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Abstract—The susceptibility of Super Paramagnetic Iron Oxide (SPIO) particles makes them a useful contrast agent for different
purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These
methods rely on the phase, which is unreliable for high concentrations. We present in this study a novel Deep Learning method to
quantify the SPIO concentration distribution. We acquired the data with a new sequence called View Line in which the field map
information is encoded in the geometry of the image. The novelty of our network is that it uses residual blocks as the bottleneck and
multiple decoders to improve the gradient flow in the network. Each decoder predicts a different part of the wavelet decomposition of
the concentration map. This decomposition improves the estimation of the concentration, and also it accelerates the convergence of
the model. We tested our SPIO concentration reconstruction technique with simulated images and data from actual scans from
phantoms. The simulations were done using images from the IXI dataset, and the phantoms consisted of plastic cylinders containing
agar with SPIO particles at different concentrations. In both experiments, the model was able to quantify the distribution accurately.

Index Terms—Machine Learning, Deep Learning, Neural Networks, MRI, quantification, susceptibility, QSM, SPIO.
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1 INTRODUCTION

Superparamagnetic iron oxide (SPIO) nanoparticles pro-
duce considerable changes in the main magnetic field of
a Magnetic Resonance Imaging (MRI) acquisition. These
field distortions change the signal’s phase, which in turn
manifests as geometric distortion and signal attenuation. In
general, the signal dropout is an artifact to be avoided, but
it also can be used as a contrast agent [1].

In particular, SPIO particles have been used to know if
cancer cells have metastasized from sentinel lymph nodes,
after tumor removal, by using their concentration as a
biomarker. Furthermore, SPIO particles can be used in liver
imaging, MR angiography, and tracking of labeled cells in
vivo. Quantification of SPIO density or total quantity is
important for clinicians since it could provide information
for diagnosis and evaluation of treatment [1], [2]. The dis-
tribution of particles is commonly measured by using two
types of methods: relaxometry-based or model-based.

The relaxometry methods use the magnitude of the
MR image and quantify the SPIO particles within an area
of interest by its relaxation rate. The effective transverse
relaxation R∗2 is assumed to vary linearly with the SPIO
concentration: R∗2 = R∗20+r∗2c [3]. Where R∗20 is the intrinsic
relaxation rate, r∗2 denotes the relaxation rate of the contrast
agent, and c is the concentration of the particles.

The model-based methods solve a – somewhat difficult
– inverse problem. This problem consists of finding the
particle’s concentration, or susceptibility, from the measured
signal. Solving this problem requires first finding the field
map from the signal’s phase and then solving the corre-
sponding inverse model. The equations for the direct model
are well known and are typically based on spherical dipoles
for each particle. [1], [4].

Both types of methods cannot be applied in cases where
the concentration of SPIO is high since the signal is sig-
nificantly attenuated or entirely lost. The loss of signal is
particularly relevant for model-based methods since they
rely on the phase, which becomes extremely unreliable.

In this work, we propose to use Deep Learning to
quantify the SPIO concentration from an MRI acquisition.
As will be described later, the MRI sequence has the acqui-
sition plane perpendicular to the excitation, such that the
excitations’ profile and location are easily seen.

For the reconstruction, we only use the geometric dis-
tortions, making the phase irrelevant. The idea is to use
the shape of these profiles and their centerlines’ curvature
to infer the SPIO distribution. The model training is done
by solving the forward model in a simulator that generates
synthetic images. Previous studies in quantitative suscepti-
bility mapping (QSM) [5], [6] have successfully estimated
the susceptibility using Deep Learning with an encoder-
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decoder architecture. QSM Deep Learning models are based
mainly on U-Net [7] and SegNet [8].

These networks were designed for image segmentation
[7], [8]. They transfer features from the encoder to the de-
coder to enforce a similarity with the output. Furthermore,
these architectures generate a latent representation of the
problem to reconstruct the desired output. These models
have been successfully used in QSM and several other
image-to-image tasks such as MRI image reconstruction [9],
image denoising [10], etc.

Our approach is different than previous Deep Learning
methods for two reasons. Firstly, because in our network,
the input and output are visually distinct and, therefore,
not directly related, as opposed to segmentation problems.
Secondly, our approach is based on geometric distortions.
Thus, it is less sensitive to voids in the signal.

