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Abstract

Purpose: Quantitative susceptibility mapping is usually performed by minimizing a functional with data fidelity

and regularization terms. A weighting parameter controls the balance between these terms. There is a need for

techniques to find the proper balance that avoids artifact propagation and loss of details. Finding the point of

maximum curvature in the L-curve is a popular choice, although slow, often unreliable when using variational

penalties,  and  tends  to  yield  over-regularized  results.  Methods:  We  propose  two  alternative  approaches  to

control the balance between the data fidelity and regularization terms: 1) searching for an inflection point in the

log-log domain of the L-curve, and 2) comparing frequency components of QSM reconstructions. We compare

these  methods  against  the  conventional  L-curve  and  U-curve  approaches.  Results:  Our  methods  achieve

predicted parameters that are better correlated with RMSE, HFEN and SSIM-based parameter optimizations than

those obtained with traditional methods. The inflection point yields less over-regularization and lower errors

than traditional alternatives. The frequency analysis yields more visually appealing results, although with larger

RMSE. Conclusion: Our methods provide a robust parameter optimization framework for variational penalties

in QSM reconstruction. The L-curve based zero-curvature search produced almost optimal results for typical

QSM acquisition settings. The frequency analysis method may use a 1.5-2.0 correction factor to apply it as a

standalone  method  for  a  wider  range  of  SNR  settings.  This  approach  may  also  benefit  from  fast  search

algorithms such as the binary search to speed-up the process. 

Keywords: QSM,  Total  Variation,  Augmented  Lagrangian,  Alternating  Direction  Method  of  Multipliers

(ADMM)



Introduction

Quantitative Susceptibility Mapping (QSM) is an MRI-based technique that estimates subtle variations

in tissue magnetic susceptibility. Susceptibility distributions are inferred from the phase of complex

Gradient Recalled Echo (GRE) images. These phases are proportional to changes in the local magnetic

field generated by susceptibility  sources in the presence of the main external  magnetic  field1.  The

calculation of the susceptibility distribution is an ill-posed inverse problem. The dipole kernel used in

the susceptibility-to-field model  has a simple formulation  in frequency space,  where a zero-valued

conical  surface  cancels  all  frequency components  and significantly  dampens the  data  close to  this

surface2,3.  A straightforward division would yield undetermined divisions by zero,  and large noise-

amplification  effects4,5.  Most  of  the  state-of-the-art  QSM  techniques  rely  on  solving  the  inverse

problem by the optimization of a cost function6–8. This function commonly consists of two terms: data

fidelity  and regularization.  The data  fidelity  term computes  an error  metric  between the estimated

susceptibility distribution and the measured phase. The regularization term includes prior knowledge

about  the  solution,  like  smoothness,  sparsity  in  a  given  domain,  piece-wise  smoothness,  or  any

constraint that could ensure the existence of a unique and well-conditioned reconstruction. Both terms

are balanced employing a Lagrangian weight that needs to be fine-tuned for optimal results. If the

Lagrangian  weight  multiplies  the  regularization  term,  too  small  values  might  lead  to  noise

amplifications due to the instability of the inverse problem, whereas large values would yield over-

regularized solutions, with little anatomical detail and/or with low fidelity to the acquired data. The

optimal regularization weight depends on the noise level and the acquisition settings. Reconstructions

are sensitive to small changes in this parameter, and the optimal parameter may change for different

datasets.

Finding the proper regularization weight is usually a challenging and time-consuming heuristic task.

The inverse problem must be solved several times, with different weights, in search of the optimal

value.  Empirical  visual  assessment  remains  as  one  of  the  most  reliable  methods  for  QSM, but  it

requires an expert to accurately perform the evaluation. Although several strategies have been proposed

in the inverse problems literature9–11, the analysis of the L-Curve12 is the most popular alternative being

used for QSM13. In a nutshell, this analysis looks for the optimal trade-off point between the costs of

the data-fidelity and regularization terms. Originally proposed for Tikhonov regularization problems,

the optimal trade-off is found at the corner of an L-shaped curve that is created by both costs. The

maximum point  of  curvature  usually  matches  with  this  corner.  Since  Tikhonov-based regularizers



exploit smoothness of the solutions, variational penalties (TV, TGV, etc.) are among the most popular

regularizers for QSM, due to their edge preservation properties. In this case, instead of a sharp L-

shaped  curve,  the  cost  functions  yield  a  smooth  curve,  often  with  unexpected  behaviors14,15.  The

curvature  near  the optimum value changes  slowly,  with point-to-point  deviations  introducing large

effects in the curvature calculation16. This makes the maximum curvature search not robust enough for

fine-tuning, providing only an order of magnitude estimation in most scenarios. In addition, it has been

observed  that  L-curve-based  optimization  usually  yields  over-regularized  solutions17.  A  different

approach using both the data fidelity and reconstruction costs is present in the U-Curve17 analysis, with

promising  results.  For  these  reasons,  new  strategies  for  optimal  parameter  fine-tuning  must  be

developed for QSM applications. In this paper, we present two new alternatives to achieve improved

robustness and obtain visually appealing results. We compare these new methods with the existing L-

curve and U-curve approaches, which so far has not been tested for QSM reconstructions.

