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Abstract 
Background: Patients with systemic lupus erythematosus (SLE) have an increased risk of 
developing cardiovascular disease (CVD) and 30-40% have sub-clinical atherosclerosis on 
vascular ultrasound scanning. Standard measurements of serum lipids in clinical practice do 
not predict CVD risk in patients with SLE. We hypothesise that more detailed analysis of 
lipoprotein taxonomy could identify better predictors of CVD risk in SLE. 
 
Methods: Eighty patients with SLE and no history of CVD underwent carotid and femoral 
ultrasound scans; 30 had atherosclerosis plaques (SLE-P) and 50 had no plaques (SLE-
NP).  Serum samples obtained at the time of the scan were analysed using a lipoprotein-
focused metabolomics platform assessing 228 metabolites by nuclear magnetic resonance 
spectroscopy. Data was analysed using logistic regression and five binary classification 
models with 10-fold cross validation; decision tree, random forest, support vector machine 
and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and 
without interactions.  
 
Results: Univariate logistic regression identified four metabolites associated with the 
presence of sub-clinical plaque; three subclasses of very low density lipoprotein (VLDL) 
(percentage of free cholesterol in medium and large VLDL particles and percentage of 
phospholipids in chylomicrons and extremely large VLDL particles) and Leucine.  Together 
with age, these metabolites were also within the top features identified by the lasso logistic 
regression (with and without interactions) and random forest machine learning models. 
Logistic regression with interactions differentiated between SLE-P and SLE-NP with greatest 
accuracy (0.800).  Notably, percentage of free cholesterol in large VLDL particles and age 
were identified by all models as being important to differentiate between SLE-P and SLE-NP 
patients. 
 
Conclusion: Serum metabolites are a promising biomarker for prediction of sub-clinical 
atherosclerosis development in SLE patients and could provide novel insight into 
mechanisms of early atherosclerosis development.  
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Introduction 

Systemic Lupus Erythematosus (SLE) is a multi-system autoimmune condition that 

predominantly affects women (women to men ratio of 9:1) with a prevalence of 

approximately 1 in 1000 in the UK [1].  Patients with SLE are at an increased risk of 

developing cardiovascular disease (CVD) compared to healthy people of the same age and 

gender [2].  In a large multinational study of 9547 patients with SLE, a quarter of deaths 

were attributed to CVD [3].There is a 5-10 fold increased risk of developing CVD in SLE 

patients compared to age and sex-matched controls reported in epidemiological data. 

Strikingly, the presence of SLE in women between the ages of 35-44 increases the risk of 

coronary artery disease (CAD) by 50 times [2].  

The precise mechanism of this increased CVD risk is yet to be fully elucidated. Whilst 

traditional risk factors such as high blood pressure, diabetes and high cholesterol contribute 

to the increased risk, they fail to account for it fully [4]. The risk is likely to be multifactorial, 

resulting from a complex interplay of SLE-driven immunological dysfunction and traditional 

CVD risk factors [4].  

Abnormalities in lipid profile are known to be a traditional risk factor for CVD and can also be 

affected by chronic inflammatory conditions such as SLE. Lipids are central to driving 

atherosclerosis, the main pathology underlying CVD. Various fractions of lipoproteins can be 

distinguished in blood on account of their size and density: High Density Lipoprotein (HDL), 

Low Density Lipoprotein (LDL) and Very Low Density Lipoprotein (VLDL). Dyslipidemias are 

present in over 70% of cases of premature coronary heart disease [5] and elevated plasma 

concentrations of LDL and VLDL can induce the development of atherosclerosis in the 

absence of other risk factors [6]. In contrast, HDL has anti-atherogenic properties that 

include macrophage cholesterol efflux, anti-oxidation and protection against thrombosis [7]. 

Conversely, McMahon and colleagues have demonstrated the existence of a subpopulation 

of pro-inflammatory HDL in patients with SLE and rheumatoid arthritis that promotes 

atherosclerosis and could be a biomarker for increased risk of developing CVD [8, 9]. 