Our encoder network is topologically similar to that
of U-Net. Nevertheless, we replaced the pooling layers by
convolutional layers, and we added four residual blocks at
the end of the encoder. The latter extends the representa-
tion capabilities of the model. The essential component of
DeepSPIO is its parallel decoder network. Each decoder
uses learnable up-sampling operations through layers of
transposed convolutions. The reason for using a parallel
decoder is that at the output, we work in the wavelet
domain with one decoder for each of the discrete wavelet
channels. This output coding improves the gradient flow
through the network since the wavelet channels are rela-
tively independent of each other, and so are their gradients
at each decoder. Together with the residual bottleneck, these
changes allow for a much better gradient flow to the en-
coder, thus improving the network convergence rate.

The two main contributions of this work are a new
technique for quantifying SPIO concentrations suited for
high concentrations, and a new network architecture that
reconstructs well these concentrations in a situation where
a U-Net cannot converge.

In the following sections, we describe the main archi-
tectures previously used for this kind of image processing;
we describe the MR acquisition and the simulations; we
describe the architecture employed in DeepSPIO. Finally,
we discuss the results and potential applications of this
technique.

2 RELATED WORK

The concentration of SPIO is directly related to its suscep-
tibility and the changes it produces in the magnetic field.
Thus, it is natural to look into existing techniques that
measure susceptibility from field distortions. Susceptibility
estimation is an active topic of research with challeng-
ing problems. Usually, the susceptibility is estimated from
phase variations introduced by the magnetic field deviations
and their corresponding off-resonance effects. The image’s
magnitude also suffers distortions, but they are frequently
neglected, which is valid for weak off-resonance conditions.
That is not the case for strong susceptibility conditions,
which is the problem addressed in this work.

The field map distortion introduced by a single point
can be modeled as a magnetic dipole [11]. A convolution

with this dipole kernel estimates the effect of more complex
susceptibility distributions.

Most QSM methods estimate the susceptibility source
distribution by a spatial deconvolution of the field map with
the dipole kernel. And the field map is typically measured
from two or more phase images acquired with gradient-echo
sequences.

These techniques present three crucial challenges. The
first one is unwrapping the phase data, the second is re-
moving the external magnetic field contributions (or back-
ground), and the third is solving an ill-posed deconvolution.
[12], [13]. Unwrapping is usually performed by best path
algorithms or Laplacian-based operators. External contribu-
tions to the magnetization field may include imperfect shim-
ming, magnetic susceptibility sources outside the region of
interest, etc. [13]. Background magnetization fields are usu-
ally decoupled from local magnetization fields by exploiting
properties of harmonic functions such as orthogonality, the
spherical mean value, or solving the Poisson equation.

The main difficulty for performing the local field’s de-
convolution is that the Fourier transform of the dipole
kernel contains a double-cone zero-valued surface. If these
zeros are not taken into consideration, they produce streak-
ing artifacts. Several solutions have been proposed, such as
truncating the dipole in frequency space [12] or enforcing
priors [14]–[17].

These methods cannot be applied directly to quantify
SPIO concentrations. They rely on the phase of the signal,
which is either lost or very unreliable due to the strong
distortion in the field. Furthermore, most unwrapping al-
gorithms are unable to handle larger than 2π jumps and
rely on smooth data.

Another approach to handle strong susceptibility effects
in the surrounding tissue is to design sequences that are
less sensitive to metal objects. In this case, the objective
is to remove the artifacts when imaging close to metallic
implants. Several techniques have been proposed, such as
SEMAC [18], MAVRIC [19] and their modifications. They
provide a robust encoding against metal-induced field inho-
mogeneities within a feasible scan time. They are spin-echo
(SE) sequences that minimize the intra-voxel dephasing
due to field variations based on view-angle-tilting (VAT)
compensation gradients to suppress in-plane distortions.
The VAT gradient is applied simultaneously with the read-
out gradient, equal to the one used during the excitation,
effectively tilting the readout direction and limiting the in-
plane distortion to less than a pixel [20].

Inspired by SEMAC, we developed the View Line se-
quence [21] to encode the SPIO induced distortions in the
image. Changes in the field map are reflected as displace-
ments of the voxels in the z direction. We use the acquired
image to estimate the SPIO distribution by quantifying these
displacements. This encoding is a robust manner to see
the effects of the field distortions in the surrounding tissue
when the susceptibility is so strong that most of the signal
is lost in the immediate area of the particles.

