy associated with 274 unattended processing by high perceptual load was accompanied by a simultaneous 275 increase in metabolism underlying attended processing. To that purpose we have modified 276 the task used to increase its sensitivity to reveal the effects of load on the attended stimuli, 277 as follows: The size of the central crosses was substantially increased in order to produce a 278 greater oxCCO signal. Furthermore, a white pattern of swirls was overlaid over each cross to 280 the attended stimuli activated striate and extrastriate visual cortex regions (see Figure 1).

281 Participants

Power analysis using MorePower (Campbell and Thompson, 2012) based on the effect sizes observed in Experiment 1 indicated that a sample of 12-18 participants (depending on which Brodmann Area was used for the calculation) is required to detect the load effect on unattended processing with α = .05 and 80% power. We collected data from 18 participants (15 female, age range 20-38), which satisfies the more conservative estimate of sample size, all with normal or corrected to normal vision and normal colour vision. One participant participated in both experiments, the rest were naïve.

289 Task and Stimuli

290 In order to establish load effects on metabolism associated with attended processing (in 291 addition to unattended processing), we increased the size of the central crosses (vertical 292 bar: height: 23.7°, width: 5.1°; horizontal bar: height: 2.1°, width: 6.7°; midline of horizontal 293 bar was placed at 6.1° from the (top/bottom) end of the vertical bar) and overlaid them with 294 a white pattern of swirls to increase the local contrast and therefore the extent to which 295 they activate early visual cortex regions (see Figure 1). The distractors were two flickering, 296 radial checkerboard segments on either side of the central task (147° of arc, with a radius 297 extending 12.8° of visual angle from the centre of the screen, leaving a circle of 5.7° in 298 radius free in the centre). Thus, both the attended and unattended stimuli should now elicit 299 a measurable signal that allows us to track any modulation induced by changes to 300 perceptual load. Since the stimuli were far larger now, we ensured that participants would

301	still fixate at the centre of the stimuli in order to process both the bottom and the top
302	horizontal cross bars, and avoid a strategy of judging the horizontal bar location not just by
303	its presence but also from its absence at one fixated position (either the top or the bottom
304	of each cross), by including non-target stimuli that consisted only of the vertical bar of the
305	cross on a random third of stimulus presentations (colours selected in random from the
306	stimulus set irrespective of whether non-target or target colours). Subjects were instructed
307	to withhold responses to these stimuli (including when presented in the target colour in the
308	low load conditions). All other details remained the same as in Experiment 1.

309 Statistical Analysis

310	Following the same exclusion criteria as for Experiment 1, one subject was excluded from
311	analysis in Experiment 2. Areas showing significant effects in Experiment 1 served as regions
312	of interest (ROI; bilaterally) for the within-subject 2 x 2 (load by distractor conditions)
313	ANOVAs in Experiment 2, while FDR correction was applied to all other analyses (including
314	the attended processing analysis) since the regions for these have not been previously
315	established. For this reason, the simple main effects concerning attended processing
316	(distractor absent conditions) were not reported in the ROI-based 2 x 2 ANOVAs (of
317	distractor condition by load). In addition to the same ANOVAs as those run in Experiment 1,
318	we also performed pairwise t-tests to compare the mean oxCCO response during the 25 s
319	task period in distractor absent trials in high versus low perceptual load, which reflects the
320	activity associated specifically with the processing of the attended task stimuli (without
321	distractor stimuli).

In Experiment 2, we also analysed the temporal correlation of the load effect on attended
 processing (High Absent – Low Absent) and unattended processing ((High Present – High

324	Absent) – (Low Present – Low Absent)), during the 25 s task period. The group mean for
325	each second-by-second time point in each time series was computed, following a trial
326	splitting procedure that was conducted to ensure the data entered into each participant's
327	time series did not include overlapping trials (since the distractor absent condition was used
328	for both the attended and unattended signal), as follows. We split the distractor absent raw
329	data randomly into two halves for each participant: One half was used for the attended time
330	series and the other used for the unattended time series, before the two time series got
331	averaged across all participants to provide the group mean for each second-by-second data
332	point in the two time series. A Kolmogorov-Smirnov test verified that the data was normally
333	distributed and therefore suitable for a Pearson correlation. To avoid sample bias from the
334	random splitting of the data we repeated the random data split 1000 times and a Pearson
335	correlation was conducted on the attended vs. unattended time series in each of the 1000
336	samples. We note that this correlation analysis treats subjects as fixed rather than random
337	effects, and thus only allows inferences about the specific sample, not the whole
338	population. A replication of this analysis with a larger sample (that allows for a correlation
339	analysis that treats subjects as random effects) is important to further support the temporal
340	"push and pull" nature of the resource trade-off we have observed.
341	In order to assess significance of the mean r we used a permutation test with 10,000
342	permutations, using the same 1000 samples but with randomly assigned condition labels (to
343	each participant's time series in each sample). A significance threshold of 95% was then
344	used for the comparison of the mean r value obtained from the correctly labelled data with
345	the distribution of 10,000 mean r values from the random permutations (i.e. to be
346	considered significant the mean r value from the correctly labelled data had to be greater

than 9500 of the mean r values obtained from the data with randomly shuffled condition labels). The use of the permutation analysis controls for any effects of dependence of data points within each subject in the correlated time-series (e.g. autocorrelation), since these are equally present in the time-series with permuted condition labels.