Hypercholesterolaemia (defined as blood elevated total cholesterol (TC) and/or LDL-
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cholesterol (LDL-C) or non-HDL-cholesterol (HDL-C))  is found in 34-51% of patients with 

SLE [5] and is characterised by elevated levels of VLDL and triglycerides (TGs) and low HDL 

levels [10]. In addition, development of CVD in women with SLE has been found to be 

associated with smaller sub-fractions of LDL [11]. Studies in patients with traditional CVD 

have shown the ratio between serum apolipoprotein-B:apolipoprotein-A1 (ApoB:ApoA1), two 

lipid-associated proteins, is a more effective CVD predictor than routine cholesterol 

measurements, a higher ratio is associated with increased cardiovascular risk [12-16], the 

role of this ratio in the prediction of SLE cardiovascular disease is still being assessed. 

However overall, dyslidaemia detected in routine lipid screens available in clinical practice, 

fail to account fully for the increased risk of CVD in patients with SLE [10]. Many SLE 

patients with normal lipid profiles on standard assays also go on to have CVD. Therefore, 

more sensitive and specific lipid profiles need to be delineated in order to identify high CVD 

risk patients in SLE cohorts.  

Here we used a Nuclear Magnetic Resonance (NMR) Spectroscopy metabolomics platform 

[17] and machine learning (ML) analysis to assess the association of lipoprotein subclasses 

and lipid content and other serum metabolites with the presence of sub-clinical 

atherosclerotic plaque in patients with SLE. 
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Materials and Methods 

Patient cohort 

Serum samples were collected from 80 non-fasting patients with SLE attending a 

rheumatology clinic at University College London Hospital (UCLH) and fulfilling the American 

College of Rheumatology (ACR) classification criteria for lupus (1997)[18]. Patients had no 

previous history of CVD (defined as coronary artery disease, stroke, or myocardial infarction 

with confirmatory evidence from blood tests and/or imaging) and were scanned by vascular 

ultrasound between 2011-2013 [19].  

Carotid and femoral ultrasound scans were performed to identify the presence of plaques. 

Demographic and clinical information were recorded at the time of scan/blood sampling, 

including sex, age, ethnicity, mean blood pressure (BP, average between systolic and 

diastolic BP), treatment (including hydroxychloroquine (HCQ), statins, ACE inhibitor, 

immunosuppressives, rituximab, prednisolone (and dose), and aspirin), and disease activity 

assessed by the global British Isles Lupus Assessment Group (BILAG) index [20] (Table 1). 

In total, four patients were not on any treatment at the time of the scan.  All patients gave 

informed written consent and the study was approved by the combined UCL/UCLH 

Research Ethics Committee (Reference 06/Q0505/79). 

Plaque detection 

Scans were performed by an experienced vascular scientist using strict scanning protocols 

and established equipment settings (Griffin et al., 2009; Nicolaides et al., 2010). Vascular 

ultrasound scans of the common carotid artery, carotid bulb, carotid bifurcation, common 

femoral artery and femoral bifurcation were performed bilaterally using the Philips IU22 

ultrasound computer and the L9-3 MHz probe. IMT measurements were performed using 

QLAB Advanced Quantification Software® version 7.1 (Philips Ultrasound, Bothell, USA). 

Plaque was defined as “a focal thickening >1.2 mm that encroaches into the arterial lumen 

as measured from the media-adventitia interface to the lumen interface” [21]. Patients having 

at least one region fulfilling this description were included in the group with plaque (SLE-P).  
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Ultrasound images were stored as DICOM files and analysed using Carotid Plaque Texture 

Analysis software for ultrasonic arterial wall and atherosclerotic plaque measurements (LifeQ 

Medical Ltd – www.lifeqmedical.com). Total plaque area (TPA) was defined as the sum of 

the cross-sectional areas of all plaques seen in longitudinal images (plaque area in mm2).  

Grey Scale Median (GSM): Plaque echogenicity was expressed numerically by GSM value 

[22], a measure of plaque stability and lipid content. Lower GSM values signify more 

echolucent plaque associated with lipid and inflammatory cell content; whereas plaque with 

high GSM scores are more stable and less echolucent [23]. Images were normalized using 

linear scaling with two reference points blood (grey scale=0) and adventitia (grey 

scale=190). 

Serum metabolomics analysis 

Measures of 228 serum biomarkers were acquired with an established nuclear magnetic 

resonance (NMR)-spectroscopy platform (Nightingale Health)[24, 25]. These included both 

absolute concentrations (mmol/L), ratios, and percentages (%) of lipoprotein composition. 