All these approaches use analytical formulations to find
the susceptibility. But even if they had the perfect field
map in the surroundings of the particles, they cannot work
correctly because of the missing information close to the
particles and also because they cannot represent the com-
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plete complexity of the problem. Motivated by the success
in several research fields, in our approach, we use Deep
Learning to solve the SPIO quantification problem in an
end-to-end manner.

The encoder-decoder model has an expressive power
that increases exponentially with depth. This expressiveness
is originated from the combinatorial nature of the rectified
linear activation unit (ReLU) used for the encoding and
decoding process and the adaptive basis that the model
learns as well [22]. The main two encoder-decoder networks
used in the medical imaging area [23] are U-Net [7] and its
variation, SegNet [8].

These architectures have been used with several degrees
of success in different areas such as denoising, deconvolu-
tion, image reconstruction, super-resolution, and in particu-
lar, QSM. As mentioned before, the techniques used in QSM
are not directly applicable to SPIO quantification, but it is
worth mentioning two neural network-based approaches:
DeepQSM [5] and QSMnet [6].

DeepQSM uses the encoder-decoder U-Net architecture.
It shows results that are comparable to the best analytical
models. It was trained by computing the well-posed QSM
forward solution of synthetic data consisting of simple
shapes.

QSMnet is also a U-Net that performs the dipole de-
convolution directly. This model was trained by computing
the gold standard COSMOS (Calculation Of Susceptibility
through Multiple Orientation Sampling) solution on an im-
age and then using this as a reference for a single orientation
input. QSMnet accurately obtains the COSMOS solution for
a single orientation image [24]. Our work is inspired by
the success achieved by previous QSM networks. In those
models, the architecture is an encoder-decoder network
that learns hierarchical features and a smooth represen-
tation between two manifolds. [22]. The encoder consists
of convolutions with a preset number of filters, ReLU as
activation function, and pooling layers for sub-sampling.
DeepSPIO differs from U-Net and SegNet in that it uses
strided convolutions. [7], [8].

Since our image encodes the information in its spatial
configuration, it is imperative to conserve the position of the
features. The local invariance of max-pooling would hinder
the performance of our model. U-net also concatenates each
convolution block of the encoder to the respective mirror
decoder block. These skip connections can transfer some
features from the encoding to the decoder making up for
lost details in the image. Nevertheless, this property is not
useful to us since visually, our input is entirely different
from our output, and these features hinder the performance,
so we removed these skip connections to prioritize the
construction of hierarchical features.

3 METHODS

The main idea of this work is to use the geometric dis-
tortions induced by the paramagnetic particles’ strong sus-
ceptibility. The hypothesis is that the concentration of the
particles can be estimated from artifacts farther away, even
where the signal is lost. For this, we use the View Line
sequence, which images the excitation’s profile [21]. For
training, we simulate the effects of the SPIO in the data
acquired with that sequence.

Fig. 1: View Line sequence for exciting spins in a line along
the x-dimension.

3.1 Forward Model

In this section, we describe the View Line sequence shown
in Figure 1. It consists of three parts: excitation, selective
refocusing, and readout.

The excitation is a standard selective excitation pulse that
excites a slice in z, centered at z0. Since we expect strong
field deviations, the slice will not be planar, and its center,
z′0 will deviate from z0 as a function of (x, y): z′0(x, y).

The center of the excitation satisfies

z0Gz = z′0Gz + ∆Bz(x, y, z′0).

The left side is the intended excitation field (position), and
the right side is the actual field. To avoid superposition
of the signal due to different deviations at different (x, y)
positions, a 180◦ selective refocusing pulse is used, such that
spatial deviations only in the direction of phase encoding
are refocused. For that, the refocusing pulse is applied in a
diagonal

z0Gz + y0Gy = z′0Gz + y′0Gy + ∆Bz(x, y′0, z
′
0)

which is satisfied for y′0 = y0. After the excitation and
refocusing, the center of the excited column is at a constant
y = y0 and at varying z.

Finally, the readout consists of a standard imaging stage
with the phase encoding in the x direction and the readout
in the z direction. Our simulation considered the voxel
warping effects due to the non-linear gradients introduced
by the SPIO particles.

The sequence is repeated for many lines such that a
collection of contiguous profiles is collected. These lines will
be fed to the network in two groups, even and odd, to avoid
overlapping of the profiles, and to ensure that the network
will see the edges.