Methods

We formulate the following reconstruction problem to estimate the susceptibility distribution, χ13,18:

argmin χ
1
2
‖W (FH DFχ−Φ )‖2

2
+αΩ ( χ ) , (1)

or the nonlinear data consistency variant19,20:

argmin χ
1
2
‖W (ei F

HDFχ−e iΦ )‖2

2

+αΩ ( χ ) , (2)

where W is a noise-whitening weight, proportional to the signal magnitude. α is a Lagrangian weight

that must be fine-tuned for optimal results and multiplies a regularization term Ω(χ). Φ is the measured

GRE phase, F is the Fourier operator with its adjoint FH, and D is the dipole kernel in the frequency-

domain2,3:

 D=γ H 0TE(1
3
−
k z

2

k2 ), (3)

where H0 is the strength of the main magnetic field, TE the echo time and γ the gyro-magnetic ratio .

For simplicity, we use Total Variation as regularizer21,22:

Ω ( χ )=|∇ χ|1 , (4)

In an L-curve optimization scheme, the cost associated to each term is calculated for different α values,



and then the curvature is calculated as12,13:

κ=
C ' R ' ' −R ' C ' '

(C ' ' 2+R' '2 )
3/2  , (5)

To calculate  the first  and second derivatives  of  the data  consistency cost  C (C’ and C’’)  and the

derivatives  of  the  regularization  cost  R  (R’  and  R’’),  a  typical  strategy  is  to  perform  a  spline

interpolation.

In the case of variational penalties, there is a soft curvature change that prevents a precise estimation of

the  point  with  maximum  curvature.  A  coarse  α optimization  is  feasible  using  this  method  for

undersampled L-curve representations. Recent high-speed solvers13,20,22 allow a denser sampling of the

L-curve  (more  than  a  couple  of  results  per  order  of  magnitude),  for  a  more  precise  parameter

optimization.  In  this  scenario,  we present  two  new strategies  to  find  the  optimal  α parameter,  as

follows.

High-density L-curve analysis

Variational penalties present a smooth L-shaped linear graph in the logarithm space, which is better

represented by an S-shape. Empirically, we propose to use the main inflection of the curve to optimize

the regularization weight (i.e. find the point where the sign of the curvature changes). This point may

be  calculated  using  Eq.  (5),  searching  for  the  first  zero-crossing  point  starting  from  a  large

regularization weight value (to avoid instabilities due to the effects of the streaking artifacts).

The U-curve analysis

The U-curve method is widely used to find a range of suitable optimal parameters in inverse problems,

such as inverse electromagnetic modeling, super-resolution, and others17,23,24. However, it has not been

tested yet for QSM problems. This method minimizes a convex functional defined by the sum of the

reciprocates of the data consistency and regularization costs (C and R, as defined for the L-curve)17:

U=
1
C

+
1
R

, (6)

As such, the U-curve has been proposed as a more efficient alternative to the L-curve analysis.



Susceptibility-Frequency Equalization

We propose a  method based on the  inspection  of  high-frequency coefficients  of  the reconstructed

susceptibility  maps.  In  image  reconstruction  or  restoration  problems,  analyzing  the  frequency

components may reveal noise amplifications or attenuations for given frequencies. In MRI, this was

explored using the Error Spectrum Plot25, which creates a vectorized error metric to assess the accuracy

of reconstructions for consecutive rings or shells around the DC component.  This idea was further

developed  for  QSM,  changing  the  spherical  shells  into  double-coned  surfaces,  following  the

characteristics  of the dipole kernel26.  If we analyze the dipole kernel in the frequency-domain,  the

coefficients in spherical coordinates are given by2,3:

 D (θ )=γ H 0TE(1
3
−cos2θ), (7)

This means that the coefficients of the dipole kernel only depend on θ,  the angle from the main field

axis.  If  we divide by  γH0TE, the dipole kernel  coefficients  start  at  -2/3 along the main field axis

(θ=0º), reaching up to 1/3 in the orthogonal plane (θ=90º), being zero at the “magic angle”. We will

use this normalized formulation in the following sections to analyze dipole kernel coefficients.

Using Parseval’s theorem, the data consistency term may be expressed in the Fourier domain, with

equivalent  results.  In  this  representation,  dipole  kernel  coefficients  act  as  weights  that  promote

consistency between the true or ideal  susceptibility  distribution and the optimized estimation.  This

means that, in frequency space, coefficients multiplied by small dipole kernel coefficients show large

regularization  effects.  As  seen  in  Figure  1,  this  property  shapes  the  frequency  coefficients  of  the

reconstructions  depending  on  the  regularization  weights.  Under-regularized  results  present

amplification  of  the  coefficients  close  to  the  magic  angle  (noise  amplification  that  also  results  in

streaking artifacts), whereas over-regularized results attenuate these coefficients. By visual inspection

of the Power Spectrum (magnitude of the frequency coefficients), optimal results seem to be achieved

when high-frequency coefficients have similar local mean values inside spherical shell sections. 

Given this  observation,  we propose to use masks (M) in  the frequency-domain that  define certain

regions of interest (ROI) to characterize the ”amplitude” (A) of the coefficients. By comparing these

regions, we can determine the amplification or attenuation associated with the reconstruction using a

particular regularization weight. The estimation of the mask amplitude may be performed efficiently by

taking  the  L2-norm  of  the  complex  coefficients  of  the  Fourier  Transform  of  the  susceptibility



reconstructions, or by averaging the Power Spectrum values. For simplicity, we used the average of the

Power  Spectrum values  in  our  study.  The  proposed  optimal  regularization  weight  is  the  one  that

minimizes the normalized squared difference in  mask amplitudes between two ROIs, Ai and Aj:

ζ ij=(
A i− A j
A i+A j )

2

, (8)

The denominator in Eq. (8) penalizes solutions with similar amplitudes for both masks, but that were

attenuated by over-regularization. This metric behaves in a convex manner in a wide range around the

optimal parameter. Note that if the curves described by the evolution of the amplitude of two different

regions as a function of the regularization weight intercept, then the ζ functional is minimized at this

point (Figure 2E).