Serum lipids measured included apolipoproteins (Apo) and VLDL, LDL, intermediate density 

lipoprotein (IDL) and HDL particles of different sizes ranging from chylomicrons and 

extremely large (XXL), very large (XL), large (L), medium (M), small (S) and very small (XS). 

Lipids within each lipoprotein subclass included –total lipid (L), phospholipids (PL), total 

cholesterol (C), cholesterol esters (CE), free cholesterol (FC) and triglycerides (TG).  

Distribution of these lipids was expressed as a ratio or percentage of total lipid content for 

each lipoprotein subclass (for list of metabolites see Supplementary Table 1). 

Logistic regression 

To assess the association of plaque with NMR metabolomic biomarker data, univariate 

logistic regressions were performed for each individual serum metabolite, adjusted for 

ethnicity, age, mean blood pressure, global BILAG score, and treatments at the time of the 

scan. Results were visualized in a forest plot using R package forestplotNMR [26]. 
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Predictive models 

The data analysis pipeline used in shown in Figure 1.  RStudio (The R Foundation, Vienna, 

Austria) (R Core Team, 2019) and Orange 3.24.1 (Bioinformatics Lab, University of 

Ljubljana, Slovenia) [27] were used for machine learning analysis as we have shown 

previously [28].  Five different supervised learning algorithms were implemented: support 

vector machine (SVM), logistic regression with and without interactions, decision trees, and 

random forest classification. The outcome of the learning algorithms was to predict whether 

an SLE patient is likely to develop plaque. Predictive models were generated from 

metabolite concentrations at the time of the scan. 

Missing data: Features with >10% missing data were excluded (pyruvate). Remaining 

missing values (n=5) were imputed using k-nearest neighbors with k = 5.   

Homology reduction: To reduce homology, if two features had a correlation co-efficient >0.95 

then the feature with the greatest mean absolute correlation with the remaining features was 

removed (Supplementary Data File 1). This left 124 metabolites. 

Data scaling: Metabolite concentrations were centered on the mean and scaled to the 

standard deviation.  

Predictors: The independent variables included in the models were the homology reduced 

dataset (124 metabolites), as well as the cohort information (age, ethnicity, mean blood 

pressure, disease duration, BILAG, treatments at the time of first scan). Sex was not 

considered as all participants were female. Full lists of the predictors contributing to each 

model are included in Supplementary Data File 2.  

Support vector machine (SVM):  A supervised classification method which creates a 

hyperplane to optimally separate data into two classes [29]. As this data set was not linearly 

separable, the radial basis function kernel was used. Values for C, epsilon, and gamma were 

tuned using the R Package e1071 [30]. The parameters were set to C = 4.0, epsilon = 0.1, 

gamma = 0.01. 

Decision tree: A supervised machine learning method which classifies incidents according to 

their features. Decision trees are built using forms of impurity measures, such as information 
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gain and entropy [31]. To prevent overfitting, decision trees were limited to a depth of 4 and 

subsets of 5 or less were not split further. 

Random Forest (RF): A statistical classifier (machine-learning algorithm) that assigns 

observations into classes by creating a set of decision trees, or ‘forest’.  Importance of each 

feature was quantified by the Gini index, which represents the total variance across the two 

classes, the purity of each node and the quality of each split. The values for mtry and ntree 

were tuned using the R Package [32]. The parameters were set to mtry=10, ntree=10,000.  

Logistic regression with/without interactions (LR/LR+I): The least absolute shrinkage and 

selection operator (lasso) method uses the absolute value of the co-efficient as a penalty to 

shrink less important features to zero. The strength of shrinkage is determined by tuning the 

regularization variable lambda (λ). Ln(λ) was optimized using the R package [32] and set to 

lambda=0.059 and lambda=0.065 for logistic regression with and without interaction 

respectively.   

Model performance: Ten-fold cross-validation was used to evaluate model performance. 

Validation was performed in Orange for the decision tree and in R for all other models, using 

a balanced splitting. The following performance metrics were calculated from the confusion 

matrices: (i) F1 score - a weighted average of precision (positive predictive value) and recall 

(sensitivity), (ii) specificity - the true negative rate, and (iii) classification accuracy (CA) - the 

proportion of correctly classified cases.  

