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Brain Activity
Highlights
Fluid intelligence tests predict success in
many activities, suggesting cognitive
mechanisms of broad importance.

We propose a core process of atten-
tional integration. Complex problems
must be segmented into simpler parts.
Attention to each part integrates cogni-
tive fragments into a computational
structure.
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Howdoes organized cognition arise fromdistributed brain activity? Recent analyses
of fluid intelligence suggest a core process of cognitive focus and integration,
organizing the components of a cognitive operation into the required computational
structure. A cortical ‘multiple-demand’ (MD) system is closely linked to fluid
intelligence, and recent imaging data define nine specific MD patches distributed
across frontal, parietal, and occipitotemporal cortex. Wide cortical distribution,
relative functional specialization, and strong connectivity suggest a basis for cogni-
tive integration, matching electrophysiological evidence for binding of cognitive
operations to their contents. Though still only in broad outline, these data
suggest how distributed brain activity can build complex, organized cognition.
Fluid intelligence is linked to the brain’s
multiple-demand (MD) system, defined
by common activity across different
cognitive demands. Across the brain,
MD patches shows anatomical and
physiological properties adapted to
attentional integration.

Neurophysiology of putative MD regions
shows adaptive coding of task-relevant
information. Suiting attentional integra-
tion, many neurons show conjunctive
coding (e.g., binding cognitive opera-
tions to their target objects).

In broad outline, these results suggest
how distributed brain activity builds orga-
nized cognition.
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Organizing Distributed Brain Activity
Organized cognition of any kind arises fromwidely distributed brain activity. An immediate question
is how such activity is integrated, allowing just the right cognitive contents to be combined in just
the right way for current purposes. Though much is certainly unknown, an outline view of the rele-
vant psychological and physiological mechanisms is beginning to appear. In this opinion article, we
describe recent progress towards a whole-brain understanding of cognitive integration.

We begin with recent work on the cognitive mechanisms of fluid intelligence (see Glossary).
Theoretical accounts of fluid intelligence focus on processes of cognitive control [1–3] and cognitive
integration [4] and, based on recent findings, we suggest a synthesis of these two approaches.
Results from brain imaging [5–7] and lesion [8] studies relate fluid intelligence to a well-known
control network in the brain, which previously we have called themultiple-demand (MD) system
[9,10]. We describe recent studies on the detailed anatomy and physiology of MD activity and how
they begin to illuminate the physiological underpinning of cognitive control and integration. In broad
outline, these findings suggest how distributed brain activity builds organized cognition. We
conclude with some of the many questions that this scheme raises for future work.

Fluid Intelligence and Attentional Integration
A fundamental psychometric discovery is positive manifold: to some extent, all tests of different
cognitive abilities tend to have positive correlations [11,12], even those that on the surface are
dissimilar. In his foundational work, Spearman [11] proposed that some general or g factor
contributes to success in any task. If this model is fit to correlational data, novel problem-
solving tests turn out to be excellent measures of g, reflecting the fact that, in a diverse task
battery, it will be these tests that have the largest average correlations with a wide range of others.
Well known examples are matrix problems (Figure 1A) [13,14], series completions [15], etc. The
ability measured in such tests has been called ‘fluid intelligence’. Later, we consider several
possible contributors to positive manifold, but meanwhile, the broad ability of fluid intelligence
tests to predict success in many kinds of activity, from laboratory tests to life achievements,
suggests cognitive mechanisms of widespread importance in mental life.
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Glossary
Fluid intelligence: the ability measured
in psychometric tests of novel problem-
solving, including matrices, series
completions, etc. Though many tests
use simple shapes and figures, fluid
intelligence tests can also involve verbal
or numerical materials.
Multiple-demand (MD) system: a
distributed set of cortical regions
showing widespread increase of
activation associatedwith many different
cognitive demands.
Nonlinear mixed selectivity: a neural
response pattern in which firing rate is
driven by a conjunction of task variables
(e.g., a particular object presented only
at a particular point in a memory list).
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We begin with models of fluid intelligence based on cognitive or executive control. Following early
work linking fluid intelligence to frontal lobe functions [1,16,17], multiple aspects of control have
been implicated in fluid intelligence models: maintenance in working memory in the face of dis-
traction [2], avoiding lapses and mind-wandering [3,18], inhibiting unwanted mental content [2],
and so on. Though this broad focus is appealing, and the link to frontal lobe functions is clear,
conceptions of control often seem underdeveloped. Undoubtedly, simple concepts such as
maintenance in working memory [19], attentional biasing [20–22], inhibition [23,24], and the like
bear on important aspects of cognition. On their own, however, they fall far short of addressing
what would be needed to generate even a simple everyday activity, such as planning and carrying
out a trip to the grocery store.

