
 1 

Title: Fluid Biomarkers for Chronic Traumatic Encephalopathy 

 

Author list: 

Pashtun Shahim, MD, PhD 
 
Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the 
Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.  
 
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 
 
National Institutes of Health (NIH), Bethesda, MD, USA 
 
Center for Neuroscience and Regenerative Medicine (CNRM), Bethesda, MD, USA 
 
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 
 

Jessica M. Gill  

National Institutes of Health (NIH), Bethesda, MD, USA 

 

Kaj Blennow, MD, PhD 
Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the 
Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.  
 
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 
 

Henrik Zetterberg, MD, PhD 
Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the 
Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.  
 
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 
 
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, 
London, UK 
 
UK Dementia Research Institute at UCL, London, UK 
 

Correspondence: henrik.zetterberg@clinchem.gu.se



 2 

Abstract (<150 words) 

Chronic traumatic encephalopathy (CTE) is a neuropathological condition that has been 

described in individuals who have been exposed to repetitive head impacts, including 

concussions and subconcussive trauma. Currently, there are no fluid or imaging biomarker for 

diagnosing CTE during life. Based on retrospective clinical data, symptoms of CTE include 

changes in behavior, cognition, and mood, and may develop after a latency phase following 

the injuries. However, these symptoms are often nonspecific, making differential diagnosis 

based solely on clinical symptoms unreliable. Thus, objective biomarkers for CTE 

pathophysiology would be helpful in understanding of the course of the disease as well as 

development of preventive and therapeutic measures. Herein, we review the literature 

regarding fluid biomarkers for repetitive concussive and subconcussive head trauma, 

postconcussive syndrome, as well as potential candidate biomarkers for CTE. We also discuss 

technical challenges with regard to the current fluid biomarkers and potential pathways to 

advance the most promising biomarker candidates into clinical routine.  
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Introduction 

 Chronic traumatic encephalopathy (CTE) is a neuropathological condition marked 

by neuronal and astroglial hyperphosphorylated tau pathology in perivascular foci in the 

cortical sulci together with axonal damage, clusters of activated microglia and astrocytes, as 

well as amyloid plaques and TDP-43 inclusions in a proportion of cases 1. To date, CTE has 

been described in individuals exposed to repetitive head trauma, including those resulting in 

concussion and subconcussive injury 2. Currently, CTE cannot be diagnosed during life, since 

there are no established biomarkers. Based on the medical records of the deceased and 

collateral sources, clinical symptoms of CTE include changes in behavior, cognition, and 

mood. However, these, symptoms are non-specific and may develop after a latency phase 

following the injuries 3. In life, individuals who experience persistent post-concussive 

symptoms for more than three months may be clinically diagnosed with post-concussive 

syndrome (PCS), a vaguely defined condition that is observed in about 15 % of concussed 

patients (Kerr et al., 2018). In young athletes with PCS, the symptoms due to CTE may begin 

while the athlete is still being exposed to repetitive head impacts and may have had PCS 

symptoms that appeared to never resolve. In contrast, older patients or retired athletes whose 

initial symptoms of CTE include memory and executive dysfunction may be clinically 

diagnosed with Alzheimer’s disease (AD) or other dementia. In other words, making a 

diagnosis of the underlying cause of neuropsychiatric symptoms in living humans who have 

had repetitive head trauma is very challenging.  

 

 Considering the neuropathology of CTE and the current limitation of the clinical 

diagnosis of CTE in living humans, the addition of objective biomarkers of underlying 

pathophysiology could lead to an in vivo diagnosis of CTE. Existing research indicates that 

CTE is associated with a history of repetitive head trauma, therefore it is important that 
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biomarkers for CTE including fluid and neuroimaging biomarkers are able to differentiate 

between residual effects of acute brain injury or repetitive injury, subacute or chronic 

sequelae associated with such injuries, the specific pathophysiology of CTE from other 

neurodegenerative disorders, and other processes involved in brain injury and disease, such as 

neuroinflammation. Herein, we provide brief summaries of the pathophysiology of 

concussion, the association between concussion and PCS, and the pathophysiology of CTE, 

with the main focus on the fluid biomarkers. 