Partial Least Squares Discriminant Analysis (sPLS-DA) 

A sPLS-DA is a supervised clustering machine-learning approach that combines parameter 

selection and classification into one operation. This analysis was performed using the 

features selected for the lasso LR+I model (Table 3).  

Statistical testing 

Statistical tests were performed in Microsoft Excel and GraphPad Prism version 8.3.0 for 

Windows (GraphPad Software, San Diego, USA). Data was assessed for normality and 

analysed with parametric or non-parametric tests as appropriate. Details of statistical tests 

are given in the figure legends. P-values < 0.05 were considered statistically significant.   
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Results 

Serum metabolites can predict the presence of pre-clinical atherosclerotic plaque in 

SLE patients  

Metabolites were quantified in serum from SLE patients classed as having plaque(s) (SLE-P) 

or not having plaque(s) (SLE-NP) using vascular ultrasound (Table 1 and Supplementary 

Table 1). Several analysis strategies were applied to identify metabolites associated with 

sub-clinical plaque development (Figure 1). All models were adjusted for ethnicity, age, 

mean blood pressure (BP), disease duration, disease activity (global BILAG score), and 

treatment at the time of the scan. Firstly, univariate logistic regressions identified four 

metabolites which differentiated between SLE-P and SLE-NP patients; Leucine, M-VLDL-

FC_%, L-VLDL-FC_% and XXL-VLDL-PL_% which were all increased in serum from SLE-P 

compared to SLE-NP patients (Figure 2A, Supplementary Data File 3 and 4). Of note, these 

metabolites can be significantly affected by treatment with statins [33, 34] and pro-protein 

convertase subtilisin/kexin type 9 (PCSK9) inhibitors [35], or body mass index (BMI) [36], 

suggesting that abnormal serum lipid metabolite profiles in SLE-P patients, could be 

modified using available therapies or interventions (Figure 2A asterisks).  

 

Next, five supervised ML models were developed and validated to predict the presence of 

plaque in SLE patients; LR, LR+I, SVM, RF and Decision tree. Since many of the 

metabolites measured were biologically interdependent, and therefore highly correlated, 

homology reduction was applied (see methods and Supplementary Data File 1). The models 

were built using the homology reduced dataset (124 metabolites) and patient information 

(age, ethnicity, mean BP, disease duration, global BILAG index, treatments at the time of 

first scan). Sex was not considered as all participants were female (Supplementary Data File 

2 for full lists of the predictors contributing to each model). 

The top three models, according to classification accuracy, specificity, and F1 scores, were 

LR, LR+I, and RF (Table 2). Performance metrics were based on predictions of the models, 
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summarised in confusion matrices (Supplementary Figure 1). LR and LR+I had a similar 

performance, correctly classifying 75% and 80% of SLE-P patients respectively. The RF 

model had the best specificity, identifying 45 out of 50 (90%) SLE-NP patients correctly.  

The three models were further investigated to identify the top features in predicting plaque 

formation in SLE (Figure 2B-E). Four metabolites (XXL-VLDL-PL_%, L-VLDL-FC_%, glycine 

and tyrosine) and patient age were identified in both LR and RF models as important 

predictors for SLE-P (Figure 2B). Metabolites which were significant in individual logistic 

regressions and also featured in the top ten metabolites of the LR and RF model, were 

further investigated for differences between SLE-P and SLE-NP patients (Figure 2C and 

Supplementary Figure 2A). Receiver operating characteristic curve (ROC) of these 

metabolites showed an area under the curve (AUC) of 0.6810 (XXL-VLDL-PL %), 0.7523 (L-

VLDL-FC %), 0.7337 (glycine), and 0.6300 (tyrosine) (Figure 2D and Supplementary Figure 

2B), demonstrating a potential predictive ability of these metabolites independent of other 

clinical features and metabolites. When the four shared metabolites between LR and RF 

models were combined, the ROC analysis showed an AUC of 0.7667 (Figure 2E), 

demonstrating a stronger potential predictive ability of the metabolites grouped together. 