A different perspective on cognitive control comes from classical work in artificial intelligence,
going back to the early problem-solving programs of Newell et al. [25]. As this work made
clear, most complex problems cannot be solved in a single processing step. Instead, they
must be divided into simpler parts, with these simpler parts solved in turn to produce final success
on the whole problem. A familiar example organized as a goal–subgoal hierarchy is shown in
Figure 1B. It is not possible simply to set the goal of traveling to Japan and thenmove immediately
to the question of how to move one’s hand; the statement of the goal brings too few constraints
to lead immediately to motor commands. But beginning with the goal of travel to Japan, the
problem solver can set progressive subgoals of flying, buying a ticket, and logging onto the
internet, and now, sitting at a laptop, it becomes possible to plan amovement [26]. This reasoning
suggests that a core aspect of ‘control’must be cognitive segmentation: based on knowledge of
the problem domain and moves available to the problem solver, a complex whole must be
organized into separate, more easily soluble parts.

Early theoretical work [27] emphasized the importance of cognitive segmentation in fluid intelli-
gence problems. In a recent study [28], we modified traditional matrix problems so that little
was left beyond this segmentation requirement. As shown in Figure 1C, entries in each cell of
the matrix had three parts (in this case, short line straight or curved, longer line center or right,
arrow pointing left or right). To minimize the working memory demands of traditional problems
(Figure 1A), the participant simply drew their answer into a response box, allowing each part of
the answer to be drawn as soon as it was determined. The problem appears trivial once attention
is focused on a single part of the figures (e.g., focusing just on the arrow) but, nevertheless, par-
ticipants with low scores on a standard fluid intelligence test struggled to solve these simplified
problems (Figure 1E, blue). To confirm that segmentation was the only significant requirement,
we used problems that were presegmented, with each part of the figure presented in its own
matrix (Figure 1D). Though component problems were exactly the same as those that would
be produced by attention to a single part in the original figures, now all participants performed
well (Figure 1E, red).

Sometimes, accounts of fluid intelligence based on cognitive control have been contrasted with
an account based on cognitive integration [4,29]. According to integration accounts, the key
process in fluid intelligence is binding together the different components of a cognitive process
or representation. In this light it is instructive to consider what is needed to ‘attend’ to one part
of the problem in Figure 1C (e.g., to determine that the arrow should point left). Evidently, informa-
tion is needed on arrow direction in each cell of the matrix. This direction information must be
correctly bound to positions within each figure and in the matrix as a whole. The layout of left
and right arrows must be related to an overall conception of the problem to be solved and
what it means for the solution to ‘look right’. Doubtless, problem solving is guided by internal
reward signals bound to each successful step. To create attention, multiple cognitive fragments
2 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 1. Fluid Intelligence and Cognitive Segmentation. (A) Matrix problem. The task is to choose which of the response alternatives (bottom) would correctly
complete the matrix (top). (B) Goal–subgoal hierarchy. (C) Modified matrix problem in typical format. The task is to decide what figure would fill the empty cell of the
matrix (broken outline), with the answer to be drawn in the response box below. (D) Same problem segmented into separate parts. (E) Proportion of problems correctly
solved as a function of fluid intelligence. Blue, typical format; red, segmented format. Adapted, with permission, from [28].