In our simulations, we used convolution of the suscepti-
bility distribution with the dipole kernel to obtain the field
map. The convolution in cartesian coordinates is:

∆Bz(x) ∝ F−1
{

1

3
−
(
kz
‖k‖

)2
}
∗ C(x). (1)

Where C(x) corresponds to the concentration distribution
of SPIO particles.
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Fig. 2: Example of simulated image. (a) is distorted by (c)
which is produced by (b). In the distorted image (d) the red
lines correspond to the even simulations and the green lines
to the odd simulations

3.2 Simulated dataset

We used the previously described convolution model to sim-
ulate the field variation as a function of the particle’s con-
centration. To build the dataset used for traning we defined
two geometric shapes: metaballs and toruses. Metaballs [25]
are organic-looking three dimensional objects defined as
follows:

M(x) = 1∑N
i=1 mi(x)≥l(x),with mi(x) =

1

||x− xi
0||2

, (2)

where xi
0 is the center, and l is a threshold to determine its

size.
The torus, centered at x0, radius r and revolution radius

R, was defined as

T (x) = 1(√
(x−x0)2+(y−y0)2−R

)2
+(z−z0)2≤r2

(x). (3)

We generated multiple objects and assigned a uniform
concentration of c to each one, and the total concentration
C(x) is the superposition of all of them. This concentration
was convolved with the three-dimensional dipole kernel to
obtain the desired field deviations ∆Bz(x).

To obtain the final image, we choose the central slice
of ∆Bz and simulate multiple excitations perpendicular to
that slice. In this way, we get multiple strips that encode the
magnetic field distortions in the z direction. We arrange the
acquired lines in a two-channel image, such that even lines
are the first channel and odd lines the second, as shown in
Fig. 2.

The input-output training sample is the pair formed
by the image (made by the even and odd lines) and the
one level wavelet coefficients (Daubechies 4) of the con-
centration C(x). To build the training set we sampled c
linearly, with 800,000 values between 0.22 and 17.5 µg/mm3

using the previously described shapes. For each c value,
we generated an SPIO distribution mixing the geometric
shapes from 1 to 5 figures chosen randomly. We randomized
l between 0.01 and 0.05 (Eq. 2), r between 2 and 4 and
R between 5 and 10 (Eq. 3). We used the proton density

images provided in the IXI1 dataset as the image to distort
and generated 4 million samples.

4 ARCHITECTURE

DeepSPIO is composed of an encoder, a bottleneck in the
middle, and multiple decoders emerging from this bottle-
neck, as shown in Figure 3.

The encoder is formed by 12 convolutional layers, sim-
ilar to the first half of a U-Net [7], where convolutions
replaced the pooling layers. The reason for this substitution
is that the U-Net was designed for object segmentation,
where spatial invariance, both locally and globally, is an
important characteristic. The pooling steps provide local
invariance, which is not desired in our case. We need to
retain the local spatial dependency because the information
is precisely encoded in space, and the voxel displacements
can occur within the size of a filter. Thus, the model needs
to be capable of summarizing spatial information correctly.
The layers of strided convolutions serve this purpose. We
used parameter sharing because the shape of the distortion
is the same regardless of the position.

The bottleneck consists of 4 residual blocks. We added
these blocks to increase the receptive field of the network
and to improve the convergence of the model.

Finally, after the bottleneck, we have four decoders that
generate the four channels of the wavelet transform of
the SPIO concentration. The architecture of the decoders
is similar to the one in the U-Net. In other words, our
network can be thought of as four networks sharing the
same encoder and bottleneck. Since the inputs are not geo-
metrically related to the output, we decided against keeping
the concatenations of U-Net.

4.1 The Encoder
Each layer of the encoder network performs convolutions
with a group of filters to produce a set of feature maps.
These are then batch normalized [26]. Then an element-
wise ReLU (f(x) = max(0, x)), is applied. Following that,
we apply a 2D convolution with a stride of 2 with linear
activation. This layer downsamples the output by a factor of
2. We used convolutions instead of pooling layers to retain
important spatial information. After the downsampling, we
increase the number of filters in the next convolution block
by 2, in the same fashion as U-Net.

4.2 The Bottleneck
We built the bottleneck concatenating four residual blocks.
Each block is the superposition of two paths. One is a 2D
convolution followed by batch normalization and a ReLU
activation. The second path is a shortcut with a linear
activation. Mathematically, each residual block i with input
x and output y is

y = F (x, {θi}) + θsx,

where F (·) represents the convolution/normalization/-
activation process with parameters θi, and the parameters
of the shortcut are θs.