 

The LR+I model included interaction of each metabolite with all other metabolites and clinical 

features (assessing over 15,000 possible features) and was therefore assessed separately 

from the other models. This model performed best overall, with a classification accuracy of 

0.800 (Table 2). Using the lasso method of shrinkage and selection, only 35 interactions 

were identified as important and given a beta coefficient to describe the effect size and 

direction on the model (Figure 2F, Table 3). Features with larger beta coefficients had the 

greatest effect on the classification. Notably, L-VLDL-FC_% : age and IDL-TG_%:age, 

Black/Carribean ethnicity:hydroxycloroquine treatment and sphingomyelin:leucine were 

significantly associated with plaque; while S-LDL-CE:rituximab treatment, S-HDL-FC:XXL-

VLDL-CE_%, glycine:histidine and statins:ACE inhibitor treatment were associated with no-

plaque.  
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Metabolite interactions can differentiate between SLE-P and SLE-NP patients 

Using the metabolite interaction features that were selected for the LR+I model (Table 3, 

Figure 2F), a sPLS-DA was performed to rank and validate the metabolite features by their 

distribution in patients with SLE-P and SLE-NP. By assessing the overall estimation error 

rate in ten-fold cross-validation, models with 4 components and a subset of 28 metabolite 

features were chosen for optimal model performance (Figure 3A). This analysis identified a 

significant separation between SLE-P and SLE-NP patients by plotting principal component 

(PC)-2 against PC-1 (Figure 3B). The 28 selected metabolite interaction features were 

ranked by discriminating capability (Figure 3C, 3D). The two highest weighted features were 

L-VLDL-FC_%:Age and IDL-TG_%:Age, which were also the highest ranked features in the 

LR+I model (Figure 2F). L-VLDL-FC_% and age were both also featured as one of the top 

ten features shared by LR and RF (Figure 2B) and were differentially expressed between 

SLE-P and SLE-NP patients (Figure 2A, Table 1) suggesting an influential role of both 

features in SLE-P patients.  

 

Differential metabolites correlated with clinical features of SLE-P patients 

Finally, the top ten metabolites from LR, RF, and all metabolite interactions included in the 

LR+I models were correlated with clinical and plaque features (Figure 4, Supplementary 

Table 2). Significant correlations include GSM (grey scale median, measure of plaque 

stability and lipid content) correlated positively with S-HDL-TG, XS-VLDL-TG, XL-HDL-

TG:Glycerol and IDL-CE:Glycerol and negatively with LDL-D, His:XS-VLDL-CE_% and 

Glycine:XS-VLDL-CE_%; Plaque number and plaque thickness negatively correlated with 

His:XS-VLDL-CE_%; TPA (total plaque area) positively correlated with L-VLDL-TG:Lactate; 

and disease activity (BILAG) positively correlated with M-VLDL-FC_% and M-VLDL-FC_%:L-

LDL-FC_% and negatively with DHA-FA:age. The strongest correlation was between 

disease duration and Tyrosine:disease duration.  
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Discussion 

CVD risk in SLE patients is an important cause of mortality in a cohort of mostly female and 

relatively young patients compared to the general population. Despite the long-established 

link between SLE and increased CVD risk [2, 4, 37] SLE specialists still lack accurate 

methods of predicting the risk in an individual patient. Traditional cardiovascular risk factors 

encapsulated in the Framingham equations underestimate the true risk in patients with SLE 

and fail to predict which patients will have cardiovascular events [38, 39]. SLE specialists 

therefore have no means currently of stratifying patients at high risk. 

 

This study used serum metabolomics incorporating detailed lipoprotein subclass evaluation 

to differentiate between patients with SLE with and without confirmed sub-clinical 

atherosclerosis. Analysis using machine learning models identified an association between 

multiple VLDL subsets, the branched-chain amino acid Leucine and clinical features 

including age with the presence of sub-clinical plaque, suggesting that more detailed 

lipoprotein and metabolomic measurements together with demographic information could 

help to better predict those patients at greatest CVD risk. 

 

VLDL subclasses featured predominantly in all the analysis models used suggesting its 

potential importance in predicting which patients with SLE go on to develop atherosclerosis. 