Trends in Cognitive Sciences
must be integrated into precisely the correct combinations and relationships. As these computa-
tional structures are built, the task as a whole is segmented into useful parts, each representing a
step closer to the overall goal.

The need for attentional integration – creating the steps of complex behavior, each consisting of
components assembled into just the right computational structure – is obvious in fluid intelligence
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 3



Trends in Cognitive Sciences
problems. We would argue, however, that attentional integration lies at the heart of all organized
cognition (Figure 2), helping to explain why fluid intelligence tests predict success in such a wide
variety of behavior. Segmentation into parts is minimized in very simple tasks, but even here, just
the right cognitive elements, organized in just the right way, must be assembled for behavioral
control. Rather than conflicting, we suggest that accounts of fluid intelligence based on control
and integration reflect two views of the same process. Focused attention, resistance to distraction,
and integration are all important aspects of brain activity that defines and assembles the contents of
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Integration and Segmentation in Complex Cognition. (A) Attention to one part of a complex task integrates multiple component fragments (right). As a
series of steps is created, the problem is progressively segmented into simpler subproblems (left). This example is the ‘travel to Japan’ problem from Figure 1B. (B) To
create each step, fragments must be selected from many potential candidates and assembled into precisely the correct computational structure.
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an elementary cognitive operation. Our approach thus places popular accounts of fluid intelligence
within a broader view of how ‘cognitive control’ in general should be conceived.

Integrating Distributed Brain Activity
Of course, the material to be integrated in creating a cognitive structure will be represented in
widely distributed brain activity. Even attention to a visual object requires integration of activity
acrossmultiple cortical and subcortical brain areas, representing that object’s different properties
and action affordances [30,31]. For a complex cognitive structure such as a single problem-
solving step, relevant activity may be distributed across much or perhaps most of the brain.
This calls for an integration mechanism with widespread, flexible access to whatever neural activ-
ity is needed in current cognition.

Along with regions of brain activity linked to specific cognitive domains, brain imaging studies
often show activity in a widely distributed MD system: a set of brain regions in which activity in-
creases with almost any kind of cognitive load ([9,10,32,33]; for an exception see [34,35]). MD ac-
tivity is generally seen in several regions on the lateral frontal surface, in and around the anterior
insula, in dorsomedial frontal cortex, including presupplementary motor area and dorsal anterior
cingulate, within and to either side of the intraparietal sulcus, and often also in a region at the
occipitotemporal border. From the early days of brain imaging, MD activity has been linked to
cognitive control [36,37] and integration [37,38]. A core role in fluid intelligence [9,39,40] is indi-
cated by strong MD activity during work on fluid intelligence problems [5–7] and losses of fluid in-
telligence associated with MD damage [8,41–43]. In this section we link new findings on MD
anatomy and physiology to the computational requirements of attentional integration.

Though MD-like activity has been known for many years, its precise anatomy has remained uncer-
tain. To address this limitation, we turned recently to the methods and data of the Human
Connectome Project (HCP) [44]. In the HCP approach, surface-based processing using multimodal
MRI features improves brain coregistration, much sharpening delineation of cortical areas. Multi-
modal data are further used to parcellate the cerebral cortex of each participant into 180 distinct re-
gions per hemisphere [45]. In a sample of 449 HCP participants, we used the conjunction of three
cognitive contrasts – high versus low working memory load, relational reasoning versus perceptual
matching, and arithmetic versus story comprehension – to examineMD regions and their properties.