1. https://brain-development.org/ixi-dataset/
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The purpose of having these residual blocks with short-
cuts is to allow for a shallower network. The usage of
these blocks has some advantages in terms of reducing
overfitting and, more importantly, reducing degradation
due to vanishing gradients during training [27]. We propose
to use projection shortcuts [27], implemented as a 1 × 1 2D
convolution. Projection shortcuts, unlike the identity, give
the model the ability to do cross-channel learning. That is,
it acts like a coordinate-dependant linear transformation of
the filter space [28].

4.3 Decoder Ensemble

The decoder is composed of four decoders, one for each
of the four channels of the wavelet transform. Each decoder
network upsamples its input feature map from the last resid-
ual block of the bottleneck. We upsample using transposed
convolutions with a stride of 2, such that the network will
learn the upsampling operator. As the activation function
we used a Leaky ReLU with α = 0.01:

f(x) =

{
αx, x ≤ 0

x, x > 0
.

Finally, the features are batch-normalized.
The Leaky ReLU activation function has shown better

performance as compared to the standard definition [29],
[30]. Additionally, it retains its simplicity while calculating
derivatives, so it does not make the model training much
slower.

The hypothesis behind using four decoders is that al-
lowing each decoder to specialize in only one channel of
the Wavelet transform will result in better convergence [31],
[32]. Therefore, exploiting the statistical differences and the
relative independence of the wavelet coefficients.

The output of each decoder is a single 2D convolution
layer with linear activation and one filter. This layer is used
to predict the corresponding wavelet coefficients. Finally,
the concentration distribution is the inverse wavelet trans-
form.

4.4 Training

We used the previously described set to train our model. All
the weights were initialized using the technique described
in He et al. [33]. To train the model, we use Adam [34] with
a fixed learning rate of 10−5 and a momentum of 0.9. Before
each epoch, the training set is shuffled. We chose a mini-
batch size of 32, and we ensured that every image is used
only once per epoch.

The loss function was the normalized absolute deviation
plus a regularizing term in the network parameters:

L(θ) =
1

N

N∑
i=1

F∑
j=1

||αj
i − α̂(θ)ji ||1
||αj

i ||1
+ λ||θ||22,

where N is the number of training images, F the number
of channels in the wavelet transform, α is the target and
α̂(θ), the network estimation of the wavelet coefficients. It is
important to use a relative deviation to avoid images with
high SPIO concentrations to dominate [35].

5 EXPERIMENTS AND RESULTS

To test the performance of our network, we did four ex-
periments: Firstly, with synthetic images generated as in
the training group. Secondly, with simulated images from
an organ not used in training (breast instead of the brain).
Thirdly, with simulations of a simple geometry with a
nearby air sphere. And fourthly, with real data acquired
with the scanner. The first three experiments allowed us to
test the network in complex and different controlled situ-
ations, whereas the fourth, although simpler in geometry,
includes all the complexity of the actual acquisition.

Additionally, to study the effect of noise, we tested the
model simulating a cylinder with different SPIO concentra-
tions and noise levels.

To measure the prediction error, we used the Normalized
Mean Absolute Error (NMAE) defined as

NMAE(Ĉ, C) =
||Ĉ − C||1
||C||1

.

Where Ĉ is the estimated SPIO concentration in image
space, and C, is the real concentration distribution.

All the experiments were conducted on a PC with an
Intel i9-7900x processor and two NVIDIA GTX 1080Ti. We
implemented our model on Keras [36] with the TensorFlow
backend [37]. The training took approximately 40 hours.

Experiment 1: Simulated images. To validate the net-
work, we estimated the SPIO concentration with images and
particle distributions similar to those used during training.
We obtained an average NMAE of 0.17 ± 0.10. Figure 4
shows the estimation done by DeepSPIO on synthetic data
and compares it to the simulated ground truth. There is an
excellent agreement.

Experiment 2: Simulated images from a different set.
Since the training IXI dataset only has brain images, there is
a risk for the model to be biased towards spurious artifacts
only present in those images. To test for that bias, we simu-
lated the SPIO-induced distortions in human breast images.
Figure 5 shows an example of the DeepSPIO estimation and
the corresponding ground-truth. We did not find any bias.