 

Pathophysiology of Concussion  

 In the sports literature, mild traumatic brain injury (mTBI) is traditionally referred to 

as concussion or sports-related concussion. Sports-related concussion is defined as a clinical 

syndrome of biomechanically induced alteration of brain function, typically affecting memory 

and orientation, which may involve loss of consciousness. Sports-related concussion causes 

no gross pathology or brain abnormality visible on conventional CT or MRI scans of the brain 

4. However, a CT scan is recommended if an athlete with concussion has had loss of 

consciousness, posttraumatic amnesia, persistently altered mental status, evidence of skull 

fracture, vomiting, or signs of deterioration.  

 

 The neurobiological changes following concussion are complex and not fully 

understood. Some layers of complexity arise from unique anatomical features such as the 

elongated shape of a neuron, the skull that both protects the brain and constitutes a harmful 

closed compartment in the case of intracranial volume expansion, the cerebrospinal fluid 

(CSF) and blood-brain barrier (BBB). The BBB is highly selective and plays an important 

role in allowing proteins or biomarkers entering the blood stream 5. Immediately after a closed 

head injury with acceleration and deceleration forces to the brain, there are stretching and 
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disruption of neuronal and axonal cell membranes, setting into motion a neurometabolic 

cascade that may not only lead to neuroaxonal death or injury but also neuroinflammation 

with microglial activation in response to the injury 6. Despite numerous experimental and 

clinical studies attempting to underpin the pathophysiology of concussion, it remains a 

clinical diagnosis based on subjective symptoms, with a tremendous need for objective 

biomarkers.  

 

The Association of Concussion with PCS 

 Although symptoms following a concussive injury often resolve spontaneously 

within days to a few weeks, approximately 40-80% of concussion patients suffer neurological 

dysfunction that continues for more than 3 months after the initial injury 7-9. In about 10-15% 

of cases, the symptoms may persist for more than one year 8,10. In boxers with mTBI, 

neuropsychological assessments reveal cognitive impairment beyond the subjectively 

symptomatic time 11. These subtle subjective and objective neuropsychological deficits 

following mild head injury are sometimes referred to as subconcussion 12. The exact 

mechanism of how subconcussion causes PCS and the relationship to CTE is yet to be 

established 13. As with the acute concussive injury, there are no objective tests to support the 

diagnosis of PCS. The diagnosis is associated with a wide range of non-specific symptoms, 

including emotional/behavioral (e.g., irritability), cognitive (e.g., difficulty concentrating), 

and physical (e.g., headache). The risk of developing PCS may be influenced by injury 

mechanisms, as well as psychological and socioeconomic factors, but it remains unknown 

why PCS occurs, persists, or resolves.  

 

Pathophysiology of CTE 
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 In long-term, repetitive head trauma may cause CTE, a neuropathological diagnosis 

first described in boxers 14. Recently, CTE pathology has been observed in other 

contact/collision sport athletes, in particular American football players, ice hockey players 15, 

and in military veterans exposed to blast 16. Clinically, based on retrospective data, the 

condition is characterized by chronic and sometimes progressive neuropsychiatric symptoms 

16. The neuropathological hallmarks of CTE include accumulation of abnormal or 

hyperphosphorylated tau in neurons and astroglial scaring around small blood vessels at the 

depths of cortical sulci with an irregular distribution pattern (McKee et al, 2015). Additional 

supportive neuropathological features include (i) multifocal axonal varicosities and axonal 

loss involving deep cortex and subcortical white matter, (ii) astrocyte scarring with dense 

astrogliosis, (iii) amyloid b deposits (Ab) in the form of either diffuse or neuritic plaques, 

seen in about one third of the post-mortem cases, and (iv) TDP-43 immunoreactive inclusions 

and neuritis 17-20. The latter changes are seen in approximately half of CTE cases, especially in 

later stages 20,21. The exact mechanism of how the neuropathological changes seen in CTE 

occur or triggered is not known. It is believed that injury to the axons following head trauma 

may lead to hyperphosphorylation of tau, subsequently leading to tau deposition that may 

propagate 22,23.  