The results clarify the anatomy of knownMD regions, as well as suggesting new regions. Across the
cortex we see nine tightly defined patches of MD activity, distributed across frontal, parietal, and
temporo-occipital cortex (Figure 3A,B). The HCP parcellation further divides MD patches into 27
individual regions, whichwe separate into a ten-region core with strongest activity and a surrounding
penumbra (Figure 3C). Five MD patches lie on the lateral frontal surface, the most dorsal lying just
anterior to the frontal eye field (Figure 3A, i6-8/6a), the most ventral incorporating anterior insula
and adjacent regions of the frontal operculum (Figure 3A, AVI), and between these, a chain of
three extending from the inferior frontal junction posteriorly into the rostrolateral frontal cortex
(Figure 3A, IFJp/6r; p9-46v; a9-46v). An additional frontal patch lies on the dorsomedial frontal
surface (Figure 3A, SCEF/8BM). In the lateral parietal lobe, the primary MD patch is centered in
the depths of the intraparietal sulcus (Figure 3A, IP1/IP2), with an additional patch in dorsomedial
parietal cortex (Figure 3A, POS2/7Pm). Confirming previous indications, and despite the fact that
one of our three contrasts used auditory rather than visual materials, we find additional MD activity
in a region at the junction of anterior occipital and posterior temporal cortex (Figure 3A, TE1p).

With this fine-scale definition of MD regions, we can ask also about functional differentiation.
Despite very frequent coactivation of MD regions, there have also been many suggestions of
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 5
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Figure 3. Anatomy and Physiology of the Multiple-Demand (MD) System. (A) Patches of cortical MD activity defined
in data of 449 participants from the Human Connectome Project (HCP), using a conjunction of fMRI contrasts for working
memory, reasoning, and arithmetic. Left hemisphere data are shown; largely similar patches are also seen on the right.
Regional parcellation (black outlines) and selected anatomical labels are taken from [45]. (B) The same data shown on a
flat map of the left hemisphere. Numbering shows nine MD patches distributed across lateral frontal (1–5), dorsomedial
frontal (6), lateral (7) and medial (8) parietal, and temporo-occipital (9) cortex. (C) Individual MD regions using the HCP
parcellation. Data are averaged from left and right hemispheres and, for illustration, projected onto the left. The extended
MD system (27 regions) is divided into core (ten regions, yellow), with activity above the mean of all 27 regions in at least
2/3 contrasts, and penumbra (remaining 17 regions, red). Adapted, with permission, from [44].

Trends in Cognitive Sciences
functional differentiations (e.g., [46–48]), though with no clear consensus emerging. Across
the full set of 27 MD regions, Figure 4A shows profiles of activity for our three task contrasts.
The results illustrate both sides of coactivation–differentiation picture. On the one hand is a
6 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 4. Functional Profiles and Connectivity of Multiple-Demand (MD) Regions. (A) Profiles of activation across
the extended MD system for each task contrast. To show reliability, right panels show overlaid plots for two independent
groups of 210 participants each. (B) Resting state connectivity (correlation of time series), calculated for every pair of
cortical regions and then averaged for connections of each type. Left, left hemisphere; right, right hemisphere. Adapted,
with permission, from [44].
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strong pattern of coactivation, with strongest activity for arithmetic and weakest for relational
reasoning, across almost all MD regions (Figure 4A, left). On the other is differentiation, with
exact activity profiles differing between contrasts, and with this large group of participants,
even small differences are highly reliable (Figure 4A, right). Though the MD system is commonly
recruited as a whole, the exact pattern of this recruitment differs from task to task (see
also [49]).