VLDL is known to be associated with increased CVD risk. It is the main carrier of 

triglycerides, which are an independent risk factor for CVD [40], and VLDL particle 

concentrations have been positively associated with the risk of myocardial infarction [41]. In 

the JUPITER trial of CVD risk in nearly 12,000 patients, risk among placebo‐allocated 

participants was associated with total VLDL particles, as well as apolipoprotein B, total 

cholesterol, and TGs [42]. Furthermore, pharmacological lowering of apolipoprotein(Apo)-B–

containing lipoproteins, including VLDL, earlier in life is proposed to eliminate high risk of 

atherosclerotic-CVD in individuals with image-documented sub-clinical atherosclerosis, such as 

the SLE women in this study [43]. Mechanistically, larger, typically TG-rich, apoplipoprotien-(apo) 
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B-containing lipoproteins such as VLDL, may have difficulty leaving the intima because of their 

larger size or because they get entrapped by components in the subendothelial space [44]. Here, 

these lipoproteins undergo enzymatic modifications that accelerate accumulation and promote 

aggregation, which is influenced by lipoprotein quantity and composition [45]. Notably, the larger 

TG and cholesterol-rich lipoprotiens appear to be more potent than LDL, the most common 

atherogenic lipoprotein, for provoking greater maladaptive immune activation [46]. This supports 

our previous work showing that VLDL from SLE-P patients could influence the phenotype of 

iNKT cells and monocytes [47]. 

 

Previous metabolomics studies in patients with SLE have not focused on cardiovascular risk 

but rather compared metabolomics profiles between healthy donors and SLE patients [48]. 

One study used mass spectroscopy rather than NMR to compare 20 patients with SLE and 9 

healthy controls, identifying  >100 differentially expressed metabolites, but did not assess 

lipoprotein particles and only one patient had CVD [49]. Another study using NMR, identified 

raised VLDL and LDL and reduced HDL in patients with SLE [50]. However, they did not 

report on lipoprotein subclasses and vascular scanning was not performed. Guleria et al 

showed that metabolomics could be used to compare different clinical subgroups within a 

cohort of lupus patients [51], as we have done here for SLE-P versus SLE-NP patients. 

Another NMR metabolomics study compared patients with and without lupus nephritis, and 

healthy controls. Compared to healthy controls, this study reported lower VLDL and LDL in 

patients with SLE, though higher in the nephritis patients [50]. The study was done in India 

so ethnicity and lifestyle factors such as diet may have played a role in these results, which 

do not support other reports.  

 

We also found associations between metabolites and scanning outcomes. Interestingly, TGs 

in VLDL showed significant correlations with TPA and GSM. Measurements of TPA and 

echolucency have been shown to have good predictive value for coronary artery disease in 

women [52], and thus pertinent in our all-female SLE cohort.  
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In addition to lipoproteins, Leucine, Glycine and Tyrosine were also identified by the ML 

models to be important predictors of SLE-P. Leucine is a branched chain essential amino 

acid with a potential important role in regulating protein, glucose and lipid metabolism, in part 

via activation of the mTOR (mammalian target of rapamycin) protein kinase and promotion of 

leptin synthesis [53].  Studies in mice have shown that Leucine supplementation improved 

diet-induced obesity, insulin resistance and atherosclerosis outcomes [54, 55], the increased 

Leucine in this study and could be associated with an early response to sub-clinical plaque 

development as we have shown previously[47]. Glycine, shown here to be reduced in SLE-

P, is also reported have a potential anti-inflammatory role via reducing nuclear factor-kappa 

B (NF-KB) activation in vascular endothelial cells [56]. Plasma Glycine levels are inversely 

correlated with acute myocardial infarction in patients undergoing coronary angiography [57]. 

Tyrosine, in the form of 3-nitrotyrosine, is associated with oxidised HDL in the human artery 

wall and circulation in atherosclerosis, and may promote atherogenesis [58]. Further work is 

needed to confirm these findings and to understand fully the complex role of these 

metabolites in atherogenesis in SLE. 