 

Fluid Biomarkers 

 A fluid biomarker is a molecule, a biologic activity or concentration that can be 

measured in accessible biological fluids, where the measure reflects physiological or 

pathological processes occurring in the organism. In the context of brain trauma, fluid 

biomarkers could help to define: (i) presence of brain injury in an individual who denies 

symptoms or accentuates symptoms; (ii) identifying different types of injury, e.g., axonal 

injury and microvascular damage; (iii) monitoring recovery; (iv) monitoring disease 
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progression; and (v) monitoring treatment response, e.g., drug effects on CTE 

pathophysiology or to predict clinical response as a surrogate biomarker in clinical trials.  

 

Cerebrospinal fluid 

 Cerebrospinal fluid (CSF) is a clear fluid in the cerebral ventricles and subarachnoid 

space surrounding the brain and the spinal cord. It is produced by the ependymal cells in the 

choroid plexus of the ventricles, and absorbed in the arachnoid villi. Total CSF volume is 

around 150 mL, and the production and clearance rate are around 20 mL per hour. The fluid 

provides; (i) mechanical support, (ii) carries nutrients and signaling molecules to neurons, and 

(iv) helps disposing metabolites that are further cleared into the blood via arachnoid villi in 

the intracranial dural sinuses and at the cranial and spinal nerve root sheaths 24, as well as 

through meningeal lymphatic vessels 25. Recently, the discovery of the glymphatic system has 

provided additional insight into how subarachnoid CSF may enter and exit the brain along 

perivascular spaces and clear the brain parenchyma from extracellular metabolites and other 

breakdown products 26.  

 

 CSF is often obtained through lumbar puncture (LP), which is a standard procedure 

in clinical medicine 27. There are several advantages to using CSF as a fluid source for 

measurement of central nervous system (CNS) injury biomarkers: (i) CSF freely 

communicates with the brain interstitial fluid that bathes the neurons. Thus, biochemical 

changes in the brain are reflected in the CSF, which may be regarded as an accessible, 

although not perfect, sample of the brain interstitial fluid; (ii) CSF has low protease activity 

and most molecules do not change upon sampling, provided the sample is not contaminated 

by blood; and (iii) although CSF allows sampling from the brain side of the BBB, only 20-30 

% of the CSF volume is derived from the brain; 70-80% is an ultra-filtrate of plasma 24.  
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 LP is considered a safe procedure with only potential significant side-effect being 

post-lumbar headache, which affects 2-20 % of the patients in an inversely age-dependent 

fashion (lower frequency in elderly populations). Recent studies indicate that the risk of post-

lumbar headache can be minimized by the use of newer atraumatic needles 28. Additional 

disadvantages of CSF as a source for biomarker analyses is the invasive nature of LP for 

accessing CSF, requiring training and skills by the physician to perform.  

 

Blood 

 Blood (serum or plasma) is a major source for biomarker analyses of brain trauma 

and disease. Blood communicates with the brain and CSF compartments through the 

glymphatic system 26. Although blood is easily accessible relative to CSF, there are several 

biological and technical challenges with the measurement of CNS-derived biomarkers in 

blood. A biologic issue is the BBB, which is selective and the CNS-derive protein has to pass 

through in order to be detected in the peripheral blood. Additionally, if the biomarker is not 

CNS-specific but also expressed in peripheral tissues that may be injured in trauma, the 

contribution from CNS will be obscured, or potentially lost, due to the background caused by 

non-CNS sources. From analytic perspective, the presence of other proteins in blood (e.g., 

albumin and immunoglobulins) impose a challenge due to possible interference 29. Further, 

heterophilic antibodies may be present in blood, which may interfere in immunoassays 30. 

Last, proteins in blood may be subjected to rapid degradation by proteases in the blood or the 

liver, or to clearance in the kidneys.  