HCP resting state data also allowed us to examine patterns of functional connectivity. Commonly,
resting state studies define a ‘frontoparietal control network’ (FPN), substantially overlapping with
the MD system that is defined by activation data [50]. Based on HCP resting state data, Figure 4B
shows average connectivity for all possible types of connection between core, penumbra, and
non-MD regions. Strikingly, core–core connections were strongest, followed by connections of
core to penumbra. Comparison with a canonical FPN, previously extracted by Ji et al. [51] from
the same HCP data, showed that all regions in our MD core lie within the FPN and, within that
network, core–core connections are especially strong. Penumbra regions, by contrast, are
spread across several networks.
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 7
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Recent analyses of brain connectivity have emphasized its small world structure [52], with strong
connectivity within local modules and long-range connector hubs linking between modules.
Graph theory and other approaches suggest that MD regions are among the brain’s widely
connected hubs [53,54], with dynamic, task-dependent connections to other brain networks
[55,56]. Several previous accounts link fluid intelligence to this widespread MD connectivity
[57], including a recent ‘network neuroscience’ proposal [58]. In line with such ideas, our results
suggest that the MD system is well placed for attentional integration (Figure 5A). Because local
connections dominate in the brain, a system needing access to many modules needs widely
distributed parts. Locally, we suggest, different kinds of information are preferentially fed into
different MD regions, accounting for partial functional differentiations. Similarly, local connections
allow MD outputs to influence processing in many modules. Creating integrated cognitive
structures, however, requires that all types of information can be creatively selected and
combined, in precisely the roles and relationships required by a particular cognitive demand.
Strong connectivity between MD regions, in particular between regions of the core, suggests a
medium for information exchange and integration and an explanation for the strong element of
coactivation seen across many different task demands.

A final aspect of the HCP findings is worth emphasis. Though our primary analyses focused on
cerebral cortex, MD activity was also seen in associated subcortical structures, including parts
of the caudate and thalamus, and in specific regions of the cerebellum. Though details are
unknown, it is likely that attentional integration is achieved through interacting cortical and
subcortical activity.

Task Representation: Contents, Roles, and Relations
If MD regions are to create cognitive episodes, the contents of these episodes must be repre-
sented in the firing of MD neurons. In human brain imaging, multivoxel pattern analysis confirms
widespread MD encoding of different aspects of a current task, including discrimination of
relevant stimuli, rules, responses, and more [59–61]. In contrast to more dedicated regions,
such as visual or auditory cortex, MD representation of relevant task contents is often weaker
[62] but also broader [63]. Matching a role in selective attention, MD representations favor what
is relevant to a current task [64–66]. Matching univariate findings, MD representations may
become stronger as task difficulty is increased [61], likely related to the experience of more careful
attention.

Corresponding findings come from electrophysiology in the behaving monkey. While exact
homologies between human and monkey are uncertain, imaging data suggest a monkey MD
network somewhat resembling that of the human brain [67,68], including regions of lateral frontal,
dorsomedial frontal, and inferior parietal cortex. In behaving animals, neurons in these regions
show properties strongly reminiscent of human findings, with firing rates of many neurons
discriminating the important events of a current task and adjusting their properties to favor
currently relevant over irrelevant information [69–74]. Again, these data suggest a distributed
network with widespread access to task-relevant information and bidirectional communication
between network nodes [75–78].

Most important for current purposes, the properties of MD neurons suggest a central role in
integration. As we have discussed, formation of a cognitive episode requires combining relevant
contents into exactly the required roles and relations. The rules of a task may determine how
stimuli and responses should be paired, the required order of several responses, how alternatives
are linked to available rewards, etc. Similarly, in a goal–subgoal tree like that of Figure 1B,
subgoals must be bound to goals such that, if the subgoal fails, an alternative route to the higher
8 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 5. The Multiple-Demand (MD) System and Cognitive Integration. (A) Depending on its pattern of connectivity, each MD region (colored circles) has direct
access to different information and brain operations, here illustrated with just a single link (black bidirectional arrows) for each region. Strong connectivity between MD
regions allows assembly of these fragments into the required computational structure. The scheme suggests a basis for partial functional differentiations within a broad
context of coactivation. (B) With their varying external connectivity, MD regions may show quantitative differences in neural coding for different task features. Against
this background, however, communication between MD regions provides a strong basis for mixed selectivity.

Trends in Cognitive Sciences
goal can be sought. Linking contents to roles is the classic computational problem of variable
binding [79] and, for neural representation, suggests a requirement for conjunctive coding of
contents and roles. In recent years, conjunctive coding in frontal and other regions has come
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 9
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to prominence under the heading of ‘nonlinear mixed selectivity’: neural activity driven by
nonlinear combinations of multiple task features [80,81].