 

In conclusion, the interrogation of lipid subclasses may hold the key to providing insights on 

how to stratify CVD risk in SLE. Analysis of lipoproteins using NMR spectroscopy is of 

particular interest given the high throughput metabolomics analysis is rapid, can be carried 

out on serum, gives a larger amount of information from each sample and is potentially cost-

effective [59] depending on how many high-risk patients are identified and how the risk is 

managed. It will be important to validate our results in larger, multi-centre cohorts.  It is likely 

that a composite score of metabolomics with conventional risk factors may be the best way 

to assess CVD risk in patients with SLE, as in the type of extended risk model proposed by 

Wurtz et al [60]. 
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Figure 1. Data analysis workflow. Flow chart depicting the data cleaning and processing 

steps taken prior data analysis using machine learning algorithms. Abbreviations: SVM – 

support vector machine | P – plaque | NP – no plaque, BILAG – British Isles Lupus 

Assessment Group disease activity score. 
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 Figure 2. Identification of important metabolites separating patients with SLE-P from 

SLE-NP. (A) Forest plot depicting statistically significant individual logistic regression results 

of metabolites in SLE-P vs SLE-NP. Results given in Odds Ratio (95% confidence intervals). 
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Logistic regressions were adjusted for age, ethnicity, mean blood pressure, global BILAG, 

disease duration, and treatments at the time of scan. Coloured asterisks denote metabolite 

has previously been shown to be modified by statins, PCSK9 inhibitors or BMI [33-36]. (B) 

Best performing models were determined based on performance statistics (Table 2). The top 

ten features of these LR and RF models are listed to identify common features. (C-D) 

Metabolites which were significant in the individual logistic regression and featured in the top 

ten of the LR and RF models were further analysed using (C) bar charts showing mean, and 

p value (see Supplementary Figure 2A) and (D) ROC plots (see Supplementary Figure 2B). 

(E) Metabolites which featured in the top ten of the LR and RF model were combined and 

analysed in a single ROC plot (L-VLDL-FC%, Glycine, XXL-VLDL-PL%, Tyrosine). (F) Beta 

coefficients from the logistic regressions with interactions are plotted for the SLE-P vs SLE-

NP analysis. The sign indicates the direction of the effect of the predictor; a positive sign 

indicates an increased likelihood of a SLE-P prediction, while a negative sign indicates an 

increased likelihood of a SLE-NP prediction. 
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Figure 3. Partial least squares discriminate analysis validated metabolites identified 

by logistic regression with interactions to predict SLE-P. (A) Model optimisation – model 

with different components and features kept in the analysis were analysed, with each colour 

representing a different number of components (Comp), number of features kept in the 

analysis on the x-axis, and the overall error on the y-axis. (B) sPLS-DA plot to validate top 

hits from the logistic regression with interactions. sPLS-DA is a supervised clustering method 

which separates SLE-P from SLE-NP. (C) Features included in the sPLS-DA plotted with 

their factor loading value. (D) Visualisation of the weighting and correlation of each 

metabolite in component 1 and 2 on the sPLS-DA model. 
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Figure 4. Correlations of significant metabolites with SLE clinical markers. Correlations 

between metabolites and patient clinical characteristics. Pearson's product moment 

correlation coefficients are represented as connecting lines between the clinical 

characteristic section (grey) and metabolite section (rainbow). Only correlations with p value 

below 0.05 are shown. Red line=positive correlation and blue line=negative correlation. 

Width of lines represents the value of correlation coefficients (measured with scale). 

GSM – grey scale median, BILAG – British Isles Lupus Group Index disease activity score, 

Plq No – plaque number, TPT – total plaque thickness, TPA – Total Plaque area. (see 

Supplementary Table 1 for metabolite abbreviations. 
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Table 1. Cohort Characteristics. Demographic and clinical characteristics at the time of the 

first scan were compared between SLE patients with plaque (SLE-P) or those with no plaque 

(SLE-NP). Statistical comparisons were made using 1chi-squared or 3Mann-Whitney U. 

Abbreviations: BILAG – British Isles Lupus Assessment Group disease activity score, CRP – 

C reactive protein, ESR – erythrocyte sedimentation rate, IQR – interquartile range. 

  
SLE-NP  
(n=50) 

SLE-P 
(n=31) 

P-value 

Sex n (%) 
Female 

Male  

50 (100) 

0 (0) 

30 (100) 

0 (0) 
n/a 

Age years Median (IQR) 39.5 (18.0) 54.0 (11.5) <0.00012 

Ethnicity n (%) 

Asian  

Caucasian 

Black/Caribbean 

Other  

7 (14) 

24 (48) 

14 (28) 

5 (10) 

2 (6.7) 

18 (60.0) 

7 (23.3) 

3 (10) 