351

352 Results

353 Experiment 1

354 Behavioural Data

Behavioural results (see Table 3) confirmed that higher perceptual load in the attended task increased task reaction times (t(14) = 18.36, p < 0.001, d = 5.19), reduced hit rates (t(14) = -3.41, p = 0.004, d = -0.90), and increased the number of false alarms (t(14) = 3.76, p = 0.002, d = 1.06), thus confirming the efficacy of the perceptual load manipulation.

359 oxCCO Data

360 The oxCCO results are shown in Figure 2. As can be seen in panel 2A, the mean oxCCO

361 response during the task period was larger when the distractor was present than when it

362 was absent, as was confirmed with a main effect of distractor presence in all BAs (left BA19:

363
$$F(1,14) = 12.53 p_{FDR} = 0.005, \eta_p^2 = 0.47;$$
 left BA18: $F(1,14) = 24.61, p_{FDR} < 0.001, \eta_p^2 = 0.65;$

364 BA17:
$$F(1,14) = 27.85$$
, $p_{FDR} < 0.001$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 6.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 6.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.031$, $\eta_p^2 = 0.67$; right BA18: $F(1,14) = 0.28$, $p_{FDR} = 0.031$, $\eta_p^2 = 0.031$, $\eta_p^$

- 365 0.31; right BA19: F(1,14) = 4.81, $p_{FDR} = 0.046$, $\eta_p^2 = 0.26$. Importantly, Figure 2 (B-C) also
- 366 shows that the oxCCO signal associated with the distractor presence (vs. absence) was
- 367 reduced in the high (compared to low) load conditions, as predicted. This interaction effect

368	(of load and distractor conditions) was significant in BA17 ($F(1,14) = 9.10$, $p_{FDR} = 0.023$, $\eta_p^2 = 0.023$
369	0.39), right BA18 ($F(1,14) = 6.84$, $p_{FDR} = 0.034$, $\eta_p^2 = 0.32$), and right BA19 ($F(1,14) = 12.25$,
370	p_{FDR} = 0.018, η_p^2 = 0.47. Indeed, in both right BA18 and right BA19 the distractor effect was
371	only significant in the low load conditions (right BA18: $t(14) = 3.18$, $p = 0.007$; right BA19:
372	t(14) = 3.26, $p = 0.006$), but not in the high load conditions (right BA18: $t(14) = 1.18$, $p = 1.18$
373	0.259; right BA19: $t(14) = 0.39$, $p = 0.704$), while in BA 17 it remained significant in both load
374	conditions (low load: <i>t</i> (14) = 5.87, <i>p</i> < 0.001; high load: <i>t</i> (14) = 3.69, <i>p</i> = 0.002). Similar
375	trends of the load-distractor interaction did not reach significance in left BA18 ($F(1,14) =$
376	3.39, $p_{FDR} = 0.110$) and left BA19 ($F(1,14) = 2.25$, $p_{FDR} = 0.156$). There was no main effect of
377	perceptual load in any area (all $p_{FDR} > 0.813$), as might be expected given the terminative
378	nature of the interaction. Finally, a comparison of the baselines used in the low load and
379	high load revealed no significant difference (mean difference \leq 0.0042 µM, all p_{FDR} > 0.655).
380	

381 Experiment 2

In order to further establish whether the observed reduction of the oxCCO signal related to unattended processing in Experiment 1 results from a resource trade-off relationship with the attended processing, in Experiment 2 we compared the impact of perceptual load on cellular metabolism levels in attended versus unattended processing using modified task stimuli better suited to reveal BNIRS signals from both types of stimuli.

387 Behavioural Data.

As in Experiment 1, behavioural results (see Table 4) showed that high perceptual load increased reaction times (t(16) = 16.08, p < 0.001, d = 3.90), reduced hit rates (t(16) = -2.83,

p = 0.012, d = -0.69), and increased false alarm rates (t(16) = 2.17, p = 0.046, d = 0.53), thus successfully manipulating task demand.

392 oxCCO Data

393 The oxCCO results of Experiment 2 are shown in Figure 3. As can be seen in the figure, the 394 effect of perceptual load on distractor processing found in Experiment 1 was replicated in 395 Experiment 2. Specifically, Figure 3A shows that the mean oxCCO response during the task 396 period was larger when the distractor was present as compared to when it was absent, and 397 this was reflected in the significant main effects of distractor presence (vs. absence) in left BA18 (F(1,16) = 6.68, p = 0.012, $\eta_p^2 = 0.29$), right BA18 (F(1,16) = 5.24, p = 0.036, $\eta_p^2 = 0.25$) 398 and right BA19 (F(1,16) = 6.10, p = 0.025, $\eta_p^2 = 0.28$). Similar trends did not reach 399 significance in left BA19 (F(1,16) = 3.77, p = 0.070) and BA17 (F(1,16) = 2.84, p = 0.111). 400 401 Importantly, Figure 3B and D show that, as in Experiment 1, the oxCCO signal change 402 associated with the presence (vs. absence) of the distractor was reduced in the high (vs. 403 low) perceptual load conditions and this was confirmed by significant interactions between load and distractor presence in left BA18 (F(1,16) = 7.51, p = 0.015, $\eta_p^2 = 0.32$) and right 404 BA19 (F(1,16) = 4.74, p = 0.045, $\eta_p^2 = 0.23$). In both areas the distractor presence (vs. 405 406 absence) effect was significant in the low load (left BA18: t(16) = 4.07, p = 0.001; right BA19: 407 t(16) = 3.54, p = 0.003) but not the high load conditions (left BA18: t(16) = 0.53, p = 0.600; 408 right BA19: t(16) = 0.47, p = 0.648). Similar interaction trends did not reach significance in 409 the other BAs (all F < 3.22, p > 0.092). There were no main effects of load in any areas apart 410 from BA17 which showed a significantly increased signal in the high load compared to the low load conditions (F(1,16) = 4.91, p = 0.041, $\eta_p^2 = 0.23$; F < 1.23, p > 0.28 in all other 411