The literature containsmany remarkable examples of mixed selectivity. If an animal must remember
a sequence of objects, for example, many frontal neurons may encode object identity; a neuron’s
object preference at one serial position, however, can be independent of its preference at another
[82,83]. If a cue indicates that the animal should search for a particular target stimulus, activity in the
delay between cue and choice display may encode the upcoming target, but this encoding can be
independent of activity when the target finally appears [84]. In a study of frontal activity during
problem-solving [85], animals solved an on-screen maze, planning movements of a cursor along
openmaze paths from a central start position to a peripheral goal. Once the path had been planned
but before movement began, individual frontal cells could be selective for the direction of just the
first, just the second, or just the third movement in the plan.

In line with the requirements of cognitive integration, information exchange betweenMD regions is
well placed to create mixed selectivity (Figure 5B). Exchange between MD regions allows con-
junctive coding, binding the components of a cognitive operation into the correct computational
structure.

An example from our own recent work [86] illustrates binding of cognitive operations to their
target objects. In this task (Figure 6A), displays of four objects were shown on a touchscreen
and, on each trial, the monkey selected a single object by touching it. For each new problem,
one or two objects were rewarded targets; the monkey had to find these targets by trial and
error and then, once targets were found, could reselect them on subsequent trials. We analyzed
data from two trial periods: the choice phase (CH), during which monkeys were shown the object
display and awaited a go signal indicating that they could make their choice, and the feedback
phase (FB), when, following the touch, a cue indicated whether the selected object was target
or nontarget.

Recordings were made in two MD-like regions, lateral frontal and inferior parietal cortex
(Figure 6A, upper right; recordings in superior parietal cortex not considered here). For each
region, we used two kinds of analysis to compare activity at FB and CH. First, we considered
patterns of activity across the whole recorded cell population (Figure 6B). Within one phase, FB
or CH, population activity patterns were strongly correlated for different objects and cycles.
Between phases, however, correlations were close to zero. For each neuron, in other words,
firing rate in one task phase was approximately independent of firing rate in the other. Our second
analysis showed that this same independence extended to object selectivity. At both CH and FB
phases, there were frontal and parietal neurons that encoded the identity of the selected object.
However, a neuron’s object preference during one task phase, CH or FB, was unpredictive of its
preference at the other phase (Figure 6C). As MD regions direct the cognitive operations of
successive task stages (Figure 5B), orthogonal representations may minimize confusion, allowing
the correct cognitive operations to be executed at each stage [87]. Meanwhile, mixed selectivity
for conjunctions of object and phase binds object information to these different operations.