0.66711 

Mean Blood 
Pressure 

Mean (SD) 91.79 (10.5) 94.7 (10.3) 0.23103 

Disease 
Duration 

Median (IQR) 12 (10) 20 (20.25) 0.01162 

BILAG Median (IQR) 2 (8) 1 (7.25) 0.22012 

ESR Median (IQR) 14 (16.25) 14 (33.5) 0.53132 

CRP Median (IQR) 1.4 (2.8) 2.2 (4.1) 0.24772 

Treatments at 
the time of 
scan  

n (%) 

HCQ 

Statins 

Ace Inhibitor 

Immunosuppressive 

Rituximab 

Aspirin 

Prednisolone 

No Treatment 

32 (64) 

6 (12) 

21 (42) 

26 (52) 

18 (36) 

4 (8) 

37 (74) 

2 (4) 

19 (63.3) 

5 (16.7) 

10 (33.3) 

11 (36.7) 

8 (26.7) 

5 (16.7) 

16 (53.3) 

2 (6.7) 

0.78071 

Prednisolone 
Dosage 

Median (IQR) 5.0 (7.5) 3.4 (5.0) 0.07942 
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Table 2. Comparison of predictive model performance. Performance statistics for 5 

predictive models based on serum metabolites at the time of the first scan. The models used 

were logistic regression (LR) with and without interactions (i), support vector machine (SVM), 

random forest (RF), and decision tree (Tree). The classification accuracy (CA) represents 

the proportion of correctly identified cases, in contrast to specificity, which is the true 

negative rate. F1 is the weighted average of the precision and recall (see Methods).  

Statistics are rounded to 3 decimal places.  

Model F1 Precision Recall Specificity CA AUC 

LR 0.630 0.708 0.567 0.860 0.750 0.802 

LR + I 0.714 0.769 0.667 0.880 0.800 0.812 

SVM 0.480 0.600 0.400 0.840 0.675 0.707 

RF 0.542 0.722 0.433 0.900 0.725 0.779 

Tree 0.464 0.500 0.433 0.740 0.625 0.630 
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Table 3. Predictors for lasso logistic regression with interactions. List of features 

selected by the lasso regressions with interactions. Interacting features are separated by a 

colon (:). Interactions are listed in order of the absolute size of the beta coefficient, where the 

top ten metabolite interactions will have the largest effect on the model classification. Where 

predictors are categorical (ethnicity) the specific category is shown in brackets. 

Abbreviations: BP – blood pressure, HCQ – hydroxychloroquine 

Features Included Beta Coefficient 

Intercept -1.17411 

S-LDL-CE : Rituximab -0.68492 

S-HDL-FC : XXL-VLDL-CE_% -0.49192 

Gly : His -0.46405 

Statins : ACE Inhibitor -0.37603 

Lac : Cit -0.37161 

HCQ : ACE Inhibitor -0.23705 

XL-HDL-TG : Glol -0.15531 

IDL-CE : Glol -0.12971 

His : XS-VLDL-CE_% -0.09162 

L-VLDL-TG : Lac -0.08858 

Glol : XXL-VLDL-CE_% -0.07212 

Gly : XS-VLDL-CE_% -0.05998 

Glol : His -0.03934 

DHA/FA : Age 0.019318 

DHA/FA : Tyr 0.019945 

L-HDL-PL_% : Age 0.022831 

L-VLDL-TG : HCQ 0.034663 

Ethnicity (Caucasian) : Disease Duration 0.035969 

XXL-VLDL-PL_% : Mean Blood Pressure 0.076793 

DHA : Aspirin 0.089295 

DHA : HCQ 0.096398 

HCQ : Prednisolone Dose 0.129875 

Age : Mean Blood Pressure 0.130915 

SFA/FA : M-VLDL-FC_% 0.193219 

Tyr : Disease Duration 0.194325 

M-VLDL-FC_% : L-LDL-FC_% 0.239355 
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HCQ1 : Rituximab 0.282773 

IDL-TG_% : S-LDL-C_% 0.292232 

SM : Tyr 0.333199 

Leu : Mean Blood Pressure 0.401734 

Gln : Ace 0.464306 

SM : Leu 0.597411 

Ethnicity (Black / Caribbean) : HCQ 0.755513 

L-VLDL-FC_% : Age 1.056669 

IDL-TG_% : Age 1.133333 
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