412	areas). Finally, as in Experiment 1, no significant difference was found between the
413	baselines of high and low load conditions (mean difference $\leq 0.0032~\mu M;$ all $p_{\text{FDR}} > 0.131$).
414	To assess the impact of perceptual load on attended processing, we analysed the effect of
415	load on the oxCCO signal related to the attended stream in the distractor-absent (target
416	only) conditions in all areas. As can be seen in Figure 3A and C, the mean oxCCO response to
417	the targets (in the distractor absent conditions) was increased under high perceptual load,
418	and this reached significance in left BA18 ($t(16) = 2.98$, $p_{FDR} = 0.022$, $d = 0.72$) and BA17
419	(t(16) = 3.49, p_{FDR} < 0.015, d = 0.85). Similar trends in the other BAs failed to reach
420	significance (all $t < 1.63$, $p_{FDR} > 0.169$).
421	In addition, we assessed the temporal correlation between the effects of load on oxCCO
422	levels related to attended processing and the load effects on oxCCO levels related to
423	unattended processing during the 25 s task period. The results are shown in Figure 4. As can
424	be seen in the figure, the temporal (second by second) patterns of the effects of load on
425	attended and unattended signals were negatively correlated in all areas. A random
426	permutation test (for details on this analysis see Materials and Methods) showed that all
427	these correlations were significant (left BA19: mean r = -0.38, p_{FDR} < 0.001; left BA18: mean r
428	= -0.43, p _{FDR} < 0.001; BA17: mean r = -0.31, p _{FDR} < 0.001; right BA18: mean r = -0.12, p _{FDR} <
429	0.001; right BA19: mean r = -0.43, p _{FDR} < 0.001). These findings indicate a "push-pull" trade-
430	off relationship between metabolism levels related to attended and unattended processing
431	as a function of perceptual load in the task.
432	Finally, the hypothesis of constant energy supply irrespective of mental task demand (i.e.
433	perceptual load) receives additional support when oxCCO levels are measured while both

434 attended and unattended stimuli are present. As shown in Figure 3A (distractor present

435 conditions) metabolism levels remain constant across the low load and high load conditions 436 in all five regions when thus measured (all $p_{FDR} > 0.440$). This is explained by a spill-over to 437 the processing of the distractor in the low load conditions but not high load conditions 438 which are likely to approach the set energy limit already with the attended processing 439 alone.

440

441 Discussion

442 The present results provide support for our proposed cellular metabolism account for 443 perceptual capacity limits and the role of attention in perception. Specifically, the findings 444 established attention-dependent modulation of cellular metabolism levels in visual cortex in 445 line with the changes in perceptual load levels in the task. Higher perceptual load in the task was associated with increased cellular metabolism levels related to attended processing and 446 447 reduced levels related to unattended processing in the form of a direct resource trade-off. This "push-pull" relationship is further supported by a negative correlation between the 448 449 temporal pattern of load effects on metabolism levels associated with attended versus unattended processing. Perceptual capacity limits and the consequent effects of reduced 450 451 unattended processing in conditions of high perceptual load may therefore be attributed to 452 a shortage in cellular metabolism for processing stimuli outside the focus of attention. 453 Our account offers a neurobiological explanation of the large body of studies showing attentional modulations of task performance and perception as well as the related cortical 454 455 activity due to high perceptual load in the task. The previous findings have been obtained

456 with a variety of behavioural tasks and attentional manipulations (Simons and Chabris,

1999; Carmel et al., 2007; Cartwright-Finch and Lavie, 2007; Macdonald and Lavie, 2008;
Murphy and Greene, 2016) and in functional imaging studies (Rees et al., 1997; Handy and
Mangun, 2000; Handy et al., 2001; Pinsk et al., 2004; Yi et al., 2004; Schwartz et al., 2005;
Nagamatsu et al., 2011; Parks et al., 2013; Molloy et al., 2015; Torralbo et al., 2016). The
present results suggest that these well-established modulations can be explained by
changes in cellular metabolism levels in visual cortex.

