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Biased Mixtures Of Experts: Enabling Computer
Vision Inference Under Data Transfer Limitations

Alhabib Abbas and Yiannis Andreopoulos

Abstract—We propose a novel mixture-of-experts class to
optimize computer vision models in accordance with data trans-
fer limitations at test time. Our approach postulates that the
minimum acceptable amount of data allowing for highly-accurate
results can vary for different input space partitions. Therefore,
we consider mixtures where experts require different amounts of
data, and train a sparse gating function to divide the input space
for each expert. By appropriate hyperparameter selection, our
approach is able to bias mixtures of experts towards selecting
specific experts over others. In this way, we show that the data
transfer optimization between visual sensing and processing can
be solved as a convex optimization problem. To demonstrate
the relation between data availability and performance, we
evaluate biased mixtures on a range of mainstream computer
vision problems, namely: (i) single shot detection, (ii) image
super resolution, and (iii) realtime video action classification.
For all cases, and when experts constitute modified baselines
to meet different limits on allowed data utility, biased mixtures
significantly outperform previous work optimized to meet the
same constraints on available data.

Index Terms—mixtures of experts, constrained data transfer,
single shot object detection, single image super resolution, real-
time action classification.

I. INTRODUCTION

When enough data is provided at test time, deep neural net-
works perform well for a wide range of challenging computer
vision tasks. This is true especially for large models, as it is
now well understood that the performance of neural networks
scales with the number of trainable weights and the dimension-
ality of inputs processed during inference [19], [20]. However,
the precondition of data availability at test time is only possible
when visual sensors and learned inference models coexist in
hardware, which excludes cases where data is collected from
sensors to be transferred and processed in remote environments
(e.g., by powerful servers located within data-centers). To
bridge the gap between the input requirements of models that
exist in such contexts, it is important to design models that can
perform well when available communication resources are lim-
ited between the visual sensing and neural network processing
parts of the system. For instance, cloud-based visual analysis,
remote medical imaging, low-latency game streaming services,
and drone or Internet-of-Things oriented computer vision [9]
[29], [46], [55], have stringent constraints on the amount of
data that can be provided between data-producing clients and
data-consuming models on cloud servers. In order to bring
computer vision models to wider practical use, it is therefore
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Fig. 1: Sample space of a classification task using two
features (speed and repetition of motion), where colours in-
dicate different actions. The blue line shows an instance of a
learnable input space partition, and the red line shows a one-
dimensional classification boundary learnable by a designated
expert E2(x1) with reduced data requirement.

imperative to provide a solution to data availability constraints
at test time.

Since deep learning models typically require a fixed amount
of data for inference regardless of the specific nature of inputs
to process, this leads to unnecessary and often unachievable
demands in the amount of required data traffic for remote
inference. Although some work has been devoted to input
dimensionality reduction [18], [28], [50] and rate-constrained
model optimization for specific tasks [21], [55], to the best of
our knowledge, no task-agnostic method has been proposed
that explicitly addresses data scarcity at test time by consider-
ing the variance between different domains in input space. The
example of Figure 1 illustrates a classification task where the
acceptable data cost of inference can vary for different input
space partitions. That is, two features (speed and repetition of
motion) can be used to classify the bottom-left examples in
Figure 1, while one feature suffices for distinguishing ”Jog”
examples from ”Run” examples on the top-right. Reducing
the retained dimensions directly correlates with the data cost
of inference. To leverage inherent variances across different
input space partitions, and by selecting among two experts
E1 and E2 which respectively require d1 and d2 bytes per
input where d1 > d2, decision boundaries can be determined
to appropriately pass more data for more difficult inputs.
Learning decision boundaries similar to those of Figure 1
can allow sensors to remotely communicate data as necessary,
subject to the general position of an input within its respective
space. This reduces the overall data cost for inference that
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is accurate enough for the task at hand. Consequentially, this
can relieve unnecessary load on communication resources that
exist between sensors and remote machines used for visual
inference. Our work proposes a solution to learning such
decision boundaries directly from data for any model wherein
inputs can be subsampled or reduced, and for any specified
limit on data cost. Our contributions are summarised below:

1) We introduce a novel class of mixtures-of-experts,
wherein some experts are favored to others by design.
When experts of different data requirements are in-
cluded, this allows mixtures to meet different constraints
on allowed data utility.

2) We propose two methods to train biased mixtures such
that input space is effectively partitioned for each expert
to realize data-efficient mixtures.

3) We show that data transfer optimization between visual
sensing and processing can be formulated as a convex
optimization problem, and present an ablation study of
the benefit of biased mixtures under different contexts
of allowed limits on data utility.

The expert utility biasing method proposed in this paper
can be applied to reduce the data cost of any model wherein
the size of inputs can be subsampled or reduced. To illustrate
this, we train and validate on a variety of tasks spanning
multiple domains. Specifically, we validate on the tasks of:
single shot object detection from the work of Wei et. al [25],
realtime video action classification from the work of Zhang
et. al in [53] and Jubran et. al [8], and image super resolution
from the work of Shi et. al [42] and Dong et. al [11]. The
remainder of this paper is organized as follows: In Section II,
we give an overview of recent work on rate and complexity
optimization. Section III details the proposed biased expert
selection and describes its general architecture and how it is
trained. In Section IV we evaluate the performance of the
proposed method on all tasks, and illustrate the benefits that
biased mixtures of experts can provide on multiple models
for each task. Finally, Section V summarises our findings and
outlines possible directions for future work.

II. RELATED WORK

Within the field of compact image representation, and in
order to communicate data-efficient codes across networks
for remote processing, directly engineered compression tech-
niques were extensively studied to culminate in existing image
compression standards [32], [36]. More recently, learned meth-
ods [33], [49], [50] have attracted attention as the next step
towards more data-driven image compression. Salient among
recent advances in this domain are variational autoencoders
[2], [31], [37] and adversarial models [10], [14], [35]. In
order to adapt learned codes to arithmetic coders, state-of-
the-art proposals on learned compression [30], [34], [38], [49]
additionally learn context models to predict posteriors of latent
code components conditional on all preceding components.
Specifically, and to move learned compression closer to re-
placing established coders [32], [36], context models [30],
[38] use tractable masked convolutions to regulate entropies
of obtained image representations such that they can be coded
more effectively by subsequent entropy coders. In distributed

systems of visual analysis, and in order to reduce throughput
requirements on input, latent states of learned image recon-
struction machines [2], [14], [31], [35] and entropy regulated
compressors [30], [33], [38], [49] can be used instead of full-
length inputs as representative signals to remote inference
models.