 

Measurement Techniques 

Standard ELISA 
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 The majority of biomarker assays for brain injury are immunochemical, i.e., utilize 

antibodies to quantify a substance in a sample. The most common assay format is the 

sandwich enzyme-linked immunosorbent assay (ELISA), in which the target analyte is 

captured between two antibodies in a complex and one antibody carries a signal generator, 

i.e., an enzyme that converts a substrate into a detectable form (colored, fluorescent, or 

luminescent). This, in combination with a calibrator curve (derived from artificial samples 

with known analyte concentrations) allows quantification of the analyte of interest.  

 

 Immunochemical assays may also be multiplexed in different ELISA-like formats to 

allow the simultaneous measurement of markers reflecting different pathobiological aspects 

of TBI in the same sample 31. However, in multiplexing, it may be hard to optimize analytical 

conditions for several antigen-antibody interactions compared to optimizing an assay for a 

single analyte. If the antibodies cross-react with other substances, a signal can be measured 

even without the target analyte. Since blood is much denser in protein content than is CSF, the 

risk for this issue is higher in the former, where even minor (e.g., 0.1%) cross-reactivity 

against proteins present at 1 million times higher concentrations will have a large impact on 

the measured concentration. However, with stable antibodies, multiplexing could be an 

efficient measuring technic for measuring pathophysiological changes following TBI.  

 

Ultrasensitive techniques 

 Latest ultrasensitive assays may provide a solution to the problem with background 

in the context of low target analytes. Single molecule array (Simoa) technology uses the same 

reagents as conventional ELISA, but is a bead-based technique that can quantify at 

femtomolar concentrations, offering the potential of a 100- to 1000-fold improvement in 

sensitivity 32. The high sensitivity is achieved by making use of arrays of femtoliter-sized 
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reaction chambers that can isolate and detect single enzyme-labeled molecules. Because the 

array volumes are approximately 2 billion times smaller than conventional ELISA, a rapid 

build-up of fluorescent product is generated if a labeled protein is present. With diffusion 

defeated, this local concentration of product can be readily observed. 

 

 In Single molecule counting (Singulex), the labelled detection antibodies, 

specifically captured by the target molecule/capture antibody complex, are released and 

counted individually in a small detection cell, which allows for a single molecule readout 33. 

In proximity extension assays, partly overlapping complementary DNA strands are attached 

to the different antibodies, allowing the strands to form a polymerase chain reaction-

amplifiable template if immobilized close to each other on the same molecule 34. These 

variations in signal generation/detection may result in assays that can be 10- to a 1000-fold as 

sensitive as the corresponding regular ELISA using the same antibody pair.  

 

 When using antibody-based assays on plasma or serum samples, it is essential to 

evaluate the assay for potential interference of human anti-mouse antibodies (HAMAs). These 

are heterophilic antibodies that can bind mouse (or other species) antibodies and bridge the 

capture and detection antibodies, thereby replacing the analyte and giving a falsely high signal 

30. The prevalence in humans of such antibodies may be around 5% 35. There are several 

commercially available blockers against HAMAs; most are simply based on the addition of an 

excess of polyclonal mouse IgG that would sequester any interfering antibodies. The risk of 

interference by HAMAs in CSF samples is negligible.  

 

Fluid biomarkers for mild TBI 
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 Axonal injury is thought to be the primary structural injury in TBI, followed by 

astrocytic and microglial activation. One of the best-established CSF biomarkers for axonal 

injury is tau, a microtubule-associated protein abundant in unmyelinated cortical axons 36,37. 