In this study we used three masks defined by the absolute values of the dipole kernel’s frequency

coefficients  (which  select  a  volume  between  two  double-shaped  cones):  M1  =  0<D<0.085,  M2 =

0.15<D<0.3 and M3 = 0.35<D<0.6. In all three masks, the frequency radial ranges were set from 0.65

1/mm to 0.95 1/mm (see Supporting Information Figure S1 for a 3D render of these masks) to avoid

high coefficient values due to structural information. These threshold values were found empirically.

The  first  mask  M1 covers  a  volume  that  includes  coefficients  inside  the  magic  cone  and  its

surroundings, which are more prone to noise-amplification.  The second mask M2 was chosen as a

region contiguous to M1, without coefficients too prone to be affected by noise-amplification (i.e. are

not divided by too small dipole kernel coefficients), but should still be sensitive to attenuation. As seen

in Figure 1, the volume affected by the amplification of coefficients (under-regularization regime) is

constrained,  whereas the volume affected by attenuation (over-regularization regime) is larger,  and

depends on the regularization weight.  The third mask M3 provides a region largely insensitive to noise-

amplification,  and  even  less  sensitive  to  attenuation.  M3 was  also  chosen  to  avoid  frequency

coefficients on (or close to) the  XY plane and the  X = Y = 0 vertical line, as these coefficients may

contain relatively high coefficients values due to zero-padding in the image domain and other structural

effects.

Given that these frequency masks were defined based on the frequency information of a COSMOS

reconstruction, we expect them to work for a wide range of targets in human brain QSM applications.

Adjustments should be made if the brain-tissue mask changes significantly, or if maps are calculated

for body regions other than the brain.  Whereas minor head angulations should not be an issue, voxel

asymmetry should be analyzed (we include an in vivo acquisition with highly anisotropic voxels with



the default frequency masks and modified masks as an example).

 

Experimental setup

We conducted synthetic numerical simulations and in vivo experiments to validate the two proposed

methods, and to compare them against the commonly used L-shaped (maximum curvature) and the U-

curve methods. QSM reconstructions were performed using the functionals described in (1) and (4),

with an ADMM based solver (FANSI Toolbox)20. The maximum number of iterations was set to 300,

and the  convergence  tolerance  was set  to  less  than  0.1% signal  update  between iterations,  for  all

experiments. All routines were run in MATLAB (The Mathworks Inc., Natick, MA, USA), on an Acer

Predator laptop computer (Intel i7 6700HQ processor with 64GB RAM). As previously reported, all

internal parameters introduced by the ADMM solver were set to fixed values or fixed proportions in

relation to the main regularization weight (α)20,27. In particular, the Lagrangian weight related to the

Total  Variation subproblem was chosen as  μ1 = 100α. The Lagrangian weight related to the Data

Fidelity term subproblem (μ2) was set to 1.0.

COSMOS-brain numerical simulations

A  noise-corrupted  field  map  was  forward-simulated  using  the  12-head-orientations  COSMOS

reconstruction28 included in the 2016 QSM Reconstruction Challenge dataset29 from spoiled 3D-GRE

scans acquired on a 3T Siemens Tim Trio system using a 32-channel head-coil with 1.06-mm isotropic

voxels, 15-fold Wave-CAIPI acceleration30, 240×196×120 matrix size, echo time (TE)/repetition time

(TR)=25/35 ms, flip angle=15°. We forward simulated the phase data for different peak signal-to-noise

ratio (SNR) values, from 16 to 256, in a dyadic sequence. Since only local phases were simulated, no

unwrapping or background field removal methods were applied.

QSM reconstructions were evaluated with Root Mean Square Error (RMSE), High-Frequency Error

Norm (HFEN) and the Structural Similarity Metric (SSIM, with default K = [0.01, 0.03] and L = 255

parameters)29,31, with respect to the COSMOS (ground-truth) acquisition.

In vivo data

A single axial head-orientation GRE data (same imaging parameters as those described above) was also



provided in the context of the 2016 QSM Reconstruction Challenge. 

Two additional 3T in vivo datasets are provided as Supporting Information, as examples of different

SNR, voxel size ratio and vendors.

We also include an acquisition performed with a 7T Siemens MAGNETOM, using a 32-channel Nova

head-array. TE/TR=9/20ms, flip angle=10°, bandwidth=120 Hz/pixel, fully-sampled with 504×608×88

matrix and 0.33x0.33x1.25-mm3 voxel size. Total acquisition time of 17:30 min. Phase unwrapping

and  harmonic  phase removal  were performed using HARPERELLA32 and VSHARP33 (R0=25mm)

algorithms, respectively.

In  addition,  to  provide  quantitative  results  with  the  mentioned  error  metrics  (available  only  for

simulations),  we  conducted  a  visual  assessment  of  the  quality  of  all  the  reconstructions.  This

assessment was performed by the authors using the following visibility criteria: Presence of streaking

artifacts;  image  texture  (i.e.  reject  too  smooth  or  cartoon-like  images);  noise  amplification;  and

preservation of image contrast  between structures.  In this analysis,  solutions with small  amount of

noise  were  preferred  over  smooth  structures  or  lack  of  texture,  following  the  concept  of  comfort

noise34. 

All in vivo acquisitions were performed with fully informed consent, and under approval of the local 

Ethics Committee.