Other studies consider the regulation of input volumes
for complexity optimization, and propose modifications that
are applicable to a wide range of models. In this realm,
proposals such as static model pruning [15], [16], [19], reduce
complexity by modifying models in a persistent manner for all
inputs at test time. More recent proposals [3], [4], [23], [41]
show how the test-time complexity of very large networks
can be substantially reduced by conditioning computation to
the content of feature maps at runtime, and do so by training
external agents to enable or disable different parts of models
subject to the unique properties of each input. However, all of
the aforementioned works optimize solely for complexity, and
always consider the maximum amount of input to be available
at test time. Other proposals also studied specific vision
tasks in order to reduce the data requirement of deep neural
network models. For example, this can be seen in previous
work [8], [53], [55], where input volumes are reduced by
distilling input sequences to their most useful elements before
relaying to remote servers for semantic analysis. Other work
[22], [52] mainly focused on task-specific mappings of inputs
onto lower-dimensional space before training with more data-
efficient models, and recent advances in domain adaptation
and transfer learning [26], [39], [48] can also be used to
learn compressed codes tuned to particular models. However,
for any specified source distribution, domain adaptation [26],
[39], [48] and other proposals mentioned above [8], [53], [55]
equally compact all sampled inputs to fixed length codes,
and varying degrees of entropy among input examples are
ignored. As such, low-entropy inputs (which contain less
information relative to others) are mapped to redundantly
long code-lengths, and subsequently incur unnecessary loads
on data transfer assets and inference complexity. In this
sense, while the aforementioned advances are important in
determining useful transformations to adaptive or fixed-length
codes, complementary techniques are necessary to determine
required code lengths prior to compression and inference.

In our work, we consider the data cost optimization problem
in task-agnostic manner, and determine required input volumes
prior to visual inference. Specifically, we consider how input
space partitions vary in the amount of data required per
input in order to ensure good performance, and leverage this
variance to train more data-efficient mixtures of experts. To
do so, we take inspiration from recent work [19], [23], [41]
to propose a mixture of experts where expert utility is biased
towards specific experts. While meeting predefined constraints
on expert utility bias, we train a sparse gating function to
select the most adequate expert to use from a set of experts of
varied input requirements. Importantly, our method does not
modify any pre-existing methods for complexity optimization
or task-specific data cost reduction. As such, our proposal can
be applied in conjunction with recent proposals on learnable
compression [30], [34], [38] and domain adaptation [26], [39],
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Fig. 2: An illustration of how biased mixtures of experts can be applied for different computer vision tasks. (∗) is a special
operator that transmits data to remote inference parts of the model whenever it receives a non-zero gate value. From left to
right: (a) single shot detection (SSD), (b) image super resolution, and (c) realtime action classification.

[48] to reduce the data cost of visual inference. We show
that our method can be augmented in accordance with any
set of pre-trained experts to partition input space such that
constraints on data availability are met at test time, while
providing the best possible accuracy of inference.

III. BIASED EXPERT SELECTION

A. General Architecture Formulation

Let E denote a mixture of N experts where E =
{E1, E2, ..., EN}, and each expert En is a modified variant
of a task-performing baseline model. Per input x, a gating
function determines the contribution of the nth expert as:

G(x;Wg)n =
ef(x;Wg)n

∑N
m 6=n ef(x;Wg)m

(1)

where Wg is a set of trainable weight parameters, m ∈ N
denotes remaining gate indices, and f(x;Wg) ∈ RN is
the output of a specified gating model (e.g, a multi-layer
perceptron). The output y of the mixture of experts is:

y =
N∑

n=1

G(x;Wg)nEn(Pn(x)) (2)

where Pn is a preprocessing function to accommodate x for
the nth expert (e.g., Pn performs subsampling if En ingests
sub-sampled inputs). Mixtures of experts are typically trained
using a task loss that calculates the error between a provisioned
ground-truth and y. In our proposed Biased Mixtures-of-
Experts (BMoE), experts are activated only when needed,
and activating some experts is more favorable to activating
others. In addition, all experts are optimized before training
the mixture, and the training loss is back-propagated through
the gating function exclusively during training. In Figure 2
we illustrate some examples of how biased mixtures can be
applied for different tasks.

To adjust mixtures for biased expert selection, we denote the
desired amount of bias in expert selection by b, where each
of its components bn specifies per batch the ratio of input
examples to pass to each nth expert. Importantly, elements of
b denote frequencies of use as ratios and cannot be assigned
negative values (e.g., setting bn = 0.1 to use expert En 10% of
the time), giving the properties 0 ≤ bn ≤ 1, and ||b||1 = 1. We
consider two methods of training for biased expert selection:
(i) a soft regularization approach where a regularization term is
included in the total loss to encourage bias, and (ii) fixing the
average data cost per batch, by enforcing a constant number
of training examples to each expert in accordance with b
and training only with respect to the task loss. Both methods
encourage mixtures of experts to maximize performance while
meeting the specified bias, and we describe in detail each
method in the following:

B. Soft Bias Regularization

When using soft bias regularization, the most suitable expert
to use is selected per input via a sparse gating function, and
all other experts are omitted. To do so, akin to [41] for each
input x only the expert associated with the highest gate value
is considered for inference, and we write the sparse gating
function as:

G(I;Wg)n = ψ(f(x;Wg))n ∙
ef(x;Wg)n

∑N
m 6=n ef(x;Wg)m

(3)

where ψ(f(x;Wg)) is a non-linear operator which returns a
one-hot vector indicating the top value in f(I;Wg). From (3)
we also define the utility of each nth expert un as its total
contribution per batch X comprising M examples:

un =
1
M

∑

x∈X

G(x;Wg)n (4)
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and we calculate the bias regularization loss lbias as a function
of u ∈ RN and the specified bias vector b:

lbias = −wbias log(1−
1
√

2
||u− b||

2
) (5)

where wbias is a hyperparameter to control the amount of bias
to impose on the mixture. Since u and b describe frequencies
as ratios and ||u||1 = ||b||1 = 1, the distance ||u − b||2 is
normalized by

√
2 to ensure the expression within the log

function is always positive (
√

2 is the maximum possible
euclidian distance between vectors with an L1 norm of one).
By applying the modifications to the gating function in (3), and
including the bias regularization loss in (5) to the total loss,
the mixture of experts is simultaneously trained to maximize
task performance and meet the specified bias.