463 Importantly, oxCCO levels provide a direct, intracellular measure of neural metabolism due 464 to the CCO enzyme's integral role in cellular oxygen metabolism (as the final electron 465 acceptor in the respiratory electron transport chain of the mitochondria). In contrast, the 466 haemodynamic response measured with fMRI cannot be used to directly infer the level of 467 underlying cellular metabolism, despite being correlated with it (Logothetis, 2008). 468 Specifically, the level of deoxygenated haemoglobin in local blood vessels, underlying the 469 BOLD response, is not only influenced by the level of cellular oxygen metabolism, but in 470 even greater measure by the rate of cerebral blood flow (CBF; Fox and Raichle, 1986; Buxton 471 and Frank, 1997). While oxygen metabolism is driven by the energy demand following 472 neural activity, increases in CBF are thought to be driven primarily by the presence of the 473 excitatory neurotransmitter glutamate – these two processes can therefore be considered 474 as related, but operating in parallel (Attwell and Iadecola, 2002). Moreover, the ill-475 understood, variable coupling of the two over space and time further complicates any 476 inference about oxygen metabolism (Logothetis, 2008; Lindquist et al., 2009). The present findings also lend support to the influential (e.g. Raichle and Gusnard, 2002; 477 478 Lennie, 2003; Carrasco, 2011; Lauritzen et al., 2012) notion that overall cerebral metabolism

479 remains constant irrespective of mental task demand (Sokoloff et al., 1955), and despite the

480	high energetic cost of neural firing (Attwell and Laughlin, 2001; Lennie, 2003). While much
481	theoretical and modelling work presumed this notion, subsequent empirical evidence for
482	this claim has been scarce. In a repeatedly cited study Sokoloff et al. (1955, see also Clarke
483	and Sokoloff, 1999) used a nitrous oxide technique as a measure of whole-brain cerebral
484	metabolic rate (CMRO ₂). Overall CMRO ₂ during rest did not significantly differ from overall
485	$CMRO_2$ during a mental (arithmetic) task condition. While often cited as evidence for a
486	constant and therefore limited metabolic energy capacity of the human brain, this
487	conclusion rests on a null result. Here, we similarly report constant oxCCO levels irrespective
488	of mental task demand (i.e. load) when these are measured as summed activity across both
489	attended and unattended processing. This finding was expected based on load theory
490	predictions that spare capacity spills over to the processing of unattended stimuli in low
491	perceptual load conditions, so that the overall level of metabolism remains the same as in
492	high load conditions (when more capacity is exhausted by attended processing). Thus, just
493	the distribution between attended and unattended processing differs between load
494	conditions. Importantly, we additionally report findings that positively demonstrate this
495	trade-off effect of mental processing demand on cerebral metabolism levels related to
496	attended versus unattended processes. This finding, alongside the temporally specific
497	correlation of load effects, directly supports the commonly made assertion that limited
498	metabolic resources are redistributed in order to flexibly adapt to mental task demands
499	(Raichle et al., 2001; Carrasco, 2011), highlighting the role of attention in control over the
500	metabolic resource allocation. We suggest that the observed trade-off is the result of an
501	attention mechanism that serves to balance metabolic supply and demand across the brain,
502	in line with current processing priorities.

503	Our results fit with the well-established findings that increases in cellular metabolism during
504	enhanced neural firing are primarily needed for the energetically expensive process of
505	restoring ion gradients after depolarisation of the cell membrane. The observed pattern of
506	responses therefore reflects changes in the number of action potentials sent within the area
507	of measurement. However, a considerable contribution to the signal is likely also made by a
508	change in the number of incoming signals (i.e. post-synaptic potentials). The integration of
509	post-synaptic potentials has been shown to require more metabolism than firing action
510	potentials (Schwartz et al., 1979), suggesting this may contribute more to our observed
511	effects than just action potential generation. Since attention is known to involve extensive
512	feedback-connections between higher level areas (frontal and parietal cortices) and sensory
513	cortices (Dehaene et al., 1998; Silvanto et al., 2009; Wei et al., 2013; Torralbo et al., 2016),
514	incoming signals from these areas likely play a role in the changes in metabolic patterns
515	observed here in visual cortex, in addition to incoming signals from lower level areas and
516	local connections.
517	It is also important to consider how the present results relate to previous behavioural
518	findings. The perceptual load manipulation used in our study is well established (Schwartz et
519	al., 2005; Bahrami et al., 2007; Carmel et al., 2011; Ohta et al., 2012) and known to converge
520	with other manipulations of perceptual load (e.g. spatial visual search, set-size
521	manipulations) to demonstrate reduced unattended processing, leading to "inattentional
522	blindness". Importantly, these effects are found with both implicit measures of unattended

- 523 processing (e.g. neuroimaging, distractor effects on RT) which are collected for concurrent
- 524 attended and unattended processing, as here, and explicit detection sensitivity measures,
- 525 including measures of detection responses made immediately upon appearance (e.g.

526	Macdonald and Lavie, 2008; Lavie et al., 2014) which rule out alternative accounts
527	attributing inattentional blindness to 'inattentional amnesia'. The convergence of findings
528	suggests alternative accounts of the present findings in terms of task-specific factors are
529	unlikely. For example, while the current task included an extra feature to be remembered in
530	high load (low load: upright or inverted red cross; high load: upright purple or inverted blue
531	cross), and thus perhaps increased visual short term memory (VSTM) load, other feature-
532	versus-conjunction load manipulations that equated the number of features have found
533	consistent results (Wojciulik and Kanwisher, 1999; Stolte et al., 2014). Moreover, VSTM load
534	is known to affect unattended processing in the same way as perceptual load, unlike other
535	types of WM load that tap more into cognitive control ((Lavie et al., 2004; Konstantinou et
536	al., 2012,2014; Konstantinou and Lavie, 2013), and since VSTM has been shown to recruit
537	sensory cortices (e.g. Pasternak and Greenlee, 2005), the explanation of our results based
538	on a metabolic resource trade-off in visual cortex still applies.
539	Finally, our metabolism trade-off account opens up many novel questions for future
540	research regarding the nature of capacity limits – for instance regarding the spatial scale of
541	the trade-off and whether it extends to multimodal processes. Furthermore, while we

542 demonstrated that attention can lead to the flexible redistribution of metabolism based on

543 task demand, this may also occur in spatial cueing or feature-based attention paradigms.