Results

COSMOS-brain numerical simulations

As the primary example, we present the results achieved for SNR=40 in Figure 1. We explored the

results within 4 orders of magnitude, along with their Fourier Transforms. Visual inspection confirms

that over-regularized results have strongly attenuated frequency coefficients following the shape of the

magic cone, whereas under-regularized results present noise amplification, especially around the magic



angle. The L-curve and its logarithm representation are displayed in Figures 2A and 2B, respectively.

Note the S-shaped look of the curve in the logarithmic domain. The smooth nature and difference in

scales make it hard to find the L-corner point (maximum curvature, marked with a red circle). The

inflection point of the logarithmic graph is easier to identify, validated by the curvature graph (Figure

2C). The U-curve analysis returned the largest regularization weight value. By using the three masks

(in red,  green and blue,  overlying the Fourier  Transform of  the COSMOS data)  we inspected  the

evolution of the amplitude of the frequency coefficients. The graph in Figure 2E shows three points

where the amplitudes are equal between two masks (i.e. the amplitude curves intercept). The region

that  covers the magic  cone suggests smaller  regularization  weights than  when using only external

masks (ζ23). Optimal reconstructions are presented in Figure 3A and Supporting Information Figure S2.

While the maximum curvature matches the minimum RMSE, the ζ23 optimal value lowers the HFEN

metric.  Qualitatively,  minimizing  the  RMSE  seems  to  produce  slightly  over-regularized  results,

whereas ζ23 and the zero-curvature point seem to achieve more visually appealing results.

This correlation between L-curve predictors and the quality metrics, however, do not remain the same

for different SNR settings (Figure 3B). The optimal values predicted by the L-curve analysis seem to

fail to account for the difference in SNR, yielding very similar results in all scenarios (mostly, over-

regularizing  for  high  SNR).  Frequency-based  estimations,  on  the  other  hand,  present  a  strong

dependency of the SNR, with  ζ23 having a good correlation with the HFEN metric. Results for the

SNR=128 simulation are displayed in Supporting Information Figures S3 and S4.

In vivo data

Whereas the QSM Challenge in vivo experiment represents a low SNR scenario for QSM, it is still

larger  than the SNR=40 analytic  experiment  shown earlier.  Results  are  presented  in  Figure  4 and

Figure 5. While all L-curve based weights seem to over-regularize the solutions, the frequency analysis

yielded more visually appealing results. Tissue contrast of the ζ23 solution is higher than L-curve based

methods,  although  it  shows  minor  noise  amplification  (under-regularization)  and  weak  streaking

artifacts are also evident.

Reconstruction quality metrics with respect to COSMOS are provided for reference in the Supporting

Information Table S1. As reported in Milovic et al35, these metrics should not be considered as proper

error metrics,  since both COSMOS and  χ33 (STI) ground-truths incorporate  anisotropic and micro-

structural contributions that are not present in the single-orientation acquisition, creating significant



discrepancies35-37. This results in over-regularized reconstructions when using such metrics and ground-

truth datasets for parameter optimization.

Additional  in vivo results  (presented in  the Supporting Information Figures S5 to S8) confirm the

findings by this in vivo experiment.

Figures 6 and 7 show the results of the L-curve, U-curve, and the frequency analysis. By using the

amplitude estimators with the standard masks, ζ23 cannot be assessed properly. The result is heavily

over-regularized,  with  strong  attenuations  of  all  coefficients.  This  experiment  shows  a  different

behavior to those previously reported because of the highly anisotropic voxels. As shown in Figure 8,

frequency coefficients close to the z-axis (parallel to the main field) contain more relevant information

in medium and high frequencies. This is represented in the Power Spectrum as a region with higher

local mean values, and more visible patterns. For this reason, masks were adjusted from the standard

formulation (Figure 8A) to an alternative selection of regions of interest (Figure 8B and C). The new

masks select regions of the frequency domain that are more homogeneous, with similar local mean

values. By keeping the range of dipole kernel coefficients constant, but modifying the frequency range

to target higher frequencies, our analysis is further degraded (Supporting Information Figures S9 and

S10). Better results are achieved by keeping all masks in the same range of frequencies (Figure 8C). In

this case, only positive dipole kernel values were selected, avoiding the XY plane (M1 = 0<D<0.08, M2

= 0.1<D<0.2 and M3 = 0.22<D<0.32). The frequency range selected was 0.81 1/mm to 1.19 1/mm, to

avoid selecting coefficients with too much structural information.

Results using this alternative masking procedure are shown in Figures 9 and 10. Now all the amplitude

estimator curves intercept (Figure 9E), and the ζ functions show clear minimum values. Visually, now

the results resemble those findings by previous experiments, with the ζ23 based solution having more

contrast and details than the Zero-curvature method (other methods with the same results as in Figure 7

are omitted).

Discussion

Here we presented two strategies to narrow down the search for an optimal regularization weight value

in  TV-based approaches  for  QSM, where  the  standard  L-curve  analysis  is  not  reliable.   The  two

approaches  are:  1)  searching  for  an  inflection  point  in  the  log-log  domain,  and  2)  analyzing  the

frequency components of the QSM reconstructions.