C. Batchwise Bias Enforcement

In our second proposal, rather than encourage mixtures to
align the utility of their experts with the specified bias, we
enforce bias per batch in accordance with b, and train the
mixture only with respect to its task loss. This in effect trains
mixtures to make better expert selections for each input, while
meeting the bias constraint for every batch. Specifically, with
a batch size of M , batches are segmented such that Mbn

examples are passed to each nth expert. To do so, starting
from (1), we consider G ∈ RM×N as an M sized batch of
gate vectors G(x;Wg), and perform the procedure described
in Algorithm 1. For each nth expert, we denote gate values
assigned to columns of input as G:,n and illustrate this in
Figure 3.

Algorithm 1 Batchwise Bias Enforcement

Input: Soft gates batch G ∈ RM×N

1: for n = 1 to n = N do
2: K ←Mbn

Calculate number of inputs to pass to the nth expert
3: T ← TopK(G:,n,K)

Find top K values corresponding to the nth expert
4: for i = 1 to i = M do
5: if Ti 6= 0 then
6: Gi,j ← 0 ∀j 6= n

For the ith input, set all gate values not corre-
sponding to nth expert to 0

7: else
8: Gi,n ← 0

Set gate value corresponding to the ith input and
nth expert to 0

9: end if
10: end for
11: end for

D. Selecting Bias Values for Data Cost Optimization

So far, we discussed how biased mixtures are trained to
make informed expert selections when a bias vector b specifies
the frequency of expert utility. Here we detail our method for

Fig. 3: Batchwise bias enforcement example when N = 3,
M = 4 and b = [0.50, 0.25, 0.25]. Inputs are selected per
batch by iteratively sorting and selecting the top Mbn highest
gate values for each nth expert. Gates subsequently set to zero
are highlighted in red, and top (Mbn) values are highlighted
in blue.

selecting useful biases that can optimize performance under
different constraints on data utility. We consider the inference
data cost vector d ∈ RN , where each of its components dn is
the size of input volumes per example as seen by each expert
(i.e., the data cost associated with Pn(x)). When mixtures
are biased and an ample number of samples is considered, the
average data cost is then expressed as d̄ = bdT =

∑N
n=1 bndn.

In this way, the biasing vector b can be tuned to allow
for different average data costs of inference in the interval
[dmin, dmax], where dmin and dmax are the minimum and
maximum amounts of data that can be ingested by experts in
the mixture.

Importantly, it can be seen that when N > 2 there
can be multiple instantiations of b that produce the same
average data cost d̄. Thus, when an average data cost target
dt ∈ [dmin, dmax] is specified, it is necessary to define a
method by which to determine an appropriate bias vector
b that is subsequently used in training biased mixtures. To
address this, we consider p ∈ RN where pn quantifies the
performance of each optimized expert prior to inclusion in
the mixture, and select b such that: (i) b satisfies d̄ = dt, and
(ii) b maximises the expected test performance as measured by
bpT. That is, when each component pn denotes an appropriate
performance measure for the nth expert on a designated set
of inputs isolated from testing examples (e.g., pn can be
accuracy for classification tasks, or mean average precision for
objection detection tasks), bpT is a measure of performance
when examples are randomly assigned to experts with respect
to b. In doing so, we reduce the problem of determining b for
a specified data cost dt to a linear optimization problem that
achieves bdT = dt, while maximising bpT. Since ||b||1 = 1
and bN can be expressed as bN = 1−

∑N−1
n=1 bn. By expanding

and substituting bN , we get:

b1d1 + b2d2 + ... + (1−
N−1∑

n=1

bn)dN = dt (6)

and following that components of b must be summable to
unity, we also get the additional (N − 1) constraints:

b1 ≤ 1; b2 ≤ 1; ... ; bN−1 ≤ 1 (7)

with the performance maximization objective:
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max{b1p1 + b2p2 + ... + bNpN} (8)

Note that (6) and (7) define N linear constraints to max-
imize the objective (8) with N basic values {b1, b2, ..., bN}.
Following the duality property of such convex problems [5],
[13], we can also formulate the dual (and equivalent) problem
that finds b for any specified performance target pt. That is,
appropriate biases can be found to meet pt with the (N − 1)
constraints of (7) and the additional constraint on expected
performance:

b1p1 + b2p2 + ... + (1−
N−1∑

n=1

bn)pN = pt (9)

with the data cost minimization objective:

min{b1d1 + b2d2 + ... + bNdN} (10)

Thus, determining b is a convex problem that can be readily
solved by any convex optimization technique [5], [6], [13],
such as the simplex method [5], [6]. That is, an appropriate
biasing value b to use for training can be found for any
specified target data cost dt by solving for b in (6)-(8), or
any target on expected performance pt by solving (7), (9),
and (10).

E. Final Observations

In considering the performance of biased mixtures, the
quality of expert selections from E is regulated by the com-
plexity of the gating function G(x;Wg); where increasing
the complexity of G(x;Wg) can improve selections (e.g.,
by increasing the number of learnable weights), albeit with
diminishing returns. In addition, and in the case of bias
enforcement, we intuitively expect the quality of selections to
be directly correlated with batch sizes used for training. That
is, low batch size settings may not expose gating functions to
a sufficient amount of variance in inputs to make selections
of benefit, and setting higher batch sizes is favorable.