Future research should investigate whether such manipulations of attentional engagementlead to similar metabolism trade-offs.

546 Conclusion

The concept of a mental processing resource with limited capacity has dominated attention
research for decades (Navon and Gopher, 1979; Wickens et al., 1984; Lavie et al., 2014;

549	Molloy et al., 2019), however, its relationship to the biochemical resources mediating neural
550	activity remained unclear. Here, we provide evidence for our proposal that this frequently-
551	theorized, capacity-limited, mental resource corresponds to limited cellular metabolic
552	energy across the brain. Our findings demonstrate that the level of perceptual load in the
553	task modulates the impact of attention on cellular metabolism levels in visual cortex regions
554	related to stimulus perception. Increased perceptual load leads to increased levels of
555	metabolism underlying attended processing, at the expense of unattended processing, thus
556	explaining phenomena of inattentional blindness. Moreover, this resource trade-off
557	supports the notion that the overall cerebral metabolic energy supply remains constant
558	irrespective of mental task demand, by demonstrating how localised increases in processing
559	demand, and the associated demand for metabolic energy, are balanced out by localised
560	decreases in metabolism elsewhere, to maintain a constant level overall.
561	
562	
563	
564	
565	
566	

570 References

- 571 Arifler D, Zhu T, Madaan S, Tachtsidis I (2015) Optimal wavelength combinations for near-
- 572 infrared spectroscopic monitoring of changes in brain tissue hemoglobin and
- 573 cytochrome c oxidase concentrations. Biomed Opt Express 6:933.
- 574 Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and
- 575 neuronal control of brain blood flow. Nature 468:232–243.
- Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends
 Neurosci 25:621–625.
- 578 Attwell D, Laughlin SB (2001) An Energy Budget for Signaling in the Grey Matter of the Brain.
- 579 J Cereb Blood Flow Metab 21:1133–1145.
- Bahrami B, Lavie N, Rees G (2007) Attentional Load Modulates Responses of Human Primary
 Visual Cortex to Invisible Stimuli. Curr Biol 17:509–513.
- 582 Bainbridge A, Tachtsidis I, Faulkner SD, Price D, Zhu T, Baer E, Broad KD, Thomas DL, Cady
- 583 EB, Robertson NJ, Golay X (2014) Brain mitochondrial oxidative metabolism during and
- 584 after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-
- resonance and broadband near-infrared spectroscopy. Neuroimage 102:173–183.
- 586 Bale G, Elwell CE, Tachtsidis I (2016) From Jöbsis to the present day: a review of clinical near-
- infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J Biomed Opt21:091307.
- Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and
 Powerful Approach to Multiple Testing. J R Stat Soc Ser B 57:289–300.

591	Buxton RB, Frank LR (1997) A Model for the Coupling between Cerebral Blood Flow and
592	Oxygen Metabolism during Neural Stimulation. J Cereb Blood Flow Metab 17:64–72.
593	Campbell JID, Thompson VA (2012) MorePower 6.0 for ANOVA with relational confidence
594	intervals and Bayesian analysis. Behav Res Methods 44:1255–1265.
595	Carmel D, Saker P, Rees G, Lavie N (2007) Perceptual load modulates conscious flicker
596	perception. J Vis 7:14.
597	Carmel D, Thorne JD, Rees G, Lavie N (2011) Perceptual load alters visual excitability. J Exp
598	Psychol Hum Percept Perform 37:1350–1360.
599	Carrasco M (2011) Visual attention: The past 25 years. Vision Res 51:1484–1525.
600	Cartwright-Finch U, Lavie N (2007) The role of perceptual load in inattentional blindness.
601	Cognition 102:321–340.
602	Clarke D, Sokoloff L (1999) Circulation and Energy Metabolism of the Brain. In: Basic
603	Neurochemistry: Molecular, Cellular and Medical Aspects., 6th ed. (Siegel G, Agranoff
604	B, Albers R, Fisher S, Uhler M, eds), pp 637–669. Philadelphia: Lippincott-Raven.
605	Dehaene S, Kerszberg M, Changeux J-P (1998) A neuronal model of a global workspace in
606	effortful cognitive tasks. Proc Natl Acad Sci 95:14529–14534.
607	Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and
608	oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl

- 609 Acad Sci U S A 83:1140–1144.
- Handy TC, Mangun GR (2000) Attention and spatial selection: Electrophysiological evidence
 for modulation by perceptual load. Percept Psychophys 62:175–186.