Experiment 3: Distortion from an air source. To verify
the effect of other off-resonance sources, we tested our
method with a simulated cylinder and a nearby sphere
with an air-tissue susceptibility difference of ∆χ(cgs) =
7.5×10−8. This experiment simulates the effect of air, found
in some parts of the body, such as the sinus cavities in the
head. Figure 6 shows examples of DeepSPIO estimations
for different concentrations and the corresponding ground
truth. We used an idealistic shape (sphere) as opposed to a
more complex shape. As can be appreciated in Figure 6, this
is not important because the effect of the air is negligible in
comparison with the high concentration SPIOs.

Experiment 4: Real images. We tested our model with
actual MRI data. We constructed several phantoms con-
sisting of plastic cylinders filled with agar, with a small
cylindrical bottle of SPIO (Fig. 7).

We tested five different concentrations of SPIO, C =
{27.9, 13.9, 9.3, 7.0, 3.5} µg/mm3. We also made another
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Fig. 3: Proposed Architecture of DeepSPIO. Each decoder upsamples its input using the shared features from the bottleneck.
Then it performs a transposed convolution followed by convolutions to densify and specialize the reconstruction of each
wavelet filter. The final convolution represents the corresponding wavelet filter.

Fig. 4: Simulated SPIO distortions on IXI PD image, ground
truth, and SPIO prediction. This image has an NMAE of
0.23. The group average is 0.17.

Fig. 5: Simulated SPIO distortions on a breast image, ground
truth, and SPIO prediction. NMAE: 0.16.

batch of samples with the following concentrations to vali-
date our results: C = {13.9, 7, 3.5, 1.7} µg/mm3.

The true concentration and the estimated concentration
(mean of the center region) are shown in Table 1. The
images were acquired with the View Line sequence in a 7T
Bruker scanner. The MRI parameters of the sequences are as
follows: Field of View (FOV): 50 mm squared; stripes width:
1 mm; resolution: 256×256; TE/TR: 8.7/800 ms; view lines:
25; turbo spin-echo factor: 3; total scan time: 30 minutes.

The acquired images and the output of our model for the
SPIO concentration are shown in Fig. 8.

5.1 Noise sensitivity
To appreciate the effect of noise, we simulated a cylinder
inside an agar container, similar to our real sample. The

Fig. 6: Examples of the air experiment. The top row has the
simulated images. The middle row has DeepSPIO predic-
tions. And the bottom row has the corresponding ground
truths. Cylinder concentrations increase from left to right
(0.22, 6.7, 13, 20 µg/mm3). The NMAE indices are: 1.96, 0.24,
0.30, and 0.21.

Fig. 7: Agar-filled phantom with SPIO particles. Various
concentrations were used.
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Fig. 8: Results on the first batch of real samples. With decreasing concentration from left to right.

TABLE 1: Comparison between average estimated concen-
tration and average ground truth for both batches.

Concentration (µg/mm3)
Batch True Estimated Error % Error

1 27.90 27.35 0.55 1.97%
1 13.95 13.17 0.78 5.59%
2 13.95 11.78 2.17 15.5%
1 9.30 10.92 1.62 17.4%
1 6.98 7.88 0.90 12.89%
2 6.98 6.42 0.56 8.02%
1 3.49 3.53 0.04 1.14%
2 3.49 3.10 0.39 11.17%
2 1.75 1.41 0.34 19.42%

concentration of SPIO was changed between 0.22 and 27.9
µg/mm3. We tested the following noise levels for each
concentration: 5 dB, 11 dB, 19 dB and∞. We simulated each
concentration ten times, adding instances of Gaussian noise
to the real and imaginary components of each pixel. Fig. 9
shows the mean and standard deviation of the NMAE index
for each concentration. Fig. 10 shows the results in more
detail, this time with 100 repetitions, for a concentration
of 20.5 µg/mm3. We can see how the mean error and its
standard deviation are reduced as the SNR increases.

5.2 Analysis

We used the GRAD-CAM technique to visualize how the
network is using the information in the input image and to
make sure it is not using spurious artifacts [38]. GRAD-CAM
produces visual representations in the form of attention
maps.