Importantly, applications of biased mixtures allow gating
functions G(x;Wg) to wholly observe inputs x prior to
selecting experts for data-economy. That is, biased mixtures
can be distributed to allow for gating before preprocessing
to produce sampled inputs Pn(x), and before inputs are
subsequently sent to remote models for visual inference (as
illustrated in Fig. 2). As a result, the constraint for gating
functions is not input size, but the processing capability on-
board visual sensors. We also note that, expert selection
methods proposed in this paper can be applied with mixtures
comprising experts that are optimized for low data cost via
additional task-specific dimensionality reduction methods, and
experts that use different modalities to make their inferences
(as illustrated in (c) of Fig. 2). Finally, while our work studies
the problem of reducing data utility, b can also be specified to
prioritize any other expert property whenever constraints are
properly quantified and made available to the proposed gating
architecture (e.g., to meet constraints on power consumption
or latency).

IV. EVALUATION

A. Benchmarks and Evaluation Method

To show how biased mixtures can optimize data costs
of inference for different problems, we evaluate on three
computer vision tasks: (i) object detection, (ii) image super
resolution, and (iii) realtime action classification. In reporting
results for all tasks, we compare our method against two
alternatives:

1) Previously Proposed Models: To benchmark our results
against relevant task-specific solutions, we consider the
performance of constituent experts when optimized for
different data cost constraints. In biased mixtures, this
corresponds to specifying b as a one-hot vector, and
measures performance when the same amount of data
is used for all inputs during inference (e.g., when b =
[0, 1, 0] only E2 is used for inference). We report this
to benchmark against previous work and to highlight
the benefit of uniquely dividing the input space for each
expert.

2) Random Selection: Here, experts are randomly selected
for inference at test time in order to satisfy the model
biasing requirement b. This is to serve as the lower
bound of performance when biased mixtures are used
and the specified expert utility bias is met.

Importantly, when considering the problem of task-agnostic
model optimization under data cost constraints, there is no
previous work similar to ours (see Section II). That is why,
we benchmark against the maximum performance achievable
by recently proposed task-specific solutions when their input
volumes are adjusted to meet different constraints on data cost.
That is, biased mixtures consist of experts that also stand in as
external benchmarks. To highlight the latter, benchmark results
of constituent experts are indicated in comparative plots by
markers on dotted lines.

For clarity, and to ensure consistency of representation
across all tasks, we report the per input data cost of inference
d̄ as the average amount of data seen by the mixture after
inputs are fully decompressed. For each evaluated task we
specify how the data cost for each expert dn is measured (i.e.,
the data cost associated with Pn(x)). For a concise measure of
how well models preform across different specified data cost
constraints of dt ∈ [dmin, dmax], and with ptest(dt) denoting
test performance when the target data cost is dt, we report the
area under curve when data cost is normalized as:

ρ =
∫ 1

0

ptest(dmin + t(dmax − dmin)) dt (11)

For all mixtures, we specify the gating model (i.e.,
f(x;Wg)) as a single conv-pool layer followed by a fully
connected network. To ensure that the model selection process
is of low complexity for all tasks, we use ReLU activated
depthwise separable convolutions [43], and report the per input
number of multiply-accumulate gating operations Cg . We use
cross-validation to optimize the biasing weight wbias and report
the best performance when soft regularization is used. After
all experts included in the mixture are individually optimized,
biased mixtures are trained by updating the weights of the



SUBMITTED FOR PUBLICATION 6

gating function exclusively, and the weights of experts are not
fine-tuned further. We have found that using higher batch sizes
is helpful when training biased mixtures, because it exposes
the mixture to a more varied set of input examples to parti-
tion to each expert meaningfully. Therefore, to ensure gating
functions learn meaningful features for batch partitioning, for
all tasks we set the batch size to 128 and the learning rate to
10−4.

B. Single-Shot Object Detection

We test our method on single-shot detection (SSD) to reduce
the data requirement for object detection while maintaining
high accuracy. Recent work [19], [20] [51] showed that SSD
models vary widely in performance and complexity when input
sizes are adjusted. When considering the varying degrees of
complexity of natural images, we expect that the minimum
required subsampling rate of inputs for accurate object detec-
tion should vary accordingly. To demonstrate this, we train a
biased mixture of experts where each expert is optimized for a
different image subsampling rate, and use the recent work of
Liu et. al [25] as a baseline for all experts (for an illustration,
see (a) of Figure 2). When the resolution of inputs to each
expert is Rn×Rn pixels, we measure the data cost associated
with Pn(x) as 3× Rn × Rn ×K, where 3 is the number of
color channels in RGB inputs, and K is the number of bytes
needed to store floating point decimals.

We use VGG16 [12] and ResNet50 [17] for feature ex-
traction and evaluate all models using 300 regional proposal
boxes for VGG16 [12], and 50 regional proposal boxes for
ResNet50 [17]. Following recent work [20], [25], we train on
COCO training data while excluding the 8k mini-eval images
used in the 2012 challenge [24], and report performance as
the mean Average Precision (mAP) on COCO (07+12). We
train mixtures for 20k steps to show our results when using
soft regularization and bias enforcement, and in Table IV we
detail the types and complexities of all layers used in devising
the gating model f(x;Wg). Inputs to the gating model are pre-
processed as 224×224 center crops of 300×300 images, and
we ensure that the gating complexity of all mixtures remains
at Cg < 108 Mult-Add operations.

TABLE I: Single shot detection comparison on COCO [24] of
biased mixtures of SSD [25] experts against other benchmarks.
Resolutions {Rn} and data costs {dn} are reported for all
experts.

{Rn}= {100, 150, 300}(Pixels); {dn} = {120, 270, 1080}(kB)
Feature

Biasing Method
mAP(dt) (%) when dt =

ρ
Extractor dmax

dmax
2

dmax
3

VGG16 [44]

Benchmark Experts [44]

80.0

70.0 66.7 70.9
Proposed b Enforcement 72.5 70.9 73.1
Soft Regularization [41] 67.1 65.0 68.9

Random Selection 66.3 63.4 68.2

ResNet50 [17]

Benchmark Experts [17]

75.7

65.1 61.3 66.1
Proposed b Enforcement 67.8 65.9 68.3
Soft Regularization [41] 62.2 59.9 64.2

Random Selection 61.9 57.4 63.3
——– ———-

Figure 4 shows the relationship between imposed bias, data
cost, and mAP when three VGG16 experts are used for single
shot detection, where the resolution of inputs to each expert is
{Rn} = {100, 150, 300}. Notably, biased mixtures optimized

TABLE II: mAP performance of individual experts over their
assigned input examples as determined by G(x;Wg). Baseline
expert accuracies before gating are reported in {En mAP}, and
are measured as the accuracy of each expert over all COCO
inputs [24]. Values in parentheses show differences relative to
expert baseline accuracies in {En mAP}.