Positive Manifold
Earlier we noted positive manifold, the finding of ubiquitous positive correlations between different
cognitive tests, and Spearman’s original proposal that some general or g factor contributes to
success in any cognitive activity [11,12]. One simple interpretation is that g reflects the attentional
integration functions of the MD system and, in agreement with Spearman’s hypothesis, we
suggest that MD functions contribute very broadly to effective cognition. At the same time, it
10 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 6. Neurophysiology of Binding Object to Role. (A) Object selection task, two-target version. On each trial, themonkey touches a single object in a visual display. For
each newproblem, in the first set of trials (cycle 1), themonkey selects one object after another, learningwhich two objects (targets) are associatedwith reward. Targets are indicated
here by green circles (not present on actual display). In subsequent trials (cycles 2–4), the animal can reselect the same targets for further rewards. After four cycles, targets are
redefined for the next problem. In another task version, problems have only a single target. Recording areas in each animal are shown at upper right. (B) Correlation of population
firing patterns for feedback (FB) and choice (CH) periods, separated by target object and cycle. Data from correct trials only. For CH, data are shown only for cycles 2–4, as
correct choices were not known in cycle 1. Frontal lobe data are separated into dorsal and ventral regions (separated at fundus of principal sulcus). Small negative correlations
between FB and CH patterns are an artefact of data normalization [74]. (C) Independence of object preference at CH and FB. For each recording area, left panel shows data for
neurons identified as object-selective during FB. For each neuron, ‘best’ (highest firing rate) and ‘worst’ (lowest) were identified based on FB data. Plots show activity for these
‘best’ and ‘worst’ objects while selecting them at CH (normalized for each neuron, averaged across neurons). Across the population, ‘best’ and ‘worst’ objects defined at FB did
not give significantly different responses at CH. Right panels show reverse analysis, defining ‘best’ and ‘worst’ at CH and plotting data from FB. Adapted, with permission, from [86].
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Outstanding Questions
How do different MD regions interact?
Across the extended MD system, we
know little of the dynamics of information
representation and exchange during
task performance. The very different
connectivities ofMD regions imply sepa-
rate functional contributions to cognitive
integration, but in fMRI, the dominant
picture is one of corecruitment. This
picture may reflect the low temporal
resolution of fMRI, rendering the method
blind to high-speed information develop-
ment and exchange. Elucidating how
task-relevant information arises and is
distributed across the network calls for
simultaneous electrophysiological re-
cordings in separate MD regions, either
in experimental animals or patients
implanted for intracranial recordings.

How does MD activity bind together
coherent processing across multiple
brain regions? Again, this calls for elec-
trophysiological studies, addressing
questions that include directional infor-
mation flow at different stages of a cogni-
tive operation, and the role of precise
timing relations (e.g., oscillatory syn-
chrony) across brain regions.

How are brief segments of cognition
combined into complex goal–subgoal
structures? For example, we know little
of how sustained goal maintenance
directs brain activity in pursuit of a series
of subgoals. Especially for complex
behavior, a critical question is interaction
between immediate cognitive activity
and long-term knowledge of goals, sub-
goals, and their relationships.

What is the role of prominent MD foci
seen outside cerebral cortex, espe-
cially in caudate and cerebellum?
Almost nothing is known of cortical-
subcortical and cerebro-cerebellar
interaction as cognitive operations are
carried out. High-field imaging may
bring the spatial resolution needed for
studies of small subcortical structures.
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seems likely that the full explanation for positive manifold is more nuanced, with multiple
contributory factors [39,58].

For any task, creating the appropriate control structure is not simply a matter of MD function.
Undoubtedly, MD activity combines with activity in multiple, more specialized systems involved
in operations of this particular task, and it seems likely that the quality of the resulting computa-
tional structure will depend on all collaborators and their interaction. In many studies, fluid intelli-
gence has been found to correlate with different aspects of brain structure, broadly distributed
across many brain regions [88,89]. In a recent study, for example, intelligence correlated with
the size and complexity of dendritic trees in tissue taken from the temporal lobe of patients under-
going epilepsy surgery [90]. Plausibly, many neural properties will be correlated across regions of
the cortex, and large dendritic trees in the temporal lobe may be predictive of large dendritic trees
in MD regions and elsewhere. In this case, a broadly distributed property of neural function may
facilitate the general process of creating cognitive operations, whatever their particular content.
Intelligence may also correlate with whole-brain functional properties, such as stability of func-
tional networks [91,92]. Very likely, there is much overlap between the core cognitive mecha-
nisms required in fluid intelligence tests, the functions of the MD system, and sources of
individual differences leading to positive manifold, but these three are not likely to be identical.

The role of long-term knowledge also bears on positive manifold, and a distinction that is often
drawn between fluid and crystallized intelligence. While fluid intelligence concerns current
problem-solving, crystallized intelligence reflects the accumulated body of a lifetime’s learning
[93,94]. The two are generally correlated, as expected if more useful knowledge is acquired dur-
ing better constructed, more focused learning episodes, and if a lifetime of learning leads to a
large body of knowledge, with parts of this knowledge applicable to many new problems, then
‘crystallized intelligence’ will also contribute broadly to success in new activities and thus to pos-
itive manifold. A related perspective is provided by the idea of mutualism in development: that
growth in one ability or domain may have positive influences on growth in others [95,96]. Often,
it seems, this must be true; learning to represent relationships as graphs, for example, must surely
encourage effective mental representation and hence learning in many future contexts. If positive
manifold reflects the broad ability to construct good cognitive structures, it is likely influenced by
many aspects of lifetime experience.