612	Handy TC, Soltani M, Mangun GR (2001) Perceptual load and visuocortical processing:
613	event-related potentials reveal sensory-level selection. Psychol Sci 12:213–218.
614	Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello
615	KA, Bainbridge A, Robertson NJ, Tachtsidis I (2019) Quantification of the severity of
616	hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of
617	cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system.
618	Neurophotonics 6:1.
619	Konstantinou N, Bahrami B, Rees G, Lavie N (2012) Visual Short-term Memory Load Reduces
620	Retinotopic Cortex Response to Contrast. J Cogn Neurosci 24:2199–2210.
621	Konstantinou N, Beal E, King J-R, Lavie N (2014) Working memory load and distraction:
622	dissociable effects of visual maintenance and cognitive control. Attention, Perception,
623	Psychophys 76:1985–1997.
624	Konstantinou N, Lavie N (2013) Dissociable roles of different types of working memory load
625	in visual detection. J Exp Psychol Hum Percept Perform 39:919–924.
626	Lauritzen M, Mathiesen C, Schaefer K, Thomsen KJ (2012) Neuronal inhibition and
627	excitation, and the dichotomic control of brain hemodynamic and oxygen responses.
628	Neuroimage 62:1040–1050.
629	Lavie N (2005) Distracted and confused?: selective attention under load. Trends Cogn Sci
630	9:75–82.

Lavie N, Beck DM, Konstantinou N (2014) Blinded by the load: attention, awareness and the
role of perceptual load. Philos Trans R Soc B Biol Sci 369:20130205.

633 Lavie N, Hirst A, de Fockert JW, Viding E (2004) Load theory of selective attention and

- 634 cognitive control. J Exp Psychol Gen 133:339–354.
- 635 Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497.
- 636 Lin A-L, Fox PT, Hardies J, Duong TQ, Gao J-H (2010) Nonlinear coupling between cerebral
- blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl
 Acad Sci U S A 107:8446–8451.
- 639 Lindquist MA, Meng Loh J, Atlas LY, Wager TD (2009) Modeling the hemodynamic response
- 640 function in fMRI: Efficiency, bias and mis-modeling. Neuroimage 45:S187–S198.
- Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878.
- Macdonald JSP, Lavie N (2008) Load induced blindness. J Exp Psychol Hum Percept Perform
 34:1078–1091.
- 645 Molloy K, Griffiths TD, Chait M, Lavie N (2015) Inattentional Deafness: Visual Load Leads to
- 646 Time-Specific Suppression of Auditory Evoked Responses. J Neurosci 35:16046–16054.
- Molloy K, Lavie N, Chait M (2019) Auditory figure-ground segregation is impaired by high
 visual load. J Neurosci 39:1699–1708.
- Murphy G, Greene CM (2016) Perceptual Load Induces Inattentional Blindness in Drivers.
 Appl Cogn Psychol 30:479–483.
- 651 Nagamatsu LS, Voss M, Neider MB, Gaspar JG, Handy TC, Kramer AF, Liu-Ambrose TYL
- 652 (2011) Increased cognitive load leads to impaired mobility decisions in seniors at risk
 653 for falls. Psychol Aging 26:253–259.

<u>JNeurosci Accepted Manuscript</u>

664

- 654 Navon D, Gopher D (1979) On the economy of the human-processing system. Psychol Rev 655 86:214-255.
- 656 Ohta H, Yamada T, Watanabe H, Kanai C, Tanaka E, Ohno T, Takayama Y, Iwanami A, Kato N, 657 Hashimoto R (2012) An fMRI study of reduced perceptual load-dependent modulation
- 658 of task-irrelevant activity in adults with autism spectrum conditions. Neuroimage 659 61:1176-1187.
- 660 Parks NA, Beck DM, Kramer AF (2013) Enhancement and suppression in the visual field 661 under perceptual load. Front Psychol 4:275.
- 662 Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6:97-107. 663
- Peeters-Scholte C, van den Tweel E, Groenendaal F, van Bel F (2004) Redox state of near infrared spectroscopy-measured cytochrome aa3 correlates with delayed cerebral 665 energy failure following perinatal hypoxia-ischaemia in the newborn pig. Exp Brain Res 666 667 156:20-26.
- 668 Phan P, Highton D, Lai J, Smith M, Elwell C, Tachtsidis I (2016) Multi-channel multi-distance
- 669 broadband near-infrared spectroscopy system to measure the spatial response of
- 670 cellular oxygen metabolism and tissue oxygenation. Biomed Opt Express 7:4424.
- Pinsk MA, Doniger GM, Kastner S (2004) Push-pull mechanism of selective attention in 671 672 human extrastriate cortex. J Neurophysiol 92:622-629.
- 673 Raichle ME, Gusnard DA (2002) Appraising the brain's energy budget. Proc Natl Acad Sci 674 99:10237-10239.