{Rn}= {100, 150, 300}; {En mAP}={57.91, 64.60, 80.01} (%)
Bias Enforcement mAP (%)

b E1 E2 E3 BMoE
[0.8, 0.1, 0.1] 70.62 (+12.72) 60.07(−4.52) 72.02(−7.99) 69.71
[0.5, 0.3, 0.2] 76.21 (+18.31) 61.37(−3.23) 73.60(−6.41) 71.24
[0.2, 0.3, 0.5] 78.53 (+20.63) 63.31(−1.29) 77.59(−2.40) 73.50

Soft Regularization mAP (%)
b E1 E2 E3 BMoE

[0.8, 0.1, 0.1] 60.73 (+2.83) 60.72(−3.87) 73.61(−6.40) 62.02
[0.5, 0.3, 0.2] 63.19 (+5.31) 62.01(−2.58) 76.03(−4.01) 65.41
[0.2, 0.3, 0.5] 56.95 (−0.94) 62.66(−1.93) 76.80(−3.20) 68.59

TABLE III: Relation between gating complexity, batch size,
and performance when bias enforcement is used.

Cg M
ρ when {Rn} =

{100, 300}(Pixels) {100, 150, 300}(Pixels)
(Mult-Adds) VGG16 [44] ResNet [17] VGG16 [44] ResNet50 [17]

23,048,576
16 68.40 64.11 69.27 64.46
32 70.35 65.89 70.25 65.57
64 70.93 66.24 71.16 65.72

26,194,304
16 70.85 66.92 71.82 67.04
32 71.49 67.25 72.50 67.41
64 71.84 67.59 72.97 68.04

38,700,216
16 70.93 67.01 72.10 67.33
32 71.58 67.25 73.07 68.26
64 71.86 67.62 73.13 68.30
— —- ——- ———- ——

with bias enforcement provide the slowest degradation in mAP
for lower data costs, with diminishing gains when more data
is available at test time. Specifically, biasing via enforcement
outperforms individual experts by 7.5% when an average of
220 kilobytes per image is allowed, which is equal to the
performance of individual experts at 490 kilobytes. That is,
when the minimum acceptable mAP is 70%, a reduction of
270 kilobytes in required data is achieved by our proposal
(which is equivalent to a saving of 55% in bitrate).

To further assess how biased mixtures learn useful bifur-
cations of input space, Table II details the performance of
each expert on their assigned subset of inputs. Notably, Table
II highlights how easier input examples are passed to the
data-efficient expert E1, resulting in increased accuracies of
E1 compared to its baseline accuracy of 57.91% which is
measured over all inputs. Conversely, biased mixtures pass
more difficult examples to E2 and E3, resulting in lower ac-
curacies over their assigned inputs compared to their baseline
accuracies. Interestingly, and especially for bias enforcement,
Table II also shows how improved accuracies of E1 (which
correlate with how ”easy” its assigned inputs are to classify)
are inversely proportional to the number of examples passed
to it, as reflected by b1 (e.g., a difference of +12.72 percentile
points in accuracy when b1 = 0.8, compared to an increase of
+18.31 when b1 = 0.5).

In Table I we show the performance of biased mixtures
when applied to multiple models, and report ρ as a comprehen-
sive measure of model performance across data costs. When
compared to random selection, we note that for both ResNet50
[17] and VGG16 [44], imposing bias on mixtures provides the
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Fig. 4: Single shot detection performance comparison of
biased mixtures of VGG16 [44] experts against other bench-
marks when {Rn} = {100, 150, 300}. The performance of
individual experts is shown on the dotted line.

highest gain when lower values of data cost are considered
(e.g., when dt < dmax

3 ). Compared to soft regularization, and
for all mixture configurations, we found that bias enforcement
is a much more effective method for training biased mixtures
(this is also true for all other tasks evaluated). We hypothesise
this is because, when bias enforcement is used only the task
loss is back-propagated during training, which causes less
competition between losses and therefore less local minima
to exist in solution space.

TABLE IV: Layer complexities C of the gating model
f(x;Wg) for biased mixtures evaluated on single shot de-
tection. Expert input resolutions are specified as {Rn} =
{100, 150, 300} and N = 3.

Layer Type Filter Shape Stride Input Shape
C

(Mult-Adds)
Convolutional 3 × 3 × 3 × 64 2 224 × 224 × 3 2, 747, 136
Avg. Pooling 7 × 7 5 111 × 111 × 64 —-
Flatten Op. − − 21 × 21 × 64 —-

Fully Connected 28224 × 1024 − 1 × 28224 28, 901, 376
Fully Connected 1024 × 3 − 1 × 1024 3072

In Table III we study the effect of adjusting the gating
complexity Cg , batch size M , and number of experts N on
the performance of biased mixtures when bias enforcement is
used. When we consider all mixtures, we find that batch size
is critical to performance. This is because bias is enforced on
a per batch basis, and to make meaningful decisions the gating
function needs to be exposed to an ample amount of variance
between examples. We also see that increasing the complexity
of gating does increase performance by helping partition the
input space more effectively. However, this effect saturates at
Cg ≈ 3.8 × 107 Mult-Add operations, which demonstrates
that the optimal hyperplane to partition input space for N ≤ 3
experts can be learned with low complexity.

By comparing the left and right part of Table III, we see
that adding more experts to the mixture provides a modest

increase to performance. This is because having more experts
allows the mixture to further exploit the variance in different
input sub-spaces (if any such variance exists). To see the
extent to which this is true, in Figure 5 we adjust the
limits of allowed input resolutions to the mixture Rmin and
Rmax, and report ρ when considering different values of N .
Importantly, we see that when the difference between Rmin

and Rmax is lower, using more experts yields less gain in
performance, to the point where using more than three experts
for (Rmin, Rmax) = (100, 300) does not provide any benefit.
This is because, while setting high values of N increases the
number of intermediate resolutions between Rmin and Rmax,
the difference (Rmax − Rmin) correlates with the amount of
discernable adequacy between experts, which in turn correlates
with the benefit of including more experts.