For the standard L-curve scheme, local curvature calculations, obtained by spline interpolation, often

do not reflect the overall behavior and may be highly distorted by numerical errors. In addition, due to

the different norms (L2-norm data fidelity and L1-norm regularizer) and domains (phase or complex

signal domain vs gradient of susceptibilities) involved in the functional costs, the order of magnitude of

each cost  term differs  significantly.   This  biases the calculation  of the maximum curvature or the

closest point to the origin. Changes in one term outweigh those in the other, and this is reflected in the

curvature calculation.  Furthermore,  the L-curve may present wild oscillations far from the turn-off

point, making an automatic/unsupervised search unreliable. Working on the logarithm domain prevents

some of these problems, but the maximum curvature in such domain may not coincide with the one in

the original domain. The inflection point in this curve seems to be a more reliable and robust starting

point  to  search for  an optimal  regularization  weight.  As seen in  our experiments,  this  point  gives

smaller  weights  than  the  maximum  curvature  criteria.  While  this  point  still  usually  yields  over-

regularized results, it may be used as an upper bound limit for visual optimization. 

The second proposed strategy is based on the analysis of the amplitude of the frequency coefficients of

the  reconstructions.  A  proper  solution  must  achieve  a  certain  balance  between  all  frequency

coefficients where dipole kernel inversion does not amplify noise or create streaking artifacts, and the

regularization term does not attenuate high-frequency terms, with over-smoothed results. To achieve

this balance, we proposed to compare the mean amplitude of the frequency coefficients between two

ROIs and select the regularization weight that equalizes them. Our results show that using ROIs that do

not cover the magic angle produces more visually appealing results, with less streaking artifacts. In

vivo experiments revealed that this optimization strategy may return regularization weights that are still

too  low to  avoid  the  propagation  of  some  streaking  artifacts,  especially  those  generated  near  the

boundaries due to imperfect background filtration. In the presence of voxel asymmetries, the estimation

of the frequency local amplitudes may be affected. Having significant structural information inside a

mask may prevent its local mean to reach the same value as the local mean of another region, for a

given set of regularization weights. Finding the minimum distance between the amplitude curves using

the ζ function with the proposed masks (Eq. (8)) is still a good predictor for moderate asymmetries. In

the presence of highly asymmetric voxels, the ROI mask should be modified (as shown in Figures 6-

10). It was found that keeping all the ROI masks covering the same range of absolute frequencies

(1/mm) is important to balance the amplitude measurements. Similar to our first proposed strategy,

frequency  equalization  may  serve  to  set  a  lower  bound  limit  for  a  subsequent  visual  fine-tuning

process. For a fully-automated (and standalone) approach, a correction factor may be used. Figure 3



suggests  that  due  to  the  highly  linear  dependency  between  ζ23 and  RMSE  and  SSIM  scores,  a

multiplicative factor between 1.5 and 2.0 should be used. Coincidentally, this gives results similar to

those found by the Zero-curvature criteria in our in vivo experiments.

The proposed approaches were also compared to the U-curve analysis. However, the U-curve scheme

failed to yield a reasonable result in all our experiments, producing heavily over-regularized results.

This may be caused by an unbalance in the order of magnitude of the costs, due to the use of different

norms and domains. Modifications to the U-curve method must be further investigated in the future to

better  address  this  issue  when  working  with  variational  penalties  (i.e.  Total  Variation  or  Total

Generalized  Variation).  This  may  require  working  with  logarithmic  costs,  or  tailored  weighting

schemes.

One advantage of our frequency equalization strategy over the L-curve analysis is that this process does

not require an exhaustive search to determine the optimal weights. To calculate the curvature at any

point,  the  costs  at  two additional  points  are  needed.  To determine  the balance  between frequency

coefficients only one result is needed. If the external ROI has larger amplitudes than the internal, then

too large regularization weights are obtained. Smart search strategies may be developed, like a binary

search or interpolation. This feature may allow our frequency equalization strategy to be implemented

in  a  bilevel  optimization10,  or  use  it  in  an  iteratively  reweighted11 mode  to  automatically  achieve

optimal results. Further experiments are needed to validate this. Another advantage of our method is

that it seems to be more sensitive to changes in the SNR, as shown in Figure 1B. The ζ 23 predictor

seems to be more correlated with RMSE, SSIM, and HFEN for a wide range of noise levels, whereas

the Zero-curvature method seems to work better in the 64-128 range. A scaling factor between 1.5 and

2.0 seemed to relate optimal RMSE reconstructions and ζ23. Both ζ23 and the Max-curvature methods

seemed to be reliable for typical in vivo acquisitions. The preliminary examples presented here show

that the Zero-curvature method is more robust against streaking or ghosting artifacts, but it may also

suffer  from  sub-estimation  and  the  loss  of  some  fine  structures  due  to  over-regularization.

Unfortunately, QSM is an ill-posed problem, prone to non-local artifacts, which may benefit from such

over-regularization.  A  thorough  study  is  needed  to  validate  the  robustness  of  these  methods  for

quantitative studies, and the sensitivity to dipole-incompatible phase errors or background remnants.

This  validation  study  may  also  include  multi-orientation  acquisitions  to  assess  the  impact  of  the

orientation of the tissues to the definition of the frequency masks.

Conclusions



We have developed two new regularization weight optimization strategies that  yield more visually

appealing and robust results than current user-independent methods. Jointly used, they may serve to set

a range of possible alpha values,  for manual (visual) optimization.  Simulations suggest that the ζ23

predictor may be used in a fully automatic algorithm, accounting with a multiplicative factor between

1.5 and 2.0 the difference  between this  function’s  regularization  weight  and the one with optimal

RMSE and SSIM scores.  Such corrected  regularization  weights  are  well  correlated  with the Zero-

curvature  method  for  typical  in  vivo  acquisitions.  Regarding  the  computation  expense  of  these

calculations,  the  frequency  equalization  scheme  may  be  used  in  more  efficient  schemes  to

automatically  achieve  visually  appealing  results  without  an  exhaustive  search  of  the  optimal

parameters. This includes the binary search and a smart selection of the evaluation points by using

interpolations.  Such  a  scheme  may  accelerate  considerably  the  search  of  optimal  regularization

parameters.
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Figures

Figure  1.  QSM  reconstructions  (A)  and  their  Fourier  transforms  (B)  for  different  regularization

weights. Proposed ROI masks are represented in red (M1),  green (M2) and blue (M3) overlying the

COSMOS frequency ground-truth.