- 677 Rees G (1999) Inattentional Blindness Versus Inattentional Amnesia for Fixated But Ignored
 678 Words. Science (80-) 286:2504–2507.
- 679 Rees G, Frith CD, Lavie N (1997) Modulating irrelevant motion perception by varying
- 680 attentional load in an unrelated task. Science 278:1616–1619.
- Schwartz S, Vuilleumier P, Hutton C, Maravita A, Dolan RJ, Driver J (2005) Attentional load
 and sensory competition in human vision: modulation of fMRI responses by load at
 fixation during task-irrelevant stimulation in the peripheral visual field. Cereb cortex
 15:770–786.
- 685 Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979)
- 686 Metabolic mapping of functional activity in the hypothalamo- neurohypophysial system
 687 of the rat. Science (80-).
- 688 Siddiqui MF, Lloyd-Fox S, Kaynezhad P, Tachtsidis I, Johnson MH, Elwell CE (2018) Changes in
- 689 Cytochrome-C-Oxidase Account for Changes in Attenuation of Near-Infrared Light in
- 690 the Healthy Infant Brain. In: Advances in Experimental Medicine and Biology, pp 7–12.
- 691 Silvanto J, Muggleton N, Lavie N, Walsh V (2009) The Perceptual and Functional
- 692 Consequences of Parietal Top-Down Modulation on the Visual Cortex. Cereb Cortex
 693 19:327–330.
- 694 Simons DJ, Chabris CF (1999) Gorillas in our midst: sustained inattentional blindness for
 695 dynamic events. Perception 28:1059–1074.

696	Sokoloff L, Mangold R, Wechsler RL, Kennedey C, Kety SS (1955) The effect of mental
697	arithmetic on cerebral circulation and metabolism. J Clin Invest 34:1101–1108.
698	Stolte M, Bahrami B, Lavie N (2014) High perceptual load leads to both reduced gain and
699	broader orientation tuning. J Vis 14:9–9.
700	Tisdall MM, Tachtsidis I, Leung TS, Elwell CE, Smith M (2008) Increase in cerebral aerobic
701	metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg
702	109:424–432.
703	Torralbo A, Kelley TA, Rees G, Lavie N (2016) Attention induced neural response trade-off in
704	retinotopic cortex under load. Sci Rep 6:33041.
705	Wei P, Szameitat AJ, Müller HJ, Schubert T, Zhou X (2013) The neural correlates of
706	perceptual load induced attentional selection: An fMRI study. Neuroscience 250:372–
707	380.
708	Whiteley L, Sahani M (2012) Attention in a Bayesian Framework. Front Hum Neurosci 6:100.
709	Wickens CD, Vidulich M, Sandry-Garza D (1984) Principles of S-C-R Compatibility with Spatial
710	and Verbal Tasks: The Role of Display-Control Location and Voice-Interactive Display-
711	Control Interfacing. Hum Factors J Hum Factors Ergon Soc 26:533–543.
712	Wojciulik E, Kanwisher N (1999) The Generality of Parietal Involvement in Visual Attention.
713	Neuron 23:747–764.
714	Ye JC, Tak S, Jang KE, Jung J, Jang J (2009) NIRS-SPM: Statistical parametric mapping for
715	near-infrared spectroscopy. Neuroimage 44:428–447.

716 Yi D-J, Woodman GF, Widders D, Marois R, Chun MM (2004) Neural fate of ignored stimuli:

/1/	dissociable effects of perceptual and working memory load. Nat Neurosci 7:992–996.
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	

735 Tables

736 Table 1: Average Channel Positions and Brodmann Area Allocations in Experiment 1

Channel	MNI Coordinate			Brodmann	Probability
	X	Y	Z	Areas	
1	-54.73	-76.19	12.31		
				19	0.63
				37	0.21
				39	0.15
2	-43.38	-89.02	16.77		
				18	0.12
				19	0.88
3	-51.31	-80.27	-6.40		
				19	0.90
				37	0.10

4	-42.29	-92.29	-2.92		
				18	0.56
				19	0.44
5	-28.88	-97.85	18.40		
				17	0.28
				18	0.51
				19	0.21
6	-12.98	- 103.90	19.06		
				17	0.83
				18	0.17
7	-28.25	- 102.60	-0.15		
				17	0.62
				18	0.38

				-	
8	-13.98	-	1.63		
		107 77			
		107.77			
				17	1.00
9	7.17	-	17.15		
		100.92			
				17	0.74
				1/	0.74
				18	0.26
10	24.00	-	15.94		
		101.54			
				17	0.76
				18	0.24
11	6.40	-	1.50		
		102.69			
				17	1.00

12	22.79	-	-1.96		
		104.94			
				17	0.86
				18	0.14
13	39.23	-92.13	13.04		
				17	0.05
				18	0.49
				19	0.46
14	52.94	-79.10	9.52		
				19	0.79
				37	0.15
				39	0.06
15	37.50	-95.50	-6.00		

				18	0.93
				19	0.07
16	48.52	-83.44	-10.63		
				18	0.03
				19	0.97

Table 1. Overview of group-averaged MNI coordinates and assignment to Brodmann Areas in Experiment 1.