Fig. 5: ρ when bias enforcement is used and the number
of experts N is configured. VGG16 [44] is used for feature
extraction, and different colors indicate the resolution limits
(Rmin, Rmax) allowed to the mixture (where N determines
the number of intermediate input resolutions included).

C. Image Super-Resolution

We test the applicability of biased mixtures on Single Image
Super resolution (SISR), an image reconstruction task where
spatial features of high-resolution images are inferred from
low-resolution input images. Several recent proposals have
shown good performance in terms of image reconstruction
accuracy and computational efficiency [11], [42], [47] [54].
However, current super resolution models do not take into
account the variable amount of high-frequency edge content
between images. That is, when reconstructing images which
contain many high frequency elements, SISR models are
likely to benefit from higher resolution input images, while
images comprising predominately low-frequency content can
be inferred just as well from lower resolution inputs. This
is true also when considering different parts of an image,
which usually vary in the breadth of their frequency elements.
To demonstrate this, we train biased mixtures to determine
the needed input resolution for good image reconstruction,
and in doing so, we show how different image parts can be
adaptively upsampled subject to their content. Such decisions
about selected super-resolution experts can also be augmented
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to existing media streaming standards (e.g., DASH/HLS in
HTTP [19]) for adaptive subsampling prior to transmission.

We evaluate on the NTIRE17 challenge dataset DIV2K [1],
and to expose biased mixtures to the intra-image variance of
frequency elements, images are divided using a fixed grid into
parts of size 64×64 pixels, and super-resolution is performed
on each part separately (for an illustration, see (b) of Figure 2).
By inspecting the low-level semantics of each image part, the
mixture selects the most data efficient expert for reconstruction
to preform an upscaling from the set {Sn} = {×4,×3,×2}.
For each expert that upscales inputs with a factor of Sn to
match the target resolution of 64 × 64 pixels, we measure
the associated data cost as dn = (64/Sn)2 ×K, where K is
the number of bytes needed to store floating point decimals.
To expose gating to the high frequency components of input
images, inputs to the gating model are not subsampled, and are
maintained at the original resolution of resolution of 64× 64
pixels. For all biased mixture results, mixtures are trained for
20 epochs and we ensure the complexity of the gating function
is set to Cg < 107 Mult-Add operations.

Fig. 6: Super resolution performance comparison of biased
mixture of ESPCN [42] experts and other benchmarks when
{Sn}= {×4,×3,×2}.

TABLE V: Image super resolution comparison on DIV2K
[1] of biased mixtures and other benchmarks. Upscale factors
{Sn} and data costs {dn} are reported for all experts.

{Sn}= {×4,×3,×2}; {dn} = {13.9, 21.8, 49.2}(kB)

Model Biasing Method PSNR(dt) (dB) when dt =
ρ

dmax
dmax

2
dmax

3

ESPCN [42]

Benchmark Experts [42]

33.3

30.4 28.4 30.7
Proposed b Enforcement 30.7 28.8 31.0
Soft Regularization [41] 30.0 28.1 30.6

Random Selection 29.8 28.0 30.5

F-SRCNN [11]

Benchmark Experts [11]

32.8

29.8 28.0 30.3
Proposed b Enforcement 30.1 28.3 30.5
Soft Regularization [41] 29.3 27.6 30.1

Random Selection 29.2 27.5 30.0
——– ———-

In Table V we compare biased mixtures against other
benchmarks when using ESPCN [42] and FRSCNN [11] as

TABLE VI: PSNR performance of individual experts over their
assigned input examples as determined by G(x;Wg). Baseline
PSNR values before gating are reported in {En PSNR}, and
are measured for each expert over all DIV2K inputs [1].
Values in parentheses show differences relative to baseline
reconstruction accuracies in {En PSNR}.

{Sn}= {×4,×3, ×2};{En PSNR}={27.61, 29.86, 33.31} (dB)
Bias Enforcement PSNR (dB)

b E1 E2 E3 BMoE
[0.8, 0.1, 0.1] 28.97 (+1.36) 28.96(−0.89) 32.35(−1.02) 29.31
[0.5, 0.3, 0.2] 30.14 (+2.53) 29.62(−0.23) 32.64(−0.67) 30.49
[0.2, 0.3, 0.5] 30.09 (+2.48) 29.74(−0.14) 32.97(−0.33) 31.42

Soft Regularization PSNR (dB)
b E1 E2 E3 BMoE

[0.8, 0.1, 0.1] 27.95 (+0.34) 28.93(−0.92) 32.24(−1.06) 28.48
[0.5, 0.3, 0.2] 28.56 (+0.95) 29.71(−0.14) 32.57(−0.73) 29.71
[0.2, 0.3, 0.5] 28.51 (+0.90) 29.77(−0.08) 32.91(−0.39) 31.09

baselines, in Table VI we detail the performance of experts
over their assigned subsets of input, and in Figure 6 we
show the relationship between average data cost and PSNR
when considering ESPCN [42]. Notably from Figure 6, when
bias enforcement is used and d̄ is within the range of 18-22
kilobytes, biased mixtures outperform single experts with an
average difference of 0.4 dB. Over the same range of values of
d̄, and when compared to random selection, bias enforcement
provides an average improvement of 0.7 dB. This highlights
the magnitude of intra-image high variance in required input
resolution for image reconstruction, which is not considered
by random selection and optimized experts. Overall, Figure 6
and Table V show that biased mixtures outperform individual
experts most when d̄ < 20 kilobytes, with diminishing gains
in performance for higher values of d̄.

Fig. 7: Examples of expert assignments to different image
parts. Selected and non-selected experts are respectively high-
lighted by blue and red borders. Note the exploitable variance
in detail between images, which translates into the data cost
savings reported in Table V.

In Figure 7 we show examples of expert selections made
by the biased mixture to resolve different 64×64 inputs when
bias enforcement is used. The mixture learns to pass image
parts with high frequency components to the ×2 SISR model,
and passes other less demanding parts to the ×4 model (which
are blurrier, due to the lower frequency of their components).
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TABLE VII: Layer complexities C of the gating model
f(x;Wg) for biased mixtures evaluated on single image super-
resolution. Expert upscaling factors are specified as {Sn} =
{×4,×3,×2} and N = 3.