Phosphorylation of tau is a physiological phenomenon, however, hyperphosphorylation and 

aggregation of tau into neurofibrillary tangles is characteristic of a class of neurodegenerative 

diseases, referred to as tauopathies, which includes AD and CTE 38. In CSF, total tau (T-tau) 

can be measured with assays that do not discriminate between unphosphorylated and 

phosphorylated isoforms of tau, or between tau molecules translated from differently spliced 

mRNAs. Also, phosphorylated tau (P-tau) can be measured with sandwich immunoassays in 

which at least one of the antibodies is specific to a phosphorylated epitope of tau 39. In the 

context of TBI, increased concentrations of CSF T-tau is seen in patients with severe TBI, 

where higher concentrations correlate with one-year outcome 40,41. Higher concentrations of 

CSF T-tau have also been observed in Olympic boxers after a bout with weak correlations 

with the number of head impacts 42. Recently, standard ELISA for T-tau was transferred onto 

the Simoa platform, which allows for the ultrasensitive quantification of T-tau in both plasma 

and serum 43,44. Plasma T-tau concentrations measured by Simoa correlate poorly with CSF T-

tau 45,46. Despite the poor correlation of CSF with plasma T-tau, several studies have found 

increased concentrations of plasma T-tau in the context brain trauma or injury. In acute 

hypoxic brain injury, a biphasic release of plasma T-tau into the bloodstream has been 

observed, with a first peak occurring during the first few hours post-injury and a second broad 

peak occurring after a few more days. The increase in plasma T-tau was also predictive of 

outcome 43. In studies of concussed professional ice hockey players, plasma T-tau 

concentrations at 1 hour post-injury were increased compared with preseason concentrations, 

and predicted return-to-play (RTP) time with high accuracy 47,48. Similar results were also 

seen in concussed college athletes, where the increase in plasma T-tau 6 hours after injury 
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were associated with RTP time 49. In another study of 34 patients with varying degree of TBI, 

plasma T-tau concentrations in samples collected within 24 hours post-injury could 

differentiate mTBI from controls with an area under the curve 0.901 50. A number of novel tau 

fragments were recently characterized and measured in human CSF using specific 

immunoassays 51. These have not been examined in relation to concussion or CTE, which 

would be an important topic for future studies.  

 

 Neurofilament light (NfL) and neurofilament heavy (NfH) are additional axonal 

proteins, which could be measured in CSF. In contrast to tau, neurofilaments are 

predominantly expressed in large-caliber myelinated axons that extend subcortically 52. In the 

context of sports-related mTBI, increased CSF concentrations of both T-tau and NfL are seen 

in Olympic boxers after a bout, with higher magnitude of increase for CSF NfL compared to 

tau, suggesting that blows to the head impact long large-caliber axons that extend 

subcortically more than short, non-myelinated axons in the cortex 42,53. Similar results as NfL 

have also been observed for CSF NfH, measured in Olympic boxers after a bout 54. Recently, 

standard ELISA NfL was also transferred onto the Simoa platform for the ultrasensitive 

quantification of NfL in both plasma and serum 43,44,55,56. In contrast to tau, serum NfL 

concentrations measured by Simoa correlate strongly with CSF NfL 44,55,57 suggestive of 

plasma NfL reflecting CSF NfL. In the context of TBI, increased concentrations of NfL (up to 

100-fold) is seen in patients with moderate to severe TBI measured acutely, with higher 

concentrations also correlating with clinical outcome 56. Recently, Jill et al. assessed serum 

NfL in patients with TBI, and found increased concentrations of serum NfL in those with 

intracranial findings on CT/and or MRI versus those with normal brain imaging 58. Gatson et 

al. examined serum concentrations of NfH in mild TBI, days 1 and 3 post-injury 59. At both 

time points, serum NfH concentrations were increased compared with concentrations in 
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control individuals. Also, serum NfH concentrations were higher in CT-positive versus CT-

negative patients, and were inversely correlated with clinical severity scores 59. In the context 

of sports-related TBI, increased serum NfL concentrations have been observed over time in 

American football athletes during a season 60, which may reflect accumulated axonal damage 

due to repeated head impacts. Also, increased serum NfL concentrations were observed in 

Olympic boxers 7-10 days following a bout, where the concentrations correlated with the 

numbers of hits to the head 57. Recently, Shahim et al. compared the diagnostic and 

prognostic utility of serum NfL with T-tau in concussed professional hockey players, where 

NfL showed greater diagnostic and prognostic utility than T-tau 48. To date, these results 

indicate blood and CSF NfL being a sensitive biomarker of axonal injury. 