738 Table 2: Average Channel Positions and Brodmann Area Allocations in Experiment 2

Channel	MNI Coo	ordinates		Brodmann	Probability
	Х	Y	Z	Area	
1	-56.94	-70.48	22.33		
				19	0.10
				37	0.08
				39	0.82
2	-45.39	-84.09	25.93		
				19	0.74

r		r	1	1	1
				39	0.26
3	-54.56	-76.91	0.13		
				19	0.66
				37	0.34
4	-44.83	-89.89	3.28		
				18	0.39
				19	0.61
5	-30.20	-93.74	26.07		
				18	0.50
				19	0.50
6	-14.20	-99.93	25.78		
				17	0.35
				18	0.65

7	-30.57	-	3.91		
		100.80			
				17	0.50
				18	0.50
8	-14.76	-	4.43		
		107.39			
				17	1.00
9	7.52	-97.67	24.81		
				17	0.21
				18	0.75
				19	0.03
10	24.81	-95.87	26.31		
				17	0.08
				18	0.89

				19	0.03
11	7.00	-	4.57		
		103.59			
				17	1.00
12	24.67	-	4.98		
		103.98			
				17	0.93
				18	0.07
13	40.96	-86.83	25.76		
				18	0.01
				19	0.95
				39	0.04
14	53.89	-74.43	23.89		
				19	0.13

				37	0.02
				39	0.85
15	39.94	-93.46	3.63		
				17	0.03
				18	0.79
				19	0.18
16	52.24	-80.74	1.83		
				19	0.92
				37	0.08

739 Table 2. Overview of group-averaged MNI coordinates and assignment to Brodmann Areas in Experiment 2.

740 **Table 3**: Behavioural Results from Experiment 1

	Low Load	High Load
Reaction Time	491 ms (48)	619 ms (40)
Hit Rate	99.02% (1.76)	95.90% (4.27)
False Alarm Rate	0.03% (0.48)	4.95% (5.00)

741

Table 3. Task performance means (SD in brackets) in Experiment 1.

Table 4: Behavioural Results from Experiment 2

	Low Load	High Load	
Reaction Time	510 ms (56)	599 ms (67)	
Hit Rate	98.79% (1.61)	95.92% (4.48)	
False Alarm Rate	1.16% (1.07)	6.17% (10.11)	
Table 4. Task performance mea	ns (SD in brackets) in Experiment 2.		

756 Figure Captions

757	Figure 1. Experimental Design. A: Experimental task in Experiment 1: Participants saw a
758	stream of coloured crosses and had to respond to feature targets in low load (any red cross)
759	or conjunction targets in high load (upright purple or inverted blue crosses). A flickering,
760	radial checkerboard was present on half of the RSVP streams. B: Experimental task in
761	Experiment 2: The size of the crosses was increased and a white pattern was added to
762	increase the strength of the response in visual cortex. Images are not to scale.
763	Figure 2. oxCCO concentration changes in Experiment 1. A: Mean (± SEM) oxCCO signal per
764	condition (high/low load x checkerboard present/absent) across the task period (25 s) for all
765	investigated regions. B: Difference scores (distractor present minus absent conditions) of
766	the mean oxCCO signals (± SEM) by load, illustrating the nature of interactions in Panel A. C:
767	Time series of the group averaged oxCCO signal related to the presence (minus absence) of
768	the unattended stimulus. Grey, shaded areas represent the task period (25 s, followed by a
769	25 s rest period), coloured areas along the graphs represent the SEM. Asterisks indicate
770	statistical significance (p < .05). Int = Interaction.

Figure 3. oxCCO concentration changes in Experiment 2. A: Mean (± SEM) oxCCO signal per condition (high/low load x checkerboard present/absent) during the task period (25 s) across all investigated regions. B: Difference score of the mean oxCCO signals (± SEM) in the distractor present minus absent conditions plotted as a function of load, illustrating the nature of interactions in Panel A. C, D: Time series of the group averaged oxCCO signal related to the attended (C, distractor absent conditions only) and unattended (D, difference score of present minus absent trials) stimuli. Grey, shaded areas represent the task period

779 Asterisks indicate statistical significance (p < .05). Int = Interaction.

780 Figure 4. Time course of the load effects on oxCCO signal associated with attended and 781 unattended stimulus processing. A: Time series of the load effects (high - low) on the oxCCO 782 signal underlying attended and unattended processing are shown for each iteration of the 783 data splitting procedure. Bold lines with matching linetypes indicate 3 specific iteration 784 instances of time series pairs for which the r value was closest to the mean r value across all 785 conditions, shown for illustrative purposes. B: Cumulative mean r values across 1000 786 iterations of the random sample splitting procedure which represents the correlation 787 between the load effects on attended and unattended processing. Grey, shaded error bars 788 represent 95% confidence intervals. The mean r value can be seen to stabilise on the 789 resultant mean after ~200 iterations in all areas. Moreover, the narrow 95% confidence 790 intervals (already found at ~500 iterations) indicate that the resultant mean is a reliable 791 representation of the correlation between the two time series.

792

793

794

795

JNeurosci Accepted Manuscript

JNeurosci Accepted Manuscript

A: Mean oxCCO Signal during Task Period B: Difference Scores (P-A) L+P ^{*}int. low L+A high Mean oxCCO Response (µM) H+P H+A 0.00 L-BA19 L-BA18 BA17 R-BA18 R-BA19 L-BA19 L-BA18 BA17 R-BA18R-BA19 **Cortical Region Cortical Region** C: Attended Stimululus (Absent) left BA19 left BA18 BA17 right BA18 right BA19 high 0.02 oxCCO Response (µM) low 0.01 0.00 -0.01 -0.02 D: Unattended Stimululus (Present-Absent) left BA19 left BA18 BA17 right BA18 right BA19 0.02 oxCCO Response (µM) 0.01 0.00 -0.01 high -0.02 low 10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 Ō Ō 10 20 30 40 50 0 Time (s)