The GRAD-CAM algorithm uses the gradient informa-
tion flowing in the last convolutional layer of the neural
network. GRAD-CAM produces a map showing each neu-
ron’s importance in the decisions made by the network.
This map is calculated by computing a score that weights
the derivative of the output y of one of the decoders with

Fig. 9: Effect of noise. Model performance (measured by the
NMAE) as a function of the concentration. For each SNR
level, the mean and standard deviation are shown.

respect to the k-th feature map Ak of some given layer.
Mathematically this is ∂y/∂Ak, which corresponds to the
gradient backpropagated. The following weight is defined

αk =
1

Z

∑
i

∑
j

∂y

∂Ak
ij

,

where i and j corresponds to the feature map’s dimensions,
Z is the number of elements in the feature map, and αk

corresponds to the global average pooling of the k-th feature
map of the selected layer. This expression can be interpreted
as a partial linearization of the neural network downstream
from the selected layer, and the importance of the k-th fea-
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Fig. 10: Effect of noise: Model performance (measured by the
NMAE) on a sample with a concentration of 20.5 µg/mm3

as a function of the SNR. The mean and standard deviation
of the NMAE are shown.

Fig. 11: Attention maps obtained using GRAD-CAM over
the second batch of real samples. Using the last layer of the
bottleneck as feature derivative. In the top row we show
the images of the second batch. In the bottom row their
corresponding attention maps.

ture map in making the estimation y. Finally, the attention
map LGRAD-CAM is

LGRAD-CAM = ReLU(
∑
k

αkAk).

This map is multiplied with the input image to visual-
ize what parts of the image are used to make the actual
estimation. In Figure 11 we show the attention maps of the
network for the MRI images of experiment 4. We can see
that it consistently uses the deformation and shape of the
slice profiles to make the estimation.

We also use this technique to see what is encoding each
layer. We can appreciate in the maps of the first layers
that the network starts by obtaining the center lines of the
slice selection. This result makes sense because the ∆Bz

is encoded in the lines, as a deviation from the central
frequency. In subsequent layers, before the bottleneck, it
uses those lines to estimate concentration, as needed by the

Fig. 12: Attention maps of each feature of the fifth convolu-
tional layer.

theoretical model of the MRI signal (Eq. 1). In Figure 12, we
can see the attention maps for the fifth convolutional layer,
and how the field deviation is estimated. See the Appendix
for all the attention maps.

To understand the shape of the error curves in the
previous section, we performed a saliency analysis [39].
The saliency analysis’s basic idea is to back-propagate the
gradient of the output and project it into the input image.
These maps are generally used in image processing tasks
because they show how important are the features for the
model. We used the gradient from our loss function.

In Figure 13, as expected, we can see that the obtained
features of the noisy samples are of much less quality than
their noise-free versions. This result is in concordance with
the higher error rates for the noisy images.

In the same figure, it is also possible to appreciate how
the features’ importance changes with the concentration.
They are less pronounced for concentrations in the middle
of the range (less bright saliency maps in 13).

This behavior is due to the nature of the problem,
which has two essential parts: finding the shape of the
distribution of SPIO and finding its concentration. We can
see that in low concentrations, it is straightforward for the
network to predict the shape of the distribution. But it
is difficult to estimate the concentration since there is no
significant geometric distortion in the stripes. This effect is
most notorious at concentrations below 3 µg/mm3, starting
to become indistinguishable at around 1 µg/mm3. As the
concentration increases (around 7 to 16 µg/mm3), infor-
mation about the shape decreases, but information about
the geometric distortions of the stipes increases. Finally, for
higher concentrations, the geometric distortions are high
enough to compensate for the lack of shape information,
and the predictions are accurate again.

We also computed the saliency maps for the experiment
with the simulated air bubble (Figure 14). As in the previous
figure, it is possible to appreciate how for low concen-
trations, the main features are the shapes themselves. For
higher concentrations, the relevant features are the geomet-
ric distortions of the stripes. For the lowest concentration
(1 µg/mm3), our method may confuse the field distortions
coming from the SPIO with the ones coming from the
air. This is not the case for higher concentrations, as it is
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Fig. 13: Saliency maps obtained using guided back-propagation in simulated concentrations. First for a noiseless situation
and then for an SNR level of 5 dB. In the top row we show the simulated images for the following concentrations: 0.22,
3.23, 6.91, 10.58, 14.26, 17.94, 21.62, and 25.31 µg/mm3. In the bottom row, their corresponding saliency maps.

Fig. 14: Saliency maps from the simulations with an air
sphere and a cylinder with SPIO. The concentrations, from
left to right are 0.22, 6.91, 14.26 and 21.62 µg/mm3). The top
row has the simulated images and the bottom row has the
corresponding saliency maps.

confirmed in the saliency maps, where the network did not
consider features from the air bubble.

Although the proposed experiment is a simplified model
of the different air cavities that can be found in the body, it
helps to isolate and visualize the effects. It shows that the
effect is negligible outside the sphere itself, independently
of the shape.