Figure 2.  Parameter optimization strategies on the COSMOS-brain simulations at SNR=40. The L-

curve  in  linear  (A)  and  logarithm  (B)  representations,  with  its  curvature  (C).  The  U-curve  (D).

Frequency analysis using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).



Figure  3.  COSMOS-based  simulation.  (A)  shows  the  optimal  reconstructions  and  regularizations

weights (α) using the Frequency, L-curve and U-curve analysis,  along with the ground-truth.  Also

represented here are the best scoring HFEN, RMSE and SSIM results. (B) shows the evolution of the

optimal regularization weights for each method and metric as function of the SNR.



Figure 4. Parameter optimization strategies on the QSM Challenge in vivo data. The L-curve in linear

(A) and logarithm (B) representations, with its curvature (C). The U-curve (D). Frequency analysis

using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).



Figure 5. Optimal reconstructions and regularizations weights (α) of the QSM Challenge in vivo data,

using the Frequency (A, B), L-curve (C, D) and U-curve analysis (E).



Figure 6. Parameter optimization strategies on the 7T Siemens in vivo data. The L-curve in linear (A)

and logarithm (B) representations, with its curvature (C). The U-curve (D). Frequency analysis using

the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).



Figure 7.  Optimal reconstructions and regularizations weights (α) of the 7T Siemens in vivo data,

using the Frequency (A, B, E), L-curve (B, C) and U-curve analysis (D).



Figure 8. Coronal and sagittal cuts for Fourier transform of the original ROIs masks (A), and arbitrary

selection of frequency ranges and same dipole kernel coefficients (B), and the modified ROIs masks to

account for the anisotropy and the uneven frequency distribution.

Figure 9. Parameter optimization strategies on the 7T Siemens in vivo data with modified ROIs. The

L-curve  in  linear  (A)  and logarithm (B)  representations,  with  its  curvature  (C).  The U-curve  (D).

Frequency analysis using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).



Figure 10. Optimal reconstructions and regularizations weights (α) of the 7T Siemens in vivo data with

modified ROIs, using the Frequency (AC), and zero-curvature point of the L-curve (D).



Supporting Information captions

Supporting Information Figure S1. 3D representation of the ROIs used for the frequency analysis of

susceptibility reconstructions. In red, M1: 0<=|D|<=0.085 at the magic angle. M2: 0.15<=|D|<=0.3 in

green and M3: 0.35<=|D|<=0.6 in blue.

Supporting  Information  Figure  S2.  Optimal  reconstructions  and  regularizations  weights  (α)  of

SNR=40 simulations, using the Frequency (A, B and D), L-curve (C, E) and U-curve analysis (G). Also

represented here are the best scoring HFEN (D), RMSE (E) and SSIM (F) results.

Supporting  Information  Figure  S3.  Parameter  optimization  strategies  on  the  COSMOS-brain

simulations  at  SNR=128.  The  L-curve  in  linear  (A)  and  logarithm  (B)  representations,  with  its

curvature (C). The U-curve (D). Frequency analysis using the amplitude estimations A1, A2 and A3

(E) and the ζ cost functions (F).

Supporting  Information  Figure  S4.  Optimal  reconstructions  and  regularizations  weights  (α)  of

SNR=128 simulations,  using the Frequency (A, C), L-curve (E, F) and U-curve analysis (G). Also

represented here are the best scoring HFEN (B), RMSE and SSIM (D) results.

Supporting Information Figure S5. Parameter optimization strategies on the 3T Siemens in vivo data.

The L-curve in linear (A) and logarithm (B) representations, with its curvature (C). The U-curve (D).

Frequency analysis using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).

Supporting Information Figure S6. Optimal reconstructions and regularizations weights (α) of the 3T

Siemens in vivo data, using the Frequency (A-C), L-curve (D, E) and U-curve analysis (F).

Supporting Information Figure S7. Parameter optimization strategies on the 3T Phillips in vivo data.

The L-curve in linear (A) and logarithm (B) representations, with its curvature (C). The U-curve (D).

Frequency analysis using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F).

Supporting Information Figure S8.  Optimal reconstructions and regularizations weights (α) of 3T

Phillips in vivo data, using the Frequency (A-C), L-curve (D, E) and U-curve analysis (F).

Supporting Information Figure S9. Parameter optimization strategies on the 37 Siemens in vivo data.

The L-curve in linear (A) and logarithm (B) representations, with its curvature (C). The U-curve (D).



Frequency analysis using the amplitude estimations A1, A2 and A3 (E) and the ζ cost functions (F)

with masks defined in a relative frequency range.

Supporting Information Figure S10. Optimal reconstructions and regularizations weights (α) of 7T

Siemens in vivo data., using the Frequency (A, B, and E), L-curve (B, C), and U-curve analysis (D).