Layer Type Filter Shape Stride Input Shape C
(Mult-Adds)

Convolutional 3 × 3 × 3 × 64 2 64 × 64 × 3 224, 256
Avg. Pooling 3 × 3 2 21 × 21 × 64 —-
Flatten Op. − − 10 × 10 × 64 —-

Fully Connected 6400 × 512 − 1 × 6400 3, 276, 800
Fully Connected 512 × 3 − 1 × 512 1, 536

D. Realtime Action Classification

We validate biased expert selection on realtime video action
classification in the compressed domain. While the best per-
forming action classification models operate on uncompressed
video data, to reduce latency, the models proposed in recent
work [8], [53] infer a low-resolution optical flow from codec
motion vectors at high speeds for action classification. The
classifiers of [8], [53] use two-stream architectures to infer
actions, where spatial and temporal classifiers complement
each other by learning different sets of features from their
respective domains [40]. As such, for some action subsets,
the use of only the temporal or spatial classifier can suffice in
drawing accurate distinctions between actions, but combining
the predictions of both provides the highest accuracy.

Distinct from other compute-exhaustive models for action
classification [7], the recent proposals on realtime video classi-
fication [8], [53] use minimal volumes of data to ensure com-
plexities and runtimes remain low. The work of [8], [53] also
produces spatio-temporal modes directly from compressed
bitstreams to bypass complexity overheads associated with
dense optical flow estimation. We show how input volumes
can be further reduced by learning which modes to use directly
from data, by exposing only the spatio-temporal mode to
gating functions that select which modes to send to remote
realtime classification models [8], [53]. We do this such that
all modalities (spatial and spatio-temporal) are sent to remote
classifiers exclusively when videos are challenging to classify.
Otherwise, only the temporal modalities are sent, thereby
mitigating unnecessary traffic between sensors and remote
classifiers (and we illustrate this in (c) of Figure 2).

We evaluate on UCF-101 [45] and measure the cost as-
sociated with the spatial mode as Fs × Hs ×Ws × K × 3,
where Fs = 2 is the number of RGB frames used, Hs = 360
and Ws = 240 are the height and width of inputs, and
K = 32 is the number of bytes to store floating point
decimals. For the temporal model, we measure the data cost
as Ft × Ht × Wt × K × 2, where Ht = 24 and Wt = 24
are the height and width of approximated optical flow, and
Ft = 150 is the number of frames used (two channels are used
in optical flow to represent vertical and horizontal motion).
Importantly, we select sampling rates akin to those of [8]
which sets Fs = 1, Ft ≥ 10, and the proposal of [53] which
sets Fs = 1, Ft ≥ 100. This is to meet complexity limits for
realtime inference, where the benchmark models [8], [53] set
modest sampling rates compared to other exhaustive methods

[7], which typically use dense optical flow approximations
with Fs ≥ 50 and Ft ≥ 150. Moreover, in implementing the
benchmark model of Zhang et al. [53], we follow their method
of upsampling 24×24 optical flow crops to 224×224 temporal
mode inputs. However, upsampling is performed after inputs
are sent via the (∗) operator of Fig. 2 (c), and therefore shape
parameters remain at Ht = 24 and Wt = 24 when measuring
data cost.

The fusion classifier uses both modalities to predict actions
and is the most accurate, but requires a data cost equal the
sum of both modalities. We include all modalities to train
a mixture of experts {Moden} = {Temporal, Spatial, Fusion},
and train a gating function to select the most suitable modality
to use for each input. Importantly, and to allow for lower
complexities of gating, inputs to the gating model include only
the temporal modes of videos, and spatial modes are not used.
For all biased mixtures, we train for 80k steps and restrict
the complexity of the gating function to Cg < 108 Mult-
Add operations, where we detail the layer-wise complexities
of gating in Table X.

TABLE VIII: Realtime action classification on UCF-101 [45]
of biased mixtures of experts and other benchmarks. Modali-
ties {Moden} and data costs {dn} are reported for all experts.

{Moden}= {Temporal, Spatial, Fusion}; {dn} = {737.3, 1843.0, 2580.5}(kB)

Model Biasing Method Accuracy(dt) (%) when dt =
ρ

dmax
dmax

2
dmax

3

MV-3DCNN [8]

Benchmark Experts [8]

88.0

79.0 77.9 80.9
Proposed b Enforcement 82.0 80.4 83.5
Soft Regularization [41] 80.3 78.0 81.9

Random Selection 78.8 77.3 81.3

EMV-CNN [53]

Benchmark Experts [53]

85.6

76.6 75.5 78.7
Proposed b Enforcement 80.2 79.2 81.3
Soft Regularization [41] 77.2 75.6 79.7

Random Selection 75.7 74.9 79.0
——– ———-

TABLE IX: Accuracy of individual experts over their assigned
inputs as determined by G(x;Wg). Baseline accuracies before
gating are reported in {En Acc.}, and are measured for
each expert over all UCF-101 inputs [45]. Differences relative
to expert baseline accuracies in {En Acc.} are shown in
parentheses.

{Moden}= {Temporal, Spatial, Fusion}; {En Acc.}={77.84, 80.11, 88.03} (%)
Bias Enforcement Accuracy (%)

b E1 E2 E3 BMoE
[0.8, 0.1, 0.1] 81.80 (+3.97) 78.99(−1.12) 84.51(−3.52) 81.8
[0.5, 0.3, 0.2] 83.65 (+5.81) 79.34(−0.76) 85.34(−2.68) 82.7
[0.2, 0.3, 0.5] 83.44 (+5.60) 79.38(−0.72) 85.38(−2.64) 83.2

Soft Regularization Accuracy (%)
b E1 E2 E3 BMoE

[0.8, 0.1, 0.1] 78.41 (+0.57) 78.10(−2.01) 84.59(−3.43) 79.00
[0.5, 0.3, 0.2] 81.04 (+3.20) 78.51(−1.61) 85.13(−2.90) 81.10
[0.2, 0.3, 0.5] 78.74 (+0.91) 78.66(−1.44) 85.30(−2.72) 80.02
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TABLE X: Layer complexities C of the gating model
f(x;Wg) for biased mixtures evaluated on realtime action
classification. Expert modalities are specified as {Moden} =
{Temporal, Spatial, Fusion} and N = 3. Note that the gating
model f(x;Wg) ingests only temporal modalities of x.