Concluding Remarks and Future Directions
Many issues are raised by the integration account. Here we discuss two: the interface of short-term
cognitive activity and long-term knowledge, and the nature of attentional capacity limitations.

As implied by our discussion of positive manifold, a core question is interface between on-line
cognition and long-term knowledge. As in classical symbolic artificial intelligence (e.g., [97]), a
complex problem is divided into simple parts on the basis of long-term knowledge of the structure
of the world and relations within it. It is knowledge that tells us how travel to Japan can be divided
into component steps, how a useful move can be made in proving a mathematical theorem, or
where we should look in seeking a solution to a spatial puzzle. In the brain, knowledge that
might shape current cognition is distributed across multiple brain systems. Semantic memory,
for example, may be based around a proposed hub in the temporal pole [98], while episodic
memory, spatial knowledge, and social knowledge are linked to distinct components of the
default mode network [99]. To understand MD activity in constructing solutions to cognitive
problems, we need to know how multiple aspects of knowledge feed into this process. Again,
this is reminiscent of the widespread connectivity of MD regions (Figure 5) and our finding that
multiple networks have representatives in the MD penumbra.
12 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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In classical artificial intelligence, problem solutions were often built up in an unlimited working
memory, keeping track of a progressively more complex structure of goals and subgoals. For
biological cognition this is not plausible; for goals such as travel to Japan or solving a scientific
problem, only a small fraction can be represented in active neural firing at any one time, with
the rest of the structure in long-term memory, ready for retrieval when required. At the same
time, the current active focus of attention must remain bound to the long-term structure, so
that, for example, a failure to progress to a goal by one route can trigger a search for an alterna-
tive. The issue is reminiscent of recent biological accounts of working memory, combining active
neural firing with storage through short-term synaptic change [100,101]. It is presently unknown
how the focus of attention in active cognition can be situated within a complex, long-term
representation of the larger-scale problem.

A further open issue concerns the well-known capacity limitations of ‘attention’, reflected in diffi-
culty carrying out several tasks at once [102,103]. Shared demands on MD activity could provide
an obvious basis for such limits and, indeed, various authors have linked capacity limitations to
the functions of frontal and parietal cortex [16,22,104,105]. Such proposals find support in
neurophysiological studies, showing that, in frontal and parietal cortex, there is interference
between representations of different visual stimuli [106], working memory items [107], or task
components [86,108]. Further work is needed, however, to understand the physiological basis
of this interference. In the visual system, capacity limits in representing multiple stimuli are thought
to arise through a process of competition or divisive normalization [109–111]. In such models,
each stimulus attempts to drive the activity of a neuron to a particular value, appropriate to
representing the properties of this stimulus; with multiple stimuli in the field, opposing forces
bring activity to a compromise value, reducing the fidelity of representation for any one. Similar
patterns can be seen in the visual responses of prefrontal neurons [112,113], raising the possibility
that divisive normalization is a general principle in MD cortex. Recurrent neural networks have
become popular as models of working memory and cognitive control (e.g., [114]), and in a recent
model, divisive normalization is the basis for limited working memory capacity [115]. Further experi-
mental work is needed to test whether divisive normalizationmodels may be extended to the broader
attentional limits of MD activity and cognitive control.

Of course, our account of cognitive integration leavesmuch unknown. That said, like an early map
of the globe, it provides an outline sketch of how distributed brain activity can assemble complex
cognition. This sketch, we suggest, provides the skeleton we need to guide future, more detailed
physiological study (see Outstanding Questions).
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