Supporting Information Table S1

Global metric scores (RMSE, HFEN, and SSIM) for the proposed reconstructions using COSMOS as

ground truth.
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	Quantitative Susceptibility Mapping (QSM) is an MRI-based technique that estimates subtle variations in tissue magnetic susceptibility. Susceptibility distributions are inferred from the phase of complex Gradient Recalled Echo (GRE) images. These phases are proportional to changes in the local magnetic field generated by susceptibility sources in the presence of the main external magnetic field1. The calculation of the susceptibility distribution is an ill-posed inverse problem. The dipole kernel used in the susceptibility-to-field model has a simple formulation in frequency space, where a zero-valued conical surface cancels all frequency components and significantly dampens the data close to this surface2,3. A straightforward division would yield undetermined divisions by zero, and large noise-amplification effects4,5. Most of the state-of-the-art QSM techniques rely on solving the inverse problem by the optimization of a cost function6–8. This function commonly consists of two terms: data fidelity and regularization. The data fidelity term computes an error metric between the estimated susceptibility distribution and the measured phase. The regularization term includes prior knowledge about the solution, like smoothness, sparsity in a given domain, piece-wise smoothness, or any constraint that could ensure the existence of a unique and well-conditioned reconstruction. Both terms are balanced employing a Lagrangian weight that needs to be fine-tuned for optimal results. If the Lagrangian weight multiplies the regularization term, too small values might lead to noise amplifications due to the instability of the inverse problem, whereas large values would yield over-regularized solutions, with little anatomical detail and/or with low fidelity to the acquired data. The optimal regularization weight depends on the noise level and the acquisition settings. Reconstructions are sensitive to small changes in this parameter, and the optimal parameter may change for different datasets.
	Finding the proper regularization weight is usually a challenging and time-consuming heuristic task. The inverse problem must be solved several times, with different weights, in search of the optimal value. Empirical visual assessment remains as one of the most reliable methods for QSM, but it requires an expert to accurately perform the evaluation. Although several strategies have been proposed in the inverse problems literature9–11, the analysis of the L-Curve12 is the most popular alternative being used for QSM13. In a nutshell, this analysis looks for the optimal trade-off point between the costs of the data-fidelity and regularization terms. Originally proposed for Tikhonov regularization problems, the optimal trade-off is found at the corner of an L-shaped curve that is created by both costs. The maximum point of curvature usually matches with this corner. Since Tikhonov-based regularizers exploit smoothness of the solutions, variational penalties (TV, TGV, etc.) are among the most popular regularizers for QSM, due to their edge preservation properties. In this case, instead of a sharp L-shaped curve, the cost functions yield a smooth curve, often with unexpected behaviors14,15. The curvature near the optimum value changes slowly, with point-to-point deviations introducing large effects in the curvature calculation16. This makes the maximum curvature search not robust enough for fine-tuning, providing only an order of magnitude estimation in most scenarios. In addition, it has been observed that L-curve-based optimization usually yields over-regularized solutions17. A different approach using both the data fidelity and reconstruction costs is present in the U-Curve17 analysis, with promising results. For these reasons, new strategies for optimal parameter fine-tuning must be developed for QSM applications. In this paper, we present two new alternatives to achieve improved robustness and obtain visually appealing results. We compare these new methods with the existing L-curve and U-curve approaches, which so far has not been tested for QSM reconstructions.
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	where W is a noise-whitening weight, proportional to the signal magnitude. α is a Lagrangian weight that must be fine-tuned for optimal results and multiplies a regularization term Ω(χ). ϕ is the measured GRE phase, F is the Fourier operator with its adjoint FH, and D is the dipole kernel in the frequency-domain2,3:
	, (3)
	where H0 is the strength of the main magnetic field, TE the echo time and γ the gyro-magnetic ratio. For simplicity, we use Total Variation as regularizer21,22:
	, (4)
	High-density L-curve analysis
	Variational penalties present a smooth L-shaped linear graph in the logarithm space, which is better represented by an S-shape. Empirically, we propose to use the main inflection of the curve to optimize the regularization weight (i.e. find the point where the sign of the curvature changes). This point may be calculated using Eq. (5), searching for the first zero-crossing point starting from a large regularization weight value (to avoid instabilities due to the effects of the streaking artifacts).
	The U-curve analysis
	The U-curve method is widely used to find a range of suitable optimal parameters in inverse problems, such as inverse electromagnetic modeling, super-resolution, and others17,23,24. However, it has not been tested yet for QSM problems. This method minimizes a convex functional defined by the sum of the reciprocates of the data consistency and regularization costs (C and R, as defined for the L-curve)17:
	, (6)
	As such, the U-curve has been proposed as a more efficient alternative to the L-curve analysis.
	Susceptibility-Frequency Equalization
	We propose a method based on the inspection of high-frequency coefficients of the reconstructed susceptibility maps. In image reconstruction or restoration problems, analyzing the frequency components may reveal noise amplifications or attenuations for given frequencies. In MRI, this was explored using the Error Spectrum Plot25, which creates a vectorized error metric to assess the accuracy of reconstructions for consecutive rings or shells around the DC component. This idea was further developed for QSM, changing the spherical shells into double-coned surfaces, following the characteristics of the dipole kernel26. If we analyze the dipole kernel in the frequency-domain, the coefficients in spherical coordinates are given by2,3:
	, (7)
	This means that the coefficients of the dipole kernel only depend on θ, the angle from the main field axis. If we divide by γH0TE, the dipole kernel coefficients start at -2/3 along the main field axis (θ=0º), reaching up to 1/3 in the orthogonal plane (θ=90º), being zero at the “magic angle”. We will use this normalized formulation in the following sections to analyze dipole kernel coefficients.
	Using Parseval’s theorem, the data consistency term may be expressed in the Fourier domain, with equivalent results. In this representation, dipole kernel coefficients act as weights that promote consistency between the true or ideal susceptibility distribution and the optimized estimation. This means that, in frequency space, coefficients multiplied by small dipole kernel coefficients show large regularization effects. As seen in Figure 1, this property shapes the frequency coefficients of the reconstructions depending on the regularization weights. Under-regularized results present amplification of the coefficients close to the magic angle (noise amplification that also results in streaking artifacts), whereas over-regularized results attenuate these coefficients. By visual inspection of the Power Spectrum (magnitude of the frequency coefficients), optimal results seem to be achieved when high-frequency coefficients have similar local mean values inside spherical shell sections.
	Given this observation, we propose to use masks (M) in the frequency-domain that define certain regions of interest (ROI) to characterize the ”amplitude” (A) of the coefficients. By comparing these regions, we can determine the amplification or attenuation associated with the reconstruction using a particular regularization weight. The estimation of the mask amplitude may be performed efficiently by taking the L2-norm of the complex coefficients of the Fourier Transform of the susceptibility reconstructions, or by averaging the Power Spectrum values. For simplicity, we used the average of the Power Spectrum values in our study. The proposed optimal regularization weight is the one that minimizes the normalized squared difference in mask amplitudes between two ROIs, Ai and Aj:
	, (8)
	The denominator in Eq. (8) penalizes solutions with similar amplitudes for both masks, but that were attenuated by over-regularization. This metric behaves in a convex manner in a wide range around the optimal parameter. Note that if the curves described by the evolution of the amplitude of two different regions as a function of the regularization weight intercept, then the ζ functional is minimized at this point (Figure 2E).
	In this study we used three masks defined by the absolute values of the dipole kernel’s frequency coefficients (which select a volume between two double-shaped cones): M1 = 0<D<0.085, M2 = 0.15<D<0.3 and M3 = 0.35<D<0.6. In all three masks, the frequency radial ranges were set from 0.65 1/mm to 0.95 1/mm (see Supporting Information Figure S1 for a 3D render of these masks) to avoid high coefficient values due to structural information. These threshold values were found empirically. The first mask M1 covers a volume that includes coefficients inside the magic cone and its surroundings, which are more prone to noise-amplification. The second mask M2 was chosen as a region contiguous to M1, without coefficients too prone to be affected by noise-amplification (i.e. are not divided by too small dipole kernel coefficients), but should still be sensitive to attenuation. As seen in Figure 1, the volume affected by the amplification of coefficients (under-regularization regime) is constrained, whereas the volume affected by attenuation (over-regularization regime) is larger, and depends on the regularization weight. The third mask M3 provides a region largely insensitive to noise-amplification, and even less sensitive to attenuation. M3 was also chosen to avoid frequency coefficients on (or close to) the XY plane and the X = Y = 0 vertical line, as these coefficients may contain relatively high coefficients values due to zero-padding in the image domain and other structural effects.
	Given that these frequency masks were defined based on the frequency information of a COSMOS reconstruction, we expect them to work for a wide range of targets in human brain QSM applications. Adjustments should be made if the brain-tissue mask changes significantly, or if maps are calculated for body regions other than the brain. Whereas minor head angulations should not be an issue, voxel asymmetry should be analyzed (we include an in vivo acquisition with highly anisotropic voxels with the default frequency masks and modified masks as an example).
	