6 DISCUSSION

In this study, we proposed a solution to the challenging
problem of accurately quantifying high concentrations of
SPIO particles using a fully convolutional neural network:
DeepSPIO. DeepSPIO estimates the concentration distribu-
tion accurately in all the cases we tested. For training, we
used images simulated from the View Line acquisition with
simple shapes of SPIO distributions inserted in brain images
of the IXI dataset.

Roughly speaking, one can appreciate two distinct image
features in the View Line images that can be used to estimate
the SPIO concentration. One feature, produced by the Off-
resonance, is the bending of the slice selection. The only
spins excited are those that have a resonant frequency in the
bandwidth of the excitation pulse. Since the SPIO concen-
tration distorts the field, that frequency changes consider-
ably, and the excitation is displaced and warped, producing
curved lines. The second feature, also produced by the Off-
resonance, is a noticeable signal drop off near the SPIO

location. This signal loss is due to the significant frequency
deviation such that the slice thickness gets reduced and
tends to disappear. Additionaly, the through-plane phase
dispersion cancels the signal.

It is interesting to observe how the network processes
these features, which could be appreciated in the maps
obtained with GRAD-CAM and the saliency analysis. We
can see that the attention of the first layer is concentrated
in the center of each line of the slice selection. In other
words, it is looking at the curvature of the lines. This feature
is what an analytical solution would require. Subsequent
layers gradually reduce the attention on the center lines to
add other details. This behavior, together with the fact that
the network was trained with synthetic data, confirms that
the model learned to solve the problem and is not a result
of overfitting to the training data.

The saliency maps also indicate that it is more chal-
lenging to estimate concentrations in the middle range of
concentrations. This is due to the less explicit shape of the
space occupied by the particles, and the lack of features
farther apart to compensate for the lost shape. This effect
explains the increase of the error for concentrations in the
range from 7 µg/mm3 to 16 µg/mm3. As expected, noise
in the images also reduces useful features and therefore
increased the variability of the estimation.

To address the lack of accuracy in the middle ranged
concentrations, in future work, we propose to optimize the
acquisition parameters. Candidate variables to study are the
bandwidth or the view line width since a reduced slice
thickness would improve the detection of field distortions,
at the cost of longer acquisitions. Timing parameters, partic-
ularly TE, could be relevant for improving the precision in
this middle range, as well.

Although we only used synthetic data to train on a
particular dataset, the model obtains accurate estimations
of the SPIO distribution on different types of images. These
results, plus the attention maps, show that the network is
learning the underlying problem. The proposed approach
also has a convenient and practical consequence. It allows
to use forward models of different levels of sophistication
and to perform transfer learning to measure the distribution
in different parts of the body more accurately. In our exper-
iments, although we estimated the field distortions in three
dimensions, we only used two-dimensional images. Using
3D images could have a positive effect on the quality of the
estimated model, although at a higher computational cost.

We used a wavelet transform of only four channels, but
the proposed architecture can be easily extended to any
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number of channels. Adding more wavelet filters may have
a beneficial effect, as shown in other applications [31], [32].

An essential benefit of using Deep Learning to solve
the SPIO quantification problem is that calculating the dis-
tribution map of a given sample is done within seconds.
Obviously, the training takes a long time (40 hours in our
computer for 4 million images), but this is done only once,
and more importantly, it is not sensitive to the type of
images used during training. The shape of the SPIO during
training tends to be much more complicated than actual
distributions. This network can already be applied to any
anatomy.

7 CONCLUSION

We have described the bases of a new class of neural
network model that solves the SPIO quantification problem.
The quantification of SPIO concentration distribution is a
difficult problem to solve with traditional analytical models,
that typically use the phase of the signal, because the field
variations are so significant that the signal disappears, and
the phase becomes very unreliable. We proposed a net-
work architecture that first encodes the image using strided
convolutions. After the encoding, the data goes through
a bottleneck with several residual blocks that allow for
shortcuts. Finally, the data is decoded using one decoder per
coefficient of a wavelet transform to exploit the statistical
differences between wavelet channels. This architecture was
successfully used to estimate the SPIO concentration in
simulated data and real data obtained from an MRI scanner.
It was able to estimate the concentration and geometric dis-
tribution accurately. Attention maps show that the network
is looking at the slice selection bending, which coincides
with the theoretical model and reassures that the network is
learning the underlying problem and not overfitting to the
training.
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