 

 The calpain-derived αII -spectrin N-terminal fragment (SNTF) are potential 

biomarkers for axonal injury, and have been described in rat and human studies 61,62. Several 

studies suggest that SNTF is normally absent in healthy neurons, but accumulates as a stable 

N-terminal 1176 residue fragment of non-erythroid spectrin a-subunit 63 in degenerating 

neurons after activation of calpain-induced proteases 64,65. SNTF has been measured in 

ventricular CSF from patients with severe TBI, where higher concentrations correlated with 

clinical measures of TBI severity and outcome 66-68. Also, increased concentration of plasma 

SNTF has been seen in mTBI patients, including cases with normal brain CT 69. In the context 

of sports-related TBI, serum SNTF increased from 1 hour up to 6 days post-concussion 

compared with preseason samples 70. The relationship between CSF and blood SNTF has not 

been established yet. Also, larger, and comparative studies of SNTF with other biomarkers of 

axonal injury are needed in order to establish the role of SNTF as a blood biomarker for 

axonal injury.  
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 S100B is an astrocyte-enriched Ca2+-binding protein, which has been examined 

extensively in relation to TBI in serum 71. We observed slightly elevated CSF concentrations 

of S100B in Olympic boxers after a bout, but the changes were not as pronounced as for the 

axonal markers (T-tau and NfL) 53. Similar results have also been observed for S100B when 

measure in concussed professional athletes, where serum S100B showed inferior diagnostic 

and prognostic utility compared with T-tau and NfL 48. In the latest clinical guidelines for the 

management of head injury 72, S100B was included as a biomarker that could reduce 

unnecessary CT scans of the brain. However, the marker per se does not appear to be 

sensitive enough to detect brain injury in concussion 73. Additionally, a major limitation of 

S100B is that is also expressed in extracerebral cell types 74-78, which makes it suboptimal as 

biomarker for sports-related brain injury. 

  

 Glial fibrillary acidic protein (GFAp) is an intermediate filament that is almost 

exclusively expressed in astrocytes 79. Clinically relevant changes in serum concentrations of 

S100B and GFAp detect radiographically apparent intracranial injury 58,72,80,81. However, a 

recent study found no difference in serum GFAp concentrations between CT-negative mTBI 

cases and patients with orthopedic trauma 82.  

 

 Regarding the timing of the sampling, tau, GFAp and S100B concentrations change 

in the blood within hours following injury, while NfL concentrations peak days to weeks 

following injury 83, and in moderate to severe cases remain elevated up to one-year after 

injury 56.  

 

 Fluid biomarkers for PCS 
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 The relationship between single or repetitive mTBI and development of PCS is 

poorly understood, specifically due to contribution of psychosocial symptoms. A recent study 

found a correlation between plasma tau concentrations and persistent post-concussive 

symptoms in military personnel with self-reported TBI 84, suggesting an association between 

tau or axonal injury and PCS. We recently performed a broad characterization of CSF 

biomarker abnormalities in 28 professional athletes with PCS and 19 matched controls, and 

found biomarker evidence of neuroaxonal injury (mainly increased NfL concentration), 

astroglial activation, and Aβ dysmetabolism in the brain 57,85,86. These findings, although 

promising, warrant further replication in larger sample sizes as well as repeated follow-up and 

sampling in order to disentangle the relationship between PCS and CTE.  