	Experimental setup
	We conducted synthetic numerical simulations and in vivo experiments to validate the two proposed methods, and to compare them against the commonly used L-shaped (maximum curvature) and the U-curve methods. QSM reconstructions were performed using the functionals described in (1) and (4), with an ADMM based solver (FANSI Toolbox)20. The maximum number of iterations was set to 300, and the convergence tolerance was set to less than 0.1% signal update between iterations, for all experiments. All routines were run in MATLAB (The Mathworks Inc., Natick, MA, USA), on an Acer Predator laptop computer (Intel i7 6700HQ processor with 64GB RAM). As previously reported, all internal parameters introduced by the ADMM solver were set to fixed values or fixed proportions in relation to the main regularization weight (α)20,27. In particular, the Lagrangian weight related to the Total Variation subproblem was chosen as μ1 = 100α. The Lagrangian weight related to the Data Fidelity term subproblem (μ2) was set to 1.0.
	COSMOS-brain numerical simulations
	In vivo data
	Two additional 3T in vivo datasets are provided as Supporting Information, as examples of different SNR, voxel size ratio and vendors.
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	Conclusions
	We have developed two new regularization weight optimization strategies that yield more visually appealing and robust results than current user-independent methods. Jointly used, they may serve to set a range of possible alpha values, for manual (visual) optimization. Simulations suggest that the ζ23 predictor may be used in a fully automatic algorithm, accounting with a multiplicative factor between 1.5 and 2.0 the difference between this function’s regularization weight and the one with optimal RMSE and SSIM scores. Such corrected regularization weights are well correlated with the Zero-curvature method for typical in vivo acquisitions. Regarding the computation expense of these calculations, the frequency equalization scheme may be used in more efficient schemes to automatically achieve visually appealing results without an exhaustive search of the optimal parameters. This includes the binary search and a smart selection of the evaluation points by using interpolations. Such a scheme may accelerate considerably the search of optimal regularization parameters.
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	Figure 1. QSM reconstructions (A) and their Fourier transforms (B) for different regularization weights. Proposed ROI masks are represented in red (M1), green (M2) and blue (M3) overlying the COSMOS frequency ground-truth.
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