Layer Type Filter Shape Stride Input Shape C
(Mult-Adds)

Convolutional 3 × 3 × 320 × 64 2 24 × 24 × 320 3, 363, 840
Flatten Op. − − 11 × 11 × 64 —-

Fully Connected 7744 × 1024 − 1 × 7744 7, 929, 856
Fully Connected 1024 × 3 − 1 × 1024 3, 072

In Table VIII we compare the performance of biased mix-
tures against other benchmarks when using the spatial and
temporal classifiers of [8] and [53] as baselines, and in Table
IX we detail the performance of experts over their assigned
input subsets as determined by G(x;Wg). From Table VIII,
we first note that both biasing methods outperform random
selection, by up to 1% for soft regularization and up to 3.8%
for bias enforcement. This indicates that the biased mixture
learns to discern confusing classes for particular modalities
to pass them to others. Notably, when d̄ = dmax

3 = 860
kilobytes, bias enforcement gives an accuracy 1.4% higher
than that of the optimized experts at dmax

2 = 1290 kilobytes,
which requires 430 kilobytes more in data cost.

In Figure 8 we show the relationship between d̄ and
action classification accuracy for instances of b when biased
mixtures of MV-3DCNN [8] experts are used and the mode
of each expert is {Moden} = {Temporal, Spatial, Fusion}.
We first note that, due to the low resolution of its inputs,
the temporal classifier requires the least amount of data and
can predict actions with an accuracy of 77.8%. By selecting
among the three modes, both biasing methods outperform
random selection, with bias enforcement increasing accuracy
by up to 3.4% for when d̄ = 1032 kilobytes. Notably, and
when using the temporal classifier for 80% of videos at
d̄ = 1032 kilobytes (i.e., when b = [0.8, 0.1, 0.1]), bias
enforcement is 1.6% more accurate than the spatial classifier
(which requires 811 kilobytes more in data, equivalent to an
increase of 78% in data cost). The latter shows the extent
to which biased mixtures can improve performance by using
modest amounts of data, even compared to individual models
that require substantially more in data cost. Moreover, Table
IX highlights how inputs are appropriately passed to experts
for data-economic classification. Specifically, it shows how
biased mixtures learn to use the data-efficient temporal
model for inputs that are easier to classify, where temporal
modalities are likely to suffice for accurate classification.
For example, this is evident when b1 = 0.5 and b1 = 0.2,
where the temporal classifier E1 respectively gains +5.81
and +5.60 percentile points in classifying its assigned inputs
when compared to its baseline accuracy measured over all
videos of UCF-101 [45]. On the other hand, Table IX also
shows how more difficult inputs are passed to the spatial and
fusion classifiers, resulting in a modest loss of accuracy when
classifying their assigned inputs.

To visualize how different modalities are assigned to videos,

Fig. 8: Realtime action classification performance comparison
of biased mixtures of MV-3DCNN [8] experts, with expert
modalities {Moden}={Temporal,Spatial, Fusion}.

Fig. 9: t-SNE [27] projections of 1024 UCF101 videos,
where in (a) colours indicate different classes, and (b) mode
assignments are shown as 0 or 1 for the temporal and fusion
classifiers respectively. Zoom in to view in high-resolution.

in Figure 9 we show two-dimensional t-SNE [27] projections
of 1024 UCF101 examples as embedded by the last layer of the
temporal classifier. For clarity of presentation, we use a biased
mixture of two modalities {Moden} = {Temporal, Fusion}
and set b = [0.75, 0.25]. In this way, we show the relation
between different class labels and assigned modalities. Notably
in Fig. 9 (a), the middle region highlights instances of different
classes which are more entangled and therefore harder to
classify. Moreover, we observed that temporal modes of inputs
are typically more difficult to discern when they contain:
(i) significant camera movement, leading to noisier motion
flow, or (ii) relatively static scenes, resulting in sparse optical
flow approximations. For a sample of instances, Fig. 9 (b)
shows modalities selected by the biased mixture for action
classification. It can be seen from Fig. 9 that the biased mixture
learns to favor using the temporal classifier for video clusters
that are comparatively isolated, and easy to discern from other
clusters. Conversely, when video instances are not clearly
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clustered or isolated (mostly located in the middle), the biased
mixture selects the fusion model. In other words, the biased
mixture tends to select the data-exhaustive fusion model when
videos are harder to classify (as indicated by label 1 in (b) of
Fig. 9), and temporal modes are exclusively used for inputs
sufficiently discernable from only temporal representations (as
indicated by label 0 in (b) of Fig. 9). Hence, Fig. 9 shows how
biased expert mixtures can find useful bifurcations of input
space such that only necessary modalities are used for action
classification, and less data is used whenever possible.

V. CONCLUSION

We introduce biased expert utility in mixtures of experts
for effective partitioning of input space to meet constraints
on data availability at test time. We propose two methods for
training biased mixtures, and evaluate their performance on
multiple models for all investigated tasks. We show how biased
mixtures are applicable to any situation wherein experts vary
in data requirement and performance, and demonstrate this on
a wide range of computer vision tasks. Our validation shows
that, especially for lower ranges of allowed data cost, biased
mixtures significantly outperform baseline models optimized
to meet the same constraints on available data. We also show
how useful gating inferences that prioritise data economy can
be realized with complexities that do not exceed 108 Multi-
Add operations, which are feasible to run even on embedded
computation units (e.g., ARM Cortex-M7). Within contexts of
distributed visual inference, and to meet different constraints
on data transfer and bandwidth at test time, all of our observa-
tions and tests show the importance of conditioning data utility
for visual inference to the local proximities and properties of
inputs within their space. In other words, the importance of
doing so is applicable to all presented vision tasks, and is likely
to extend to other visual inference tasks in order to mitigate
unnecessary burdens on communication resources and sensor
hardware. We finally note that an important advantage of
biased mixtures is the flexibility at which they can be applied,
in that, biased mixtures do not modify their constituent experts,
but rather augment their function with an input preprocessing
stage that allows for data economy in inference.
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