 

Fluid biomarkers for chronic traumatic encephalopathy 

 Currently, there are no established fluid or neuroimaging markers of CTE 87. Data on 

potential fluid biomarkers for CTE have only recently begun to emerge. In a recent study of 

96 symptomatic former National Football League (NFL) players (age 40–69) and 25 age-

matched controls, plasma T-tau, was positively associated with the estimate of cumulative 

repetitive head impacts, although no significant differences between the repetitive head 

trauma group and controls were observed 88.  In a study of 78 former NFL players and 16 

controls from the same cohort described above, Stern et al. reported preliminary findings of 

tau-positive exosomes in plasma 89. Within the NFL group, higher exosomal tau was 

associated with worse performance on tests of memory and psychomotor speed. Exosomes are 

nanovesicles released by most cells, including neurons, into the extracellular environment 

through exocytosis. The content of the cell of origin is directly reflected in the molecular 

cargo of the exosomes. Because they apparently cross the BBB and are stable, they have the 

potential to serve as biomarkers for a variety of CNS diseases, including AD 90. Recently, 
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higher exosomal tau has also been reported in military personnel with a history of mTBI and 

persistent post-concussive symptoms 91,92. Despite these few recent studies, additional 

refinement and validation of the techniques is needed to assure that the exosomes isolated in 

plasma are truly brain derived.  

 

 A recent report highlights microglial activation as a potential contributing factor in 

the development of tau pathology in CTE 93. Microglial activation can be monitored using 

CSF biomarkers such as sTREM2 94. In a recent study of 68 former NFL players and 21 

controls, Alosco et al. examined CSF concentrations of T-tau, p-tau, and Aβ1-42, and their 

association with cumulative repetitive head impacts in former NFL players 95. Alosco et al. 

found no group differences for any of the CSF analytes between the repetitive head trauma 

athletes and controls. Alosco et al., also observed higher sTREM2 levels being associated 

with higher T-tau concentrations, implying a relationship between microglial activation and 

neuronal injury in this potential CTE prodrome.  

 

Research biomarkers with potential for assessing CTE 

 The relationship between concussion, PCS and development of CTE is not known. 

Although, the development of CTE has been attributed to repeated head trauma, only a 

fraction of these individuals may develop CTE. Of the current fluid biomarker for brain 

injury, only biomarkers reflecting axonal injury and astrogliosis have shown promise for 

detecting concussion or showing association with PCS. These biomarkers may also be used 

for detection of CTE or as an aid in clinical diagnosis of CTE. Considering that CTE shares 

several neuropathological hallmarks with AD, including deposition of Aβ1-42 in diffuse and 

neuritic amyloid plaques 20 and  tau deposits 96, a set of well-established and validated CSF-

and or blood AD biomarkers may be worth investigating in living humans with CTE . Similar 
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to AD studies CSF biomarkers reflecting axonal injury (T-tau, p-tau, and NfL) and amyloid 

deposition (Aβ1-42) could be used in longitudinal studies of individuals with repetitive head 

trauma and suspected CTE.  

 

Conclusions and Future Directions 

 During recent year, there has been increased number of studies assessing biomarkers 

for pathogenic pathways that are potentially related to CTE. However, there are several 

challenges still facing the field of TBI that need to be addressed or resolved. First, there are no 

validated objective biomarkers for mTBI or concussion, and the diagnosis is still based on the 

clinical symptoms. Second, there are no biomarkers for detection of subconcussive trauma, 

including repetitive head impacts. Third, there are no objective measured to quantify exposure 

to repetitive head trauma. Long-term studies spanning over several year are needed to 

disentangle the precise relationship between repetitive head exposure and development of 

CTE. Also, the current biomarkers of axonal injury, astrogliosis and amyloid deposition are 

needed to be validated with brain neuropathology, which is only possible if these biomarkers 

are measured in an individual’s lifetime and later assessed against brain pathology.   
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Figure Legend: Personalized medicine approach to fluid biomarkers for chronic 

traumatic encephalopathy 

The figure shows the candidate fluid biomarkers reflecting key aspects of traumatic brain 

injury. 

Abbreviations: Aβ, amyloid β protein; CSF, cerebrospinal fluid; CTE, chronic traumatic 

encephalopathy; GFAP, glial fibrillary acidic protein; sTREM2, soluble triggering receptor 

expressed on myeloid cells 2; NFL, neurofilament light; NFT, neurofibrillary tangles; NSE, 

neuron-specific enolase; P-tau, phosphorylated tau; TDP-43, transactive response DNA-

binding protein 43; T-tau, total tau. 

 


